
PHYSICAL REVIEW D, VOLUME 65, 124004
Dynamics of test particles and pointlike gyroscopes in the brane world and other 5D models
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We study the dynamics of test particles and pointlike gyroscopes in 5D manifolds such as those used in the
Randall-Sundrum brane world and noncompact Kaluza-Klein models. Our analysis is based on a covariant
foliation of the manifold using (311)-dimensional spacetime slices orthogonal to the extra dimension, and is
hence similar to the Arnowitt-Deser-Misner 311 split in ordinary general relativity. We derive gauge invariant
equations of motion for freely falling test particles in the 5D and 4D affine parametrizations and contrast these
results with previous work concerning the so-called ‘‘fifth force.’’ Motivated by the conjectured localization of
matter fields on a 3-brane, we derive the form of the classical nongravitational force required to confine
particles to a 4D hypersurface and show that the resulting trajectories are geometrically identical to the
spacetime geodesics of Einstein’s theory. We then discuss the issue of determining the 5D dynamics of a
torque-free spinning body in the point-dipole approximation, and then perform a covariant (311)11 decom-
position of the relevant formulas~i.e., the 5D Fermi-Walker transport equation! for the cases of freely falling
and hypersurface-confined point gyroscopes. In both cases, the 4D spin tensor is seen to be subject to an
anomalous torque. We solve the spin equations for a gyroscope confined to a single spacetime section in a
simple 5D cosmological model and observe a cosmological variation of the magnitude and orientation of the
4D spin.

DOI: 10.1103/PhysRevD.65.124004 PACS number~s!: 04.20.Jb, 11.10.Kk, 98.80.Hw
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I. INTRODUCTION

There has been a large amount of recent interest in
possibility that our world contains more than four nonco
pact dimensions. This interest has been largely motivated
the work of Randall and Sundrum~RS!, who postulate that
our 4D universe is in actuality a 3-brane moving in a high
dimensional manifold with large extra dimensions@1,2#. The
introduction of such a model assists in the explanation of
hierarchy and cosmological constant problems. However,
existence of large extra dimensions raises several issues
the least of which is the nature of the trajectories of t
particles in a (311)1d dimensional manifold.1 Several au-
thors have considered this, both in the context of thed51
brane world picture and noncompact 5D Kaluza-Kle
theory. In the former scenario, matter is confined to the br
while gravitons are free to propagate in the bulk on 5D n
geodesics. In the latter scenario, all particles travel on
geodesics but observers can only readily access the 4D
of the trajectory~see@3,4# for reviews!. Specific topics tack-
led in the literature include deviations from 4D geodesic m
tion and the so-called ‘‘fifth force’’@5–12#, astrophysical and
experimental tests of higher dimensional dynamics@13–15#,
violations of 4D causality in the brane world@16–19#, the
tendency of the brane world to attract or repel buck geo
sics@20–22#, the subtle interplay between 4D and 5D affi
parameters@23,24#, and the dynamical acquisition and vari
tion of particle rest masses from dimensional reduction@24–
27#. In work closely related to the study of higher dime

*Electronic address: ssseahra@uwaterloo.ca
1The notation is that 311 refers to ordinary spacetime with on

timelike and three spacelike dimensions whiled refers to the num-
ber of spacelike extra dimensions.
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sional geodesics, several authors have considered
behavior of pointlike gyroscopes moving in 5D manifold
@8,13,15,26#.

We will not address all of these issues in this pap
Rather, we present a generic formalism which may aid in
study of higher dimensional particle motion. In particular, w
wish to describe the motion of test particles in a (311)
11 dimensional manifold in a geometric and covariant ma
ner. Our approach is inspired by the familiar geometric co
struction used in the Arnowitt-Deser-Misner~ADM ! Hamil-
tonian formulation of general relativity, where the 4
manifold is foliated by a series of 3D spacelike hypers
facesS t @28,29#. As described in detail in Sec. II, we intro
duce a similar foliation of the 5D manifold by a series
timelike 4D hypersurfacesS l , each of which corresponds t
a 4D spacetime. Here,l labels the fifth dimension. The
beauty of this approach is that it allows us to covarian
decompose 5D tensors in terms of quantities either tangen
orthogonal toS l , and to derive equations that transform co
rectly under 4D and 5D coordinate changes.

Before describing our geometric framework in detail
Sec. II, we would like to outline the three main motivatio
for this work. First, we note that the majority of the refe
ences cited above deal with higher dimensional geodesic
5D via the well known equation

d2xA

dl2
1GBC

A dxB

dl

dxC

dl
50, ~1!

where l is a 5D affine parameter andGBC
A refers to the

higher dimensional Christoffel symbols.2 Particle trajectories

2See the note at the end of this section for an accounting of
conventions used in this paper.
©2002 The American Physical Society04-1
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are decomposed into a 4D part by considering theA
50,1,2,3 components of Eq.~1! differently from theA54
component, which governs the motion in the extra dim
sion. The 4D part can then be manipulated to look like
4D equation of motion of a particle subjected to a nongra
tational acceleration; i.e., the ‘‘fifth force.’’As pointed out b
Ponce de Leon, this procedure has some drawbacks@11,12#.
The most serious one is that the algorithm is not covarian
5D, which results in the gauge dependence of the extra fo
Another problem is that the fifth force is not orthogonal
the 4-velocity, which contradicts standard 4D physics.
overcome these difficulties, Ponce de Leon has analyzed
5D geodesic equation in terms of local basis vectors
introduced suitable redefinitions of various quantities to
tain a better-behaved description of test particle trajector
We wish to present an alternative formalism based on a
11)11 decomposition of the 5D geodesic equation tha
more geometric than Ponce de Leon’s algorithm, yet s
corrects the problems associated with descriptions base
Eq. ~1!. This is the subject of Sec. III.

The second goal of this paper is to explore the confi
ment of test particles to a givenS l hypersurface. An essentia
ingredient of brane world models is that matter fields
confined to a 3-brane that is identified with our universe.
string theory, this confinement comes about naturally fr
strings with end points attached to the brane. In the RS
ture, localization of the zero-mode of the graviton and ot
fields arises from the discontinuous nature of the geome
Other authors have considered ‘‘smoothed-out’’ versions
the RS model by introducing finite-width, or ‘‘thick,’’ brane
created via dynamical degrees of freedom@30–33#. Localiza-
tion of gravity and other fields comes from a steep, b
smoothly differentiable, extra-dimensional potential. In th
paper, we aim to explore the classical analogue of these,
other, confinement mechanisms making use of the geom
framework discussed above. Several workers have noted
in general, nongravitational forces are required to keep
particles confined to a thin 3-brane@19,20,34#. In Sec. IV, we
will derive the general form of such a confining force for
3-brane of arbitrary geometry and show that it is nothing
a generalization of the centripetal force from undergradu
mechanics.

Our final motivation comes from a result derived in Se
IV, which states that test particles confined to aS l hypersur-
face by normal forces travel on geodesics of that hyper
face. This makes it impossible to distinguish certain hig
dimensional scenarios from ordinary general relativity ba
on the kinematic data of test bodies. This causes us to se
for another test for noncompact extra dimensions, namely
behavior of pointlike gyroscopes in 5D manifolds. We exte
previous work by describing the dynamics of a spinni
body in terms of the foliation language of Sec. II and
considering both freely falling and confined gyroscopes.
Sec. V A, we discuss the general formulation of the po
gyroscope problem in 5D. In Sec. V B, we apply our splitti
algorithm to the spin equations of motion. In Sec. V C, w
discuss how our results should be interpreted in the pres
of a thin 3-brane. Finally, in Sec. V D, we give an examp
of how a point gyroscope behaves in a simple 5D cosmolo
12400
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cal setting. Our main result is that when observed in 4D,
spin angular momentum of a gyroscope confined to aS l
hypersurface is not conserved and that the spin tensor
precess with respect to a 4D nonrotating frame due to
existence of an anomalous torque. Such effects may be
servable by space-based experiments such as Gravity P
B ~see@35# for reviews!.

Our results are summarized in Sec. VI along with sugg
tions for future work.

Conventions. The 5D metric signature is (12222)
while the 4D metric signature is (1222); i.e., the extra
dimension is assumed to be spacelike. In this paper, up
case Latin indices run from 0–4 and lowercase Greek ind
run 0–3. Early lowercase Latin indices run over all four sp
tial dimensions 1–4, while late indices run over the thr
spatial dimensions 1–3 associated with the 4D manifold.

II. GEOMETRIC CONSTRUCTION

In this section, we introduce our foliation of the 5D man
fold and the various geometric quantities that figure prom
nently in subsequent calculations. Consider a 5D manif
(M ,gAB) with one timelike dimension and covered by a
arbitrary system of coordinatesxA. We introduce a scala
function

l 5 l ~xA!, ~2!

which is defined everywhere onM. The 4D hypersurfacesl
5const, which we shall denote byS l , are assumed to have
spacelike normal vector field given by

nA5F]Al , nAnA521. ~3!

Each of theS l hypersurfaces may be associated with a
11)-dimensional spacetime. The scalarF which normalizes
nA is known as the lapse function. We define the project
tensor as

hAB5gAB1nAnB . ~4!

This tensor is symmetrichAB5hBA and orthogonal tonA .
We place a 4D coordinate system on each of theS l hyper-
surfacesya. The four-basis vectors

ea
A5

]xA

]ya
, nAea

A50 ~5!

are by definition tangent to theS l hypersurfaces and or
thogonal tonA. It is easy to see thatea

A behaves as a 5D
contravariant vector under 5D coordinate transformatio
xA→ x̄A and a 4D covariant vector under 4D coordina
transformationsya→ ȳa. We can use these basis vectors
project 5D objects ontoS l hypersurfaces. For example, fo
an arbitrary 5D covariant vector

Ta5ea
ATA . ~6!

Here,Ta is said to be the projection ofTA ontoS l . Clearly,
Ta behaves as a scalar under 5D coordinate transformat
4-2



in

a
th

5D
va
or

d
er
i-
th

i-

in
p

i-

ure
ss
her
or-
ss

ve
ns
to

ion
tra
the
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and a covariant vector under 4D transformations. The
duced metric on theS l hypersurfaces is given by

hab5ea
Aeb

BgAB5ea
Aeb

BhAB . ~7!

Just likegAB , the induced metric has an inverse

haghgb5db
a . ~8!

The induced metric and its inverse can be used to raise
lower indices of 4-tensors and change the position of
spacetime index of theea

A basis vectors. This then implies

eA
aeb

A5db
a . ~9!

Also note that sincehAB is entirely orthogonal tonA, we can
express it as

hAB5habeA
aeB

b . ~10!

We will also require an expression that relates the
covariant derivative of 5-tensors to the 4D covariant deri
tive of the corresponding 4-tensors. For covariant 5-vect
the appropriate formula is

¹bTa5eb
Bea

A¹B~hA
CTC!, ~11!

where¹B is the 5D covariant derivative onM defined with
respect togAB and¹b is the 4D covariant derivative define
with respect tohab . The generalization to tensors of high
rank is obvious. It is not difficult to confirm that this defin
tion of ¹a satisfies all the usual requirements imposed on
covariant derivative operator.

At this juncture, it is convenient to introduce our defin
tion of the extrinsic curvatureKab of the S l hypersurfaces:

Kab5ea
Aeb

B¹AnB5
1

2
ea

Aeb
B£nhAB . ~12!

Note that the extrinsic curvature is symmetric~i.e., Kab
5Kba) and may be thought of as the derivative of the
duced metric in the normal direction. This 4-tensor will a
pear often in what follows.

Finally, we note that (ya,l ) defines an alternative coord
nate system toxA. The appropriate diffeomorphism is

dxA5ea
Adya1 l Adl, ~13!

where

l A5S ]xA

] l D
ya5const

~14!

is the vector tangent to lines of constantya. We can always
decompose 5D vectors into the sum of a part tangent toS l
and a part normal toS l . For l A we write

l A5Naea
A2FnA. ~15!

This is consistent withl A]Al 51, which is required by the
definition of l A, and the definition ofnA. The 4-vectorNa is
12400
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called the shift vector and it describes how theya coordinate
system changes as one moves from a givenS l hypersurface
to another. Using our formulas fordxA and l A, we can write
the 5D line element as

dS 25gABdxAdxB

5hab~dya1Nadl !~dyb1Nbdl !2F2dl2, ~16!

which reduces todS 25habdyadyb if dl50.
This completes our description of the geometric struct

we will use in the rest of the paper. We would like to stre
that this formalism does not depend on the form of the hig
dimensional field equations, or the choice of 5D or 4D co
dinates. It is sufficiently general to be applied to a wide cla
of (311)11 theories of gravity.

III. SPLITTING OF THE 5D GEODESIC EQUATION

A. 5D affine parametrization

In this section, we utilize the formalism introduced abo
to split the 5D geodesic equation into a series of relatio
involving quantities that are either tangent or orthogonal
the S l hypersurfaces. The goal is to derive the 4D equat
of motion, an equation governing the motion in the ex
dimension, and an equation governing the norm of
4-velocity.

We consider a 5D geodesic trajectory with 5-velocityuA

satisfying

05uA¹AuB, ~17a!

e5uAuA , ~17b!

with

uA5 ẋA, ~18!

where an overdot denotesD/dl5uA¹A ande50,61. Since
the norm ofuA is constant,l is an affine parameter. We
define

j[nAuA, ~19!

which allows us to write

uA5hABuB2jnA ~20a!

5ea
Aua2jnA ~20b!

using Eq.~4! and definingua5eA
auA. Putting Eq.~20a! into

Eq. ~17a! and expanding yields

05hACuC¹A~hBMuM2jnB!2jnA¹AuB. ~21!

Contracting this with eB
b and using the fact thathAC

5ea
Aeg

Chag andeB
bnB50, we get

ua¹aub5j~Kabua1eB
bnA¹AuB!, ~22!

whereKab is defined by Eq.~12!.
Returning to Eqs.~17a! and ~20a! we can write
4-3
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05~hAMuM2jnA!¹A~hBCuC!2uA¹A~jnB! ~23!

instead of Eq.~21!. We can contract this withnB and use the
facts that

05hBCnBuC⇒nB¹A~hBCuC!52hBCuC¹AnB

215nAnA⇒nB¹AnB50,

to obtain, after some algebra

j̇5Kabuaub2jnAuB¹AnB , ~24!

where we have noted thatj̇5dj/dl5uA¹Aj.
Continuing, we note thate5gABuAuB can be expanded

by making the substitutiongAB5habeA
aeB

b2nAnB. The result
is

e5habuaub2j2. ~25!

In summary, Eqs.~17! can be rewritten as

ab~u!5j~Kabua1eB
bnA¹AuB!, ~26a!

j̇5Kabuaub2jnAuB¹AnB , ~26b!

e5habuaub2j2. ~26c!

Here, we have defined the acceleration of a 4-vector by

ab~q![qa¹aqb. ~27!

It must be noted that these equations do not represent a
(311)11 splitting of the geodesic equation because the
vector uA appears on the right-hand side of Eqs.~26a! and
~26b!. This shortcoming can be easily alleviated by maki
use of Eq.~20b!, but we find that the present form of th
equations is more useful for subsequent calculations. We
therefore abstain from further manipulations.

As a consistency check, we can contract Eq.~26a! with
ub . After some algebra, we obtain

ua¹a~ubub!52j~Kabuaub1hBCuCnA¹AuB!. ~28!

SubstitutinghBC5gBC1nBnC and using Eq.~26c! yields af-
ter further manipulation

ua¹aj2jnA¹Aj5Kabuaub2jnAuB¹AnB . ~29!

But, the left-hand side is easily seen to be equivalent
uA¹Aj5 j̇. Hence, it is possible to derive Eq.~26b! from
Eqs.~26a! and~26c!. Therefore, Eqs.~26! are mutually con-
sistent in that one of the set is redundant.

In conclusion, we have succeeded in splitting the 5D g
desic equation~17a! into an equation of motion for the
4-velocity ~26a! and an equation governing motion in th
extra dimension~26b!. We have also rewritten the 5D affin
parameter condition~17b! in a matter consistent with th
(311)11 split ~26c!.
12400
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B. Parameter transformation to 4D proper time

Upon examination of Eqs.~26!, it becomes clear that the
5D affine parameterl cannot be the same as what is usua
called the 4D proper times. The reason is that the norm o
the 4-velocityua is not equal to unity by Eq.~26c!. In this
section, we will detail a parameter transformation from t
5D affine parameterl to the 4D proper times that will make
the norm of the 4-velocity constant.

Our parameter transformation is described by the follo
ing formulas:

uA5cvA, c5
ds

dl
, vA5

dxA

ds
. ~30!

vA is the 5-velocity of the test particle in thes parametriza-
tion. We need to also define

x5nAvA⇒j5xc. ~31!

The equation on the right follows fromj5nAuA . We can
substitute these expressions into Eqs.~26! in order to see
what the (311)11 split of the geodesic equation looks lik
in thes parametrization. After a straightforward, but tediou
calculation, we obtain

va¹avb5x~Kabva1eB
bnA¹AvB!2vb~ lnc!8, ~32a!

d~xc!/ds5c~Kabvavb2xnAvB¹AnB!, ~32b!

e5c2~habvavb2x2!. ~32c!

Here, a prime8 denotesD/ds5vA¹A . In order to go fur-
ther, we need to demand that the norm of the 4-velocity
unity in the proper time parametrization:

15habvavb, ~33a!

e5c2~12x2!, ~33b!

where the bottom equation follows from Eq.~32c!. We can
use Eq.~33b! to show (xc)85c8/x, which may then be
substituted into Eq.~32b! to isolate (lnc)8. The resulting
formula can then be inserted into Eq.~32a!. This penultimate
expression may be simplified by the use of the identity

xnAvB¹AnB52hBCnAvC¹AvB, ~34!

which is obtained by operatingnA¹A on both sides of 1
5hBCvBvC and then using Eq.~4!. We finally get the fol-
lowing expression for the 4-acceleration ofva:

ab~v !5x@~Kabva2Kmnvmvnvb!1~eB
b2eB

gvgvb!nA¹AvB#.
~35!

Note that this acceleration is orthogonal tova,

vbab~v !50, ~36!

which also follows fromvava51. This is in contrast to 5D
affine parametrization, which has

ubab~u!Þ0. ~37!
4-4
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That is, in the proper time parametrization the 4-accelera
is orthogonal to the 4-velocity, while in the 5D affine param
etrization the 4-acceleration has components parallel to
4-velocity.

To complete our discussion of the proper time parame
zation, we need to specify how the velocity along the ex
dimensionx evolves withs. Going back to Eq.~33b!, it is
clear that ife50 thenx561. That is, if the 5D path is null,
we must havenAvA561. It is interesting to note that even
the 5D path is a null geodesic withvAvA50, we can still
have the 4D trajectory as timelike withvava51. This cor-
respondence between massless trajectories in 5D and
sive ones in 4D has been noted before@5,24,27#. For cases
wheree561, we can use Eq.~33b! to get (xc)85cx8(1
2x2). This into Eq.~32b! gives

x85~12x2!~Kabvavb2xnAvB¹AnB!, e561,

x561, e50. ~38!

These formulas, along with Eqs.~35! and ~33! give our de-
scription of the (311)11 split of the 5D geodesic equatio
in the proper time parametrization.

C. Differences between the current formalism
and the literature

Before discussing the confinement of particle trajector
to a given hypersurface, we shall discuss some of w
makes the current work different from previous studies.
mentioned in Sec. I, a number of authors have considered
force-free motion of particles in 5D, but most have conce
trated on the determination of equations of motion from E
~1! or the equivalent variational principle~@4#, and references
therein!. The splitting of spacetime from the extra coordina
has been achieved by considering the first four equation
motion differently from the last one. The algorithm presen
in Sec. III A and Sec. III B achieves the splitting in a mo
geometric fashion, employing the (311)11 dimensional
foliation technology introduced in Sec. II. This fundamen
difference in methodology results in two main differenc
between descriptions of 5D geodesics. We proceed to ou
these differences in this section.

First, we note that the central object in our description
particle trajectories isua5eA

auA while in the literature it is

ẏa5dya/dl.3 But these are not equal. To see this, we c
use Eqs.~13!, ~15! and ~18! to get

uA5ea
A~ ẏa1 l̇ Na!2F l̇ nA. ~39!

This then yields

ua5 ẏa1 l̇ Na, ~40a!

j5F l̇ . ~40b!

3For concreteness, we limit ourselves to thel parametrization,
although our comments apply equally well to thes parametrization.
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These equations essentially replace Eq.~18! in the same
manner that Eqs.~26! replace Eqs.~17!. The important thing
to note is thatua is not equal todya/dl, as may naively be
assumed. We can understand Eq.~40a! by interpreting it as
an equation concerning relative velocities. Geometrica
Eq. ~14! tells us that thel̇ Na term in Eq.~40a! represents the
projected velocity of points on theya coordinate grid with
respect to a ‘‘stationary’’ coordinate frameȳa ~i.e., a system
of coordinates onS l with Na50). This stationary coordinate
frame has been extensively studied in the literature and
been termed ‘‘canonical’’@8,24,27#.4 Obviously, ẏa is the
4-velocity of the particle with respect to theya grid. There-
fore, ua is the velocity of the particle with respect to theȳa

frame, or, in other words, the velocity of the particle in c
nonical coordinates. The fact thatuaÞ ẏa is not particularly
worrisome because having solved Eqs.~26! it is easy to ob-
tain ẏa and l̇ from Eqs.~40!.

The second way in which the results of Secs. III A a
III B differ from previous studies has to do with the prese
tation of the equations of motion. In the literature, high
dimensional geodesics are often analyzed in terms of
so-called ‘‘fifth force,’’ which for any 4-vectorqa is defined
as

f a~q!5
dqa

dl
1Gbg

a qbqg, ~41!

whereGbg
a are the Christoffel symbols associated withhab .

In 4D, f a(q) is identical to the acceleration ofqa. However,
the equality betweenf a(q) andaa(q) does not hold in 5D.
To see this, we write

f a~q!5qA]Aqa1Gbg
a qbqg

5~hAB2nAnB!qA]Bqa1Gbg
a qbqg

5qb]bqa1Gbg
a qbqg2~qAnA!nB]Bqa

5qb¹bqa2~qAnA!nB]Bqa. ~42!

In going from the second to the third line, we have used
fact eb

B]B5]b after making the substitutionhAB5habea
Aeb

B .
We have therefore established that the fifth force is not eq
to the 4D acceleration vector, instead they are related vi

f a~q!5aa~q!2~qBnB!nA]Aqa. ~43!

This equation raises an important point about the behavio
f a under 4D coordinate transformations. It is obvious fro
Eq. ~27! that aa(q) is a 4-vector. But we will now demon
strate that2jnA]Aqa is not. Consider a 4D coordinate tran
formation ya→ ỹa. Under such a transformation, we kno
thatqa transforms as a 4-vector:q̃a5(] ỹa/]yb)qb. This im-
plies the following transformation law fornA]Aqa:

4The warped product metric ansatz popular in brane world mod
is an example of a canonical coordinate system.
4-5



e
n
e
pa

rs

th
to
D
ip

e

e

m
e.
th
er

tio
ve
th

se

er
al
a

tic
e

ss
er
n
rc
n-
th
e

m

by
a-
o

one
ed

a
q.

the
e
eo-
n

he

ver,

ons

-

en-

at

der
ee

ve
nt
ics.
ni-

SANJEEV S. SEAHRA PHYSICAL REVIEW D 65 124004
nA]Aq̃a5
] ỹa

]yb
nA]Aqb1

qb

F
~Nm]m2] l !

] ỹa

]yb
. ~44!

Here, we have used Eq.~15! to substitute fornA and then the
definitions ofea

A and l A with the chain rule to transform th
partial derivatives. The first term on the RHS is what o
would expect to see ifnA]Aqa was indeed a 4-vector. But th
presence of the second term indicates that it is not. In
ticular, if either the shift vectorNa is nonzero or the 4D
coordinate transformation depends onl, thennA]Aqa will not
satisfy the usual tensor transformation law. This of cou
means that the fifth force defined by Eq.~41! is not a
4-vector. Also, we note that several authors have found
in the s parametrization the fifth force is not orthogonal
4-velocity, which is in direct contradiction with standard 4
physics. This difficulty is removed by adopting the descr
tion of Sec. III B, where the acceleration ofva is properly
orthogonal tova. For these two reasons, we prefer to d
scribe the 5D geodesics in terms ofaa as opposed tof a. This
choice is not critical because one can easily move betw
the two descriptions by using Eq.~43!.

IV. CONFINEMENT OF TRAJECTORIES TO S l

HYPERSURFACES

As mentioned in Sec. I, a variety of different mechanis
have been suggested to confine matter fields to a 3-bran
this section, we explore the classical particle analogue of
field concept. Our goal is to find out what kind of force p
unit mass is required to confine test particles to a givenS l
hypersurface, and to determine the form of the 4D equa
of motion. Our description is essentially that of an effecti
theory, since we do not speculate about the source of
nongravitational acceleration. In what follows, we will u
the term force to refer to what should properly be called
force per unit mass.

There are several possible avenues one can use to d
the confinement force. One possibility is to modify the c
culation of Sec. III A to include an undetermined extern
force. Then, one can enforce the confinement of the par
by demandingj50, which in turn places constraints on th
external force. Another route begins with the Gau
Weingarten equation, which relates the 4D and 5D accel
tions of a curve confined to a givenS l hypersurface, and ca
hence be used to fix the form of the nongravitational fo
@19,28#. However, if one wishes to proceed from first pri
ciples, a particularly transparent derivation comes from
method of Lagrange multipliers, which is what we will giv
in this section.

We take the 5D particle Lagrangian, in the affine para
etrization, to be

L5 1
2 gABuAuB1m~l!F~l!@ l ~xN!2 l 0#. ~45!

Here, the constraint on the particle motion is given
w(xA)5 l (xA)2 l 050, which essentially means that the tr
jectory is confined to theS l hypersurface corresponding t
l (xA)5 l 0. The undetermined functionm(l) is the Lagrange
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multiplier. We have factored out aF(l) term, which is the
lapse function evaluated along the trajectory. We have d
this to simplify the equations of motion, which are obtain
from the standard Euler-Lagrange formulas. This result is

uB¹BuA5mnA, ~46!

where we have usednA5F]Al . Now, becausew50 along
the trajectory, we require thatuA]Aw50. This condition may
be written as

05j5uAnA , ~47!

which is an obvious requirement for paths confined to
given S l hypersurface. We now contract both sides of E
~46! with nA and make use of the fact that Eq.~47! implies
that nA¹BuA52uA¹BnA to obtain

m5uAuB¹AnB . ~48!

Finally, we note that sincej50 we can writeuA5ea
Aua,

which yields that

m5Kabuaub. ~49!

This result fixes the force of constraintmnA that appears on
the RHS of the equation of motion~46!.

We now wish to address the issue of what happens to
(311)11 splitting performed in Sec. III A in the presenc
of this confinement force. We can replace the ordinary g
desic equation~17a! with the constrained equation of motio
~46! and our solution form. Then, without first demanding
thatj50, we can redo the manipulations of Sec. III A on t
new equations. It transpires that Eqs.~26a! and ~26c! are
unaffected by the presence of the confining force. Howe
Eq. ~26b! is modified to read

j̇52jnAuB¹AnB . ~50!

One possible solution to the modified system of equati
formed by Eqs.~26a!, ~26c!, and~50! is j50. Assuming that
we do have a situation wherej50, then spilt geodesic equa
tions of motion given by Eq.~26! become

ub¹bua50, j50, e5habuaub. ~51!

In other words, we have discovered that if the higher dim
sional equation of motion is given by

uB¹BuA5~Kabuaub!nA, ~52!

and we impose the initial conditionj50, then the particle
trajectory will be confined to a singleS l hypersurface. In
addition, the particle will travel on a 4D geodesic of th
hypersurface, defined byub¹bua50 anduaua5e. In more
physical terms, we can say that motion of the particle un
the action of the 5D confinement force looks like force-fr
4D motion onS l .

This conclusion merits a few comments before we mo
on to the next section. First, the form of the confineme
force could have been anticipated from elementary phys
Although our formulas have been derived with a 5D ma
4-6
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fold in mind, they hold equally well in any dimension. S
consider a (211)-dimensional flat manifold in polar coord
nates with a line element

ds25dt22dr22r 2df2. ~53!

Suppose that in this manifold there is a particle confined
move on anr 5R hypersurface; i.e., on a circle of radiusR.
Then, the force per unit mass constraining the trajectory
a magnitude ofuKabuaubu5R(df/ds)25v2/R, where v
5Rdf/ds is the linear spatial velocity. This result is reco
nized as the centripetal acceleration of a particle moving
circle from undergraduate mechanics. Therefore, the confi
ment force we have derived in this section is nothing m
than the higher dimensional generalization of the fami
centripetal acceleration.

Second, the causal properties of the 5D trajectories
preserved when they are confined to 4D hypersurfaces.
is, the fact thatuAuA5uaua5e implies that timelike paths in
5D remain timelike when confined toS l , null paths in 5D
remain null when confined toS l , etc. This is in contrast with
Sec. III B, where we saw that the projection of a 5D n
geodesic path onto aS l hypersurface could be timelike, bu
with a complicated equation of motion~35!. In other words,
free massless particles in 5D can look like accelerated m
sive particles in 4D, but confined massless particles in
look like free massless particles in 4D. On a related note,
5D affine parameterl coincides with the 4D proper times
for confined paths.

The third point is that the confining force vanishes
Kab50. In this case, geodesics onS l are automatically geo
desics of the 5D manifoldM. As pointed out by Ishihara, thi
is hardly a new result@19#. Hypersurfaces that haveKab
50 are known as geodesically complete. However, it sho
be pointed out thatKab50 is a sufficient, but not necessa
condition for a geodesic onS l to also be a geodesic ofM.
The necessary condition isKabuaub50, which can be sat-
isfied if KabÞ0. For example, the asymptotes of a hyperb
loid S in Euclidean 3-space are geodesics of bothS andE3.
But, it is not difficult to show that if all the geodesics onS l
are geodesics ofM, thenKab is necessarily zero.

Fourth, we should comment on how the calculations
this section fit into the brane world scenario. The observ
reader will have already noticed that our manipulations
plicitly assume that the 5D manifold is smooth and free
defects. Since this is not the case in the thin brane wo
scenario, one may legitimately wonder whether or not
results apply to a particle confined to a 3-brane.5 To answer
the question, suppose that our 5D manifold contains
3-brane corresponding to theS l 505S0 hypersurface. We
can view the trajectory of a confined particle on the braneg0
as the limit of a series of confined trajectories on hypers
faces living in the bulk. To have a sensible theory, the lim
ing procedure must result in the sameg0 curve as the brane
is approached from thel .0 and l ,0 sides. Now, conside

5Of course, this is not an issue in the thick brane world scena
where the manifold is smooth in the neighborhood of the brane
12400
o

as

a
e-
e
r

re
is

l

s-
D
e

ld

-

f
nt
-
f
ld
r

a

r-
-

the curvesg6 located on the hypersurfacesS6 at l 506.
Since theS6 hypersurfaces are in the bulk,g6 satisfy Eqs.
~51! with hab→hab

6 . But one of Israel’s junction conditions
which must be satisfied in the neighborhood of the brane

@hab#50, ~54!

where we have used the usual jump notation@(•••)#
5(•••) l 5012(•••) l 502. That is, the intrinsic 4-geometry o
the S l hypersurfaces must be continuous across the br
Since the confined trajectoriesu6

A are determined entirely by
the intrinsic geometry, we see that bothg1 and g2 must
approachg0 as l→0. Therefore, the confined trajectories o
the brane are perfectly well defined and are described by
~51!. However, it is interesting to note that the accelerat
of theg6 curves, as given in Eq.~52!, will not be continuous
across the brane. This is because of theZ2 symmetry of the
brane world, which says the extrinsic curvature of theS l
hypersurfaces is discontinuous aboutl 50:

Kab
1 52Kab

2 ⇒@Kab#Þ0. ~55!

Therefore, the 5D acceleration ofg0 cannot be sensibly de
fined because the one-sided limits ofAB5KabuaubnB do
not agree. At this juncture, this is not a source of conc
becauseAB is orthogonal to the brane and is hence not
rectly measurable by observers. However, we shall see be
that this acceleration is measurable in a different conte
which will necessitate careful consideration.

Our fifth, and final, point is that the 4D equation of m
tion ua¹aub50 means that we cannot observationally d
tinguish between a purely 4D universe with potentially e
otic matter and a brane world type scenario from t
kinematic data of macroscopic test particles.6 In both cases,
we have geodesic motion on the 4D manifold. If we want
determine if our world is fundamentally 4D or if we ar
merely confined to a 4D hypersurface, we need to introd
new concepts, which is the subject of the next section.

V. 5D POINTLIKE GYROSCOPES

A. A spinning particle in 5D

In Sec. IV, we saw that if a particle is confined to aS l
hypersurface by a centripetal confinement force, then it w
travel on a geodesic ofS l . This means that we cannot ob
servationally distinguish between confined motion in 5D a
free motion in 4D by studying the form of the trajectoryxa

5xa(l). However, just as an observer in a closed vessel
use a gyroscope to determine if he is in a rotating refere
frame, we will see that we can use spinning bodies to de
mine if apparently free particles are in actuality accelerat
in higher dimensions.

Our staring point is the equations of motion for a ‘‘poin
dipole’’ spinning particle moving in a 5D manifold. Thes

o,

6We exclude from the discussion possible short-range modifi
tions of Newton’s gravitational law due to the 5D graviton prop
gator because it is a quantum effect.
4-7
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equations for force-free motion in 4D were given by Pap
petrou @36,37# and were later generalized by Schiff to in
clude nongravitational forces and pointlike gyroscop
@38,39#. The extension to 5D is trivial, provided that we a
sume that any nongravitational forces exert no torque on
body. The equation of motion for the anti-symmetric sp
tensorsAB is

ṡAB5uBuCṡAC2uAuCṡBC. ~56!

Here, uA is the 5-velocity, and an overdot indicatesD/dl
5uA¹A . The equation of motion for the 5-velocity is

uA¹AuB5AB, uAuA51, ~57!

whereAB is the 5D acceleration induced by nongravitation
forces. We have followed Schiff and neglected the coupl
of the Riemann tensor touA as is appropriate for a poin
gyroscope. We will apply Eqs.~56! and~57! to 5D pointlike
gyroscopes that are freely falling, as described in Sec. II
and gyroscopes that are subject to a centripetal confin
force, as described in Sec. IV. In the latter case, we m
assume that the confining force acts at the center of mas
satisfy the torque-free requirement. Essentially, we nee
neglect the ‘‘tidal’’ variation in the confining force over th
body, which is reasonable for a body of extremely small s
With these assumptions in mind, we can apply the above
equations of motion to a pointlike gyroscope in 5D.

However, our analogy with familiar spacetime physi
must end here because we cannot generalize the 4D p
dure of mapping the spin tensorsAB onto a unique spin
vectorsA to the 5D case. To see why this is so, we note t
contraction of Eq.~56! with uA reveals that four of the ten
equations forṡAB are redundant. Hence the system of E
~56! is underdetermined; that is, we need to impose so
sort of subsidiary condition onsAB. As in 4D, we can choose
the spin tensor to be orthogonal to the 5-velocity

sABuA50. ~58!

This reduces the number of degrees of freedom insAB to six.
The same requirement in 4D implies that the spin tensor
three independent components that can be uniquely ma
onto a 4-vector orthogonal to the 4-velocity. But in 5D,
5-vector orthogonal to the 5-velocity has four componen
which is not enough to describesAB. But, the six degrees o
freedom do correspond to the number of independent c
ponents of an antisymmetric 4-dimensional matrix. This m
tivates us to decomposesAB into a basis$sa

A% that spans the
space orthogonal touA:

sAB5sabsa
Asb

B , 05uAsa
A , sab52sba. ~59!

We now demand that the$sa
A% basis is chosen in a manne

that ensures that the 434 sab matrix has constant entries:

¹Asab50. ~60!
12400
-

s

e

l
g

,
g

st
to

to

.
in

ce-

t

.
e

as
ed

,

-
-

Note thatsab behaves like a 5D scalar quantity. Substituti
of our assumed form ofsAB into Eq. ~56! and contracting
with sc

A yields, after some algebra

05sab$~sa•sc!@ṡb1~ u̇•sb!u#1~ ṡa•sc!sb%, ~61!

where we have suppressed the 5D indices for clarity. T
can be solved in a manner independent of our choice ofsab

if the basis vectors satisfy

uB¹Bsa
A52~ABsa

B!uA, ~62!

where we have made use of Eq.~57!. This is the equation of
5D Fermi-Walker~FW! transport ofsa

A along the integral
curves ofuA subject to the condition 05uAsa

A . Therefore,
we have demonstrated that the spin tensor of a point
gyroscope in 5D can be expressed in the form given in
~59!, wheresab is an arbitrary 434 antisymmetric tensor
with constant entries, provided that the$sa

A% basis is FW
transported along the gyroscope’s trajectory. The six deg
of freedom ofsAB are carried by thesab matrix.

We note that the spin vector of a particle in 4D is go
erned by an equation identical to Eq.~62!. Therefore, the
problem of determining the evolution of the spin tensor o
pointlike gyroscope in 4D and 5D is operationally identic
i.e., one needs to solve the FW transport equation. Howe
the relation between the solution~s! of that equation and the
full spin tensor is different. It is interesting to note that th
method outlined here will work in any dimension, includin
311, while the procedure of identifying spin angular m
mentum with a single vector is peculiar to the case of th
spatial dimensions. Regardless, we are now faced with
prospect of solving the FW equation in 5D. This is the su
ject of the next section.

B. Splitting of the 5D Fermi-Walker transport equation

In this section, we will attempt to perform a (311)11
splitting of the equation of FW transport for the spin-ba
vectors$sa

A% similar to the splitting of the geodesic equatio
performed in Sec. III A. The relevant formulas are given
Eqs.~57! and~62!. For brevity, we will omit the Latin index
on the spin-basis vectorsa

A . We will consider the cases o
free and constrained motion in 5D by setting

AB5H 0 for 5D geodesic motion,

KabuaubnB for 5D confined paths.
~63!

As mentioned above, we assume that the spin basis is
thogonal touA. SincesA is FW transported along the gyro
scope trajectory, its magnitude is constant and can be s
21. Hence we also have

uAsA50, sAsA521. ~64!

We also define

sa5eA
asA, S5sAnA . ~65!
4-8



is
n
.
ts

th
4

th

-

ti

-
sic

ot
ro-

t

is
ex-
We

that
,

ned

-
is-
x-
pe
a

o-
he
ore

hat

l-
yro-
c.

an
the

DYNAMICS OF TEST PARTICLES AND POINTLIKE . . . PHYSICAL REVIEW D 65 124004
Case 1: AB50. The gyroscope’s center of mass motion
described by Eq.~26!. The mechanics of the decompositio
of Eqs. ~62! and ~64! is similar to the calculations of Sec
III A, so we will omit the details and present the final resul
We get

ua¹asb5SKabua1jeB
bnA¹AsB, ~66a!

Ṡ5Kabuasb2jnAsB¹AnB , ~66b!

15S22habsasb. ~66c!

These formulas are analogous to the three equations~26!
used to describe the behavior ofua andj. The fact thatsa

does not satisfy the 4D FW transport equation means
there will appear to be an anomalous torque acting on the
spin tensor. This torque prevents the norm of thesa 4-vector
from being a constant of the motion, despite the fact that
norm ofsA is conserved. This result causes us to ask ifuasa
is a conserved quantity, likeuAsA is. We note thatuAsA
50 implies thatuasa5jS. Differentiating this scalar rela
tion with respect tol, we get

d~uasa!/dl5jṠ1Sj̇. ~67!

We substitute in expressions forj̇ andṠ from Eqs.~26b! and
~66a! and simplify to get

d

dl
~uasa!5~jsB1SuB!uA¹AnB . ~68!

In obtaining this equation, we have made use of the iden

uA¹AnB5KabuaeB
b2jnA¹AnB , ~69!

which can be proved by expanding¹AnB in the basis vectors
(ea

A ,nA). Equation~68! demonstrates thatuasa is not a con-
stant of the motion.

Case 2: AB5KabuaubnB. In this eventuality, we take the
5D trajectory to be described by Eq.~51!. The splitting of
Eqs.~62! and ~64! takes the form

tb5ua¹asb, ~70a!

Ṡ5Kabuasb, ~70b!

15S22habsasb, ~70c!

where we have defined the anomalous torque by

tb5S~Kabua2Kmnumunub!. ~71!

This anomalous torque satisfies

05tbub , SṠ5tbsb . ~72!

The left-hand equation implies

05habuasb; ~73!
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i.e., the angle betweenua and sa is conserved. As men
tioned above, this is not true for the case of 5D geode
motion. The right-hand member of Eq.~72! is consistent
with Eq. ~70c!; i.e., the magnitude ofsa is not conserved.

We have hence derived Eqs.~66! and ~70! governing the
behavior of the$sa

A% spin basis in terms of a (311)11
splitting of the 5D manifold. However, 4D observers will n
observe these vectors directly, they will rather see the p
jection of the spin tensorsAB onto S l . So, to make contac
with physics, we must consider

sab5eA
aeB

bsAB5sabsa
asb

b , ~74!

where we have made use of the decomposition ofsAB given
by Eq. ~59! and Eq.~65! and re-introduced the spin bas
indices. We can now ask various physical questions, for
ample, is the magnitude of the 4D spin tensor conserved?
can write

sabsab5hABhCDsACsBD. ~75!

ExpandinghAB and simplifying yields

sabsab5sabs
ab12sabscbS

cSa , ~76!

where we have defined

Sa5nAsa
A ~77!

and used the metric of the spin basis

qab5gABsa
Asb

B ~78!

to raise and lower spin indices. It is easy to demonstrate
¹Aqab50 from Eq.~62!, sosabs

ab is a constant. Therefore
the 4D spinsabsab will not be conserved ifSa varies along
the path, as is the case for both freely falling and constrai
trajectories@Eqs.~66a! and ~70b!#.

Clearly, the behavior ofsab in the general case is a sub
ject that deserves in-depth study, but we will defer such d
cussions to future work. We will instead give a specific e
ample of how the magnitude of the 4D spin of a gyrosco
will vary when that gyroscope is confined to
(311)-dimensional hypersurface in a (311)11 dimen-
sional manifold. This example is the subject of Sec. V D.

C. Gyroscopes in the brane world

As in Sec. IV, the observant reader will have again n
ticed that we will have trouble applying our results to t
thin brane world scenario. However, our predicament is m
dire in this situation, because Eqs.~70! governing the evolu-
tion of spin basis vectors confined to a singleS l hypersur-
face make explicit reference to the extrinsic curvature of t
hypersurface. This is a problem because, as seen in Eq.~55!,
the extrinsic curvature of an infinitely thin brane is il
defined. At best, our formulas can be used to describe g
scopes traveling on theg6 bulk trajectories discussed in Se
IV, which are infinitesimally above or below the brane.

Before abandoning the thin brane world entirely, we c
try to understand the behavior of a spin-basis vector in
4-9
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vicinity of the brane. As in Sec. IV, we place the brane at
position of theS0 hypersurface and consider the neighbori
S6 hypersurfaces. The curvesg0 and g6 are geodesics on
the respective hypersurfaces, and we have previously
that g6→g0 asS6→S0. Now, consider the spin basis ve
tors s6

A , which are 5D vectors FW transported alongg6 ,
and hence satisfy Eqs.~62! and ~70!. As mentioned before
the 5D acceleration of theg6 curves differs by a sign, which
implies thats6

A will not have the same equation of motio
Hence, we will in general have thats1

A
ys2

A as S6→S0,
irrespective of initial conditions. To state this in a differe
way, imagine thatg is a 5D congruence of curves which a
everywhere tangent to geodesics ofS l hypersurfaces and tha
sA is a 5D vector field that is everywhere FW transport
along g. Then, we have seen thatg can be chosen to b
smooth across the brane but thatsA is in generaldiscontinu-
ousacross theS0 hypersurface.

What is the nature of this discontinuity? It is easily se
that while Eqs.~70! are not invariant underKab→2Kab ,
they are invariant under (Kab→2Kab ,sa→2sa) and
(Kab→2Kab ,S→2S). This raises two possibilities, eithe
the normal component ofsA is continuous and the tangenti
component is discontinuous across the brane orvice versa.
The former situation is akin to the behavior of the magne
field in the presence of a surface current, while the latter c
is like discontinuity of the electric field around a surfa
charge distribution. In both cases, the discontinuous com
nent is reversed as the brane is traversed. To define the
tinuation of thesA from, say, the1 side of the brane to the
2 side, we need to choose which component is continu
and which is not. There is no mathematical reason to pr
one choice over the other, but an intuitive choice comes fr
the Z2 symmetry around the brane. This symmetry impl
that we can think ofS0 as a mirror. Hence, if we choose t
have the tangential component ofsA reversed on either sid
of the brane, we have essentially elected to havesA trans-
form as an axial vector~also known as a psuedovector! under
reflections. The opposite choice, namely that the nor
component ofsA is reversed as one crosses the brane,
plies thatsA transforms as an ordinary vector under refle
tions. The former situation is what we would expect ifsA

were a traditional spin vector. ButsA is not a 5D spin vector,
it is simply a member of a basis and should hence transf
as an ordinary vector. Therefore, we choose to have the
gential components ofsA continuous across the brane. O
choice for the continuation ofsA acrossS0 is shown in Fig.
1, along with the alternate scenario for a hypothetical
spin vectorSA.

This continuation ofsA across the brane can be viewed
a way out of our dilemma because the observationally ac
sible part ofsA has a well defined limiting value asl→0. In
this case, the dynamics ofsa andS can be worked out using
Eq. ~70! on either the1 or 2 side with the assurance tha
the answer forsa will be the same. Whether or not thi
mathematical trick has any physical relevance is an o
question; the skeptical reader may conclude that the dis
tinuity in the geometry precludes sensible descriptions of
spin tensors on the brane, which could be viewed as an
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dictment of the thin-brane picture. At any rate, our formalis
can be freely applied to smooth manifolds, which includ
thick-brane solutions. In the next section, we will look at
specific example of gyroscope motion from 5D noncomp
tified Kaluza-Klein theory.

D. Variation of 4D spin in a cosmological setting

We now turn our attention to a specific metric which h
been used to embed standardk50 Friedmann-Lemaıˆtre-
Robertson-Walker~FLRW! cosmologies in a 5D flat space
The line element, which was first given by Ponce de Le
@40#, is

dS 25 l 2dt22a2~ t,l !dxW•dxW2
a2t2

~12a!2
dl2, ~79!

wherexW5(x,y,z), a is a parameter, and

a~ t,l !5t1/al 1/(12a). ~80!

This metric is a solution ofRABCD50; i.e. it is 5D
Minkowski space written in complicated coordinates. Thel
5const hypersurfaces of this metric share the same geom
as ak50 FLRW solution with a scale factor equal toa(t,l ),
which in turn corresponds to matter with an equation of st
p5(2a/321)r. The way in which the 4D big bang is em
bedded by metrics of the form~79! has been discussed i
detail elsewhere@41,42#.

In this section, we will consider a pointlike gyroscop
confined to move on one of theS l hypersurfaces by a non
gravitational centripetal force as discussed in Sec. IV. O
goal will be to solve Eq.~70! for the orbits of the spin basis
vectors$sa

a ,Sa%. We make the simplest possible choice f
coordinates onS l , namely ya5(t,x,y,z) so thatea

A5da
A .

Let us introduce a set of basis vectors onS l :

l (0)
a 5ua5@ l 21f ~ t,l !,ba22~ t,l !,0,0#, ~81a!

l (1)
a 5ūa5a21~ t,l !@b l 21, f ~ t,l !,0,0#, ~81b!

FIG. 1. The spin basis vector fieldsA in the neighborhood of the
braneS0 . s6

A are mirror images of one another, which is what o
might expect of an ordinary vector under theZ2 symmetry. For
reference, we show how an axial spin vectorSA would transform
underZ2, with its tangential components reversed.
4-10
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l (2)
a 5 ŷa5a21~ t,l !@0,0,1,0#, ~81c!

l (3)
a 5 ẑa5a21~ t,l !@0,0,0,1#. ~81d!

Here,b is a parameter and the functionf (t,l ) is given by

f ~ t,l !5A11b2a22~ t,l !. ~82!

It is not difficult to verify that this basis is orthonormal:

h (m)(n)5habl (m)
a l (n)

b , ~83!

where h (m)(n)5diag(1,21,21,21). Also, one can verify
that the basis is parallel propagated along the integral cu
of ua:

ua¹al (m)
b 50. ~84!

Hence,ua is tangent to geodesics onS l and the other mem
bers of$l (m)

a % are 4D FW transported along those geodes
These geodesics represent a particle moving in
x-direction with a proper speed ofb/a2(t,l ). As demon-
strated in Sec. IV, when test particles are confined to a gi
S l hypersurface they will travel on geodesics of that hyp
surface. Therefore, we can take our gyroscope to be trave
on one of theua integral curves. Also notice that if the spi
basis were 4D FW transported along the integral curves
ua, the projections ofsa

a onto the $l (m)
a % basis would be

constant. We shall see that this is not the case for 5D
transport.

Having specified the form of the trajectory, we turn o
attention to Eqs.~70!. By calculating the extrinsic curvatur
of the S l hypersurfaces and substituting in the express
~81a! for ua, we can determine the anomalous torque defin
by Eq. ~71!:

ta5
bS

t l F f ~ t,l !

a~ t,l !G ūa. ~85!

Interestingly enough, the anomalous torque vanishes if
gyroscope is comoving withb50. This is demanded by isot
ropy; a nonzerota for comoving paths would pick out a
preferred spatial direction.

Continuing, we suppress the Latin index onsa
a andSa .

Now, Eq. ~73! gives thatsa is orthogonal toua. We can
therefore expand any spin basis vector as follows:

sa5sŝa, 215ŝaŝa, 05uaŝa, ~86!

with

ŝa5ūacosu1sinu~ ŷacosf1 ẑasinf!. ~87!

Here, (s,u,f) are considered to be functions oft and l and
can be thought of as the spherical polar components ofsa.
Equation~70c! gives

15s21S2, ~88!

which motivates the ansatz
12400
es

s.
e

n
-
ng

of

n
d

e

s5sing~ t,l !, S5cosg~ t,l !. ~89!

Figure 2 depicts the decomposition ofsA in the $l ( i )
a ,nA%

basis.~Recall that sinceuAsA50, sa will have no projec-
tion on l (0)

a 5ua.!
Substituting Eqs.~85!–~89! into Eq.~70a! and taking sca-

lar products with each of the$l (m)
a % basis vectors yields an

integrable set of first order differential equations f
(g,u,f). We omit the details and quote the results:

cosg5cosw1cos@w21aba21~ t,l !#, ~90a!

sinw15singsinu, ~90b!

f5w3 , ~90c!

where we require

2
p

2
<w1<

p

2
, singÞ0. ~91!

Here, the angles$w i% are constants of integration. Equatio
~90a! governs the evolution ofsasa andS, while Eqs.~90b!
and ~90c! state that the projection ofsa onto the plane
spanned byŷa and ẑa is of constant magnitude. In the lat
epoch limit we have thata(t,l )→`, which implies that cosg
and sinu approach constant values. In other words, the s
basis vectors become static for late times. As mentio
above, they are also static for comoving gyros withb50.
For early times, the variation of theg andu angles implies
that the spin basis vector precesses with respect to a
nonrotating frame.

To make contact with 4D physics, we must now specify
set of four linearly independent spin basis vectors by cho
ing four different sets of the constant angles$w i%. We can
then construct a 4D spin tensor from Eq.~74!, with sab

arbitrary. We will not do that explicitly here, we rather co
tent ourselves with the observation that Eqs.~74!, ~76!, ~89!
and~90a! imply that the magnitude of the 4D spinsabsab is
not conserved. In fact, it is not difficult to show that in th
a→` limit the derivative of the spin magnitude obeys

FIG. 2. The decomposition ofsA in the $l ( i )
a ,nA% basis.
4-11
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U d

da
sabsabU}a22. ~92!

Because this variation takes place on cosmic time scales,
not likely to be observed by an experiment like Grav
Probe B. However, the example in this section was inten
to be illustrative of the method rather than an experimen
suggestion. Application of the formalism to other higher
mensional scenarios may lead to experimentally or obse
tionally testable effects. We hope to report on such matter
the future.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have used the (311)11 dimensional
foliation of a noncompact 5D manifold described in Sec.
to analyze various aspects of test particle and pointlike
roscope motion in higher dimensions.

In Sec. III A, we split the 5D affinely parametrized ge
desic equation into a 4D equation of motion~26a!, an equa-
tion governing the motion perpendicular toS l ~26b!, and an
equation describing the evolution of the norm of t
4-velocity~26c!. We also demonstrated that these three eq
tions were not independent. In Sec. III B, we described h
Eqs.~26! behave under a general change of parameter@Eqs.
~32!#. We then gave their form in the 4D proper time para
etrization@Eqs.~35! and~38!#. In the latter case, we saw tha
the 4-velocity was properly orthogonal to the 4-accelerati
In Sec. III C, we showed that the projected 4-velocityua

5eA
auA does not equaldya/dl, but rather corresponds to th

velocity in canonical coordinates. We also saw that the fi
force f a defined by Eq.~41! is not equal to the 4-acceleratio
and does not transform as a 4-vector underya→ ỹa(yb).

In Sec. IV, we derived the form of the force required
confine a particle to a singleS l hypersurface and showe
that it reduced to the ordinary centripetal force in Minkows
space. We also demonstrated that particles travel on ge
sics ofS l under these conditions.

In Sec. V A, we showed how the problem of determini
the 5D orbit of a pointlike gyroscope can be reduced to
,

vi

ys

12400
is

d
l

-
a-
in

I
-

a-
w

-

.

h

i
e-

e

solution of the Fermi-Walker transport equation, just as
4D, but relation to the spin tensor is different than in t
spacetime case. In Sec. V B, we performed a (311)11 split
of the 5D FW equation for the case of freely falling gyr
scopes@Eq. ~66!# and confined gyroscopes@Eq. ~70!#. We
demonstrated that in both cases, the magnitude of the
spin is not conserved due to the existence of an anoma
torque. In Sec. V C, we discussed how our results should
interpreted in the thin brane world scenario. In Sec. V D,
applied our formulas to a specific 5D cosmological exam
and derived how the 4D spin of a gyroscope varies wh
confined to aS l hypersurface.

In conclusion, we mention a few possible directions f
future work. Equations~26! can be used to study the motio
of observers in the thick brane world and noncomp
Kaluza-Klein theories, apparent violations of 4D causal
due to the existence of 5D ‘‘short-cuts,’’ and the effect of 5
dynamics on astrophysical systems. Equation~26b! can be
used to study the issue of whether a given 3-brane attrac
repels test particles. On the theoretical side, an interes
exercise involves determining how the extra accelerat
aa(u) encodes the electromagnetic force previously o
served in the fifth forcef a(u) derived from the 5D geodesi
equation. The discrepancy between the 5D affine param
and the 4D proper time seen in Sec. III B raises the ques
of which one is the correct ‘‘clock’’ to use, which certainl
merits close attention. Our formalism concerning pointli
gyroscopes should be applied to 5D static and spheric
symmetric metrics in order to make predictions testable
Gravity Probe B. The issue of the cosmological variation
spin can be applied to the evolution of the angular mom
tum of galaxies, pulsars and high-energy primordial obje
These ideas do not comprise an exhaustive list of poten
avenues of exploration, which underlines the generality a
wide applicability of formulas derived in this paper.
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