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Nonsingular big bounces and the evolution of linear fluctuations
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We consider the evolutions dinear fluctuations as the background Friedmann world model goes from
contracting to expanding phases through smooth and nonsingular bouncing phases. As long as gravity domi-
nates over the pressure gradient in the perturbation equation, the growing mode in the expanding phase is
characterized by a conserved amplitude; we call th{S mode. In spherical geometry with a pressureless
medium, we show that there exists a special gauge-invariant combirbtishich stays constant throughout
the evolution from the big bang to the big crunch, with the same value even after the bounce: it characterizes
the coefficient of theC mode. We show this result by using a bounce model where the pressure gradient term
is negligible during the bounce; this requires the additional presence of exotic matter. In such a bounce, even
in more general situations for the equation of state before and after the boun€entbée in the expanding
phase is affected only by th@ mode in the contracting phase; thus the growing mode in the contracting phase
decays away as the world model enters the expanding phase. When the background curvature plays a signifi-
cant role during the bounce, the pressure gradient term becomes important and we cannot €anedken
the expanding phase to the one before the bounce. In such situations, perturbations in a fluid bounce model
show exponential instability, whereas perturbations in a scalar field bounce model show oscillatory behavior.
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[. INTRODUCTION using three different bounce models. Section VI presents a
summary, implications of our work, and discussion of related

The collapsing and bouncing phases of the FLRWwork. We setc=1.
(Friedmann-Lemane-Robertson-Walkérworld models we
consider here are the possible ones in our past, before the big Il. COSMOLOGICAL PERTURBATIONS
bang. The same physics, however, could work in the possible
case in the future as well.

The reexpansion of a positive curvature Friedmann world d?= —a2(1+2a)d 72— 2a2(8 ,+BM)dy dx?
model which is destined to collapse, or the cyclic repetition ’

Our metric convention i§7,8]

of the process with such a bounce, was proposed as early as +a2[gg3ﬁ)(1+2¢)+2y,a|ﬁ+ ZCEZ]B)
the 19309 1-3]. Specific realizations of the bounce and the () 1 va 4o
conditions required to obtain the FLRW world model from a +2C,pldx* dx”. @

bounce were studied if4,5]. Singularity-free cosmologies .
are possible if we give up the strong energy condition, whichThe perturbed order variableg g, ¢, and y are scalar-type

is often possible with quantum correctio@d. Recently, the perturbat?ons; the_tra.nsverﬁ‘; S and ¢ are ve(i;c)o r_-type
world model of a big bang preceded by a collapsing phasgerturbat|0ns(rotat|0r)_, the tr_angverse trace-fre@,; is a
has attracted renewed attention in the context of brane codensor-type perturbatiofgravitational wave The energy-
mology [6]. momentum tensor is

In this paper we analyze the evolution of scalar-type cur-

vature(often called adiabatjdluctuations as the background ng —(u+6u),

world model goes through a smooth and nonsingular bounce 0 )

which connects the contracting and expanding phases. We To=(ptp)[— (K +v,’],

will assumehat the classical general relativity is valid as the _

correct gravity theory throughout the evolution, and also Tg=(p+op)Sz+mg, 2

consider scales where the linear approximation is valid. ) ) )

In Sec. Il we review the cosmological perturbation theoryWhere the trace-freer;; is the anisotropic stress.
needed for our analyzes in later sections. In Sec. Ill we The trace and trace-free parts of the extrinsic curvature
present the large-scale evolutions of various curvature pefequivalently, the expansiof and the sheasr,,, of the nor-
turbations near singularity. In Sec. IV we analyze the evolumal frame vector fieldand the intrinsic scalar curvaturé"
tion using exact solutions in a pressureless situation. In Seof the constant-time spacelike hypersurface gvee Egs.
V we show the evolution of perturbations through a bouncegC3), (C14) of [8] and Eqs(A6), (A7) of [9]],
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9=3H—-«, __ M a.l
= ZrGlatpial A oy "
. 1 -
Tap=X.als~ 3Iupbx+a¥ (i}, +a*ClL, o Hk ¥ o ®)
4nG(p+p) &2 wtp”
R(h)=—12[6K—4(A+3K)<p] €) k?—3K
a TQDX:47TG/.L5U, (9)

wheré .
where w=p/u and ci=p/u. ¢,=¢—(aH/k)v, ¢,=¢
—Hy, and §,=6+3(aH/k)(1+w)v are gauge invariant
combinations[7,8]; ¢, is the same ag in the comoving
gauge (=0), and ¢, is the same ag in the zero-shear
V=B +aCcl) (4) gauge §=0), etc.

We emphasize that results in this section are valid consid-
We haveH=ala, K is the normalized background three- €1ing generaK, A, and time-varying equation of sta ).
space curvature, and an overdot indicates a time derivativ¥® the case of a minimally coupled scalar field, we have an
based ont,dt=a d. Thus, x, x, and ¢ are the perturbed additional nonvzanlshlng entropic perturbati¢the isotropic
expansion, the scalar-type shear, and the perturbed thre8€s$ €=(1—Ccs)dwu, . Its effect can be covered by chang-
space scalar curvature of the normal hypersurface, respetd ¢ in Eq.(8) to ci=1-3(1—c2)K/k? [13]; as Eqs(7)-

tively. W andC}) give the vector- and tensor-type contri- 9 arel a completlg set forha si_ngl:a comrlJon?_ntl,dthis prescrip-
bUTONS f6 the Shear tensor. tion always applies in the single scalar field case. It is

cl), v, andv " are gauge invarianty, ¢, x, «, v, du, convenient to have
and Sp are spatially gauge invariant but depend on the tem- 5 K2

. . A
x=a(p+ay), «k=3(Ha—¢)— 22X

poral gauge condition, i.e., they depend on the spatial hyper- o=t =——=P+—F———0¢,. (10
surface(time slicing choice[9]. Setting any one of these ’ 3(1+w) a® 127G(p+p) ¥
temporally gauge dependent variables equal to zero COM&e can show in general3]

sponds to a fundamental gauge condition; except for the syn-

chronous gauged=0) each of the other conditions fixes the k?2—3K

temporal gauge degree of freedom completely, and any vari- = <P5/ [14' 127G(pt p)a2)’ (11)

able in such a gauge condition uniquely corresponds to a

gauge-invariant combinatigf the variable and the variable _ N L27A2 .

used in the gauge conditipfi7, 8] \[/g]le\zl\rlchhkavéo+ H«/(3H —k</a%). In the notation of Bardeen
The equations describing the evolution of a spatially ho-

mogeneous and isotropic FLRW world model are S,=€m: =Dy, @, =bn, ¢ =¢n. (12

87G K A . We h — i —P i .
2_ KA _ e haveps={¢ in [7], and ¢,=R in [14]; ¢, was also
H 3 M@z * 3 H SH(utp). ® originally introduced by Lukash as 3q in [15]. From Egs.
(7),(8) we can derive equations in closed form
The A term can also be considered as an ideal fluid with

pa=—py=A/(87G); in such cases, we have=pp, B+ (c2K2/a%—X/%) D=0, (13
+ur andp=p,+ps- In the case of a minimally coupled
; 142 _ 152 ; a— —
scalar flelq ®) we ha-\/ellf—g(ﬁ _+V andp=3¢“—V, Wlt-h ¢X+(c§k2/a2—y/y)<px=0, (14)
the equation of motionp+3H¢+V ,=0. A can be in-
cluded asv,=A/(87G). where
We consider a general scalar-type perturbation. It is con- o o
venient to introduc¢10-12 O=x®, ¢, =(ay/H)e,,
2 —
D=, A ® y=H/\(u+p)a=(alcyx ™. (15

~ T AnG(u+p) X
Equations using the conformal time were presenteld &).
The scalar-type perturbation of a fluid with vanishing aniso-  In the large-scale limitmeaning the2k?/a? term is neg-
tropic stress in Einstein’s gravity is described [iy2] ligible; thus gravity dominates over pressukge have the
general solution11-13

2
Yndices ofor s (E.p andH,z, laten are based on the spacetime K ft 2
af \=a ap d(k,t)=C(k)—d(k dt/xs, 16
metric g,p. All the other Greek indices are based gff) . (k,t)=C(k) = d( )4776 (16
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H (t H c 215251 Cl) =
¢X(k,t)=4wGC(k)gf dury?+d(k) —, (17) Copt(k/a=2/2)Cop=0, (22

whereCl)=zC{!), andz=a®2 The equation foC!}} satis-

whereC andd are two spatially dependent integration con- 32

stants: we call these thé mode and thed mode, respec- fies the same equation ab m(U)Eq. (1.3) with xoca™
tively. Solutions fors, , ¢, and ¢, follow from Egs.(9)— 1 1US, on H;e general scale fdr,” and in the large-scale
(11). Notice that thed mode of ® is higher order in the limitfor C,; we have the general solutions
large-scale expansion compared with theode ofep, . In a
pressureless medium, the above solutions are exact, and we WOk, t)=d (k)i 23)
have® = C [10]. In fact, for such a medium, instead of Eq. « @ a2’
(13), Eq. (8) gives®=0.

In order to use the large-scale solutions in E4$),(17) it
is important to check whether we can ignore ifk?/ a2
term during the evolution. The large-scale condition implies
that (pressure/gravityg1 where As for the C mode of @, the amplitude of thec,; mode

simply stays constant.

MK =Cop(K) = dug(k) f da (24

pressure c2k?/a? cZk?/a? 16
gravityw XIx y/y ' (18 Ill. LARGE-SCALE EVOLUTION OF CURVATURE

PERTURBATIONS

In a positive curvaturéspherical model the wave number
varies ask= \/(nz—l)K wheren=1,2,3,...; n=1,2 are
known to be unphysicdll7,9]. In a negative curvaturéhy-
perbolig model,k> [|K[ and 0<k< \|K] correspond to the
subcurvature and the supercurvature scales, respectiv
[18]. In a zero-curvaturéflat) model we havek=0.

The following two variables are continuous under a su
den jump of equation of stafd9]:

The general large-scale solutions for scalar- and tensor-
type perturbation, and the general solutions for vector-type
perturbations are presented in E4$6),(17),(23),(24). We
ﬁ:all the solutions withC andc,; the C modes, and the so-

“dtions with d d,, andd,; the d modes. The vector-type
d_perturbation has na&C mode. In the expanding phase
modes are relatively growing solutions wheréasodes de-
cay, and are thus transient in time. In a contracting phase,
e, (0or &), @ (19) however, the opposite is the case, with thenodes often
X v diverging as the background model approaches the singular-
These joining variables work for genefé] A, andp(u) in ity.
the general scale. This applies for perfect fluids, and for In this section we assume a nétat background. With a
cases involving scalar fields; sgE9]. For the backgroundy ~ constantw we havecZ=w, and a«|t|3*") for —1<w
anda should be continuous at the transition. Consider two=1. In & medlurp W't}"W>_%' as we approach the singu-
phases | and Il with different equations of stateandw,,  larity k/aH([t|*3W/(3W) becomes negligible for any
making a transition at;. Assuming a flat background, in the 9iven scaling withk; thus the large-scale conditions are well
large-scale limit, by matchinge, and ¢, in Egs. satisfied. In such a case, during the dynamical time scale of

(16),(17),(10) we can see that to the leading order in thethe background evolution “light can travel only a small frac-

large-scale expansion we have tion of a wavelength'9]; thus the scale becomes the super-
horizon scale; Barded®] calledk/aH~ 1 an “effective par-
C,=C,, ticle horizon.” In general, we considew=0: “a single-
component treatment of the matter is inappropriate when the
ta(u+ ta(u+ net pressure is negativg].
dy=d+47GC J %dt’ —J %dt‘ } In this case, from Eqs(16),(17),(24) we have theC
: 1 (20) modes remaining constant in time:
Thus, to the leading order in the large-scale expansioiCthe
mode of® remains the same, whereas thenode of(pX is 2The effective particle horizon is the same as the “Hubble sphere”
affected by the transition and also the previous history of thétudied in[21], and closely resembles the Surface” introduced in
d and C modes[19]. Applications were made if20]. [22]. Global concepts like particle and event horizons are not suit-

Ignoring the anisotropic stressrf) and assumind =0, able to describe the local dynamically reachable ranges. Studies in
g 9 P E) & [21,22] show that the Hubble sphere and thesurface are more

the equations for the rotation and the gravitational wave be="" : . )
comel[8] suitable to describe concepts such as “scales becomming superho-

rizon size during the inflation era.” Similarly, these are suitable to
describe the same physics during the contracting phasewvith
—1/3. In this situation we can show that to an observer in the
K2 contracting phase an object separated by a given comoving distance
S ) (v) appears more blueshifted as time goes on, i.e., the object is effec-
azqf”‘ 167G tpivg”, 2Y) tively receding from the observer.

[a*(u+p)wl’] =0,
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3+ 3w © compared with thg ones in the other gauge conditions. The
%fmC, ¢, =C, Chp=Cup. (25  strong divergence in the zero-shear gauge is known to be due
to the strong curvature of the hypersurfadtemporal gauge
gondition [9]. ¢ is set to zero in the uniform curvature

Thus, in an expanding medium the perturbation evolutions i
P g P gauge. For theC modes we have Eq25 and ¢,.= ¢,

the super effective particle horizon are kinemagmd are  9249€ _C
characterized by the conserved quantities; [2dg TPT P

Meanwhile, thed modes behave as B. Extrinsic curvature

@, x|t (BF3WIE3W), Although we have no shear in the background model, the
perturbed scalar-type shear is still a gauge dependent quan-
@, ,Clihor|t|~(A7w/rw), tity. The dimensionless measure of the shear varigthie
shear divided by the background expansion)racomes
\I,gi)o(|t|—4/3(l+w), (26) A
o (K K g Law

for —1<w<1. Forw=1, the above solution is valid fas H WHX' a_Hq’a ' ﬁcaﬁ (29

(=|t|*3 and ¥ (=|t| 29, whereas we have,,C!) R

o n|t| instead. for the three perturbation typest=+\o,z0*#/2. The d

In the case of constamt, a complete set of solutions for a modes of all types of perturbation show thametemporal
scalar-type perturbation in six different fundamental gaugebehavior
conditions is presented in Tables 2—5[@6]. Although the -
solutions in[25] are presented in the context of the expand- Eoc|t|—(1—w)/(l+w)
ing phase, by changing the time variables to their absolute H '
values with the singularity dt|=0, the same solutions ap-
ply in the contracting phase as well.

(30

for —1<w=1; thus with no logarithmic divergences for the
w=1 case. The results for vector- and tensor-type perturba-
tions follow from Egs.(23),(24), and that for a scalar-type
perturbation follows from Tables 2 and 4 [#5]; thus, the

¢ is a dimensionless measure of thietrinsic) curvature  solutions apply to the gauge conditions considefed set
perturbation of the hypersurfag¢eemporal gauge condition y=0 in the zero-shear gaugeWe can check that th€
we choose. Thus, its value depends on the chosen hypersyfipge contributions ta/H are all regular near the singular-
face (temporal gauge conditionFrom Eq.(A6) of [9] we ity for —1<w=1. The behavior ofx/H, a dimensionless
notice thatC{), gives a dimensionless contribution to the measure of the perturbed trace part of the extrinsic curvature,

tensor-type in_trinsic curvature p_erturbation, and the vectorygries widely depending on the gauge conditions; see Tables
type perturbation does not contribute to the curvature perturs and 4 of[25).

bation; see also EqC14) in [8]. Table 2 of{25] shows that
for the d modé C. Weyl curvature

A. Intrinsic curvature

P rParPsrPo ,Cg};oc|t|f(1fw)/(l+w), Durrer has informed us of another useful measure of the

spacetime fluctuation which behaves regularlyvior 1, the
Weyl curvatureC,,.q. The Weyl curvaturgthe conformal
tensoj vanishes in the FLRW background geometry, and is
naturally gauge invariant. The Weyl tensor can be covari-
antly decomposed into the electrie,,, and magneticH,,,

(PXO(|t|—(5+3W)/(3+3W), (27)

for —1<w<1. Forw=1 we have, from Table 4 of[25],

- arts[26]. Using Eq.(C9) in [8] [see also Eq92.26),(2.2
@xr@ar @50y CopInltl, gt~ 28 gf [27[]] ]vve car(iJ SF?OEN tzlat el sz 20,220
Thus, even fow=1,¢ diverges in all gauge conditions con- E K2 K . 1.
sidered.¢ in the zero-shear gauge diverges more strongly =~ | S22z e a—Hz\IfEf), ﬁcg)ﬁ , (31)

L _ o _ whereE= \/E“BEaﬁIZ andR is the scalar curvature~H?).
This kinematic nature of the evolution is reflected in the COn-ThUS’ thaj modes Of a” types Of perturba“on behave exactly
served behavior of linear perturbations in the expanding phasr,lke 5/H (oc|t|*(1*W)’(1+W)) and thus behave regularly for

[9,7). What is conserved is the amplitude of tRemode of the “1 H tribut v to th ¢ dt i
curvature perturbation in diverse gauge conditions. In the expandy _ ++ Mab contrioutes only to the vector- and tensor-type

; Lok turbations, and we can also show thatdimodes behave
ing phase the situation is also well represented by the separat@Rxer 8 ! (23 (131
Friedmann picture of the perturbed Friedmann world model pio-2S VH* H ,4/2/R=|t| (23)(1=3w)/(1+w) - and thus behave

neered(to our knowledge by Harrison in[23]. more regularly fow=1. This regular behavior of the Weyl
“4Although ¢,,, the ¢ in the synchronous gauger&0), is not ~ curvature at the singularity fav=1 was used to argue the
gauge invariant, we are considering the physical solutions. validity of perturbation theory in such a situatifsee around
SOne other special case occurs fo=0 where we have nal Eqg. (5.20 of [28]; however, see our discussion below Eq.
modes fore, and ¢, ; see Table 5 of25]. (68) herd.
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IV. EXACT EVOLUTION IN A PRESSURELESS CASE
ForK>0, A =0, andp=0, Eq.(5) gives a cycloid 29,2

a=cmp(l—cosyp), t=cy(n—siny), (32
wherec,,=(47G/3)na® anddp=dt/a. K is normalized to
unity; thus 0= n=<2.

For p=0, Eqgs.(9),(14) give

[a2H2(5,/H) ] /(a®H)=8,+ 2H S, + 47G s, =0,
(33

which coincides with the density perturbation equation in the

synchronous gaudd 7] or in the Newtonian conteX80]; &,

is the energy density perturbation in the comoving gauge

[31]. AssumingA =0, the two independergxactsolutions
for ¢,=6,/ain Eq. (17) are[32]

Hft dt 37 siny 5+cosy
Cri— [
Ma) a®H® (1-cosp)® (1—cosy)?

=¢. ()3,
o= ez = 0dl) (@)
In asymptotes we have
¢+ (7)=3I5 @a(n)=8In" (<1),
¢+ (m/(18m)=(8/7°)=—¢u(n) (n=<1), (35)
where n=2— . We have
¢+ (2m—n)=¢(n)+18mey(n)=¢ (1), (36)

where ¢_ shows the time inverted evolution af, [33].
Equations(16),(17),(9)—(11) give the exact solutions

d=C, (37)

_ c d= % 38
Py=¢+CT g ~ k=3 1-cosy’ (38)
@s=C+(k?/9)(1—cosp)e,, (39)

and similarly fore,; d=d/c?, is dimensionless. Fop<1
we haveqongc'and ¢s=¢,=C for the C modes. From

Eqg. (8) we haved =0 exactly for a pressureless fluid con-

sidering generaK and A. ® has only theC mode (it is
identified asC), and nod mode. The evolution o, and®
is shown in Fig. 1. Notice that both, and¢q diverge as the
model approaches the big crunch singularity.

PHYSICAL REVIEW D65 124010
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FIG. 1. Evolutions ofe, (solid line), ¢_ (dashed ling ¢4
(dotted ling, and® (horizontal line.

matching¢, and ¢, directly at »,; after all, we assume a
nonsingular bounce near; (see later Using Egs.
(39),(39),(35) we can show that
c,=C,, d,=d—18xC,. (40)
This implies that the value of thé variable is conserved
even through the bounce. In terms of the general solutions
we notice the following. Using E(q.36) we can decompose
¢, in EQ. (38) into ¢ and ¢4. Near the bounce, although
@' =2 is negligible compared withp', =18x(8/| /%) and
ey=—8l75|° we can show that it is this constant mode of
o' that feeds theC mode after the bounce. Thus, in the
collapsing phase it is appropriate to write £88) as
¢,=¢-C+py(d—187C). (41)
Therefore, if such a bounce is allowed, we have shown that
¢' feeds the growing mode' in the expanding phase. The
apparent growinddiverging solutions¢', or ¢} feed only
the ¢} or ¢ modes, which are the decaying modes in the
expanding phase. The time scale of a cycle is encodeg, in
of Eq. (32) and can affect only the decaying solution in the
expanding phase. The value ®f which isC, is not affected
by the different duration of each cycle.
Notice, however, that if we strictly consider the singular
and cuspy bounce ab, implied by Eq.(32) we havea
discontinuous, which forbids us from relying on the match-

Let us consider a scenario where the big crunch is sucing conditions. We have assumed that such a singular bounce
ceeded by an expanding phase: thus we have two phasescan be regarded as a limiting case of a smooth and nonsin-

<, (phase ) and =7, (phase I} with »,=0. Fore, we
can take two of three forms of solutiong ( ,¢_ ,¢q) as the

general solutions in either phase. Althougtcould be dis-

gular bounce; a concrete example will be considered in the
next section. We note that the curvature term has a negligible
role near the big crunch/bang. We have also assumed the

continuous at the transition reaching the singularity let us tnjinearity of the fluctuations involved.
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V. THROUGH THE BOUNCE 50_' — T T L A A
Assume two expanding phases | and Il with equations of ‘
statew, andw, . In the near flat situation we have
a(t)=ap(t—t;) 230, (42
where i=1,Il. The coefficients should be determined by 5
matchinga anda at the transitions,. In phases | and Il the -
large-scale solutions in Eq6L6),(17),(10) give for —1<w; 8
<1 2
©
@
p-cries ML 4 43
—CtK g e an® - | |
e By 44 { I
Px= 5+ 3w; a’’ (44) | I
s 1 1 Y PR I e B A
—C+K2Z _— -10 5 0 5 10
o= CH g Tmw R 43 t, ¢ t,
whereC andd in the phase | should be regarded@sand FIG. 2. Evolution of the scale factgisolid line). The dotted

d,, and similarly for the phase Il. Far;=1, thed mode of lines indicate the extensions of the collapsing, bouncing, and ex-
@ (and part ofps) contains a In(—t;) term instead of (1 panding phases without matching. The bouncing phase lasts for
—Wi)fl. Equations(6),(11) give ¢, and¢, . As long as we |tg] <5 with A=1 andK=1. As an example, we take,=0 and
havea anda continuous through the transition from phase |1~ 3.
to phase Il at; we can use our joining variables in E4.9). ) ) )
Examples are the radiation-matter transition and thé&rowing modes; whereas, &s-t, in the contracting phase,
inflation-radiation transition. Using Eqg€44),(45), to the  although theC modes remain constant, themodes diverge
leading order in the large-scale expansion we have (for —1<w,<1) as
= 1
Ci=Cy, Dok, o8 p o p o8 —goc | t— 1| TAT WL+ W)
v * a’H
6(w;—wy) ﬂC
(5+3w))(5+3w,) H; "

d||:d|+ (46)

H
0 EOC|t_t||—(5+3W,)/(3+3w,)_ (49)

This is consistent with the result derived in Ed7) of [19].

Similar results hold for two contracting phases as well. For w;=0, the d mode of ® vanishes exactly, and the

In the case of a transition from a contracting to an ex-10d€ Of¢, vanishes in a near flat situation. Rer=1, thed
_ . _ _ modes of®, ¢,, ¢5, and ¢, show Ift—t| divergence, in-
panding phase, howevea,can be discontinuous at the tran- gieaq A complete set of solutions in several different gauge

sition. In order to .handle this case properly, we need an inggngitions is presented in Tables 2—5[@6]: although the
termediate bouncing phagewhich smoothly connects the gq)ytions were derived in the expanding phase, the same so-

two phases | and Il. We consider the collapsiilgand ex-  |ytions remain valid in the collapsing phase with the time
panding (Il) phases smoothly connected by a nonsmgularremaced by its absolute value.

bouncing phaseR). Assuming that the curvature is not im- 5 simple example of the bounce is the case Wtk 0
portant in phases | and Il near the bounce, and assuming 5.4 positiveA [34];

andw, for the two phases, we have

t)= V3K/A cosh{yAT3t). 50
(0 =aiol — (1) 23w, @7 st COSIVA/SY 50
S Evolution of the scale factor is plotted in Fig. 2. Either for a
ay (1) =ayo(t—t;) 31, (48)  vanishing fluid with pureA or for a A-type fluid, we have

) pn+p=0. If we haveu+p=0 strictly, the basic set of per-
The coefficients should be determined by matchiranda  turbation equations becomes trivial and we cannot determine
at the transitions, andt,. the perturbations properly, i.e., we do not have meaningful
In the expanding phase Il, thd modes of®, ¢, perturbations.
©s, ¢,, ando, in Egs.(43)—(45) decay away whereas the  In the following we consider the perturbation evolution in
C modes remain constant and have the role of the relativelyhree other examples of the bouncing phase. The first two
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models rely on the fluid and field, which give effectively a are violated both th€ andd modes will be dominated by
w<—3 equation of state during the bounce. To have ahe exponentially growing mode in the small-scale limit, and
bounce in such models the positive curvature should play aventually we cannot trace tif@andd modes in the expand-
significant role during the bounce; thus these are not suitabli|mg phase to the ones in the contracting phase.

for the bouncing model assumed in Sec. IV. In addition, as

the background curvature becomes important, all the pertur- B. Bounce with a massive scalar field

bation scales go through the small-scale regime where the Wi id b . del based . —
pressure gradient term becomes important. The third model € consider a bouncing model based on a massive mini
relies on the presence of exotic matter which gives a negativg]ally coupled scalar field with a positive curvatjg]. The

contribution to the total energy density. In this case we hav ﬁsultrs uPritOtiEg(?f) :t]l Sneca. Iy; rler\r,wvagqgl)all_lt_dhforba f'kelf W'r:g
a bounce without resorting to positive curvature; thus the € prescription mentioned belo - | n€é backgrou

scales remain large during the bounce and the model suits yguations are presented in E@) and below it with u,

requirements for the bounce assumed in Sec. IV. =3(¢*+m?¢?), etc. Equatior(14) gives
2 2,2 2 2
. . . m . m m kc—8K
A. Bounce with aw=—2/3 fluid @, t| TH+2 _d) @\t Zs +2H .¢+ 2 @y
For an ideal fluid withw=const,K>0, andA =0, from Mbi ¢

the Friedmann equation we havei=0 at a(t,) =0 (55)
=(2¢o/K) VA3 where co=(47G/3)na3*W. We can ’

show thata(t, ) is a maximum fow>—3 and a minimum  where M%,=1/(87G). Once we havep, , the rest of the
for w<—1%. As a simple example which gives a bounce Weperturbationsd, ¢,, ¢4, and ¢, follow from Egs. (6),(7),
consider thew=—% case[35]. Although it is uncertain (10),(11). We have

whether it is appropriate to consider an ideal fluid for the

w<0 case, we will take the ideal fluid assumptitsee a 5 k? 2m?¢ K K2
cautionary remark in Sec. VII dB]). We will find a funda- Cagz™ g 23 (56)
mentally different result in a more realistim the sense that ¢
we have a concrete action and equation of motioase 5 - _—
based on a scalar fiel[dee Sec. V B Equation(5) gives the X: 2m°¢ K L m2— § K n 7¢p°+25m°¢
exact solution Yy He @ 4 a2 24M2,
a=(Cyl2)(t2+K/c). (52) & &
+2m?=| m?=+4H |. (57)
We havecZ=—% and ¢
X g 3t*+(KichH? y 3 We can show that near the bouncing era the pressure term in

SRR Ay §= 2—;2(t2—3K/c§). (52)  Eg. (56) dominates over the gravity term in EG7); this is
true even fork?=0. Thus, near the bounce the large-scale
The pressure terms become important compared with thgondition is violated, and with the positive sign in front of
gravity near the bounce. Thus, in order to follow the evolu-thek? term in Eq.(56) we can show that perturbations show
tion we need to handle perturbations based on the full equ&scillatory behavior while on the small scale; see Fig. 4.

tions. Equation(14) gives Although the first term in the right-hand sidRHS) of Eq.
(56) diverges near the bounce, the same term appears in the
4t 8 k®-3K gravity part in Eq.(57) as well. Due to the positive sign in

PxT v K/ngox— 3_(:3 (t2+ K/Cg)_z ¢x=0. (33 the second term we expect oscillatory instability as the pres-
sure term dominates the gravity part. Near the bounce we

Ignoring thek® term, the exact solutions in Eqél6),(17)  haveH=0; thusu,~const, and

n integrat nd fgr, we hav
an be iniegrated, and fag, we have a=3MZK/ ., costi 4/ (3M2))t]. (59)
1t 6(K/cpt?—3(K/cj)? 4at/co In this model, during the bounce all scales reach the small
Px— >3 (t?+Kl/cg)? + (t?+K/c5)? scale where we cannot apply our large-scale solutions. In
(54) Fig. 4 we used an arbitrary initial condition at the minimum
of the bounce {(=0), and as the scale becomes large we
Since thek? terms become negligible away from the bouncehave only theC mode because thé¢mode in the expanding
we can use these solutions as the proper initial conditions foshase is decayin(and thus transieptand yields to the rela-
the C andd modes. A typical evolution is presented in Fig. 3. tively growing C mode within a few expansion times. Thus,
As we havec§= — £ we anticipate an exponential growth as in the previous example based onwe — 2 fluid the C
and/or decay of the perturbation while the pressure gradierandd modes during the collapsing phase are mixed up while
term becomes important. In Fig. 3 both tBeandd modes in  on the small scale, and we cannot trace@@ndd modes in
the contracting phase become thelatively growing C  the expanding phase to the ones in the collapsing phase. One
mode in the expanding phase. As the large-scale conditionmportant difference of the scalar field compared with the
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FIG. 4. Evolution ofe, (long-dashed ling ® (solid ling), ¢,
(dotted ling, and ¢, (dot-short-dashed lineWe omit ¢ s which has
a larger amplitude and approach®son the large scale. We take
n=10. t=0 corresponds to the minimum of the bounce, and the

FIG. 3. Evolutions ofd for the C mode(solid line) andd mode
(long-dashed linginitial conditions, and ofe, for the C mode
(dotted ling andd mode (dot-short-dashed linanitial conditions.
We taken=10. The pressure terms become importaujt|at 0.4 for pressure dominates over the gravity utitil1. We can show thab,
¢, and af|t|<0.2 for®. Notice that theC mode of® changes sign ¢y, ¢, ande, stay constant on the large scale, whergass stil
twice, whereas the mode changes once. The sign changes in theygjysting its value even in the large scale as the background equa-
expanding phase occur at the same time. tion of state effectively changes from,=—1 while ¢ is rolling to
w,=0 as¢ starts oscillating, which occurs for11.
w=—3% fluid is that, while fluctuation of the fluid shows
exponential instability due to the negatieg term, the field  dust and radiation with a negative sign in the radiation com-
fluctuation shows oscillatory behavigd7]. This difference  ponent:
comes from the presence of a nonvanishing entropic pertur-
bation terme in the case of a scalar field; see below E3). HZ—% K 59

In the later expanding phase dsstarts oscillating near 3 (Hm= 1) a®’ 9
the potential minimum the background model enters an era

with effectivelyw,=0 (dush as the equation of state. A5 whereu,>a > anduyxa . Certainly, this is not a realistic
starts oscillating we cannot solve E&5) directly. Instead, model for the bounce because we need to assume that there
we can handle the situation analytically using proper timeis no conventional radiation component present. Later we
averaging over the coherent oscillations of the backgroungill show, however, that this toy model captures the basic
and the perturbed fielB8]. In [39] it was shown that, while  physics of more realistic situations.

the background enters the dust era, the perturbations also For a positive curvaturé&>0, Eq. (59 gives the exact
behave like cold dark matter even in the large scale limit. solution

ith u= . — 1
C. Bounce model with u=p,— px a= Kcm[l_ 1—2(Cx/Cr2n)K cos{\/Rn)], (60)

The positively curved FLRW world model with only ra-
diation and matter does not allow bouncing after the big . o ]
crunch. If the physical state near the big crunch allows thévherecx=(47G/3)uxa”; cx/cy, is dimensionless. We have
presence of additional mattXrwith its effective energy den- normalized the time axis so thathas minimum values at
sity behaving as- uy(t) = — uyoa 3""¥) andwy>1, we  #=2nw/\K with n an integer number. For vanishing
can have a smooth and nonsingular bouncing phase; this ®mponentcy=0, we recover the solution in E¢32). With
the generalized case of the “desperate” example mentionethe X component the model shows cyclic behavior. The basic
in [3], p. 368. Thus, for the bounce only, we do not evenpicture of cyclic bounces remains valid in more realistic situ-
need positive curvature in the background world model.  ations withwy> 3.

As a toy model allowing such a smooth and nonsingular The K term becomes important neay,,,, and neam@;,
transition with the relevant scale satisfying the large scaleve haveuy=pu,,. The curvature term is negligible near the
condition, we consider the case with pressureless matter argbunce, thus allowing the existence of the large scale where
exotic matter withwy=3. Thus, we consider a model with we can ignore the Laplacian term coming from the pressure
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gradient. If we do not need cyclic behavior we can actuallyis different in the case of multiple numbers of scalar fields: in
take a flat model wittK =0. Assuming a negligibl& term  such a case, effectively, the RHS of E§3) has ak?/a®

we have factor instead ok*/a*; thus the isocurvature modes are less
decoupled from the adiabatic ogee[13,42).]

Let usassumean adiabatic initial condition, thus setting
S=0 at an early era in the contracting phase, for simplicity.
More precisely, we are assumilgg< ¢, in the initial epoch,
which is an exact solution of Eq59) for K=0. which is natural because it means we are assuming no sig-

It is not entirely clear how to handle the perturbation of nificant fluctuations in theX component on the early matter
the exotic componen which is introduced to have a dominated era. Since the curvature mode does not source the
bounce in the background without resorting to positive curdisocurvature mode in the large scale, the isocurvature mode
vature. If such an exotic state of matter can be modeled byill remain small. In such a case the RHS of E2) van-
using a field or modifying terms in gravity theofgoming ishes, and the curvature equations in the single component
from quantum corrections or higher dimensions, for ex-situation, Eqg.(14), remain valid without any change. Thus,
amplg, we need the correct form of the equation of motionfor scales satisfying the large scale limit we have the same
or the modified action to handle the perturbations properlysolutions as for Eq$16),(17) remaining valid. The solutions
In the present situation, lacking a concrete model for thebecome
exotic matter, we will take a phenomenological approach
based on a fluid approximation. 64 Cx

Let usassumeexcept for its negative contribution to the ~ ®=C+dk?= 57
density, that the fluidX behaves as an ordinary ideal fluid C
with an equation of statey . In such a case, near the bounce

c
a= ?m( 72+ 2cy/c2), (62)

4cy 4ci\ 2

4 2 2
tos x| nPd,
73T T 3eh ) TR

we need to consider a two-component system withnd X. 2 5ch 3c? et
[The other possibility is to derive solutions in tme and Px=| |1t Z_an 2+ EZ” =+ EE” C+ E)’o:’ld
X-dominated eras separately and connect them by using the

matching conditions. As th¥ fluid cannot dominate the total A

fluid (we have u,=puy with the equality holding at the X1t e, (65

bounce such a situation is forbiddeh.

We use the conventianal decor_nposmon of thg system intg-, ¢, the contribution from the lower bound of integration
the adiabatic(curvature perturbation, characterized by, X . . ~
(or @), and the relativeoften called the isocurvaturger- of th_e C mode is absorbzed into the mode. In the matter
turbation defined asS=S,,=6,/(1+w,)—8,/(1+w,)  dominated erqz|>2cx/cy,, we have
[40]. The basic equations in the two-component system be-

. 64 c 3
come[see Eqgs(23),(35),(46),(57) in [13]] P=C_K2— o= C;( 5, ch=§C+87/*58. 66)
mtp H? a '+ 2k2
_— J— C —
H [a(u+p) |\ H? sa?¥x Near the big bang/crunch, the solution fpy coincides with
the one for a pressureless medium considered in(&8).
4 Ge— —4nG (r1tP1)(m2tpP2), (23S, For cx/c2—0, ® also coincides with the one known in the
wtp ORI pressureless medium. Near the bouneg<2cy/c?, we
(62 have
k2 4 06 c8
S+H(2-3¢))S+c 5 S o= C+k2__3 7°d, ¢, =C+ C—’;nd, (67)
X X

2
_Kk (K~3K) _cfy—Cl (63)  Which are regular and finite.

= 3 ’ .
a 47G(u+p) X Since the present bounce model allows the scales to stay
y in the large-scale limit during the transition, it can be con-
wherec(i)zpi /u; and sidered as a concrete model of the smooth and nonsingular

bounce assumed in Sec. IV. Indeed, the curvature term is

Coay( 1+ P1) +Copy( ot Pa) negligible near the bounce as was the case near the big

2
€= u+p ’ 64) crunch/bang in Sec. IV. In they/c2—0 limit, Eq. (65) re-
duces to Eq(66), which also coincides with the known so-
In our case L—m and 2=X; thus, w;= ( =0,w,= c(z) lution considered in Sec. IV.

=1, u+p=pum—3ux, etc. In the large scale limit the cur- Clearly, we can also make a more realistic model with
vature mode can be sourced by the isocurvature/see Eq.  radiation, matter, ank where wy>3. We note that Egs.
(62)], whereas the isocurvature mode decouples from thé62),(63) remain valid for any two-component system of
curvature mode in generpdl] [see Eq(63)]. [The situation  matter perturbations. Even in such a case Xhéuid can
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cause a smooth and nonsingular bounce and the curvatuses can be made which show that @enode in the expand-
term has a negligible role near the bounce. Thus, essentialipg phase is affected only by the mode in the contracting
the same conclusior(g.g., theC mode feeding th&€ mode phase; thus the growing mode in the contracting phase de-
remain valid. We have considered a simple toy model onlycays away as the world model enters the expanding phase.
because it allows analytic handling of the background and Our analyses are based on two assumpti¢inghe con-

the perturbations, thus showing the situation explicitly. tracting phase is converted into the expanding one by a
smooth and nonsingular bounce, afid linear perturbation
theory holds during the evolution. The large-scale evolution
can be characterized by the conservationdof We have

In Sec. IV we showed that the perturbation in a positivelyshown that theC mode of®, which is the proper growing
curved FLRW model filled with a pressureless matter is demode in the expanding phase, is simply conserved during the
scribed by the conservation df. Assuming a transition of a €volution and through the bounces. The results are true as
big crunch followed by a big bang in such a model, by usinglong as the two assumptions made above are valid, and, in
the known matching conditions we showed tamaintains a_d.d|t|on, if thg large ;cale condition is met during the tran-
the same value even after the transition. Using the matchingition as considered in Sec. V C. . .
conditions we also showed that the diverging solution in the N Sec. Ill we showed that the three dimensionless mea-
contracting phase is matched to the decaying solution in théures, the intrinsic curvaturess (and C(1)), the trace-free
subsequent expanding phase, whereas the other solutiguart of the extrinsic curvatures(H), and the Weyl curvature
which stays constant during the contracting phase, i$E/R), divergeat singularity for—1<w<1. Thus, for—1
matched into the same constant solution in the expanding:w< 1, the spacetime perturbations become singular as the
phase. That constant mode is characterizedbbyhe other  background approaches the singularity. An ambiguity re-
solution of® which decays in the expanding phase is highermains for thew=1 case because, althoughand C% di-

order ink? compared with the one fop, and vanishes for verge logarithmicallyg/H andE/R remain finite. These re-
vanishing background pressure. _ sults apply to all perturbation types and for all gauge
_In order to confirm these results based on matching at @ynditions we have considered. The behaviors of the other
singular bounce, in Sec. V we considered three different nonya japles(the perturbed lapse functiom, the dimensionless
singular and smooth bounce models. For the bounce modef§easyre of the perturbed expansidit, the relative density
based on a fluidSec. V A and a massive scalar fielec. o rhations, etc) depend more strongly on the gauge con-
VB) in a positively curved background, the role of back- yitions (see Tables 2 and 4 ¢©5]). Thus, these variables
ground curvature is important to make the bounce. In SUCR o rently have less physical significance in characterizing
cases, all the perturbation scales come inside the sound hg5e spacetime fluctuations compared with the other three
rizon near the bounce, and the large-scale conditions are Vigqe g res, whose behaviors are gauge independent at least in
lated. As the pressure gradient terms become important, Pefie pool of gauge conditions we have investigated. Do the

turbations in the fluid model show exponential instability, ;pove results imply diverging spacetime fluctuations for
whereas the ones in the massive field model show oscillatory 1 -\, <1 and regular ones fav=17? In Table 4 of 25]

behavior. For both situations the two independent perturbay,e fing that in no gauge condition dail the perturbations
tion modes in the large-scale limit during the collapsmgremain finite for—1<w=<1

phase get mixed up with the two independent modes on the The authors of43] argued that as the model goes through

small scale during the bouncing phase. Thus, we cannot tracg ginqylar bounce the perturbation becomes nonlinear. We
the two independent solution€(andd modes in the ex-  paye shown thatif the fluctuations survive the bounce as
panding phase to the ones in the contracting phase. linear ones, the diverging mode in the contracting phase
In Sec. VB we considered a bouncing model based on,1q he matched to the decaying one in the expanding
exotic matter with a negative contribution to the total energy, hase. Lyth if[44] made the following simple and powerful

density. In such a case the positive curvature is not importa rgument. As we have under the gauge transformation that
during the bounce. Thus, we could have the relevant scales; . .. .. ._
x8=x%+ &2 with ¢'=ag”)

remaining in the large-scale limit, and could apply the gen-
eral large-scale solutions. In this case, however, we have to ~ _

handle the perturbation of the exotic matter in addition to the e=¢—HE, 6=56+3H(1+w)¢, (68)
ordinary one simultaneously. By considering the adiabatic

initial condition we have shown that the same curvature perif ¢ diverges whiles remains finite, or vice versa, in any
turbation equation known in the single-component situatiorsingle gauge conditiofthis is the case for-1<w<1; see
remains valid; thus the known large-scale solutions are valiEqgs. (9),(49) for ¢, and é,] no temporal gauge transforma-

as well throughout the bounce. Therefore, this third type otion ¢' can be found that makes bothand § finite. There-
bounce model can be regarded as an example of the smoditre, for —1<w=1 we find that thel mode perturbations of
and nonsingular bouncing assumed in Sec. IV. As an analytithe Friedmann world model beconséngular near the big
cally manageable concrete example, we considered a simptgunch in one form or another i@l gauge conditions.

toy model with dust and exotic matter with a radiationlike = We note that®, which becomesp, for K=0, simply
equation of state. Even in more general situations for thetays constant in a pressureless medium; thus its magnitude
equations of state before and after the bounce, similar analyzannot characterize the breakdown of linearity of the per-

VI. DISCUSSION
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turbation. As we have from Eqgs(6),(37),(38) ¢,=C
+(1/3)(1—cosn)¢, where we seK=1, ¢, itself could di-
verge near the singularity. From Ed1), near the big crunch
in the pressureless medium we haye=¢s where ¢,

PHYSICAL REVIEW D65 124010

In a recently proposed ekpyrotic scenario it was argued
that the final scalar-type perturbation is scale invarjdai.
In [46] it was shown that the scale-invariant spectrum gen-
erated in the zero-shear gauge during the collapsing phase

given in Eg.(39), has a diverging part. Thus, near the big should be identified as thdmode; thus after the bounce we

crunch the diverging modes behave as

e S b - b (69

whereas® has no diverging mode in the pressureless cas
For the situation with general, see Eq.(49). Bardeen has
argued that the behavior ap, “overstates the physical
strength of the singularity;” see below E¢p.12) in [9].

At the singular big crunch, we certainly hademodes of

have a different power spectrufd?7]. Our results in this
paper confirm that, while the large scale condition is met
during the(smooth and nonsingulatransition, thed mode

dn the contracting phase does not affect {peoperly grow-

ing) C mode in the expanding phase. The background curva-
ture is flat in the ekpyrotic scenario and the scale remains
large during the bounce. However, since the bounce of the
ekpyrotic scenario goes through a singularity the author of

many perturbation variables unambiguously becoming singu44] has argued that one cannot rely on linear analyses as the
lar for —1<w=1 (see Tables 2—4 if25]). Do large ampli- model approaches the singularity. Thus, either the final spec-
tudes of some dimensionless measures of perturbations intum is not scale invarianfwhich is the case if the linear

ply the breakdown of linear theory? Due to the gaugeperturbation survivesor the issue should be handled in the
dependence of relativistic perturbations, the laftg@ger future in the string theory context with a concrete mechanism
than unity, say amplitudes of some gauge-invariant pertur-for the bounce.
bation variables do not guarantee the breakdown of linear

theory. However, what Lyth44] has shown is that in the

collapsing phase we could encounter situations where the

amplitudes of perturbation variables become large in one
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