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Nonsingular big bounces and the evolution of linear fluctuations
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We consider the evolutions oflinear fluctuations as the background Friedmann world model goes from
contracting to expanding phases through smooth and nonsingular bouncing phases. As long as gravity domi-
nates over the pressure gradient in the perturbation equation, the growing mode in the expanding phase is
characterized by a conserved amplitude; we call this aC mode. In spherical geometry with a pressureless
medium, we show that there exists a special gauge-invariant combinationF which stays constant throughout
the evolution from the big bang to the big crunch, with the same value even after the bounce: it characterizes
the coefficient of theC mode. We show this result by using a bounce model where the pressure gradient term
is negligible during the bounce; this requires the additional presence of exotic matter. In such a bounce, even
in more general situations for the equation of state before and after the bounce, theC mode in the expanding
phase is affected only by theC mode in the contracting phase; thus the growing mode in the contracting phase
decays away as the world model enters the expanding phase. When the background curvature plays a signifi-
cant role during the bounce, the pressure gradient term becomes important and we cannot trace theC mode in
the expanding phase to the one before the bounce. In such situations, perturbations in a fluid bounce model
show exponential instability, whereas perturbations in a scalar field bounce model show oscillatory behavior.

DOI: 10.1103/PhysRevD.65.124010 PACS number~s!: 04.20.Dw, 98.80.Cq, 98.80.Hw
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I. INTRODUCTION

The collapsing and bouncing phases of the FLR
~Friedmann-Lemaıˆtre-Robertson-Walker! world models we
consider here are the possible ones in our past, before th
bang. The same physics, however, could work in the poss
case in the future as well.

The reexpansion of a positive curvature Friedmann wo
model which is destined to collapse, or the cyclic repetit
of the process with such a bounce, was proposed as ear
the 1930s@1–3#. Specific realizations of the bounce and t
conditions required to obtain the FLRW world model from
bounce were studied in@4,5#. Singularity-free cosmologies
are possible if we give up the strong energy condition, wh
is often possible with quantum corrections@4#. Recently, the
world model of a big bang preceded by a collapsing ph
has attracted renewed attention in the context of brane
mology @6#.

In this paper we analyze the evolution of scalar-type c
vature~often called adiabatic! fluctuations as the backgroun
world model goes through a smooth and nonsingular bou
which connects the contracting and expanding phases.
will assumethat the classical general relativity is valid as t
correct gravity theory throughout the evolution, and a
consider scales where the linear approximation is valid.

In Sec. II we review the cosmological perturbation theo
needed for our analyzes in later sections. In Sec. III
present the large-scale evolutions of various curvature
turbations near singularity. In Sec. IV we analyze the evo
tion using exact solutions in a pressureless situation. In S
V we show the evolution of perturbations through a boun
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using three different bounce models. Section VI presen
summary, implications of our work, and discussion of rela
work. We setc[1.

II. COSMOLOGICAL PERTURBATIONS

Our metric convention is@7,8#

ds252a2~112a!dh222a2~b ,a1Ba
(v)!dh dxa

1a2@gab
(3)~112w!12g ,aub12C(aub)

(v)

12Cab
(t) #dxa dxb. ~1!

The perturbed order variablesa, b, w, andg are scalar-type
perturbations; the transverseBa

(v) and Ca
(v) are vector-type

perturbations~rotation!; the transverse trace-freeCab
(t) is a

tensor-type perturbation~gravitational wave!. The energy-
momentum tensor is

T0
0[2~m̄1dm!,

Ta
0[~m1p!@2~1/k!v ,a1va

(v)#,

Tb
a[~ p̄1dp!db

a1pb
a , ~2!

where the trace-freepb
a is the anisotropic stress.

The trace and trace-free parts of the extrinsic curvat
~equivalently, the expansionû and the shearŝab of the nor-
mal frame vector field! and the intrinsic scalar curvatureR(h)

of the constant-time spacelike hypersurface are@see Eqs.
~C3!, ~C14! of @8# and Eqs.~A6!, ~A7! of @9##,
©2002 The American Physical Society10-1
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û53H2k,

ŝab5x ,aub2
1

3
gab

(3)Dx1aC (aub)
(v) 1a2Ċab

(t) ,

R(h)5
1

a2 @6K24~D13K !w#, ~3!

where1

x[a~b1aġ !, k[3~Ha2ẇ !2
D

a2 x,

Ca
(v)[Ba

(v)1aĊa
(v) . ~4!

We haveH[ȧ/a, K is the normalized background thre
space curvature, and an overdot indicates a time deriva
based ont,dt[a dh. Thus, k, x, and w are the perturbed
expansion, the scalar-type shear, and the perturbed th
space scalar curvature of the normal hypersurface, res
tively. Ca

(v) andĊab
(t) give the vector- and tensor-type contr

butions to the shear tensor.
Cab

(t) , Ca
(v) , andva

(v) are gauge invariant.a, w, x, k, v, dm,
anddp are spatially gauge invariant but depend on the te
poral gauge condition, i.e., they depend on the spatial hy
surface~time slicing! choice @9#. Setting any one of thes
temporally gauge dependent variables equal to zero co
sponds to a fundamental gauge condition; except for the
chronous gauge (a[0) each of the other conditions fixes th
temporal gauge degree of freedom completely, and any v
able in such a gauge condition uniquely corresponds t
gauge-invariant combination~of the variable and the variabl
used in the gauge condition! @7,8#.

The equations describing the evolution of a spatially h
mogeneous and isotropic FLRW world model are

H25
8pG

3
m2

K

a2 1
L

3
, ṁ523H~m1p!. ~5!

The L term can also be considered as an ideal fluid w
mL52pL5L/(8pG); in such cases, we havem5mm
1mL and p5pm1pL . In the case of a minimally couple
scalar field (f) we havem5 1

2 ḟ21V andp5 1
2 ḟ22V, with

the equation of motionf̈13Hḟ1V,f50. L can be in-
cluded asVL5L/(8pG).

We consider a general scalar-type perturbation. It is c
venient to introduce@10–12#

F[wv2
K/a2

4pG~m1p!
wx . ~6!

The scalar-type perturbation of a fluid with vanishing anis
tropic stress in Einstein’s gravity is described by@12#

1Indices ofŝab (Eab andHab , later! are based on the spacetim
metric gab . All the other Greek indices are based ongab

(3) .
12401
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F5
H2

4pG~m1p!aS a

H
wxD •, ~7!

Ḟ52
Hcs

2

4pG~m1p!

k2

a2 wx2
H

m1p
e, ~8!

k223K

a2 wx54pGmdv , ~9!

where w[p/m and cs
2[ ṗ/ṁ. wv[w2(aH/k)v, wx[w

2Hx, and dv[d13(aH/k)(11w)v are gauge invarian
combinations@7,8#; wv is the same asw in the comoving
gauge (v[0), andwx is the same asw in the zero-shear
gauge (x[0), etc.

We emphasize that results in this section are valid con
ering generalK, L, and time-varying equation of statep(m).
In the case of a minimally coupled scalar field, we have
additional nonvanishing entropic perturbation~the isotropic
stress! e5(12cs

2)dmv . Its effect can be covered by chang
ing cs

2 in Eq. ~8! to cA
2[123(12cs

2)K/k2 @13#; as Eqs.~7!–
~9! are a complete set for a single component, this presc
tion always applies in the single scalar field case. It
convenient to have

wd[w1
d

3~11w!
5F1

k2

a2

1

12pG~m1p!
wx . ~10!

We can show in general@13#

wk5wd Y F11
k223K

12pG~m1p!a2G , ~11!

wherewk[w1Hk/(3Ḣ2k2/a2). In the notation of Bardeen
@9# we have

dv5em , wx5FH , wv5fm , wk5fh . ~12!

We havewd5z in @7#, and wv5R in @14#; wv was also
originally introduced by Lukash as2 1

3 q in @15#. From Eqs.
~7!,~8! we can derive equations in closed form

F̈̄1~cs
2k2/a22 ẍ/x!F̄50, ~13!

ẅ̄x1~cs
2k2/a22 ÿ/y!w̄x50, ~14!

where

F̄[xF, w̄x[~ay/H !wx ,

y[H/A~m1p!a[~a/cs!x
21. ~15!

Equations using the conformal time were presented in@16#.
In the large-scale limit~meaning thecs

2k2/a2 term is neg-
ligible; thus gravity dominates over pressure! we have the
general solutions@11–13#

F~k,t !5C~k!2d~k!
k2

4pGE t

dt/x2, ~16!
0-2
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wx~k,t !54pGC~k!
H

a E
t

dt/y21d~k!
H

a
, ~17!

whereC andd are two spatially dependent integration co
stants: we call these theC mode and thed mode, respec-
tively. Solutions fordv , wd , andwk follow from Eqs.~9!–
~11!. Notice that thed mode of F is higher order in the
large-scale expansion compared with thed mode ofwx . In a
pressureless medium, the above solutions are exact, an
haveF5C @10#. In fact, for such a medium, instead of E

~13!, Eq. ~8! givesḞ50.
In order to use the large-scale solutions in Eqs.~16!,~17! it

is important to check whether we can ignore thecs
2k2/a2

term during the evolution. The large-scale condition impl
that (pressure/gravity)!1 where

pressure

gravity
;

cs
2k2/a2

ẍ/x
,
cs

2k2/a2

ÿ/y
. ~18!

In a positive curvature~spherical! model the wave numbe
varies ask5A(n221)K where n51,2,3,. . . ; n51,2 are
known to be unphysical@17,9#. In a negative curvature~hy-
perbolic! model,k.AuKu and 0<k,AuKu correspond to the
subcurvature and the supercurvature scales, respect
@18#. In a zero-curvature~flat! model we havek>0.

The following two variables are continuous under a su
den jump of equation of state@19#:

wx ~or dv!, wd . ~19!

These joining variables work for generalK, L, andp(m) in
the general scale. This applies for perfect fluids, and
cases involving scalar fields; see@19#. For the background,a
and ȧ should be continuous at the transition. Consider t
phases I and II with different equations of statewI andwII ,
making a transition att1. Assuming a flat background, in th
large-scale limit, by matchingwx and wd in Eqs.
~16!,~17!,~10! we can see that to the leading order in t
large-scale expansion we have

CII5CI ,

dII5dI14pGCIF E t1a~m1p!

H2 dtU
I

2E t1a~m1p!

H2 dtU
II
G .

~20!

Thus, to the leading order in the large-scale expansion thC
mode ofF remains the same, whereas thed mode ofwx is
affected by the transition and also the previous history of
d andC modes@19#. Applications were made in@20#.

Ignoring the anisotropic stress (pb
a) and assumingK50,

the equations for the rotation and the gravitational wave
come@8#

@a4~m1p!va
(v)#•50,

k2

a2 Ca
(v)516pG~m1p!va

(v) , ~21!
12401
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C̈̄ab
(t) 1~k2/a22 z̈/z!C̄ab

(t) 50, ~22!

whereC̄ab
(t) [zCab

(t) andz[a3/2. The equation forCab
(t) satis-

fies the same equation asF in Eq. ~13! with x}a3/2.
Thus, on the general scale forCa

(v) and in the large-scale
limit for Cab

(t) we have the general solutions

Ca
(v)~k,t !5da~k!

1

a2 , ~23!

Cab
(t) ~k,t !5cab~k!2dab~k!E t

dt/a3. ~24!

As for the C mode of F, the amplitude of thecab mode
simply stays constant.

III. LARGE-SCALE EVOLUTION OF CURVATURE
PERTURBATIONS

The general large-scale solutions for scalar- and ten
type perturbation, and the general solutions for vector-ty
perturbations are presented in Eqs.~16!,~17!,~23!,~24!. We
call the solutions withC andcab the C modes, and the so
lutions with d, da , and dab the d modes. The vector-type
perturbation has noC mode. In the expanding phaseC
modes are relatively growing solutions whereasd modes de-
cay, and are thus transient in time. In a contracting pha
however, the opposite is the case, with thed modes often
diverging as the background model approaches the singu
ity.

In this section we assume a nearflat background. With a
constantw we havecs

25w, and a}utu2/3(11w) for 21,w
<1. In a medium withw.2 1

3 , as we approach the singu
larity k/aH(}utu(113w)/(313w)) becomes negligible for any
given scaling withk; thus the large-scale conditions are we
satisfied. In such a case, during the dynamical time scal
the background evolution ‘‘light can travel only a small fra
tion of a wavelength’’@9#; thus the scale becomes the sup
horizon scale; Bardeen@9# calledk/aH;1 an ‘‘effective par-
ticle horizon.’’2 In general, we considerw>0: ‘‘a single-
component treatment of the matter is inappropriate when
net pressure is negative’’@9#.

In this case, from Eqs.~16!,~17!,~24! we have theC
modes remaining constant in time:

2The effective particle horizon is the same as the ‘‘Hubble sphe
studied in@21#, and closely resembles the ‘‘z surface’’ introduced in
@22#. Global concepts like particle and event horizons are not s
able to describe the local dynamically reachable ranges. Studie
@21,22# show that the Hubble sphere and thez surface are more
suitable to describe concepts such as ‘‘scales becomming sup
rizon size during the inflation era.’’ Similarly, these are suitable
describe the same physics during the contracting phase withw.
21/3. In this situation we can show that to an observer in
contracting phase an object separated by a given comoving dist
appears more blueshifted as time goes on, i.e., the object is e
tively receding from the observer.
0-3
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wx5
313w

513w
C, wv5C, Cab

(t) 5cab . ~25!

Thus, in an expanding medium the perturbation evolution
the super effective particle horizon are kinematic3 and are
characterized by the conserved quantities; see@24#.

Meanwhile, thed modes behave as

wx}utu2(513w)/(313w),

wv ,Cab
(t) }utu2(12w)/(11w),

Ca
(v)}utu24/3(11w), ~26!

for 21,w,1. Forw51, the above solution is valid forwx

(}utu24/3) and Ca
(v) (}utu22/3), whereas we havewv ,Cab

(t)

} lnutu instead.
In the case of constantw, a complete set of solutions for

scalar-type perturbation in six different fundamental gau
conditions is presented in Tables 2–5 of@25#. Although the
solutions in@25# are presented in the context of the expan
ing phase, by changing the time variables to their abso
values with the singularity atutu50, the same solutions ap
ply in the contracting phase as well.

A. Intrinsic curvature

w is a dimensionless measure of the~intrinsic! curvature
perturbation of the hypersurface~temporal gauge condition!
we choose. Thus, its value depends on the chosen hype
face ~temporal gauge condition!. From Eq.~A6! of @9# we
notice thatCab

(t) gives a dimensionless contribution to th
tensor-type intrinsic curvature perturbation, and the vec
type perturbation does not contribute to the curvature per
bation; see also Eq.~C14! in @8#. Table 2 of@25# shows that
for the d mode4

wk ,wa ,wd ,wv ,Cab
(t) }utu2(12w)/(11w),

wx}utu2(513w)/(313w), ~27!

for 21,w,1. Forw51 we have,5 from Table 4 of@25#,

wk ,wa ,wd ,wv ,Cab
(t) } lnutu, wx}utu24/3. ~28!

Thus, even forw51,w diverges in all gauge conditions con
sidered.w in the zero-shear gauge diverges more stron

3This kinematic nature of the evolution is reflected in the co
served behavior of linear perturbations in the expanding ph
@9,7#. What is conserved is the amplitude of theC mode of the
curvature perturbation in diverse gauge conditions. In the expa
ing phase the situation is also well represented by the sepa
Friedmann picture of the perturbed Friedmann world model p
neered~to our knowledge! by Harrison in@23#.

4Although wa , the w in the synchronous gauge (a[0), is not
gauge invariant, we are considering the physical solutions.

5One other special case occurs forw50 where we have nod
modes forwv andwa ; see Table 5 of@25#.
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compared with the ones in the other gauge conditions.
strong divergence in the zero-shear gauge is known to be
to the strong curvature of the hypersurface~temporal gauge
condition! @9#. w is set to zero in the uniform curvatur
gauge. For theC modes we have Eq.~25! and wk5wa
5wd5wv5C.

B. Extrinsic curvature

Although we have no shear in the background model,
perturbed scalar-type shear is still a gauge dependent q
tity. The dimensionless measure of the shear variable~the
shear divided by the background expansion rate! becomes

ŝ

H
;S k2

a2H2 Hx,
k

aH
Ca

(v) ,
1

H
Ċab

(t) D ~29!

for the three perturbation types;ŝ[Aŝabŝab/2. The d
modes of all types of perturbation show thesametemporal
behavior

ŝ

H
}utu2(12w)/(11w), ~30!

for 21,w<1; thus with no logarithmic divergences for th
w51 case. The results for vector- and tensor-type pertur
tions follow from Eqs.~23!,~24!, and that for a scalar-type
perturbation follows from Tables 2 and 4 of@25#; thus, the
solutions apply to the gauge conditions considered~we set
x50 in the zero-shear gauge!. We can check that theC
mode contributions toŝ/H are all regular near the singula
ity for 21,w<1. The behavior ofk/H, a dimensionless
measure of the perturbed trace part of the extrinsic curvat
varies widely depending on the gauge conditions; see Ta
2 and 4 of@25#.

C. Weyl curvature

Durrer has informed us of another useful measure of
spacetime fluctuation which behaves regularly forw51, the
Weyl curvatureCabcd. The Weyl curvature~the conformal
tensor! vanishes in the FLRW background geometry, and
naturally gauge invariant. The Weyl tensor can be cova
antly decomposed into the electricEab and magneticHab
parts@26#. Using Eq.~C9! in @8# @see also Eqs.~2.26!,~2.27!
of @27##, we can show that

E

R
;S k2

a2H2 wx ,
k

aH2Ċa
(v) ,

1

H
Ċab

(t) D , ~31!

whereE[AEabEab/2 andR is the scalar curvature (;H2).
Thus, thed modes of all types of perturbation behave exac
like ŝ/H (}utu2(12w)/(11w)), and thus behave regularly fo
w51. Hab contributes only to the vector- and tensor-ty
perturbations, and we can also show that thed modes behave
as AHabHab/2/R}utu2(2/3)(123w)/(11w), and thus behave
more regularly forw51. This regular behavior of the Wey
curvature at the singularity forw51 was used to argue th
validity of perturbation theory in such a situation@see around
Eq. ~5.20! of @28#; however, see our discussion below E
~68! here#.
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IV. EXACT EVOLUTION IN A PRESSURELESS CASE

For K.0, L50, andp50, Eq.~5! gives a cycloid@29,2#

a5cm~12cosh!, t5cm~h2sinh!, ~32!

wherecm[(4pG/3)ma3 anddh[dt/a. K is normalized to
unity; thus 0<h<2p.

For p50, Eqs.~9!,~14! give

@a2H2~dv /H !•#•/~a2H !5 d̈v12H ḋv14pGmdv50,
~33!

which coincides with the density perturbation equation in
synchronous gauge@17# or in the Newtonian context@30#; dv
is the energy density perturbation in the comoving gau
@31#. AssumingL50, the two independentexactsolutions
for wx}dv /a in Eq. ~17! are @32#

cm

H

a E
t dt

a2H252
3h sinh

~12cosh!3
1

51cosh

~12cosh!2

[w1~h!/3,

cm
2 H

a
5

sinh

~12cosh!3
[wd~h!. ~34!

In asymptotes we have

w1~h!.3/5, wd~h!.8/h5 ~h!1!,

w1~h!/~18p!.~8/h̄5!.2wd~h! ~h̄!1!, ~35!

whereh̄[2p2h. We have

w1~2p2h!5w1~h!118pwd~h![w2~h!, ~36!

where w2 shows the time inverted evolution ofw1 @33#.
Equations~16!,~17!,~9!–~11! give the exact solutions

F5C, ~37!

wx5w1C1wdd̃5
3

k223

dv

12cosh
, ~38!

wd5C1~k2/9!~12cosh!wx , ~39!

and similarly forwk ; d̃[d/cm
2 is dimensionless. Forh!1

we havewx5 3
5 C and wd5wk5C for the C modes. From

Eq. ~8! we haveḞ50 exactly for a pressureless fluid co
sidering generalK and L. F has only theC mode ~it is
identified asC), and nod mode. The evolution ofwx andF
is shown in Fig. 1. Notice that bothw1 andwd diverge as the
model approaches the big crunch singularity.

Let us consider a scenario where the big crunch is s
ceeded by an expanding phase: thus we have two phash
<h1 ~phase I! andh>h1 ~phase II! with h150. Forwx we
can take two of three forms of solutions (w1 ,w2 ,wd) as the
general solutions in either phase. Althoughȧ could be dis-
continuous at the transition reaching the singularity let us
12401
e

e

c-
s

y

matchingwx and wd directly at h1; after all, we assume a
nonsingular bounce nearh1 ~see later!. Using Eqs.
~38!,~39!,~35! we can show that

CII5CI , d̃II5d̃I218pCI . ~40!

This implies that the value of theF variable is conserved
even through the bounce. In terms of the general soluti
we notice the following. Using Eq.~36! we can decompose
w1 in Eq. ~38! into w2 andwd . Near the bounce, althoug
w2

I . 3
5 is negligible compared withw1

I .18p(8/uhu5) and
wd

I .28/uhu5, we can show that it is this constant mode
w2

I that feeds theC mode after the bounce. Thus, in th
collapsing phase it is appropriate to write Eq.~38! as

wx5w2C1wd~ d̃218pC!. ~41!

Therefore, if such a bounce is allowed, we have shown
w2

I feeds the growing modew1
II in the expanding phase. Th

apparent growing~diverging! solutionsw1
I or wd

I feed only
the wd

II or w2
II modes, which are the decaying modes in t

expanding phase. The time scale of a cycle is encoded incm
of Eq. ~32! and can affect only the decaying solution in th
expanding phase. The value ofF, which isC, is not affected
by the different duration of each cycle.

Notice, however, that if we strictly consider the singul
and cuspy bounce ath1 implied by Eq. ~32! we have ȧ
discontinuous, which forbids us from relying on the matc
ing conditions. We have assumed that such a singular bou
can be regarded as a limiting case of a smooth and non
gular bounce; a concrete example will be considered in
next section. We note that the curvature term has a neglig
role near the big crunch/bang. We have also assumed
linearity of the fluctuations involved.

FIG. 1. Evolutions ofw1 ~solid line!, w2 ~dashed line!, wd

~dotted line!, andF ~horizontal line!.
0-5
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V. THROUGH THE BOUNCE

Assume two expanding phases I and II with equations
statewI andwII . In the near flat situation we have

a~ t !5a0i~ t2t i !
2/3(11wi ), ~42!

where i5I,II. The coefficients should be determined b
matchinga and ȧ at the transitionst1. In phases I and II the
large-scale solutions in Eqs.~16!,~17!,~10! give for 21,wi
,1

F5C1k2
4

9

wi

12wi
2

1

a3H
d, ~43!

wx5
313wi

513wi
C1

H

a
d, ~44!

wd5C1k2
2

9

1

12wi

1

a3H
d, ~45!

whereC andd in the phase I should be regarded asCI and
dI , and similarly for the phase II. Forwi51, thed mode of
F ~and part ofwd) contains a ln(t2ti) term instead of (1
2wi)

21. Equations~6!,~11! give wv andwk . As long as we
havea and ȧ continuous through the transition from phase
to phase II att1 we can use our joining variables in Eq.~19!.
Examples are the radiation-matter transition and
inflation-radiation transition. Using Eqs.~44!,~45!, to the
leading order in the large-scale expansion we have

CII5CI ,

dII5dI1
6~wI2wII !

~513wI!~513wII !

a1

H1
CI . ~46!

This is consistent with the result derived in Eq.~17! of @19#.
Similar results hold for two contracting phases as well.

In the case of a transition from a contracting to an e
panding phase, however,ȧ can be discontinuous at the tra
sition. In order to handle this case properly, we need an
termediate bouncing phaseB which smoothly connects th
two phases I and II. We consider the collapsing~I! and ex-
panding ~II ! phases smoothly connected by a nonsingu
bouncing phase (B). Assuming that the curvature is not im
portant in phases I and II near the bounce, and assuminwI
andwII for the two phases, we have

aI~ t !5aI0@2~ t2t I!#
2/3(11wI), ~47!

aII~ t !5aII0~ t2t II !
2/3(11wII ). ~48!

The coefficients should be determined by matchinga and ȧ
at the transitionst1 and t2.

In the expanding phase II, thed modes of F, wx ,
wd , wv , andwk in Eqs.~43!–~45! decay away whereas th
C modes remain constant and have the role of the relativ
12401
f
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growing modes; whereas, ast→t1 in the contracting phase
although theC modes remain constant, thed modes diverge
~for 21,wI,1) as

F}wv}wd}wk}
1

a3H
}ut2t Iu2(12wI)/(11wI),

wx}
H

a
}ut2t Iu2(513wI)/(313wI). ~49!

For wI50, the d mode of F vanishes exactly, and thed
mode ofwv vanishes in a near flat situation. ForwI51, thed
modes ofF, wv , wd , andwk show lnut2tIu divergence, in-
stead. A complete set of solutions in several different ga
conditions is presented in Tables 2–5 of@25#; although the
solutions were derived in the expanding phase, the same
lutions remain valid in the collapsing phase with the tim
replaced by its absolute value.

A simple example of the bounce is the case withK.0
and a positiveL @34#:

aB~ t !5A3K/L cosh~AL/3t !. ~50!

Evolution of the scale factor is plotted in Fig. 2. Either for
vanishing fluid with pureL or for a L-type fluid, we have
m1p50. If we havem1p50 strictly, the basic set of per
turbation equations becomes trivial and we cannot determ
the perturbations properly, i.e., we do not have meaning
perturbations.

In the following we consider the perturbation evolution
three other examples of the bouncing phase. The first

FIG. 2. Evolution of the scale factor~solid line!. The dotted
lines indicate the extensions of the collapsing, bouncing, and
panding phases without matching. The bouncing phase lasts
utBu,5 with L51 andK51. As an example, we takewI50 and
wII51/3.
0-6
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models rely on the fluid and field, which give effectively
w,2 1

3 equation of state during the bounce. To have
bounce in such models the positive curvature should pla
significant role during the bounce; thus these are not suit
for the bouncing model assumed in Sec. IV. In addition,
the background curvature becomes important, all the pe
bation scales go through the small-scale regime where
pressure gradient term becomes important. The third mo
relies on the presence of exotic matter which gives a nega
contribution to the total energy density. In this case we h
a bounce without resorting to positive curvature; thus
scales remain large during the bounce and the model suit
requirements for the bounce assumed in Sec. IV.

A. Bounce with a wÄÀ2Õ3 fluid

For an ideal fluid withw5const,K.0, andL50, from
the Friedmann equation we haveH50 at a(t* )
5(2c0 /K)1/(113w) where c0[(4pG/3)ma3(11w). We can
show thata(t* ) is a maximum forw.2 1

3 and a minimum
for w,2 1

3 . As a simple example which gives a bounce w
consider thew52 2

3 case @35#. Although it is uncertain
whether it is appropriate to consider an ideal fluid for t
w,0 case, we will take the ideal fluid assumption~see a
cautionary remark in Sec. VII of@9#!. We will find a funda-
mentally different result in a more realistic~in the sense tha
we have a concrete action and equation of motion! case
based on a scalar field~see Sec. V B!. Equation~5! gives the
exact solution

a5~c0/2!~ t21K/c0
2!. ~51!

We havecs
252 2

3 and

ẍ

x
5

c0
2

2a2

3t41~K/c0
2!2

t2 ,
ÿ

y
5

c0
2

2a2 ~ t223K/c0
2!. ~52!

The pressure terms become important compared with
gravity near the bounce. Thus, in order to follow the evo
tion we need to handle perturbations based on the full eq
tions. Equation~14! gives

ẅx1
4t

t21K/c0
2ẇx2

8

3c0
2

k223K

~ t21K/c0
2!2 wx50. ~53!

Ignoring thek2 term, the exact solutions in Eqs.~16!,~17!
can be integrated, and forwx we have

wx5C
1

3

t416~K/c0
2!t223~K/c0

2!2

~ t21K/c0
2!2 1d

4t/c0

~ t21K/c0
2!2 .

~54!

Since thek2 terms become negligible away from the boun
we can use these solutions as the proper initial conditions
theC andd modes. A typical evolution is presented in Fig.

As we havecs
252 2

3 we anticipate an exponential growt
and/or decay of the perturbation while the pressure grad
term becomes important. In Fig. 3 both theC andd modes in
the contracting phase become the~relatively growing! C
mode in the expanding phase. As the large-scale condit
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are violated both theC and d modes will be dominated by
the exponentially growing mode in the small-scale limit, a
eventually we cannot trace theC andd modes in the expand
ing phase to the ones in the contracting phase.

B. Bounce with a massive scalar field

We consider a bouncing model based on a massive m
mally coupled scalar field with a positive curvature@36#. The
results up to Eq.~18! in Sec. II remain valid for a field with
the prescription mentioned below Eq.~9!. The background
equations are presented in Eq.~5! and below it with mf

5 1
2 (ḟ21m2f2), etc. Equation~14! gives

ẅx1S 7H12
m2f

ḟ
D ẇx1S m2f2

M pl
2

12H
m2f

ḟ
1

k228K

a2 D wx

50, ~55!

where M pl
2 [1/(8pG). Once we havewx , the rest of the

perturbationsF, wv , wd , andwk follow from Eqs. ~6!,~7!,
~10!,~11!. We have

cA
2 k2

a25
2m2f

Hḟ

K

a21
k2

a2 , ~56!

ÿ

y
5

2m2f

Hḟ

K

a2 1m22
3

4

K

a21
7ḟ2125m2f2

24M pl
2

12m2
f

ḟ
S m2

f

ḟ
14H D . ~57!

We can show that near the bouncing era the pressure ter
Eq. ~56! dominates over the gravity term in Eq.~57!; this is
true even fork250. Thus, near the bounce the large-sc
condition is violated, and with the positive sign in front o
thek2 term in Eq.~56! we can show that perturbations sho
oscillatory behavior while on the small scale; see Fig.
Although the first term in the right-hand side~RHS! of Eq.
~56! diverges near the bounce, the same term appears in
gravity part in Eq.~57! as well. Due to the positive sign in
the second term we expect oscillatory instability as the pr
sure term dominates the gravity part. Near the bounce
haveH.0; thusmf.const, and

a.A3M pl
2 K/mf cosh@Amf /~3M pl

2 !t#. ~58!

In this model, during the bounce all scales reach the sm
scale where we cannot apply our large-scale solutions
Fig. 4 we used an arbitrary initial condition at the minimu
of the bounce (t50), and as the scale becomes large
have only theC mode because thed mode in the expanding
phase is decaying~and thus transient! and yields to the rela-
tively growing C mode within a few expansion times. Thu
as in the previous example based on thew52 2

3 fluid the C
andd modes during the collapsing phase are mixed up wh
on the small scale, and we cannot trace theC andd modes in
the expanding phase to the ones in the collapsing phase.
important difference of the scalar field compared with t
0-7
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JAI-CHAN HWANG AND HYERIM NOH PHYSICAL REVIEW D 65 124010
w52 2
3 fluid is that, while fluctuation of the fluid show

exponential instability due to the negativecs
2 term, the field

fluctuation shows oscillatory behavior@37#. This difference
comes from the presence of a nonvanishing entropic pe
bation terme in the case of a scalar field; see below Eq.~9!.

In the later expanding phase asf starts oscillating nea
the potential minimum the background model enters an
with effectively wf50 ~dust! as the equation of state. Asf
starts oscillating we cannot solve Eq.~55! directly. Instead,
we can handle the situation analytically using proper ti
averaging over the coherent oscillations of the backgro
and the perturbed field@38#. In @39# it was shown that, while
the background enters the dust era, the perturbations
behave like cold dark matter even in the large scale limi

C. Bounce model withmÄmmÀmX

The positively curved FLRW world model with only ra
diation and matter does not allow bouncing after the
crunch. If the physical state near the big crunch allows
presence of additional matterX with its effective energy den
sity behaving as2mX(t)52mX0a23(11wX) andwX. 1

3 , we
can have a smooth and nonsingular bouncing phase; th
the generalized case of the ‘‘desperate’’ example mentio
in @3#, p. 368. Thus, for the bounce only, we do not ev
need positive curvature in the background world model.

As a toy model allowing such a smooth and nonsingu
transition with the relevant scale satisfying the large sc
condition, we consider the case with pressureless matter
exotic matter withwX5 1

3 . Thus, we consider a model wit

FIG. 3. Evolutions ofF for theC mode~solid line! andd mode
~long-dashed line! initial conditions, and ofwx for the C mode
~dotted line! andd mode~dot-short-dashed line! initial conditions.
We taken510. The pressure terms become important atutu,0.4 for
wx and atutu,0.2 forF. Notice that theC mode ofF changes sign
twice, whereas thed mode changes once. The sign changes in
expanding phase occur at the same time.
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dust and radiation with a negative sign in the radiation co
ponent:

H25
8pG

3
~mm2mX!2

K

a2 , ~59!

wheremm}a23 andmX}a24. Certainly, this is not a realistic
model for the bounce because we need to assume that
is no conventional radiation component present. Later
will show, however, that this toy model captures the ba
physics of more realistic situations.

For a positive curvatureK.0, Eq. ~59! gives the exact
solution

a5
1

K
cm@12A122~cX /cm

2 !K cos~AKh!#, ~60!

wherecX[(4pG/3)mXa4; cX /cm
2 is dimensionless. We hav

normalized the time axis so thata has minimum values a
h52n̄p/AK with n̄ an integer number. For vanishingX
component,cX50, we recover the solution in Eq.~32!. With
theX component the model shows cyclic behavior. The ba
picture of cyclic bounces remains valid in more realistic si
ations withwX. 1

3 .
The K term becomes important nearamax, and nearamin

we havemX.mm . The curvature term is negligible near th
bounce, thus allowing the existence of the large scale wh
we can ignore the Laplacian term coming from the press

e

FIG. 4. Evolution ofwx ~long-dashed line!, F ~solid line!, wv
~dotted line!, andwk ~dot-short-dashed line!. We omitwd which has
a larger amplitude and approachesF on the large scale. We tak
n510. t50 corresponds to the minimum of the bounce, and
pressure dominates over the gravity untilt;1. We can show thatF,
wv , wk , andwd stay constant on the large scale, whereaswx is still
adjusting its value even in the large scale as the background e
tion of state effectively changes fromwf.21 while f is rolling to
wf50 asf starts oscillating, which occurs fort.11.
0-8
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gradient. If we do not need cyclic behavior we can actua
take a flat model withK50. Assuming a negligibleK term
we have

a.
cm

2
~h212cX /cm

2 !, ~61!

which is an exact solution of Eq.~59! for K50.
It is not entirely clear how to handle the perturbation

the exotic componentX which is introduced to have a
bounce in the background without resorting to positive c
vature. If such an exotic state of matter can be modeled
using a field or modifying terms in gravity theory~coming
from quantum corrections or higher dimensions, for e
ample!, we need the correct form of the equation of moti
or the modified action to handle the perturbations prope
In the present situation, lacking a concrete model for
exotic matter, we will take a phenomenological approa
based on a fluid approximation.

Let usassume, except for its negative contribution to th
density, that the fluidX behaves as an ordinary ideal flu
with an equation of statewX . In such a case, near the boun
we need to consider a two-component system withm andX.
@The other possibility is to derive solutions in them- and
X-dominated eras separately and connect them by using
matching conditions. As theX fluid cannot dominate the tota
fluid ~we havemm>mX with the equality holding at the
bounce! such a situation is forbidden.#

We use the conventional decomposition of the system
the adiabatic~curvature! perturbation, characterized bywx

~or F), and the relative~often called the isocurvature! per-
turbation defined asS[S12[d1 /(11w1)2d2 /(11w2)
@40#. The basic equations in the two-component system
come@see Eqs.~23!,~35!,~46!,~57! in @13##

m1p

H F H2

a~m1p! S a

H
wxD •G •1cs

2 k2

a2 wx

524pGe524pG
~m11p1!~m21p2!

m1p
~c(1)

2 2c(2)
2 !S,

~62!

S̈1H~223cz
2!Ṡ1cz

2 k2

a2 S

52
k2~k223K !

a4

c(1)
2 2c(2)

2

4pG~m1p!
wx , ~63!

wherec( i )
2 [ ṗi /ṁ i and

cz
2[

c(2)
2 ~m11p1!1c(1)

2 ~m21p2!

m1p
. ~64!

In our case 15m and 25X; thus, w15c(1)
2 50, w25c(2)

2

5 1
3 , m1p5mm2 4

3 mX , etc. In the large scale limit the cur
vature mode can be sourced by the isocurvature one@see Eq.
~62!#, whereas the isocurvature mode decouples from
curvature mode in general@41# @see Eq.~63!#. @The situation
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is different in the case of multiple numbers of scalar fields:
such a case, effectively, the RHS of Eq.~63! has ak2/a2

factor instead ofk4/a4; thus the isocurvature modes are le
decoupled from the adiabatic one~see@13,42#!.#

Let us assumean adiabatic initial condition, thus settin
S50 at an early era in the contracting phase, for simplic
More precisely, we are assumingS!wx in the initial epoch,
which is natural because it means we are assuming no
nificant fluctuations in theX component on the early matte
dominated era. Since the curvature mode does not sourc
isocurvature mode in the large scale, the isocurvature m
will remain small. In such a case the RHS of Eq.~62! van-
ishes, and the curvature equations in the single compo
situation, Eq.~14!, remain valid without any change. Thu
for scales satisfying the large scale limit we have the sa
solutions as for Eqs.~16!,~17! remaining valid. The solutions
become

F5C1d̃k2
64

27

cX

cm
2 EhS h41

4cX

3cm
2 h22

4cX
2

3cm
4 D 22

h2 dh,

wx5F S 11
cm

2

2cX
h21

5cm
4

12cX
2 h41

3cm
6

40cX
3 h6DC1

cm
6

cX
3 hd̃G Y

3S 11
cm

2

2cX
h2D 3

. ~65!

For wx the contribution from the lower bound of integratio
of the C mode is absorbed into thed̃ mode. In the matter
dominated erauhu@2cX /cm

2 , we have

F5C2k2
64

135

cX

cm
2 h25d̃, wx5

3

5
C18h25d̃. ~66!

Near the big bang/crunch, the solution forwx coincides with
the one for a pressureless medium considered in Eq.~38!.
For cX /cm

2 →0, F also coincides with the one known in th
pressureless medium. Near the bounce,uhu!2cX /cm

2 , we
have

F5C1k2
4

9

cm
6

cX
3 h3d̃, wx5C1

cm
6

cX
3 hd̃, ~67!

which are regular and finite.
Since the present bounce model allows the scales to

in the large-scale limit during the transition, it can be co
sidered as a concrete model of the smooth and nonsing
bounce assumed in Sec. IV. Indeed, the curvature term
negligible near the bounce as was the case near the
crunch/bang in Sec. IV. In thecX /cm

2 →0 limit, Eq. ~65! re-
duces to Eq.~66!, which also coincides with the known so
lution considered in Sec. IV.

Clearly, we can also make a more realistic model w
radiation, matter, andX where wX. 1

3 . We note that Eqs.
~62!,~63! remain valid for any two-component system
matter perturbations. Even in such a case theX fluid can
0-9
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JAI-CHAN HWANG AND HYERIM NOH PHYSICAL REVIEW D 65 124010
cause a smooth and nonsingular bounce and the curva
term has a negligible role near the bounce. Thus, essent
the same conclusions~e.g., theC mode feeding theC mode!
remain valid. We have considered a simple toy model o
because it allows analytic handling of the background a
the perturbations, thus showing the situation explicitly.

VI. DISCUSSION

In Sec. IV we showed that the perturbation in a positive
curved FLRW model filled with a pressureless matter is
scribed by the conservation ofF. Assuming a transition of a
big crunch followed by a big bang in such a model, by us
the known matching conditions we showed thatF maintains
the same value even after the transition. Using the match
conditions we also showed that the diverging solution in
contracting phase is matched to the decaying solution in
subsequent expanding phase, whereas the other solu
which stays constant during the contracting phase,
matched into the same constant solution in the expand
phase. That constant mode is characterized byF; the other
solution ofF which decays in the expanding phase is high
order in k2 compared with the one forwx and vanishes for
vanishing background pressure.

In order to confirm these results based on matching
singular bounce, in Sec. V we considered three different n
singular and smooth bounce models. For the bounce mo
based on a fluid~Sec. V A! and a massive scalar field~Sec.
V B! in a positively curved background, the role of bac
ground curvature is important to make the bounce. In s
cases, all the perturbation scales come inside the sound
rizon near the bounce, and the large-scale conditions are
lated. As the pressure gradient terms become important,
turbations in the fluid model show exponential instabili
whereas the ones in the massive field model show oscilla
behavior. For both situations the two independent pertur
tion modes in the large-scale limit during the collapsi
phase get mixed up with the two independent modes on
small scale during the bouncing phase. Thus, we cannot t
the two independent solutions (C and d modes! in the ex-
panding phase to the ones in the contracting phase.

In Sec. V B we considered a bouncing model based
exotic matter with a negative contribution to the total ene
density. In such a case the positive curvature is not impor
during the bounce. Thus, we could have the relevant sc
remaining in the large-scale limit, and could apply the ge
eral large-scale solutions. In this case, however, we hav
handle the perturbation of the exotic matter in addition to
ordinary one simultaneously. By considering the adiaba
initial condition we have shown that the same curvature p
turbation equation known in the single-component situat
remains valid; thus the known large-scale solutions are v
as well throughout the bounce. Therefore, this third type
bounce model can be regarded as an example of the sm
and nonsingular bouncing assumed in Sec. IV. As an ana
cally manageable concrete example, we considered a sim
toy model with dust and exotic matter with a radiationli
equation of state. Even in more general situations for
equations of state before and after the bounce, similar an
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ses can be made which show that theC mode in the expand-
ing phase is affected only by theC mode in the contracting
phase; thus the growing mode in the contracting phase
cays away as the world model enters the expanding pha

Our analyses are based on two assumptions:~i! the con-
tracting phase is converted into the expanding one b
smooth and nonsingular bounce, and~ii ! linear perturbation
theory holds during the evolution. The large-scale evolut
can be characterized by the conservation ofF. We have
shown that theC mode ofF, which is the proper growing
mode in the expanding phase, is simply conserved during
evolution and through the bounces. The results are true
long as the two assumptions made above are valid, and
addition, if the large scale condition is met during the tra
sition as considered in Sec. V C.

In Sec. III we showed that the three dimensionless m
sures, the intrinsic curvatures (w and Cab

(t) ), the trace-free

part of the extrinsic curvature (ŝ/H), and the Weyl curvature
(E/R), divergeat singularity for21,w,1. Thus, for21
,w,1, the spacetime perturbations become singular as
background approaches the singularity. An ambiguity
mains for thew51 case because, althoughw and Cab

(t) di-

verge logarithmically,ŝ/H andE/R remain finite. These re-
sults apply to all perturbation types and for all gau
conditions we have considered. The behaviors of the o
variables~the perturbed lapse functiona, the dimensionless
measure of the perturbed expansionk/H, the relative density
perturbationd, etc.! depend more strongly on the gauge co
ditions ~see Tables 2 and 4 of@25#!. Thus, these variable
apparently have less physical significance in characteriz
the spacetime fluctuations compared with the other th
measures, whose behaviors are gauge independent at le
the pool of gauge conditions we have investigated. Do
above results imply diverging spacetime fluctuations
21,w,1, and regular ones forw51? In Table 4 of@25#
we find that in no gauge condition doall the perturbations
remain finite for21,w<1.

The authors of@43# argued that as the model goes throu
a singular bounce the perturbation becomes nonlinear.
have shown that,if the fluctuations survive the bounce a
linear ones, the diverging mode in the contracting ph
should be matched to the decaying one in the expand
phase. Lyth in@44# made the following simple and powerfu
argument. As we have under the gauge transformation
( x̃a5xa1ja with j t[ajh)

w̃5w2Hj t, d̃5d13H~11w!j t, ~68!

if w diverges whiled remains finite, or vice versa, in an
single gauge condition@this is the case for21,w<1; see
Eqs.~9!,~49! for wv anddv# no temporal gauge transforma
tion j t can be found that makes bothw andd finite. There-
fore, for21,w<1 we find that thed mode perturbations o
the Friedmann world model becomesingular near the big
crunch in one form or another inall gauge conditions.

We note thatF, which becomeswv for K50, simply
stays constant in a pressureless medium; thus its magn
cannot characterize the breakdown of linearity of the pe
0-10
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NONSINGULAR BIG BOUNCES AND THE EVOLUTION . . . PHYSICAL REVIEW D65 124010
turbation. As we have from Eqs.~6!,~37!,~38! wv5C
1(1/3)(12cosh)wx where we setK51, wv itself could di-
verge near the singularity. From Eq.~11!, near the big crunch
in the pressureless medium we havewk.wd where wd ,
given in Eq.~39!, has a diverging part. Thus, near the b
crunch the diverging modes behave as

wv}wd}wk}uhu23, wx}uhu25, ~69!

whereasF has no diverging mode in the pressureless ca
For the situation with generalw, see Eq.~49!. Bardeen has
argued that the behavior ofwx ‘‘overstates the physica
strength of the singularity;’’ see below Eq.~5.12! in @9#.

At the singular big crunch, we certainly haved modes of
many perturbation variables unambiguously becoming sin
lar for 21,w<1 ~see Tables 2–4 in@25#!. Do large ampli-
tudes of some dimensionless measures of perturbations
ply the breakdown of linear theory? Due to the gau
dependence of relativistic perturbations, the large~larger
than unity, say! amplitudes of some gauge-invariant pertu
bation variables do not guarantee the breakdown of lin
theory. However, what Lyth@44# has shown is that in the
collapsing phase we could encounter situations where
amplitudes of perturbation variables become large in
form or the other inall gauge conditions. Lyth has argue
this as a violation of thenecessary conditionof the linear
perturbation theory.

In our models, which avoid the singularity by a smoo
and nonsingular bounce, it is likely that certain scales
safely go through the bounce and retain their linear nat
As we have assumed the linearity of perturbations,
analyses and results are applicable to such scales onl
Secs. IV and V C we showed that the diverging solutions
the contracting phase in Eq.~69! affect only the decaying
~thus transient! solutions in the subsequent expanding pha
In such a scenario, however, one could anticipate a la
~compared with theC mode! amount of the decaying (d)
mode present in the early big-bang phase for a while, a
remnant from the preceding phase before the big bang.
-
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In a recently proposed ekpyrotic scenario it was argu
that the final scalar-type perturbation is scale invariant@45#.
In @46# it was shown that the scale-invariant spectrum g
erated in the zero-shear gauge during the collapsing ph
should be identified as thed mode; thus after the bounce w
have a different power spectrum@47#. Our results in this
paper confirm that, while the large scale condition is m
during the~smooth and nonsingular! transition, thed mode
in the contracting phase does not affect the~properly grow-
ing! C mode in the expanding phase. The background cur
ture is flat in the ekpyrotic scenario and the scale rema
large during the bounce. However, since the bounce of
ekpyrotic scenario goes through a singularity the author
@44# has argued that one cannot rely on linear analyses as
model approaches the singularity. Thus, either the final sp
trum is not scale invariant~which is the case if the linea
perturbation survives! or the issue should be handled in th
future in the string theory context with a concrete mechan
for the bounce.
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