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We study the nature of singularities in anisotropic string-inspired cosmological models in the presence of a
Gauss-Bonnet term. We analyze two string gravity models—dilaton-driven and modulus-driven cases—in the
Bianchi type-l background without an axion field. In both scenarios singularities can be classified in two
ways—the determinant singularity where the main determinant of the system vanishes and the ordinary sin-
gularity where at least one of the anisotropic expansion rates of the Universe diverges. In the dilaton case,
either of these singularities inevitably appears during the evolution of the system. In the modulus case,
nonsingular cosmological solutions exist both in the asymptotic past and future with the deterrbirants
+o andD =2, respectively. In both scenarios nonsingular trajectories in either the future or the past typically
meet the determinant singularity in the past or future when the solutions are singular, apart from the excep-
tional case where the sign of the time derivative of the dilaton is negative. This implies that the determinant
singularity may play a crucial role in leading to singular solutions in an anisotropic background.
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I. INTRODUCTION the nonsingular behavior of the solutions is mainly deter-
mined by the evolution of the modulus field. Therefore, the
Superstring theory continues to be of interest as a possiblallowed ranges of parameters were analyzed in the absence
candidate to unify all fundamental interactions in nafire  of the dilaton in a flat Friedmann-Robertson-WalkERW)
It is known that there exist five supersymmetric perturbativebackground 10] (see also Ref.11]). Since it is important to
string theories which are classified as type I, type IIA, typeconfirm the generality of singularity avoidance even starting
I1B, SO(32) heterotic andEg X Eg heterotic string theory. Re-  from an anisotropic spacetime, several authors analyzed non-
cently it was found that these theories are connected by duaingular cosmological solutions in the Bianchi type-I space-
symmetries, which leads to the conjecture that each theoryme without a dilaton{12,13 and with a dilaton{14]. The
appears as one of five branches of a unified theory, called Mresence of the modulus coupled to the Gauss-Bonnet term
theory[2]. In particular Hoava and Witter{3] showed that  4jjows the existence of nonsingular solutions unless the dila-
the 10-dimensiondEg X Eg heterotic string theory is equiva- o1 controls the dynamics of the system.

: ; o 10
lent to an 11-dimensional M-theory compactified b In order to understand how nonsingular or singular solu-

1 . . . .
E;S 1Z3. Thefr_1 ;[jhg 10-g|men§|qnal ﬁpat\]cetlme Ihs eXpe(;’jteddt‘?ions appear, it is necessary to classify the nature of singu-
e compactified intd X CY?, in which case the standard |, jieq in an anisotropic background. In particular, the main

_rprﬁgeliszg'ﬁlses t"’g?hceowgﬁgn%&;hifggzeﬁéw;nssclgr?g:z‘gran%‘eterminamD of the system is an important quantity to de-
9 scribe the singularities. When only the dilaton fiefd is

where the extra dimension is noncompact and gravity is ef- . . )
fectively 3 dimensional. coupled to the Gauss-Bonnet term in the Bianchi type-I

For cosmologists it is very important to test the viability background, it was conjectured in RgL5] that nonsingular

of string theories by extracting various cosmological impli- cosmological solutions in the futl_Jre cross the determinant
cations from thenj5]. One such attempt is the pre-big-bang singularity © =0) in the past whewp is positive. While this
(PBB) scenarig 6] based on the low energy effective action singularity was found more than ten years gdé|, only
of string theory. In this scenario there exist two branches ohow we begin to understand its importance. The similar kind
solutions by assuming @& duality, one of which {<0) cor-  of singularity also appears in the context of black hole inner
responds to the stage of polelike inflation driven by the ki-solutions in the presence of dilaton coupled to gravity via the
netic term of the dilaton field and anothet<(0) is the stage Gauss-Bonnet terifil7,18. In this paper we shall make de-
where the curvature continues to decrease. However, it itiled analysis about nature of singularities both in dilaton-
difficult to smoothly connect these two branches without aand modulus-driven cosmologies in the Bianchi type-l back-
singularity in the tree-level string actid,8]. ground. We do not include an axion field in our analysis, but
One is required to take into account quantum loop or deit is important to emphasize that its effect is generally vital as
rivative corrections in order to overcome such singularitystudied in Ref[19]. We will classify other kinds of singu-
problems. In fact, Antoniadis, Rizos, and Tamvaldg in- larities where at least one expansion rate diverges. These
cluded a Gauss-Bonnet term in the tree-level string effectivénvestigations are important to understand how nonsingular
action with dilaton and modulus fields, and showed the exsolutions emerge in the modulus-driven case. In addition our
istence of nonsingular cosmological solutions. In this casenalysis will be useful to construct more complicated non-
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singular string-inspired models in the presence of other fieldsvhich extends around the isotropic poiat= 3=0, repre-

such as a axion. sents the regions where the universe expands in all direc-
This paper is organized as follows. In Sec. Il we showtions. In the outside region the Universe is contracting at

background equations in anisotropic string-inspired model$east in one direction.

with dilaton or modulus fields. In Sec. Ill we study nature of = The dynamical equations for the background are written

singularities in dilaton-driven cosmology both for positive as

and negativep cases. Section IV is devoted to the modulus-

driven cosmology where both of nonsingular and singular (1+8rf)(q+0*) +(1+8gf)(r+r?)
solutions exist. We present summary and discussions in the 1.
final section. +(1+8f)qr+ 5({)2:0, (2.7)

Il. THE MODEL AND BACKGROUND EQUATIONS
We begin with the actiofi9—14]

(1+8rf)(p+p?)+(1+8pf)(r+r?)

_ +(1+8f)rp+%¢2=0, (2.9
SR=5(Ve)*+1($)REs|, (2.1

S= f d*x\—g

(1+8qf)(p+p?) +(1+8pf)(q+g?)

written in the Einstein frame. HerR is the scalar curvature . 1.

and ¢ denotes a scalar field which is either dilaton or modu- +(1+8f)pg+ §¢2=0, (2.9
lus. f(¢) depends on string theories, whose explicit forms

are given later. We do not consider the multifield system of - P . .

dilaton and modulus fieldgl4] induced from the one-loop ¢+(p+a+r)$—8f'{par+par+pqr

effective action of heterotic string theory. In addition we ne- +par(p+q+r)}=0, (2.10
glect the antisymmetric tensét,,, and the curvature terms

higher than the second order. The Gauss-Bonnet Rygis  together with the constraint equation

defined as

o1,
pq+qr+rp+24pqrf—§q§2=0. (2.11

R2s=R?—4R*'R,,+ R*"*R (2.2

uvap -

We normalize time and spatial coordinates by the stringPefining a 4-dimensional vectox=(p,q.r, ), Eqs.(2.7)—

length scaleyh asx*=x*/\\, and the scalar fields a5  (2-10 can be written in the matrix form

= ¢/\.. Hereafter we drop bars for simplicity. Zx=y 212
Let us consider the Bianchi type-I spacetime whose met- ' '

ric is given by wherey=y(p,q.r,¢,¢) and

ds?=—dt?+ az(t)dX2+ bz(t)dy2+ C2(t)d22, (23) 0 1+ 8f’é5r 1+8f’¢)q 8f’qr
wherea(t),b(t),c(t) are the scale factors in an anisotropic | 1+8f'¢r 0 1+8f'¢p 8f'rp
background. We define the anisotropic expansion rates <~ 1+8f'¢ 1+8f'¢ 0 8f'pq
p(),a(1) 7 (1) as o ’P
—-8f'qr —-8f'rp —-8f'pq 1
a b c 2.1
pH=2, A=, rH=c, (2.4 | | 213

a ¢ The determinant o yields

where an overdot denotes the derivative with respect o D=2+ 16f' (p+q-+r)—64f'2(p292+ q2r2+r2p?)

is also convenient to introduce new variablesg, 3: _
+128f"2pqr(p+q+r)+128'2¢*(pg+qr+rp)
p(t)=h+a+38, qt)=h+a—+38, r(t)=h—2a.

(2.9

Hereh=(p+q+r)/3 is an average expansion rate, which is
the generalization of the Hubble parameter in an isotropign the case oD #0, the solutions of Eq92.7)—(2.10 are
case, andr and 8 correspond to parameters of anisotropy.given by x=Z2"'y. When D vanishes, however, we cannot
The triangle in the ¢,3) plane proceed numerical calculations further. This “determinant
singularity” plays an important role in the anisotropic back-
a+\38>—h, a—38>—h, a<h/2, (2.6) ground[15].

+1024 "3 ppqr(pq+qr+rp+ ¢?)
+12288 "4 $*p2q°r2. (2.14
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From Eq.(2.11 we find the constraint

a?+ B?<h2+96(pqrf’)?, (2.15
in which caseg is solved as
d=24pqrf’ +\/(24pqrf’ )2+ 2(pg+qr+rp). (2.16

Whenf =0 anisotropy parameters are restricted in the circle,
a?+ B?<h?. If the Gauss-Bonnet term is taken into account,
we have the wider allowed range of anisotropy parameter

given by Eq.(2.15.

Ill. DILATON-DRIVEN CASE

Firstly we consider the dilaton-driven case with

A
f(¢)= Ee‘z“’, (3.

where the string coupling. takes a positive value. We set
A=1 in our numerical simulations. In the scena{®1) na-
ture of singularities was analyzed in RET5] in the Bianchi

PHYSICAL REVIEW D 65 123509

When the Gauss-Bonnet term is dominant in E2j11)
(lpg+aqr+rp|<|24pqrf|), one has =
—BA\C1C,oC5|t]%%e2¢ by using Eq.(3.2). Integrating this
equation with respect to, we easily find that$=sgnt)
X(3s+1)/(2|t]). Combining this with Egs.(2.7)—(2.10
gives

5e2%0
)

(3.5

C1C2C3=sgr(t)

§inceclczc3<0 for t<0, the universe is either contracting
in all directions or expanding in two directions and contract-
ing in one direction. Whert>0, the universe is either ex-
panding in all directions or expanding in one direction and
contracting in two directions. For the asymptotic solution
(3.5), we have thatp|t| " and f'«[t|®, in which case the
determinant is given by «|t|5— o for |t|—. In spite of
this divergent behavior of the determinant, the solutions are
nonsingular withp,q,ro|t|2—0 for |t|—o=.

We shall classify the cases where the solutions of Egs.
(2.7—-(2.10 exhibit singular behavior. When the system
passes through the determinant singulariy=0), Eq.

type-I background in the case of the plus sign in the right(2,12) indicates tha=(p,q,r,¢) diverge. This singularity
hand side of Eq(2.16. Hereafter we shall make a detailed appears in an anisotropic background where three expansion
analysis about the property of singularities in both signs ofates are multiple-valued functions of tifi&3]. It is also a

Eqg. (2.16.

physical singurality where the curvature invariant

The asymptotic behavior of splutions in the_z past and fu'R”MBRMmB diverges due to the divergence of the time de-
ture can be analyzed by assuming the following power-lawiyative of the expansion rates. Near the determinant singu-

forms for the expansion rates:

p=ciltls, a=coft> r=cslt[s (3.2
In order for thef term in EQgs.(2.7—(2.10 to have a power-

law dependence, the dilaton is required to take the form

b= o+ Cylnt|.

When the contribution from the Gauss-Bonnet term is neg
gible, one has$?=2(c,C,+CoCa+C5C)|t|?° from Eq.
(2.11). Comparing this with Eqs(2.7)—(2.10 and(3.3), we
find

(3.3

c2+ci+ci+ci=1,

(3.9

s=—1, cqt+cytcz=sgnt),
C3=2(C1Cy+ CxCa+C4Cy).

In the absence of the dilatorc{=0), the solution(3.4) for

larity, the expansion rates and the scalar field can be ex-
panded a$15]

h=his+hipVt—t+h(Vt=t)?+---,  (3.6)
¢= ¢’s+ ¢1( \/lt_ts|)2+ ¢2( V|t_ts|)3+ T, (37}

whereh;=p,q,r(i=1,2,3), and is the time at singularity.

.This means thab; and ¢ diverge ast—ts, while p,q.r,¢

are finite. This property is different from the ordinary kind of

singularity wherep,q,r do not stay finite. The determinant

singularity plays a crucial role in an anisotropic background.
The ordinary kind of singularities can be classified as

() p~po/(t—ty),

(i) p~po/(t—ts),

g~do, Ir~Tg, (3.9

q~po/(t—tg), r~rq, (3.9

t>0 represents the vacuum Kasner solution where the uni- (i) p~po/(t=ts), q~Po/(t=ts), r~po/(t=ty),

verse is expanding in two directions and contracting in one
direction. The interpretation of this solution is that large

anisotropies are required at least in one dimensiot-a8,
in order to make the spacetime curved by anisotropies.

(3.10

wherepg, do, andrq are constants witlpg>0. If the time
direction is forwards {—ts— —0) one hasp— —x, while

The situation is different when the dilaton is taken into P—® for t—ts—+0. The asymptotic forms of the determi-

account. For example, whefil/2<c,< \/2/3 the universe is
expanding in all directions for— oo, while there exist both
Friedmann- and Kasner-type solutions fors0,</1/2.

nant(2.14) depend upon the cases presented above.
In the casdi) with a plus sign in RHS of Eq2.16), the

signs ofqgg andr are the same and the asymptotic fomijﬂof

Note that in the limit where the Gauss-Bonnet term is negliis given by ¢~ (qo+ro)/(3Ne 2%sqqr,) for t—te—+0,
gible (f"—0) the determinant approaches a constant valuaith ¢, being a constant. Then the determin&ntyields,

D=2 from Eq.(2.14).

from Eq. (2.14),
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In the minus sign of Eq(2.16), one hasD— —« for qgrg
<0 andt—t;— +0.

In the casgii) with a plus sign of Eq(2.16), one hasp
~1/(3\rpe 2%s) for ro>0 andt—t— +0. Then the deter-
minant should asymptotically take the form

4\%e*9spd
3(t—tg)?

o
2

(for ggro>0).

AN%pge4?s
3(t—ty)?

— ——w (for ry>0).

(3.12

In numerical analysis we did not find this case for the pa-

rameter ranges and initial conditions we adopt. Typically or
dinary singularities are dominated by the cases where one

three expansion rates tend to diverge. When one chooses t

minus sign of Eq.(2.16), the asymptotic behavior iD—
—oo for ry<0 andt—ts— +0.
In the case(iii) with a plus sign of Eq(2.16), we find

d~t/(Apoe~2%s) and
D—O0, (3.13

for t—ts— +0. Strictly speaking this holds only for the iso-
tropic case ¢=pB=0) where all expansion rates are the

singularity, although they approadd=0 ast—ts— +0.

PHYSICAL REVIEW D65 123509

=0.05 with initial conditionsh=0.16 and ¢=0, corre-
sponding toD~1.7 att=0. The determinant continues to
grow until it approaches the finite value=2 ast—oo,
which indicates that this solution belongs to the nonsingular
solution in the future given by Ed3.4). Note that fort>0

the universe is expanding in all directions. When we solve
the equations of motion backward$<{(0), the solution
meets the determinant singularity aroursd— 0.82, thereby

leading to the divergence @f, g, r, and . If we introduce
a new time parameter defined by

f

it becomes possible to enter the region of the negative sign of
D by overpassing the determinant singulafityg]. This does

dt

D (3.19

not mean that we can remove the singularity by coordinate

fansformations. The determinant singularity is a physical
fie where the divergence of the curvature invariant is un-
avoidable even in other coordinates. After entering another
branch, the solution turns back forwards and the determinant
begins to decrease rapidly towall— — [see the right
panel of Fig. 1a)]. From Fig. 1a) we find that this belongs
to the class of the cas@) with p~pgy, q~Qqg, r~ro/(t
—ts), andpyqe>0 [see Eq.(3.11)]. The universe is rapidly
contracting in one directionr (- — ) for t—t;— —0. As is
claimed in Ref[13], these trajectories can be understood as
the pair creation of two branche® &0 andD<0) at the

afkterminant singularity. For the nonsingular solutions in the

future, it is inevitable to cross the determinant singularity in

When small anisotropies are included, the trajectories Cafhe past in an anisotropic background. Notice that in the

pass througlD=0. For the minus sign of Eqg2.16 the

asymptotic behavior of the determinant is not described by,

Eqg. (3.13, as we will see later.

In another limitt—t,— — 0, the signs of diverging expan-
sion rates in Eq94.3.8)—(3.10 are reversed, in which case the
asymptotic forms oD are altered. Nevertheless the determi-
nant of the casegi) and (ii) generally approaches the
asymptotic valud = — . We shall confirm this by numeri-
cal investigations in subsequent sections.

A. Plus sign of Eq.(2.16
We first analyze the case of the plus sign in E216).
When ¢ is largely positive, the ternf’=—(\/8)e 2% is
negligible in Eq.(2.16), implying that¢ is positive as long
aspg+qr+rp>0. In this casep increases toward the fu-

isotropic cas® is always positive and decreases toward zero
st— —o. In the presence of small anisotropies, however,
the solution reaches the determinant singularity at finite past
and fall into theD = —« singularity as shown in Fig.(&).
When ¢ is large, the allowed anisotropy parameters in the
(a,B) plane lie inside a circle, given by
o®+ p?<h?, (3.19
which comes from the constraif2.15. In Fig. 2@ we show
the nature of singularities in the past and future in theQ)
plane forh=0.16 and$=0 att=0. In this case the allowed
region is approximately described by E§.15. We find that
all solutions inside this region exhibit the determinant singu-
larity in the past(region Il in Fig. 2 while they are nonsin-

ture, which results in nonsingular asymptotic solutions withgular (D—2) in the future(region .

determinantD~2. When we go back to the past, there are

With the decrease ap, the allowed region gets larger as

two possibilities for the evolution of the determinant. One isfound by Eg.(2.15. The nature of singularities becomes
the case where the solutions pass through the determinamtore complicated due to the appearance of ordinary singu-

singularity ©=0) and another is the one whek goes
toward infinity (D— +). Our numerical investigations
suggest that the latter case doesg occur for the plus sign in
Eqg. (2.16, which means that solutions nonsingular in the
future (D—2) meet the determinant singularity in the past,
irrespective of the initial values ap.

In the left panel of Fig. (a) we plot the evolution of the
expansion rates for the anisotropy parameters0.053

larities. If the system is close to the isotropic case|( S
|<1), one ha® —2 fort—c~ andD—0 at the finite past as
in the case of Fig. @. However, larger anisotropies alter
this picture. For example, we show the evolution of the ex-
pansion rates in the left panel of Figbl for «=0.15 and
B=0.05 withh=0.16 and¢=—1 att=0. In this case is
singular at finite past whilg,r are positive constants, which
means thaD — —« from Eq. (3.11). The solution exhibits
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FIG. 1. The evolution op, q, r, ¢, andD in the dilaton-driven case for the plus sign in E8.16). Each figure corresponds to initial
conditions withh=0.16 and(a ¢=0, «=0.05, B=0.05,(b) p=—1, «=0.15, B=0.05,(c) p=—-2, «a=0.1, B=0.1, respec-
tively. The determinant singularityd(=0) can be passed through by introducing a new time parametgidt/D.

the same kind of singularityd{— — <) in the future. In this  presented foh=0.16 and¢=—1 att=0. There exists a
case we have numerically found the determinant is alwaysegion lll, where the determinant is singuldd { — =) in
negative D= —1.02 att=0) and the solution never crosses both the past and future. We also find that the region IV with
D=0 in both the past and futufsee the right panel of Fig. D— -+« appears in the past when anisotropy parameters are
1(b)]. In Fig. 2b) the asymptotic property of singularities is large. This corresponds to asymptotic past nonsingular solu-
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PaSt ( a) Future ( a)

FIG. 2. Nature of singularities
in the («,B) plane with initial
conditions(a) =0, (b) p=—-1,
and (c) ¢=—2 for the plus sign
in Eq. (2.16). The left figures cor-
respond to past solutions while
right figures correspond to future
solutions. Each region corre-
sponds tdl) nonsingular solutions
with D— 2, () singular solutions
with determinant singularity
=0), (Ill) singular solutions with
D— —<, (IV) nonsingular solu-
tions with D— +«, respectively.
The black color indicates prohib-
ited regions in the initial condition
space.

tions given by Eq.3.5 where quadratic curvature correc- =—2 att=0. This suggests that future nonsingular trajecto-
tions are dominant. It is important to separate this case fromies are restricted to be very narrow near the isotropic point
the ordinary singularity witlD = —, although this classifi- «a=8=0.We also find that the determinant singularity in the
cation was not done in Ref15]. From Fig. Zb) the solu-  future corresponds to the regular solutions with- + in
tions withD=0 in the future correspond to, in the past, thethe past. As one example we plot in Figc)lthe evolution of
determinant singularity or the regular solutions with— p,q,r for h=0.16 and¢=—2 att=0 with anisotropy pa-
+o0. Notice that the parameter range of future nonsingularametersx=0.1 andB=0.1. In this case the past asymptotic
solutions are smaller compared to the case of Fig). 2 solution is categorized in the nonsingular solution given by
In Fig. 2(c) we show the density plot fdn=0.16 and¢ Eq. (3.5). Figure Zc) shows that two expansion ratpg are
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2.0 . - . - subsection we will analyze how the behavior of the determi-
oo b nant is altered for different signs in E@.16).
2.0 Nonsingular B. Minus sign of Eq. (2.16
-4.0 (Future) . In the previous subsection, solutions which are nonsingu-
< 6o lar in the future meet the determinant singularity in the past,
o due to the fact that the determinant evolves from the
-8.0 Singular 1 asymptotic valueD =2 toward the determinant singularity.
(Future) For the minus sign of Eq(2.16), the determinant can in-
-10 ] crease toward the past, implying that the trajectories may not
12 . . . . cross the determinant singularity. In fact we will show that
1075 0.0001 0.001 0.01 0.1 1 the past singularity is not necessarily of the determinant type.

Let us first analyze the asymptotic behavior of the deter-
minant when all expansion rates diverge as BdL0. In Eq.

FIG. 3. The minimal initial values o which allow solutions (2.16 when the 2pq+qr+rp) term is positive and much

nonsingular in future in the dilaton-driven case for the plus sign in

Eqg. (2.16. larger than (2pqrf’)2, one has¢~ —\2(pgq+qr+rp)~
—\6py/(t—ty). Therefore the dilaton grows asp~
positive whiler is negative fot<0, implying c;c,c3<0in  —V6pgIn(t—t) for t—t—+0, in which case the

Eq. (3.5. The solution comes regularly from the asymptotic asymptotic form of the determinant yields

past withD being decreased toward the futlisee the right _— .
panel of Fig. 1c)]. It crosses the determinant singularity D ~2+6 6\ pj(t—ts) >8P0+ 30N (t —tg) (BP0~ 1)
aroundt=0.3, after which the determinant continues to de- 3.6 6(\Bpo—1 4,674 4 \8(\Bpo—1
crease until the solution falls into the ordinary singularity + 18BNt ) 6(FP0~ 1)+ 18\ pf(t—t;) 8BPo~ D),
with D— —. Note thatp diverges as—t;— +0, while q (3.16
andr approach positive constant values, in which case one

hasD— — by Eq.(3.11). This trajectory can be regarded This indicates that the determinant grows infinitey

as the pair annihilation of two branches wili>0 andD  +) for p,<1/1/6, while it decreases toward a finite value
<0. From Figs. #b) and Zc), the solutions nonsingular in D=2 for py> 1/\/6. The latter case corresponds to the one
the past D— +=) meet the determinant singularity in the where the average expansion rates are large initially.
future. In this case the solutions do not go forwards beyond When the condition (2dqrf’)?>|2(pg+qr+rp)| is

the determinant singularity. In Fig.(@ the parameter re- satisfied, the asymptotic form oty is given by ¢~
gions with ordinary singularity in the futurdX= —<) typi-  —gxp3e 2%/(t—t.)°, which yields e?*~6Ap3/(t—ty)?.
cally correspond to those with the same singularity in therhen one has the following positive finite value of the deter-
past, in which case the asymptotic behavior of the expansiopinant in the limit oft—t.— +0:

rates are the same as in Figbll Notice that in Fig. &)

there exist some parameter ranges where the solutions meet 13 7 5
the determinant singularity in both the past and future. Al- D~2+ S+ yias 5 (3.17
though this case is very rare, it is still possible to cross the 12p; 36p, 432pg

determinant singularity twice.

From Fig. 2 we find that nonsingular solutions in the fu- Whether the asymptotic form is given by Hg.16 or (3.17
ture are determinant type in the past. This can be understodgtepends on the initial values of the expansion rates and the
that the determinant evolves frolh=2 toD =0, if we solve  dilaton. In the latter cas@ is generally small so that the
the equations of motions from the asymptotic future to thecondition (24€qrf’)?>2(pg+qr+rp) is fuffilled. In both
past[see the right panel of Fig(d)]. We also analyzed other cases we can expect that the trajectories do not cross the
cases varying the values &f and ¢ for 10 °<h<1 and determinant singularity in the past.
—15< ¢<15. For a fixed value oh there exists a minimal ~ We show in Fig. 5 the density plot of the asymptotic be-
value of ¢ which leads to nonsingular solutions in the future havior of the determinant fdr=0.16 att=0. When¢=0 at
(see Fig. 3. The allowed range of the dilaton for future non- t=0 all trajectories satisfying the constraif15 are non-
singular solutions gets wider with the decreasé a shown  singular in the future wittDb=2. In this case the past solu-
in Fig. 3. In all cases analyzed in our numerical simulationsfions are dominated by the singularity with asymptotic posi-
the past singularity for future nonsingular solutions corre-tive determinant as found from the left panel of Figa)5As
sponds to the determinant type in an anisotropic backgroundgne example we plot in Fig.(4) the evolution ofp, g, r, ¢,
We also found that trajectories with nonsingular pastand D for ¢=0 at t=0 with anisotropy parameters
asymptotic meet the determinant singularity in the future. In=0.05 andB=0.05. This belongs to the clag8.16 with
addition we showed that the ordinary singularity with Eq. «<1/\/6 where all expansion rates diverge with determinant
(3.8 appears, in which case the determinant is divergent aB— +«. The determinant is always positive and continues
D— —oo. This is different from the casb— +« where the to grow backwards. The left panel of Fig(ah shows that
solutions are nonsingular in the asymptotic past. In the nexthere exist some past solutions which meet the determinant
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FIG. 4. The evolution of, g, r, ¢, andD in the dilaton-driven case for the minus sign in E2.16). Each figure corresponds to initial
conditions withh=0.16 and(a) $=0, «=0.05, B=0.05;(b) p=-1, a=0.15, B=0.05;(c) p=—2, a=-0.02, B=0.02,
respectively.

singularity when anisotropies parameters are large. In thismall for the positive values ap att=0.

case the determinant grows until some moment of time in the With the decrease of the initiab, the constrain{2.15
past, after which it begins to decrease toward the determinamfives wider allowed parameter ranges in the £) plane.
singularity. This behavior can be understood by the fact thatet us consider the case=—1 andh=0.16 att=0. As is
large anisotropies prevent all expansion rates from evolvingound from Fig. %b) we have additional regions with the
almost as in Eq(3.10. However, this region is typically D= —oo singularity in both the past and future. The nature of
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Past (a) Future (a)

FIG. 5. Nature of singularities
in the (a,B) plane with initial
conditions,(@) ¢=0, (b) ¢p=—1,
and(c) ¢=—2 for the minus sign
in Eq. (2.16). The left figures cor-
respond to past solutions while
right figures correspond to future
solutions. Each region corre-
sponds tdl) nonsingular solutions
with D— 2, () singular solutions
with determinant singularity
=0), (Ill) singular solutions with
D— —o, (IV) nonsingular solu-
tions withD —°, (V) singular so-
lutions with positive determinant,
respectively. The black color indi-
cates prohibited regions in the ini-
tial condition space.

singularities around the isotropic point is similar to tihe  Fig. 1(b)] or it passes through =0.

=0 case explained above. For the solutions nonsingular in The situation becomes somewhat different wifers de-

the future, the past singularity is either type>0 orD=0.  creased further. Figure® indicates that nonsingular trajec-
Figure 4b) is the latter case where the trajectory comes regutories withD — + o appear in the future around the isotropic
larly from the asymptotic future@J=2) and meets the de- point for $<—2 att=0. This is the case where all expan-
terminant singularity in the past. This evolution is similar to sion rates are finite as described by E}5). However, these
the case of large anisotropy parameters in Fig).5-rom  solutions are singular in the past with all expansion rates
Fig. 5(b) the solutions singular in the futurdE — ) cor-  being infinite. In region V shown in Fig.(6), the condition
respond to, in the past, the singularity with=— or the  (24pqrf’)2>|2(pg+qr+rp)| is typically satisfied at=0.
determinant singularity. The difference between the twoTherefore the determinant tends to approach the finite value
cases is whether the determinant is always negatigein  (3.17) in the past. We show in Fig.(d) the evolution of the
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system for a=—0.02, 8=0.02, $=—2, and h=0.16. When the Gauss-Bonnet term dominates in H@s?)—
While the evolution of the expansion rates in Figc)4ooks  (2.10), the asymptotic solution is similarly given as E8.5),
similar to that in Fig. 4a), the behavior of the determinant is i.e.,

different in both the past and future. In Figcithe deter-

minant decreases from infinity to a finite positive value to- p=cilt| ™2 g=colt| % r=cgft| %
ward the past. We have numerically found that two terms 5e2%0
(24pqrf’)? and 2(pg+qr-+rp) become comparable during b=cdo=5Int], cicc3=5sgnt) (4.9

the evolution. Therefore the asymptotic valuelbfs some- 4md

what different than in Eq(3.17), but it is still a finite positive
value. We find from Fig. &) that future nonsingular solu-
tions with eitherD=2 or D=+ correspond to the singu-
larity (3.10 with a positive determinant in the past. Figures
5(b) and Fc) also suggest that ag decreases the ordinary

singularity WithDH_w appears in both the past and future For another asymptotic solution where the effect of the
for large anisotropy parameters.

. . Gauss-Bonnet term is negligible, the evolution of the back-
Compared to the case of the previous subsection, tuground is given by
range of nonsingular solutions in the future is not so narro
due to the presence of nonsingular trajectories vidth- p=cq|t| Y, g=cylt|7t, r=cslt]7h =gt c,lnlt],
+o. However, this solution is not appropriate to lead to our

The past asymptotic solutions correspondcia,c;>0 for
negatives. This sign is different from the dilaton-driven case
with positive A\ which we already analyzed in the previous
section. Note that the determinant is divergddt-¢ + ) for

|t|—>oo_

present universe due to the dominance of the quadratic cur- Ci+Cr+Cy=sgnt), ci+ci+ci+ci=1,
vature term. In addition these solutions typically approach )
the ordinary singularity(3.10 with all expansion rates infi- C;=2(C1Cy+CyC3+C3Cy). (4.5

nite in the past. This property is different from the plus sign )

of Eq. (2.16) where the past singularity for solutions nonsin- Therefore one haf «|t|I°/, ¢oc|t| 1, andp,q,r=|t| = with
gular in the future corresponds to the determinant type. Inic,/<1 in Eq.(2.14), in which case the solutions are nons-
both cases we have found that nonsingular cosmological seagular with an asymptotic value of the determin&nt2.
lutions in both the past and future do not exist for the For the nonsingular cosmological solutions found in Ref.

diIaEc;n—driven case for wide ranges of the parameter spag®), ¢ does not change its sigf0]. Because of the symmet-
(107°<h<1 and—15<¢<15). However, the situation is ric structure of the functiort4.3) with respect tog=0, we

changed in the modulus-driven case as we will analyze in th9vi|| consider the positivep case where the modulus contin-

next section. - )

ues to grow from past to future. For negatigethe analysis
is essentially the same by changigto —¢. When the
solutions are singular, they meet the determinant singularity
In the modulus-driven case the functibfy) in Eq.(2.1)  [see Eqs(3.6) and(3.7)] or the ordinary singularitysee Egs.

IV. MODULUS-DRIVEN CASE

is expressed g9€,10,12-14 (3.8—(3.10]. Let us consider the asymptotic behavior of the
determinant for the ordinary singularity. In the ca$@s)—
1 (3.10, possible asymptotic behavior of the determinant can
f(d)=- 1_535§(¢)’ (4D pe summarized as
where the coefficient is determined by the 4-dimensional ) 256f [2p3 ro\? 3 5
trace anomaly of thé&l=2 sector. Here the functiog(¢) is  case(i) D~—————1{do— ) +Zr° — %,
” 3(t—tg)
defined by
£(¢)=In[2e% % (ie?)], (43 W
where 5(ie?) is the Dedekindz function. Sinceé(¢) is b~— erwconst, (4.6)
well approximated ag(¢)=— (27/3)coshp [14], the func- 24f5 Qoro
tion f takes the form
) 256f ;?py
T case(ii) D~———"7——
f(¢)zE(e"’+e"”). (4.3 3(t—ty)
. . with
When ¢ is largely negative ||>1), Eq. (4.9 reduces to
the form (3.1 by setting §=3\/#. Therefore whens>0, )
solutions that are nonsingular in both the past and future do o~ W~COHSL (4.7
not exist. However, nonsingular cosmological solutions have 0's
been found for negative values 6f[9]. Hereafter we shall t—t
focus on the negativé case(settingé=—1 for simplicity)  case(ii) D—0, ¢~— = 4.9
using the functiorf(¢) given by Eq.(4.3. 8pofs
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where f.=(75/48)(e?s—e~ ?%s) with ¢, being a constant. nonsingular with determinaf®— 2. However, we find from
Although casdii) is rare, we have numerically checked that the left panel of Fig. @) that the region of past nonsingular
this asymptotic solution certainly exists for the modulus-solutions gets smaller relative to Figla). For large anisot-
driven case. The asymptotic caié) corresponds to the iso- Topy parameters, the determinant tends to decrease back-
tropic case, as is similar to the dilaton-driven cosmology. It isvards from the asymptotic future with=2, thereby result-
easy to verify that this trajectory is possible for positige ing in the singularity withD =0. This is not the case for the
but impossible for negative. In what follows we shall ana- nonsingular trajectories with small anisotropy parameters.
lyze how the evolution of the expansion rates and the detefOne example is plotted in Fig.(§. Although the determi-
minant are different from that of the dilaton-driven case pay-nant decreases fror=+x to t~—6, it begins to grow
ing particular attention for nonsingular trajectories. toward the asymptotic past before crossing the determinant
Nonsingular asymptotic solutions fap>0 can be de- Singularity. From Fig. th) we find that the trajectory comes
scribed asp=$o—5 Inlt| in the pasisee Eq.4.4)] and ¢ regularly from the asymptotic past and connects to the
— o+, Int| with 0<c,<1 in the future[see Eq.4.5)]. Friedmann-type branch where the universe is expanding in
Therefore ¢ continues to grow from the asymptotic past all directions. When anisotropy parameters are small and be-

starting from large negative values @f toward the future. long to the region2.6), the future solution is of Friedmann
Such examples are plotted in Figdaand Gb). In these type. . .
cases the determinant evolves fr@ + oo (pas) to D=2 Whef‘ the average expansion ri_atgets larger, the region
(future) without passing through the determinant singularity.olf rt19ns'|:r)gular i(rn]srr:jolog!::al fcilutflotﬂs be(t:omesf ?rr]nage;. We
In the dilaton-driven case when the past trajectories are nor© mt f'g'hﬁc()) 1 € dens_lg pT?] 0 ? na} Li.re 0 ede er-
singular withD =+ they inevitably meet the determinant Mnant forh==u.4 an ¢=2. The past solutions are domi-
singularity in the future[see Figs. ) and 2c)]. This is nated by the determinant singularity, whereas the future so-

mainly due to the fact that’ is negative in the dilaton case lutions are nonsingu]ar WhiCh. is similar to Figby. In this .
while its sign is different in the modulus case 6«0 and case nonsingular trajectories in both the past and future exist
¢<0. Therefore the determinari2.14 is dominated by in-only small parameter ranges around the isotropic point.
positive terms in the modulus case, which provides a way noé3 It is also worth mentioning that the ordinary singularity

to pass through the determinant singularity. Namely negativmi'r%l?s\’;:thn%S%yén?g)tl%ddegggﬂgfgat@aﬂﬂdﬂ(fg17r)e];c’ér;[tr]§ase
S is crucial for the existence of nonsingular solutions. 9 qte. P P '

In Fig. 7 we show past and future asymptotic properties inWhen ¢ increases toward the pasf’| also grows in the

; ~ modulus case. Therefore the condition p24f’)?<|2(pq
three different cases. Note that we have defiaeda/h and +qr+rp)| is not satisfied, implying that the case of Eq.

B=p/h in order to compare the cases where the averages.16 does not occur. When (P4rf’)?>|2(pg+qr
expansion rateh is changed. Wheh=0.05 and¢=—5,  +rp)|, there are two possibilities for the asymptotic form of
nonsingular solutions in the padd & +«) are not singular #, one of which isé{):wﬁ(e‘/’—e*‘/’)pgl(t—t )3, and the

’ S. 1

in the future with determinanD—2 [see Fig. 7a)]. The . .
! ure wi \ —2 [s lg. Ta] otherp=C(t—ts), whereC is a constant. In the former case

universe exhibits superinflation with growing expansion. . . . .
rates until the graceful exit arourtd-0 [see Fig. 63)]. No- it is easy to show that asymptotic solutions do not exist by

tice that we hav@qr=0 in the asymptotic past, as predicted integrating ¢=m5(e’— e~ ?)pg/(t—ts)*. [Note that this is
by Eq. (4.4) for negative 5. The expansion rates begin to Possible in the dilaton-driven case with determinehi?).]
decrease after the graceful exit, whose asymptotic solution¥ the latter case the determinant approadbes0 as in Eq.
in the future are given by Edq4.5). In Fig. 6a) we find that (4.9 o .
the future solution corresponds to the Kasner-type where the We have done numerical simulations for other cases vary-
universe is contracting in one direction. ing the values oh and ¢. Whenhiis large, ¢ is required to
Figure Ka) indicates that some trajectories which are non_be small for the existence of nonSingular C05m0|ogica| solu-
singular in the future cross the determinant singularity in thelions. This property is found in Fig. 8 where we plot the
past. The evolution of the background is similar to Figa)1 regions of nonsingular and singular solutions in thed)
which we already analyzed in the dilaton case. We also findPlane. Nonsingular trajectories come regularly from the
from Fig. @) that when anisotropy parameters are large thedsymptotic past witld = +c where the quadratic curvature
solutions meet the ordinary singularity with= — in both ~ term is dominanfsee Eq.(4.4)], and smoothly connect an-
the past and future. This is the case of E8.8 or (3.9 other nonsingular branch witlb=2 where the Gauss-
where at least one expansion rate diverges as plotted in Figonnet term is negligiblg¢see Eq.(4.5)]. For singular solu-
1(b). Although in Fig. 7 past nonsingular solution®-{ tions nature of singularities is found to be similar to that of
+) do not meet the determinant singularity in the future,the dilaton-driven case discussed in Sec. IllA.
we have checked that this singular behavior occurs for
smaller values of¢p as shown in Fig. (c). These results

imply that the property of singularities is similar to the |y this paper we have analyzed past and future asymptotic
dilaton-driven case described in Sec. lllA. regimes in Bianchi type-I string-inspired cosmological mod-
For larger initial values ofp, the allowed region can be gjs in the presence of a Gauss-Bonnet curvature invariant. If
approximately described ag*+ 8?<1. Whenh=0.05 and the loop correction is not taken into account, one has the
¢=2 shown in Fig. Tb), all future asymptotic solutions are no-go result that the initial big-bang singularity cannot be

V. SUMMARY AND DISCUSSIONS
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FIG. 6. The evolution ofp, g, r, ¢, andD in the modulus-driven case. Each figure corresponds to initial conditions (@jithh=
-5, h=0.05, a=a/h=-05, B=p/h=05 (b) $=2, h=0.05, «=0.3, B=-02; (c) ¢=2, h=0.1, a=05 B=
—0.5, respectively.

avoided. The Gauss-Bonnet term allows the existence dfigns in Eq.(2.16 separately and constructed three pictures
nonsingular cosmological solutions, depending on the theosf cosmological evolution:(a) dilaton-driven cosmology
ries we adopt. We investigated two gravity theories, viz.,with plus sign in Eq.(2.16); (b) dilaton-driven cosmology
dilaton- and modulus-driven cosmologies. In the former casavith minus sign in Eq(2.16); (c) modulus-driven cosmology
the dynamics appears to depend significantly on the sign owith §<0.

the right-hand side of Eq2.16). Hence, we treated possible ~ As the quadratic curvature corrections may provide
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violations of strong and week energy conditiof3,15, tence of nonsingular cosmological solutions even when the
the Bianchi type-I universe can recollapse in the high-Gauss-Bonnet term is taken into account. In d@genons-
curvature regime. This fact gives us a variety of possiblgngular trajectories in the future correspond to the
types of trajectories with different past and future low-curvature solutions with determinabt—2 where the
asymptotics. Some trajectories cannot leave the highGauss-Bonnet term is negligible. These trajectories meet
curvature regime, while some reach the low-curvature futuréhe singularity where the determinant of the system vanishes
attractor. at the finite past. At this determinant singularify,q,r, ¢

In the dilaton-driven cosmology the 4-dimensional stringdiverge in Eq.(2.12) while p,q,r,éﬁ stay finite. These kinds
coupling is required to be positive. This forbids the exis- of singularities restrict the presence of nonsingular
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1o . T T T larities is similar to the dilaton-driven case discussed in Sec.
A,
8.0 ] Our numerical investigations show that not all combina-

tions of the past and future asymptotics are possible. We
] pay particular attention to nonsingular past and low-
curvature nonsingular future regimése latter should cor-
respond to our present UnivejseFor these regimes we
get the following results: For the dilaton-driven case

Singular

Nonsingular trajectories with a nonsingular past asymptotic meet the de-
terminant singularity in the future; for casé® and(c) tra-
0.0 F jectories with low-curvature future asymptotic meet the de-
20 . . . . terminant singularity in the past, when the past solutions are
- singular.
0.0001 0.001 0.01 0.1 1

The first property tells us that the negative sign of the
coupling constant is essentially important for constructing a
FIG. 8. The regions of nonsingular and singular solutions for thePurely nonsingular string cosmological models. This result is
modulus-driven case in the initial condition spacehaind ¢. known for FRW univers¢9,10] and, hence, is still valid in
anisotropic Bianchi type-l case, despite the existence of a
past nonsingular regime in the dilaton-driven cosmology.
solutions in an anisotropic background. Other kinds ofThe second property indicates that the determinant singular-
singularities exist(we call them ordinary singularities ity may play a crucial role when we try to trace back in time

where at least one expansion rate divergee Eqs(3.8—  evolution of our present Universe in an anisotropic back-
(3.10]. When the singularity3.8) or (3.9 appears at the ground. o ) )
finite past or future, the determinant approaches — . Recently, string-inspired cosmological models which

We also find some trajectories which are nonsingular iff@n avoid the big bang singularity have received much
attention[20—24 together with the proposal of the ekpyrotic

-éj_niverse[25]. In those cases the quantum loop corrections

tence, to our knowledge, was not discovered previously. 1P’ the highe;}-or((jjer de.rivatti)v?s pI:?]y importfallwt roles in
case(a) these solutions are found to meet the determinang(ater.m'r"ng.t e dynamics belore the gracetu exit. It IS
singularity in the future(see Fig. 2 In case(b) ordinary certainly of interest to extend our analysis to more compli-

singularity of Eq.(3.10 appears where all expansion ratescr?teg modeEI)s such as th? r?ultlflequ case In thei preslen_ce of
diverge. In this case the determinant is divergent or ap! e Gauss-Bonnet term. In fact while nonsingular solutions

proaches a positive constant value, depending on the initi(ﬁi‘.ist in Iihg single-field tr)no@ulus-driven cdaze choniidered. in
conditions of andh [see Eqs(3.16 and (3.17)]. The so- this work, density perturbations generated by the fluctuation
lutions nonsingular in the future typically correspond to this

of the modulus exhibits blue spectra with a spectral tilt
type of singularity or the determinant singularity in the past?= 10/3 [26,27. This contradicts the observational sup-
as found by Fig. 5.

ported flat spectra with=1. In the multifield case, however,
In the modulus-driven case the coupliigan take either |t May be possible to produce almost scale-invariant spectra
positive or negative value in E¢4.3). Whens>0 solutions if a light scalar field such as axion generates a flat isocurva-
which are nonsingular in both the past and future are no

fure perturbation during superinflati88—-3(Q or if the ax-
found, similar to the dilaton-driven case. For negative valueé.or; |53n10nn\1/:/n|mlally couplefd to the dllston with some pote?]—
of 5, however, there exist nonsingular cosmological solut@ [31l- We leave to future work to construct suc

tions where two branches of superinflation and decreasin onsingular cosmological models which are consistent with

curvature can be joined to each other. In this case the sol bservations.

tions come _regularly_from the asymptotic pafd = ?1-00) ACKNOWLEDGMENTS
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