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With the goal of bringing theory, particularly numerical relativity, to bear on an astrophysical problem of
critical interest to gravitational wave observers we introduce a model for coalescence radiation from binary
black hole systems. We build our model using ttezarus approacha technique that bridges far and close
limit approaches with full numerical relativity to solve Einstein equations applied in the truly nonlinear
dynamical regime. We specifically study the post-orbital radiation from a system of equal-mass non-spinning
black holes, deriving waveforms which indicate strongly circularly polarized radiation of roughly 3% of the
system’s total energy and 12% of its total angular momentum in just a few cycles. To support this result we first
establish the reliability of the late-time part of our model, including the numerical relativity and close-limit
components, with a thorough study of waveforms from a sequence of black hole configurations that varies from
previously treated head-on collisions to a representative target for “ISCO” data corresponding to the end of the
inspiral period. We then complete our model with a simple treatment for the early part of the spacetime based
on a standard family of initial data for binary black holes in circular orbit. A detailed analysis shows strong
robustness in the results as the initial separation of the black holes is increased from 5\ surting our
waveforms as a suitable basic description of the astrophysical radiation from this system. Finally, a simple
fitting of the plunge waveforms is introduced as a first attempt to facilitate the task of analyzing data from
gravitational wave detectors.
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[. INTRODUCTION systems may be generated through the evolution of stellar
binaries, or as recent simulations suggest through many-body
Black holes may be the most interesting and extraordinarynteractions in globular clustef8,4]. Space-based detectors,
objects predicted by Einstein’s general relativity. Over thesuch as the proposed NASA-ESA Laser Interferometer Space
last 40 years, a flowering of observational techniques andntenna(LISA) mission[5,6] will be sensitive to a lower
theoretical consideration has produced a change in perspeftequency band roughly 1d—-13F Hz and the relevant sys-
tive, bringing black holes from suspected mathematical fictems are super-massive black hole binaries involving black
tions to the presumptive powerhouses behind the most enelnoles in galactic cores.
getic astronomical phenomena under study today. From For both classes of observation, the importance of theo-
quasars and gamma ray burg®RB'’s) to ordinary galactic retical models for the expected BBH coalescence is extraor-
nuclei and the final state of sufficiently large stars, blackdinary[7,8]. For the current generation of ground-based in-
holes seem now quite common astrophysical objects. Theerferometers beginning to take scientific data in the next few
characteristic of black holes which has brought them to sucimonths, the anticipated signal-to-noise ratios are sufficiently
prominence in astrophysics is that when they are not isolatesimall that theoretical information from BBH coalescence
they are emphaticallyot blackbut produce the most lumi- models may be essential to distinguishing genuine detections
nous astrophysical phenomena known. One can estimate thiadm noise events. For LISA, on the other hand, the signal-
a coalescing binary system of two black holes releases erte-noise ratios for super-massive BBH events should be quite
ergy with a peak luminosity of about 168c®/ G, 107 times  high, up to 18 [9]. In this case the BBH events may be so
the power output of the Sun, during the very brief period ofstrong and numerous that the ability to make observations of
its merger. other weaker sources depends on filtering out the BBH sig-
These events have not yet been observed because, lackingls according to accurate model waveforms. Because the
matter, the binary black holBBH) system releases its en- new ground-based interferometers are already beginning op-
ergy purely in the form of gravitational waves. To the devel-erations and because model information may be critical even
oping field of gravitational wave astronomy these are exdin the developmental stages of the LISA mission, there is a
pected to be generally the brightest sources in the sky. Fgressing need for producing a fair model for the BBH coa-
ground-based gravitational observatories, such as the Laskyscence immediately. As general relativistic modeling tech-
Interferometer Gravitational Wave ObservatgtyGO) [1] niques continue to evolve and improve, there is naturally a
and GEO600, followed shortly by VIRG@2] and several trade-off between the level of confidence we can have in a
resonant bar detectors, all sensitive to “higher frequenciesmodel and how long we wait to produce it, but the clear and
in the 13-10° Hz band, the relevant coalescence eventpresent need for some kind of theoretical result provides a
have masses on the order of large stars-10° M. Such  strong argument against waiting. Our goal here is to intro-
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duce a practical first model which may be progressively im-physical information from the end of one regime to the be-
proved as new techniques are developed. Producing coaleginning of the next. Section Il provides an overview of our
cence waveforms from the first usable models opens up enodel and a brief review of the FN, FN-CL, CL techniques
vital channel of communication between observational andvhich are described in detail and tested in principle in Ref.
theoretical efforts that is now crucially required. Of course[18]. In Sec. 1l C we apply these techniques to perform a
we expect this theoretical information to support the obserSystematic study of the waveforms generated by a set of
vational effort, providing observers with specific examples ofS2mple problems, simulations of equal mass binary black
what sort of signal they can expect. Importantly, though les§1°/€s with no intrinsic spin starting from near the innermost
widely recognized in the theoretical community, a provi- Stable circular orbit. This provides a proving ground for test-
sional model allows observational practicalities to inform thel’d our machinery for taking initial data at the beginning of
theoretical effort. Not all theoretical concerns are equallyth® FN regime and producing a final waveform result. The
consequential in practice, and enhanced interaction with obstudy connects to previously well-studied problems and
servers through model waveforms will help to identify which Puilds up to the practical demands of our astrophysical
details of the model need the most work. model. Spinning and unequal mass black holes can also be
Clearly the foundation for a theoretical model of the BBH tréated within our method and will be published in a different
system will be Einstein’s general theory of relativity. Inten- Paper. _
sive efforts to develop numerical codes able to solve the 10 complete the model we need to provide FL and FL-FN
Einstein field equations using state-of-the-art supercomputet&éatments. As our approach to this regime has not been
have been underway for more than a decade i@k These trgated extep'swely in Ref18] we prow.de here a more de-
efforts have resulted in successful studies of several phenonf@iléd exposition. In Sec. Il we describe our treatment and
ena but the treatment of binary black hole systems hadiscuss how t_hls ap_proach compares with _other candld_ate
proven very difficult. Thus far, the full numerical treatment (reatments which might also seem appropriate, concluding
of these systems in three dimensidB®), based on the tra- _that based on klnemat|.cs ours is the be-_st approach to provid-
ditional 3+1 decomposition of space and time, has beer"d Modeled astrophysical data to feed into the FN part of the
severely limited on one hand because of huge Computé;alculatlpn ava|Ie.1bIe., which is so far 'suff|C|entIy developed
memory and processing requirements, and, on the othdpr practical appllcatlons. But a specific advantage of having
hand, by instabilities related to the formulation of the evolu-& complete model is that we can move beyond theéen
tion equations. These difficulties combine to cause codes tgUPious kinematical arguments and explicitly study the ro-
fail to be accurate before any useful gravitational wave inustness of the full dynamical model. We begin this analysis
formation can be directly extracted, even for sample probi" Sec. V, with a successful robustness test of the FL and

lems such as distorted black holes and the so-called nofd-L-FN part of the model. We also extend our results to meet
axisymmetric “grazing collisions,” where the black holes POSt-Newtonian(PN) calculations in Sec. V D. We evolve

must start out yet too close to allow a clear astrophysicaPlack holes from the post-Newtonian determined parameters
interpretation[11,12 (and even for single distorted black for the ISCO. Section VI summarizes the astrophysically rel-
holes[13]). evant results of our treatment for the coalescence waveforms,
In an earlier papef14] we presented the first theoretical @nd provides a simple analytical approximation of our results
estimates for the gravitational radiation waveforms and en@S & practical representation for the benefit of gravitational

ergy to be expected from the plunge of orbiting non-spinningVave observers and data analysts.
binary black holes starting from an estimate of the innermost
stable circular orbitISCO) as provided by Cook15] and
Baumgartd 16], using the effective potential method applied
to the Bowen-York initial data. Such a binary system has also Under the Lazarus approach our model is specified by
been considered by Buonanno and Damfdi#], who pro-  providing a specific implementation for five components
duced a radiation waveform estimate without solving the full(FL, FL-FN, FN, FN-CL, CL. A sketch of this combined
system of Einstein’s equations in tliexpected nonlinear  approach can be outlined by the following stefB: First
regime, but used extrapolations of the 2.5 post-Newtoniaprovide a description of the early dynamics of the system
order. In this paper we apply theazarusapproach18] to  with a FL approach, such as the PN method, which is appro-
develop a functional astrophysical model for binary blackpriate for slowly moving, well-separated black holes, or
hole coalescence. some alternative quasi-stationaf®S) method.(2) Extract

A complete implementation of our approach requires atritical information about the late-time configuration of this
least five components. There are three basic treatment reystem in terms of Cauchy datg, andK;;, and translate
gimes:(i) a far-limit (FL) treatment covering the earliest re- this information to a corresponding solution of the gravita-
gion of spacetime when the black holes are still relatively fartional initial-value problem(3) Apply a full 3D numerical
apart, (ii) a fully nonlinear(FN) approach to the essentially simulation of Einstein’s equations to generate a numerical
nonlinear plunge-merger region of the spacetime @nfla  spacetime covering the non-linear interaction region. The
close-limit (CL) approach to the dynamics of the newly evolution should proceed for long enough so that the subse-
formed final black hole and the propagation of radiation. Inquent evolution of the region exterior to the final single rem-
addition to these are two interfaces, FL-FN and FN-CL,nant black hole can be well approximated by perturbative
which require a specific means of propagating the relevandynamics.(4) At this point we choose a “late-time” slice

Il. THE MODEL
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from the numerically generated spacetime and extract One of the most attractive characteristics of the Lazarus

:Caﬂwnaﬁﬁnya& andd,i, to quantify the deviation of the apprqach is that it provides a built-in facility for cross-
numerical spacetime from a Kerr geometry. TH{Bhevolve checkin_g the three primary tre_atments und'erly|r.19 the model.
via the Teukolsky equation, which governs the dynamics oBY shiﬁing the location of the interface regions in the model
Kerr perturbations in the time domaja9], long enough to ~SPacetime, we can effectively exchange the treatment chosen

drive all significant radiation into the radiation zone where itfor that region of spacetime. This creates an inherent method
can be interpreted. for validating the three evolutionary model components. We

For convenience in discussion we will refer to stéps- ~ Can cross-check the close limit perturbation theory treatment

(5), through which radiation waveforms are derived fromWith numerical relativity results for the same region of
numerical simulation initial data, as the “late-stage” part of SPacetime, systematically incorporating a common technique

the model. Likewise the “early-stage” part of the model en-for verifying both close limit and numerical results
compasses stepd) and (2), in which numerical data are [22,23,.13. In [18] we described the b_aS|s for such compari-
produced from some model of the early part of the spaceSONS via the FN-CL mterface, which mvolyes phase I_o.cking
time. A suitable implementation of the late-stage part of thend energy plateaux in the waveforms. With the addition of
model has been presented in REfg]. During its develop- the early-stage treatment we can now begin to practically
ment, the late-stage implementation has passed many tesg@mpare the FL and FN components of the model. Section V
including the robustness af, and 4,4, against nonlinear IS dedi_cated.to evgluating the FL model by comparison Wlth
contamination of the Cauchy daf0]. In an earlier paper numerical simulation. Although the model for the FL is
[21] our method proved to be capable of determining radia'€arly more suspect, the results are in much better agree-
tion waveforms for a model problem, the head-on coIIisionme”_t ihan expected, validating our simple treatment as a fair
of two black holes, with accuracy comparable to the besProvisional model.

published 2D numerical results, allowing at the same time a

more direct physical understanding of ti_ie collis_ions and iNy; pRACTICAL TESTING OF THE LATE-STAGE MODEL
dicating clearly when non-linear dynamics are important as

the final black hole is formed. IfL8] we report on internal Our idea for the late-stage part of the model is to use the
consistency checks after including net angular momentum ihazarus tools for deriving radiation waveforms, energy and
the system, e.g. quadratic convergence to vanishing gravitamomentum radiated, plunge durations, etc., resulting from an
tional radiation, which our method passes, for the evolutiorevolution of binary black holes that have started close
of Kerr initial data. This is a non-trivial test of our procedure enough to make numerical simulation tractable. We approach
since the computed spurious radiation energy and waveforntbis case developmentally, beginning with an axisymmetric
will give us a direct measure of the “internal” error with system of ISCO-separation black holes released from rest.
which we can determine such quantities. Typically, the levelsThis system has been studied extensively using 2D numeri-
of spurious radiation we have found for rotation parametercal simulations and with a previous simplified version of our
a/M=0.8 is around 10°M. model's late-stage treatmef21]. From this head-on colli-

In Sec. Il C we supplement these tests with a developsion case we gradually add orbital angular momentum to the
mental study of the performance of our late-stage implemensystem to approach the target ISCO problem. We call this
tation on a series of test problems which build from the pre-sequence of initial data sets th@-“sequence” through which
vious test problems to a fiducial case of practical interestywe vary the transverse momentum of the individual black
evolution from “ISCO” data, as described below. hole from zero in the head-on case to our target

In this work we will add to the model a simple treatment =P,sco. The waveforms we present here are the culmina-
for the the early-stage part. We essentially model the earlyion of a number of numerical simulations which were
part of the spacetime as a stack of spacelike slices, each slioeeded to establish both the effectiveness of our methodol-
chosen from a family of solutions of the Einstein initial value ogy and the plausibility of these results as a fair astrophysi-
problem representing non-spinning, orbiting black holes. Thecal model. Sections Il Aand Il B lay the groundwork with a
solutions on the slices are further selected by kinematicatlescription of the particular family of initial data we are
(effective potentigl arguments to correspond to circular or- studying, and an overview of our methodology.
bits. This early-stage part of our model is clearly less devel-
oped than what we have implemented for the late stage, and
it is fair to note at the start that there are many reasons to
pursue improvements for this part of the model. The key The Cauchy data required to begin & B simulation of
advantage of our present approach is that it can be appliechcuum general relativity can be given in the form of a met-
even without further development to provide a complete pro+ic tensorg;; on an initial spacelike and an extrinsic curva-
visional model which produces coalescence waveforms. It isure tensorK;; which contains information about how the
precisely in the context of such a completed model that wenitial hypersurface is embedded in the spacetime. The gravi-
have a concrete basis for evaluating any treatment of stegational field equations include four constraints, limiting the
(1) and(2). In Sec. IV Awe provide a detailed description of choices forg;; andK;;. To present data for a binary black
our treatment and introduce some relevant concerns relatdtble system generally requir€s) some astrophysical ansatz
to this part of the model. In particular we consider the plau-for plausible field configurations aroun@nd constituting
sibility of our model in comparison with PN calculations.  the two black holes an®?) solving the constraints.

A. Initial data
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Many conceivable approaches have been proposed and, to P=033M
varying degrees, developed for the case of black hole initial
data. In this study we apply a variant of the best known m=0.45 M
approach, known as Bowen-York ddt24]. This approach
provides an ansatz for describing black hole systems through
a set of restrictions on the metrig; and extrinsic curvature L=49M
Kij . The assumptions are as follows: conformal flatngss
=<IJ4§” , @ maximal sliceK{=0, and a purely longitudinal

form for the extrinsic curvatureK''=® " 1(Vivi+ ViV m=045 M
—2¢V,VK). Instead of the traditional ‘“inversion- J=077M"

symmetric” boundary conditions at each of the black holes, P=033 M

we apply a simplified variant‘puncture” data[25]) which

allows black hole data to be represented numerically without FIG. 1. Effective potential—ISCO data.

excising the interior regions of the black holes. An advantage

of this class of data is that it has been studied extensively. \ hen the black holes are far apart, but has not yet been
A significant feature, expected to exist in the binary inter-gy,jieq as a kinematical model for quasi-circular orbits and

action, is the ISCO indicating the closest possible configurajsco  Another treatment along the lines of the maximal/

tion of black holes at which theonservativepart of the  conformally flat formalism, with no assumption about the
dynamics allow stable orbits. Although the field theory na-|ngindinality of the extrinsic curvature but with additional
ture of the “full numerical” approach does not lend itself ogyrictions guaranteeing that these conditions are initially
naturally to a particle-like description of the dynamics im- .ngjstent with the evolution equations, is very promising
plicit in describing the 1SCO, it is possible to construct  ; has not yet been applied to irrotational black hole sys-
partlcle—hke_parametrlzgt!qns of appropriately chosen famiams as considered he27—29. Finally, an interesting first
lies of solutions to the initial value problem. In these terms,qian in providing astrophysically realistic initial-based PN
the kinematical relationships, among the solutions to the ini;nqtivated choices for the freely specifiable portions of the

tial value problem, provide a description of the system simi-q41a130] will be the subject of further investigation within
lar to the conservative particle dynamics, including an estiy approach.

mate for the ISCO.
Different approaches have been developed to identify
quasi-circular orbital configurations and to determine the lo- B. Methods
cation and frequency of the ISCO. We will use here the re- A detailed discussion of our techniques has been pre-
sults based on the effective potential method 18] as de-  sented in a previous papr8] so we only briefly review the
rived in [16] for the puncture construction of black hole techniques here. We first perform numerical simulations to
initial data. This provides a space of solutions parametrizegover a relatively brief period of fundamentally non-linear
by the momenta, spins and positions of each black holeayo-body interactions to the point where the dynamics of the
From these solutions one can apply the Arnowitt-Deserfinal black hole dominate and can be treated linearly. We
Misner (ADM) formalism to determine the total energy then integrate the standard ADM form of Einstein's equa-
Mapw for the slice of spacetime. If a bare mass is inferredtions using the thrice iterated Crank-Nicholson approach
for each individual black hole from its apparent horizon areaywith maximal slicing and vanishing shift, making extensive
then the differenc&e; can be used to identify points in the use of the publicly available Cactus computational toolkit
solution space corresponding to quasi-circular orbits, an@i3a1] and Brigmann’s multigrid elliptic solver BAM for ini-

ISCO. ' ' tial data and maximal slicing choices. In designing these
For puncture data the ISCO is characterized by the paransimulations we have focused on the particular needs of our
eters problem defined within the Lazarus approach, rather than on

alternative techniques for generic applications. Some of the
priorities in this case are optimal accuracy for brief simula-
(3D tions in the entire region outside the final horizon, avoidance
JIM?=0.77, m=0.45\. of boundary noise, and consistency with gauge assumptions
applied in interfacing to the “close-limit” phase of the treat-
wherem is the mass of each of the single black holgsis ~ ment. The accuracy requirement tends to favor the standard
the total ADM mass of the binary syster,is the proper ADM over other approaches. Although the ADM system
distance between the apparent horizdhss the magnitude tends to be more susceptible to instabilities, it also tends to
of the linear momentéequal but opposite and perpendicular be more accurate before these instabilities suddenly arise.
to the line connecting the holeand J is the total angular In the cases considered here, these runs would suffer cata-
momentum. This configuration is represented in Fig. 1 strophic instabilities after 15—20 evolution, but the more
Families of solutions to the initial value problem have critical question for our problem is that the runs be suffi-
been produced from other sets of assumptions on the fieldsently accurate in the convergent regime prior to the insta-
as well. An approach inspired by the Kerr-Schild form of ability. In some cases, other systeff&2] seem to allow for
Kerr black hole[26] provides a more natural model, at least significant improvements in the treatment of boundaries. But

L/M=4.9, P/M=0.335,
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at present even these improved boundary treatments remain J=0.77 M P=033 M
problematic, allowing physical wave content into the compu-
tational domain. For brief, accurate simulations it is impor- =045 M J=05M P=022M
tant, and practical, to move the boundary far away, causally R
separating it from the relevant wave-generation region. To J=025M  P=0.1IM
realize this without undue computational expense we cast the . .
initial data in specializedisheyecoordinates, which bring a
distant outer boundary to a closer coordinate location with- P=0.11 M
out sacrificing physical resolution in the strong field regions m=045M
[18]. Our gauge assumptions favor maximal slicing in the P=022M
numerical simulations, and for simplicity without an obvious P=033 M
alternative, we use a vanishing shift. Other sophisticated
techniques currently under development in the field, such as
black hole excision, are not so relevant to our narrowly de-
. ; . . . : L=49M
fined numerical simulation needs. We effectively excise the —< >
interior of the final event horizon when we make the transi-
tion to (purely exterioy close limit perturbation theory. FIG. 2. Sequence.
In analyzing our results we make extensive use of several
special techniques. A key tool for interpreting our numeri-expect to find a plateau iE once we have evolved through
cally simulated spacetimes is the complex-valued specialityhe most significant regions of non-linear dynamics and be-
invariant “S invariant” [33], fore the inaccuracies in the numerical simulation have grown
dramatically.

S=277%13, (3.2
whereZ and 7 are the two complex curvature invariaris C. P-sequence results
and 7, which are essentially the square and cube of the self- In order to better understand the physics of the plunge we
dual part,ﬁaﬁyf Copyst (i12)€apmd m, of the Weyl ten- have designed a set of sequences approaching the ISCO by
sor: changing one of its physical parameters. Many different se-
quences are possible. Th® “sequence” for which we keep
I:Eaﬂyﬁéaﬁyﬁ and jzéaﬂya'éziéuvaﬁ_ (3.3 the separation constantlat=L,5co=4.9M but vary the lin-
ear momentumP/P,5c0=0,1/3,2/3,5/6,1, is particularly in-
teresting because it connects the well-studied case of head-on

In vacuum general relativity this is the uniqup to rescal- > . .
ing) spacetime scalar quantity which can be constructed frongollisions from rest to our target, ISCO data. Figure 2 illus-
.trates the initial configurations studied with increasing linear

the components of the curvature tensor which is not domi- :
nated by its fall-off behavior in an asymptotically flat space-Momentum from the resting holes to the ISCO values.
time. It is thus a natural tool for invariant interpretation of
spacetime dynamics. A key characteristic of thénvariant
which we take advantage of here is that is has the exact The head-on collision of black holes from rest has been
value, S=1 in the Kerr geometry and tends to provide astudied using our techniques in RE21] and compared with
useful measure of deviations from the Kerr background. As 2D simulations. Here we revisit this configuration, now not
rule of thumb, we adopt the criterion that black hole pertur-with the holes lying along theaxis, but along thg axis, and
bation theory is likely to be effective if the real part §f having switched from Misner to Brill-Lindquist initial data,
differs from unity by less than a factor of twavhen reach- to serve as a reference point for the ISCO initial data. The
ing the maximum outside of our estimated location for the change in orientation implies that the radiation is now pre-
horizon. In these binary black hole spacetimes, we find thelominated by itsm=*+2 component, each contributing a
maximal values ofS on the orbital(z) axis. factor 3/8 to the total energy, white=0 waves have similar
Our most important means of evaluating the calculationgime dependence but smaller, contributing to 1/4 of the total
is the inherent cross-checking between the two evolutionaryadiated energy. Note that the reflection symmetry of the
spacetime model&lose limit and numerical simulationBy ~ systems considered here implies that the +2 and m=
changing the location of the transition between these ap-2 modes are directly related and contribute the same to the
proaches in our model spacetime, which is achieved by varytotal energy radiated. Without loss of information we present
ing the evolution timél of the numerical simulations, we can only them= +2 results.
effectively exchange one treatment for the other. If the re- Figure 3 shows four snapshots of the apparent horizon
sulting radiation is approximately unchanged, then the twaurfaces on the orbital plari@4]. They show that the two
independent treatments are agreeing with each other and vidack holes start well detached. Clearly, the “grid stretching”
can be confident in the results. In practice we compare theffect due to the vanishing shift we used during evolution
results by separately examining the magnit(tigal radia- makes them appear to grow in the coordinate space already
tion energyE) and phasing of the waveforms. Thus we look after 8V of full numerical evolution. These plots are particu-
at the energy as a function of the transition tifigand larly useful to extract qualitative information about the sys-

1. P=0 (Brill-Lindquist initial data)
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tem. Soon after a common apparent horizon covers the sysearing the 1.5 factor among mode contributions expected
tem which tends to have an increasingly close to sphericéfor axisymmetricl =2 radiation at this orientation.

shape at later times. This tends to set an upper limit on the Figure 6 displays the superposition of waveforms for the
time at which linear theory can take over as has been diswo relevant modes fromM to 9M of nonlinear evolution.
cussed in Refl18]. It is expected that a commagventho-  These waveforms are unequivocally determined once the
rizon should have appeared sevevik of time earlier. The  transition time has been chosen so there are no free param-
key physical feature which actually makes the close limiteters to be adjusted in this comparison. Throughout this sec-

approximation effective is that the black holes share a comtion we show then=0 andm=2 waveforms for observers,
mon potential barrier which appears even earlier than the
common event horizon.

In Fig. 4 we show the time evolutiofactually computed 18 ' ' ' '
every IM) of the “S invariant.” The S invariant clearly -0
shows that spacetime is asymptotically Keft=(1) at large =
distances. It also shows that the geometry at the initial slice
has significant distortions near the region where the commor
horizon will form and hence we do not expect perturbation
theory to be a good approximation at very early times. In fact__
we need at leastM of evolution to bring the distortions £ /
outside the horizon down the level of a factor 1.5 in the b —  T-OM
invariant. AL TE e T=2 M
Figure 5 shows the computed total radiated energy from Wl —mo- T=4M T
the system using linearized theory afterof full nonlinear wlred: / - Egm
numerical evolution. We see that if we insist on using per- iy — T—1OM
turbation theory to compute the subsequent evolution. Ever | i T=12M
at very early times, we obtain that the radiated energy varies
notably for different transition times. Only when we really 8 10
reach the linear regime is there a certain “energy plateau.” r, Z ™
This again happens foF~4M for both relevant modem
=2,0. Note that the curves settle down to values closely FIG. 4. S-invariant measuring deviations from Kerr.
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FIG. 6. Waveforms folP,;=0.
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respectively, on the equator and thexis, where the ampli-
tude of each component is maximal. Especially useful, as an
independent test of linearization, is the locking of the phases
observed after B of evolution. At later times we recognize
the quasinormal frequency of a the final Schwarzschild black
hole with a periodry,,,=16.8M.

We observe that all the four criteria used here to deter-
mine the time this system begins to behave linearly outside
the horizon coincide in setting it around 4M5of nonlinear
evolution. Though we have not displayed it explicitly, we
also find good agreement with our earlier Misner data re-
sults.

2. P= P|Scd3

Now we begin to add angular momentum to the system.
In this case we give the holes an initial momentum perpen-
dicular to the separation vector of one third of the ISCO
momentum magnitude.

We show in Fig. 7 four snapshots of the apparent horizon
on the orbital plane; a picture quite similar to the head-on
case, except, as expected, for a slight asymmetry along the
orbital motion and the appearance of a common apparent
horizon after ™ of full nonlinear evolution, approximately
1M later than in the head-on case. The asymmetry is a result
of the orbital-like motion with respect to our vanishing shift
coordinate system. The coordinate singulafityuncture”)
which must remain inside the apparent horizon is fixed in
place in the grid coordinates so that the apparent horizon
cannot “orbit” in these coordinates, but is, rather, stretched
around in theg direction. The same characteristic is evident
for all our runs. This twisting of the spacetime is a generic
consequence of using a vanishing shift for these simulation
and illustrates the importance of using a corotating shift with
some¢p component.

Figure 8 shows the deviations from a Kerr background
along thez axis (the direction of maximal distortioras mea-
sured by theS invariant. The picture shows clearly that at
least 4V of evolution are necessary to reach a perturbative
regime.

In Fig. 9 we observe that the radiated energy reaches a
plateau after transition time§~4M consistently for both
modesm= *2,0. Even for this weak radiation the approxi-
mate constancy of the radiated energy holds up+alOM.

Figure 10 displays the impressive agreement among
waveforms for different extraction times and different
modes. All this is reached without any adjustable parameter.
The frequency of the waveforms quite closely resemble those
of the least damped quasinormal modes for a Kerr black hole
with rotation parametea/M =0.26, which forl=2m=2
has a period35] 74,~15.2M.

3. P=2P|3Cd3

This case has an initial transverse linear momentum of
two-thirds the ISCO magnitude.

Figure 11 displays clear effects of orbital motion deform-
ing the apparent horizon surfaces on the equatorial plane. A
common apparent horizon appearsTat11IM showing that
the orbital component delays the merger of the holes into a
single one as expected.

124012-7
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FIG. 7. Apparent horizons foP,p =P 5co/3.

Figure 12 shows that, consistently, teinvariant esti-  value. It takes 8 —-10M of evolution to obtain a stable pla-
mate for linearization is also delayed in comparison with thetegu.

head-on or near head-on cases. At leagt 8f evolution is Figure 14 displays the leading mode= + 2, along thez
needed to settle down the perturbations to an small portion afxis with good agreement for the times where we estimate
the background. linearization takes place. Excellent phase locking is evident

Likewise Fig. 13 shows how the plateau in the energy isfor the first three cycles with good agreement for the rest of
reached at later times after an oscillation around the finalhe relevant signal. The frequency of the last part of the
waveform agrees with the least damped quasinormal mode

2
r*otas=30M' P=P|sco/
0.001 . . : .
G—om=0
=6 Mm=+2
1.5 k
0.0008
%) 0.0006
s 1
o =3
w
0.0004
05 .
0.0002
0
18 % 2 s 6 8 10
r, Zyw/M ™
FIG. 8. Sinvariant measuring deviations from Kerr. FIG. 9. Total radiated energy plots.
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m=+0, equator, r*=30M, P=P\s;/3 tial data labeled a¥ =0 compared to the previous elements

0.003 of the P sequence.

— T=4M

. T5M A coherent picture comes from Fig. 17 which suggests
0.002 | & T=6M | that the energy plateau arises aftév Of nonlinear evolu-

- Egm tion, just before numerical error begins to noticeably add to

the energy. The energy radiated oscillates around the final
value and is evidently dominated by the modes + 2, with
very little contribution from the moden=0 and negligible
from them= =4 ones. We note that adding orbital momen-
tum in moving along thi$ sequence dramatically enchances
the m=2 component of the radiation with relatively little
effect on them=0 mode. Thus while the energy content of
the two components was roughly comparable in the head-on
case, as we approach ISCO tine=2 component is growing
005 ‘ ‘ , ‘ strongly as would be expected for a non-axisymmetric or-
0 20 40 60 80 100 bital system. A linear analys{86] indicates that the leading
M I=2m=2 contributes to the radiated energy with a qua-
M=+2, z-axis, *=30M, P=P ¢,/3 dratic dependence in the momentum. This is precisely what
\ - \ we observe for smalP (see Fig. 2L
0.005 - A — T=4M i Figure 18 show excellent agreement of waveforms for
‘ - I:gm different transition times in the linear regime. The phase
— T7M locking is excellent up tda~60M, then there seems to be
some interference from spurious radiation from the bound-
aries of the full numerical simulation that specially affects at
transition timesT=12M.

To compute the emitted radiation and waveforms we have
made a first correction to the Kerr background to take into
account the portion of the energy radiated].3% and the
angular momentum radiated, ending with a black hole with
mass parameteM y.,,~0.98M,i; and axe~0.6M e, -

The normal frequency of the waveforms shown in Fig. 14
correspond quite closely to the least damped quasinormal
0005, 20 20 80 20 700 Modes of this final Kerr hole.
M This simulation and the one we will report in Sec. Il D
for the ISCO have been performed on a 54256 grid re-
FIG. 10. Waveforms foP|p=Pjscd/3. quiring 10 h of running time on 64 nodé512 processojof

the Hitachi SR-8000 at the LRZ. The central resolution was

of a Kerr hole with rotation parameter’M =0.51 for the ~M/24 and the boundaries located atV8#vhere the resolu-

0.001

Re(y,)

-0.001

0.003

0.001 -

Re(y,)

-0.001 -

—-0.003

modem=2 which has a periof35] of 7qnm~13M. tion reached~1M.
For the three sets of simulations just reported we have
used grids of 38%4x 192 size(making use of the symmetry D. Plunge from the ISCO data

along thez axis of the problem with an inhomogeneous

distribution of the points called *fish-eye[18). Each run study with the present full numerical technologies. We have

required up to 70 Gbytes of RAM memory on a Hitachi chosen the standard ADM formulation of Einstein e [
: . quations
SR-8000 at the LRZ in Garching, Germany and took abou}n order to ensure good accuracy during the relevant nonlin-

10 h running on 16 nodeld28 processois ear evolution. It is known that in the ADM formulation the
instabilities that kill the evolution appear suddenly and do

The ISCO configuration proves to be a borderline case to

4. P=5P,5c0/6 not affect the early part of the numeric87] integration.
To closely approach the ISCO parameters we included thgh|s_|s r_eflected in the computation of the norm of the
case ofP=5P,scd/6. Hamiltonian constrainH,
Figure 15 shows how strongly the apparent horizon looks
deformed in the grid coordinates responding to the transverse > |-|i2jk
momentum. The four snapshots show the formation of a LQ‘””‘: ijk (3.9

common apparent horizon foF,,=14—15V of nonlinear
evolution. Consistently, Fig. 16 shows the oscillations of the
S invariant around the Kerr value, 1, and indicates that thavhereN;;, is the total number of grid points labeled b,
linearization regime is reached after aboWl ®f full nu-  as a first measure of the numerical errors generated during
merical evolution. Note the stronger deformation of the ini-the unconstrained evolution.

Nijk ’
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In Fig. 19 we show this norm for different central resolu-  Figure 20 displays a detailgdvery IM) evolution of the
tionsh, . Even though we see the expected quadratic convereal part of theS invariant index showing distortions from
gence, the exponential error growth is catastrophic and onlthe Kerr backgroundvalue equal to L Initially the distor-
slightly delayed by applying significantly more computa- tions are large and the subsequent oscillations maintain a
tional resources to increase the resoultion. Eventually thessignificant amplitude near the common horizon. After the
runs are killed by a non-convergent instability, but the nu-second bounce arountd=11M the distortions begin to sta-
merical errors are already a problem earlier while the codéilize. At larger radii a signal with relatively large amplitude
still appears to perform convergently. We take over with perbegins to leave the system. This will generate the first burst
turbation theory before the error has grown prohibitively.  of radiation coming out from the collision.

2 ll I ss=30M, P=2P . /3
f 0.004 . : . . .
{ G—oOm=0
| G—Om=+2
15
i 0.003
o
61:: ] =
= 0002 - .
05 |
0.001 E
0 0 0 1 1 1 1 1
0 2 4 6 8 10 12
™
FIG. 12. Sinvariant measuring deviations from Kerr. FIG. 13. Total radiated energy plots.
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0

™
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FIG. 14. Waveforms foP,p =2P,5¢c¢/3.

110

In Fig. 21 we gather the estimated linearization times for

Re(S)

PHYSICAL REVIEW D 65 124012

FIG. 16. Sinvariant measuring deviations from Kerr.

the elements of th® sequence and the ISCO and compare'“'fion than a common event horizon and even earlier than a

them with the time for the formation of a common apparentcommon apparent horizon.

horizon. They seem to carry a similar dependence and are We have also considered two other sequences of black
offset by 4—8V of further evolution. The offset is expected hole configurations in the near-ISCO regime. These-

on the grounds of relating the linearization time to the appli-duence describes configurations with constant separation and
cability of the close limit approximations, associated with amagnitude of the linear momentum but varies the angle be-

common potential barrier, which appears earlier in the evotweenP and the line joining the holes. We have chosen

15.0000 M

FIG. 15

124012-11
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r*ogs=31M, P=5P ¢, /6 Norm of violation of the Hamiltonian constraint
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FIG. 17. Total radiated energy plots. ™

FIG. 19. Norm of the violations to the Hamiltonian constraint.
=90°,60°,30°,0° in order to consider different radial com-
ponents. As an independent test we have also studied a sée energy plateau is reached a little earli@s expected if
quence which connects the ISCO to the close limihere  the background is closer to the actual paad remains rela-
numerical simulation should not be neeliéy varying the tively constant fromilr=8M throughT=11M.
initial separation of the holes from the ISCO separation to As remarked in Ref[38] the computation of the angular
L/L,sco=1/4,1/8. For the sake of a compact description wemomentum radiate@Eq. (5.2)] is a very sensitive quantity
are not going to describe those results in detail apart frondepending on correlation of waveforms. So we can only es-
reporting the radiated energy in Fig. 21. Note that the “ timate it to be around 12% of the initial momentum.
sequence” generates more radiation than Rhgequence as The waveforms of Fig. 23 represent our best knowledge
expected due to its extra radial component. In this plot wedf the plunge so far. We have included two transition times in
also report on the case=13/12P s to check the effects the quasilinear regime to show the differences and as a mea-
of overshooting the ISCO data, finding consistent results. sure of the internal errors of the method. We also display the
To compute the total radiated energy and angular momerwaveform obtained if no nonlinear evolution is performed,
tum radiated as a function of the transition tifielisplayed labeled asT=0M. The clear differences with the ones ob-
in Fig. 22, we have taken into account a change in the backained in the linear regime show how important it is to have
ground masM ke, =0.9"™,i1ia and the rotation parameter some nonlinear evolution that settles down the system to a
akerr=0.M e, . We have also considered an extrapolationsingle rotating black hole plus distortions that will be radi-
of the results from two different resolutions in the convergentated awayand down onto the final black hole
part of the full nonlinear simulation. In this case we find that  An interesting feature of the waveforms studied is that
they are dominated at later times by the least damped quasi-

m=+2, z-axis, r'=31M, P=5P 4 /6

0.02 ; 2
0.01 - 15
- @
5 8 g
a8
-0.01 05 1
% 30 50 70 90 110 ’
M rH Zyow™
FIG. 18. Waveforms foP,p =5P,5¢ /6. FIG. 20. Sinvariant measuring deviations from Kerr.
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FIG. 21. Linearization time and radiated energy. FIG. 22. Energy and angular momentum radiated.

normal modes of the final Kerr black hole. Foe=+2 they  that the extent of the spacetime which must be treated non-
have a period of-12M. This is reflected in the spectrum of linearly in this regime is modest. Our estimates for the rough
the total radiated energy, including the two polarizations andinearization time from our ISCO-candidate data set come to
integration over all angles, presented in Fig. 24. around 1M1 of nonlinear evolution. While the overall results
These spectra, again shown for different transition timesit the ISCO are only marginally robust, within say 20%
to have a measure of the internal error, have a rather narrov@ather than much finer precision in the head-on case, many
peak at a frequency near that of the least damped quasindeatures of the waveforms are precisely determined. The first
mal mode for a Kerr hole witla/M~0.7. The lower fre- two cycles or so, up to the peak &t 50M or so, are quite
quency part of the spectrum is dominated by the quasinormdirecisely determined in phase. In the worst case that we had
mode m=—2 component with a period of-19M that is  underestimated our linearization time and our numeri-
close to the radiation-orbital frequen¢yne-half the orbital
period of the ISCO~37M). For a binary system of total ISCO, r*=31M, z-axis, m=42
massM =35M these frequencies correspond to 475 and - - -
300 Hz, respectively.

E. Critical assessment

We have applied our late-stage model to a sequence og 0
initial data sets ranging from the head-on collision case toss
the ISCO data. Having achieved the expected result in thef o015 |-
head-on case we have slowly added orbital angular momen
tum. As expected the orbital motion leads to a dramatic in- _0.03 |
crease in the leadinig=2, m=2 component of the radiation, ‘./ —— T=0M
initially depending quadratically on the momentum of the ~0.045
system. Our study proves that some fully non-linear treat- 0
ment is essential for a reasonable treatment of the BBH sys-
tem in the plunge regime. On the other hand, we find also FIG. 23. ISCO waveforms.

40 60 80 100
M
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ISCO data, spectrum of total radiation which is ultimately expected to be required to provide the
0:06 ' A ' ' best astrophysical initial data, such data are not yet practical.
— T-9M ! Instead, we adopt a very basic early-stage model which takes
G no information directly from the PN treatment. We start our
simulations with initial data derived from an alternative de-
scription of black holes in quasicircular orbit derived in Refs.
[15,14 for conformally flat black hole initial data, which we
discussed in detail in Sec. Il A. As there are a variety of
comparable schemes which might be applied to provide such
data we also need a means to assess the “astrophysical ap-
propriateness” of this particular scheme. Ultimately the reso-
lution of these issues will be settled by performing a se-
quence of evolutions beginning with more and more
separated initial systems approaching the regime where dif-
ferent descriptions of the initial configurationgost-
Newtonian, quasistationary relativistic ansatz,)eteerge to-
0 0.2 0.4 0.6 0.8 1 gether.
Mo In Sec. IV A we describe such a sequence and in Sec.
FIG. 24. ISCO spectrum. IV B we compare our results with PN caIc_:uIations applicgblg
for well-separated systems. The comparison seems to justify

our initial model as plausible priori agreeing with the PN

calrlaccurrtacfy,thweww\cl)ufldrrr;o;tre;peﬁtig]rarm\?tlg chlan?etis r|1n ;[:Snalysis to the level of accuracy presently available. The
early part of the waveto om a proved caicuiation. In -, <q for future research is to refine these calculations by
many cases there are some evidently non-robust features (g-u

ursuing ever improved initial models and beginning the
the later parts of the waveforms. We have traced back t imulation earlier and earlier in the astrophysical inspiral or-
several sources of error which influence this part of th

waveform, most notably numerical differencing errors origi- ital process, thereby evaluating and improving the astro-
X ’ y nun . cing g hysical accuracy of these early results. In Sec. IV A we take
nating near the punctures in our simulations and radiatio

. : . . .the first few steps along this course.
errors associated with the finite spatial extent of our numeri- P g

cal domain. This study was a vital tool in our efforts to
reduce finite boundary effects to the point that the overall
waveform seems to be accurate within 10-20 %. Because the ) )
numerical error associated with the punctures shows up pre- Our “early-stage” model is composed essentially of a se-
dominately in the higher parts of the waveform, it is prac- guence of spacetime S|ICé$llt|§1I data set}; We take these
tical to filter these effects by extracting the strongly domi-from the same family of solutions of the initial value equa-
nantl = 2 component of the radiation. This filtering preservestions which we have used in Sec. lll, “puncture data,” and
some 90% of then=2 radiation energy. The filtered wave- sglect data _correspondmg approximately to black_ holes in
forms are much more robust, and indeed simpler to chara&ircular orbit. We adapt Cook's results, applying the
terize (no longer 2D. Therefore, in the subsequent analysiséeffective-potential method to non-spinning black hd&s],

of our astrophysical waveform models we will focus on thet0 our case to identify a sequence of quasicircular orbits.
| =2 radiation component. This selection, which we call the “QC” sequence, includes

data ranging in initial separation fromvs, the ISCO value,
to 14M. Strictly speaking, Cook’s results apply to a family of
data determined with a different interior boundary condition
Two important classes of treatments are applicable to bithan applied for our puncture data, but the practical differ-
nary black hole systems toward the end of the orbital epochences are very small. Baumgaftss] has performed an ef-
In addition to “full numerical” approaches which attempt to fective potential analysis for the puncture data showing re-
solve Einstein’s nonlinear gravitational field equations aresults almost identical to Cook, consistent with the noted
post-Newtonian(PN) techniques, which make perturbative numerical similarity of the two treatmenf89]. Though not
expansions of Einstein’s equations in powere &f, and are  ideal, it is not true that these conformally flat initial data
thus most effective for describing the exterior field of slowly should completely fail to approximate an astrophysical con-
moving, separated binary systems. figuration of black holes. For sufficiently well-separated bi-
Having established a connection to previous studies alparies of non-spinning black holes the uncertainties associ-
lows us confidence in our calculations as solutions of Ein-ated with this method can be made arbitrarily small, and
stein’s equations. But solving Einstein’s equations is nottomparisons with post-Newtonian calculations have shown a
sufficient for work which aims to treat astrophysical phe-reasonable correspondence in this lifdi6]. The black hole
nomena. For this we need a goowdelof the system to be configurations associated with our QC sequence are illus-
studied, and a method for evaluating the veracity of therated in Fig. 25.
model. While we continue, separately, to develop an inter- Other families of initial data are available which might be
face between the PN method and numerical simulationsapplied for an alternative, similarly constructed QC se-

0.04 -

dE/do

0.02 -

A. The QC sequence

IV. AN EARLY-STAGE MODEL
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—~ L—14M = FIG. 26. The dependence of angular momentum on orbital fre-
quency for several approaches. The results indicate that the QC
FIG. 25. Quasicircular orbital data. sequence and ISCO is entirely consistent with the PN treatment at

the level of the precision presently possible.

guence, but none are as yet sufficiently developed for this
application, and there is no clear way to evaluate the various .
a priori preferences adopted in these various methods with- " Ref.[17] Buonanno and DamouBD) describe how to
out a dynamical study, such as that of Sec. V. With ourtSe their consgrvatlve 2PN order Haml!ton[acm] .to est-
simple model we make no attempt to contain informationmate the location of the last stable orbit of a binary black

: ; e e hole system. In that paper they go on to evolve such systems
from the previous dynamics of the spacetithe. radiation, at 2.5PN order, producing an estimate for the gravitational

:)nuotti\(/)vrf a?tfztrgagmae;a'r representation of the system's bulkradiation, bqt here we are only considering tmmservative

' . . system. Going beyond the 2PN order treatment, Damour,
We have converted the QC data into actual physical payz onowski and Séfer (DJS have resummed the conserva-
rameters to be used as the initial input of the full numericaltiVe part of the 3PN Hamiltonian to provide a higher-order
simulations. In Table_L is the proper distance between the g\ 51uation of ISCO[41]. Until recently, the description of
throats of the holes is the coordinates of the “punctures” 3pN dynamics has been dependent on an unresolved regular-
in the conformal space is the individual linear momentum jzation ambiguityws, but a recent dimensional regulariza-
of the holesJ the total angular momentum of the configura- tion treatmen{42] seems to fix this ambiguity with the re-
tion, () the angular velocity as measured at infinity, anés  sult, ws=0. Accepting this result we can apply the methods
the bare mass of the punctures. All quantities are normalizegh [41] to produce a sequence of quasicircular orbits compa-
to the total ADM mass of the systeM. Baumgarte’s deter- rable to our QC sequence. There are two approaches to PN
mination, QC-B, of the ISCO explicitly within the puncture- resummations recommended in Refl]. Leaving the reader
data family is also shown for comparison. to find the details in the above references we note only that

one approach, called thg method is modeled after the

resummation approach of Damour, lyer and Sathyaprakash

B. Correspondence with post-Newtonian parameters

TABLE |. Quasicircular data. [43] and the other is an extension similar to the Buonanno-
Damour treatment described above. The cleanest way to
Name LIM =X/M =*=P/M J/IM?2 MQ m/M compare the results of these analysis is by looking at the

dependence of the angular momentdron the orbital fre-
quencyw, a gauge invariant comparison. In this view the
minimal value in thel curves indicates the ISCO. Following

QC-B[16] 4.90 1.158 0.334 0.773 0.176 0.450
QC-0[15] 4.99 1.169 0.333 0.779 0.168 0.453

QC-1 549 1364 0286 0.781 0.142 0.463 pj5 e have also provided the results of these treatments at
QC-2 5.86 1.516 0.258 0.784  0.127 0.470 the 1PN and 2PN orders.

QC-3 6.67 1849 02148 0.794 0.1019 0477 Figure 26 provides a summary of several results. In this
QC-4 784 2343 0.1743 0.817 0.0760 0.483 plot we can assess several important considerations. The re-
QC-5 8.84 2772 0.1514 0.8397 0.0612 0.487 |iability of the PN treatment is accessible in two ways. The
QC-6 9.95 3257 0.1332 0.8677 0.0497 0.489 degree of convergence with higher PN order provides some
QC-7 1111 3.776 0.1190 0.8985 0.0408 0.492indication of how much these results can be trusted. Earlier
QC-8 12.17 4.251 0.1091 0.9270 0.0348 0.494hopes that the one-body resummation approach might pro-
QC-9 13.31 477 0.1005 0.9584 0.0297 0.496Vide accurate waveform information up to and even beyond
QC-10 14.22 519 0.0947 0.9826 0.0267 0.4981SCO, possibly minimizing the need for difficult numerical

treatments, are not supported. The one-body approach is not
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FIG. 27. The dependence of orbital frequency on ADM-gauge  F|G. 28. The dependence of the effective poterfiia); on or-
separation shows remarkable agreement among all cases. bital frequency for several approaches is consistent with the results
for angular momentum shown in Fig. 26.
converging, in the sense that the 2PN curve is everywhere
closer to the 1PN curve than to the 3PN results. The
method seems to show slow convergence for well-separated A fundamental feature of the Lazarus approach for binary
cases with small values ab, say 0.05 or less. Likewise, black hole spacetimes is that we have simultaneously at hand
there is notable sensitivity to the choice of the resummatioralternative approaches applicable to the interface regions of
method forw<0.06 or so in the 2PN and 3PN cases. For theour model spacetime. We have extensively demonstrated
1PN case, the one-body treatment is much closer to theRow we can take advantage of this feature at the FN-CL
higher order treatments than the 1PN results. interface to cross-check the results of the CL and FN treat-
Comparing the post-Newtonian sequences with our QGnents against each other, and indeed to better understand the
sequence it is notable that the PN results uniformly approacphysics of the spacetime. Even with our very simple model
the QC sequence with increasing PN order. Surely the limifor the early part of the spacetime we can begin applying the
of the PN sequence curves approaches something other theame type of test at the FL-FN interface.
the QC curve, but no difference between our curve and the The principle is the same now; instead of altering the time
apparent limit of the PN sequences is yet discernible at 3PNf transition from FN to CL we alter the time of transition
order. Consistently the location of ISCO estimated by the PNrom FL to FN, and compare the resulting waveforms. In
treatments approaches the parameters of the effective potepractice this means we select alternative data sets from QC
tial ISCO data we used to the level of precision at 3PN. Thissequence and compare the waveforms. If our model is astro-
analysis suggests that the parameters of our ISCO are at leqstysically reliable, then the shape of our waveforms should
as dependable as those given at 3PN and, in fact, are entirelye independent of variations in the choice of QC-sequence
consistent with the PN sequence to the degree of precisiogata set(labeled by a QC numbgrin this section we will
currently possible. The PN results suggest thatco  compare the waveforms generated over a broad range of QC
=0.075 but do not provide a clear upper bound. sequence, treating the cases ranging from QC-0 to QC-4 with
Going beyond the comparison of the invariagtand w, initial proper separations ranging from aboutM.€o about
we can make comparisons in gauge. The ADM gauge applied.8M. In each case we find a total radiation energy of about
in the one-body approach is a direct generalization of th€.5—-3%M during the course of the burst. As described in
isotropic coordinates applicable to conformally flat data. WeSec. 11l B, we look for a plateau in the dependence of the
can thus compare the separation dependence directly for thetal radiated energy on the FN-CL transition tifieshown
one-body treatments and QC sequeritée gauge transfor- here in Fig. 29. The several methods described in Sec. Il B
mation for thej? method is impractical. The comparison in  collectively suggest linearization time of aroufid-9-10,
Fig. 27 shows profound agreement among all treatments qf0-11,10-11,11-12, 13-4 respectively, for case QC-0
all orders for separations,py>4M apwm - FOr closer sepa- through QC-4. As is apparent in the figure, numerical inac-
ration the PN gauge transformation begins to feéinnot be  curacies begin to affect our results in the vicinity of
solved in some cases. The other relevant quantity is the=12—13M, so the later cases, especially QC-4, are only very
effective potentialE=(1—M .st/Mapm)/v shown in Fig. marginally linearized before numerical problems become
28. The results are consistent with the conclusions from theignificant. As is discussed in more detail in the following,
J-w comparison. we find that significant amounts of angular momentum are
It is worth remarking here that the above agreement igadiated away. For the lower separation cases QC-0—QC-2,
also consistent with some recent results using the standardughly 0.10-0.182 of the angular momentum is lost,
3PN expansion in the standard Taylor form, without usingenough to significantly alter the value of the close-limit
resummation techniqugg4]. background black hole spin parametgrso for the results

V. ANALYZING AND TESTING THE FULL MODEL
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FIG. 29. Radiated energy for the QC sequence FIG. 30. Real part of QC-sequence waveforms forlth@ mul-

tipole. This plot compares ten waveforms, showing the small effect

f variations both in the FN-CL transition tinie and through the

C sequence from QC-0 to QC-4 £5.0M to L=7.8M). The
agreement over a broad range of model parameters provides support
for the fidelity of our astrophysical model.

presented in this section we have set the background bla
hole angular momentum to the value given in Tabhaihus
0.1IM? [47]. Likewise we reduce the background mass to
M=0.974.

As our simple early-stage model has less structure than
the late-stage part, we have a slightly weaker comparison tﬂa
make between the two treatments. In Sec. Ill C we had

freedomin our Wavgform superposition comparison. .NOV\./’ results compared with those of the post-Newtor{id5,42
for the earlier transition, the shape of the waveform is still L
fully constrained, but the overall phase or time la betweenapproxmatlon and that of Grandclement et[dlr] seems to

e ' . P . 9 indicate that starting from QC-3 or QC-4 data produces a
different waveforms is free because our simple early-stage T

: . . . ood approximation to the plunge.
model does not include any information about the time an e -
) . ) The striking agreement seen in Fig. 30 clearly supports

rotational offsets between the various QC sequence slices =S

. : b o . e notion that these different initial data sets correspond
they are rigidly embedded in the “astrophysical” spacetime. . X : ;
. . approximately to the slices of a single astrophysical space-
We will have to set this by hand from the waveforms. :
. . e time. In fact the agreement far exceeds what anyone would
As motivated in Sec. Il C, we will filter all the wave-

. . have expected from this family of conformally flat initial
forms cons[d.ered hefe Fo te}ke only ﬂ.hez part. This has the data sets, widely regarded on the basigqfriori kinemati-
effect of efficiently eliminating the higher angular frequency

. ) . . ; . cal analysis as needing to be improved upon before any as-
noise generated in the numerical simulations, while preserv:

ing practically all the physical radiation. Also, restricting to trophysically meaningful results might be obtained. What-

the |=2m=2 part of the radiation as the overwhelmingly ever the difficulties are with these data, they do not strongly

. o affect the resulting waveforms.
predominant component completely specifies the angular de-

pendence so that we can, without loss of generality, focus on
the radiation projected toward an observer on the postive A. Polarization

axis. . , ) We observe an interesting correlation of the two polariza-
On the basis of the waveform's phase, a good fit resultg,g of the waveforms here represented by the real and
from shifting the time axis by 0.0;-1.6, —2.9, —5.1, an_d imaginary parts ofr¢, along thez axis. Except at early
—8.0 for the QC-0 thro_ugh_ QC-4 waveforms, rE"Spec'ﬂvely'times, they are pretty much 90° degrees out of phase. The
The results are shown in Fig. 30. Table Il reports those valy, jition corresponds to circular polarization, as can be seen

ues for appr(_)gimate Iinearize}tion times corresponding to th‘?ﬂore directly if we consider our complex-valued waveforms
FN-CL transition. One can interpret the phase shifts as a

measure of the differential orbital-plunging times for the el-
ements of the QC sequence.
The remarkable agreement among QC waveforms is cet;

. . oV _ Name L/M to/M TIM
tainly the result of an appropriate combination of orbital pa-

It is also notable that there seems to be a pretty smooth
nsition from inspiral to plunge. This suggests that it will
be hard to make a sharp definition of the ISCO, but our

TABLE II. Offset shift t— (t—to).

rameters andP. Note that if we keefX fixed and chang®, QC-0 5.0 0.0 9-10
like in the P sequence, the waveforms do not superpose, angc-1 55 1.6 10-11
if we choose similaP and different initial separations, like  Qc-2 5.9 2.9 10-11
comparing the waveforms d?=2P,sco/3 and QC-3(see Qc-3 6.7 5.1 11-12
Figs. 14-30 or P=5P5co/6 and QC-1(see Figs. 18-30 Qc-4 7.8 8.0 13

we do not find any superposition of amplitudes nor phases
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roughly superpose after this time shift, but the oscillatory
part, shown without the time offset in the inset, is timed to
the initial data, and varies notably as we change among the
different data sets. This suggests that the non-circularly-
polarized part of the waveform is predominantly an initial-
data artifact. Notably also, this non-astrophysical artifact
component seems to shrink for the cases of initially more
separated systems, as expected since the astrophysical inter-
pretation of the initial data is not problematic in the limit of
well-separated black holes, reproducing two Schwarzschild
black holes with small boost.

The physical interpretation of this polarization effect is
that the system’s dynamics are dominated throughout the in-
teraction by rotational motion. Even during the “ringing” of
the final black hole, the perturbations seem to circulate
around the black hole rather than the bell-like ringing, that

FIG. 31. Polarization angle. For all QC-sequence cases the rayne might naively expect.
diation is predominantly circularly polarized after an early period of  \ne remind the reader that this discussion of waveforms is
initial-data-dependent fluctuations_. T_he colors are as labeled in Figocused on the appearance of the radiation to distant observ-
29. The curves have been offset if time as for Fig. 30. ers on the system’s rotational axis. For observers in other
locations the polarization will generally be elliptical, but

. . _ I t . .
in the representationy,(t) =A(t)e'*". Physically this de-  ontorming to a simple pattern consistent with the circular
scribes the wave according to an instantaneous magniude mqrion of the source. In the equatorial plane the observer

and a polarization angle. Figure 31 shows the time depen- «gees” no circulation in the source and the radiation reduces
dence of the polarization angle for one of our waveformy, « 4 » polarization. Moving around toward the negative

cases, QC-3. After some complicated initial undulatica’s 55 the observed radiation approaches circular polarization
ter around 40M, recall that the observer is located’at . the opposite orientation.

~30M) the polarization angle grows smoothly indicating
circular polarization. Figure 32 shows the instantaneous
magnitude of the wave, independent of the polarization
angle. For circular polarization the magnitude does not vary The total radiated energly and angular momenturd at
at the radiation frequency, but more slowly. The figure com-infinity per unit time (1=t—r*) are computed as in Ref.
pares wave magnitude for the QC-sequence cases. At eal$8],
times, the wave is not circularly polarized, and the magni-

(Ppol

B. Radiated energy and angular momentum

tude OS(_:iIIa_tes s_;trongly befor_e becoming dominated by the d_E: lim {if dQ‘ JU i dalEr 8.0) 2]’ 51
non-oscillating(circularly polarized component. The curves du _,|47)a —w
in the figure have been translated by the same time shift
applied in Fig. 30 to get phase agreement in the waveforms. 2
The arched circularly polarized late-time parts of these &:—Iim[r—Re[f dQ
du oo 4 O
0.03 T T T T T T
u ~ ~
0.025 X &¢deu¢4(u,r,0,<p))
u U e -
. X f du’f dug,(u,r,6,¢) ] (5.2

0.015

A(t)

whered() =sind dé de.

If we consider the magnitude and polarization angle rep-
resentation oh as in Eq.(5.3), i.e. 2f [ ,=A(t)e' ¢V, then
we find that radiation energy is generated both by time de-
pendence in the magnitudeand the polarization angle, but
angular momentum flux is generated only by the rotation of
the polarization vector. Thus we can expect to approach
maximally efficient radiation of angular momentuih]

FIG. 32. Instantaneous radiation magnitude, independent of po= M/ «dE [19] for the case of circular polarization. This is
larization angle. The colors are as labeled in Fig. 29. The inseperhaps the most important consequence of the circular po-
shows the early part with the time set to zero at the start of numerilarization pattern which we observe in our radiation. Note
cal evolution. that, for our case the most significant radiation has 2

0.01

0.005
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i o ) FIG. 34.rh, andrh, with integration constants set to fit “nor-
FIG. 33.rh, andrh, for QC-3 with trivial integration con-  mg| purst hypothesis.” Solid curves are+” polarization. Dotted
stants. curves are cross-polarization.

azimuthal dependence with a frequency near0.5M so ) . .
that we can expedJ~4MdE. return to relative rest so we must expect a change in their

relative velocities and positions through the passing of our

part of the wave. Our results are consistent with the hypoth-

esis of finally resting observers if the “cross” observers,
Up to this point we have studied the radiation as represeparated transversely By at a distancé from the binary

sented byy,, which is related to the second time derivative system, are initially moving with speed~0.0014L /R and

of the usual metric disturbance waveform componénts the “plus” observers are initially displaced by about

C. Memory

andh, by [19] 0.02AL M/R. From the quadrupole formula for two orbiting
. , point masses positioned instantaneously onythgis, as our
h, —ih, =2 "mf dt,f‘ dt" . (5.3 bl_ack holes_ are jnitially_/ we expect. that the cross observers
rewd 0 0 will be moving with an initial, velocity of YA and the plus

observers will be initially displaced by, where( is the

Physically our waveforms correspond to the tidal acceleraerbital velocity andA is the momentary amplitude of the
tion of neighboring observersr mirrors perhaps Naturally — radiation. Our results are then consistent, at an order of mag-
we can integrate to get their relative velocities and displacenitude level with what might be expected from extrapolated
ments, but this presents us with a problem: How do we sepost-Newtonian results as presented[46]. At present it
the integration constants corresponding to the initial diswould be inappropriate to pursue this quantitative relation-
placements and relative velocities of our neighboring observship too far since there may be subtle effects, such as tran-
ers? A burst of radiation which allows initially quiescent ob- sients in the early parts of our waveforms or frame dragging
servers to return to their original resting places is describedf the radiation. In the end, our memory effect is plausibly
as a “normal” burst, otherwise it is called a “burst with consistent with the “normal” burst hypothesis. But this is
memory.” In trying to integrate our waveforms we find that certainly an interesting area for further study.
observers at rest when our wave arrives will not return to If we provisionally adopt the normal burst hypothesis, it is
their original resting positions, and seem not to return to resthen most reasonable to perform the integrations required in
at all. The result of direct integration of our waveforms is Fig. 33 with the integration constants set such that the strains
shown in Fig. 33 for a typical case, QC-3. approach zero at the end of the burst. Because our waves are

The figure shows a strong memory effect tog and a  not completely quiescent and are prone to small errors in the
much weaker effect foh, . The hy effect is very robust late time region, some visual judgment is required in choos-
with respect to the the QC sequence, while thememory  ing appropriate integration constants. After shifting the time
effect may increase slightly with initial separation, but this isas above, we get reasonable waveforms upon offsetting the
not clear. Does this mean then that colliding black holesh, curves by 0.015, 0.017, 0.020 and 0.027, respectively for
contrary to expectation, produce a burst with memory? Nothe cases QC-0 through QC-3 in the second integral only. For
necessarily. Our wave is only the last part of a much longeh,, we offset byh,—h,—0.002<xt—0.009. The resulting
wavetrain. Let us adopt the hypothesis that the full wavewvaveforms are shown in Fig. 34. Unlike the other plots in
train is a “normal” burst, and consider whether our resultsthis section we have included only one curve for each polar-
contradict the hypothesis. A key point is that neighboringization from each QC data set. It is interesting to compare
observers of the full wavetrain, which were initially quies- these “strain” waveforms with the other “acceleration”
cent, will not be at rest in the middle of the wavetrairhere =~ waveforms presented so far in this paper. An obvious differ-
our wave startsBy hypothesis, we expect these observers teence is that the sharp growth in amplitude during the burst,

124012-19



BAKER, CAMPANELLI, LOUSTO, AND TAKAHASHI PHYSICAL REVIEW D 65124012

TABLE IIl. 3PN-E1B-ISCO data. waveform. The radiated energy during the plunge lies in the
range 2—-3 % of the total ADM mass. The final black hole
Name LIM  =XIM  *P/M JIM? Mo mM  generated by this 3PN data has a rotation parameter
3PN-EIB ~7.3 2119 0200 0.8476~0.086 0469 —0-78and a quasinormal period 6f13M.

For the full nonlinear part of the simulation we have used
a nonuniform grid of 512x 256 and 448x 224 with bound-
seen in Fig. 32 for instance, is greatly muted here. The stroraries at 3k1. We have also considered different nonuniform
ger growth in they, waveforms is a consequence of the two grids and boundary locations on another 51256 simula-
factors ofw, which is rapidly increasing, obtained from two tion to check the robustness of the results. The largest runs
time derivatives. A consequence of this evident in the figurdasted for 10 clock wall hours on the 64 nodes of the SR-
is that the peak in amplitude comes earlier in the strain wave8000 Hitachi computer at the LRZ and used up to 170
forms, pushing back to arouril=40M near the beginning Gbytes of RAM memory.
of the astrophysically credible part of the waveform. In the The analysis of the PN determination of the ISCO shows
early time region the figure suggests that the large QC casehkat its separation and linear momentum parameters are close
are tending toward longer wavelength in the early part of theo those of the QC-3 case. Summarizing what we have seen,
waveform, as one would hope to see when beginning witlthe plunge waveform does not dramatically change for the
“astrophysically earlier” data. Finally we note that the phasefive cases studied, i.e. QC-0 to QC-4, hence our predictions
relation between the two polarizations, which we have attribfor the plunge waveforms are compatible with the third post-
uted to circular polarization, is not disrupted by two time Newtonian order orbital parameters for the ISCO as well.
integrations, and is equally evident in the strain waveforms.

VI. SUMMARY OF ASTROPHYSICAL RESULTS

D. Comparison with post-Newtonian results In the preceding section we have presented a detailed

As a point of comparison we also consider the 3PN ISCCanalysis of resulting waveforms from our model for the final
determined by the method of the effective one b¢gYB) of  plunge of a system of equal-mass, non-spinniitgota-
Ref. [42] and obtain the parametefsy the ADM gauge  tional), non-elliptically orbiting binary black holes. The do-
given in Table ll. Note that in Ref44] the fact was stressed main of astrophysical validity for these waveforms is limited
that to third post-Newtonian order it is not obvious that theto the time from right around the first burst peak forward, but
one body resummation is better than the “bare” results. Inthe surprisingly lack of internal model dependence in our
this case we find that the ISCO so determined have paraniesults suggests that we can be confideay to the level of
eters very close to the QC-2 case studied here. 20%) in our description of the final radiation burst from such

In order to quantify the gravitational radiation generateda system. We find these results convincing enough to merit
during this plunge we use this 3PN ISCO parameters tdheir adoption, among interested researchers, as a provisional
evolve Bowen-York initial data. They are close in the param-description for relevant astrophysical work, such as in the
eter space to those of the QC-3 and QC-4. The resultingevelopment of strategies for observation of gravitational
waveform is plotted in Fig. 35 and compared with the QC-3waves. As it has been emphasized that any new information
and QC-4 cases, showing closer agreement with the QC-®ay be very valuable for improving the efficiency of gravi-

tational wave search algorithnj], and for the interest of

Re(ry,), T=11M, I=2, *=31M, z-axis readers not yet immersed in the effort to model relativistic

0.03 . : . . systems, we briefly review the results from a more applied
astrophysical viewpoint.
Bipa | Our waveforms cover the final few cycles of gravitational

radiation from the peak onward. Within about four cycles the
signal is reduced to only a few percent of its peak value. In
1 geometric units this takes aboutMQwhich corresponds, for

a 20M, system to about 0.1 ms or, for a®\. system of
supermassive black holes about 1 min. During this brief time
vast amounts of energy are released, equivalent to about
2.5-3% of the system’s total mass ard 2% of its angular

0.01

-0.01 . momentum. The peak gravitational wave luminosity is about
— 3PN-E1B-ISCO 0.001%%G or about 5<10°° ergs/s. The radiation is
0.02 —— QC3 strongly polarized in the same manner as expected from a
e — Qc4 1 rotating gravitational source with circular polarization for ra-
diation propagating along the rotational axes and’ polar-
-0.03 — N T — ization for radiation in the equatorial plane. As generally
10 30 50 70 90 110 130

expected the radiation is predominated byla®?, m=2, s
™M . ; : . L
= —2 spin-weighted spherical harmonic angular distribution
FIG. 35. Comparison of 3PN waveform with QC-3 and QC-4 so that the intensity is 16 times greater along the axes than in
waveforms. the equatorial plane.
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The simple appearance of our waveforms, as shown in T T L 1
Fig. 30, suggests that rather than asking for awkward nu- o002 A
merical data files, other researchers may benefit from &
straightforward analytic fitting of our result with essentially
the full information at our level of confidence. For a repre-
sentative case, the QC-3 waveform, we can impose circula
polarization, a frequency and amplitude dependence of th?" ol
form

[ ot ap(t—t,,), t=<t,, 001
(wo— wonm) (t—1,)
o(t)={ wot tQ—t =, logStsty, -0.02
0 1 _ i
[ @onm > =1,
(6.1
FIG. 36. Comparison with the fitted curve.
(oo t<t
! 90 . .
The curve shown fori,(t) displays only the time depen-
(00— oqnm) (1= t,) dence. For the full wave information, we have
O'(t): 0'0+ t —t y t(rogtst(rl
oo Pa(t=1%,0,0)= oY, " "I (t—r%)
L TQNM =t (m=-2) *
(6.2 + _2Yo oty (t=r*) (6.9
t where theyY,,,, are spin-weighted spherical harmonics,
go(t)=goo+J w(t')dt’ (6.3
tg _,Y, o= /5/4m cod(6/2)exp(2i @) (6.7)
' Y, _o,=1/5/4a sint(812)exp( —2i ¢). 6.8
A(t):eao+f i 64 2Y2 o= B4 sint(6/2)exp(—2i @) (6.9
Lo
VIl. DISCUSSION
rg,=A(t) e "¢, (6.5

We have produced the first astrophysical model for binary

. . . o black hole coalescence waveforms. We use the Lazarus
A simple interpretation of the parametrization we have cho-

sen for the plunge waveform starts from the amplitude-phasrgnethOd applying the techniques of numerical relativity in the
representation of the wavefomg, as above. We then model trongly interacting intermediate plunge region and close-

- ; limit black hole perturbation theory in the late-time region.
the time dependence of the orbital frequency of the last stag s a stand-in fo? the “far-limit” ear)lly part of the dynan?ics

of the inspirql by a linear increase that changes slope thro_ugvr\mle have taken data from a family of solutions to Einstein’s
thueagil-unnogr?ngllefcr: ?Ietrr:s Wﬁﬁgr?ﬂa&d tzgcv??éf:r?:ntthglggaéquations restricted to a spacelike slice of spacetime. This
q q y ging azarus approach is ideal in this application for which each

hole. For the time variation of the amplitude we have Chose'?:omponent treatment is at best marginally applicable by it-

to match_between an initial exponential growth and a fmalself. Not only does the Lazarus method expand the scope of
exponential decay.

iy ; ., . treatable problems, but it provides a natural framework for
vaIEZ(sa ?ouratnr:gITSalsa;bgfrg e?le\ﬁa:irrsofrigltorntggg ﬁ)éréfcggjcﬁross—checking the various treatments against each other.
hole perturbation theor P in qth' case —0.55 and In the first part of the paper we have performed a thor-
perturbati Y | IS QNM™ ough study of the performance of the late-time treatment,
oonmw=—0.073. The quantitya, is chosen informally to

. . including the numerical relativity and close-limit regions on
have the value 0.0085. The other eight quantities are chose{y series of initial data set approaching the fiducial target

by non'—lmear least-squares fit to have the approximate, gy data, the results of which were recently reported on
respective  values {wo=0.2894(,,,=33.001,,=67.0500 i\ Ref [14]. The present study strongly establishes the effec-
=0.21921, =32.541,,=62.92p,= —4.408,=—6.3L. A tiveness of our late-time methods.

comparison of the fit to the original curve is shown in Fig.  Our early-time model is based on a selection from one of
36. We plan to further investigate the “fitting” representation the standard families of black hole initial data used in nu-
of the waveforms to optimize the number and robustness afnerical relativity, the QC sequence. Because of the generic
the parameters to be used as well as the choice of the fittingncertainty in describing astrophysically accurate initial data
functions. This will also facilitate the matching of the plunge consistent with Einstein’s equations for strongly interacting
waveforms with a, for instance, post-Newtonian one for theblack holes, we had little basis, priori, for trusting these
inspiral phase. data as astrophysically reasonable. Thus, the main part of
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this paper has addressed the robustness of the overall resuits learn how generally this waveform robustness extends
against variations in the physical transition point between thevhen studying other initial data families. A weakness of our
early and late-time portions of our model. In other words, wepresent early-time model is that it provides no direct connec-
have tested thkinematicallydefined initial data sets against tion to the inspiral radiation, and thus no cross-check with
numerical relativisticdynamics The results show an over- post-NewtonianPN) dynamics. Further work in this direc-
whelming correspondence, which strongly suggests that, dion will benefit from work on initial data which includes PN
least for non-spinning black holes, the subtleties of selectinglynamical radiation information, as well as longer-running
initial data are not as consequential to the resulting wavenumerical simulations allowing us to extend waveforms far-
forms as has been generally expected in the community, arttier back in time. Considering the waveforms here pre-
support our results as a rough first look at the gravitationatented, we are impressed by its simplicity, a simple multipo-
radiation which can be expected from the coalescence dar description with monotonically increasing frequency and
equal-mass non-spinning black holes. smoothly changing amplitude. However, for systems of
We find the radiation to be dominated by circularly polar- strongly spinning black holes or with significantly unequal
ized, |=2|m|=2 waves radiating 3% of the system’s total masses other arguments indicate complicated waveforms re-
energy in a few cycles and significant angular momentum, saulting from very involved interactions. A significant obser-
that the remnant black hole has an angular momentum pasationally motivated goal will then be to learn how generally,
rameter of roughlya~0.7M, as we have summarized the in the parameter space of plausible black hole pairs, we can
results in relation to an astrophysical gravitational wave obexpect the qualitatively simple type interaction and radiation.
servation in Sec. VI. We expect such a characterization to the parameter space to
In the introductory remarks, we noted the importance ofrequire significant additional effort, but we can begin soon
having at least a provisional astrophysical coalescence studlgy comparatively studying corotational systems and explor-
not only for the results it provides to observers who needng the lowest order spin and unequal mass effects more
information for developing their observational strategies, butjuickly.
also for the benefit of theorists who wish to direct their effort
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