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| discuss the distinction between the notion gfatial observable and the notion oftampleteobservable.
Mixing up the two is frequently a source of confusion. The distinction bears on several issues related to
observability, such a8) whether time is an observable in quantum mechaitigsiwhat are the observables in
general relativity, andiii) whether physical observables should or should not commute with the Wheeler-
DeWitt operator in quantum gravity. | argue that thgtendedconfiguration space has a direct physical
interpretation, as the space of the partial observables. This space plays a central role in the structure of classical
and quantum mechanics and the clarification of its physical meaning sheds light on this structure, particularly
in the context of general covariant physics.
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[. INTRODUCTION ceptual mistakes. In this article, | try to clear up the source of
this confusion.

The notion of an “observable quantity,” or an “observ-  The difference between the two notions of observability
able,” plays a central role in many areas of physics. Roughlyhas to do with localization in time and in space. In a nonrel-
observable quantities are the quantities involved in physicaativistic context, the spacetime structure of the world is as-
measurements. They give us information on the state of aumed to be fixed and simple. Because of this, the distinction
physical system and may be predicted by the theory. In quarsetween the two notions of observability can be disregarded.
tum mechanics, observables are represented by self-adjoiMore precisely, the distinction is replaced by the introduction
operators. In gauge theory, we make the distinction betweegs a fixed structure on the space of the observables, and then
gauge-invariant quantities, which correspond to observableg; js safely ignored. The fixed structure of the space of the
and gauge-dependent quantities, which do not. _observables reproduces the fixed structure of spacetime, as

The notion of an observable, however, raises a certaie ghall see. In a generally relativistic context, on the other
number of issues that have generated discussion in the "terﬂand, the spacetime structure of the world is more complex,
ture. In particu!ar,(i) several papers Qiscuss whether time isand we cannot trade the distinction between different notions
iatmszt(;ile(;vsglerem quantturg Lheory. Ifftm;g \.N?re an E;)tbs_ﬁ:vableof observability for a preestablished structure on the space of

presented Dy a seli-acjoint Operalonne o ypservables. In such a context, ignoring the distinction

spectrum off should be the real line. A well-known theorem between different meanings of “observable” leads to serious
[1] then demands its conjugate variable, which is the energy 9

to have an unbounded spectrum, but energy is bounded fml(%onfus[on. , .
below. Therefore time cannot be an observalde But if Partial and complete observab!es_, are defined in Sec. Il
time is not an observable, how can we measuréiitThere The two n_otlons are shpwn to be distinct and examp!e; of _the
are several discussions on observability in general relativitfV0 are given. I then discuss the relevance of the distinction
(see[3,4] and references thergirin the literature one finds for different contexts: general relativityn Sec. Il), quan-
contradictory statements; for instance, that the metric tensg#m mechanicéin Sec. 1V), and quantum gravityin Sec. V).
9,,(X) is not observable but a curvature scaR{x) is ob- ~ The space of the partial observables is éxéendecton-
servable; or that no local quantity such Ré&x) can be ob- figuration space. This space, and its associated extended
servable (i) Observability is a source of lively debates in phase space, on which the Hamiltonian constraint is defined,
quantum gravity4,5]. Observables must be gauge invariant,are often presented as devoid of direct physical significance.
therefore they commute with the constraints, therefore, irinstead, | argue in Sec. VI that the extended configuration
particular, with the Wheeler-DeWitt operator, and thereforespace has indeed a direct physical interpretation: it is the
they have to be constant in the coordinate tim&hus, no  space of the partial observables. This space plays a central
quantity that changes withcan be observable. This conclu- role in the general structure of mechanics, both at the classi-
sion is considered unreasonable by sdBjeOthers(includ-  cal and at the quantum level. | illustrate this role and argue
ing mysel) [4,7-9 argue that the observables in quantumthat it provides a unifying perspective that sheds light on the
gravity are relative quantities expressing correlations bestructure of mechanics, especially of general covariant me-
tween dynamical variables. But how can a correlation bechanics.
tween two nonobservable quantities be observable? The distinction between partial and complete observables
| believe that in many debates of this kind there is a conwas discussed ifil0]. The distinction is sometimes implic-
fusion between two distinct notions of observability. Mixing itly used, but | am not aware of any other explicit discussion
up these two notions generates misunderstanding and coon it in the literature.
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ll. PARTIAL OBSERVABLES AND COMPLETE This may seem a rather pedantic account of observability
OBSERVABLES in the context of a nonrelativistic system. Indeed, one usually
says that 4§ is observable,” leaving implicit “yes, of course,
one has to say at what time the observation is made.” But, as
mentioned, such carelessness in defining observability is
then paid for at a high price in a generally relativistic con-
text, where things are not simply evolving in a fixed external
time t which can be measured by an external clock, as in
theory) nonrelativistic physics. Let us therefore here clearly distin-
; . i . . guish betweerii) t andq (without specified timg which are
At first sight, the two definitions might seem equivalent, : :
; . . partial observables, because there are measuring procedures
but they are not. To see this, consider the following example e i ..
. . srpecmed for them, but they cannot be predicted, @ndhe
Imagine we have a bunch of cards in a box. Each card has an . X
upper and a lower sidésay, of different colors On each amily of complete observ_ab_le}(t), which can b_e predicted.
' Observe that the predictions of a mechanical theory can

side, there is a number. Denote the upper number asd . :
) always be expressed aslations between partial observ-
the lower number abl. We extract a certain number of cards . :
ables These relations depend on a certain number of param-

from the box and we realize that there is a law connecting theeters which label the different possible histories of the sys-
two numbers: sail is always a certain function of That is, ' P Y

N=N(n). The lawN=N(n) gives us a predictive theory for tem. For instance, in the case above the predictions of the

some observable quantities. What are the observables in thtlrgeory are given by the following relation betweeandg;

context? Clearly, botlm and N are partial observablesac- . A _

cording to the definition given above. However, neither of f(a.6A.¢)=q-Asin(wt+$)=0. @
them is predictable, because at each new card we extract
do not know which particular value af, or which particular
value ofN, will be found. What is predictable is the value of
N on the back of a card marked with a certainTherefore
we have one “complete observabl&l(n) for each value of

Let us start from the following two definitior's:

Partial observablea physical quantity with which we can
associate @measuring procedure leading to a number.

Complete observahbl@ quantity whose value can be pre-
dicted by the theoryin classical theory or whose probabil-
ity distribution can be predicted by the thedlip quantum

YWFom this perspective, the partial observaliesndt can be
taken as being on the same footing. That is, they can be
treated symmetrically in the theory. Observe, however, that
in the example considered the two partial observaglasd

. y t are not entirely on the same footing. The predictions of the
h. The “complete observables a!fg(_l),N(Z),N(S), ‘o0 theory can cert)::\inly be expressed gs a relealtion between the

The example. may Seem art|f|c!a| and }Jr?related to thetwo, but this relation can be solved fgras a function oft,
structure of realistic physical theories, but it is not. Indeed,not fort as a function ofy. Accordingly, we callt an inde-

realistic physical theories have a structure similar to the On%endentpartial observable ang a dependenpartial observ-
of the example: the role of the “independent” partial observ- able. As we shall see, in a generally relativistic context such

_able_n is played by _the quantities giving the temporal Iocgl-a distinction between dependent and independent partial ob-
ization or the spatiotemporal localization. Consider for iN-carvables is lost

stance a very simple physical syste_m, a pendulum. Assume In a nonrelativistic system witi degrees of freedorn’
the oscillations are small and described by the equation !

with i=1,... m, there are in generai=m+1 partial ob-
servablesg?=(t,q') with a=1, ... n. The space of these
d2q(t) forms the extended configuration space of the system, which
> = —wzq(t). (1) we denoteC. The predictions of classical mechanics can al-
dt ways be given as relations between the extended configura-

tion space variables, as in EQ). These relations depend on

Now suppose we are in @ery simplg laboratory, and we @ certain number of parametess [A and ¢ in Eq. (2)],
want to check the correctness of Edj). What do we need? which label the different possible histories of the system:
Clearly we needwo measuring instruments: one that gives a

us the pendulum positiog and one that gives us the tinte f(gq%a’)=0. )

The theory cannot predict the value ©fNor can it predict ) ) .
the value ofg, unless we specify that the value gfve are  Classical mechanics and quantum mechanics can be formu-

interested in is the one at a certain given tim&@herefore, lated in a very general and very clean form over the extended
there are two partial observables playing a role hqrandt.  configuration spac€. Examples of such formulations are the
And there is one family of complete observables: the observtiamilton-Jacobi formalism, the extended phase space for-
ablesq(t), for any real value of. It is sufficient to know the ~Malism, the path integral formalism, and the propagator for-
actual value of a few of these complete observafiesin- ~ malism [16]. These formulations stress the centrality of the
stanceg(0) anddq(t)/dt|,_], in order to be able to predict Nhotion of a partial observable and show that mechanics treats
the value of all the others. all partial observables on the same ground. In Sec. VI, we
shall discuss some of these formulations and their relation to
partial observability.
The operational tone of the first definition does not imply any Flnally, consider a field t_heory,. such as Maxwell glectro—
adherence to operationalism héfl]: the reference to measuring dynamics. A dynamlcaLvarlabIe is represented for instance
procedures is just instrumental for clarifying the distinction. by the electric fieldE(x,t). The electric field at a given
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spacetime pointx,t) can be predicted, and therefore it is a ment. A very accurate clock is mounted on a satellite, say a
complete observable of the theory. In order to measuré&atellite in the global positioning systef@PS system. The
E()Z t), we needfive partial observables. Indeed, we may satellite broadcasts its local time and the signal is received

imagine that we have at our disposal five measuring device&y th”e Iaunch|tng Ibaielé a?dtiﬁmgaredAwnlh thel,-l Eme of ﬁn
a clock measuring, an electric field detector that measures €dually accurate clock kept at the base. As is well known, the

E, and three distance measuring devices, giving the threglscre.pancy_between the two .due to generally relativistic ef-
is ok Th lete ob bE(X.1) | ects is easily observable using current technology. tet

compdonfr;hs 0 f € CE[)_mIp(Ee 0 sbelzrva (x.) is com- and r, be the signal received from the satellite and the local

posed of these Tive partial observables. clock reading. General relativity can be used to predict the

relation between the two,

Ill. GENERAL RELATIVITY

Let us now move to a generally relativistic context. For f(75,75)=0 )

concreteness, let us consider general relativity coupled with o .
N small bodies. For instance, these bodies may represent th@nce all the relevant initial data are knowAgain, we are
planets and the satellites in a generally relativistic model ofn @ situation of two partial observables forming a complete
the solar system. The Lagrangian variables can be taken gbbs’e)rvable. Now: which one of the two is tiedependent
be the metricg V()Z,t) and, say, the bodies trajectories one? In general, Eq4) may not be splvable for elt“her varl;
o AL ; L able. One could say that, has to be viewed as the “natural
Xm(7mn), withn=1, ... N and orientation& y(7,) (alocal . ; ; S
- : independent variable, since this is “our” time. But one can

tetrad on thenth body,a=0, .. .,3). As iswell known, the ; p w

_ _ L o equally well say that therg is the “natural” independent
meaning of the coordinates,{) in general relativity is very ysariaple, since it provides an accepted standard of [i8e
different from their meaning in pre-general-relativistire-  Clearly we are in a very different situation from one with the
GR) physics? Indeed, the coordinates,t) do not represent two partial observableg and t of the previous section.
observable quantities at dllThat is, the general relativistic There, we had a clear distinction between an independent

coordinatesx andt are neither partial observables nor com- observablgt) and a dependent onegX. Here, 75 and 7, are
plete observables. truly on the same footing.

The distinction between partial and complete observables, The key difference between general relativistic physics
however, is still present. Consider some typical prediction@nd pre-GR physics is the fact that in general relativistic
of the theory. For instance, a prediction of the theory may bé@hysics the distinction betweetependentind independent
the following: tomorrow morning, when the Sun is 5° over partial observables is lost. A pre-GR theory is formulated in
the horizon, Venus will be visible at 12° over the horizon. terms of variablegsuch asq) evolving as functions of cer-
This is a well defined prediction, and should thus refer to dain distinguished variable@uch ast). General relativistic
complete observable. The complete observable is the angRystems are formulated in terms of variablesich as
ay that Venus makes with the horizon, at the moment in7y,7s,ay,as) that evolve with respect to each other. Gen-
which the angleag of the Sun with the horizon is 5°. eral relativity expresses relations between these, but in gen-
Clearly, to verify this prediction we need measuring proce-eral we cannot solve for one as a function of the other. Partial
dures giving us the two angles. Therefore the two angles arebservables are genuinely on the same footing.
partial observables. The complete observable is the value of What are the complete observables, in general, in this
ay(ag) for ag=5°. context? A complete observable is a quantity that can be

As a second example, we could replage with the  predicted uniquely. Therefore it is a quantity which is well
proper timer measured on Earth by a clock that started ( defined once we know the solution of the equations of mo-
=0) at a certain specified evef (say, a certain eclipge  tion, up to all gaugesthat is, it is not affected by the inde-
Then again, the proper time elapsed from the eclipse, or, termination of the evolution Such a quantity can be seen as
equivalently, the lengthr of the Earth’s world line since the @ function on the space of the solutions modulo all gauges.
eclipses, is a partial observable because it can be measurddiis space is the physical phase space of the thEoly the
but it is not a complete observable, because it cannot bganonical formalism]" can be obtained as the space of the
predicted. Indeed, it is an observable quantity used for localorbits generated by the constraints on the constraint surface.
izing a spacetime point. Any complete observable can thus be expressed as a function

The key difference between general relativity and pre-GRon I'. Equivalently, it can be expressed as a function on the
physics as far as observability is concerned is well illustrate@xtended phase having vanishing Poisson brackets with all

by a third example. Consider the followirfgpalisti experi- ~ first class constraints, including, of course, the Hamiltonian
constraint. Vice versa, any function that commutes with all

constraints defines, in principle, a complete observable.
%Einstein has described his 1912 to 1915 final struggle for general Partial observables are hard to construct formally in gen-
relativity as a dramatic effort to understand the new “meaning of€ral, but it is far easier to define and use them concretely. For
the coordinates.” a recent concrete construction of a complete set of partial and
3Unless one fixes a physically interpreted gauge, in which case theomplete observables in GR, s3]
discussion of observability is a bit different, but the final conclu- | close the section with a note on gauge-fixed formula-
sions are unchanged. See below. tions of GR. One may fix the gauge by choosing coordinates
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that have a physical interpretation. More precisely, one magpacetime. A quantity that is described by an operator in
select a family of partial observablésurvature scalars, sca- quantum theory is a quantity such that there are states that
lar fields, dust variables, GPS readings, Jeémd fix the co-  diagonalize it, namely, such that there are physical situations
ordinate gauge by tying the coordinate system to these partiah which the outcome of a measurement of that quantity is
observables. Within a formulation of this kind, coordinatescertain: the time, on the contrary, can never be predicted.
represent partial observables. Furthermore, they have the In other words, quantum theory deals with the relation
natural character of independent partial observables. Howbetweeng andt, and not withg alone ort alone. Therefore it
ever, this does imply that the independent partial observablds meaningless to search for the quantum theory oftthe
are determined by the theory, because the same physical sitzariable alone.
ation can be described by a different physical gauge choice, Of course, the reading of a clockcan be predicted, but
in which the role of dependent and independent partial obenly if we first readanotherclock. If we know that the sec-
servables is interchanged. ond clock indicates$, we can predict that the first clock will
read a certaifl. If we now take into account the fact that the
clock is a physical mechanical system and is subject to quan-
tum fluctuations, then we can describe it in terms of an op-

In quantum theory observables are represented by operarator. This operator describes the complete observigl)e
tors. Which observables are represented by operators: thhere will be quantum fluctuations described by generic
partial or the complete observables? The answer is differergtates in the state space on which this operator acts. These
in the Heisenberg picturéevolving operatogsand in the fluctuations are not the quantum fluctuations of one indepen-
Schralinger picture(evolving states Let us start from the dent time variable. They are the quantum fluctuations in the
Heisenberg picture. Here the operators are time dependemtbservable correlation betweéno clock variables.
For instance, in the quantum theory of a harmonic oscillator
in the Heisenberg picture, there is no positign oper@tduut V. QUANTUM GRAVITY
only the operatoQ(t) that represents “position at timi”
This is immediately recognized as the operator correspond- In quantum gravity, operators corresponding to physical
ing to the complete observabigt) discussed in Sec. Il. In observables must commute with the Wheeler-DeWitt con-
the Heisenberg picture operators are associated with constraint operator. This operator is the generator of evolution in
plete observables. the coordinate timd. Thus, physical observables must be

In the Schrdinger picture, there is an operatQrassoci- invariant under evolution irt. This fact has raised much
ated with the partial observabtge However, specific predic- confusion. How can observables invariant under evolution in
tions are not given just in terms of this operator: we need thé describe the evolution we observe? The question is ill
state as well, and, in the Sclliager picture, the stat@ (t) posed, because it confuses evolution with respect to the co-
is time dependent. Thus, for instance, the expectation valuerdinate timet and physical evolution. In Sec. Il we have
6(t)=<‘1'(t)Q‘I’(t)>, which is a prediction of the theory, is o_bserved that in general_relativity quantities like 'Fhe proper
associated with the complete observagle), as it should tmes 7, and 7 are partial observables and their relative
be, not with the partial observabég In order for the Schro evolution is well defined. Let us fix a valug= 7 of the first,
dinger picture to be meaningful, we need the theory to bénd consider the corresponding value f (If there are
expressed in terms of a well defined independent partial obseveral such values, take the highestall this valueT,.
servablet: “the external time.” In a theory such as general Thatis, T is the highest number for which
relativity, where the dynamics expresses the relation between
partial observables that are on equal footing, the Gtihger f(T,,7)=0, 5
picture is not viable. More precisely, it will be viable only in
special circumstances, in which we can chotaitrarily) ~ wheref is the function in Eq(4). T, is a complete observ-
one of the partial observables as the independent one amble. It is the signal we receive from the satellite when our
solve the dynamical relations expressing the predictions olocal proper time at the base 1s It describes the change of
the theory in terms of this quantity. In general, no such quanthe value of the received signal as the proper time at the base
tity exists. On the other hand, the Heisenberg picture remaingasses. This is a description of evolution. At the same time,
meaningful whatever the spacetime structure of the theoryhis is a quantity independent of the coordinat€o see this,
Let us therefore return to the Heisenberg picture, which is farecall that to calculate its value from a specific solution of
more general. the Einstein equations, we first find the dependencs, aind

In the Heisenberg context, consider the problem ofrg on the coordinate tim& namely, we compute the func-
whether there should be a time operator in quantum theoryions 7,(t) and 74(t). The form of these two functions is
The timet is a partial observable, not a complete observablegauge dependent: it changes if we use a different coordinate
Operators are associated with complete observables, not witepresentation of the same four-geometry. We then locally
partial observables. Therefore it is against the tenets of quarnnvert the second function and inse(trs) in the first. The
tum theory to search for an operator corresponding @p-  resulting T,=7,(7,= 7) is independent of the coordinate
erators correspond to quantities that are in principle predictehosen, and thus it is uniquely determined by the equiva-
able [such asq(t)], not to quantitieqsuch ast) that serve lence class of solutions of the field equations under diffeo-
only to localize the measurement of a predictable quantity irmorphisms. It is well defined on the space of these equiva-

IV. QUANTUM THEORY
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lence classes, namely, ofi. Equivalently, it can be trasting discussion between viewpoints on this issue, | think,
represented as a function on the extended phase space tieauld be useful and bring clarity.
commutes with all the constraints, including the Hamiltonian
constraint. VI. THE EXTENDED CONFIGURATION SPACE
Let us now come to a main objection that we want to

address in this paper, which is the following. In this section | discuss the role of the partial observables

Objection T, cannot be observable withous, and 7 in'the fqrmal structure of mechanics. | focus here on theories

AT s with a finite number of degrees of freedom, leaving the ex-
being individually observable. Thus, and 75 are observ- onqion 1o field theory to the readkThis discussion sheds
able. Observables must be represented by physical operatofigh on the physical interpretation of certain structures, such
7, and 7; depend ort and do not commute with the Hamil- 54 the extended phase space of the fully constrained systems.
tonian constraint. Therefore in any quantum theory of gravityror a more complete treatment of this subject, [$e8; see
there should be physical operators representing observablggso[9]. The central message of this section is twofold. First,
that do not commute with the Wheeler-DeWitt constraint. when the formalism is Sufﬁcienﬂy generaL partia| observ-

It should be clear at this point why this objection is ables are the main quantities mechanics deals with. Second,
wrong. It confuses partial and complete observabigsand  in general, mechanics makes no distinction between depen-
7, are partial observables, and partial observables are nalent and independent observables. The distinction between
associated with quantum operators in quantum thémgre  independent and dependent observables can be seen as an
precisely, in Heisenberg picture quantum theory, which is theccident of the specific dynamics of nonrelativistic theories.
only one viable in this context In the light of these two observations, | think that the inter-

We close this section with an observation on the role ofPretation of general relativistic theories becomes more trans-

the coordinates in the formalism of quantum gravity. TheParent.

general relativistic spacetime coordinatest] have no di- AS. observed in Sec. Il the partial observabl_es of a me-
. . ) g chanical system form the extended configuration space
rect physical interpretation. In a gauge-fixed context, the

Y, .
: ; Recall that we denote the partial observables diy a
can be tied to partial observables. In any case, however, they 1,...1n. Dynamics can be given in terms of a first order

do not represent complete observables. It follows that th o . : ' .

_ : artial differential equation od, the Hamilton-Jacobi equa-

idea that the coordinates should be represented by quant?i) n q q

operators is not justified in the light of quantum theory and

general relativity alone. Operators are attached to complete ( &S(qa))
C| 93, =

(6)

observables, while spacetime coordinates are—at best—
partial observables: they cannot be predicted, they serve only

to localize complete observables. . . a :
Quantum theory deals with the relation between partial-rzgriizusmgﬁg g; ;‘? CXZ‘;'?S:e;Céﬁaéﬁgze??;:ﬂq'r;efssgﬂiigz;
observables. It can deal with the relation between physical,,, . " : 2 ~a P a Y
i ) . N . of this equatior5(q®,Q%), whereQ® aren constants, and the
variables andgauge-fixedl coordinates X,t), but not with  aqictions of the theory are contained in E8), which are

the value of the coordinates alone. Therefore it is meaninggpiained as follows:
less to search for the quantum theory of tlietx variables

ag?

alone. S(g?,Q?)
Noncommutative geometry approaches to quantum grav- fa(g% Q% Py) = Ton Pa=0. (7)
ity search for a mathematics capable of promoting the space- Q

time coordinatesx,t) to a noncommuting operator algebra. These form a &-parameter family ofi relations between the
This approach is sometimes motivated with the argumenpartial observablegnot all independeit The parameters
that quantum theory should require the coordinates)(to  Q?,P, label the possible histories of the system: each history
be represented by operators. In the light of the discussiodetermines a set of relations among partial observables.
above, | think that this motivation mistakes partial observ-These relations are the physical predictions of the theory.
ables and complete observables. Noncommutative agNotice that all partial observableg are treated on the same
proaches to quantum gravity are extremely interesting in myooting: the “time” partial observable, if present at all, is just
view, both mathematically and physically, but | think that a variable among the others. Notice also that the usual last
this particular motivation is naive and not tenable. Physicaktep of the Hamilton-Jacobi prescription, which is to invert
noncommutativity of quantities related to physical localiza-Eq.(7) for the dependent variables, is not necessary from this
tion and geometry, on the other hand, is likely to follow from point of view.
the fact that such quantities should, in fact, be functions of LetI" be the space of the histories. Generically, there is
the gravitational field, and therefore quantum dynamicalbne history connecting any two points @f Thereforel’ has
variables.

Perhaps an application of the conceptual framework of ———
this paper could be to clarify what aspects of a noncommu- “Examples of generally relativistic systems with a finite number of
tative spacetime are really treated as observables, as oppossstjrees of freedom are provided, for instance, by cosmological
to simply representing effects of background fields. A con-models, or by models as {i8].
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dimension 2—2. SinceQ? and P, are 2n functions onI’,  whereH is the Hamiltonian. The variablg’=t is the time
they overcoordinatizd™ and there are two relations among variable, and its conjugate momentysg= —E is (minusg
them. Also, histories are one dimensional, and therefore onlthe energy. The dynamics of the system is then coded in the
n—1 of then relations(7) are independent. The spateis  relation (12) which gives the energy as a function of the
the phase space of the system. A poinf'iis a “state” of the  other coordinates and momenta.

theory, in the sense of a “Heisenberg stafd2]. It repre- Equation(11) defines a surfac& in T*C. Call wy the
sents a possible history of the system, not a “state at a cerestriction of w to this surface. The “presymplectic” two-
tain time.” form wy is degenerate and has a null direction. It is not

The functionf in Eq. (7) is defined on the Cartesian prod- difficult to see that the integral curves of this null direction
uct of the space of the partial observables with the space aire the solutions of the equations of motion of the system.
the states: The space of these curves is the physical phase space of the

systemI” and carries a unique symplectic two-formp

f:CXT'—R" (8)  whose pullback t& under the natural projection:3 —T is

oy . Let P, andQ? be coordinates thaovencoordinatizé I
The entire predictive content of a dynamical theory is in theand define a one-forn#;=P,dQ? such thatdfp= — wr-.
surfacef=0 in the Cartesian product of the space of theThen (using the same notations for the forms and their pull-
partial observables and the space of the states. For each pojck, since on3 we havew=ws , it follows that
g? in C, the surfacef =0 determines the set of states com-
patible with the value? of the partial observables. For each d(p,dg®)=d(P,dQ?) (13
state inl’, the surface determines a relation among the partial
observables irt. or

In the specialcase of a nonrelativistic system, one of the

a__ a
partial observableg® is the timet. Let it be, sayq®, and call PadQ’=P,dQ*+dS (14

the other partial ok.)serva;blaqé withi=1,...m=n=1.In",eresis a zero-form ors. But let us pull the coordinates
this case the functio€(q?,p,) has thespecialform Q2 back ontoS and assume that the s&*(Q?) (ovenco-
i ordinatizess.. Then Eq.(14) gives
C(6°.pa)=Po+ H(d'py). ©) = 19 g

Therefore in this special case the Hamilton-Jacobi equation aS(q—a,Qa):p , (15)
takes the well known form ag? 2

as(d',) L 0S(qL 0| S(9%,Q?)

Qo +H| g, i =0. (10) 907 =P,. (16)

The general Hamilton-Jacobi formalism has a nice geoFrom Egs.(15) and(11) we obtain
metrical interpretation in the canonical framework. Let us .
illustrate it, with the purpose of discussing the meaning of a dS(9%,Q")
the structures of generally covariant Hamiltonian systems. Clq ’T =0,

Consider the cotangent bund® C over the extended g

configuration space, with canonical coordina®% g,). Call  \yhich is the Hamilton-Jacobi equatié) and can be used to

it the extended phase space. It carries the natural Péinca&mputes while Eq. (16) is the equation(7) giving the
one-formé=p,dg?, and the symplectic form=—d6. The  physical predictions frons

17

dynamics is coded in a relation arf C: What is the physical meaning &g?,Q?)? Without loss
a of generality, we can choose the integration constants so that
C(9%pa)=0. (12)
S(9%,Q%=g*)=0. (18

In the special case of a nonrelativistic systeri=(q°,q')
and Eqg.(11) has the form Fix a pointp on 3, and consider the trajectory that starts on
p. Along this trajectorydQ?=0 and thus from Eq(14) we

C(G%,pa)=po+H(d',p;)=0, (12

®The coordinate form of the relatiovi(ws)=0 betweenws and
SDirac argued repeatedly that the Heisenberg notion of state is thigs null vector fieldY is given by the Hamilton equations.

good one, and the only one that makes sense in a relativistic con-’2(n—1) coordinates are sufficient to coordinatife For in-
text. See, for instance, Sec. 1.3 of the first editio[1#]. In later ~ stance, one can take initial coordinates and momenta &§. We
editions of this book Dirac shifted the emphasis to the Sdinger  prefer to use here 12 coordinates for reasons that will be clear
states, explainingin the Prefacethat these, after all, are easier to below. The extra coordinates can be seen as the initial tintg
work with in the nonrelativistic context, although “it seems a pity” and the energy. A change in the first amounts to a relabeling of the
to give up the cleaner notion. meaning of the initial data. The second is constrainedCby
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haved S=p,dqg?. Parametrize the trajectory with an arbitrary ~ Finally, consider quantum theory. The Sclliiger equa-
time parametetand writed S= p,dg®= p,q®dt. The canoni-  tion, as well as the Wheeler-DeWitt equation, begh partial

cal Hamiltonian with respect to this parameter is null, anddifferential equations on the extended configuration sgace

. _ _ They can both be obtained in general from the constraint
thereforep,q®—L=0. Therefore we havelS=Ldt along g A :
each orbitg®(t) and (11), with no need to distinguish dependent from indepen-

dent partial observables. Indeed, they are obtained as

sq".Q% - [ L@ 19 )

14
q° —ih F) $(q*)=0. (21
That is,S(g? Q%?) is the action, computed over the physical a
trajectory that joins the points with coordina®8 andg® In The usual physical scalar product on an appropriate space of
the case of a nonrelativistic system, Igt=(q',t). Then the solutions of this equation has an intrinsic meaning and
dS=p,dg®=p;dg —Hdt. Recall thatH=p;q'—L, whereL ~ does not need the time variable to be singled out in order to
is the Lagrangian. Therefor@S=p;dq —p;dg +Ldt=Ldt  be defined—see, for instandd5,16. All relevant physical
along each orbit. Thus, predictions of the theory can be extracted from the knowl-

edge of the propagatdv(g® Q?), which satisfies

I
s, - [Tt (20 ;
© Cl| g*—ih— | W(g*,Q%=0. (22)
where the trajectory starts at tinhén g' and ends at tim&@ 9
in Q'. That is,S(q* Q?) is still the action, computed over the The propagator gives the probability amplitude for finding
physical trajectory that joins the points with coordina®S  the combination of partial observablgs if the combination
andg®. o _ o of partial observable®® was previously observed. Virtually
Notice that from this point of view Hamilton’s principal 5| predictions of quantum mechanics can be formulated in
function and Hamilton’s characteristic function are identi- this covariant manner, on the extended configuration space.
fied. More preciselyS(q®,Q) is the principal function for  Thjs is discussed in detail ifL6]. As is well known, in the
the evolution in any partial observable identified as the timgmit of small % the Schidinger equatior{or the Wheeler-

tion in an arbitrary parameter time along the histories. And itequation, and the propagat®(g?,Q?) is given to first order
is also the principal function for the evolution in such a time,just by the exponential of the actionW(g? Q?)

since the Hamiltonian that generates this motion vanishe&exp[is(qa’Qa)/ﬁ}.
This compactification of the formalism is quite remarkable.
In conclusion, the ingredients of mechanics can be taken
to be solely the extended configuration spéd@nd the func-
tion C on T*C. A mechanical system is determined by the | have observed that the notion of observable is ambigu-
pair (C,C). The kinematics of a specific theory is determinedous, and | have discussed the distinction between partial ob-
by the space of its partial observabl€sits dynamics is servables and complete observables. This distinction clarifies
determined by the constrai@(g®p,) =0 on the associated a certain number of issues related to observability. In particu-
phase space. There is no need to single out a specific parti@r, | have examined the role played by this distinction in
variable as the time, nor to mention evolution. Mechanics iggeneral relativity, in quantum mechanics, and in quantum
a theory of relations between partial observables. No distincgravity.
tion between dependent and independent partial observables The partial observables form the extended configuration
is required. This distinction is an accident of nonrelativisticspaceC. This space seems to be a natural home for classical
theories, in which the constrai@(g?,p,) happens to have and quantum mechanics. The two theories admit a clean for-
the form(12). mulation over this space, which is sufficiently general to deal
Why do | stress this fact? Because generally relativistinaturally with general relativistic systems.
theories are formulated in terms of constraints such as Eq. A mechanical system is a paiC,C). The space of the
(11) over an extended configuration space. It is sometimepartial observable€ describes the kinematics of the theory.
claimed that the theory can only be interpreted if one finds & is a function onT*C that determines the dynamics. Clas-
way to “deparametrize” the theory, namely, to select the in-sical dynamics is about relations between partial observ-
dependent variable among the variabigs In the opposite ables. These relations depend on a certain number of param-
camp, the statement is sometimes made that only variablexters, which label thetime independent states of the
on the physical phase spatehave a physical interpretation, system. The space of these states is the phase §paldee
and no interpretation should be associated with the variablgsredictions of the theory are therefore given by a surface
of the extended configuration spagelnstead, | have argued =0 onCXT'. The surfacé =0, as well ad’, is determined
here that the variables of the extended configuration spadey the pair C,C). (The general structure of classical and
have a physical interpretation as partial observables. In guantum mechanics in this language is discussed in more
sense, they are the quantities with the most direct physicaletail in[14].)
interpretation in the theory. By fixing a subset of partial observablésne for a me-

VII. CONCLUSIONS
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chanical system, four for a field thegrythe other partial
observables are determined as functionsl'onThis defines

PHYSICAL REVIEW D 65 124013

observable is required. The different partial observables can
be viewed as being on the same footing. This formulation of

the complete observables of the theory, whose value can haechanics does not require the notion of external time. It is

predicted uniquely if the state is known.

therefore appropriate for general relativistic systems, which

Quantum mechanics gives the probability amplitudeare not formulated in terms of evolution in time.

W(g?,Q?) for measuring the combination of partial observ-
ablesg? after having measured the combinati@f. Alterna-
tively, it gives the probability distribution for the different
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