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Nature of singularities in anisotropic string cosmology
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We study the nature of singularities in anisotropic string-inspired cosmological models in the presence of a
Gauss-Bonnet term. We analyze two string gravity models—dilaton-driven and modulus-driven cases—in the
Bianchi type-I background without an axion field. In both scenarios singularities can be classified in two
ways—the determinant singularity where the main determinant of the system vanishes and the ordinary sin-
gularity where at least one of the anisotropic expansion rates of the Universe diverges. In the dilaton case,
either of these singularities inevitably appears during the evolution of the system. In the modulus case,
nonsingular cosmological solutions exist both in the asymptotic past and future with the determinantsD5

1` andD52, respectively. In both scenarios nonsingular trajectories in either the future or the past typically
meet the determinant singularity in the past or future when the solutions are singular, apart from the excep-
tional case where the sign of the time derivative of the dilaton is negative. This implies that the determinant
singularity may play a crucial role in leading to singular solutions in an anisotropic background.
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I. INTRODUCTION

Superstring theory continues to be of interest as a poss
candidate to unify all fundamental interactions in nature@1#.
It is known that there exist five supersymmetric perturbat
string theories which are classified as type I, type IIA, ty
IIB, SO~32! heterotic andE83E8 heterotic string theory. Re
cently it was found that these theories are connected by
symmetries, which leads to the conjecture that each the
appears as one of five branches of a unified theory, calle
theory @2#. In particular Horˇava and Witten@3# showed that
the 10-dimensionalE83E8 heterotic string theory is equiva
lent to an 11-dimensional M-theory compactified toM10

3S1/Z2. Then the 10-dimensional spacetime is expected
be compactified intoM43CY6, in which case the standar
model particles are confined on the three-dimensional br
This gives rise to the well-known brane world scenario@4#
where the extra dimension is noncompact and gravity is
fectively 3 dimensional.

For cosmologists it is very important to test the viabili
of string theories by extracting various cosmological imp
cations from them@5#. One such attempt is the pre-big-ban
~PBB! scenario@6# based on the low energy effective actio
of string theory. In this scenario there exist two branches
solutions by assuming aT duality, one of which (t,0) cor-
responds to the stage of polelike inflation driven by the
netic term of the dilaton field and another (t.0) is the stage
where the curvature continues to decrease. However,
difficult to smoothly connect these two branches withou
singularity in the tree-level string action@7,8#.

One is required to take into account quantum loop or
rivative corrections in order to overcome such singular
problems. In fact, Antoniadis, Rizos, and Tamvakis@9# in-
cluded a Gauss-Bonnet term in the tree-level string effec
action with dilaton and modulus fields, and showed the
istence of nonsingular cosmological solutions. In this c
0556-2821/2002/65~12!/123509~15!/$20.00 65 1235
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the nonsingular behavior of the solutions is mainly det
mined by the evolution of the modulus field. Therefore, t
allowed ranges of parameters were analyzed in the abs
of the dilaton in a flat Friedmann-Robertson-Walker~FRW!
background@10# ~see also Ref.@11#!. Since it is important to
confirm the generality of singularity avoidance even start
from an anisotropic spacetime, several authors analyzed
singular cosmological solutions in the Bianchi type-I spa
time without a dilaton@12,13# and with a dilaton@14#. The
presence of the modulus coupled to the Gauss-Bonnet
allows the existence of nonsingular solutions unless the d
ton controls the dynamics of the system.

In order to understand how nonsingular or singular so
tions appear, it is necessary to classify the nature of sin
larities in an anisotropic background. In particular, the m
determinantD of the system is an important quantity to d
scribe the singularities. When only the dilaton fieldf is
coupled to the Gauss-Bonnet term in the Bianchi typ
background, it was conjectured in Ref.@15# that nonsingular
cosmological solutions in the future cross the determin

singularity (D50) in the past whenḟ is positive. While this
singularity was found more than ten years ago@16#, only
now we begin to understand its importance. The similar k
of singularity also appears in the context of black hole inn
solutions in the presence of dilaton coupled to gravity via
Gauss-Bonnet term@17,18#. In this paper we shall make de
tailed analysis about nature of singularities both in dilato
and modulus-driven cosmologies in the Bianchi type-I ba
ground. We do not include an axion field in our analysis, b
it is important to emphasize that its effect is generally vital
studied in Ref.@19#. We will classify other kinds of singu-
larities where at least one expansion rate diverges. Th
investigations are important to understand how nonsing
solutions emerge in the modulus-driven case. In addition
analysis will be useful to construct more complicated no
©2002 The American Physical Society09-1
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ALEXEY TOPORENSKY AND SHINJI TSUJIKAWA PHYSICAL REVIEW D65 123509
singular string-inspired models in the presence of other fie
such as a axion.

This paper is organized as follows. In Sec. II we sh
background equations in anisotropic string-inspired mod
with dilaton or modulus fields. In Sec. III we study nature
singularities in dilaton-driven cosmology both for positiv
and negativeḟ cases. Section IV is devoted to the modulu
driven cosmology where both of nonsingular and singu
solutions exist. We present summary and discussions in
final section.

II. THE MODEL AND BACKGROUND EQUATIONS

We begin with the action@9–14#

S5E d4xA2gF1

2
R2

1

2
~¹f!21 f ~f!RGB

2 G , ~2.1!

written in the Einstein frame. HereR is the scalar curvature
andf denotes a scalar field which is either dilaton or mod
lus. f (f) depends on string theories, whose explicit form
are given later. We do not consider the multifield system
dilaton and modulus fields@14# induced from the one-loop
effective action of heterotic string theory. In addition we n
glect the antisymmetric tensorHmnl and the curvature term
higher than the second order. The Gauss-Bonnet termRGB is
defined as

RGB
2 5R224RmnRmn1RmnabRmnab . ~2.2!

We normalize time and spatial coordinates by the str
length scaleAls as xm̄5xm/Als, and the scalar fields asf̄
5fAls. Hereafter we drop bars for simplicity.

Let us consider the Bianchi type-I spacetime whose m
ric is given by

ds252dt21a2~ t !dx21b2~ t !dy21c2~ t !dz2, ~2.3!

wherea(t),b(t),c(t) are the scale factors in an anisotrop
background. We define the anisotropic expansion ra
p(t),q(t),r (t) as

p~ t !5
ȧ

a
, q~ t !5

ḃ

b
, r ~ t !5

ċ

c
, ~2.4!

where an overdot denotes the derivative with respect tot. It
is also convenient to introduce new variablesh,a,b:

p~ t !5h1a1A3b, q~ t !5h1a2A3b, r ~ t !5h22a.

~2.5!

Hereh5(p1q1r )/3 is an average expansion rate, which
the generalization of the Hubble parameter in an isotro
case, anda and b correspond to parameters of anisotrop
The triangle in the (a,b) plane

a1A3b.2h, a2A3b.2h, a,h/2, ~2.6!
12350
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which extends around the isotropic pointa5b50, repre-
sents the regions where the universe expands in all di
tions. In the outside region the Universe is contracting
least in one direction.

The dynamical equations for the background are writ
as

~118r ḟ !~ q̇1q2!1~118q ḟ !~ ṙ 1r 2!

1~118 f̈ !qr1
1

2
ḟ250, ~2.7!

~118r ḟ !~ ṗ1p2!1~118p ḟ !~ ṙ 1r 2!

1~118 f̈ !rp1
1

2
ḟ250, ~2.8!

~118q ḟ !~ ṗ1p2!1~118p ḟ !~ q̇1q2!

1~118 f̈ !pq1
1

2
ḟ250, ~2.9!

f̈1~p1q1r !ḟ28 f 8$ ṗqr1pq̇r 1pqṙ

1pqr~p1q1r !%50, ~2.10!

together with the constraint equation

pq1qr1rp124pqr ḟ2
1

2
ḟ250. ~2.11!

Defining a 4-dimensional vector,x5( ṗ,q̇, ṙ ,f̈), Eqs.~2.7!–
~2.10! can be written in the matrix form

Zx5y, ~2.12!

wherey5y(p,q,r ,f,ḟ) and

Z5F 0 118 f 8ḟr 118 f 8ḟq 8 f 8qr

118 f 8ḟr 0 118 f 8ḟp 8 f 8rp

118 f 8ḟq 118 f 8ḟp 0 8f 8pq

28 f 8qr 28 f 8rp 28 f 8pq 1

G .

~2.13!

The determinant ofZ yields

D52116f 8ḟ~p1q1r !264f 82~p2q21q2r 21r 2p2!

1128f 82pqr~p1q1r !1128f 82ḟ2~pq1qr1rp !

11024f 83ḟpqr~pq1qr1rp1ḟ2!

112288f 84ḟ2p2q2r 2. ~2.14!

In the case ofD5” 0, the solutions of Eqs.~2.7!–~2.10! are
given by x5Z21y. When D vanishes, however, we canno
proceed numerical calculations further. This ‘‘determina
singularity’’ plays an important role in the anisotropic bac
ground@15#.
9-2
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From Eq.~2.11! we find the constraint

a21b2<h2196~pqr f8!2, ~2.15!

in which caseḟ is solved as

ḟ524pqr f86A~24pqr f8!212~pq1qr1rp !. ~2.16!

When f 50 anisotropy parameters are restricted in the circ
a21b2<h2. If the Gauss-Bonnet term is taken into accou
we have the wider allowed range of anisotropy parame
given by Eq.~2.15!.

III. DILATON-DRIVEN CASE

Firstly we consider the dilaton-driven case with

f ~f!5
l

16
e22f, ~3.1!

where the string couplingl takes a positive value. We se
l51 in our numerical simulations. In the scenario~3.1! na-
ture of singularities was analyzed in Ref.@15# in the Bianchi
type-I background in the case of the plus sign in the rig
hand side of Eq.~2.16!. Hereafter we shall make a detaile
analysis about the property of singularities in both signs
Eq. ~2.16!.

The asymptotic behavior of solutions in the past and
ture can be analyzed by assuming the following power-
forms for the expansion rates:

p5c1utus, q5c2utus, r 5c3utus. ~3.2!

In order for theḟ term in Eqs.~2.7!–~2.10! to have a power-
law dependence, the dilaton is required to take the form

f5f01c4 lnutu. ~3.3!

When the contribution from the Gauss-Bonnet term is ne
gible, one hasḟ252(c1c21c2c31c3c1)utu2s from Eq.
~2.11!. Comparing this with Eqs.~2.7!–~2.10! and ~3.3!, we
find

s521, c11c21c35sgn~ t !, c1
21c2

21c3
21c4

251,

c4
252~c1c21c2c31c3c1!. ~3.4!

In the absence of the dilaton (c450), the solution~3.4! for
t.0 represents the vacuum Kasner solution where the
verse is expanding in two directions and contracting in o
direction. The interpretation of this solution is that lar
anisotropies are required at least in one dimension ast→0,
in order to make the spacetime curved by anisotropies.

The situation is different when the dilaton is taken in
account. For example, whenA1/2<c4<A2/3 the universe is
expanding in all directions fort→`, while there exist both
Friedmann- and Kasner-type solutions for 0<c4,A1/2.
Note that in the limit where the Gauss-Bonnet term is ne
gible (f 8→0) the determinant approaches a constant va
D52 from Eq.~2.14!.
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When the Gauss-Bonnet term is dominant in Eq.~2.11!
(upq1qr1rpu!u24pqr ḟ u), one has ḟ5
26lc1c2c3utu3se22f by using Eq. ~3.2!. Integrating this
equation with respect tot, we easily find thatḟ5sgn(t)
3(3s11)/(2utu). Combining this with Eqs.~2.7!–~2.10!
gives

s522, c452
5

2
, c1c2c35sgn~ t !

5e2f0

12l
. ~3.5!

Sincec1c2c3,0 for t,0, the universe is either contractin
in all directions or expanding in two directions and contra
ing in one direction. Whent.0, the universe is either ex
panding in all directions or expanding in one direction a
contracting in two directions. For the asymptotic soluti
~3.5!, we have thatḟ}utu21 and f 8}utu5, in which case the
determinant is given byD}utu6→` for utu→`. In spite of
this divergent behavior of the determinant, the solutions
nonsingular withp,q,r}utu22→0 for utu→`.

We shall classify the cases where the solutions of E
~2.7!–~2.10! exhibit singular behavior. When the syste
passes through the determinant singularity (D50), Eq.
~2.12! indicates thatx5( ṗ,q̇, ṙ ,f̈) diverge. This singularity
appears in an anisotropic background where three expan
rates are multiple-valued functions of time@13#. It is also a
physical singurality where the curvature invaria
RmnabRmnab diverges due to the divergence of the time d
rivative of the expansion rates. Near the determinant sin
larity, the expansion rates and the scalar field can be
panded as@15#

hi5his1hi1Aut2tsu1hi2~Aut2tsu!21•••, ~3.6!

f5fs1f1~Aut2tsu!21f2~Aut2tsu!31•••, ~3.7!

wherehi5p,q,r ( i 51,2,3), andts is the time at singularity.
This means thatḣi and f̈ diverge ast→ts , while p,q,r ,ḟ
are finite. This property is different from the ordinary kind
singularity wherep,q,r do not stay finite. The determinan
singularity plays a crucial role in an anisotropic backgroun

The ordinary kind of singularities can be classified as

~ i! p;p0 /~ t2ts!, q;q0 , r;r 0 , ~3.8!

~ ii ! p;p0 /~ t2ts!, q;p0 /~ t2ts!, r;r 0 , ~3.9!

~ iii ! p;p0 /~ t2ts!, q;p0 /~ t2ts!, r;p0 /~ t2ts!,

~3.10!

wherep0 , q0, and r 0 are constants withp0.0. If the time
direction is forwards (t2ts→20) one hasp→2`, while
p→` for t2ts→10. The asymptotic forms of the determ
nant ~2.14! depend upon the cases presented above.

In the case~i! with a plus sign in RHS of Eq.~2.16!, the
signs ofq0 andr 0 are the same and the asymptotic form ofḟ

is given by ḟ;(q01r 0)/(3le22fsq0r 0) for t2ts→10,
with fs being a constant. Then the determinantD yields,
from Eq. ~2.14!,
9-3
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D;2
4l2e24fsp0

2

3~ t2ts!
2 F S q02

r 0

2 D 2

1
3

4
r 0

2G→2`

~ for q0r 0.0!. ~3.11!

In the minus sign of Eq.~2.16!, one hasD→2` for q0r 0
,0 andt2ts→10.

In the case~ii ! with a plus sign of Eq.~2.16!, one hasḟ
;1/(3lr 0e22fs) for r 0.0 andt2ts→10. Then the deter-
minant should asymptotically take the form

D;2
4l2p0

4e24fs

3~ t2ts!
4

→2` ~ for r 0.0!. ~3.12!

In numerical analysis we did not find this case for the p
rameter ranges and initial conditions we adopt. Typically
dinary singularities are dominated by the cases where on
three expansion rates tend to diverge. When one choose
minus sign of Eq.~2.16!, the asymptotic behavior isD→
2` for r 0,0 andt2ts→10.

In the case~iii ! with a plus sign of Eq.~2.16!, we find
ḟ;t/(lp0e22fs) and

D→0, ~3.13!

for t2ts→10. Strictly speaking this holds only for the iso
tropic case (a5b50) where all expansion rates are th
same. In this case the solutions do not cross the determi
singularity, although they approachD50 as t2ts→10.
When small anisotropies are included, the trajectories
pass throughD50. For the minus sign of Eq.~2.16! the
asymptotic behavior of the determinant is not described
Eq. ~3.13!, as we will see later.

In another limitt2ts→20, the signs of diverging expan
sion rates in Eqs.~3.8!–~3.10! are reversed, in which case th
asymptotic forms ofD are altered. Nevertheless the determ
nant of the cases~i! and ~ii ! generally approaches th
asymptotic valueD52`. We shall confirm this by numeri
cal investigations in subsequent sections.

A. Plus sign of Eq.„2.16…

We first analyze the case of the plus sign in Eq.~2.16!.
When f is largely positive, the termf 852(l/8)e22f is
negligible in Eq.~2.16!, implying thatḟ is positive as long
as pq1qr1rp.0. In this casef increases toward the fu
ture, which results in nonsingular asymptotic solutions w
determinantD'2. When we go back to the past, there a
two possibilities for the evolution of the determinant. One
the case where the solutions pass through the determ
singularity (D50) and another is the one whereD goes
toward infinity (D→1`). Our numerical investigations
suggest that the latter case doesnot occur for the plus sign in
Eq. ~2.16!, which means that solutions nonsingular in t
future (D→2) meet the determinant singularity in the pa
irrespective of the initial values off.

In the left panel of Fig. 1~a! we plot the evolution of the
expansion rates for the anisotropy parametersa50.05,b
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50.05 with initial conditionsh50.16 and f50, corre-
sponding toD'1.7 at t50. The determinant continues t
grow until it approaches the finite valueD52 as t→`,
which indicates that this solution belongs to the nonsingu
solution in the future given by Eq.~3.4!. Note that fort.0
the universe is expanding in all directions. When we so
the equations of motion backwards (t,0), the solution
meets the determinant singularity aroundt520.82, thereby
leading to the divergence ofṗ, q̇, ṙ , andf̈. If we introduce
a new time parametert defined by

t[E dt

D
, ~3.14!

it becomes possible to enter the region of the negative sig
D by overpassing the determinant singularity@13#. This does
not mean that we can remove the singularity by coordin
transformations. The determinant singularity is a physi
one where the divergence of the curvature invariant is
avoidable even in other coordinates. After entering anot
branch, the solution turns back forwards and the determin
begins to decrease rapidly towardD→2` @see the right
panel of Fig. 1~a!#. From Fig. 1~a! we find that this belongs
to the class of the case~i! with p;p0 , q;q0 , r;r 0 /(t
2ts), andp0q0.0 @see Eq.~3.11!#. The universe is rapidly
contracting in one direction (r→2`) for t2ts→20. As is
claimed in Ref.@13#, these trajectories can be understood
the pair creation of two branches (D.0 andD,0) at the
determinant singularity. For the nonsingular solutions in
future, it is inevitable to cross the determinant singularity
the past in an anisotropic background. Notice that in
isotropic caseD is always positive and decreases toward z
as t→2`. In the presence of small anisotropies, howev
the solution reaches the determinant singularity at finite p
and fall into theD52` singularity as shown in Fig. 1~a!.

Whenf is large, the allowed anisotropy parameters in t
(a,b) plane lie inside a circle, given by

a21b2&h2, ~3.15!

which comes from the constraint~2.15!. In Fig. 2~a! we show
the nature of singularities in the past and future in the (a,b)
plane forh50.16 andf50 at t50. In this case the allowed
region is approximately described by Eq.~3.15!. We find that
all solutions inside this region exhibit the determinant sing
larity in the past~region II in Fig. 2! while they are nonsin-
gular (D→2) in the future~region I!.

With the decrease off, the allowed region gets larger a
found by Eq. ~2.15!. The nature of singularities become
more complicated due to the appearance of ordinary sin
larities. If the system is close to the isotropic case (uau,ub
u!1), one hasD→2 for t→` andD→0 at the finite past as
in the case of Fig. 2~a!. However, larger anisotropies alte
this picture. For example, we show the evolution of the e
pansion rates in the left panel of Fig. 1~b! for a50.15 and
b50.05 withh50.16 andf521 at t50. In this casep is
singular at finite past whileq,r are positive constants, whic
means thatD→2` from Eq. ~3.11!. The solution exhibits
9-4
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FIG. 1. The evolution ofp, q, r, f, andD in the dilaton-driven case for the plus sign in Eq.~2.16!. Each figure corresponds to initia
conditions withh50.16 and~a! f50, a50.05, b50.05,~b! f521, a50.15, b50.05,~c! f522, a50.1, b50.1, respec-
tively. The determinant singularity (D50) can be passed through by introducing a new time parametert5*dt/D.
ay
s

.
is

ith
are

olu-
the same kind of singularity (D→2`) in the future. In this
case we have numerically found the determinant is alw
negative (D521.02 att50) and the solution never crosse
D50 in both the past and future@see the right panel of Fig
1~b!#. In Fig. 2~b! the asymptotic property of singularities
12350
s
presented forh50.16 andf521 at t50. There exists a
region III, where the determinant is singular (D→2`) in
both the past and future. We also find that the region IV w
D→1` appears in the past when anisotropy parameters
large. This corresponds to asymptotic past nonsingular s
9-5
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FIG. 2. Nature of singularities
in the (a,b) plane with initial
conditions~a! f50, ~b! f521,
and ~c! f522 for the plus sign
in Eq. ~2.16!. The left figures cor-
respond to past solutions whil
right figures correspond to future
solutions. Each region corre
sponds to~I! nonsingular solutions
with D→2, ~II ! singular solutions
with determinant singularity (D
50), ~III ! singular solutions with
D→2`, ~IV ! nonsingular solu-
tions with D→1`, respectively.
The black color indicates prohib
ited regions in the initial condition
space.
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tions given by Eq.~3.5! where quadratic curvature corre
tions are dominant. It is important to separate this case f
the ordinary singularity withD52`, although this classifi-
cation was not done in Ref.@15#. From Fig. 2~b! the solu-
tions with D50 in the future correspond to, in the past, t
determinant singularity or the regular solutions withD→
1`. Notice that the parameter range of future nonsingu
solutions are smaller compared to the case of Fig. 2~a!.

In Fig. 2~c! we show the density plot forh50.16 andf
12350
m

r

522 at t50. This suggests that future nonsingular trajec
ries are restricted to be very narrow near the isotropic po
a5b50. We also find that the determinant singularity in t
future corresponds to the regular solutions withD→1` in
the past. As one example we plot in Fig. 1~c! the evolution of
p,q,r for h50.16 andf522 at t50 with anisotropy pa-
rametersa50.1 andb50.1. In this case the past asymptot
solution is categorized in the nonsingular solution given
Eq. ~3.5!. Figure 2~c! shows that two expansion ratesp,q are
9-6
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NATURE OF SINGULARITIES IN ANISOTROPIC . . . PHYSICAL REVIEW D 65 123509
positive whiler is negative fort,0, implying c1c2c3,0 in
Eq. ~3.5!. The solution comes regularly from the asympto
past withD being decreased toward the future@see the right
panel of Fig. 1~c!#. It crosses the determinant singulari
aroundt50.3, after which the determinant continues to d
crease until the solution falls into the ordinary singular
with D→2`. Note thatp diverges ast2ts→10, while q
and r approach positive constant values, in which case
hasD→2` by Eq. ~3.11!. This trajectory can be regarde
as the pair annihilation of two branches withD.0 andD
,0. From Figs. 2~b! and 2~c!, the solutions nonsingular in
the past (D→1`) meet the determinant singularity in th
future. In this case the solutions do not go forwards beyo
the determinant singularity. In Fig. 2~c! the parameter re
gions with ordinary singularity in the future (D52`) typi-
cally correspond to those with the same singularity in
past, in which case the asymptotic behavior of the expan
rates are the same as in Fig. 1~b!. Notice that in Fig. 2~c!
there exist some parameter ranges where the solutions
the determinant singularity in both the past and future.
though this case is very rare, it is still possible to cross
determinant singularity twice.

From Fig. 2 we find that nonsingular solutions in the f
ture are determinant type in the past. This can be unders
that the determinant evolves fromD52 to D50, if we solve
the equations of motions from the asymptotic future to
past@see the right panel of Fig. 1~a!#. We also analyzed othe
cases varying the values ofh and f for 1025,h,1 and
215,f,15. For a fixed value ofh there exists a minima
value off which leads to nonsingular solutions in the futu
~see Fig. 3!. The allowed range of the dilaton for future no
singular solutions gets wider with the decrease ofh as shown
in Fig. 3. In all cases analyzed in our numerical simulatio
the past singularity for future nonsingular solutions cor
sponds to the determinant type in an anisotropic backgrou
We also found that trajectories with nonsingular p
asymptotic meet the determinant singularity in the future
addition we showed that the ordinary singularity with E
~3.8! appears, in which case the determinant is divergen
D→2`. This is different from the caseD→1` where the
solutions are nonsingular in the asymptotic past. In the n

FIG. 3. The minimal initial values off which allow solutions
nonsingular in future in the dilaton-driven case for the plus sign
Eq. ~2.16!.
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subsection we will analyze how the behavior of the deter
nant is altered for different signs in Eq.~2.16!.

B. Minus sign of Eq. „2.16…

In the previous subsection, solutions which are nonsin
lar in the future meet the determinant singularity in the pa
due to the fact that the determinant evolves from
asymptotic valueD52 toward the determinant singularity
For the minus sign of Eq.~2.16!, the determinant can in
crease toward the past, implying that the trajectories may
cross the determinant singularity. In fact we will show th
the past singularity is not necessarily of the determinant ty

Let us first analyze the asymptotic behavior of the det
minant when all expansion rates diverge as Eq.~3.10!. In Eq.
~2.16! when the 2(pq1qr1rp) term is positive and much
larger than (24pqr f8)2, one hasḟ;2A2(pq1qr1rp);
2A6p0 /(t2ts). Therefore the dilaton grows asf;
2A6p0 ln(t2ts) for t2ts→10, in which case the
asymptotic form of the determinant yields

D;216A6lp0
2~ t2ts!

2(A6p021)139l2p0
4~ t2ts!

4(A6p021)

118A6l3p0
6~ t2ts!

6(A6p021)118l4p0
6~ t2ts!

8(A6p021).

~3.16!

This indicates that the determinant grows infinitely (D→
1`) for p0,1/A6, while it decreases toward a finite valu
D52 for p0.1/A6. The latter case corresponds to the o
where the average expansion rates are large initially.

When the condition (24pqr f8)2@u2(pq1qr1rp)u is
satisfied, the asymptotic form ofḟ is given by ḟ;
26lp0

3e22f/(t2ts)
3, which yields e2f;6lp0

3/(t2ts)
2.

Then one has the following positive finite value of the det
minant in the limit oft2ts→10:

D;21
13

12p0
2

1
7

36p0
4

1
5

432p0
6

. ~3.17!

Whether the asymptotic form is given by Eq.~3.16! or ~3.17!
depends on the initial values of the expansion rates and
dilaton. In the latter casef is generally small so that the
condition (24pqr f8)2@2(pq1qr1rp) is fulfilled. In both
cases we can expect that the trajectories do not cross
determinant singularity in the past.

We show in Fig. 5 the density plot of the asymptotic b
havior of the determinant forh50.16 att50. Whenf50 at
t50 all trajectories satisfying the constraint~2.15! are non-
singular in the future withD52. In this case the past solu
tions are dominated by the singularity with asymptotic po
tive determinant as found from the left panel of Fig. 5~a!. As
one example we plot in Fig. 4~a! the evolution ofp, q, r, f,
and D for f50 at t50 with anisotropy parametersa
50.05 andb50.05. This belongs to the class~3.16! with
a,1/A6 where all expansion rates diverge with determin
D→1`. The determinant is always positive and continu
to grow backwards. The left panel of Fig. 5~a! shows that
there exist some past solutions which meet the determin

n

9-7
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FIG. 4. The evolution ofp, q, r, f, andD in the dilaton-driven case for the minus sign in Eq.~2.16!. Each figure corresponds to initia
conditions withh50.16 and~a! f50, a50.05, b50.05; ~b! f521, a50.15, b50.05; ~c! f522, a520.02, b50.02,
respectively.
th
th

na
h
in e

of
singularity when anisotropies parameters are large. In
case the determinant grows until some moment of time in
past, after which it begins to decrease toward the determi
singularity. This behavior can be understood by the fact t
large anisotropies prevent all expansion rates from evolv
almost as in Eq.~3.10!. However, this region is typically
12350
is
e
nt

at
g

small for the positive values off at t50.
With the decrease of the initialf, the constraint~2.15!

gives wider allowed parameter ranges in the (a,b) plane.
Let us consider the casef521 andh50.16 att50. As is
found from Fig. 5~b! we have additional regions with th
D52` singularity in both the past and future. The nature
9-8
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FIG. 5. Nature of singularities
in the (a,b) plane with initial
conditions,~a! f50, ~b! f521,
and~c! f522 for the minus sign
in Eq. ~2.16!. The left figures cor-
respond to past solutions whil
right figures correspond to future
solutions. Each region corre
sponds to~I! nonsingular solutions
with D→2, ~II ! singular solutions
with determinant singularity (D
50), ~III ! singular solutions with
D→2`, ~IV ! nonsingular solu-
tions withD→`, ~V! singular so-
lutions with positive determinant
respectively. The black color indi-
cates prohibited regions in the ini
tial condition space.
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singularities around the isotropic point is similar to thef
50 case explained above. For the solutions nonsingula
the future, the past singularity is either typeD.0 or D50.
Figure 4~b! is the latter case where the trajectory comes re
larly from the asymptotic future (D52) and meets the de
terminant singularity in the past. This evolution is similar
the case of large anisotropy parameters in Fig. 5~a!. From
Fig. 5~b! the solutions singular in the future (D52`) cor-
respond to, in the past, the singularity withD52` or the
determinant singularity. The difference between the t
cases is whether the determinant is always negative@as in
12350
in

-

o

Fig. 1~b!# or it passes throughD50.
The situation becomes somewhat different whenf is de-

creased further. Figure 5~c! indicates that nonsingular trajec
tories withD→1` appear in the future around the isotrop
point for f&22 at t50. This is the case where all expan
sion rates are finite as described by Eq.~3.5!. However, these
solutions are singular in the past with all expansion ra
being infinite. In region V shown in Fig. 5~c!, the condition
(24pqr f8)2.u2(pq1qr1rp)u is typically satisfied att50.
Therefore the determinant tends to approach the finite va
~3.17! in the past. We show in Fig. 4~c! the evolution of the
9-9
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ALEXEY TOPORENSKY AND SHINJI TSUJIKAWA PHYSICAL REVIEW D65 123509
system for a520.02, b50.02, f522, and h50.16.
While the evolution of the expansion rates in Fig. 4~c! looks
similar to that in Fig. 4~a!, the behavior of the determinant
different in both the past and future. In Fig. 4~c! the deter-
minant decreases from infinity to a finite positive value
ward the past. We have numerically found that two ter
(24pqr f8)2 and 2(pq1qr1rp) become comparable durin
the evolution. Therefore the asymptotic value ofD is some-
what different than in Eq.~3.17!, but it is still a finite positive
value. We find from Fig. 5~c! that future nonsingular solu
tions with eitherD52 or D51` correspond to the singu
larity ~3.10! with a positive determinant in the past. Figur
5~b! and 5~c! also suggest that asf decreases the ordinar
singularity withD→2` appears in both the past and futu
for large anisotropy parameters.

Compared to the case of the previous subsection,
range of nonsingular solutions in the future is not so narr
due to the presence of nonsingular trajectories withD→
1`. However, this solution is not appropriate to lead to o
present universe due to the dominance of the quadratic
vature term. In addition these solutions typically approa
the ordinary singularity~3.10! with all expansion rates infi-
nite in the past. This property is different from the plus si
of Eq. ~2.16! where the past singularity for solutions nonsi
gular in the future corresponds to the determinant type
both cases we have found that nonsingular cosmologica
lutions in both the past and future do not exist for t
dilaton-driven case for wide ranges of the parameter sp
(1025,h,1 and215,f,15). However, the situation is
changed in the modulus-driven case as we will analyze in
next section.

IV. MODULUS-DRIVEN CASE

In the modulus-driven case the functionf (f) in Eq. ~2.1!
is expressed as@9,10,12–14#

f ~f!52
1

16
dj~f!, ~4.1!

where the coefficientd is determined by the 4-dimension
trace anomaly of theN52 sector. Here the functionj(f) is
defined by

j~f!5 ln@2efh4~ ief!#, ~4.2!

where h( ief) is the Dedekindh function. Sincej(f) is
well approximated asj(f).2(2p/3)coshf @14#, the func-
tion f takes the form

f ~f!.
pd

48
~ef1e2f!. ~4.3!

When f is largely negative (ufu@1), Eq. ~4.3! reduces to
the form ~3.1! by settingd53l/p. Therefore whend.0,
solutions that are nonsingular in both the past and future
not exist. However, nonsingular cosmological solutions h
been found for negative values ofd @9#. Hereafter we shall
focus on the negatived case~settingd521 for simplicity!
using the functionf (f) given by Eq.~4.3!.
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When the Gauss-Bonnet term dominates in Eqs.~2.7!–
~2.10!, the asymptotic solution is similarly given as Eq.~3.5!,
i.e.,

p5c1utu22, q5c2utu22, r 5c3utu22,

f5f065 lnutu, c1c2c35sgn~ t !
5e2f0

4pd
. ~4.4!

The past asymptotic solutions correspond toc1c2c3.0 for
negatived. This sign is different from the dilaton-driven cas
with positive l which we already analyzed in the previou
section. Note that the determinant is divergent (D→1`) for
utu→`.

For another asymptotic solution where the effect of t
Gauss-Bonnet term is negligible, the evolution of the ba
ground is given by

p5c1utu21, q5c2utu21, r 5c3utu21, f5f01c4 lnutu,

c11c21c35sgn~ t !, c1
21c2

21c3
21c4

251,

c4
252~c1c21c2c31c3c1!. ~4.5!

Therefore one hasf 8}utu uc4u, ḟ}utu21, andp,q,r}utu21 with
uc4u,1 in Eq. ~2.14!, in which case the solutions are non
ingular with an asymptotic value of the determinantD52.

For the nonsingular cosmological solutions found in R
@9#, ḟ does not change its sign@10#. Because of the symmet
ric structure of the function~4.3! with respect tof50, we
will consider the positiveḟ case where the modulus contin
ues to grow from past to future. For negativeḟ the analysis
is essentially the same by changingf to 2f. When the
solutions are singular, they meet the determinant singula
@see Eqs.~3.6! and~3.7!# or the ordinary singularity@see Eqs.
~3.8!–~3.10!#. Let us consider the asymptotic behavior of t
determinant for the ordinary singularity. In the cases~3.8!–
~3.10!, possible asymptotic behavior of the determinant c
be summarized as

case~ i! D;2
256f s8

2p0
2

3~ t2ts!
2 F S q02

r 0

2 D 2

1
3

4
r 0

2G→2`,

with

ḟ;2
1

24f s8

q01r 0

q0r 0
;const, ~4.6!

case~ ii ! D;2
256f s8

2p0
4

3~ t2ts!
4
→2`,

with

ḟ;2
1

24r 0f s8
;const, ~4.7!

case~ iii ! D→0, ḟ;2
t2ts

8p0f s8
, ~4.8!
9-10
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where f s8[(pd/48)(efs2e2fs) with fs being a constant
Although case~ii ! is rare, we have numerically checked th
this asymptotic solution certainly exists for the modulu
driven case. The asymptotic case~iii ! corresponds to the iso
tropic case, as is similar to the dilaton-driven cosmology. I
easy to verify that this trajectory is possible for positivef
but impossible for negativef. In what follows we shall ana-
lyze how the evolution of the expansion rates and the de
minant are different from that of the dilaton-driven case p
ing particular attention for nonsingular trajectories.

Nonsingular asymptotic solutions forḟ.0 can be de-
scribed asf5f025 lnutu in the past@see Eq.~4.4!# andf
5f01c4 lnutu with 0,c4,1 in the future@see Eq.~4.5!#.
Thereforef continues to grow from the asymptotic pa
starting from large negative values off toward the future.
Such examples are plotted in Figs. 6~a! and 6~b!. In these
cases the determinant evolves fromD51` ~past! to D52
~future! without passing through the determinant singular
In the dilaton-driven case when the past trajectories are n
singular withD51` they inevitably meet the determinan
singularity in the future@see Figs. 2~b! and 2~c!#. This is
mainly due to the fact thatf 8 is negative in the dilaton cas
while its sign is different in the modulus case ford,0 and
f,0. Therefore the determinant~2.14! is dominated by
positive terms in the modulus case, which provides a way
to pass through the determinant singularity. Namely nega
d is crucial for the existence of nonsingular solutions.

In Fig. 7 we show past and future asymptotic properties
three different cases. Note that we have definedã[a/h and
b̃[b/h in order to compare the cases where the aver
expansion rateh is changed. Whenh50.05 andf525,
nonsingular solutions in the past (D51`) are not singular
in the future with determinantD→2 @see Fig. 7~a!#. The
universe exhibits superinflation with growing expansi
rates until the graceful exit aroundt50 @see Fig. 6~a!#. No-
tice that we havepqr.0 in the asymptotic past, as predicte
by Eq. ~4.4! for negatived. The expansion rates begin t
decrease after the graceful exit, whose asymptotic solut
in the future are given by Eq.~4.5!. In Fig. 6~a! we find that
the future solution corresponds to the Kasner-type where
universe is contracting in one direction.

Figure 7~a! indicates that some trajectories which are no
singular in the future cross the determinant singularity in
past. The evolution of the background is similar to Fig. 1~a!
which we already analyzed in the dilaton case. We also
from Fig. 7~a! that when anisotropy parameters are large
solutions meet the ordinary singularity withD52` in both
the past and future. This is the case of Eq.~3.8! or ~3.9!
where at least one expansion rate diverges as plotted in
1~b!. Although in Fig. 7 past nonsingular solutions (D→
1`) do not meet the determinant singularity in the futu
we have checked that this singular behavior occurs
smaller values off as shown in Fig. 1~c!. These results
imply that the property of singularities is similar to th
dilaton-driven case described in Sec. III A.

For larger initial values off, the allowed region can be
approximately described asã21b̃2&1. Whenh50.05 and
f52 shown in Fig. 7~b!, all future asymptotic solutions ar
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nonsingular with determinantD→2. However, we find from
the left panel of Fig. 7~b! that the region of past nonsingula
solutions gets smaller relative to Fig. 7~a!. For large anisot-
ropy parameters, the determinant tends to decrease b
wards from the asymptotic future withD52, thereby result-
ing in the singularity withD50. This is not the case for the
nonsingular trajectories with small anisotropy paramete
One example is plotted in Fig. 6~b!. Although the determi-
nant decreases fromt51` to t;26, it begins to grow
toward the asymptotic past before crossing the determin
singularity. From Fig. 6~b! we find that the trajectory come
regularly from the asymptotic past and connects to
Friedmann-type branch where the universe is expandin
all directions. When anisotropy parameters are small and
long to the region~2.6!, the future solution is of Friedmann
type.

When the average expansion rateh gets larger, the region
of nonsingular cosmological solutions becomes smaller.
plot in Fig. 7~c! the density plot of the nature of the dete
minant for h50.1 andf52. The past solutions are dom
nated by the determinant singularity, whereas the future
lutions are nonsingular which is similar to Fig. 7~b!. In this
case nonsingular trajectories in both the past and future e
in only small parameter ranges around the isotropic poin

It is also worth mentioning that the ordinary singulari
~3.10! with asymptotic determinant~3.16! and~3.17! for the
minus sign of Eq.~2.16! does not appear in the present ca
When f increases toward the past,u f 8u also grows in the
modulus case. Therefore the condition (24pqr f8)2!u2(pq
1qr1rp)u is not satisfied, implying that the case of E
~3.16! does not occur. When (24pqr f8)2@u2(pq1qr
1rp)u, there are two possibilities for the asymptotic form
ḟ, one of which isḟ.pd(ef2e2f)p0

3/(t2ts)
3, and the

otherḟ.C(t2ts), whereC is a constant. In the former cas
it is easy to show that asymptotic solutions do not exist
integratingḟ.pd(ef2e2f)p0

3/(t2ts)
3. @Note that this is

possible in the dilaton-driven case with determinant~3.17!.#
In the latter case the determinant approachesD50 as in Eq.
~4.8!.

We have done numerical simulations for other cases va
ing the values ofh andf. Whenh is large,f is required to
be small for the existence of nonsingular cosmological so
tions. This property is found in Fig. 8 where we plot th
regions of nonsingular and singular solutions in the (h,f)
plane. Nonsingular trajectories come regularly from t
asymptotic past withD51` where the quadratic curvatur
term is dominant@see Eq.~4.4!#, and smoothly connect an
other nonsingular branch withD52 where the Gauss
Bonnet term is negligible@see Eq.~4.5!#. For singular solu-
tions nature of singularities is found to be similar to that
the dilaton-driven case discussed in Sec. III A.

V. SUMMARY AND DISCUSSIONS

In this paper we have analyzed past and future asympt
regimes in Bianchi type-I string-inspired cosmological mo
els in the presence of a Gauss-Bonnet curvature invarian
the loop correction is not taken into account, one has
no-go result that the initial big-bang singularity cannot
9-11
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FIG. 6. The evolution ofp, q, r, f, and D in the modulus-driven case. Each figure corresponds to initial conditions with~a! f5

25, h50.05, ã[a/h520.5, b̃[b/h50.5; ~b! f52, h50.05, ã50.3, b̃520.2; ~c! f52, h50.1, ã50.5, b̃5
20.5, respectively.
e
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avoided. The Gauss-Bonnet term allows the existence
nonsingular cosmological solutions, depending on the th
ries we adopt. We investigated two gravity theories, v
dilaton- and modulus-driven cosmologies. In the former c
the dynamics appears to depend significantly on the sign
the right-hand side of Eq.~2.16!. Hence, we treated possib
12350
of
o-
,
e
n

signs in Eq.~2.16! separately and constructed three pictu
of cosmological evolution:~a! dilaton-driven cosmology
with plus sign in Eq.~2.16!; ~b! dilaton-driven cosmology
with minus sign in Eq.~2.16!; ~c! modulus-driven cosmology
with d,0.

As the quadratic curvature corrections may provi
9-12
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FIG. 7. Nature of nonsingular
and singular solutions in the

(ã,b̃) plane with initial condi-
tions, ~a! h50.05, f525, ~b!
h50.05, f52, and ~c! h
50.1, f52. The left figures
correspond to past solutions whil
right figures correspond to future
solutions. Each region corre
sponds to~I! nonsingular solutions
with D→2, ~II ! singular solutions
with determinant singularity (D
50), ~III ! singular solutions with
D→2`, ~IV ! nonsingular solu-
tions with D→`, respectively.
The black color indicates prohib
ited regions in the initial condition
space.
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violations of strong and week energy conditions@13,15#,
the Bianchi type-I universe can recollapse in the hig
curvature regime. This fact gives us a variety of possi
types of trajectories with different past and futu
asymptotics. Some trajectories cannot leave the h
curvature regime, while some reach the low-curvature fut
attractor.

In the dilaton-driven cosmology the 4-dimensional stri
couplingl is required to be positive. This forbids the exi
12350
-
e

h-
e

tence of nonsingular cosmological solutions even when
Gauss-Bonnet term is taken into account. In case~a!, nons-
ingular trajectories in the future correspond to t
low-curvature solutions with determinantD→2 where the
Gauss-Bonnet term is negligible. These trajectories m
the singularity where the determinant of the system vanis
at the finite past. At this determinant singularity,ṗ,q̇, ṙ ,f̈
diverge in Eq.~2.12! while p,q,r ,ḟ stay finite. These kinds
of singularities restrict the presence of nonsingu
9-13
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solutions in an anisotropic background. Other kinds
singularities exist ~we call them ordinary singularities!
where at least one expansion rate diverges@see Eqs.~3.8!–
~3.10!#. When the singularity~3.8! or ~3.9! appears at the
finite past or future, the determinant approachesD52`.
We also find some trajectories which are nonsingular
the asymptotic past with determinantD→1`. These solu-
tions appear for large anisotropy parameters, whose e
tence, to our knowledge, was not discovered previously
case~a! these solutions are found to meet the determin
singularity in the future~see Fig. 2!. In case~b! ordinary
singularity of Eq.~3.10! appears where all expansion rat
diverge. In this case the determinant is divergent or
proaches a positive constant value, depending on the in
conditions off andh @see Eqs.~3.16! and ~3.17!#. The so-
lutions nonsingular in the future typically correspond to th
type of singularity or the determinant singularity in the pa
as found by Fig. 5.

In the modulus-driven case the couplingd can take either
positive or negative value in Eq.~4.3!. Whend.0 solutions
which are nonsingular in both the past and future are
found, similar to the dilaton-driven case. For negative val
of d, however, there exist nonsingular cosmological so
tions where two branches of superinflation and decrea
curvature can be joined to each other. In this case the s
tions come regularly from the asymptotic past (D51`)
with determinant being decreased. The determinant
proaches the future asymptotic valueD52 without crossing
the determinant singularity. This is the main difference fro
the dilaton-driven case where the past nonsingular traje
ries inevitably meet the determinant singularity in the futu
When the solutions are singular we find that nature of sin

FIG. 8. The regions of nonsingular and singular solutions for
modulus-driven case in the initial condition space ofh andf.
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larities is similar to the dilaton-driven case discussed in S
III A.

Our numerical investigations show that not all combin
tions of the past and future asymptotics are possible.
pay particular attention to nonsingular past and lo
curvature nonsingular future regimes~the latter should cor-
respond to our present Universe!. For these regimes we
get the following results: For the dilaton-driven ca
trajectories with a nonsingular past asymptotic meet the
terminant singularity in the future; for cases~a! and ~c! tra-
jectories with low-curvature future asymptotic meet the d
terminant singularity in the past, when the past solutions
singular.

The first property tells us that the negative sign of t
coupling constant is essentially important for constructin
purely nonsingular string cosmological models. This resul
known for FRW universe@9,10# and, hence, is still valid in
anisotropic Bianchi type-I case, despite the existence o
past nonsingular regime in the dilaton-driven cosmolo
The second property indicates that the determinant singu
ity may play a crucial role when we try to trace back in tim
evolution of our present Universe in an anisotropic ba
ground.

Recently, string-inspired cosmological models whi
can avoid the big bang singularity have received mu
attention@20–24# together with the proposal of the ekpyrot
universe@25#. In those cases the quantum loop correctio
or the higher-order derivatives play important roles
determining the dynamics before the graceful exit. It
certainly of interest to extend our analysis to more comp
cated models such as the multifield case in the presenc
the Gauss-Bonnet term. In fact while nonsingular solutio
exist in the single-field modulus-driven case considered
this work, density perturbations generated by the fluctuat
of the modulus exhibits blue spectra with a spectral
n510/3 @26,27#. This contradicts the observational su
ported flat spectra withn.1. In the multifield case, however
it may be possible to produce almost scale-invariant spe
if a light scalar field such as axion generates a flat isocur
ture perturbation during superinflation@28–30# or if the ax-
ion is nonminimally coupled to the dilaton with some pote
tial @31#. We leave to future work to construct suc
nonsingular cosmological models which are consistent w
observations.
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