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Aspects of higher order gravity and holography
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Some thermodynamical properties of Lovelock gravity in the vanishing cosmological constant limit are
discussed in several space-time dimensions, the holographic principle being one of the ingredients of the
discussion. As it turns out, the area law and the brickwall method, though correct for the Einstein-Hilbert
theory, may fail to work in general.
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[. INTRODUCTION [11]. Lovelock gravity is exceptional in the sense that al-
though containing higher powers of the curvature in the
Since the work of Bekenstein and Hawkind,2] our  Lagrange density, the resulting equations of motion contain
knowledge about black hole physics has improved quite conro more than second derivatives of the metric. It is also a
siderably. Moreover, black hole physics is also the main gateovariant and ghost free theory as it happens in the case of
towards understanding gravity in extreme conditions, and akinstein’s general relativity.
a consequence, quantum gravity. This led 't Hooft and Sus- An important result that was found in the thermodynamic
skind[3,4] to generalize the area law relating entropy and thecontext is that the area law is a peculiarity of the Einstein-
area of a black hole to any gravitational system by means oflilbert theory [12]. This fact motivates us to perform a
the introduction of the holographic principle, which in the deeper study of the thermodynamics of the black hole solu-
past few years turned into a powerful means of understandions of such exotic theories. If12] gravitational theories
ing the possible ways towards the quantization of gravity. are considered with the dimensidrand the degrek of the
Under such a motivation, the holographic principle wascurvature in the respective Lagrangian as parameters. We
put forward, suggesting that microscopic degrees of freedorahall first briefly review such a formulation and later con-
that build up the gravitational dynamics do not reside in thesider holography in this context. Further discussions con-
bulk space-time but on its bounddi¥,4]. This principle isa cerning higher order gravity can be found[it8].
large conceptual change in our thinking about gravity. Mal-
dacena’s conjecture on AdS conformal field the¢GFT) Il. HIGHER DIMENSIONAL GRAVITY
correspondenckb] is the first example realizing such a prin-
ciple. Subsequently, Wittef5] convincingly argued that the ~ The Lanczos-Lovelock action is a polynomial of degree
entropy, energy, and temperature of CFT at high temperd-d/2] in the curvature, which can be expressed in the lan-
tures can be identified with the entropy, mass, and Hawkinguage of forms af12]
temperature of the AdS black ho|é], which further sup-
ports the holographic principle. In cosmological settings, ] -
testing the holographic principle is somewhat subtle. Fischler lg=x« = aml ™, @
and Susskinc(F§) [7] have shown that for flat and open

Friedmann-Lemaie-Robertson-Walker(FLRW) universes \yherea,, are arbitrary constants, ad™ is given by

the area of the particle horizon should bound the entropy on

the backward-looking light cone. However violation of the LM=¢, , Ru%...R%2n1%2melm:l...edd,  (2)
FS bound was found for closed FLRW universes. Various v
different modifications of the FS version of the holographic pan
principle have been raised subsequefy. In addition to

the study of holography in homogeneous cosmologies, at- R2P= 403+ 2w <P 3)
tempts to generalize the holographic principle to a generic e

realistic inhomogeneous cosmological setting were carriegi_mrew are the spin connection one-forms asftthe viel
ab - -

out in[9]. : . )
It is now natural to ask which premises should be force_beln. A wedge product between forms is understood through

fully satisfied in order to accommodate the holographic prin- The corresponding field equations can be obtained vary-

ciple. In particular, what kind of dynamics requires hologra-ing with respect t&® andw?®. In [12] the expression for the

phy as an outcome. This could provide a mechanism forcoefficients ay, was found requiring the existence of a

fnellj?;ti':g C’;anctﬁge;a%rigvny dynamics leading towards for'uni0|ue cosmological constant. In such a case these theories
The study of the thermodynamic properties of black holes"© described by the action
has been extended to higher order gravity thedri€s. We K
study here however a special class of gravitational actions, of = E ki (p)
. . . k=K Cp ’ (4)
higher order in the curvature, known as Lovelock gravity p=0

[d/2

are the Riemann curvature two-forms given by
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which corresponds to Eql) with the choice d—2k—1

y=— (12)
1200-K) [k
. o

ap=ck=1{ (d=2p)|p (5  The thermodynamic properties of the black holes in higher
0, p>k order gravity have been studied in various wdrk8]. In the
’ ' case of the black hole solutidfil) the Hawking temperature

for the parameters, where<lk<[(d—1)/2]. For a given IS given by
dimensiond, the c:oefficientszc:ﬁ1 give rise to a family of
inequivalent theories, Igbeled lkywhich represent the high-. T= Y _ (13)
est power of curvature in the Lagrangian. This set of theories 4y,
possesses only two fundamental constartgndl, related

respectively to the gravitational consta®f and the cosmo- Furthermore, using the partition function, obtained from the
logical constant\ through Euclidean path integral, the entropy can be calculated lead-

ing to the result

1

k= , ©®) 2k 1%
2(d—2)1Q4_»Gy — h
S G, d—2k (14
(d—1)(d—2)
=- T (7)  that is an increasing function of, which is consistent with

the second law of thermodynamics.

Since we are interested in the black hole solutions that are

asymptotically flat we consider the vanishing cosmological 1. BOUNDS IN HIGHER ORDER GRAVITY
constant limit case. Wheln—< the only nonvanishing term
in Eq. (4) is thekth one; therefore the action is obtained from
Eq. (1) with the choice of coefficients

Some time ago Bekenstefii4] proposed that there exists
a universal upper bound to the entropy-to-energy ratio of any
system of total energi and effective proper radiuR given
by the inequality
k - k

=02

SIE<27R. (15

in which case the action reads This bound has been checked in many physical situations,

either for systems with maximal gravitational effe¢i®.,

Ty=— f €. .. RM%2... RA%k-132kgl2%+1. . .gad, strong gravity, such as black holesr systems with negli-
(d—2k)J "% gible self-gravity[15].

9 In this section we want to consider how this bound be-
haves with the Lovelock gravity. First we will obtain the
bound for the black hole solutiond1). Using the entropy
relation (14) and the horizon radius expression we get the
bound in an obvious way:

Note that fork=1 the Einstein action without cosmological
constant is recovered, while f&e=2 we obtained the Gauss-
Bonnet action

d—2)! }
|2=% ddX\/—g(—RMVdBRMVHB+4R#VRMV— RZ). 27k rﬂ 2K

(10) SE= Gy d—2k_477kl’h_ 2k S/E 16

=T = g g (19

The existence of physical black hole solutions is used as a
criterion to assess the validity of those theories. In the van-

ishing cosmological constant limit the black hole solution isy.. s obtain that the bound f&/E is 2k/(d— 2K) times
[12] the bound found by Bekenstein for the Schwarzschild case

) 2 (d=4k=1). Areal upper bound o&/E for these black hole
d<2= _(1_(r_h) )dt2+d—r+r2dQ§ ,, (1) solutions is achieved for the maximal value of the function
r ( i -2

2G,

I'h 2k/(d—2k), namely @—3)/3 ford odd and @ —2)/2 ford
T even. In the case of weak self-gravity systems finding the
bound requires more steps. We consider a neutral body of
wheré r,=(2G, M) ¥(@~2k~1) is the radius of the event ho- rest massm, and proper radiug, that is dropped into the
rizon and Lovelock type black hole. We also demand that this process
satisfies the generalized second l&@B5SL).
Following Carter{16] and using the constants of motion
The cased=2k+1 is excluded because the solution does not(we consider the metric form ds’=g,dt*+g, dr?
describe a black hole. S¢&2]. +r2dQ3_,)

r
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E=—m=—g t (17) where theh(r) function which describes the event horizon is
! e given by
m=(—g,zPP#)*, (18 32
h=1- fn (28
we get the equation of motion of the body on the background r '
(11)
In this background, we consider a minimally coupled scalar
E=my— 0. (190  field which satisfies the Klein-Gordon equatifi8]
The energy at =r,+ € is given by 1
—3d,(y—99*79,®) —m?®=0. (29)
e\ 12 NE R
E=my"q —| . (20)
h

The 't Hooft method consists of introducing a brick wall

In order to find the change in the black hole entropy cause&utOff near the event horizon, such that the boundary condi-

by the assimilation of the body, one should evallatt the 10N
point of capture, a proper distanBeoutside the horizon

®=0 forr<r,+e (30
_ frh“(R) dr (p1) s satisfied. In order to eliminate infrared divergencies, an-
rh ' 2 other cutoff is introduced at a large distance from the hori-

1—(—) zon,L>r,, where we have
r
. =0 for r=L. (3D
Integrating we get
In the spherically symmetric space, the scalar field can be
Irhe
R=2 Ly (22) decomposed as

d(t,r,0)=e ER(r)Y(0), (32
Therefore we can rewrite the energy as
whered represents all the angular variables. Substituting this

E— myR 29) expression back into E¢29) and using the eigenvalue equa-
C2ry tion for the generalized spherical functidff 6),
The assimilation of the body results in a charfd =E in AY(0)=—1(1+5)Y(0), (33

the black hole mass. Using the first law of thermodynamics
we obtain, after some manipulations, the radial equation

dM=TdS (29
. B 1 I(1+5)
and the temperature relati¢fi3) we get that the black hole  h™*E?R(r)+ — 4,[r°ha,R(r)]————R(r) —m’R(r)
entropy increases as r r
(dS)pp=27mR (25) =0. (34)

However, we know from GSL that the relatomg);  Using _tShe WKB approximation, we substitutdR(r)
=(d9),n— Spe=0 must be satisfied. This implies an upper =p(r)e'*"), the functionp(r) being a slowly varying am-

limit for the entropy of the body plitude andS(r) is a rapidly varying phase. To leading order,
only the contribution from the first derivatives &fare im-
Spo=2mER. (26)  portant. Then from Eq34) we get for the radial wave num-

ber K=4,S the expression
Once more it is found that the bouri@6) is universal for

negligible self-gravity systems because it depends only on rp) ¥\t
the system parameters not on the black hole parameters. K=|1- T
IV. BRICK WALL METHOD 5 rm\¥A(1(0+5)
X \[E2—[1—-[= —+m?|. (39
Another interesting point is to check the method of brick r r

wall [17] for this kind of black hole. As an example, we . o

perform the calculations for black holes ih=8 andk=2.  In such a case, the number of radial modess given by

Therefore, we have .

wnrzf drK(r,l,E). (36)
r

hte

ds?=—hdt?+h"1dr2+r2dQ3?, (27
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In order to find the entropy of the system we calculate the )32\ [1(1+5)
free energy of a thermal bath of scalar particles with an in- f diD, \/E%— ( 1— (_h ) . +m2)
verse temperaturg, that is r r
16.6(E2_hm2)7/2 8r4(E2_hm2)5/2
e =2 e fEn, 37 T suom® | s
] . 16r 2( E2_ hm2)3/2
where En, is the total energy corresponding to the quatum Eih (43)
stater. Since the sum also includes the degeneracies of the '
quantum state, we have We are interested in the leading contribution to the free en-
ergy near the horizon. Then we just take the first term from
1 the previous equation, that is
7BF: - 1 I
€ ln_[ 1—exp(— BE)’ 39
’ 16
F="5n dE E)-1
where (1.) represents the set of quantum numbers associated 51105 exp(BE) -
with this problem. The produdi take into account the con- L
tribution from all the modes. The factor (le” #€) "1 is due X f drréh 4 E2—hm?]"2 (44)
rhte

to the fact that we are dealing with bosons where the ocupa-
tion number can take on the value of all positive integers a:

H H 3/2 H
well as zero, so that ‘?‘ntroducmg the change of variable=(r/r)*< and substi-

tuting it back into Eq.(44) we find

i e‘B”E=;- (39 F=— 32y dE
=0 1—exp(— BE) 513157 exp(BE)—1
. . . 3 1\ 4
From the previous equation we can write the free energy as % j d 1/3( 1— _)
(l+?)3/2 y
1 712
F= B > log(1-e #E) X E2—<1— ;) mz} , (45)
1 — _
= —f dID,f dn,log(1—e #E), (40)  wheree=¢€/r, andL=L/r,,.
B Near the horizon, that is for near 1, we find the expres-
sion[20]
where
3 " e E’
=(2I +5)(I+4)! _ 21+5)(1+1)(1+2)(1+3)(1+4) F=- 513157 )0 © —exp(BE)—1
: 5101 51
41 L2 _
“D xf L Advly=1)7% (46)
(1+¢€)

is the degeneracy of the spherical mogi&g).
Integrating by parts and using E(g6) we get We next use the formula

F E’ _T71L(8)
0

4B X BE)—1 88 “n

1
Fz—deDJdEWnr
1 1 L and integrate ovey. The expression foF reduces to
=——|dID| | dE——5=—+ dr
T exXp(BE)—1)r +e 10
2°¢(8) T

(2 T kg 9
r

312 allowing us to compute the entropy from
Ih
2_[q—|"
e o7

The | integration can be perfomed explicitly and it is taken
only over those values for which the square roots exist,  The inverse of the Hawking temperature is

I(Its) +m2). (42)

,IF  27%(8) 1y’
B 45733 63,37.

r

(49
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8 This result implies that the brick wall method works just
B=—3Tn (500 for linear gravity.

and we can subsequently find the entropy, that is, V. CONCLUSIONS

34¢(8) rﬁ In this paper we have studied some properties of the black
=—25 3 (51 hole solutions in the Lovelock gravity in the zero cosmologi-
45m°2" € cal constant limit, with the coefficients shown in Sec. Il. One

of the main conclusions from this study is that we cannot
Infer the holographic bound from the generalized second law
(GSL). In other words, the area law is not respected despite
the fact that the second law of thermodynamics is satisfied.
Another interesting outcome is that the brick wall method

This expression can be transformed making use of the invar

ant distance
works well only for the Einstein-Hilbert theorykE1). A

f d fthrfd 1 8rye (52)
s= r =1/ ,
Th V1= (r,/r)3? 3
ossible explanation is that this method, by construction,

in terms of which we can rewrite the entropy as a function Of(F:)omputes the modes living in a shell and therefore at the end
invariants only, of the calculations always reflects this geometrical setup.

8 rp A

T 1578 (ree)®
9 o [ as
16 2)
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In Ref.[21] it was shown that the question of finiteness of perfomed.
the entropy can be solved by the renormalization of New-
ton’s gravitational constant. Here that is not possible because
the bare entropyl4) does not have the same power of the
horizon radius as the divergent te(&g). Here we show the value of the constaﬁlg)) in the free

Repeating the same procedure we can find the generahergy expressio(b4) for the different values of the dimen-
expression for the free energy, for given valuesdaindk,  siond and the degree in curvatuke

APPENDIX

which are
s cg- 2%
@_ _cg__'h © 37
Fe'==-Cl) e(d—z)/zﬁd’ (54)
c@_ 3¢(7)
where kq=d+(d—4)/2 and the constanB{) are given in n="7z
the Appendix.
From the previous equation the entropy can also be ob- 243¢(8)
tained also in an easy way, cil= "
dC(E) ,yd/22d72 rd*Z A
S — (d) _
= =2 =2 o 509) o 59
(4m) (st DEE))(st) CO= S’ SO~ 16
(55)
11 2 16
where  A=[27"DAT(d-1)/2]r"" 2 and D) cl2) — 27¢(10) c®) _8%¢(109 @ 27410
=20+ 173201 ) 42T ((d— 1) /2). WO 756 0 TOOT 85y v MO 35
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