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Aspects of higher order gravity and holography
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Some thermodynamical properties of Lovelock gravity in the vanishing cosmological constant limit are
discussed in several space-time dimensions, the holographic principle being one of the ingredients of the
discussion. As it turns out, the area law and the brickwall method, though correct for the Einstein-Hilbert
theory, may fail to work in general.
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I. INTRODUCTION

Since the work of Bekenstein and Hawking@1,2# our
knowledge about black hole physics has improved quite c
siderably. Moreover, black hole physics is also the main g
towards understanding gravity in extreme conditions, and
a consequence, quantum gravity. This led ’t Hooft and S
skind@3,4# to generalize the area law relating entropy and
area of a black hole to any gravitational system by mean
the introduction of the holographic principle, which in th
past few years turned into a powerful means of understa
ing the possible ways towards the quantization of gravity

Under such a motivation, the holographic principle w
put forward, suggesting that microscopic degrees of freed
that build up the gravitational dynamics do not reside in
bulk space-time but on its boundary@3,4#. This principle is a
large conceptual change in our thinking about gravity. M
dacena’s conjecture on AdS conformal field theory~CFT!
correspondence@5# is the first example realizing such a prin
ciple. Subsequently, Witten@5# convincingly argued that the
entropy, energy, and temperature of CFT at high temp
tures can be identified with the entropy, mass, and Hawk
temperature of the AdS black hole@6#, which further sup-
ports the holographic principle. In cosmological settin
testing the holographic principle is somewhat subtle. Fisch
and Susskind~FS! @7# have shown that for flat and ope
Friedmann-Lemaiˆtre-Robertson-Walker~FLRW! universes
the area of the particle horizon should bound the entropy
the backward-looking light cone. However violation of th
FS bound was found for closed FLRW universes. Vario
different modifications of the FS version of the holograph
principle have been raised subsequently@8#. In addition to
the study of holography in homogeneous cosmologies,
tempts to generalize the holographic principle to a gen
realistic inhomogeneous cosmological setting were car
out in @9#.

It is now natural to ask which premises should be for
fully satisfied in order to accommodate the holographic pr
ciple. In particular, what kind of dynamics requires holog
phy as an outcome. This could provide a mechanism
selecting the correct gravity dynamics leading towards f
mulating quantum gravity.

The study of the thermodynamic properties of black ho
has been extended to higher order gravity theories@10#. We
study here however a special class of gravitational actions
higher order in the curvature, known as Lovelock grav
0556-2821/2002/65~12!/124011~6!/$20.00 65 1240
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@11#. Lovelock gravity is exceptional in the sense that
though containing higher powers of the curvature in t
Lagrange density, the resulting equations of motion cont
no more than second derivatives of the metric. It is als
covariant and ghost free theory as it happens in the cas
Einstein’s general relativity.

An important result that was found in the thermodynam
context is that the area law is a peculiarity of the Einste
Hilbert theory @12#. This fact motivates us to perform
deeper study of the thermodynamics of the black hole so
tions of such exotic theories. In@12# gravitational theories
are considered with the dimensiond and the degreek of the
curvature in the respective Lagrangian as parameters.
shall first briefly review such a formulation and later co
sider holography in this context. Further discussions c
cerning higher order gravity can be found in@13#.

II. HIGHER DIMENSIONAL GRAVITY

The Lanczos-Lovelock action is a polynomial of degr
@d/2# in the curvature, which can be expressed in the l
guage of forms as@12#

I G5kE (
m50

[d/2]

amL (m), ~1!

wheream are arbitrary constants, andL (m) is given by

L (m)5ea1•••ad
Ra1a2

•••Ra2m21a2mea2m11
•••ead. ~2!

Rab are the Riemann curvature two-forms given by

Rab5dvab1vc
avcb. ~3!

Herevab are the spin connection one-forms andea the viel-
bein. A wedge product between forms is understood throu
out.

The corresponding field equations can be obtained va
ing with respect toea andwab. In @12# the expression for the
coefficients am was found requiring the existence of
unique cosmological constant. In such a case these the
are described by the action

I k5kE (
p50

k

cp
kL (p), ~4!
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-
rie

a
ca

m

al
-

s
an
is

-

her

he
ad-

s
any

ns,

e-
e

he

ase

on

the
y of

ess

n
no

ELCIO ABDALLA AND L. ALEJANDRO CORREA-BORBONET PHYSICAL REVIEW D65 124011
which corresponds to Eq.~1! with the choice

apªcp
k5H l 2(p2k)

~d22p! S k

pD , p<k,

0, p.k,

~5!

for the parameters, where 1<k<@(d21)/2#. For a given
dimensiond, the coefficientscm

k give rise to a family of
inequivalent theories, labeled byk which represent the high
est power of curvature in the Lagrangian. This set of theo
possesses only two fundamental constants,k and l, related
respectively to the gravitational constantGk and the cosmo-
logical constantL through

k5
1

2~d22!!Vd22Gk
, ~6!

L52
~d21!~d22!

2l 2
. ~7!

Since we are interested in the black hole solutions that
asymptotically flat we consider the vanishing cosmologi
constant limit case. Whenl→` the only nonvanishing term
in Eq. ~4! is thekth one; therefore the action is obtained fro
Eq. ~1! with the choice of coefficients

apª c̃p
k5

1

~d22k!
dp

k , ~8!

in which case the action reads

Ĩ k5
k

~d22k!
E ea1•••ad

Ra1a2
•••Ra2k21a2kea2k11

•••ead.

~9!

Note that fork51 the Einstein action without cosmologic
constant is recovered, while fork52 we obtained the Gauss
Bonnet action

I 25
~d22!!k

~d24!
E ddxA2g~2RmnabRmnab14RmnRmn2R2!.

~10!

The existence of physical black hole solutions is used a
criterion to assess the validity of those theories. In the v
ishing cosmological constant limit the black hole solution
@12#

ds252X12S r h

r D gCdt21
dr2

12S r h

r D g 1r 2dVd22
2 , ~11!

where1 r h5(2GkM )1/(d22k21) is the radius of the event ho
rizon and

1The cased52k11 is excluded because the solution does
describe a black hole. See@12#.
12401
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g5
d22k21

k
. ~12!

The thermodynamic properties of the black holes in hig
order gravity have been studied in various works@10#. In the
case of the black hole solution~11! the Hawking temperature
is given by

T5
g

4pr h
. ~13!

Furthermore, using the partition function, obtained from t
Euclidean path integral, the entropy can be calculated le
ing to the result

Sk5
2pk

Gk

r h
d22k

d22k
~14!

that is an increasing function ofr h which is consistent with
the second law of thermodynamics.

III. BOUNDS IN HIGHER ORDER GRAVITY

Some time ago Bekenstein@14# proposed that there exist
a universal upper bound to the entropy-to-energy ratio of
system of total energyE and effective proper radiusR given
by the inequality

S/E<2pR. ~15!

This bound has been checked in many physical situatio
either for systems with maximal gravitational effects~i.e.,
strong gravity, such as black holes! or systems with negli-
gible self-gravity@15#.

In this section we want to consider how this bound b
haves with the Lovelock gravity. First we will obtain th
bound for the black hole solutions~11!. Using the entropy
relation ~14! and the horizon radius expression we get t
bound in an obvious way:

S/E5

2pk

Gk

r h
d22k

d22k

r h
d22k21

2Gk

5
4pkrh

d22k
5

2k

d22k
~S/E!Bek. ~16!

We thus obtain that the bound forS/E is 2k/(d22k) times
the bound found by Bekenstein for the Schwarzschild c
(d54,k51). A real upper bound ofS/E for these black hole
solutions is achieved for the maximal value of the functi
2k/(d22k), namely (d23)/3 for d odd and (d22)/2 for d
even. In the case of weak self-gravity systems finding
bound requires more steps. We consider a neutral bod
rest massm, and proper radiusR, that is dropped into the
Lovelock type black hole. We also demand that this proc
satisfies the generalized second law~GSL!.

Following Carter@16# and using the constants of motio
~we consider the metric form ds25gttdt21grr dr2

1r 2dVd22
2 )

t

1-2
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E52p t52gtt ṫ , ~17!

m5~2gabPaPb!1/2, ~18!

we get the equation of motion of the body on the backgrou
~11!

E5mA2gtt. ~19!

The energy atr 5r h1e is given by

E5mg1/2S e

r h
D 1/2

. ~20!

In order to find the change in the black hole entropy cau
by the assimilation of the body, one should evaluateE at the
point of capture, a proper distanceR outside the horizon

R5E
r h

r h1e(R) dr

A12S r h

r
D g

. ~21!

Integrating we get

R52Ar he

g
. ~22!

Therefore we can rewrite the energy as

E5
mgR

2r h
. ~23!

The assimilation of the body results in a changedM5E in
the black hole mass. Using the first law of thermodynam

dM5T dS ~24!

and the temperature relation~13! we get that the black hole
entropy increases as

~dS!bh52pmR. ~25!

However, we know from GSL that the relation (DS)T
[(dS)bh2Sbo>0 must be satisfied. This implies an upp
limit for the entropy of the body

Sbo<2pER. ~26!

Once more it is found that the bound~26! is universal for
negligible self-gravity systems because it depends only
the system parameters not on the black hole parameters

IV. BRICK WALL METHOD

Another interesting point is to check the method of bri
wall @17# for this kind of black hole. As an example, w
perform the calculations for black holes ind58 andk52.
Therefore, we have

ds252hdt21h21dr21r 2dV4
2 , ~27!
12401
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where theh(r ) function which describes the event horizon
given by

h512S r h

r D 3/2

. ~28!

In this background, we consider a minimally coupled sca
field which satisfies the Klein-Gordon equation@18#

1

A2g
]m~A2ggmn]nF!2m2F50. ~29!

The ’t Hooft method consists of introducing a brick wa
cutoff near the event horizon, such that the boundary con
tion

F50 for r<r h1e ~30!

is satisfied. In order to eliminate infrared divergencies,
other cutoff is introduced at a large distance from the ho
zon,L@r h , where we have

F50 for r>L. ~31!

In the spherically symmetric space, the scalar field can
decomposed as

F~ t,r ,u!5e2 iEtR~r !Y~u!, ~32!

whereu represents all the angular variables. Substituting t
expression back into Eq.~29! and using the eigenvalue equ
tion for the generalized spherical functionY(u),

n Y~u!52 l ~ l 15!Y~u!, ~33!

we obtain, after some manipulations, the radial equation

h21E2R~r !1
1

r 6
] r@r 6h] rR~r !#2

l ~ l 15!

r 2
R~r !2m2R~r !

50. ~34!

Using the WKB approximation, we substituteR(r )
5r(r )eiS(r ), the functionr(r ) being a slowly varying am-
plitude andS(r ) is a rapidly varying phase. To leading orde
only the contribution from the first derivatives ofS are im-
portant. Then from Eq.~34! we get for the radial wave num
ber K[] rS the expression

K5X12S r h

r D 3/2C21

3AE22X12S r h

r D 3/2CS l ~ l 15!

r 2
1m2D . ~35!

In such a case, the number of radial modesnr is given by

pnr5E
r h1e

L

drK~r ,l ,E!. ~36!
1-3
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In order to find the entropy of the system we calculate
free energy of a thermal bath of scalar particles with an
verse temperatureb, that is

e2bF5( e2bENt, ~37!

whereENt
is the total energy corresponding to the quatu

statet. Since the sum also includes the degeneracies of
quantum state, we have

e2bF5)
nt

1

12exp~2bE!
, ~38!

where (nt) represents the set of quantum numbers associ
with this problem. The product) take into account the con
tribution from all the modes. The factor (12e2bE)21 is due
to the fact that we are dealing with bosons where the ocu
tion number can take on the value of all positive integers
well as zero, so that

(
n50

`

e2bnE5
1

12exp~2bE!
. ~39!

From the previous equation we can write the free energy

F5
1

b ( log~12e2bE!

5
1

bE dlDlE dnr log~12e2bE!, ~40!

where

Dl5
~2l 15!~ l 14!!

5! l !
5

~2l 15!~ l 11!~ l 12!~ l 13!~ l 14!

5!
~41!

is the degeneracy of the spherical modes@19#.
Integrating by parts and using Eq.~36! we get

F52E dlDlE dE
1

exp~bE!21
nr

52
1

pE dlDlE dE
1

exp~bE!21Er h1e

L

dr

3X12S r h

r D 3/2C21

3AE22X12S r h

r D 3/2CS l ~ l 15!

r 2
1m2D . ~42!

The l integration can be perfomed explicitly and it is tak
only over those values for which the square roots exist,
12401
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E dlDlAE22S 12S r h

r D 3/2D S l ~ l 15!

r 2
1m2D

5
16r 6~E22hm2!7/2

5!105h3
1

8r 4~E22hm2!5/2

5!3h2

1
16r 2~E22hm2!3/2

5!h
. ~43!

We are interested in the leading contribution to the free
ergy near the horizon. Then we just take the first term fr
the previous equation, that is,

F52
16

5!105pE dE
1

exp~bE!21

3E
r h1e

L

drr 6h24@E22hm2#7/2. ~44!

Introducing the change of variabley5(r /r h)3/2 and substi-
tuting it back into Eq.~44! we find

F52
32r h

7

5!315pE dE
1

exp~bE!21

3E
(11 ē)3/2

L̄3/2

dyy11/3S 12
1

yD 24

3FE22S 12
1

yDm2G7/2

, ~45!

whereē5e/r h and L̄5L/r h .
Near the horizon, that is fory near 1, we find the expres

sion @20#

F52
32r h

7

5!315pE0

`

dE
E7

exp~bE!21

3E
(11 ē)3/2

L̄3/2

dy~y21!24. ~46!

We next use the formula

E
0

`

dE
E7

exp~bE!21
5

7!z~8!

b8
~47!

and integrate overy. The expression forF reduces to

F52
29z~8!

45p 33

r h
10

e3b8
, ~48!

allowing us to compute the entropy from

S5b2
]F

]b
5

212z~8!

45p 33

r h
10

e3b7
. ~49!

The inverse of the Hawking temperature is
1-4
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b5
8p

3
r h ~50!

and we can subsequently find the entropy, that is,

S5
34z~8!

45p829

r h
3

e3
. ~51!

This expression can be transformed making use of the inv
ant distance

E ds5E
r h

r h1e

dr
1

A12~r h /r !3/2
5A8r he

3
, ~52!

in terms of which we can rewrite the entropy as a function
invariants only,

S5
z~8!

15p8

r h
6

~r he!3
5

A

D (8)
(2)S E dsD 6 , ~53!

where A5 16
15 p3r h

6 is the horizon area andD (8)
(2)

524p11/z(8).
Therefore the entropy of the scalar field is proportiona

the area and diverges cubically with the cutoffe.
In Ref. @21# it was shown that the question of finiteness

the entropy can be solved by the renormalization of Ne
ton’s gravitational constant. Here that is not possible beca
the bare entropy~14! does not have the same power of t
horizon radius as the divergent term~53!.

Repeating the same procedure we can find the gen
expression for the free energy, for given values ofd and k,
which are

Fe
(d)52C(d)

(k)
r h

kd

e (d22)/2bd
, ~54!

wherekd5d1(d24)/2 and the constantsC(d)
(k) are given in

the Appendix.
From the previous equation the entropy can also be

tained also in an easy way,

S(d)5
dC(d)

(k)gd/22d22

~4p!d21

r d22

S E dsD d22 5
A

D (d)
(k) S E dsD d22 ,

~55!

where A5@2p (d21)/2/G„(d21)/2…#r d22 and D (d)
(k)

52d11p3/2(d21)/dC(d)
(k)gd/2G„(d21)/2….
12401
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This result implies that the brick wall method works ju
for linear gravity.

V. CONCLUSIONS

In this paper we have studied some properties of the bl
hole solutions in the Lovelock gravity in the zero cosmolo
cal constant limit, with the coefficients shown in Sec. II. O
of the main conclusions from this study is that we cann
infer the holographic bound from the generalized second
~GSL!. In other words, the area law is not respected des
the fact that the second law of thermodynamics is satisfi
Another interesting outcome is that the brick wall meth
works well only for the Einstein-Hilbert theory (k51). A
possible explanation is that this method, by constructi
computes the modes living in a shell and therefore at the
of the calculations always reflects this geometrical setup
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APPENDIX

Here we show the value of the constantsC(d)
(k) in the free

energy expression~54! for the different values of the dimen
sion d and the degree in curvaturek:

C(6)
(2)5

64z~6!

3 p
,

C(7)
(2)5

3z~7!

4
,

C(8)
(3)5

2433z~8!

5 p
,

C(9)
(2)5

5 z~9!

29/216
, C(9)

(3)5
5 z~9!

16
,

C(10)
(2) 5

211z~10!

7 p56
, C(10)

(3) 5
82z~10!

35p
, C(10)

(4) 5
216z~10!

35p
.
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