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Timelike and null focusing singularities in spherical symmetry: A solution to the cosmological
horizon problem and a challenge to the cosmic censorship hypothesis
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Extending the study of spherically symmetric metrics satisfying the dominant energy condition and exhib-
iting singularities of power-law type initiated by Szekeres and Iyer, we identify two classes of peculiar interest:
focusing timelike singularity solutions with the stress-energy tensor of a radiative perfect fluid~equation of
state:p5

1
3 r) and a set of null singularity classes verifying identical properties. We consider two important

applications of these results: to cosmology, as regards the possibility of solving the horizon problem with no
need to resort to any inflationary scenario, and to the strong cosmic censorship hypothesis to which we propose
a class of physically consistent counterexamples.
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I. INTRODUCTION

In a recent work, devoted to some developments of
‘‘delayed big-bang’’~DBB! cosmological model@1#, it was
shown that any cosmological model exhibiting a null sing
larity surface is naturally and permanently free from any h
rizon problem. This property can easily be extended to m
els with a timelike singularity, as we shall see in Sec. II.

This important issue of the horizon problem in cosmolo
has induced us to investigate the constraints which can
imposed on the stress-energy tensor by the requirement
nonspacelike singularity. Even though this requiremen
only a sufficient, but not necessary, condition for the reso
tion of the problem~see discussion in Sec. II!, it is an inter-
esting cosmological question in its own right.

Part of the work has already been done by Szekeres
Iyer @2# ~SI!, who investigated, in the spherically symmetr
case, the constraints imposed by the requirement of a ti
like singularity, with the object of exploring the validity o
the strong cosmic censorship hypothesis~SCCH!. Albeit the
situation considered by SI is a collapse, the results can
extended straightforwardly to the cosmological case by
versing the direction of time.

In this paper, we still concentrate our attention on sph
cally symmetric singularities. Despite this specialization,
teresting information can undoubtedly be gained, and
results obtained should be usefully applied to both the c
mological issue and the SCCH.

Until now, our preliminary works aiming at solving th
horizon problem without recourse to the inflationary pa
digm @1,3,4# retain the simplifying approximation of a dus
dominated universe, the DBB model. However, as stresse
@3#, when going backward on the light cones issuing from
last-scattering surface towards the singularity, the ene
density increases and one would expect on physical grou
that the pressure should do likewise. Thus, the radiation
comes the dominant component in the universe, and poss
a relativistic equation of state such asP5 1

3 r should apply.
In the present article we show that such an equation of s
0556-2821/2002/65~12!/123516~9!/$20.00 65 1235
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is compatible with a non-spacelike singularity, providin
therefore new physically consistent models for a horiz
problem free primordial universe.

Furthermore, the consideration of a special case wh
for no good reason, has been omitted from the analysis g
in SI yields an example of focusing timelike singularity com
patible with the above radiative equation of state and at v
ance with the SCCH.

In Sec. II we review the way a non-spacelike singular
leads to the resolution of the standard cosmological hori
problem. In Secs. III to V, we identify the constraints im
posed on the stress-energy tensor by the requirements
timelike and a null singularity. Sections VI and VII are d
voted to the application of the obtained results to the cosm
logical horizon problem and the SCCH issue, respectiv
The conclusions are stated in Sec. VIII. A derivation of t
timelike character of spherically symmetric shell-crossi
surfaces is proposed in the Appendix.

II. SOLVING THE HORIZON PROBLEM

As shown in@1#, the horizon problem develops sooner
later in any cosmological model exhibiting a spacelike s
gularity such as that occurring in standard Friedma
Lemaı̂tre-Robertson-Walker ~FLRW! universes. Simply
stated, the horizon problem is this: In hot big-bang mod
the comoving region over which the cosmic microwa
background radiation~CMBR! is observed to be homoge
neous to better than one part in 105 at the last-scattering
surface is much larger than the intersection of this surf
with the future light cone from the ‘‘big-bang.’’ As this ligh
cone provides the maximal distance over which causal p
cesses could have propagated since a given point on the
bang,’’ the observed isotropy of the CMBR remains une
plained.

Even inflation only postpones the occurrence of the ho
zon problem since it does not change the spacelike chara
of the singularity and is insufficient to solve it permanent
This is shown in Fig. 1, where thin lines represent light con
©2002 The American Physical Society16-1
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and the CMBR as seen by an observerO corresponds to the
intersection of the observer’s backward light cone with
last-scattering line. For a complete causal connection to
cur between every pair of points in this intersection segm
backward light signals issuing from points therein mu
reach the vertical axis before they reach the spacelike ‘‘b
bang’’ curve.L is thus a limiting event beyond which an
observer experiences the horizon problem. Adding an in
tionary phase in the primordial history of the univer
amounts to adding a slice of de Sitter space-time, indica
here by the region between the dashed line and the ‘
bang.’’ The effect of this region is merely to postpone t
eventL, allowing the current observerO to see a causally
connected CMBR. At later times the observer reaches
region aboveL and the horizon problem reappears.

In @1# a permanent solution to this problem was propos
using the DBB class of models, valid for all observers
gardless of their location in the universe. These models h
a nonspacelike singularity which can arise, for example
shell crossings~see@5# for a detailed characterization of
shell crossing singularity!. In @1# shell-crossings were mis
takenly claimed to be null surfaces, whereas they are in
timelike. A derivation of this property, valid for genera
spherically symmetric models, is given in the Appendix. F
ure 2 shows that a nonspacelike singularity always gives
to an everywhere causally connected model of the unive
Every pair of points in the CMBR seen by the current o
serverO are causally connected since a past light signal fr
any point in the segment of the last-scattering surface s
by O reaches the vertical axis before arriving at the n
~straight line! or timelike ~curved line! singularity. The same
holds for any eventO8 in the observer’s past or future.

Therefore, any cosmological model exhibiting the equ
tion of state of radiation near a nonspacelike~i.e., timelike or
null! singularity, whatever its type~shell cross or focus!,
could be considered as a physically consistent candidat
represent the primordial universe.

FIG. 1. Penrose-Carter diagram showing the horizon problem
a universe with spacelike singularity.
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III. DOUBLE NULL COORDINATES AND
SINGULARITIES OF POWER-LAW TYPE

In SI spherically symmetric metrics were studied, havi
the form

ds252dt21@ t2t~r !#2af 2~r ,t !dr2

1@ t2t~r !#2bg2~r ,t !dV2, ~3.1!

wheref andg are functions ofr and t which are regular and
nonvanishing at the singularity surfacet5t(r ). This type of
singularity was said to be ‘‘of power-law type’’ and is prese
in spherically symmetric dust solutions@Lemaı̂tre-Tolman-
Bondi ~LTB! metrics @7–9##, all FLRW perfect fluid solu-
tions, and cosmologies with singularities of the Lifshit
Kalatnikov type @10#. We will be proposing a slightly
different and more general definition of this concept. Wh
the only purpose of SI was to discuss the validity of t
cosmic censorship hypothesis by considering the behavio
collapsing space-times near the singularity, most of the
sults of that paper can readily be generalized to a cosmol
cal setting by reversing the direction of time. As the pres
paper is mostly directed at cosmological issues, we
mainly interested in the regiont.t(r ), and have made an
appropriate sign change in Eq.~3.1! to that used in SI. The
newly obtained results will again be applied to the SCC
issue, by reversing the direction of time.

The method adopted in SI is to pass to double null co
dinatesu(r ,t) andv(r ,t) such that

ds2522eUdudv1eVdV2. ~3.2!

in

FIG. 2. Penrose-Carter diagram showing causal connected
of a universe with nonspacelike singularity.
6-2
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Such coordinates have a certain rigidity, in that the o
available coordinate freedoms are of the form

u85m~u!, v85n~v !, ~3.3!

wherem andn are arbitrary differentiable functions. Radi
null lines (u5const, f5const) are exactly the curvesu
5const orv5const. We assume the future pointing dire
tions on these null lines are those with increasing values ov
andu, respectively.

In SI a coordinate transformation converting the metric
Eq. ~3.1! into the double null coordinates of Eq.~3.2! is
performed in a neighborhood ofr 5r 0 , t5t(r 0) by carrying
out a series expansion of the form

r 5r 01u1 f 1~u!xa11 f 2~u!xa21••• ~3.4!

t5t~r 01u!1g1~u!xb11g2~u!xb21••• ~3.5!

5t~r 0!2t8~r 01u! f 1~u!xa11g1~u!xb11••• ~3.6!

where 0,a1,a2,•••, and 0,b1,b2,•••. By Eq. ~3.6!
the singularity att5t(r ) occurs atx50, and the freedom o
Eqs.~3.3! can be used to express the functionx(u,v) in the
form

x5 lu1kv where l ,k561 or 0. ~3.7!

The signs ofl and k should be chosen such thatx.0 for t
.t(r ) in the neighborhood of the singularity. It is easy
verify that the singularityx50 has spacelike character
lk51, timelike if lk521, and null if lk50. For example, if
lk51, then in the limit asx→0, the surfacex5const.0
intersects both null linesu5const andv5const in positive
~future! values ifl 5k51, while it intersects them in the pas
if l 5k521. The first casex5u1v therefore correspond
to a spacelike singularity in the past~cosmological!, while
x52u2v represents a spacelike singularity in the futu
~collapse!. A similar analysis for the caselk521 results in
one ingoing null ray and the other outgoing. It therefore
timelike, which can be thought of as having both a cosm
logical and collapse character. Whenlk50 one of the rays
u50 or v50 is tangential to the singularity surface, whic
can be thought of as null.

After some analysis, the functionsU andV appearing in
Eq. ~3.2! can be shown to have the form

eU52tutv5xpea, eV5~ t2t!2bg25xqeb ~3.8!

where

a5a0~u!1a1~u!xp11•••, ~3.9!

b5b0~u!1b1~u!xq11•••, ~3.10!

and the exponentsp andq depend ona andb in a variety of
ways detailed in SI. Exponentsp1 ,p2 , . . . ,q1 , . . . , appear-
ing in the expansions ofa and b can also be evaluated i
principle from the exponentsa1 ,a2 , . . . b1 ,b2 , . . . occur-
ing in Eqs.~3.4! to ~3.6!, though it may be difficult to give
general expressions for them.
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The following two examples should give an idea of t
kind of results expected

A. Einstein–de Sitter dust solution

These are only spatially flat dust solutions of the fo
given in Eq.~3.1! havingt(r )5const50. The metric can be
written

ds252dt21t4/3~dr21r 2dV2! ~3.11!

and the singularity is well known to be spacelike~since fu-
ture pointing null geodesics emanate fromt50 in all direc-
tions!. It is for this reason that the horizon problem occurs
cosmological models of this type.

The singularity hasa5b5 2
3 , and the transformation to

double null coordinates is straightforward to perform. T
series expansion hasa151 andb153 and gives rise to the
following exponents in Eqs.~3.8!, ~3.9!, and~3.10!:

p5q54, p15q151, . . . .

B. Zero energy LTB solutions

The zero energy LTB solutions are

ds252dt21„t2t0~r !…22/3
„t2t1~r !…2dr2

1r 2
„t2t0~r !…4/3dV2, ~3.12!

where t5t0(r ) is the focusing singularity andt5t1(r )
5t0(r )1 2

3 rt 08(r ) is a shell-crossing singularity.
A t0 singularity @with t08(r 0)Þ0# hasa52 1

3 , b5 2
3 , and

the exponents in the power series of Eqs.~3.4! and~3.5! turn
out to be

a151, a25
5

4
, . . . b15

3

4
, b251, . . .

and give rise to the following exponents in the expansion
U andV:

p5
2a

12a
52

1

2
, q5

2b

12a
51, p15q15

1

2
, . . . .

In this case it turns out that one must havel 5k51 as in the
Einstein–de Sitter case and the singularity is spacelike.

A t1 singularity@with t18(r 0)Þ0# hasa51 andb50, with
transformation exponents

a15
1

2
, . . . b151, . . . ,

and

p5q50, p15q151, p25q25
3

2
, . . . .

The singularity in this case haslk521, is timelike~see the
Appendix! and has no horizon problem. Accordingly, th
6-3
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dust DBB models have been constructed in such a way
the first singularity encountered when going backward
timelike curves is of typet1.

Although the singularity surfacex50 of a metric of the
type described by Eq.~3.1! is generally non-null, there is no
reason to impose this restriction when starting from
double null form of the metric of Eq.~3.2!. We will therefore
define the singularity surface of a spherically symmetric m
ric as beingof power-law typeif it can be expressed in th
form of Eq. ~3.2! with

U5p ln x1a0~u!1a1~u!xp11a2~u!xp21•••,
~3.13!

V5q ln x1b0~u!1b1~u!xq11b2~u!xq21•••,
~3.14!

where 0,p1,p2 . . . , 0,q1,q2, . . . andx is given by
Eq. ~3.7!. As there are essentially no further coordinate fre
doms, this definition is invariant. In case the reader wond
why the functionsa1 , b1 are not postulated to be regula
functions of both variablesu andv, it is simple to expressv
as eitheru6x or 2(u6x), substitute in the functions an
expand as a power series. The result would then be that g
in Eqs.~3.13! and ~3.14!.

IV. STRESS-ENERGY TENSOR NEAR TIMELIKE
SINGULARITIES OF POWER-LAW TYPE

The Einstein tensor for the metric of Eq.~3.2! has the
following nonvanishing components~settingx05u, x15v,
x25u, x35f):

G0
05G1

152e2V2e2U~V011V0V1!

52x2qe2b2e2ax2pS kl~q22q!

x2

1
kbu1 lbv

x
1buv1bubvD ~4.1!

G1
05e2US V112U1V11

1

2
V1

2D
52e2ax2pS k2~ q1pq2 1

2 q2!
x2

1
k~~p2q!bv1qav!

x

2bvv1avbv2
1

2
bv

2D ~4.2!

G0
15e2US V002U0V01

1

2
V0

2D
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52e2ax2pS l 2~ q1pq2 1
2 q2!

x2

1
l ~~p2q!bu1qau!

x

2buu1aubu2
1

2
bu

2D ~4.3!

G2
25G3

352e2US U011V011
1

2
V0V1D

52e2ax2pS lk~ 1
2 q22p2q!

x2

1
q~kbu1 lbv!

2x

1auv1buv1
1

2
bubvD . ~4.4!

The stress-energy tensor arising from Einstein’s equati

Tn
m5Gn

m

has the form

Tn
m5rumun1Pr f

m f n1P'hn
m ,

where um is the unit timelike eigenvector andf m the unit
spacelike radial eigenvector,

Tn
mun52rum, Tn

m f n5Pr f
m

having components

um5S u0,u15u0AG0
1

G1
0
,0,0D ,

gmnumun522eUu0u1521,

f m5S f 0, f 152 f 0AG0
1

G1
0
,0,0D ,

gmn f m f n522eUf 0f 151,

andhn
m is the projection tensor into the space orthogonal

um and f m,

hn
m5dn

m1umun2 f m f n,

whose only nonvanishing components areh2
25h3

351. In or-
der for the eigenvectorsum and f m to be real it is necessar
that G0

1 and G1
0 have the same sign. The density and rad

pressure are given by
6-4
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r52G0
02G1

0AG0
1

G1
0
, Pr5G0

02G1
0AG0

1

G1
0
,

while tangential pressure is given by

P'5G2
25G3

3 . ~4.5!

It is common to impose the dominant energy conditionr
.uPu as a physical requirement on the system, whereP is
the pressure in any direction~and discounting the ‘‘extreme’
caser56P). Usingr1Pr.0 we obtain

G1
0,0, G0

1,0 ~4.6!

and the density and radial pressure are given by

r52G0
01AG1

0G0
1, Pr5G0

01AG1
0G0

1. ~4.7!

The dominant energy conditionsr.uPr u, r.uP'u imply the
further inequalities

G0
0,0, uG2

2u,2G0
01AG1

0G0
1, ~4.8!

which also guarantee positive density,r.0.
For a perfect fluid with a baryotropic equation of state,

haveP5Pr5P' with

P5gr, 21,g,1

and substitution in Eqs.~4.5! and ~4.7! results in

G2
25G3

35
2g

g21
G0

0 , AG1
0G0

15
g11

g21
G0

0 ~G0
0,0!. ~4.9!

For radiation,r5 1
3 P, we have

G2
252G0

0 , AG1
0G0

1522G0
0 .

From Eqs.~4.1!–~4.3! and ~4.7! we see that ifr→` as
x→0, thenq.0 or p.22. If the pressure is nonextreme
this limit, Pr*2r as x→0 then q<p12. The only way
these conditions are consistent is if

p.22, q<p12.

A detailed discussion for the caseklÞ0 ~timelike or space-
like singularity! and q,p12 results in the following con-
clusion of SI:

A timelike singularity of power-law type, in whose neighb
hood the energy-stress tensor satisfies the dominant en
condition, must either

~1! be a (dustlike, P50) shell-cross singularity, or
~2! have an asymptotically extreme equation of st

(uPr u'r or uP'u'r), or
~3! possess a negative pressure(Pr,0 or P',0) in its

neighborhood.
However the caseq5p12 has, for no good reason, bee

omitted in the analysis given in SI. We now give details
this case.
12351
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The case klÄÁ1, qÄp¿2, pÌÀ2

Since we must haveq.0 in this case, the dominant be
havior of the various components ofGn

m asx→0 is, on set-
ting «5kl561,

G0
0'2x2q

„e2b01«e2a0~q22q!… ~4.10!

G0
1'G1

0'2x2qe2a0
1

2
q~q22! ~4.11!

G2
2'2x2qe2a0«

1

2
~q22!2. ~4.12!

By Eq. ~4.6! andq.0 it follows thatq.2, and using Eqs.
~4.5! and ~4.7!, we have

r'x2qS e2b01e2a0
q

2
„2«~q21!1q22…D ~4.13!

Pr'x2qS 2e2b01e2a0
q

2
„22«~q21!1q22…D

~4.14!

P''2x2qe2a0«
~q22!2

2
. ~4.15!

For the case of a spacelike singularity«51,

r'x2qS e2b01e2a0
q~3q24!

2 D.0 since q.2.

However, pressures in both radial and tangential directi
are negative,

Pr'x2qS 2e2b02e2a0
q2

2 D,0,

P''2x2qe2a0
~q22!2

2
,0.

Thus, while the dominant energy conditions

r1Pr5x2qe2a0q~q22!.0

and

r1P'5x2q
„e2b01ea0~q222!….0

clearly hold forq.2, the negative pressures do not allow f
a radiation limit.

In the case of a timelike singularity,«521, we have

r'x2qS e2b02e2a0
q2

2 D ,

Pr'x2qS 2e2b01e2a0
q~3q24!

2 D ,
6-5
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P''x2qe2a0
~q22!2

2
.0.

The positive density condition,r.0, gives

e2b0.e2a0
q2

2

from which, usingq.2, it is possible to verify the radia
dominant energy inequalityG0

0,0. Setting

e2b05e2a0S q2

2
1C0~u! D where C0~u!.0,

we have

r'x2qe2a0C0 , ~4.16!

Pr'x2qe2a0~2C01q222q!, ~4.17!

P''x2qe2a0
~q22!2

2
. ~4.18!

Essentially any sensible equation of state can be obtaine
the vicinity of the singularityx50 by a judicious choice of
the functionC0(u). For example, in the case of a perfe
fluid ~isotropic pressure!,

Pr5P'⇒C0~u!5
q2

2
22.0

and

g5
P

r
5

q22

q12
.0.

A radiative equation of stateg5 1
3 is achieved if

q54, C0~u!56.

V. NULL SINGULARITIES

The case wherex50 is a null singularity,kl50 is not
considered in SI, and should not be discarded without furt
investigation. In this case the dominant energy condit
with r'” 2Pr asx→0, together withr→` implies that

q<p11, p.21. ~5.1!

There are three essential cases to consider.

„i… lÄ1, kÄ0

Since x5u in this case the particular choice of seri
expansion in Eqs.~3.13! and ~3.14! means that both func
tions U andV appearing in the double null coordinate for
of the metric are functions ofu alone: U5U(u) and V
5V(u). Hence av5bv5bvv50 in Eqs. ~4.1!–~4.4!, and
consequentlyG1

050. By using Eq.~4.7! we arrive at the
physically unacceptable conditionr52Pr in the neighbor-
hood of the singularity.
12351
in
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„ii … lÄ0, kÄ1, pÌÀ1, qËp¿1

In this casex5v and the principal terms in Eqs.~4.1!–
~4.4! are

G0
0'2v2p21e2a0b08~u!,

G1
0'2v2p22e2a0q~11p2 1

2 q!,

G0
1'2v2pe2a0

„2b091a08b082 1
2 ~b08!2

…,

G2
2'2v2p21e2a0

q

2
b08 .

The inequalityG1
0,0 implies q(11p2 1

2 q).0. Hence, if
q,0 then p, 1

2 q21,21, contradicting the stated cond
tion p.21. Thusq.0. On the other hand, the inequalit
G0

0,0 gives b08.0, and the tangential pressure must
negative,P'5G2

2,0. This certainly does not permit an iso
tropic radiative fluid to be present near a null singularity
this type.

We are left to consider one final case.

„iii … lÄ0, kÄ1, pÌÀ1, qÄp¿1

The components of the Einstein tensor are asymptotic
dominated by the following terms:

G0
0'2v2p21

„e2b01e2a0b08~u!…,

G1
0'2v2p22e2a0

q2

2
,

G0
1'2v2pe2a0

„2b091a08b082 1
2 ~b08!2

…,

G2
2'2v2p21e2a0

q

2
b08 .

By the inequalities~4.6! and ~4.8! we may set

e2b052e2a0b08~u!1e2a0A0~u!

where

A0~u!.0,

and

2b091a08b082
1

2
~b08!252B0

2~u!

where

B0~u!.0.

Density and pressure components are found from Eqs.~4.5!
and ~4.7!,

r'v2p21e2a0
„A0~u!1qB0~u!…

Pr'v2p21e2a0
„2A0~u!1qB0~u!…

P''2v2p21e2a0
q

2
b08 .
6-6
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If we require space-time to be radiation dominated in
neighborhood ofv50, then

2
q

2
b08~u!52A0~u!1qB0~u!5

1

3
„A0~u!1qB0~u!…

which gives the readily satisfied conditions

b08~u!,0, A0~u!52
q

2
b08~u!,

B0~u!52b08~u!. ~5.2!

The conclusion is that for a spherically symmetrical so
tion, a power-law type singularity surface can occur for
isotropic radiative equation of stateP5 1

3 r, which is either
timelike or null, provided there is the simple relationq5p
12, with q54 andp52, andq5p11 with p.21 respec-
tively in the leading exponents ofU andV in Eq. ~3.8!.

An interesting property of these singularities is linked
the area whose magnitude is 4p times the coefficient ofdV2

in the expression for the metric. If the singularity has ze
area, it can be considered as a central focus. If its are
finite, the singularity is usually regarded as being a sh
cross. In Eq.~3.2!, the coefficient ofdV2 is eV, which, from
the definition retained in Eq.~3.8!, is equal toxqeb. There-
fore, every singularityx50 such thatq.0 is a central focus.
This is the case for both the timelike and null singular
solutions identified above.

VI. COSMOLOGICAL APPLICATIONS

We now turn our attention to the cosmological cons
quences we can derive from the above stated results. I
consider the physically consistent picture of a unive
which is first radiation dominated and after a period of co
ing, becomes dust dominated, we are now provided with
different ways of giving a final solution to the horizon pro
lem, using the scheme of Fig. 2. The first is to assume, a
@1,3,4#, that a consistent approximation of the dust dom
nated region of the universe can be a model pertaining to
DBB class. We shall discuss below some salient feature
this class of models. The second is to take advantage o
new results to suggest that in a radiation dominated prim
dial universe timelike or null singularities can occur the
fore getting rid of any horizon problem, whatever the pro
erties of the dust dominated era to come.

One feature of the DBB model worth taking into accou
is the nature of the constant energy density surfaces. We
seen indeed, in Sec. II, that causality is restored betw
every pair of points on the last-scattering surface, provid
the backward light cone issued from these points reconn
at the ‘‘center’’ of the model before reaching the singulari
This can be achieved by the virtue of a nonspacelike cons
energy density surface interposed between the last-scatt
surface and the singularity. In a pure dust DBB model,
shell-crossing singularity, which can be viewed as a surf
of infinite ‘‘constant’’ energy density, is timelike. We show
in the following, that this timelike property is shared, in th
model, by a set of constant high-energy density surfaces
12351
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that less such energetic surfaces are spacelike. We are t
fore induced to look for peculiar subclasses of DBB mod
for which the nonspacelike nature would be shared by a
ficiently broad set of constant high-energy density surfa
such as to include surfaces with energy densities smaller
the limit where the dust and radiative energy densities are
the same order of magnitude. Such models would be fre
any horizon problem, as one can convince oneself by rep
ing, in Fig. 2, the nonspacelike singularity by a nonspacel
~timelike! constant density surface.

In the dust dominated region of a DBB model, corr
sponding to a zero energy~spatially flat! Lemaı̂tre-Tolman-
Bondi solution@7–9#, the line element in comoving coordi
nates (r ,u,w) and proper timet is

ds252c2dt21R82~r ,t !dr21R2~r ,t !~du21sin2udw2!.

~6.1!

With the radial coordinater defined as in@3#, we obtain an
expression for the metric componentR,

R~r ,t !5S 9GM0

2 D 1/3

r @ t2t0~r !#2/3, ~6.2!

and for the energy density

r~r ,t !5
1

2pG@3t23t0~r !22rt 08~r !#@ t2t0~r !#
, ~6.3!

wheret0(r ) is an arbitrary function ofr, such thatt5t0(r ) is
the focusing ‘‘big bang’’ singularity surface for which
R(r ,t)50.

We see from Eq.~6.3! that the equation for the surface
with constant energy density can be written

D~r ,t !5@3t23t0~r !22rt 08~r !#@ t2t0~r !#5const.
~6.4!

The normal,nb , to this surface is

nb}~Ḋ,D8,0,0!, ~6.5!

where a dot denotes the derivative with respect tot, and a
prime the derivative with respect tor.

From Eq.~6.4!, we get

Ḋ52~3t23t02rt 08!, ~6.6!

D852@rt 08
22~4t081rt 09!~ t2t0!#, ~6.7!

and substitution into Eq.~6.5!, after simplifying by the con-
stant factor 2, results in

nb}„3t23t02rt 08 ,rt 08
22~4t081rt 09!~ t2t0!,0,0….

~6.8!

Using the metric tensor components as they appear in
~6.1!, we can write

nbnb52c2~3t23t02rt 08!2

1R82 @rt 08
22~4t081rt 09!~ t2t0!#2. ~6.9!
6-7
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It can now be verified that on the shell-crossing surfaceR8
50, corresponding to 3t23t022rt 0850 @3#, the vector
magnitudenbnb is negative for every value ofr and t, con-
firming the timelike nature of this surface~see the Appen-
dix!.

We now consider a constant energy density surface
cated in theR8.0 region, with r sufficiently large to be
allowed to write

3t23t022rt 085
1

2pGr~ t2t0!
5e~r ,t !, ~6.10!

with 0,e(r ,t)!rt 08(r ) for every r and t. In this case,

nbnb52c2~e1rt 08!21S GM0

2 D 2/3 e2

~e12rt 08!2/3

3F rt 08
22~4t081rt 09!S e12rt 08

3 D G2

, ~6.11!

where the right-hand side is dominated by the negative t
of zero order ine, namely2c2r 2t08

2. The corresponding sur
face of constantr is therefore timelike.

On the other hand, a constant low energy density surf
satisfying

3t23t022rt 085
1

2pGr~ t2t0!
5

1

e~r ,t !
, ~6.12!

where 0,e(r ,t)rt 08(r )!1 for everyr and t, gives, after an
expansion in powers ofe21,

nbnb52
c2

e2 ~11ert 08!21S GM0

2
D 2/3~4t081rt 09!2

9e10/3

3@12O~ert 08!#@12O~ert 08!#2. ~6.13!

The positive term of10
3 th order in e21 dominates in this

equation, and the corresponding surface of constantr is
therefore spacelike.

In @1,3# the physical assumption is made that the surf
of last-scattering is a spacelike constant temperature~i.e.,
constant low energy density! surface, located in the dus
dominated era. When traveling backward on an incom
light cone emitted from any point on this surface, we the
fore cross the spaceliker5const surfaces exhibiting grow
ing energy densities until we reach either the region wh
these surfaces become timelike or the radiation domina
era.

If the first timeliker5const surface is still located in th
dust dominated region, the light cone is bound to reconn
at the center before reaching this surface and the hor
problem naturally disappears for any observer looking at
point on the last-scattering surface. If the radiation dom
nated domain is reached first, we can contemplate two p
sibilities.

First, we may be brought back to an inflationlike config
ration ~see Fig. 1!, where the horizon problem can be~tem-
porarily! solved for a given observer, provided the backwa
12351
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incoming light cone issued from the ‘‘point’’~i.e., two-
surface! she sees on the last scattering spends enough sp
time in the dust dominated era. This implies some fine tun
of the parameters of the model, i.e., the observer locationr 0

and the expression for thet0(r ) function, of which the es-
sential variable is the slope. Although the allowed values
these parameters can be chosen from related infinite
such a solution provides less intellectual satisfaction than
alternative proposal. We need a means to discriminate
tween DBB models which do or do not exhibit timelikerd

surfaces such thatrd,req , wherereq is the value of the
energy density for which the dustrd and radiation compo-
nents are equivalent. While this cannot be done analytica
the problem can easily be solved numerically for any giv
profile of the ‘‘bang’’ functiont0(r ) ~see, e.g.,@3# where two
examples have been numerically solved!.

Alternatively, the radiation dominated region may b
smoothly connected to the dust dominated region by usin
model among the solutions of Einstein’s equations exhibit
a singularity of the timelike or null type identified in Secs. I
and V. It remains a problem, however, that if such solutio
exist, we do not have sufficient knowledge of their oth
properties to provide a matching of these solutions with
DBB ones.

Notwithstanding these difficulties, it seems to us that
simplest way of resolving the horizon problem is to ta
advantage of the new results stated in the present article
only consider the primordial region of the universe, i.e., t
neighborhood of the singularity which we can physically a
similate to an era of energy density approaching the Pla
scale. If this region can be represented by one of the radia
models identified in Secs. IV and V as exhibiting a timeli
or null singularity, then the problem is definitely solved.

VII. APPLICATION TO THE SCCH

The strong cosmic censorship hypothesis~SCCH! was
proposed in 1979 by Penrose@11# after the debate which ha
followed his first proposal, in 1969, of the cosmic censors
hypothesis@12#. The SCCH runs as follows:

No physically realistic collapse leads to a locally nake
(i.e., timelike) singularity.

These singularities are visible from regular points
space-time, but possibly not at infinity. However, from t
point of view of infalling particles, such singularities must b
as worrying as those visible at infinity, since they are like
to upset the physical conditions in their space-time neighb
hood.~See, e.g., SI for a further discussion of this issue.!

In Sec. IV, we have identified a class of power-law ty
focusing timelike singularities, with spherical symmetry, e
hibiting in their vicinity the stress-energy tensor of a rad
tive perfect fluid. Reversing the sign of time, we obtain
corresponding class of solutions to Einstein’s equatio
which represent, to a good approximation, a spherical cl
of collapsing gas near its focusing point. It therefore con
tutes an interesting physically consistent counterexampl
the SCCH.
6-8
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VIII. CONCLUSION

In this paper, we have extended the study, initiated in
of spherically symmetric metrics satisfying the dominant e
ergy condition and of which the singularities are of pow
law type. We have identified two classes of peculiar intere

~1! A timelikeclass exhibiting in the neighborhood of i
focusing singularity the stress-energy tensor of a perf
fluid, with the equation of state ofradiation: p5 1

3 r.
~2! A set of null classes verifying identical properties.
We have considered two important applications of th

results:
~1! In cosmology, the possibility of solving the horizo

problem.We have reviewed in Sec. II how a timelike or nu
singularity is a sufficient condition for a cosmological mod
to be rid of this cumbersome problem. Therefore, if we co
sider the physically consistent picture of a universe which
first radiation dominated and, after a period of cooling, b
comes dust dominated, we can take advantage of our
results to state that Einstein’s equations permit the existe
of solutions exhibiting nonspacelike singularities havi
physical conditions in their neighborhood consistent with
primordial region of the universe. These can be assimila
to a region of energy density approaching the Planck s
~beyond which general relativity is generally believed
break down!. Choosing to describe this region with one
the radiative models corresponding to the timelike or n
singularities identified in Secs. IV and V allows us to sol
permanentlythe horizon problem, as has been stressed
Sec. II.

Together with the DBB model@3#, first proposed to solve
the horizon problem in a geometrical way, these results p
vide us with new candidates to achieve this without need
resort to an inflationary scenario. It is worth noting th
contrary to the DBB solutions which exhibit a shell-crossi
singularity, those proposed here arise from afocus.

~2! In gravitational collapse, a counterexample to th
SCCH.If we limit ourselves to the consideration of the fo
cusingtimelike singularities identified in Sec. IV, the corre
sponding class of solutions to Einstein’s equations rep
sents, to a good approximation, a spherical cloud
collapsing gas near its focusing point, contradicting the co
monly believed strong cosmic censorship hypothesis.

Some further cosmological conclusions can incidenta
be derived from the results first obtained in SI. We rec
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that, in that work, it was shown that in the neighborhood
a timelike singularity of power-law type which is not a she
cross, the dominant energy condition can be satisfied if th
is an asymptotically extreme energy-stress tensor (uPr u;r or
uP'u;r) or one of the pressures is negative. As a nega
pressure is characteristic of a cosmological constant do
nated universe, such a model is not likely to exhibit a
horizon problem.

We finish by noting that the timelike nature of any sphe
cally symmetric shell-crossing singularity, stated in the A
pendix, would allow us to extend from the DBB cosmolog
cal models to nonflat predominantly dust cosmologica
models the property of solving the horizon problem. W
leave the discussion of such models to future works, stre
ing once more the nice geometrical properties possesse
the geodesics in some peculiar classes ofinhomogeneous
models of the universe.

APPENDIX

In this appendix, we give a derivation of the timelik
character of the shell-crossing singularity in a spherica
symmetric model, generalizing a line of reasoning first p
posed by Hellaby and Lake in@6#.

The general spherically symmetric line element can
written

ds252B2~r ,t !dt21A2~r ,t !dr21R2~r ,t !~du2

1sin2udw2!. ~A1!

A typical shell-crossing surfacet5b(r ) is such that

A5@ t2b~r !#af ~r ,t !50, BÞ0, RÞ0. ~A2!

The normal,na , to the surfaceA5const~hereA50), is

na}~Ȧ,A8,0,0!. ~A3!

With the metric of Eq.~A1!, the squared norm of this
normal vector is

nana52Ȧ2B21A82A2. ~A4!

According to Eq.~A2!, A250, and the above expressio
for nana is always negative, implying, with our choice of th
metric signature, a timelike shell-crossing surface.
-
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