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Dynamics of test particles and pointlike gyroscopes in the brane world and other 5D models
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We study the dynamics of test particles and pointlike gyroscopes in 5D manifolds such as those used in the
Randall-Sundrum brane world and noncompact Kaluza-Klein models. Our analysis is based on a covariant
foliation of the manifold using (3-1)-dimensional spacetime slices orthogonal to the extra dimension, and is
hence similar to the Arnowitt-Deser-Misner-3. split in ordinary general relativity. We derive gauge invariant
equations of motion for freely falling test particles in the 5D and 4D affine parametrizations and contrast these
results with previous work concerning the so-called “fifth force.” Motivated by the conjectured localization of
matter fields on a 3-brane, we derive the form of the classical nongravitational force required to confine
particles to a 4D hypersurface and show that the resulting trajectories are geometrically identical to the
spacetime geodesics of Einstein’s theory. We then discuss the issue of determining the 5D dynamics of a
torque-free spinning body in the point-dipole approximation, and then perform a covariait) (31 decom-
position of the relevant formulas.e., the 5D Fermi-Walker transport equatidor the cases of freely falling
and hypersurface-confined point gyroscopes. In both cases, the 4D spin tensor is seen to be subject to an
anomalous torque. We solve the spin equations for a gyroscope confined to a single spacetime section in a
simple 5D cosmological model and observe a cosmological variation of the magnitude and orientation of the
4D spin.
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[. INTRODUCTION sional geodesics, several authors have considered the
behavior of pointlike gyroscopes moving in 5D manifolds
There has been a large amount of recent interest in thi8,13,15,26.

possibility that our world contains more than four noncom- We will not address all of these issues in this paper.
pact dimensions. This interest has been largely motivated bgather, we present a generic formalism which may aid in the
the work of Randall and SundruRS), who postulate that study of higher dimensional particle motion. In particular, we
our 4D universe is in actuality a 3-brane moving in a higherWish to describe the motion of test particles in aH3)
dimensional manifold with large extra dimensidds2]. The +1 dimensional manifold in a geometric and covariant man-
introduction of such a model assists in the explanation of thé@er. Our approach is inspired by the familiar geometric con-
hierarchy and cosmological constant problems. However, thetruction used in the Arnowitt-Deser-Misn@kDM ) Hamil-
existence of large extra dimensions raises several issues, ighian formulation of general relativity, where the 4D
the least of which is the nature of the trajectories of tesimanifold is foliated by a series of 3D spacelike hypersur-
particles in a (3-1)+d dimensional manifold.Several au- facesX [28,29. As described in detail in Sec. Il, we intro-
thors have considered this, both in the context ofdsel ~ duce a similar foliation of the 5D manifold by a series of
brane world picture and noncompact 5D Kaluza-Kleintimelike 4D hypersurfaces;, each of which corresponds to
theory. In the former scenario, matter is confined to the bran@ 4D spacetime. Herd, labels the fifth dimension. The
while gravitons are free to propagate in the bulk on 5D nullbeauty of this approach is that it allows us to covariantly
geodesics. In the latter scenario, all particles travel on 5slecompose 5D tensors in terms of quantities either tangent or
geodesics but observers can only readily access the 4D pdttthogonal taX;, and to derive equations that transform cor-
of the trajectory(see[3,4] for reviews. Specific topics tack- rectly under 4D and 5D coordinate changes.
led in the literature include deviations from 4D geodesic mo- Before describing our geometric framework in detail in
tion and the so-called “fifth force[5—12], astrophysical and Sec. Il, we would like to outline the three main motivations
experimenta| tests of h|gher dimensional dynaﬁﬁ].‘[‘3_]_a7 for this work. First, we note that the majority of the refer-
violations of 4D causality in the brane wor[d6-19, the  €nces cited above deal with higher dimensional geodesics in
tendency of the brane world to attract or repel buck geode5D via the well known equation
sics[20-27, the subtle interplay between 4D and 5D affine oA B C
parameter$23,24], and the dynamical acquisition and varia- d_X LA d_x di _
tion of particle rest masses from dimensional reducf— d\2 BCdhn o dh T
27]. In work closely related to the study of higher dimen-

where \ is a 5D affine parameter anb5. refers to the

higher dimensional Christoffel symbdi$Rarticle trajectories

@

*Electronic address: ssseahra@uwaterloo.ca

The notation is that 3 1 refers to ordinary spacetime with one
timelike and three spacelike dimensions whdleefers to the num- 2See the note at the end of this section for an accounting of the
ber of spacelike extra dimensions. conventions used in this paper.
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are decomposed into a 4D part by considering the cal setting. Our main result is that when observed in 4D, the
=0,1,2,3 components of Eql) differently from theA=4 spin angular momentum of a gyroscope confined t&,a
component, which governs the motion in the extra dimenhypersurface is not conserved and that the spin tensor will
sion. The 4D part can then be manipulated to look like thePrecess with respect to a 4D nonrotating frame due to the
4D equation of motion of a particle subjected to a nongravi-existence of an anomalous torque. Such effects may be ob-
tational acceleration; i.e., the “fifth force.” As pointed out by Servable by space-based experiments such as Gravity Probe
Ponce de Leon, this procedure has some drawhbidcka?. B (see[35] for reviews. _
The most serious one is that the algorithm is not covariant in  Our results are summarized in Sec. VI along with sugges-
5D, which results in the gauge dependence of the extra forc&ons for future work. o .
Another problem is that the fifth force is not orthogonal to ~Conventions The 5D metric signature is{————)
the 4-velocity, which contradicts standard 4D physics. Towhile the 4D metric signature ist(— ——); i.e., the extra
overcome these difficulties, Ponce de Leon has analyzed tfémension is assumed to be spacelike. In this paper, upper-
5D geodesic equation in terms of local basis vectors angase Latin indices run from 0—4 and lowercase Greek indices
introduced suitable redefinitions of various quantities to obJUn 0—3. Early lowercase Latin indices run over all four spa-
tain a better-behaved description of test particle trajectoriedial dimensions 1-4, while late indices run over the three
We wish to present an alternative formalism based on a (§pat|al dimensions 1-3 associated with the 4D manifold.
+1)+1 decomposition of the 5D geodesic equation that is
more geometric than Ponce de Leon’s algorithm, yet still Il. GEOMETRIC CONSTRUCTION
E?qrrslc)ts'rtr?ii Fsr?ﬁleegbsbjaeﬁoo?%tgg Vl\:'lth descriptions based on In this section_, we introducg our folia}tion of th.e 5D mani-_
.The' second goal of this paper' is 'to explore the confinelcoId anq the various geometric quantities that figure promi-
ment of test particles to a giveély hypersurface. An essential nently in sgbsequer_n ce_llcula_tlons. _ConS|der a 5D manifold
: (M,gag) with one timelike dimension and covered by an

mgrgdlent of brane world quels_ IS tha}t matter flelds arearbitrary system of coordinates®. We introduce a scalar
confined to a 3-brane that is identified with our universe. In

string theory, this confinement comes about naturally fromf unction

strings with end points attached to the brane. In the RS pic- I=1(x"), )
ture, localization of the zero-mode of the graviton and other
fields arises from the discontinuous nature of the geometrywhich is defined everywhere al. The 4D hypersurfacels
Other authors have considered “smoothed-out” versions of=const, which we shall denote B, are assumed to have a
the RS model by introducing finite-width, or “thick,” branes spacelike normal vector field given by
created via dynamical degrees of freed@@-33. Localiza-
tion of gravity and other fields comes from a steep, but na=®dal, niny=—1. (3
smoothly differentiable, extra-dimensional potential. In this ) )
paper, we aim to explore the classical analogue of these, arfeBch of theX, hypersurfaces may be associated with a (3
other, confinement mechanisms making use of the geometri¢ 1)-dimensional spacetime. The scalawhich normalizes
framework discussed above. Several workers have noted thBt IS known as the lapse function. We define the projection
in general, nongravitational forces are required to keep ted€nsor as
particles confined to a thin 3-braf#9,20,34. In Sec. IV, we B
will derive the general form of such a confining force for a hag=gag+ NN )
3-brane of arbitrary geometry and show that it is nothing bu
a generalization of the centripetal force from undergradua
mechanics.

Our final motivation comes from a result derived in Sec.

tLI'his tensor is symmetribag=hga and orthogonal ta, .
e place a 4D coordinate system on each of Xhényper-
surfacesy®. The four-basis vectors

IV, which states that test particles confined t& ahypersur- XA
face by normal forces travel on geodesics of that hypersur- eh=—01:, npet=0 (5)
face. This makes it impossible to distinguish certain higher ay“

dimensional scenarios from ordinary general relativity based .

on the kinematic data of test bodies. This causes us to sear@€ bY def|n|/£|on tangent to thz, hyp/:ersurfaces and or-
for another test for noncompact extra dimensions, namely théogonal ton™. It is easy to see that, behaves as a 5D
behavior Of p0|ntl|ke gyroscopes in 5D manifolds_ We extendcontrava”ant vector Under 5D Coord|nate transformat|ons
previous work by describing the dynamics of a spinningx®—x* and a 4D covariant vector under 4D coordinate

body in terms of the foliation language of Sec. Il and by transformations/*—y®. We can use these basis vectors to

considering both freely falling and confined gyroscopes. Inproject 5D objects ont&, hypersurfaces. For example, for
Sec. VA, we discuss the general formulation of the pointan arbitrary 5D covariant vector

gyroscope problem in 5D. In Sec. V B, we apply our splitting

algorithm to the spin equations of motion. In Sec. V C, we T, =€ Tx. (6)
discuss how our results should be interpreted in the presence

of a thin 3-brane. Finally, in Sec. V D, we give an exampleHere, T, is said to be the projection df, onto X, . Clearly,

of how a point gyroscope behaves in a simple 5D cosmologiT, behaves as a scalar under 5D coordinate transformations
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and a covariant vector under 4D transformations. The in€alled the shift vector and it describes how fffecoordinate

duced metric on th&, hypersurfaces is given by system changes as one moves from a giemypersurface
N N to another. Using our formulas faix® and|”, we can write
hap=€,59a8= €,€5NA5- (7)  the 5D line element as
Just likegag, the induced metric has an inverse dS?=gagdx dxB
h*"h,z= 6. 8 =h,z(dy*+Nedl)(dy?+NPdl) - d%dI?, (16)

The induced metric and its inverse can be used to raise anghich reduces tuﬂszzhaﬁdy“dyﬁ if dl=0.
lower indices of 4-tensors and change the position of the This completes our description of the geometric structure
spacetime index of thes basis vectors. This then implies  we will use in the rest of the paper. We would like to stress
A that this formalism does not depend on the form of the higher
exep=905. (9 dimensional field equations, or the choice of 5D or 4D coor-

, . ) A dinates. It is sufficiently general to be applied to a wide class
Also note that sincé g is entirely orthogonal te”, we can ¢ (3+1)+1 theories of gravity.

express it as

Ill. SPLITTING OF THE 5D GEODESIC EQUATION

) _ _ A. 5D affine parametrization
We will also require an expression that relates the 5D , ) - .
covariant derivative of 5-tensors to the 4D covariant deriva- N this section, we utilize the formalism introduced above

tive of the corresponding 4-tensors. For covariant 5-vector<? SPlit the 5D geodesic equation into a series of relations
the appropriate formula is involving quantities that are either tangent or orthogonal to

the 2, hypersurfaces. The goal is to derive the 4D equation
VﬁTa:ege/iVB(hAcTc), (11 of motion, an equation governing the motion in the extra
dimension, and an equation governing the norm of the
where Vg is the 5D covariant derivative ol defined with  4-velocity.
respect togag andVy is the 4D covariant derivative defined ~ We consider a 5D geodesic trajectory with 5-veloaify
with respect tch, ;. The generalization to tensors of higher satisfying
rank is obvious. It is not difficult to confirm that this defini- PR
tion of V,, satisfies all the usual requirements imposed on the 0=u"Vau”, (179
covariant derivative operator.

. o ; ; L e=u’u (A7b
At this juncture, it is convenient to introduce our defini- A
tion of the extrinsic curvatur& .z of the % hypersurfaces: with
1 .
Kaﬂ: eﬁeEVAnB=§ezeg£nhAB . (12) uA: XA: (18)

where an overdot denot&/d\ =u”V, ande=0,*+ 1. Since

Note that the extrinsic curvature is symmetfice., K.s  the norm ofu® is constant\ is an affine parameter. We
=Kpg,) and may be thought of as the derivative of the in-gefine

duced metric in the normal direction. This 4-tensor will ap-

pear often in what follows. E=nuh, (19
Finally, we note thaty“,l) defines an alternative coordi- ) )

nate system ta”. The appropriate diffeomorphism is which allows us to write
dxA=eAdy“+1AdI, (13 u*=h*Pug—¢n® (203
where =eju—¢nt (20b)
NG using Eq.(4) and definingu®=esu”. Putting Eq.(209 into

1A= 7) (14  Eq.(17a and expanding yields
y®=const

_ _ 0=hACucVa(hBMuy, — €nB) — enAV,UB. (21)
is the vector tangent to lines of constasit We can always

decompose 5D vectors into the sum of a part tangef to Contracting this withes and using the fact thahA®
and a part normal t&, . For|” we write =efeSh*” andefn®=0, we get

1A= Neeh—Dn. (15) UV P = E(K U, + efnAVau®), (22)

This is consistent with”9,1 =1, which is required by the whereK .z is defined by Eq(12).
definition of I, and the definition oh”. The 4-vectoMN? is Returning to Eqs(179 and (2039 we can write
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0=(h"Muy — én)Va(hPuc) —uAVa(én®) (23

instead of Eq(21). We can contract this withg and use the
facts that

0= hBCnBUC: nBVA(hBCUC) = hBCUCVAnB
—1=nan"*=ngVan®=0,
to obtain, after some algebra

E=K ,guuP— enPuBVyng, (24)

where we have noted thgt= d&/d\ = UAV,E.
Continuing, we note thaté=g,gu”uf can be expanded

by making the substitutiogag=h,sexes—n*n®. The result
is

e=h,guuf— £ (25)
In summary, Eqs(17) can be rewritten as
af(u)=&(K*u,+ebn”V,ub), (263
E=K ,guUP— enfuBVyng, (26b)
e=h,guuf— & (260

Here, we have defined the acceleration of a 4-vector by

af(q)=q*v,q”. (27)

PHYSICAL REVIEW D 65 124004

B. Parameter transformation to 4D proper time

Upon examination of Eq¥26), it becomes clear that the
5D affine parametex cannot be the same as what is usually
called the 4D proper tims. The reason is that the norm of
the 4-velocityu® is not equal to unity by Eq260. In this
section, we will detail a parameter transformation from the
5D affine parametex to the 4D proper times that will make
the norm of the 4-velocity constant.

Our parameter transformation is described by the follow-
ing formulas:

(30

v” is the 5-velocity of the test particle in treeparametriza-
tion. We need to also define

x=n%v,=E=xih. (3D
The equation on the right follows frori=n”u,. We can
substitute these expressions into E(&6) in order to see
what the (3+1)+ 1 split of the geodesic equation looks like
in the s parametrization. After a straightforward, but tedious,
calculation, we obtain

vV, 0P=x (K% .+ ebn Vo B) —vA(Iny)’, (329
d(x¢)/ds= (//(Kaﬁv“v'g—)(nAvBVAnB), (32b)

€= zpz(haﬁvavﬁ—xz). (320

Here, a prime denotesD/ds=v"V,. In order to go fur-
ther, we need to demand that the norm of the 4-velocity be

It must be noted that these equations do not represent a strignity in the proper time parametrization:

(3+1)+1 splitting of the geodesic equation because the 5D B . B
vectoru” appears on the right-hand side of E¢®6a and 1=hapv“v”, (333
(26b). This shortcoming can be easily alleviated by making 9 2
use of EQ.(20b), but we find that the present form of the €= (1=x, (33
equations is more useful for subsequent calculations. We Willjhere the bottom equation follows from E@20. We can
therefore abs_tain from further manipulations. _ use Eq.(33b) to show (i)' =¢'/y, which may then be
As a consistency check, we can contract 263 with g htituted into Eq(32b) to isolate (Ing)’. The resulting
ug. After some algebra, we obtain formula can then be inserted into H§24a. This penultimate
expression may be simplified by the use of the identity

(39

UV, (UPug) = 2£(K ,gu P +hpcu®n®V,au®).  (28)

XnAU BVAnB: - hBCnAUCVAUB,
Substitutinghgc=ggc+ Ngnc and using Eq(26¢) yields af-
ter further manipulation which is obtained by operating”V, on both sides of 1
=hgcvBv® and then using Eq4). We finally get the fol-
lowing expression for the 4-accelerationof:

UV, E— EnPVaé=K,zu P~ EnfuPVang. (29

But, the left-hand side is easily seen to be equivalent t@?(v)= x[(K*Pv,—K 00 "vP)+ (ef—elv vP)nVav®].

uAVAé=¢. Hence, it is possible to derive ER6b) from (39
Egs. (268 and(260¢). Therefore, Eqs(26) are mutually con- . L
sistent in that one of the set is redundant. Note that this acceleration is orthogonalu®,

In conclusion, we have succeeded in splitting the 5D geo- Uﬁaﬁ(v):O’ (36)

desic equation(17@ into an equation of motion for the
4-velocity (268 and an equation governing motion in the which also follows fromw“v,,= 1. This is in contrast to 5D
extra dimensior{26b). We have also rewritten the 5D affine affine parametrization, which has

parameter conditio{17b) in a matter consistent with the
(3+1)+1 split (260).

ugaf(u)#0. (37)
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That is, in the proper time parametrization the 4-acceleratiohese equations essentially replace ELp) in the same

is orthogonal to the 4-velocity, while in the 5D affine param- manner that Eqg26) replace Eqs(17). The important thing

etrization the 4-acceleration has components parallel to thi® note is thau® is not equal tady®/d\, as may naively be

4-velocity. assumed. We can understand E4Dg by interpreting it as
To complete our discussion of the proper time parametrian equation concerning relative velocities. Geometrically,

zation, we need to specify how the velocity along the extragq, (14) tells us that thé N term in Eq.(408 represents the
dimensiony evolves withs. Going back to Eq(33b), itis  projected velocity of points on the* coordinate grid with

Clear th";‘th'ffzg thfnj_( 1: }:tl T ?at ISt" i tTe 5Dt p{ar;[htls null,_f respect to a “stationary” coordinate frany (i.e., a system
we must haverv,= = 1. lLIS Interesting to note that even it ¢ -5 ginates ofx,; with N*=0). This stationary coordinate

the 5D path is a null geod.esic.wiﬁlﬂ“_vAzo, We can still frame has been extensively studied in the literature and has
have the 4D trajectory as timelike withf'v ,=1. This cor- en termed “canonical[8.24,27.% Obviously, y* is the

respondence between massless trajectories in 5D and m X . : ;
sive ones in 4D has been noted befffe24,27. For cases -velocity of the particle with respect to the' grid. TheLe-

wheree=*1, we can use Eq33b) to get (y¢)' =y’ (1  fore,u®is the velocity of the particle with respect to thé

—x?). This into Eq.(32b) gives frame, or, in other words, the veloci'_ty of the particle in ca-
nonical coordinates. The fact that+y“ is not particularly
X' = (1= x*)(Kypv 0P = xn"vPVang), e=+1, worrisome because having solved E(26) it is easy to ob-
tain y* andi from Egs.(40).
x=*1, €=0. (39 The second way in which the results of Secs. Il A and

i . Il B differ from previous studies has to do with the presen-
These formulas, along with EqE35) and (33) give our de-  a4ion of the equations of motion. In the literature, higher
scription of the (3+1)+1 split of the 5D geodesic equation gimensjonal geodesics are often analyzed in terms of the
in the proper time parametrization. so-called “fifth force,” which for any 4-vectog® is defined

as
C. Differences between the current formalism
and the literature o dg*

. . . . _ _ f*(aq)= K_Frﬁyqﬁqya (41)
Before discussing the confinement of particle trajectories
to a given hypersurface, we shall discuss some of what o . . .
makes the current work different from previous studies. AsWherngv are t.he C'hnstoffel symbols a.ssouated Wit
mentioned in Sec. I, a number of authors have considered tH8 4D: f“(d) is identical to the acceleration gf'. However,

force-free motion of particles in 5D, but most have concenin€ equality between®(q) anda®(q) does not hold in SD.

trated on the determination of equations of motion from Eq.TC S€€ this, we write
(1) or the equivalent variational principlg4], and references
therein. The splitting of spacetime from the extra coordinate
has been achieved by considering the first four equations of
motion differently from the last one. The algorithm presented

in Sec. lll A and Sec. Il B achieves the splitting in a more

f*(a)=09"3.q*+Tg,0°q”

= (h*®—n"n®)qadeq+T'5,0%q”

—qPB a a BrY_ A\ LB o
geometric fashion, employing the {3L)+1 dimensional 97959" + 1,070 = (qan")n"dgq
foliation technology introduced in Sec. Il. This fundamental _ By na AB -
difference in methodology results in two main differences =07Vpa"— (Aan")n"deq”. (42)

between descriptions of 5D geodesics. We proceed to outlinfn going from the second to the third line, we have used the

these differences in this section. B _ ; e DAB b aBaALB
First, we note that the central object in our description offaCt €pds = after making the substitution h*"ees

article traiectories is®= e?u® while in the literature it is We have therefore established that the fifth force is not equal
P J 3 A . to the 4D acceleration vector, instead they are related via
y*=dy“/d\.° But these are not equal. To see this, we can

use Eqs(13), (15) and(18) to get fe(q)=a%q)— (qgn®)n”d,q°. (43)
uA=el(y*+INY)—dinA (39  This equation raises an important point about the behavior of
f« under 4D coordinate transformations. It is obvious from
This then yields Eq. (27) thata“(q) is a 4-vector. But we will now demon-
o strate that- én*9,q¢ is not. Consider a 4D coordinate trans-
u“=y*+IN%, (408 formation y*—y®. Under such a transformation, we know
_ thatq® transforms as a 4-vectaq®= (ay*/dy*)qf. This im-
E=DdI. (40b) plies the following transformation law far*9,q<:
3For concreteness, we limit ourselves to theparametrization, “The warped product metric ansatz popular in brane world models

although our comments apply equally well to thparametrization. is an example of a canonical coordinate system.
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ay® q° iy® multiplier. We have factored out @(\) term, which is the
nAo.0P+ —(N*9,—d)) (44) lapse function evaluated along the trajectory. We have done
ayP ® this to simplify the equations of motion, which are obtained
from the standard Euler-Lagrange formulas. This result is

Ay Ta_
n o'?Aq - - .
ayP

Here, we have used E(L5) to substitute fon” and then the
definitions ofe’, and|* with the chain rule to transform the uBVguh=un”, (46)

partial derivatives. The first term on the RHS is what one _ _
would expect to see ii*d,q* was indeed a 4-vector. But the Where we have used,=®d,l. Now, because=0 along

presence of the second term indicates that it is not. In patn€ trajectory, we require that'dae=0. This condition may
ticular, if either the shift vectoN® is nonzero or the 4D P€ Written as

coordinate transformation dependslpthenn®d,q® will not 0=é=uPn (47)
satisfy the usual tensor transformation law. This of course A

means that the fifth force defined by E(#1) is not a which is an obvious requirement for paths confined to a
4-vector. Also, we note that several authors have found thajiven 3, hypersurface. We now contract both sides of Eq.

in the s parametrization the fifth force is not orthogonal to (46) with n, and make use of the fact that Eg7) implies
4-velocity, which is in direct contradiction with standard 4D thatn,Vu”= — u”Vgn, to obtain

physics. This difficulty is removed by adopting the descrip-
tion of Sec. Il B, where the acceleration of is properly w=uruBv,ng. (48)
orthogonal tov“. For these two reasons, we prefer to de- ) A A
scribe the 5D geodesics in termsadf as opposed t6®. This ~ Finally, we note that sincg=0 we can writeu”=e,u*,
choice is not critical because one can easily move betweefhich yields that
the two descriptions by using E43).

p=K,guuf. (49)
IV. CONFINEMENT OF TRAJECTORIES TO X, This result fixes the force of constraipn® that appears on
HYPERSURFACES the RHS of the equation of motiai@6).

We now wish to address the issue of what happens to the
3+1)+1 splitting performed in Sec. Il A in the presence

this confinement force. We can replace the ordinary geo-
desic equatioril 73 with the constrained equation of motion
(46) and our solution forw. Then, without first demanding

) . thaté=0, we can redo the manipulations of Sec. Il A on the

hyper;urface, and to.dgtermme the .form of the 4D equation o, equations. It transpires that Ed26a and (26¢) are
of motion. Our description is essentially that of an eﬁ‘ectlve_unaffected by the presence of the confining force. However,
theory, since we do not speculate about the source of thléq (26 is modified to read
nongravitational acceleration. In what follows, we will use ~—
the term forc_:e to refer to what should properly be called a £=— enPuBV,ng . (50)
force per unit mass.

There are several possible avenues one can use to derighe possible solution to the modified system of equations
the confinement force. One possibility is to modify the cal-formed by Eqs(26a), (260), and(50) is £=0. Assuming that

culation of Sec. Il A to include an undetermined externalye do have a situation whete=0, then spilt geodesic equa-
force. Then, one can enforce the confinement of the particlgons of motion given by Eq(26) become

by demandingg=0, which in turn places constraints on the

external force. Another route begins with the Gauss- ufVeu=0, ¢=0, e=h,guu”. (51)
Weingarten equation, which relates the 4D and 5D accelera- ) ] ] )
tions of a curve confined to a givély hypersurface, and can Ir_1 other Worc_zls, we hav_e dl_sco_vered that if the higher dimen-
hence be used to fix the form of the nongravitational forceSional equation of motion is given by

[19,28. However, if one wishes to proceed from first prin- Bo A g By A

ciples, a particularly transparent derivation comes from the UFVBU™= (K guu®)n®, (52
method of Lagrange multipliers, which is what we will give 5,4 e impose the initial conditiosi=0, then the particle

in this section. ) o , trajectory will be confined to a singl®, hypersurface. In
We take the 5D particle Lagrangian, in the affine param-qgition, the particle will travel on a 4D geodesic of that
etrization, to be hypersurface, defined by’V,u®=0 andu®u,=e. In more
physical terms, we can say that motion of the particle under
L= 3 gagu™u+u(N)DPN)[1(xXN) = 1o]. (45  the action of the 5D confinement force looks like force-free
4D motion on3,; .
Here, the constraint on the particle motion is given by This conclusion merits a few comments before we move
o(xM) =1(x*—1,=0, which essentially means that the tra- on to the next section. First, the form of the confinement
jectory is confined to th&, hypersurface corresponding to force could have been anticipated from elementary physics.
| (x*)=1,. The undetermined functiop(\) is the Lagrange Although our formulas have been derived with a 5D mani-

As mentioned in Sec. |, a variety of different mechanisms
have been suggested to confine matter fields to a 3-brane.
this section, we explore the classical particle analogue of thi
field concept. Our goal is to find out what kind of force per
unit mass is required to confine test particles to a giign
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fold in mind, they hold equally well in any dimension. So, the curvesy. located on the hypersurfac&s, at|=0~.
consider a (2-1)-dimensional flat manifold in polar coordi- Since theZ, . hypersurfaces are in the bull,. satisfy Egs.
nates with a line element (51) with ha5—>h§B. But one of Israel’s junction conditions,

which must be satisfied in the neighborhood of the brane, is

ds?=dt>—dr?—r2d¢2. (53
[hap]=0, (54)

Suppose that in this manifold there is a particle confined to
move on arr =R hypersurface; i.e., on a circle of radigs ~ where we have used the usual jump notatigh - -)]
Then, the force per unit mass constraining the trajectory has (- - -)j=o+— (- - -)i=o-. That is, the intrinsic 4-geometry of
a magnitude of|K,zu“uf|=R(d¢/ds)?=v?/R, wherev  the X, hypersurfaces must be continuous across the brane.
=Rd¢/ds is the linear spatial velocity. This result is recog- Since the confined trajectorielé are determined entirely by
nized as the centripetal acceleration of a particle moving in @he intrinsic geometry, we see that both and y_ must
circle from undergraduate mechanics. Therefore, the confinexpproachy, asl—0. Therefore, the confined trajectories on
ment force we have derived in this section is nothing morehe brane are perfectly well defined and are described by Eq.
than the higher dimensional generalization of the familiar(51). However, it is interesting to note that the acceleration
centripetal acceleration. of the y.. curves, as given in E¢52), will not be continuous

Second, the causal properties of the 5D trajectories aracross the brane. This is because of thesymmetry of the
preserved when they are confined to 4D hypersurfaces. Thisrane world, which says the extrinsic curvature of the
is, the fact that®u,=u“u,= e implies that timelike paths in hypersurfaces is discontinuous abbstO:
5D remain timelike when confined t®,, null paths in 5D
remain null when confined t&,, etc. This is in contrast with K;B= - K;ﬁ:[KQﬁ]aﬁO. (55)

Sec. Il B, where we saw that the projection of a 5D null

geodesic path onto B, hypersurface could be timelike, but Therefore, the 5D acceleration ¢f cannot be sensibly de-
with a complicated equation of motig85). In other words, ~fined because the one-sided limits AF=K ,zu*u®n® do

free massless particles in 5D can look like accelerated magot agree. At this juncture, this is not a source of concern
sive particles in 4D, but confined massless particles in 50becauseA® is orthogonal to the brane and is hence not di-
look like free massless particles in 4D. On a related note, theectly measurable by observers. However, we shall see below
5D affine parametek coincides with the 4D proper timg  that this acceleration is measurable in a different context,
for confined paths. which will necessitate careful consideration.

The third point is that the confining force vanishes if ~ Our fifth, and final, point is that the 4D equation of mo-
K.z=0. In this case, geodesics an are automatically geo- tion u®v,uf=0 means that we cannot observationally dis-
desics of the 5D manifolt¥l. As pointed out by Ishihara, this tinguish between a purely 4D universe with potentially ex-
is hardly a new resulf19]. Hypersurfaces that havi , 5 otic matter and a brane world type scenario from the
=0 are known as geodesically complete. However, it shouldkinematic data of macroscopic test partidlds. both cases,
be pointed out thak ;=0 is a sufficient, but not necessary We have geodesic motion on the 4D manifold. If we want to
condition for a geodesic oB, to also be a geodesic of. determine if our world is fundamentally 4D or if we are
The necessary condition }gaﬁuauﬁza which can be sat- Mmerely confined tq a A}D hypersprface, we need to i'ntroduce
isfied if K, z#0. For example, the asymptotes of a hyperbo-Néw concepts, which is the subject of the next section.
loid Sin Euclidean 3-space are geodesics of b®#ind k3.

But, it is not difficult to show that if all the geodesics an V. 5D POINTLIKE GYROSCOPES
are geodesics d¥l, thenK 5 is necessarily zero.

Fourth, we should comment on how the calculations of
this section fit into the brane world scenario. The observant In Sec. IV, we saw that if a particle is confined taa
reader will have already noticed that our manipulations im-hypersurface by a centripetal confinement force, then it will
plicitly assume that the 5D manifold is smooth and free oftravel on a geodesic &&,. This means that we cannot ob-
defects. Since this is not the case in the thin brane worldervationally distinguish between confined motion in 5D and
scenario, one may legitimately wonder whether or not oufree motion in 4D by studying the form of the trajector§
results apply to a particle confined to a 3-brafi@ answer =Xx%(\). However, just as an observer in a closed vessel can
the question, suppose that our 5D manifold contains aise a gyroscope to determine if he is in a rotating reference
3-brane corresponding to the,_,=3, hypersurface. We frame, we will see that we can use spinning bodies to deter-
can view the trajectory of a confined particle on the brage mine if apparently free particles are in actuality accelerating
as the limit of a series of confined trajectories on hypersurin higher dimensions.
faces living in the bulk. To have a sensible theory, the limit-  Our staring point is the equations of motion for a “point-
ing procedure must result in the samg curve as the brane dipole” spinning particle moving in a 5D manifold. These
is approached from the>0 andl <0 sides. Now, consider

A. A spinning particle in 5D

%We exclude from the discussion possible short-range modifica-
SOf course, this is not an issue in the thick brane world scenariotions of Newton’s gravitational law due to the 5D graviton propa-
where the manifold is smooth in the neighborhood of the brane. gator because it is a quantum effect.
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equations for force-free motion in 4D were given by Papa-Note thato®” behaves like a 5D scalar quantity. Substitution
petrou[36,37 and were later generalized by Schiff to in- of our assumed form o6 into Eq. (56) and contracting
clude nongravitational forces and pointlike gyroscopeswith gﬁ yields, after some algebra

[38,39. The extension to 5D is trivial, provided that we as-

sume that any no_ngravitatio_nal forces exer_t no torqu_e on fche O:Uab{(o_a_ UC)[('TbJF(u,Ub)u]JF(('Ta_ ooy}, (61)
body. The equation of motion for the anti-symmetric spin

AB ;
tensore™™ Is where we have suppressed the 5D indices for clarity. This

“AB_ B, “AC_ A, 'BC can be solved in a manner independent of our choice®8f
o =Wl T U Uco (56)  if the basis vectors satisfy

Here, u” is the 5-velocity, and an overdot indicatBgd\ UBVgol = — (Agal)u?, (62)
=u”V,. The equation of motion for the 5-velocity is

where we have made use of E§7). This is the equation of
UAVAUB=AP,  uhup=1, (57) 5D Fermi-Walker(FW) transport ofo® along the integral

curves ofu” subject to the condition @qug. Therefore,
whereAB is the 5D acceleration induced by nongravitationalwe have demonstrated that the spin tensor of a pointlike
forces. We have followed Schiff and neglected the couplinggyroscope in 5D can be expressed in the form given in Eq.
of the Riemann tensor ta” as is appropriate for a point (59), where ¢®° is an arbitrary 4 4 antisymmetric tensor
gyroscope. We will apply Eqg56) and(57) to 5D pointlike  with constant entries, provided that thie’s} basis is FW
gyroscopes that are freely falling, as described in Sec. Ill Atransported along the gyroscope’s trajectory. The six degrees
and gyroscopes that are subject to a centripetal confiningf freedom ofc® are carried by ther2® matrix.
force, as described in Sec. IV. In the latter case, we must \We note that the spin vector of a particle in 4D is gov-

assume that the confining force acts at the center of mass tned by an equation identical to E@2). Therefore, the
satisfy the torque-free requirement. Essentially, we need t@roblem of determining the evolution of the spin tensor of a
neglect the “tidal” variation in the confining force over the pointlike gyroscope in 4D and 5D is operationally identical;
body, which is reasonable for a body of extremely small sizej.e., one needs to solve the FW transport equation. However,
With these assumptions in mind, we can apply the above spithe relation between the soluti@h of that equation and the
equations of motion to a pointlike gyroscope in 5D. full spin tensor is different. It is interesting to note that the
However, our analogy with familiar spacetime physicsmethod outlined here will work in any dimension, including
must end here because we cannot generalize the 4D procg+ 1, while the procedure of identifying spin angular mo-
dure of mapping the spin tensar"® onto a unique spin  mentum with a single vector is peculiar to the case of three
vectorg” to the 5D case. To see why this is so, we note thakpatial dimensions. Regardless, we are now faced with the
contraction of Eq(56) with u” reveals that four of the ten prospect of solving the FW equation in 5D. This is the sub-
equations fora”® are redundant. Hence the system of Eq.ject of the next section.
(56) is underdetermined; that is, we need to impose some
sort of subsidiary condition oa”B. As in 4D, we can choose B. Splitting of the 5D Fermi-Walker transport equation

the spin tensor to be orthogonal to the 5-velocit . . .
P g y In this section, we will attempt to perform a {3L)+1

splitting of the equation of FW transport for the spin-basis
vectors{cr{:} similar to the splitting of the geodesic equation
. , performed in Sec. Ill A. The relevant formulas are given by
This reduces the number of degrees of freedomﬁﬁto SIX. Egs.(57) and(62). For brevity, we will omit the Latin index
The same requirement in 4D implies that the spin tensor hag, the spin-basis vectar® . We will consider the cases of

three independent components that can b(_a unique_ly mappeﬁ%e and constrained motion in 5D by setting
onto a 4-vector orthogonal to the 4-velocity. But in 5D, a

5-vector orthogonal to the 5-velocity has four components, 0 for 5D geodesic motion,
which is not enough to descrike*E. But, the six degrees of AB
freedom do correspond to the number of independent com-

ponents of an antisymmetric 4-dimensional matrix. This mo-

tivates us to decompose*® into a basig o4} that spans the As me”“o”ef' a_bove,Avv_e assume that the spin basis is or-
A thogonal tou”. Sinceo” is FW transported along the gyro-
space orthogonal to™:

scope trajectory, its magnitude is constant and can be set to
—1. Hence we also have

a"Bu,=0. (58

= . 63
Kngu®ufn®  for 5D confined paths. 3

o"B=g®glal, 0=upoh, o¥P=-02 (59
Uroa=0, o"op=—1. (64)
We now demand that thgra} basis is chosen in a manner
that ensures that thexd4 ¢2° matrix has constant entries: We also define
V,o?=0. (60) g¥=exd”, S=o0"n,. (65)
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Case 1 AB=0. The gyroscope’s center of mass motion isi.e., the angle between® and o® is conserved. As men-
described by Eq(26). The mechanics of the decomposition tioned above, this is not true for the case of 5D geodesic

of Egs. (62) and (64) is similar to the calculations of Sec.

motion. The right-hand member of E¢72) is consistent

[l A, so we will omit the details and present the final results. with Eq. (700); i.e., the magnitude o&“ is not conserved.

We get
uv,of=3K*u,+ éebn Vo5, (663
2=Kaﬁua0ﬂ_§nAUBVAnB, (66b)
1=3%—h,z0%". (660

These formulas are analogous to the three equatigfs
used to describe the behavior @f and £. The fact thato®

We have hence derived Eq$€6) and(70) governing the
behavior of the{os} spin basis in terms of a (81)+1
splitting of the 5D manifold. However, 4D observers will not
observe these vectors directly, they will rather see the pro-

jection of the spin tensos*B onto 3. So, to make contact

with physics, we must consider

ab _«a
oa0f,

ocP=efefo"B=¢ (74)

where we have made use of the decompositioa’tst given

does not satisfy the 4D FW transport equation means thdy Ed. (59) and Eq.(65) and re-introduced the spin basis
there will appear to be an anomalous torque acting on the 4ffidices. We can now ask various physical questions, for ex-

spin tensor. This torque prevents the norm of dtfe4-vector

ample, is the magnitude of the 4D spin tensor conserved? We

from being a constant of the motion, despite the fact that th&an write

norm of o is conserved. This result causes us to ask'if ,
is a conserved quantity, like o, is. We note thatu”o,
=0 implies thatu“o,= £3,. Differentiating this scalar rela-
tion with respect to\, we get

d(u®o,)/d\=ES+ 3 &, (67)
We substitute in expressions fbﬁndi from Eqgs.(26b) and
(663 and simplify to get

d
a(uaoa)=(§oB+EuB)UAVAnB. (68)

T apo P =hpghcpo”“a®P. (75
Expandingh,g and simplifying yields
040 P=0,,0%°+ 200,33, (76)
where we have defined
DICIINGA (77)
and used the metric of the spin basis
Jab=0ABTATH (78

In obtaining this equation, we have made use of the identityo raise and lower spin indices. It is easy to demonstrate that

UAVAI’]B= Kaﬁu“eg— §nAVAnB y (69)
which can be proved by expandifgng in the basis vectors
(e%,n?). Equation(68) demonstrates thai®c, is not a con-
stant of the motion.

Case 2: A=K ,zuuPn®. In this eventuality, we take the

5D trajectory to be described by E¢(1). The splitting of
Egs.(62) and(64) takes the form

™#=u*V, 0P, (709
S =K, gu%0®, (70b)
1=3%2—h,go%", (700
where we have defined the anomalous torque by
=3 (K*Pu,—K*u,u,uf). (71
This anomalous torque satisfies
0=rPuy, 22=7‘ﬁ0'5. (72)
The left-hand equation implies
0=h,zu“c?; (73

VaQap=0 from Eq.(62), soo,,02° is a constant. Therefore,
the 4D Spin()'aﬁoﬂﬁ will not be conserved i, varies along
the path, as is the case for both freely falling and constrained
trajectorieg Eqgs. (669 and(70b)].

Clearly, the behavior of*# in the general case is a sub-
ject that deserves in-depth study, but we will defer such dis-
cussions to future work. We will instead give a specific ex-
ample of how the magnitude of the 4D spin of a gyroscope
will vary when that gyroscope is confined to a
(3+1)-dimensional hypersurface in a {3)+1 dimen-
sional manifold. This example is the subject of Sec. V D.

C. Gyroscopes in the brane world

As in Sec. IV, the observant reader will have again no-
ticed that we will have trouble applying our results to the
thin brane world scenario. However, our predicament is more
dire in this situation, because Edg0) governing the evolu-
tion of spin basis vectors confined to a sindle hypersur-
face make explicit reference to the extrinsic curvature of that
hypersurface. This is a problem because, as seen i(bby.
the extrinsic curvature of an infinitely thin brane is ill-
defined. At best, our formulas can be used to describe gyro-
scopes traveling on the. bulk trajectories discussed in Sec.
IV, which are infinitesimally above or below the brane.

Before abandoning the thin brane world entirely, we can
try to understand the behavior of a spin-basis vector in the
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vicinity of the brane. As in Sec. IV, we place the brane at the g
position of the3 ; hypersurface and consider the neighboring
3, . hypersurfaces. The curveg, and y. are geodesics on
the respective hypersurfaces, and we have previously seen
that y.— 7y as>.—2,. Now, consider the spin basis vec-
tors a’; , which are 5D vectors FW transported alofg ,

and hence satisfy Eq$62) and (70). As mentioned before,

the 5D acceleration of the.. curves differs by a sign, which
implies thato” will not have the same equation of motion.

Hence, we will in general have that} —¢” as3.—3,, __.-"' S -
irrespective of initial conditions. To state this in a different -3 pa o4

way, imagine thaty is a 5D congruence of curves which are

everywhere tangent to geodesicgfhypersurfaces and that FIG. 1. The spin basis vector fielel* in the neighborhood of the
o™ is a 5D vector field that is everywhere FW transportedbr_anezo' o’ are mirror _images of one another, which is what one
along y. Then, we have seen that can be chosen to be might expect of an ordinary vector under tilg symmetry. For

smooth across the brane but thet s in generatliscontinu-  "eference. we show how an axial spin vecsrwould transform
underZ,, with its tangential components reversed.
ousacross thed, hypersurface.

What is the nature of this discontinuity? It is easily seen
that while Eqgs.(70) are not invariant undeK,;— —K,z,
they are invariant underK(,;——K,z,0——0") and
(Kgpg— —Kgup,2——2). This raises two possibilities, either
the normal component @f* is continuous and the tangential
component is discontinuous across the braneice versa
The former situation is akin to the behavior of the magnetic
field in the presence of a surface current, while the latter case
is like discontinuity of the electric field around a surface We now turn our attention to a specific metric which has
charge distribution. In both cases, the discontinuous compdseen used to embed standake-0 Friedmann-Leméne-
nent is reversed as the brane is traversed. To define the coRobertson-WalkefFLRW) cosmologies in a 5D flat space.
tinuation of theo” from, say, thet+ side of the brane to the The line element, which was first given by Ponce de Leon
— side, we need to choose which component is continuoug40], is
and which is not. There is no mathematical reason to prefer
one choice over the other, but an intuitive choice comes from
the 7, symmetry around the brane. This symmetry implies
that we can think oB, as a mirror. Hence, if we choose to
have the tangential component @t reversed on either side
of the brane, we have essentially elected to hafletrans-
form as an axial vectaalso known as a psuedovegtander a(t,])=tle V- (80)
reflections. The opposite choice, namely that the normal ' '
component ofa” is reversed as one crosses the brane, im
plies thata” transforms as an ordinary vector under reflec-

tions. The dfqrmelr 5|f[uat|on IS é/vur;?t we wougj eg(pecbﬁ‘ = const hypersurfaces of this metric share the same geometry
were a traditional spin vector. is not a 5D spin vector, .« a—0 ELRW solution with a scale factor equalagt,|),

it is simply a member of a basis and should hence transformich in turn corresponds to matter with an equation of state
as an ordinary vector. Therefore, we choose to have the tarb-:(za/3_1)p The way in which the 4D big bang is em-

gential components of* continuous across the brane. Our bedded by metrics of the forrt79) has been discussed in
choice for the continuation af”* across® , is shown in Fig. detail elsewher41,47.

1, along with the alternate scenario for a hypothetical 5D
spin vectorS”.

This continuation oi-" across the brane can be viewed as
a way out of our dilemma because the observationally acce
sible part ofc” has a well defined limiting value ds-0. In
this case, the dynamics of* andX can be worked out using
Eqg. (70) on either the+ or — side with the assurance that
the answer fora* will be the same. Whether or not this
mathematical trick has any physical relevance is an open a _a_r|-1 -2
question; the skeptical reader may conclude that the discon- Noy=u*=I"f(th), pa=(t.),0,0], (813
tinuity in the geometry precludes sensible descriptions of 5D . 1 .
spin tensors on the brane, which could be viewed as an in-  Mgy=u“=a “(t,H[BI"~(t,1),0,0], (81b

dictment of the thin-brane picture. At any rate, our formalism
can be freely applied to smooth manifolds, which include
thick-brane solutions. In the next section, we will look at a
specific example of gyroscope motion from 5D noncompac-
tified Kaluza-Klein theory.

D. Variation of 4D spin in a cosmological setting

242

(f—cﬂz, (79

dS?=12dt?—a?(t,l)dx- dx— :

wherex=(x,y,z), a is a parameter, and

This metric is a solution ofRagcp=0; i.e. it is 5D
Minkowski space written in complicated coordinates. The

In this section, we will consider a pointlike gyroscope
confined to move on one of the, hypersurfaces by a non-
gravitational centripetal force as discussed in Sec. IV. Our
Yoal will be to solve Eq(70) for the orbits of the spin basis
vectors{oy ,2,}. We make the simplest possible choice for
coordinates or¥,;, namelyy®=(t,x,y,z) so thate,=&".

Let us introduce a set of basis vectors Hn
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o Aa_ - A
)\(Z)Zy =a l(tll)[oloillQI (81(:) n/\
R 4
Ay=z"=a"%(t,1)[0,0,0,1. (810
Here, B is a parameter and the functidit,l) is given by
f(t,1)=V1+p%a ?(t,l). (82 Y 5
It is not difficult to verify that this basis is orthonormal: Ao 2o\ A
, (y\,z Ve
() = Naph (A » (83 S -
where 7,y =diag(1-1,—1,—1). Also, one can verify 0 A
that the basis is parallel propagated along the integral curves / siny-sin@ cs
of u®: —a, A
Uéy
UV A, =0. (84) FIG. 2. The decomposition af* in the {\{,,n"} basis.
Hence,u” is tangent to geodesics &) and the other mem- o=siny(t,l), S=cosy(t,). (89)

bers of{xf“ﬂ)} are 4D FW transported along those geodesics.

These geodesics represent a par;icle moving in thesigyre 2 depicts the decomposition af* in the NGy,
x-direction with a proper speed g8/a“(t,1). As demon-  p5is (Recall that sincai®o,=0, o® will have no projec-
strated in Sec. IV, when test particles are confined to a giveq,, on NS =Ue)

>, hypersurface they will travel on geodesics of that hyper- Substi(tu)ting Eqs(85)—(89) into Eq.(70 and taking sca-

. . . SNy products with each of thf\?, } basis vectors yields an
on one of theu® integral curves. Also notice that if the spin integrable set of first or(i;méiﬁerential equations for
b33|s were .4D.FW tranasported along the |nt.egral curves o v.0,4). We omit the details and quote the results:

u®, the projections ofoy onto the{A{,,} basis would be

constant. We shall see that this is not the case for 5D FW COSy=C0S¢,c0g ¢,+aBa (t,1)], (903
transport.
Having specified the form of the trajectory, we turn our sing;=sinysin g, (90b)

attention to Eqs(70). By calculating the extrinsic curvature
of the 3, hypersurfaces and substituting in the expression é= @3, (900
(819 for u®, we can determine the anomalous torque defined
by Eq.(71): where we require

N B | f(t,l) —, T T

T m u®. (85 — §$¢1$ > siny#0. (92

Interestingly enough, the anomalous torque vanishes if thﬁlere, the anglege;} are constants of integration. Equation
gyroscope is comoving wity?=_0. This is demande.d by isot- (903 governs the evolution af“c, and3, while Egs.(90b)
rop?c/; agonzi{mr;_ fort.comovmg paths would pick out @ anq (900 state that the projection of® onto the plane
precirgﬁnusiﬁg I?ve Isrﬁ;;;?gés the Latin index off and s spanned by® andz® is of constant magnitude. In the late
L o a ar epoch limit we have thai(t,l)— o, which implies that coy
Now, Eq. (73) gives that_a IS _orthogonal tou. W_e can  and sing approach constant values. In other words, the spin
therefore expand any spin basis vector as follows: basis vectors become static for late times. As mentioned
above, they are also static for comoving gyros wik 0.
For early times, the variation of thg and # angles implies
that the spin basis vector precesses with respect to a 4D
nonrotating frame.
87) To make contact with 4D physics, we must now specify a
set of four linearly independent spin basis vectors by choos-
ing four different sets of the constant angles}. We can
then construct a 4D spin tensor from E@4), with o2°
arbitrary. We will not do that explicitly here, we rather con-
tent ourselves with the observation that EGRY), (76), (89)

c*=c00% —1=o0,0% OZUQ(AT“, (86)
with
o*=U“cosfH+sin O(Y*cose+ z°sin ).

Here, (0,0, ¢) are considered to be functions band| and
can be thought of as the spherical polar componenis“of
Equation(700) gives

1=02+372, (88) and(90a imply that the magnitude of the 4D spa'ﬁﬁoaﬁ is
not conserved. In fact, it is not difficult to show that in the
which motivates the ansatz a—oo limit the derivative of the spin magnitude obeys
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solution of the Fermi-Walker transport equation, just as in
xa 2, (92) 4D, but relation to the spin tensor is different than in the

spacetime case. In Sec. V B, we performed & (3 +1 split
Because this variation takes place on cosmic time scales, it & theé 5D FW equation for the case of freely falling gyro-
not likely to be observed by an experiment like Gravity SCOPeSIEQ. (66)] and confined gyroscopdgq. (70)]. We
Probe B. However, the example in this section was intende€monstrated that in both cases, the magnitude of the 4D
to be illustrative of the method rather than an experimentaPPin iS not conserved due to the existence of an anomalous
suggestion. Application of the formalism to other higher di- toraue. In Sec. V.C, we discussed how our results should be
mensional scenarios may lead to experimentally or observad'terPreted in the thin brane world scenario. In Sec. V D, we

tionally testable effects. We hope to report on such matters jAPPlied our formulas to a specific 5D cosmological example
the future. and derived how the 4D spin of a gyroscope varies when

confined to a%, hypersurface.

In conclusion, we mention a few possible directions for
future work. Equation$26) can be used to study the motion

In this paper, we have used the43)+1 dimensional of observers in the thick brane world and noncompact
foliation of a noncompact 5D manifold described in Sec. Il Kaluza-Klein theories, apparent violations of 4D causality
to analyze various aspects of test particle and pointlike gydue to the existence of 5D “short-cuts,” and the effect of 5D
roscope motion in higher dimensions. dynamics on astrophysical systems. Equatid@b can be

In Sec. lll A, we split the 5D affinely parametrized geo- used to study the issue of whether a given 3-brane attracts or
desic equation into a 4D equation of moti(#6a), an equa- repels test particles. On the theoretical side, an interesting
tion governing the motion perpendicular¥g (26b), and an  exercise involves determining how the extra acceleration
equation describing the evolution of the norm of thea“(u) encodes the electromagnetic force previously ob-
4-velocity (260). We also demonstrated that these three equaserved in the fifth forcé“(u) derived from the 5D geodesic
tions were not independent. In Sec. Il B, we described howequation. The discrepancy between the 5D affine parameter
Egs.(26) behave under a general change of paraniégs.  and the 4D proper time seen in Sec. lll B raises the question
(32)]. We then gave their form in the 4D proper time param-of which one is the correct “clock” to use, which certainly
etrization[Egs.(35) and(38)]. In the latter case, we saw that merits close attention. Our formalism concerning pointlike
the 4-velocity was properly orthogonal to the 4-accelerationgyroscopes should be applied to 5D static and spherically
In Sec. Il C, we showed that the projected 4-velodity symmetric metrics in order to make predictions testable by
=esu” does not equaly®/d\, but rather corresponds to the Gravity Probe B. The issue of the cosmological variation of
velocity in canonical coordinates. We also saw that the fifthspin can be applied to the evolution of the angular momen-
force f« defined by Eq(41) is not equal to the 4-acceleration tum of galaxies, pulsars and high-energy primordial objects.
and does not transform as a 4-vector um?a(yg)_ These ideas do not_comprl_se an exh_austlve list of pc_)tent|al

In Sec. IV, we derived the form of the force required to aV€NUes of exploration, which underlines the generality and

confine a particle to a singl®, hypersurface and showed wide applicability of formulas derived in this paper.
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VI. SUMMARY AND CONCLUSIONS

that it reduced to the ordinary centrlpeta_l force in Minkowski ACKNOWLEDGMENTS
space. We also demonstrated that particles travel on geode-
sics of 2, under these conditions. We would like to thank P. S. Wesson, J. Ponce de Leon
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