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Timelike and null focusing singularities in spherical symmetry: A solution to the cosmological
horizon problem and a challenge to the cosmic censorship hypothesis
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Extending the study of spherically symmetric metrics satisfying the dominant energy condition and exhib-
iting singularities of power-law type initiated by Szekeres and lyer, we identify two classes of peculiar interest:
focusing timelike singularity solutions with the stress-energy tensor of a radiative perfectetuidtion of
state:p= %p) and a set of null singularity classes verifying identical properties. We consider two important
applications of these results: to cosmology, as regards the possibility of solving the horizon problem with no
need to resort to any inflationary scenario, and to the strong cosmic censorship hypothesis to which we propose
a class of physically consistent counterexamples.
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[. INTRODUCTION is compatible with a non-spacelike singularity, providing
therefore new physically consistent models for a horizon

In a recent work, devoted to some developments of thg@roblem free primordial universe.

“delayed big-bang”(DBB) cosmological model1], it was Furthermore, the consideration of a special case which,
shown that any cosmological model exhibiting a null singu-for no good reason, has been omitted from the analysis given
larity surface is naturally and permanently free from any ho-4n Sl yields an example of focusing timelike singularity com-
rizon problem. This property can easily be extended to modpatible with the above radiative equation of state and at vari-
els with a timelike singularity, as we shall see in Sec. Il. ance with the SCCH.

This important issue of the horizon problem in cosmology In Sec. Il we review the way a non-spacelike singularity
has induced us to investigate the constraints which can bleads to the resolution of the standard cosmological horizon
imposed on the stress-energy tensor by the requirement offgoblem. In Secs. Il to V, we identify the constraints im-
nonspacelike singularity. Even though this requirement igposed on the stress-energy tensor by the requirements of a
only a sufficient, but not necessary, condition for the resolutimelike and a null singularity. Sections VI and VII are de-
tion of the problem(see discussion in Sec,)|lit is an inter-  voted to the application of the obtained results to the cosmo-
esting cosmological question in its own right. logical horizon problem and the SCCH issue, respectively.

Part of the work has already been done by Szekeres anthe conclusions are stated in Sec. VIII. A derivation of the
lyer [2] (SI), who investigated, in the spherically symmetric timelike character of spherically symmetric shell-crossing
case, the constraints imposed by the requirement of a timesurfaces is proposed in the Appendix.
like singularity, with the object of exploring the validity of
the strong cosmic censorship hypothgSE€CH). Albeit the Il. SOLVING THE HORIZON PROBLEM
situation considered by Sl is a collapse, the results can be
extended straightforwardly to the cosmological case by re- As shown in[1], the horizon problem develops sooner or
versing the direction of time. later in any cosmological model exhibiting a spacelike sin-

In this paper, we still concentrate our attention on spherigularity such as that occurring in standard Friedmann-
cally symmetric singularities. Despite this specialization, in-Lematre-Robertson-Walker (FLRW) universes. Simply
teresting information can undoubtedly be gained, and angtated, the horizon problem is this: In hot big-bang models
results obtained should be usefully applied to both the costhe comoving region over which the cosmic microwave
mological issue and the SCCH. background radiatiofCMBR) is observed to be homoge-

Until now, our preliminary works aiming at solving the neous to better than one part in°16t the last-scattering
horizon problem without recourse to the inflationary para-surface is much larger than the intersection of this surface
digm [1,3,4] retain the simplifying approximation of a dust with the future light cone from the “big-bang.” As this light
dominated universe, the DBB model. However, as stressed icone provides the maximal distance over which causal pro-
[3], when going backward on the light cones issuing from thecesses could have propagated since a given point on the “big
last-scattering surface towards the singularity, the energpang,” the observed isotropy of the CMBR remains unex-
density increases and one would expect on physical groungdained.
that the pressure should do likewise. Thus, the radiation be- Even inflation only postpones the occurrence of the hori-
comes the dominant component in the universe, and possiblon problem since it does not change the spacelike character
a relativistic equation of state such Bs=3p should apply. of the singularity and is insufficient to solve it permanently.
In the present article we show that such an equation of stat€his is shown in Fig. 1, where thin lines represent light cones
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FIG. 1. Penrose-Carter diagram showing the horizon problem in
a universe with spacelike singularity.

and the CMBR as seen by an obser@ecorresponds to the
intersection of the observer’'s backward light cone with the ) .
last-scattering line. For a complete causal connection to oc- FIG. 2. Penrose-Carter diagram showing causal connectedness
. . . . . of a universe with nonspacelike singularity.

cur between every pair of points in this intersection segment,
backward light signals issuing from points therein must
reach the vertical axis before they reach the spacelike “big-
bang” curve.L is thus a limiting event beyond which any
observer experiences the horizon problem. Adding an infla- In Sl spherically symmetric metrics were studied, having
tionary phase in the primordial history of the universethe form

amounts to adding a slice of de Sitter space-time, indicated

[lI. DOUBLE NULL COORDINATES AND
SINGULARITIES OF POWER-LAW TYPE

here by the region between the dashed line and the “big d?=—dt2+[t— 7(r)]22f2(r,t)dr?
bang.” The effect of this region is merely to postpone the '
eventL, allowing the current observe® to see a causally +[t—7(r)]?°g?(r,t)dO?, (3.1

connected CMBR. At later times the observer reaches the

reglIr?r[ll?govs;n?:r?emesglirtlié%ntg;ﬁit:erpolg?:r%pv?/ggs. ropose dwheref andg are functions of andt which are regular and
P P brop honvanishing at the singularity surfate r(r). This type of

using the DBB class of models, valid for all observers re- inqularity was said 1 be “of bower-law tvne” and is present
gardless of their location in the universe. These models hava 9 y . P ) type’ P
n spherically symmetric dust solutiojsematre-Tolman-

a nonspacelike singularity which can arise, for example, a . . : i
shell crossinggsee[5] for a detailed characterization of a .ond| (LTB) metrics [.7_9]]’. all '.:LRW .p.erfect fluid s_olu.
tions, and cosmologies with singularities of the Lifshitz-

shell crossing singularijy In [1] shell-crossings were mis- Kalatnikov type [10]. We will be proposing a_slightly

takenly claimed to be null surfaces, whereas they are in faC(Eifferent and more general definition of this concept. While
timelike. A derivation of this property, valid for general the only purpose of SI was to discuss the validity of the

spherically symmetric models, is given in the Appendix. Fig- : ; . o .
ure 2 shows that a nonspacelike singularity always gives risg2Smic censorship hypothesis by considering the behavior of

to an everywhere causally connected model of the universeg.ﬁ:igposf'?r?atspgcz'rtlcrzlisrenae;{ tgz Szlanngeurgi“ztg,d rgo:tcggmglc:e{_
Every pair of points in the CMBR seen by the current ob- pap ybeg 9

serverO are causally connected since a past light signal fromcaI setting by reversing the direction of t_|me._As the present
aper is mostly directed at cosmological issues, we are

any point in the segment of the last-scattering surface sedpPer : .
by O reaches the vertical axis before arriving at the nuIImalnly interested in the regiot>7(r), and have made an

straight ling or timelike (curved ling singularity. The same appropriate_ sign change i_n ECS'.D to that qsed in SI. The
E]oldsgfor ar?y eveno’ in(the obser?/er’sgpast c))/r future. newly obtained results will again be applied to the SCCH

. - issue, by reversing the direction of time.
Therefore, any cosmological model exhibiting the equa The method adopted in Sl is to pass to double null coor-

tion of state of radiation near a nonspacelike., timelike or dinatesu(r.t) andu(r,t) such that
null) singularity, whatever its typéshell cross or focys ' vibs
could be considered as a physically consistent candidate to

represent the primordial universe. ds’=—2eYdudv +evdQ?2. (3.2
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Such coordinates have a certain rigidity, in that the only The following two examples should give an idea of the
available coordinate freedoms are of the form kind of results expected
u'=p(u), v'=w), (3.3 A. Einstein—de Sitter dust solution

whereu and v are arbitrary differentiable functions. Radial  These are only spatially flat dust solutions of the form
null lines (f=const, p=const) are exactly the curvas  given in Eq.(3.1) havingr(r)=const=0. The metric can be
=const orv=const. We assume the future pointing direc-written
tions on these null lines are those with increasing values of a3 a2 2o

In Sl a coordinate transformation converting the metric of , o .
Eq. (3.1) into the double null coordinates of E¢3.2) is and the singularity is well known to be spacelifsince fu-

performed in a neighborhood of=r, t=7(ry) by carrying ture pointing nu_II geodesics emanate fromO in all direc- _
out a series expansion of the form tions). It is for this reason that the horizon problem occurs in

cosmological models of this type.

r=ro+u+f(u)x®+f(u)x32+- .. (3.9 The singularity hasa=b=%, and the transformation to
double null coordinates is straightforward to perform. The
t=17(ro+u)+gs(u)xP1+g,(u)xPe+ - - . (3.5)  series expansion hag =1 andb;=3 and gives rise to the

following exponents in Eq93.9), (3.9), and(3.10:
=1(rg)— 7' (ro+u)f (u)x2+ gy (u)xPr+ - - - (3.6)
p=q=4, p1=0q;=1,
where 0<a<a,<---, and 0<b;<b,<-.--. By Eq. (3.6
the singularity at = 7(r) occurs atx=0, and the freedom of

Egs.(3.3) can be used to express the functiqu,v) in the _
form The zero energy LTB solutions are

B. Zero energy LTB solutions

x=lu+kv wherel,k==1 or 0. (3.7 ds’= —dt*+ (t—to(r)) "3t —ty(r))?dr?
The signs ofl andk should be chosen such that-0 for t Fri(t=to(r)*d0?, (3.12
>7(r) in the neighborhood of the singularity. It is easy to
verify that the singularityx=0 has spacelike character if
k=1, timelike ifIk=—1, and null iflk=0. For example, if
lk=1, then in the limit asx—0, the surfacex=const>0
intersects both null linesi=const andv =const in positive
(future) values ifl =k=1, while it intersects them in the past
if I=k=—1. The first casx=u+wv therefore corresponds 5 3
to a spacelike singularity in the pa@tosmologica), while a;=1, a,=—, ... by=—, by=1,...
X=—u—v represents a spacelike singularity in the future 4 4
(collapse. A similar analysis for the casd&=—1 results in o ) i )
one ingoing null ray and the other outgoing. It therefore is@nd give rise to the following exponents in the expansion of
timelike, which can be thought of as having both a cosmoV andV:
logical and collapse character. Whia=0 one of the rays

where t=ty(r) is the focusing singularity and=t,(r)
=to(r)+3rt4(r) is a shell-crossing singularity.

A t, singularity[with t)(ro) #0] hasa=—3, b=%, and
the exponents in the power series of E@s4) and(3.5) turn
out to be

u=0 orv=0 is tangential to the singularity surface, which _ 2_a: _ l _ ﬂ: _ :E
p _ ’ q _ 1! pP1=0q; o
can be thought of as null. 1-a 2 a 2
After some analysis, the function$ andV appearing in
Eq. (3.2 can be shown to have the form In this case it turns out that one must hdwek=1 as in the
Einstein—de Sitter case and the singularity is spacelike.
eV=2t,t,=xPe”, e'=(t—7)?’g’=x%" (3.9 A t, singularity[with t}(r,) # 0] hasa= 1 andb=0, with
transformation exponents
where
a=ag(U) + ag(U)P -, 3.9 2=, b=l ...,
B=Bo(u)+ By(u)x+- -, (3.10
and
and the exponenfs andq depend ora andb in a variety of
ways detailed in SI. Exponents ,p,, ... ,d;, - . . ,appear- —4=0 —g =1 _ :§
ing in the expansions of and 8 can also be evaluated in P=A=5 Pi=Qi=L P2=02=5,
principle from the exponenis, ,a,, ... by,b,, ... occur-
ing in Egs.(3.4) to (3.6), though it may be difficult to give The singularity in this case hdk= —1, is timelike(see the
general expressions for them. Appendi¥y and has no horizon problem. Accordingly, the
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dust DBB models have been constructed in such a way that
the first singularity encountered when going backward on =—e“xp<
timelike curves is of type;.

Although the singularity surface=0 of a metric of the l(D— N
type described by Eq3.1) is generally non-null, there is no + (P~ @Ay Fqe)
reason to impose this restriction when starting from the X
double null form of the metric of Eq3.2). We will therefore
define the singularity surface of a spherically symmetric met-
ric as beingof power-law typef it can be expressed in the
form of Eq. (3.2 with

12(a+pa-1q?)

2

X

1
—Buut a’uﬁu_5185> 4.3

1
U=pInx+ag(u)+ a;(U)xP1+ ay(u)xPe+ . . .| G5=G3=—-e Y| Up+Vy+ Evovl)
(3.13
V= k(%q?-p-q)
=qInx+ Bo(u) + B1(W)XI1+ Bo(u)x2+ - - -, — e ayP 2
(3.149 X2
where 0<p;<p,..., 0<q;<0,< ... andx is given by N a(kBu+18,)
Eq. (3.7). As there are essentially no further coordinate free- 2%

doms, this definition is invariant. In case the reader wonders
why the functionsa4, B, are not postulated to be regular 1

functions of both variables andv, it is simple to express taytBut Eﬁuﬁv) : 4.4
as eitheru=x or —(u=*=x), substitute in the functions and
expand as a power series. The result would then be that given

in Egs.(3.13 and(3.14. The stress-energy tensor arising from Einstein’s equations

TH=G
IV. STRESS-ENERGY TENSOR NEAR TIMELIKE ’ ’
SINGULARITIES OF POWER-LAW TYPE has the form

The Einstein tensor for the metric of E¢B.2) has the
following nonvanishing componentsettingx’=u, x'=v,
x2=0, x3= ¢):

TH=putu,+ P f#f ,+P h%,

where u* is the unit timelike eigenvector anft* the unit

spacelike radial eigenvector,
GO=Gl=—e V—e Y(VytVeVy) P g

THu = —pu#, THf"=P f#

_yaghgmayep| KA .
=—X e e X 2 having components
KB+ Gg
+M+BUU+BUBU) (4.) u"=(u0,ul=uO G—O,O,O ,
1

g, uku’=—2eulut=-1,

Gl
f“=(f°,f1=—f°\/g,0,0),

1

1
ng eu( Vll_ U1Vl+ zV%)

_ —e“xp< K(a+pa-3q?)

2 g,,f f'=—2e"fof1=1,
k((p—q)B,tqa,) andh” is the projection tensor into the space orthogonal to
+ u” and f~
X )
1, ht= 6% +utu’—f#f",
_va+ avﬂv_ Eﬂu (42)

whose only nonvanishing components hfe=h3=1. In or-
der for the eigenvectong* andf* to be real it is necessary
that G§ and G§ have the same sign. The density and radial

1
1_ U _ “\/2
Go=e (VOO UoVot VO) pressure are given by

2
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1 1 The case kk*1, qg=p+2, p>-—2
0 0 Go 0 0 Go . . . .
p==Go=G1\/ =5 Pr=Go—Gi\/ =5 Since we must havg>0 in this case, the dominant be-
Gl Gl - . .
havior of the various components G6f; asx—0 is, on set-
while tangential pressure is given by ting e=kl==1,
0L _y U(a B —ag(g2—
P, =G2=G3. (4.5) Go~—x""(e"otee “(q°—q)) (4.20
It is common to impose the dominant energy conditjpn 1.0 —q 7&01 2
. . ! ~Gi~— = - 4.1
>|P| as a physical requirement on the system, wterig Go~Gi~—x"e “3a(a-2) (4.13

the pressure in any directigand discounting the “extreme”

casep==*P). Usingp+P,>0 we obtain 1
p==P). Usingp+ Py G~ —x % e (q-2) 4.12
GJ<0, G}<o0 (4.6)
. (4. >0 i > i .
and the density and radial pressure are given by ayS)Egn(;(?;n\?vg hgvg follows thatq>2, and using Eqs

p=—-GJ+\GIG;, P,=GJ+\GIG:. (4.7

The dominant energy conditiops>|P,|, p>|P, | imply the
further inequalities

p~x‘q<e‘ﬁ°+e‘aog(28(q— 1)+q—2)) (4.13

Pr%xq< —e Pot e"‘Og(—Zs(q—l)Jrq—Z))

Gg<0, [G3l<—Go+ \GiGy, 4.8
. o ; (4.19
which also guarantee positive densiby; 0.
For a perfect fluid with a baryotropic equation of state, we . (gq—2)?
haveP=P,=P, with P, ~—x"% %¢g 5 (4.15

P=yp, —1l<y<l For the case of a spacelike singularity: 1,

and substitution in Eqg4.5) and(4.7) results in q(3q—4)
2

>0 sinceqg>2.

pqu<eﬁo+ea0
2 ~3_ 27 o o1 Y1 0
Y Y However, pressures in both radial and tangential directions

For radiation,p= 3P, we have are negative,

2
G3=-GJ, GIGj=-2G). pr%XQ(_eBo_eaoq?)<o’

From Egs.(4.1)—(4.3) and (4.7) we see that ifp— as
x—0, theng>0 or p>— 2. If the pressure is honextreme in
this limit, P,=—p asx—0 thenq=<p+2. The only way
these conditions are consistent is if

-2 2
PL~—x*qe*“0M<

0.

Thus, while the dominant energy conditions
p>—-2, qsp+2.

B _
A detailed discussion for the caké+# 0 (timelike or space- ptPr=x"le %a(q-2)>0
like singularity andq<p+2 results in the following con- 4
clusion of Sl:
—y - a 2

A timelike singularity of power-law type, in whose neighbor- p+ P =x"(e"Pote(q®~2))>0
hood the energy-stress tensor satisfies the dominant ener
condition, must either

(1) be a (dustlike, P-0) shell-cross singularity, or

(2) have an asymptotically extreme equation of state

%Yearly hold forg>2, the negative pressures do not allow for
a radiation limit.
In the case of a timelike singularitg,=—1, we have

(IPi|~p or[P,|~p), or o
(3) possess a negative pressiie, <0 or P, <0) in its p%XQ(eBo_eao_),
neighborhood 2

However the casq=p+2 has, for no good reason, been
omitted in the analysis given in Sl. We now give details of
this case.

Prqu( —e Pot e,ao—q(3(;— 4))
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(q—2)? (i) 1=0, k=1, p>—1, g<p+1
P, ~x Y9e @ >0. . _ o ;
In this casex=v and the principal terms in Eq$4.1)—
(4.4) are
The positive density conditiom>0, gives G~ —v P~ le w0g(u),
9
e fo>et0— Gi~—v P~ % “oq(1+p-30),

G1~—v_pe_“0— //+a/ r_ 1 ’ 2,
from which, usinggq>2, it is possible to verify the radial 0 (=Bot @oBo~z(Bo))
dominant energy inequalit$8<0. Setting q

) G3~—v P e 0, 5.

q 2
e Po=g = TCo(u) | where Co(u)>0,

The inequalityG‘1)<0 implies q(1+p—3q)>0. Hence, if
we have q<0 thenp<3q—1<-—1, contradicting the stated condi-
tion p>—1. Thusg>0. On the other hand, the inequality

p=x""e""Co, (4.16 GJ<0 gives B,>0, and the tangential pressure must be
L negative,PL=G§<0. This certainly does not permit an iso-
~x Yg~ @ — 2_ . L . . .
Pr~xte (= Cota"—20), (4.1 tropic radiative fluid to be present near a null singularity of
9 this type.
pimx—qe—ao@. (4.18 We are left to consider one final case.

i) =0, k=1, p>—1, g=p+1
Essentially any sensible equation of state can be obtained in ) p _ a=p )
the vicinity of the singularityx=0 by a judicious choice of The components of the Einstein tensor are asymptotically

the functionCy(u). For example, in the case of a perfect dominated by the following terms:

fluid (isotropic pressune Go~—v P (e Po+e “0B\(u)),
P,=P,=Co(u)= q—2—2>o q°
r— 1 O(U)_ 2 Gg%—v_p_ze_a()?’
and —pa— " Y ’
P q-2 Gé%—v Pe™*o(— B3+ apBo—5(Bg)?),
——=—__">o.
Y p Qgqt2 q

Gi~—v P le 0o .
A radiative equation of statg= 3 is achieved if
By the inequalitieq4.6) and(4.8) we may set

q=4, Co(u)=6. e Fo=—e “0By(u)+e” “0Ay(u)

V. NULL SINGULARITIES where

The case wherg=0 is a null singularity,kl=0 is not Ag(u)>0,
considered in Sl, and should not be discarded without further
investigation. In this case the dominant energy conditiordnd
with p# — P, asx—0, together withp— implies that

1
— ”+ ' '2:282
g<p+1, p>-1. (5.0 Bo+aobo= 5(Bo)"=2B5(W)

There are three essential cases to consider. where
Bo(u)>0.

(i) 1=1, k=0
Since x=u in this case the particular choice of series Zt]ag(sit)%and pressure components are found from &)

expansion in Egs(3.13 and (3.14 means that both func-

tions U andV appearing in the double null coordinate form p~v P le*(Ay(u)+qBy(u))
of the metric are functions ofi alone: U=U(u) and V
=V(u). Hencea,=B,=B,,=0 in Egs. (4.1)—(4.4), and P,~v P le %(—Ay(u)+qBy(u))

consequentlyGY=0. By using Eq.(4.7) we arrive at the
physically ungcceptable conditign= — P, in the neighbor- P ~—v*p*1e*a093'
hood of the singularity. + 270"
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If we require space-time to be radiation dominated in thethat less such energetic surfaces are spacelike. We are there-
neighborhood of) =0, then fore induced to look for peculiar subclasses of DBB models
for which the nonspacelike nature would be shared by a suf-
ficiently broad set of constant high-energy density surfaces
such as to include surfaces with energy densities smaller than
the limit where the dust and radiative energy densities are of

1
— 2 By = A(U) + aBy(u) = 5 (Ao(U) + aBy(w)

which gives the readily satisfied conditions the same order of magnitude. Such models would be free of
q any horizon problem, as one can convince oneself by replac-
Bo(u)<0, Ag(u)=— E,Bé(u), ing, in Fig. 2, the nonspacelike singularity by a nonspacelike

(timelike) constant density surface.

In the dust dominated region of a DBB model, corre-
sponding to a zero energgpatially flay Lematre-Tolman-
Bondi solution[7-9], the line element in comoving coordi-
nates (,0,¢) and proper time is

Bo(u)=—pB(u). (5.2)

The conclusion is that for a spherically symmetrical solu-
tion, a power-law type singularity surface can occur for an
isotropic radiative equation of sta=%p, which is either 2412 P2 2, 52 o 2
timelike or null, provided there is the simple relatige- p ds’ c*dt+ RY(r.Odr*+ RA(r,1)(d6°+sin6de).
+2, withq=4 andp=2, andg=p+ 1 with p>—1 respec- (6.3)
tively in the leading exponents &f andV in Eq. (3.9 With the radial coordinate defined as i3], we obtain an

An interesting property of these singularities is linked to expression for the metric componeRt
the area whose magnitude isrdimes the coefficient ofi()?

1/3
in the expression for the metric. If the singularity has zero R(r’t):(QGMO) rlt—to(r)]22, 6.2)
area, it can be considered as a central focus. If its area is 2

finite, the singularity is usually regarded as being a shell ,

cross. In Eq(3.2), the coefficient o2 is €V, which, from  and for the energy density

the definition retained in Eq3.8), is equal tox%?”. There- 1
fore, every singularitx=0 such thatj>0 is a central focus. p(r,t)= p , (6.3
This is the case for both the timelike and null singularity 2mG[3t—3to(r) — 2rto(r) ][t —to(r)]

solutions identified above. . _ . .
wheret(r) is an arbitrary function of, such that=tq(r) is

the focusing “big bang” singularity surface for which
R(r,t)=0.

We now turn our attention to the cosmological conse- We see from Eq(6.3) that the equation for the surfaces
quences we can derive from the above stated results. If w&ith constant energy density can be written
consider the physically consistent picture of a universe  p(r t)=[3t—3t,(r)— 2rt}(r)][t—to(r)]=const.
which is first radiation dominated and after a period of cool- (6.4)
ing, becomes dust dominated, we are now provided with two
different ways of giving a final solution to the horizon prob- ~ The normalng, to this surface is
lem, using the scheme of Fig. 2. The first is to assume, as in
[1,3,4], that a consistent approximation of the dust domi- nBoc(D,D’,O,O), (6.5
nated region of the universe can be a model pertaining to the
DBB class. We shall discuss below some salient features ofthere a dot denotes the derivative with respect, tand a
this class of models. The second is to take advantage of thgrime the derivative with respect to
new results to suggest that in a radiation dominated primor- From Eg.(6.4), we get
dial universe timelike or null singularities can occur there- . ,
fore getting rid of any horizon problem, whatever the prop- D=2(3t=3t=rto), (6.6
erties of the dust dominated era to come. ' ) ,

One feature of the DBB model worth taking into account D'=2[rty"— (4to+rtg)(t—to)], (6.7
is the nature of the constant energy density surfaces. We have o o
seen indeed, in Sec. Il, that causality is restored betweeNd Substitution into Eq(6.5), after simplifying by the con-
every pair of points on the last-scattering surface, providedtant factor 2, results in
the backward light cone issued from these points reconnects nﬁoc(3t—3to—rt(’),rtéz—(4t(’)+rtg)(t—t0),0,0).
at the “center” of the model before reaching the singularity. (6.9
This can be achieved by the virtue of a nonspacelike constant
energy density surface interposed between the last-scattering Using the metric tensor components as they appear in Eq.
surface and the singularity. In a pure dust DBB model, thg6.1), we can write
shell-crossing singularity, which can be viewed as a surface

VI. COSMOLOGICAL APPLICATIONS

of infinite “constant” energy density, is timelike. We show, ngnf=—c?(3t—3ty—rty)?
in the following, that this timelike property is shared, in this o ) , 5
model, by a set of constant high-energy density surfaces, but TR [rte"— (4tp+rtp)(t—to) ]~ (6.9
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It can now be verified that on the shell-crossing surfRée incoming light cone issued from the “point{i.e., two-

=0, corresponding to t3-3ty—2rty=0 [3], the vector surface she sees on the last scattering spends enough space-
magnitudenﬁnﬁ is negative for every value afandt, con-  time in the dust dominated era. This implies some fine tuning
firming the timelike nature of this surfadeee the Appen- of the parameters of the model, i.e., the observer locatjon
dix). and the expression for thig(r) function, of which the es-

We now consider a constant energy density surface losential variable is the slope. Although the allowed values for
cated in theR'>0 region, withp sufficiently large to be these parameters can be chosen from related infinite sets,
allowed to write such a solution provides less intellectual satisfaction than our

alternative proposal. We need a means to discriminate be-
=€(r,1), (6.10 tween DBB models which do or do not exhibit timelikg
surfaces such thaig<peq, wherep., is the value of the
energy density for which the dugly and radiation compo-
nents are equivalent. While this cannot be done analytically,

3t—3t0—2rté=m

with 0<e(r,t)<rty(r) for everyr andt. In this case,

2/3 &2 the problem can easily be solved numerically for any given
anB: —C2(e+rt))%+ 5 PYE profile of the “bang” functionty(r) (see, e.g.3] where two
(et+2rtp) examples have been numerically solyed
12 Alternatively, the radiation dominated region may be
e+2rt, . . .
X | rty2—(4to+rth 3 , (6.1  smoothly connected to the dust dominated region by using a

model among the solutions of Einstein’s equations exhibiting
A singularity of the timelike or null type identified in Secs. IV

and V. It remains a problem, however, that if such solutions
exist, we do not have sufficient knowledge of their other
erties to provide a matching of these solutions with the

where the right-hand side is dominated by the negative ter
of zero order ine, namely—c?r?ty?. The corresponding sur-
face of constanp is therefore timelike.

On the other hand, a constant low energy density surfacé[’)rgg

satisfying Ones. . e e
Notwithstanding these difficulties, it seems to us that the
, 1 1 simplest way of resolving the horizon problem is to take
3t—3to— 2rt°:27-er(t—t0) T (6.12  advantage of the new results stated in the present article and

only consider the primordial region of the universe, i.e., the
where 0<e(r,t)rty(r)<1 for everyr andt, gives, after an neighborhood of the singularity which we can physically as-

expansion in powers of 1, similate to an era of energy density approaching the Planck
, oo scale. If this region can be represented by one of the radiative
5 c? ., [ GMo|#(4tg+rtg) models identified in Secs. IV and V as exhibiting a timelike
ngn™=-— ?(1+ €rto)™+ 91073 or null singularity, then the problem is definitely solved.
X[1—=0O(erty)[1—O(ert$)]? (6.13

. . . . . VIl. APPLICATION TO THE SCCH
The positive term off th order ine~! dominates in this

equation, and the corresponding surface of constars The strong cosmic censorship hypothe6®CCH was
therefore spacelike. proposed in 1979 by PenrogEL] after the debate which had
In [1,3] the physical assumption is made that the surfacdollowed his first proposal, in 1969, of the cosmic censorship
of last-scattering is a spacelike constant temperafuee,  hypothesid12]. The SCCH runs as follows:
constant low energy densjtysurface, located in the dust No physically realistic collapse leads to a locally naked
dominated era. When traveling backward on an incomindi.e., timelike) singularity
light cone emitted from any point on this surface, we there- These singularities are visible from regular points of
fore cross the spacelike=const surfaces exhibiting grow- space-time, but possibly not at infinity. However, from the
ing energy densities until we reach either the region whergoint of view of infalling particles, such singularities must be
these surfaces become timelike or the radiation dominateds worrying as those visible at infinity, since they are likely
era. to upset the physical conditions in their space-time neighbor-
If the first timelike p=const surface is still located in the hood.(See, e.g., Sl for a further discussion of this issue.
dust dominated region, the light cone is bound to reconnect In Sec. IV, we have identified a class of power-law type
at the center before reaching this surface and the horizofocusing timelike singularities, with spherical symmetry, ex-
problem naturally disappears for any observer looking at anyibiting in their vicinity the stress-energy tensor of a radia-
point on the last-scattering surface. If the radiation domi-tive perfect fluid. Reversing the sign of time, we obtain a
nated domain is reached first, we can contemplate two posorresponding class of solutions to Einstein’s equations
sibilities. which represent, to a good approximation, a spherical cloud
First, we may be brought back to an inflationlike configu- of collapsing gas near its focusing point. It therefore consti-
ration (see Fig. 1, where the horizon problem can liem-  tutes an interesting physically consistent counterexample to
porarily) solved for a given observer, provided the backwardthe SCCH.
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VIll. CONCLUSION that, in that work, it was shown that in the neighborhood of
a timelike singularity of power-law type which is not a shell

In th|§ paper, we haye extgnded _the.study, |n|t|a_ted n SIt:ross, the dominant energy condition can be satisfied if there
of spherically symmetric metrics satisfying the dominant N-< an asvmptotically extreme enerav-stress tenyl € p or
ergy condition and of which the singularities are of power- ymp Y gy p

law type. We have identified two classes of peculiar interestlpilwp) or one of the pressures is negative. As a negative

(1) A timelike class exhibiting in the neighborhood of its Prooo e 18 charactenistic of @ cosmological constant domi-
focusing singularity the stress-energy tensor of a perfecth ) bl ' y y
fluid, with the equation of state ahdiation: p=3p orizon problem. . .
, Lo : s We finish by noting that the timelike nature of any spheri-
(2) A set of null classes verifying identical properties. d . . . .
cally symmetric shell-crossing singularity, stated in the Ap-

res\lljvl(tashave considered two important applications of thes’('f:)endix, would allow us to extend from the DBB cosmologi-

(1) In cosmology, the possibility of solving the horizon cal models tononflat predominantly dust cosmological

. . 2 models the property of solving the horizon problem. We
p_roblem_.W_e have r_e\_/lewed n _Sec. Il how a t|meI|_ke or null leave the discussion of such models to future works, stress-
singularity is a sufficient condition for a cosmological model . . . .

. X X ing once more the nice geometrical properties possessed by

to be rid of this cumbersome problem. Therefore, if we con-, o . )
X ; ; X ) .. the geodesics in some peculiar classesnfiomogeneous
sider the physically consistent picture of a universe which is .
. o d . . models of the universe.
first radiation dominated and, after a period of cooling, be-
comes dust dominated, we can take advantage of our new
results to state that Einstein’s equations permit the existence
of solutions exhibiting nonspacelike singularities having In this appendix, we give a derivation of the timelike
physical conditions in their neighborhood consistent with thecharacter of the shell-crossing singularity in a spherically
primordial region of the universe. These can be assimilatedymmetric model, generalizing a line of reasoning first pro-
to a region of energy density approaching the Planck scalgosed by Hellaby and Lake {i6].

(beyond which general relativity is generally believed to  The general spherically symmetric line element can be
break down. Choosing to describe this region with one of written

the radiative models corresponding to the timelike or null

APPENDIX

singularities identified in Secs. IV and V allows us to solve ds?=—B3(r,t)dt?+ A%(r,t)dr?+R?(r,t)(d6?
ermanentlythe horizon problem, as has been stressed in .
gec. I m b +sinf0dg?). (A1)

the horizon problem in a geometrical way, these results pro-

vide us with new candidates to achieve this without need to A=[t—Db(r)]?f(r,t)=0, B#0, R#0. (A2)
resort to an inflationary scenario. It is worth noting that, ,
contrary to the DBB solutions which exhibit a shell-crossing  The normaln,, to the surfacéA=const(hereA=0), is
singularity, those proposed here arise frorfoeus <,

(2) In gravitational collapse, a counterexample to the N> (AA",0,0). (A3)
SCCH.If we limit ourselves to the consideration of the fo-  \vith the metric of Eq.(Al), the squared norm of this
cusingtimelike singularities identified in Sec. IV, the corre- 5rmal vector is
sponding class of solutions to Einstein’s equations repre-

sents, to a good approximation, a spherical cloud of n,n%=—A2B2+ A'2A2, (A4)
collapsing gas near its focusing point, contradicting the com-
monly believed strong cosmic censorship hypothesis. According to Eq.(A2), A>=0, and the above expression

Some further cosmological conclusions can incidentallyfor n,n“ is always negative, implying, with our choice of the
be derived from the results first obtained in SI. We recallmetric signature, a timelike shell-crossing surface.
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