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Partial observables
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I discuss the distinction between the notion of apartial observable and the notion of acompleteobservable.
Mixing up the two is frequently a source of confusion. The distinction bears on several issues related to
observability, such as~i! whether time is an observable in quantum mechanics,~ii ! what are the observables in
general relativity, and~iii ! whether physical observables should or should not commute with the Wheeler-
DeWitt operator in quantum gravity. I argue that theextendedconfiguration space has a direct physical
interpretation, as the space of the partial observables. This space plays a central role in the structure of classical
and quantum mechanics and the clarification of its physical meaning sheds light on this structure, particularly
in the context of general covariant physics.
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I. INTRODUCTION

The notion of an ‘‘observable quantity,’’ or an ‘‘observ
able,’’ plays a central role in many areas of physics. Roug
observable quantities are the quantities involved in phys
measurements. They give us information on the state o
physical system and may be predicted by the theory. In qu
tum mechanics, observables are represented by self-ad
operators. In gauge theory, we make the distinction betw
gauge-invariant quantities, which correspond to observab
and gauge-dependent quantities, which do not.

The notion of an observable, however, raises a cer
number of issues that have generated discussion in the li
ture. In particular,~i! several papers discuss whether time
an observable in quantum theory. If time were an observa
it should be represented by a self-adjoint operatorT. The
spectrum ofT should be the real line. A well-known theore
@1# then demands its conjugate variable, which is the ene
to have an unbounded spectrum, but energy is bounded
below. Therefore time cannot be an observable@2#. But if
time is not an observable, how can we measure it?~ii ! There
are several discussions on observability in general relati
~see@3,4# and references therein!. In the literature one finds
contradictory statements; for instance, that the metric ten
gmn(x) is not observable but a curvature scalarR(x) is ob-
servable; or that no local quantity such asR(x) can be ob-
servable.~iii ! Observability is a source of lively debates
quantum gravity@4,5#. Observables must be gauge invaria
therefore they commute with the constraints, therefore
particular, with the Wheeler-DeWitt operator, and therefo
they have to be constant in the coordinate timet. Thus, no
quantity that changes witht can be observable. This conclu
sion is considered unreasonable by some@6#. Others~includ-
ing myself! @4,7–9# argue that the observables in quantu
gravity are relative quantities expressing correlations
tween dynamical variables. But how can a correlation
tween two nonobservable quantities be observable?

I believe that in many debates of this kind there is a c
fusion between two distinct notions of observability. Mixin
up these two notions generates misunderstanding and
0556-2821/2002/65~12!/124013~8!/$20.00 65 1240
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ceptual mistakes. In this article, I try to clear up the source
this confusion.

The difference between the two notions of observabi
has to do with localization in time and in space. In a nonr
ativistic context, the spacetime structure of the world is
sumed to be fixed and simple. Because of this, the distinc
between the two notions of observability can be disregard
More precisely, the distinction is replaced by the introducti
of a fixed structure on the space of the observables, and
it is safely ignored. The fixed structure of the space of
observables reproduces the fixed structure of spacetime
we shall see. In a generally relativistic context, on the ot
hand, the spacetime structure of the world is more comp
and we cannot trade the distinction between different noti
of observability for a preestablished structure on the spac
the observables. In such a context, ignoring the distinct
between different meanings of ‘‘observable’’ leads to serio
confusion.

Partial and complete observables are defined in Sec
The two notions are shown to be distinct and examples of
two are given. I then discuss the relevance of the distinct
for different contexts: general relativity~in Sec. III!, quan-
tum mechanics~in Sec. IV!, and quantum gravity~in Sec. V!.

The space of the partial observables is theextendedcon-
figuration space. This space, and its associated exten
phase space, on which the Hamiltonian constraint is defin
are often presented as devoid of direct physical significan
Instead, I argue in Sec. VI that the extended configurat
space has indeed a direct physical interpretation: it is
space of the partial observables. This space plays a ce
role in the general structure of mechanics, both at the cla
cal and at the quantum level. I illustrate this role and arg
that it provides a unifying perspective that sheds light on
structure of mechanics, especially of general covariant m
chanics.

The distinction between partial and complete observab
was discussed in@10#. The distinction is sometimes implic
itly used, but I am not aware of any other explicit discussi
on it in the literature.
©2002 The American Physical Society13-1
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CARLO ROVELLI PHYSICAL REVIEW D 65 124013
II. PARTIAL OBSERVABLES AND COMPLETE
OBSERVABLES

Let us start from the following two definitions:1

Partial observable: a physical quantity with which we ca
associate a~measuring! procedure leading to a number.

Complete observable: a quantity whose value can be pr
dicted by the theory~in classical theory!; or whose probabil-
ity distribution can be predicted by the theory~in quantum
theory!.

At first sight, the two definitions might seem equivale
but they are not. To see this, consider the following exam
Imagine we have a bunch of cards in a box. Each card ha
upper and a lower side~say, of different colors!. On each
side, there is a number. Denote the upper number asn and
the lower number asN. We extract a certain number of card
from the box and we realize that there is a law connecting
two numbers: sayN is always a certain function ofn. That is,
N5N(n). The lawN5N(n) gives us a predictive theory fo
some observable quantities. What are the observables in
context? Clearly, bothn and N are partial observables, ac-
cording to the definition given above. However, neither
them is predictable, because at each new card we extrac
do not know which particular value ofn, or which particular
value ofN, will be found. What is predictable is the value
N on the back of a card marked with a certainn. Therefore
we have one ‘‘complete observable’’N(n) for each value of
n. The ‘‘complete observables’’ areN(1),N(2),N(3), . . . , .

The example may seem artificial and unrelated to
structure of realistic physical theories, but it is not. Inde
realistic physical theories have a structure similar to the
of the example: the role of the ‘‘independent’’ partial obse
ablen is played by the quantities giving the temporal loc
ization or the spatiotemporal localization. Consider for
stance a very simple physical system, a pendulum. Ass
the oscillations are small and described by the equation

d2q~ t !

dt2
52v2q~ t !. ~1!

Now suppose we are in a~very simple! laboratory, and we
want to check the correctness of Eq.~1!. What do we need?
Clearly we needtwo measuring instruments: one that giv
us the pendulum positionq and one that gives us the timet.
The theory cannot predict the value oft. Nor can it predict
the value ofq, unless we specify that the value ofq we are
interested in is the one at a certain given timet. Therefore,
there are two partial observables playing a role here:q andt.
And there is one family of complete observables: the obse
ablesq(t), for any real value oft. It is sufficient to know the
actual value of a few of these complete observables@for in-
stance,q(0) anddq(t)/dtu t50#, in order to be able to predic
the value of all the others.

1The operational tone of the first definition does not imply a
adherence to operationalism here@11#: the reference to measurin
procedures is just instrumental for clarifying the distinction.
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This may seem a rather pedantic account of observab
in the context of a nonrelativistic system. Indeed, one usu
says that ‘‘q is observable,’’ leaving implicit ‘‘yes, of course
one has to say at what time the observation is made.’’ But
mentioned, such carelessness in defining observability
then paid for at a high price in a generally relativistic co
text, where things are not simply evolving in a fixed extern
time t which can be measured by an external clock, as
nonrelativistic physics. Let us therefore here clearly dist
guish between~i! t andq ~without specified time!, which are
partial observables, because there are measuring proce
specified for them, but they cannot be predicted, and~ii ! the
family of complete observablesq(t), which can be predicted

Observe that the predictions of a mechanical theory
always be expressed asrelations between partial observ
ables. These relations depend on a certain number of par
eters, which label the different possible histories of the s
tem. For instance, in the case above the predictions of
theory are given by the following relation betweent andq:

f ~q,t;A,f!5q2A sin~vt1f!50. ~2!

From this perspective, the partial observablesq and t can be
taken as being on the same footing. That is, they can
treated symmetrically in the theory. Observe, however, t
in the example considered the two partial observablesq and
t are not entirely on the same footing. The predictions of
theory can certainly be expressed as a relation between
two, but this relation can be solved forq as a function oft,
not for t as a function ofq. Accordingly, we callt an inde-
pendentpartial observable andq a dependentpartial observ-
able. As we shall see, in a generally relativistic context su
a distinction between dependent and independent partial
servables is lost.

In a nonrelativistic system withm degrees of freedomqi ,
with i 51, . . . ,m, there are in generaln5m11 partial ob-
servables:qa5(t,qi) with a51, . . . ,n. The space of these
forms the extended configuration space of the system, wh
we denoteC. The predictions of classical mechanics can
ways be given as relations between the extended config
tion space variables, as in Eq.~2!. These relations depend o
a certain number of parametersa j @A and f in Eq. ~2!#,
which label the different possible histories of the system:

f ~qa;a j !50. ~3!

Classical mechanics and quantum mechanics can be fo
lated in a very general and very clean form over the exten
configuration spaceC. Examples of such formulations are th
Hamilton-Jacobi formalism, the extended phase space
malism, the path integral formalism, and the propagator f
malism @16#. These formulations stress the centrality of t
notion of a partial observable and show that mechanics tr
all partial observables on the same ground. In Sec. VI,
shall discuss some of these formulations and their relatio
partial observability.

Finally, consider a field theory, such as Maxwell electr
dynamics. A dynamical variable is represented for insta
by the electric fieldE(xW ,t). The electric field at a given
3-2
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PARTIAL OBSERVABLES PHYSICAL REVIEW D65 124013
spacetime point (xW ,t) can be predicted, and therefore it is
complete observable of the theory. In order to meas
E(xW ,t), we needfive partial observables. Indeed, we ma
imagine that we have at our disposal five measuring devi
a clock measuringt, an electric field detector that measur
E, and three distance measuring devices, giving the th
components ofxW . The complete observableE(xW ,t) is com-
posed of these five partial observables.

III. GENERAL RELATIVITY

Let us now move to a generally relativistic context. F
concreteness, let us consider general relativity coupled w
N small bodies. For instance, these bodies may represen
planets and the satellites in a generally relativistic mode
the solar system. The Lagrangian variables can be take
be the metricgmn(xW ,t) and, say, the bodies’ trajectorie
X(n)

m (tn), with n51, . . . ,N and orientationsE(n)
am (tn) ~a local

tetrad on thenth body,a50, . . .,3). As iswell known, the
meaning of the coordinates (xW ,t) in general relativity is very
different from their meaning in pre-general-relativistic~pre-
GR! physics.2 Indeed, the coordinates (xW ,t) do not represen
observable quantities at all.3 That is, the general relativistic
coordinatesxW and t are neither partial observables nor com
plete observables.

The distinction between partial and complete observab
however, is still present. Consider some typical predictio
of the theory. For instance, a prediction of the theory may
the following: tomorrow morning, when the Sun is 5° ov
the horizon, Venus will be visible at 12° over the horizo
This is a well defined prediction, and should thus refer t
complete observable. The complete observable is the a
aV that Venus makes with the horizon, at the moment
which the angleaS of the Sun with the horizon is 5°
Clearly, to verify this prediction we need measuring proc
dures giving us the two angles. Therefore the two angles
partial observables. The complete observable is the valu
aV(aS) for aS55°.

As a second example, we could replaceaS with the
proper timet measured on Earth by a clock that startedt
50) at a certain specified eventO ~say, a certain eclipse!.
Then again, the proper timet elapsed from the eclipse, o
equivalently, the lengtht of the Earth’s world line since the
eclipses, is a partial observable because it can be meas
but it is not a complete observable, because it canno
predicted. Indeed, it is an observable quantity used for lo
izing a spacetime point.

The key difference between general relativity and pre-
physics as far as observability is concerned is well illustra
by a third example. Consider the following~realistic! experi-

2Einstein has described his 1912 to 1915 final struggle for gen
relativity as a dramatic effort to understand the new ‘‘meaning
the coordinates.’’

3Unless one fixes a physically interpreted gauge, in which case
discussion of observability is a bit different, but the final conc
sions are unchanged. See below.
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ment. A very accurate clock is mounted on a satellite, sa
satellite in the global positioning system~GPS! system. The
satellite broadcasts its local time and the signal is recei
by the launching base, and compared with the time of
equally accurate clock kept at the base. As is well known,
discrepancy between the two due to generally relativistic
fects is easily observable using current technology. Letts
andtb be the signal received from the satellite and the lo
clock reading. General relativity can be used to predict
relation between the two,

f ~ts ,tb!50 ~4!

~once all the relevant initial data are known!. Again, we are
in a situation of two partial observables forming a comple
observable. Now: which one of the two is theindependent
one? In general, Eq.~4! may not be solvable for either vari
able. One could say thattb has to be viewed as the ‘‘natural
independent variable, since this is ‘‘our’’ time. But one c
equally well say that thets is the ‘‘natural’’ independent
variable, since it provides an accepted standard of time@13#.
Clearly we are in a very different situation from one with th
two partial observablesq and t of the previous section
There, we had a clear distinction between an independ
observable~t! and a dependent one (q). Here,ts andtb are
truly on the same footing.

The key difference between general relativistic phys
and pre-GR physics is the fact that in general relativis
physics the distinction betweendependentand independent
partial observables is lost. A pre-GR theory is formulated
terms of variables~such asq) evolving as functions of cer-
tain distinguished variables~such ast). General relativistic
systems are formulated in terms of variables~such as
tb ,ts ,aV ,aS) that evolve with respect to each other. Ge
eral relativity expresses relations between these, but in g
eral we cannot solve for one as a function of the other. Pa
observables are genuinely on the same footing.

What are the complete observables, in general, in
context? A complete observable is a quantity that can
predicted uniquely. Therefore it is a quantity which is we
defined once we know the solution of the equations of m
tion, up to all gauges~that is, it is not affected by the inde
termination of the evolution!. Such a quantity can be seen
a function on the space of the solutions modulo all gaug
This space is the physical phase space of the theoryG. In the
canonical formalism,G can be obtained as the space of t
orbits generated by the constraints on the constraint surf
Any complete observable can thus be expressed as a fun
on G. Equivalently, it can be expressed as a function on
extended phase having vanishing Poisson brackets with
first class constraints, including, of course, the Hamilton
constraint. Vice versa, any function that commutes with
constraints defines, in principle, a complete observable.

Partial observables are hard to construct formally in g
eral, but it is far easier to define and use them concretely.
a recent concrete construction of a complete set of partial
complete observables in GR, see@13#.

I close the section with a note on gauge-fixed formu
tions of GR. One may fix the gauge by choosing coordina
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CARLO ROVELLI PHYSICAL REVIEW D 65 124013
that have a physical interpretation. More precisely, one m
select a family of partial observables~curvature scalars, sca
lar fields, dust variables, GPS readings, etc.! and fix the co-
ordinate gauge by tying the coordinate system to these pa
observables. Within a formulation of this kind, coordinat
represent partial observables. Furthermore, they have
natural character of independent partial observables. H
ever, this does imply that the independent partial observa
are determined by the theory, because the same physical
ation can be described by a different physical gauge cho
in which the role of dependent and independent partial
servables is interchanged.

IV. QUANTUM THEORY

In quantum theory observables are represented by op
tors. Which observables are represented by operators
partial or the complete observables? The answer is diffe
in the Heisenberg picture~evolving operators! and in the
Schrödinger picture~evolving states!. Let us start from the
Heisenberg picture. Here the operators are time depend
For instance, in the quantum theory of a harmonic oscilla
in the Heisenberg picture, there is no position operatorQ, but
only the operatorQ(t) that represents ‘‘position at timet.’’
This is immediately recognized as the operator correspo
ing to the complete observableq(t) discussed in Sec. II. In
the Heisenberg picture operators are associated with c
plete observables.

In the Schro¨dinger picture, there is an operatorQ associ-
ated with the partial observableq. However, specific predic
tions are not given just in terms of this operator: we need
state as well, and, in the Schro¨dinger picture, the stateC(t)
is time dependent. Thus, for instance, the expectation v
Q̄(t)5^C(t)QC(t)&, which is a prediction of the theory, i
associated with the complete observableq(t), as it should
be, not with the partial observableq. In order for the Schro¨-
dinger picture to be meaningful, we need the theory to
expressed in terms of a well defined independent partial
servablet: ‘‘the external time.’’ In a theory such as gener
relativity, where the dynamics expresses the relation betw
partial observables that are on equal footing, the Schro¨dinger
picture is not viable. More precisely, it will be viable only i
special circumstances, in which we can choose~arbitrarily!
one of the partial observables as the independent one
solve the dynamical relations expressing the predictions
the theory in terms of this quantity. In general, no such qu
tity exists. On the other hand, the Heisenberg picture rem
meaningful whatever the spacetime structure of the the
Let us therefore return to the Heisenberg picture, which is
more general.

In the Heisenberg context, consider the problem
whether there should be a time operator in quantum the
The timet is a partial observable, not a complete observa
Operators are associated with complete observables, not
partial observables. Therefore it is against the tenets of qu
tum theory to search for an operator corresponding tot. Op-
erators correspond to quantities that are in principle pred
able @such asq(t)#, not to quantities~such ast) that serve
only to localize the measurement of a predictable quantit
12401
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spacetime. A quantity that is described by an operator
quantum theory is a quantity such that there are states
diagonalize it, namely, such that there are physical situati
in which the outcome of a measurement of that quantity
certain: the timet, on the contrary, can never be predicted

In other words, quantum theory deals with the relati
betweenq andt, and not withq alone ort alone. Therefore it
is meaningless to search for the quantum theory of tht
variable alone.

Of course, the readingT of a clockcan be predicted, but
only if we first readanotherclock. If we know that the sec-
ond clock indicatest, we can predict that the first clock wil
read a certainT. If we now take into account the fact that th
clock is a physical mechanical system and is subject to qu
tum fluctuations, then we can describe it in terms of an
erator. This operator describes the complete observableT(t).
There will be quantum fluctuations described by gene
states in the state space on which this operator acts. T
fluctuations are not the quantum fluctuations of one indep
dent time variable. They are the quantum fluctuations in
observable correlation betweentwo clock variables.

V. QUANTUM GRAVITY

In quantum gravity, operators corresponding to physi
observables must commute with the Wheeler-DeWitt c
straint operator. This operator is the generator of evolution
the coordinate timet. Thus, physical observables must b
invariant under evolution int. This fact has raised much
confusion. How can observables invariant under evolution
t describe the evolution we observe? The question is
posed, because it confuses evolution with respect to the
ordinate timet and physical evolution. In Sec. III we hav
observed that in general relativity quantities like the prop
times tb and ts are partial observables and their relati
evolution is well defined. Let us fix a valuetb5t of the first,
and consider the corresponding value ofts . ~If there are
several such values, take the highest.! Call this valueTt .
That is,Tt is the highest number for which

f ~Tt ,t!50, ~5!

wheref is the function in Eq.~4!. Tt is a complete observ
able. It is the signal we receive from the satellite when o
local proper time at the base ist. It describes the change o
the value of the received signal as the proper time at the b
passes. This is a description of evolution. At the same tim
this is a quantity independent of the coordinatet. To see this,
recall that to calculate its value from a specific solution
the Einstein equations, we first find the dependence oftb and
ts on the coordinate timet; namely, we compute the func
tions tb(t) and ts(t). The form of these two functions is
gauge dependent: it changes if we use a different coordi
representation of the same four-geometry. We then loc
invert the second function and insertt(ts) in the first. The
resulting Tt[ts(tb5t) is independent of the coordinatet
chosen, and thus it is uniquely determined by the equi
lence class of solutions of the field equations under diff
morphisms. It is well defined on the space of these equ
3-4
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PARTIAL OBSERVABLES PHYSICAL REVIEW D65 124013
lence classes, namely, onG. Equivalently, it can be
represented as a function on the extended phase space
commutes with all the constraints, including the Hamiltoni
constraint.

Let us now come to a main objection that we want
address in this paper, which is the following.

Objection. Tt cannot be observable withouttb and ts

being individually observable. Thustb and ts are observ-
able. Observables must be represented by physical opera
tb andts depend ont and do not commute with the Hami
tonian constraint. Therefore in any quantum theory of grav
there should be physical operators representing observa
that do not commute with the Wheeler-DeWitt constraint.

It should be clear at this point why this objection
wrong. It confuses partial and complete observables.tb and
ts are partial observables, and partial observables are
associated with quantum operators in quantum theory~more
precisely, in Heisenberg picture quantum theory, which is
only one viable in this context!.

We close this section with an observation on the role
the coordinates in the formalism of quantum gravity. T

general relativistic spacetime coordinates (xW ,t) have no di-
rect physical interpretation. In a gauge-fixed context, th
can be tied to partial observables. In any case, however,
do not represent complete observables. It follows that
idea that the coordinates should be represented by qua
operators is not justified in the light of quantum theory a
general relativity alone. Operators are attached to comp
observables, while spacetime coordinates are—at be
partial observables: they cannot be predicted, they serve
to localize complete observables.

Quantum theory deals with the relation between par
observables. It can deal with the relation between phys
variables and~gauge-fixed! coordinates (xW ,t), but not with
the value of the coordinates alone. Therefore it is mean
less to search for the quantum theory of the (xW ,t) variables
alone.

Noncommutative geometry approaches to quantum g
ity search for a mathematics capable of promoting the sp
time coordinates (xW ,t) to a noncommuting operator algebr
This approach is sometimes motivated with the argum
that quantum theory should require the coordinates (xW ,t) to
be represented by operators. In the light of the discuss
above, I think that this motivation mistakes partial obse
ables and complete observables. Noncommutative
proaches to quantum gravity are extremely interesting in
view, both mathematically and physically, but I think th
this particular motivation is naive and not tenable. Physi
noncommutativity of quantities related to physical localiz
tion and geometry, on the other hand, is likely to follow fro
the fact that such quantities should, in fact, be functions
the gravitational field, and therefore quantum dynami
variables.

Perhaps an application of the conceptual framework
this paper could be to clarify what aspects of a noncomm
tative spacetime are really treated as observables, as opp
to simply representing effects of background fields. A co
12401
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trasting discussion between viewpoints on this issue, I th
could be useful and bring clarity.

VI. THE EXTENDED CONFIGURATION SPACE

In this section I discuss the role of the partial observab
in the formal structure of mechanics. I focus here on theo
with a finite number of degrees of freedom, leaving the e
tension to field theory to the reader.4 This discussion shed
light on the physical interpretation of certain structures, su
as the extended phase space of the fully constrained syst
For a more complete treatment of this subject, see@14#; see
also@9#. The central message of this section is twofold. Fir
when the formalism is sufficiently general, partial obse
ables are the main quantities mechanics deals with. Sec
in general, mechanics makes no distinction between dep
dent and independent observables. The distinction betw
independent and dependent observables can be seen
accident of the specific dynamics of nonrelativistic theori
In the light of these two observations, I think that the inte
pretation of general relativistic theories becomes more tra
parent.

As observed in Sec. II, the partial observables of a m
chanical system form the extended configuration spaceC.
Recall that we denote the partial observables byqa, a
51, . . . ,n. Dynamics can be given in terms of a first ord
partial differential equation onC, the Hamilton-Jacobi equa
tion

CS qa,
]S~qa!

]qa D 50. ~6!

The function of 2n variablesC(qa,pa) determines the dy-
namics. One searches for ann-parameter family of solutions
of this equationS(qa,Qa), whereQa aren constants, and the
predictions of the theory are contained in Eq.~3!, which are
obtained as follows:

f a~qa;Qa,Pa!5
]S~qa,Qa!

]Qa
2Pa50. ~7!

These form a 2n-parameter family ofn relations between the
partial observables~not all independent!. The parameters
Qa,Pa label the possible histories of the system: each hist
determines a set of relations among partial observab
These relations are the physical predictions of the the
Notice that all partial observablesqa are treated on the sam
footing: the ‘‘time’’ partial observable, if present at all, is ju
a variable among the others. Notice also that the usual
step of the Hamilton-Jacobi prescription, which is to inve
Eq. ~7! for the dependent variables, is not necessary from
point of view.

Let G be the space of the histories. Generically, there
one history connecting any two points ofC. ThereforeG has

4Examples of generally relativistic systems with a finite number
degrees of freedom are provided, for instance, by cosmolog
models, or by models as in@8#.
3-5
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dimension 2n22. SinceQa and Pa are 2n functions onG,
they overcoordinatizeG and there are two relations amon
them. Also, histories are one dimensional, and therefore o
n21 of then relations~7! are independent. The spaceG is
the phase space of the system. A point inG is a ‘‘state’’ of the
theory, in the sense of a ‘‘Heisenberg state’’@12#. It repre-
sents a possible history of the system, not a ‘‘state at a
tain time.’’5

The functionf in Eq. ~7! is defined on the Cartesian prod
uct of the space of the partial observables with the spac
the states:

f :C3G°Rn. ~8!

The entire predictive content of a dynamical theory is in
surface f 50 in the Cartesian product of the space of t
partial observables and the space of the states. For each
qa in C, the surfacef 50 determines the set of states com
patible with the valueqa of the partial observables. For eac
state inG, the surface determines a relation among the pa
observables inC.

In the specialcase of a nonrelativistic system, one of t
partial observablesqa is the timet. Let it be, say,q0, and call
the other partial observablesqi with i 51, . . . ,m5n21. In
this case the functionC(qa,pa) has thespecialform

C~qa,pa!5p01H~qi ,pi !. ~9!

Therefore in this special case the Hamilton-Jacobi equa
takes the well known form

]S~qi ,t !

]t
1HS qi ,

]S~qi ,t !

]qi D 50. ~10!

The general Hamilton-Jacobi formalism has a nice g
metrical interpretation in the canonical framework. Let
illustrate it, with the purpose of discussing the meaning
the structures of generally covariant Hamiltonian system

Consider the cotangent bundleT* C over the extended
configuration space, with canonical coordinates (qa,pa). Call
it the extended phase space. It carries the natural Poin´
one-formu5padqa, and the symplectic formv52du. The
dynamics is coded in a relation onT* C:

C~qa,pa!50. ~11!

In the special case of a nonrelativistic system,qa5(q0,qi)
and Eq.~11! has the form

C~qa,pa!5p01H~qi ,pi !50, ~12!

5Dirac argued repeatedly that the Heisenberg notion of state is
good one, and the only one that makes sense in a relativistic
text. See, for instance, Sec. I.3 of the first edition of@12#. In later
editions of this book Dirac shifted the emphasis to the Schro¨dinger
states, explaining~in the Preface! that these, after all, are easier
work with in the nonrelativistic context, although ‘‘it seems a pity
to give up the cleaner notion.
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whereH is the Hamiltonian. The variableq05t is the time
variable, and its conjugate momentump052E is ~minus!
the energy. The dynamics of the system is then coded in
relation ~12! which gives the energy as a function of th
other coordinates and momenta.

Equation~11! defines a surfaceS in T* C. Call vS the
restriction of v to this surface. The ‘‘presymplectic’’ two-
form vS is degenerate and has a null direction. It is n
difficult to see that the integral curves of this null directio
are the solutions of the equations of motion of the syste6

The space of these curves is the physical phase space o
system G and carries a unique symplectic two-formvG

whose pullback toS under the natural projectionp:S→G is
vS . Let Pa andQa be coordinates that~over!coordinatize7 G
and define a one-formuG5PadQa such thatduG52vG .
Then~using the same notations for the forms and their pu
back!, since onS we havevG5vS , it follows that

d~padqa!5d~PadQa! ~13!

or

padqa5PadQa1dS ~14!

whereS is a zero-form onS. But let us pull the coordinates
Qa back ontoS and assume that the set (qa,Qa) ~over!co-
ordinatizesS. Then Eq.~14! gives

]S~qa,Qa!

]qa
5pa , ~15!

]S~qa,Qa!

]Qa
5Pa . ~16!

From Eqs.~15! and ~11! we obtain

CS qa,
]S~qa,Qi !

]qa D 50, ~17!

which is the Hamilton-Jacobi equation~6! and can be used to
computeS; while Eq. ~16! is the equation~7! giving the
physical predictions fromS.

What is the physical meaning ofS(qa,Qa)? Without loss
of generality, we can choose the integration constants so

S~qa,Qa5qa!50. ~18!

Fix a pointp on S, and consider the trajectory that starts
p. Along this trajectorydQa50 and thus from Eq.~14! we

he
n-

6The coordinate form of the relationY(vS)50 betweenvS and
its null vector fieldY is given by the Hamilton equations.

72(n21) coordinates are sufficient to coordinatizeG. For in-
stance, one can take initial coordinates and momenta att5t0. We
prefer to use here 2n coordinates for reasons that will be cle
below. The extra coordinates can be seen as the initial timet5t0

and the energy. A change in the first amounts to a relabeling of
meaning of the initial data. The second is constrained byC.
3-6
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havedS5padqa. Parametrize the trajectory with an arbitra
time parametert and writedS5padqa5paq̇adt. The canoni-
cal Hamiltonian with respect to this parameter is null, a
thereforepaq̇a2L50. Therefore we havedS5Ldt along
each orbitqa(t) and

S~qa,Qa!5E
Qa

qa

L„qa~ t !…dt. ~19!

That is,S(qa,Qa) is the action, computed over the physic
trajectory that joins the points with coordinatesQa andqa. In
the case of a nonrelativistic system, letqa5(qi ,t). Then
dS5padqa5pidqi2Hdt. Recall thatH5piq̇

i2L, whereL
is the Lagrangian. ThereforedS5pidqi2pidqi1Ldt5Ldt
along each orbit. Thus,

S~qa,Qa!5E
Qi

qi

L„qi~ t !…dt, ~20!

where the trajectory starts at timet in qi and ends at timeT
in Qi . That is,S(qa,Qa) is still the action, computed over th
physical trajectory that joins the points with coordinatesQa

andqa.
Notice that from this point of view Hamilton’s principa

function and Hamilton’s characteristic function are iden
fied. More precisely,S(qa,Qa) is the principal function for
the evolution in any partial observable identified as the ti
q05t. But it is also the characteristic function of the evol
tion in an arbitrary parameter time along the histories. An
is also the principal function for the evolution in such a tim
since the Hamiltonian that generates this motion vanish
This compactification of the formalism is quite remarkabl

In conclusion, the ingredients of mechanics can be ta
to be solely the extended configuration spaceC and the func-
tion C on T* C. A mechanical system is determined by t
pair (C,C). The kinematics of a specific theory is determin
by the space of its partial observablesC; its dynamics is
determined by the constraintC(qa,pa)50 on the associated
phase space. There is no need to single out a specific pa
variable as the time, nor to mention evolution. Mechanics
a theory of relations between partial observables. No dist
tion between dependent and independent partial observa
is required. This distinction is an accident of nonrelativis
theories, in which the constraintC(qa,pa) happens to have
the form ~12!.

Why do I stress this fact? Because generally relativis
theories are formulated in terms of constraints such as
~11! over an extended configuration space. It is sometim
claimed that the theory can only be interpreted if one find
way to ‘‘deparametrize’’ the theory, namely, to select the
dependent variable among the variablesqa. In the opposite
camp, the statement is sometimes made that only varia
on the physical phase spaceG have a physical interpretation
and no interpretation should be associated with the varia
of the extended configuration spaceC. Instead, I have argue
here that the variables of the extended configuration sp
have a physical interpretation as partial observables. I
sense, they are the quantities with the most direct phys
interpretation in the theory.
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Finally, consider quantum theory. The Schro¨dinger equa-
tion, as well as the Wheeler-DeWitt equation, arebothpartial
differential equations on the extended configuration spacC.
They can both be obtained in general from the constra
~11!, with no need to distinguish dependent from indepe
dent partial observables. Indeed, they are obtained as

CS qa,2 i\
]

]qaD c~qa!50. ~21!

The usual physical scalar product on an appropriate spac
the solutions of this equation has an intrinsic meaning a
does not need the time variable to be singled out in orde
be defined—see, for instance,@15,16#. All relevant physical
predictions of the theory can be extracted from the kno
edge of the propagatorW(qa,Qa), which satisfies

CS qa,2 i\
]

]qaD W~qa,Qa!50. ~22!

The propagator gives the probability amplitude for findi
the combination of partial observablesqa if the combination
of partial observablesQa was previously observed. Virtually
all predictions of quantum mechanics can be formulated
this covariant manner, on the extended configuration sp
This is discussed in detail in@16#. As is well known, in the
limit of small \ the Schro¨dinger equation~or the Wheeler-
DeWitt equation! goes over into the Hamilton-Jacob
equation, and the propagatorW(qa,Qa) is given to first order
just by the exponential of the actionW(qa,Qa)
;exp$iS(qa,Qa)/\%.

VII. CONCLUSIONS

I have observed that the notion of observable is ambi
ous, and I have discussed the distinction between partial
servables and complete observables. This distinction clar
a certain number of issues related to observability. In parti
lar, I have examined the role played by this distinction
general relativity, in quantum mechanics, and in quant
gravity.

The partial observables form the extended configurat
spaceC. This space seems to be a natural home for class
and quantum mechanics. The two theories admit a clean
mulation over this space, which is sufficiently general to d
naturally with general relativistic systems.

A mechanical system is a pair (C,C). The space of the
partial observablesC describes the kinematics of the theor
C is a function onT* C that determines the dynamics. Cla
sical dynamics is about relations between partial obse
ables. These relations depend on a certain number of pa
eters, which label the~time independent! states of the
system. The space of these states is the phase spaceG. The
predictions of the theory are therefore given by a surfacf
50 on C3G. The surfacef 50, as well asG, is determined
by the pair (C,C). ~The general structure of classical an
quantum mechanics in this language is discussed in m
detail in @14#.!

By fixing a subset of partial observables~one for a me-
3-7
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CARLO ROVELLI PHYSICAL REVIEW D 65 124013
chanical system, four for a field theory!, the other partial
observables are determined as functions onG. This defines
the complete observables of the theory, whose value ca
predicted uniquely if the state is known.

Quantum mechanics gives the probability amplitu
W(qa,Qa) for measuring the combination of partial obser
ablesqa after having measured the combinationQa. Alterna-
tively, it gives the probability distribution for the differen
possible outcomes of a measurement of the complete obs
ables. These are represented by self-adjoint operator ove
~Heisenberg! state space.

No distinction between independent and dependent pa
i-

-
.

nd

-

-

r-
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observable is required. The different partial observables
be viewed as being on the same footing. This formulation
mechanics does not require the notion of external time. I
therefore appropriate for general relativistic systems, wh
are not formulated in terms of evolution in time.
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