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Mass, entropy, and holography in asymptotically de Sitter spaces
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We propose a novel prescription for computing the boundary stress tensor and charges of asymptotically de
Sitter~dS! spacetimes from data at early or late time infinity. If there is a holographic dual to dS spaces, defined
analogously to the AdS/conformal field theory correspondence, our methods compute the~Euclidean! stress
tensor of the dual. We compute the masses of Schwarzschild–de Sitter black holes in four and five dimensions,
and the masses and angular momenta of Kerr–de Sitter spaces in three dimensions. All these spaces are less
massive than de Sitter space, a fact which we use to qualitatively and quantitatively relate de Sitter entropy to
the degeneracy of possible dual field theories. Our results in general dimensions lead to a conjecture:Any
asymptotically de Sitter spacetime with mass greater than de Sitter space has a cosmological singularity.
Finally, if a dual to de Sitter space exists, the trace of our stress tensor computes the renormalized group~RG!
equation of the dual field theory. Cosmological time evolution corresponds to RG evolution in the dual. The
RG evolution of thec function is then related to changes in accessible degrees of freedom in an expanding
universe.
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I. INTRODUCTION

There is no good local notion of energy in a gravitati
spacetime. Nevertheless, there is a notion of mass, or
energy, which can be computed from the effects of matter
spacetime geometry@1#. Heuristically, the deviation of the
metric and other fields near spatial infinity from their form
the vacuum provides a measure of mass, angular momen
and other conserved charges. Equivalently, these charge
be computed from the asymptotic symmetries of a spa
time; e.g., the eigenvalue of an asymptotic timelike Killin
vector will give a measure of mass.

There are two basic obstacles to applying this we
understood philosophy to de Sitter space. First, there is
spatial infinity—the asymptotic regions of de Sitter space
Euclidean surfaces at early and late temporal infinity (I 6)
@2#. Second, there is no asymptotic Killing vector that
globally timelike.

In this article, we will evade these obstacles by comput
the quasilocal stress tensor of Brown and York@3# on the
Euclidean surfaces atI 6, and by using this quantity to de
fine a novel notion of mass, and other charges appropria
the asymptotic symmetries.1 Our methods are strongly rem

*Electronic address: vijay@endive.hep.upenn.edu
†Electronic address: jdeboer@wins.uva.nl
‡Electronic address: dminic@vt.edu
1Other interesting approaches to defining mass in de Sitter s

include @4# and @5# which investigate possible positive mass the
rems. The latter works define mass by using timelike conform
Killing vectors of de Sitter space.
0556-2821/2002/65~12!/123508~15!/$20.00 65 1235
tal
n

um
can
e-

-
o
e

g

to

niscent of the computation of conserved charges in a con
mal field theory~CFT!. If de Sitter space is dual to a Euclid
ean CFT@6–10# defined in a manner analogous to the Ad
CFT correspondence@11,12# we are computing the energ
and charges of states of the dual.

We use our stress tensor to display the asymptotic con
mal isometries of dS3 and compute the central charge~c! of
the symmetry algebra. In three dimensions, with a posit
cosmological constant, there are no black holes, but ther
a spectrum of spinning conical defects@13#. We derive these
solutions as quotients of dS3 and then compute their masse
~M! and angular momenta (J). The conical defects areless
massive than de Sitter space. Remarkably, naively enterinc,
M, andJ into the Cardy formula of a hypothesized 2D CF
dual exactly reproduces the entropy of the cosmological
rizon of these spaces. Related uses of the Cardy formul
study dS3 entropy appear in work by Park@13# and, more
recently,@14#. Here we point out several subtleties that fa
this reasoning, and some potential resolutions.2

We proceed to compute the masses of
Schwarzschild–de Sitter black holes in 4 and 5 dimensio
~See @15# for related discussions.! We find that de Sitter
space is more massive than the black hole spacetimes
fact, this is a qualitative feature necessary for de Sitter
tropy to have an interpretation in terms of the degeneracy
a dual field theory defined in the AdS/CFT mode. As Bous
has emphasized, the entropy of de Sitter space is an u
bound on the entropy of any asymptotically de Sitter spa
ce

-
l 2Other approaches to de Sitter entropy have been suggeste
@16–19#.
©2002 The American Physical Society08-1
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time @20#. Since field theories generically have entropies t
increase with energy, a dual description of dS entropy sho
map larger Schwarzschild-dS black holes into states of lo
energy, precisely as we find here. Indeed, the largest b
hole in de Sitter space~the Nariai black hole@21#! has the
least mass.

Following Bousso@20# we expect that asymptotically d
Sitter spaces with entropy greater than de Sitter entropy
not exist. Therefore, since our mass formula increases m
tonically with entropy, we arrive at a conjecture:3Any asymp-
totically de Sitter space whose mass exceeds that of de S
space contains a cosmological singularity.

Given a holographic dual to asymptotically de Sitt
space, the trace of our stress tensor computes the dual r
malization group~RG! equation. We therefore arrive at
remarkable picture: RG evolution of the dual is time evo
tion in an expanding universe.4 The evolution of the centra
charge in the dual is directly related to the changing num
of accessible degrees of freedom in spacetime. The fi
theoryc-theorem is related to properties of the Raychaudh
equation in gravity, in analogy with the properties of hol
graphic RG flows in the AdS/CFT correspondence@23–26#.

We conclude the paper with a discussion of prospects
finding a holographic dual to de Sitter space. The materia
this article has been presented at a variety of conferences
workshops~see the Acknowledgments!. While the text was
being prepared, we received a number of unpublished wo
addressing various related aspects of de Sitter physics@27#.

II. BOUNDARY STRESS TENSOR, MASS AND
CONSERVED CHARGES

To date there is no completely adequate proposal for m
suring the mass of asymptotically de Sitter spaces. The c
sic work of Abbott and Deser remains the basic techniq
@28#, but is a perturbative approach measuring the energ
fluctuations. In AdS space, the Brown-York boundary str
tensor@3#, augmented by counterterms inspired by the du
ity with a CFT @29–31#, led to a particularly convenien
method of computing the mass of asymptotically AdS spa
time. Here we argue that a similar approach applies to
Sitter space.

In d11 dimensions, spaces with a positive cosmologi
constant solve equations of motions derived from the ac

I B52
1

16pGE
M

dd11xA2g~R12L!

1
1

8pGE
]M 2

]M 1

ddxAhK. ~1!

3As we will see below, we could have chosen to define the c
sical stress tensor of de Sitter space with the opposite sign. W
this definition, we would find that de Sitter space has a lower m
than the black hole spacetimes and our conjecture becomes a
tive mass conjecture for non-singular asympototically de Si
spacetimes, i.e., that de Sitter space itself has the lowest m
among such spaces.

4As this paper was being typed, the same point was made
Strominger@22#.
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HereM is the bulk manifold,]M 6 are spatial boundarie
at early and late times,gi j is the metric in the bulk of space
time, andhmn andK are the induced metric and the trace
the extrinsic curvature of the boundaries. In de Sitter sp
the spacetime boundariesI 6 are Euclidean surfaces at ear

and late time infinity. The notation*]M 2
]M 1

d2x indicates an
integral over the late time boundary minus an integral o
the early time boundary which are both Euclidean surfac5

The extrinsic curvature boundary term is necessary to al
a well-defined Euler-Lagrange variation.

It will be convenient to define a length scale

l 5Ad~d21!

2L
. ~2!

In terms of l, the vacuum de Sitter solution to equations
motion derived from Eq.~1! is

ds252dt21 l 2 cosh2~ t/ l !~dVd
2! ~3!

where equal time sections ared-spheres. The same spac
admits a coordinate system where equal time surfaces
flat:

ds252dt21e2t/ ldxW25
l 2

h2
@2dh21dxW2#, ~4!

with tP@2`,1`# while hP(0,̀ #. This patch only covers
half of de Sitter space, extending from a ‘‘big bang’’ at a pa
horizon to the Euclidean surface at future infinity. By repla
ing t by 2t a patch which covers the other half of de Sitt
space~from past infinity to a future horizon! can be obtained.
We will refer to these two patches as the ‘‘big bang’’ and t
‘‘big crunch’’ patches. Finally, an inertial observer in de S
ter space sees a static spacetime with a cosmological h
zon:

ds252S 12
r 2

l 2 D dt21S 12
r 2

l 2 D 21

dr21r 2dVd21
2 . ~5!

The relations between these coordinate patches and Pe
diagrams are presented in Hawking and Ellis@2# and refer-
ences therein.

We can formally ‘‘Wick rotate’’ from a positive to a nega
tive cosmological constant by the analytic continuationl
→ i l . This formal transformation~sometimes accompanie
by additional Wick rotations of some of the coordinate!
takes patches of de Sitter into patches of anti–de Sitter sp
For example, the static path~5! rotates to global AdS. Like-
wise, redefininget/ l5r / l and carrying out some formal ana
lytic continuations gives the Poincare´ patch of AdS. Tracking
these continuations through the classic computations of p
erties of AdS spaces gives a powerful method of inferr
some aspects of de Sitter physics.

-
th
s
si-
r
ss

y 5We follow the conventions of Brown and York@3# for the bound-
ary terms and those of@30# for the bulk term.
8-2
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A. A finite action

In general the action~1! is divergent when evaluated on
solution to the equations of motion, because of the la
volume at early and late times. For example, the late t
region of the inflationary big bang patch makes a diverg
contribution to the action. Specifically, if we cut time off at
large time t, the leading term in the 3 dimensional actio
(d1153) is

I 5
1

8pGE d2xe2t/ l S 21

l D1finite ~6!

which diverges ast→`. ~The same applies to the early tim
region of the inflationary big crunch patch.! Mottola and Ma-
zur @33# have shown that the results of Fefferman and G
ham@34# and Henningson and Skenderis@29# on the asymp-
totics of spaces with a negative cosmological constant ca
extended to spaces with a positive cosmological const
Combining their results with the reasoning in@29,30# shows
that the divergences of the action~1! can be canceled by
adding local boundary counterterms that do not affect
equations of motion.

For example, in three dimensions the improved action

I 5I B1
1

8pGE
]M 1

d2xAh
1

l

1
1

8pGE
]M 2

d2xAh
1

l
~7!

has the same solutions as Eq.~1! but is finite for asymptoti-
cally de Sitter spaces. Indeed, the counterterms in Eq.~7!
clearly cancel the divergent terms of the bare action in in
tionary coordinates. In analogy with AdS, if we place boun
ary conditions requiring asymptotically dS spaces to
proach the de Sitter background sufficiently quickly at ea
and late times, the divergences of the classical action
cancel.

In all dimensions the action has a class of divergences
are powers of the conformal time coordinateh appearing in
Eq. ~4!. In 3, 4 and 5 dimensions these are canceled by
counterterms

I ct5
1

8pGE
]M 1

d2xAhLct1
1

8pGE
]M 2

d2xAhLct, ~8!

Lct5
~d21!

l
2

l 2

2~d22!
R. ~9!

The second counterterm only applies whend11.3. HereR
is the intrinsic curvature of the boundary surface, and ca
lations are performed by cutting off de Sitter space at a fin
time, and then letting the surface approach infinity. In o
dimensions there is one additional divergence that is lo
rithmic in the conformal timeh. This divergence cannot b
canceled without including an explicit cutoff dependence
the counterterm action, thereby leading to a conform
anomaly. In the situations we study the anomaly and
associated logarithmic divergence vanish and so we will
12350
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glect it here. See@29,32# for a detailed discussion of thi
issue in the framework of the AdS/CFT correspondence
would be interesting to repeat the analysis of@35# to derive
the counterterms~9! for general dimensions from the Gaus
Codazzi equations for spaces with a positive cosmolog
constant. Likewise, the analysis of logarithmic divergenc
in @32# should be extended to de Sitter space.

B. Boundary stress tensor

In AdS space, the Brown-York prescription@3,30# was
used to compute a quasilocal boundary stress tensor
measures the response of the spacetime to changes o
boundary metric. We can carry out an analogous proced
in de Sitter space to compute a Euclidean boundary st
tensor on the spacetime boundary. First, write the space
metric in Arnowitt-Deser-Misner~ADM ! form as

ds25gi j dxidxj

52Nt
2dt21hmn~dxm1Vmdt!~dxn1Vndt!. ~10!

Thenhmn is the metric induced on surfaces of fixed time, a
choosingum to be the future pointing unit normal to thes
surfaces, we can compute the extrinsic curvature

Kmn52hm
i ¹iun ~11!

and its traceK. ~Here the index onhmn is raised by the full
metric gi j .) The Euclidean quasilocal stress tensor of
Sitter space is given by the response of the action, evalu
on the space of classical solutions, to variations of
boundary metric. We can evaluate these variations eithe
an early or late time boundary, getting the stress tensors

T1mn5
2

Ah

dI

dhmn

52
1

8pGFKmn2Khmn2
~d21!

l
hmn

2
l

~d22!
GmnG , ~12!

T2mn5
2

Ah

dI

dhmn

52
1

8pGF2Kmn1Khmn2
~d21!

l
hmn

2
l

~d22!
GmnG , ~13!

where the term proportional toGmn, the Einstein tensor of
the boundary geometry, only appears whend11.3. The
last two terms in Eqs.~12! and ~13! come from variation of
the counterterms in Eq.~8!. To obtain the boundary stres
tensor we evaluate Eq.~12! at fixed time and send the time t
infinity so that the surface approaches the spacetime bo
ary. The two Eqs.~12! and~13! appear to give different stres
8-3
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VIJAY BALASUBRAMANIAN, JAN de BOER, AND DJORDJE MINIC PHYSICAL REVIEW D65 123508
tensors because of the relative signs of terms. In fact
empty de Sitter space they are evaluating ident
quantities—the difference in signs occurs because the ex
sic curvatureK is evaluated with respect to a future pointin
timelike normal leading to some sign changes between e
and late time surfaces. For this reason, we will simply d
the 6 and useTmn[T1mn in the examples we study. Not
also that there are some sign differences between Eq.~12!
and the quasilocal stress tensor in AdS space@30#. These
arise, following Brown and York@3#, from some differences
between the treatment of timelike and spacelike bounda

Since we are working on the Euclidean surface atI 6, we
could equally well have chosen to define the stress ten
in Eqs. ~12! and ~13! with the opposite sign as
(22/Ah) dI /dhmn . This alternative sign does not chang
any essential physics—we will point out the slightly differe
interpretations that follow in various places.

It is worth working out some examples of the stress ten
which we will have use of later. An equal time surface of t
inflating patch~4! in 3 dimensions is the infinite Euclidea
plane. Evaluating the stress tensor~12! on this surface gives

Tmn52
1

8pGl
e22t/ l1

1

8pGl
e22t/ l50. ~14!

Here the bare stress tensor canceled exactly against the c
terterm. By contrast, in global coordinates, the bound
stress tensor of dS3 is

Tmn5
e2t/ l

8pGl3 cosh3~ t/ l !
S 1 0

0 1/sin2u D ,

T5
1

4pGl

e2t/ l

cosh~ t/ l !
, ~15!

whereT is the trace of the stress tensor. Notice that the st
tensor vanishes exponentially fort→`.

C. Mass and other conserved charges

In a theory of gravity, mass is a measure of how muc
metric deviates near infinity from its natural vacuum beh
ior; i.e., mass measures the warping of space. The boun
stress tensor~12! computes the response of the spaceti
action to such a warping and thereby encodes a notion
mass. Inspired by the analogous reasoning in AdS sp
@3,30#, we propose a notion of mass for an asymptotically
Sitter space. We can always write the metrichmn on equal
time surfaces in the form

hmndxmdxn5Nr
2dr21sab~dfa1NS

a dr!

3~dfb1NS
b dr! ~16!

where thefa are angular variables parametrizing closed s
faces around an origin. Letjm be a Killing vector generating
an isometry of the boundary geometry. Following@3,30# we
can define the conserved charge associated tojm as follows.
Let nm be the unit normal on a surface of fixedr and define
the charge
12350
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Q5 R
S
dd21fAsnmjmTmn . ~17!

In our computationr will always be the coordinate assoc
ated with the asymptotic Killing vector that is timelike insid
the static patch, but spacelike atI 6. It would be interesting
to compare this notion of a conserved charge in de Si
space to that defined by Abbott and Deser@28#.

An important difficulty facing the definition of mass in d
Sitter space is the absence of a globally timelike Killin
vector. However, as is evident from Eq.~5!, there is a Killing
vector that is timelike inside the static patch, while it
spacelikeoutside the cosmological horizon and therefore
I 6. Any space that is asymptotically de Sitter will have su
an asymptotic symmetry generator. We can adapt the coo
nates~16! so that ‘‘radial’’ normalnm is proportional to the
relevant ~spacelike! boundary Killing vectorjm. Then, we
propose that an interesting and useful notion of the masM
of an asymptotically de Sitter space is:

M5 R
S
dd21fAsNre, e[nmnnTmn , ~18!

where we normalized the Killing vector in Eq.~17! as jm

5Nrnm. Likewise, we can define momenta

Pa5 R
S
dd21xAs j a , j a5sabnmTam. ~19!

We compute this formula on a surface of fixed time and th
send time to infinity so that it approaches the spacet
boundaries atI 6.

Below we will investigate the meaning of the de Sitt
stress tensor and conserved charges in various dimensio

III. THREE DIMENSIONAL COSMOLOGICAL
SPACETIMES

A. More on classical solutions

We seek an interesting class of solutions to 211 dimen-
sional gravity with a positive cosmological constant
which to test our stress tensor and definition of mass. I
dimensions black holes only exist when there is a nega
cosmological constant, but whenL.0 we can find a class o
spinning conical defects which we will refer to as th
Kerr–de Sitter spaces following Park@13#. These spaces
have been discussed before~see, e.g.,@36,13,17#!, but we
will derive them below as quotients of dS3. For convenience
we will set the de Sitter scale to 1 (l 51) and will restore it
later by dimensional analysis.

Three dimensional de Sitter space is the quoti
SL(2,C)/SL(2,R), and any solution of the field equation
looks locally the same. Thus the general solution will loca
look like SL(2,C)/SL(2,R), but can be subject to variou
global identifications. In particular, we can consider solutio
of the formG\SL(2,C)/SL(2,R) for some discrete subgrou
G of SL(2,C). If the discrete subgroup is generated by
single element ofSL(2,C), there are two possibilities. Up to
8-4
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conjugation, the generator can be of the form

S q 0

0 q21D or S 1 a

0 1D . ~20!

The second case appears to correspond to solutions that
like the inflationary patch~4!, but with the complex plane
replaced by a cylinder. We will restrict our attention to so
tions that correspond to identifications of the first type.

An element of dS35SL(2,C)/SL(2,R) can be written as

M5S u ia

ib ū
D , uū1ab51, a,bPR, ~21!

in terms of which the metric is simply

ds25dudū1dadb. ~22!

SL(2,C) acts onM as

M→S a b

c dD M S d̄ 2b̄

2 c̄ ā
D . ~23!

Setting q5exp„p(r 21 ir 1)…, the identificationsG im-
poses on dS3 are, in terms of the two by two matrix param
etrization, given by

S u ia

ib ū
D ;S e2p ir 1u ie2pr 2a

ibe22pr 2 ūe22p ir 1
D . ~24!

To achieve such an identification, we parametrize the two
two matrix as

S u ia

ib ū
D 5S eir 1fA12ab ier 2fa

ibe2r 2f e2 ir 1fA12ab
D ~25!

and takef to be a periodic variable with period 2p. The
coordinatesa,b have to satisfyab<1.

The metric of Eq.~25! is of the form

ds25@r 1
2 2ab~r 1

2 1r 2
2 !#df21 . . . ~26!

from which we see that in the regionab.r 1
2 (r 1

2 1r 2
2 )21

the circle parametrized byf becomes timelike. Therefore
we should remove this unphysical region.

The region 0<ab<r 1
2 (r 1

2 1r 2
2 )21 with a,b.0 can be

parametrized as

S u ia

ib ū
D

5
1

Ar 1
2 1r 2

2

3S ei (r 1f1r 2t)Ar 21r 2
2 ier 2f2r 1tAr 1

2 2r 2

ie2r 2f1r 1tAr 1
2 2r 2 e2 i (r 1f1r 2t)Ar 21r 2

2 D .

~27!
12350
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The Kerr-dS metric derived from this reads

ds252
~r 21r 2

2 !~r 1
2 2r 2!

r 2
dt2

1
r 2

~r 21r 2
2 !~r 1

2 2r 2!
dr2

1r 2S df1
r 1r 2

r 2
dtD 2

~28!

which looks very similar to that of the Ban˜ados-Teitelboim-
Zanelli ~BTZ! black hole @37# of 3D gravity with L,0.
There is a horizon atr 5r 1 of circumference 2pr 1 . The
metric can be continued tor 2.r 1

2 , where the roles oft and
r are interchanged, so that the metric looks like

ds252
r 2

~r 21r 2
2 !~r 22r 1

2 !
dr21r 2S df1

r 1r 2

r 2
dtD 2

1
~r 21r 2

2 !~r 22r 1
2 !

r 2
dt2. ~29!

At large ur u this resembles the region close toI 6 in the
Penrose diagram of dS3. Altogether, the Penrose diagram
the Kerr–de Sitter space is similar to the Penrose diagram
de Sitter space, with static patches of the form~28!, and two
regions near past and future infinity. NearI 2 the metric~28!
becomes

ds2;2
dr2

r 2
1r 2~df21dt2! ~30!

and the spacelike slices are cylinders. In contrast to the c
of dS3, the points att→6` of the cylinder are not part o
spacetime. The topology of Kerr–de Sitter space isR23S1,
whereas the topology of global de Sitter space isR3S2.

The metric~28! with r 250

ds252~r 1
2 2r 2!dt21

dr2

~r 1
2 2r 2!

1r 2df2 ~31!

is a conical defect, with deficit angle 2p(12r 1), describing
a world with a positive cosmological constant and a pointl
massive observer. Whenr 151 we reproduce global dS3. As
in AdS3, it is interesting to ask whether the spacetimes w
r 1.1 ~in effect, ‘‘conical excesses’’! make sense. In AdS3,
the AdS/CFT correspondence tells us such spaces shou
unphysical, so we might expect that the situation in dS3 is
similar.

Another interesting limit isr 1→0, where the deficit angle
becomes 2p. In this limit, the parametrization we used so f
is inadequate. A convenient alternative is

S u ia

ib ū
D 5S eicA11t2 ier 2ft

ie2r 2ft e2 icA11t2D . ~32!
8-5
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VIJAY BALASUBRAMANIAN, JAN de BOER, AND DJORDJE MINIC PHYSICAL REVIEW D65 123508
Here, bothc and f are periodic variables. The metric de
rived from Eq.~32! reads

ds252
1

11t2
dt21~11t2!df21r 2

2 dc2. ~33!

The geometry represents a torus that is contracted to a c
as t→0. The metric for2`,t<0 is a kind of big crunch
solution, the metric for 0<t,` is a big bang type solution
The topology in each case is that of a solid two-torus, exa
the same as that of the BTZ black hole.

More general big bang/big crunch solutions exist, with
metric of a form identical to Eq.~29!,

ds252
t2

~ t21r 2
2 !~ t22r 1

2 !
dt2

1t2S df1
r 1r 2

t2
dr D 2

1
~ t21r 2

2 !~ t22r 1
2 !

t2
dr2.

~34!

@Here r is periodic, and so the solution cannot be continu
through a horizon unlike Eq.~29!.# It would be interesting to
see whether there exists a change of coordinates which t
this metric to a form similar to the static patch of de Sit
space. An important difference is that we now require t
both r and f are periodic variables. Therefore, the met
cannot be extended to2r 1,t,r 1 . For t<2r 1 the metric
~34! is again some kind of big crunch solution, with a tor
contracting to a circle, whereas fort>r 1 it is a big bang like
solution.

The metric for the Kerr–de Sitter solution can be conv
niently rewritten as

ds252S 8Gm2
r 2

l 2
1

~8GJ!2

4r 2 D dt2

1S 8Gm2
r 2

l 2
1

~8GJ!2

4r 2 D 21

dr2

1r 2S 2
8GJ

2r 2
dt1df D 2

. ~35!

B. Mass and angular momentum of Kerr-dS spacetimes

We begin by studying the Kerr-dS metric withJ50.
These are the conical defect spacetimes appearing in
~31!, approaching empty de Sitter when 8Gm51. For these
spaces, there is a basic subtlety in evaluating the boun
stress tensor of dS3 that enters the candidate mass formu
~18!. In the regionr , lA8Gm, equalt surfaces of Eq.~35!
approach the cosmological horizon~rather thanI 6 at early
and late times!. By contrast, whenr . lA8Gm, r becomes
timelike while t is a spatial direction, and larger surfaces
approachI 6. Since we propose to define the stress ten
and mass atI 6, we will evaluate these quantities on surfac
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of large fixedr which therefore lieoutsidethe cosmological
region accessible to the observer creating the conical de
in Eq. ~31!.

An equal time surface of the conical defect spacetim
outside the cosmological horizon (r . lA8Gm) has a metric

ds25S r 2

l 2
28GmD dt21r 2du2. ~36!

We can evaluate the stress tensor~12! on this surface and
compute the mass~18!; each step is almost identical to th
analogous AdS computations@30#. As r→` ~recall r is time-
like now! we find

M5
1

8pG R du
8Gm

2
5

8Gm

8G
5m. ~37!

Setting 8Gm51 we find that dS3 is assigned a mass o
1/8G.

Surprisingly, we are finding that the conical defects ha
lower mass than pure de Sitter space. We might interpret
as follows. Even if the matter making up the defects its
has positive energy, the binding energy to the gravitatio
background can decrease the total energy. In particula
conical defect ‘‘swallows up’’ a part of the spacetime a
thereby appears to reduce the net amount of energy store
the cosmological constant.

The computation of the Brown-York boundary stress te
sor for the general Kerr–de Sitter spacetime parallels
analogous computation for the BTZ black hole@30#. Specifi-
cally, if

ds252
l 2

r 2
dr21

r 2

l 2
~dt21dx2!1dgMNdxMdxN ~38!

one finds that the mass and the angular momentum are g
by the following expressions:

M5
l

8pGE dxF r 4

2l 5
dgrr 1

1

l
dgxx2

r

2l
] rdgxxG ~39!

and

Px52
l

8pGE dxF1

l
dgtx2

r

2l
] rdgtxG ~40!

where in the case of the Kerr–de Sitter solution

dgrr 5
8Gml4

r 4
, dgtt58Gm, dgtf524GJ ~41!

with x5 lf andfP@0,2p#. Thus the final result is

M5m, Pf5J. ~42!

As a cross-check, note that we recover the massM51/8G of
de Sitter space if we setJ50 andm51/8G.

Our computation of the mass and angular momentum
the Kerr-dS spaces is strongly reminiscent of the techniq
8-6
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of Euclidean conformal field theory. The massive spinn
defect intersects a point on the Euclidean surface atI 1

which is inside the cosmological horizon and excised fr
the exterior region. We find the charges carried by the de
performing a contour integral around this excised point. T
computation mimics the usual CFT procedure of inserting
operator at the origin around which we integrate to comp
charges.

IV. CONFORMAL SYMMETRIES AND ENTROPY OF dS 3

We will now employ the boundary stress tensor develop
in the previous section in the study of the symmetry group
asymptotically dS3 spaces. We will first study theSL(2,C)
isometry group and then the group of asymptotic conform
symmetries.

A. Isometries

We will set the de Sitter scalel to 1, restoring it as neede
by dimensional analysis. In Eqs.~21!,~22! we indicated how
dS3 can be represented as the group manif
SL(2,C)/SL(2,R). We can represent each of the three m
rics for de Sitter space that we discussed earlier~inflating,
global and static! in terms of the matrixM. Global coordi-
nates for dS3 ~3! correspond to parametrizingM as

M5S cosht sinueif i ~sinht1cosht cosu!

i ~2sinht1cosht cosu! cosht sinue2 if D ,

~43!

with induced metric ds252dt21cosh2t(du21sin2udf2).
The big bang inflationary patch~4! corresponds toa.0.
This is parametrized as

M5S etz iet

i ~e2t2etzz̄! etz̄
D

⇒ds2

52dt21e2tdzdz̄. ~44!

Similarly, one can parametrize the big bang/big crunch a
inflationary patches corresponding toa,0, b.0, and b
,0. A static patch~5! is covered bya.0,b.0. The matrix
M is parametrized as

M5S eifr ietA12r 2

ie2tA12r 2 e2 ifr
D

⇒ds2

52~12r 2!dt21
1

12r 2
dr21r 2df2. ~45!

SL„2,C… action

One convenient feature of the parametrization in terms
the matrixM is that it is easy to describe the action of t
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SL(2,C) isometry group on the coordinates via Eq.~23!.
From this we get the relevant Virasoro action in the differe
patches. Notice that the actual real generators are of the f
aLi1āL̄ i , whereL̄ i is the complex conjugate ofLi . For the
global patch we get

L215
i

2
e2 ifS cotu1

tanht

sinu D ]f2
1

2
e2 if sinu]u

2
1

2
e2 if~cosht1cosu sinht !] t ~46!

L05
i

2
]f1

1

2
cosu]u2

1

2
sinu tanht] t ~47!

L152
i

2
eifS cotu2

tanht

sinu D ]f1
1

2
eif sinu]u1

1

2
eif

3~2cosht1cosu sinht !] t . ~48!

In the inflationary patch we obtain

L2152]z ~49!

L05
1

2
] t2z]z ~50!

L15z] t2z2]z2e22t] z̄ ~51!

and in the static patch

L2152
1

2r
~12r 2!1/2et2 if~] t22r ] r !

1
ir

2
~12r 2!21/2et2 if]f ~52!

L05
1

2
] t1

i

2
]f ~53!

L15
1

2r
~12r 2!1/2e2t1 if~] t12r ] r !

2
ir

2
~12r 2!21/2e2t1 if]f . ~54!

In particular, we see that in the static patch,L01L̄05] t .

B. Asymptotic conformal symmetry

Brown and Henneaux@38# specified boundary condition
for asymptotically AdS3 spaces that admitted a well define
algebra of diffeomorphisms. These continue to bound
conditions at future or past infinity of dS3, defining an as-
ymptotically de Sitter geometry. Working in the inflating co
ordinate system~4! we obtain that an asymptotically dS3
space has a metric that satisfies@10#
8-7
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g1252
e2t/ l

2
1O~1!, g11 ,g225O~1!,

gtt5211O~e22t/ l !, g1r ,g2r5O~e23t/ l !. ~55!

The diffeomorphisms that respect these conditions are g
in terms of functionsj1(z1) and j2(z2), and take the
asymptotic form@10#

z1→z12j12
l 2

2
e22t/ l]2

2 j2 ~56!

z2→z22j22
l 2

2
e22t/ l]1

2 j1 ~57!

et/ l→et/ l1
et/ l

2
~]1j11]2j2!. ~58!

To understand the meaning of these diffeomorphisms, c
sider the metricgmn induced on an equal time surface
larget in Eq. ~4!. To leading order int, Eqs.~56! and ~57!
produce a conformal transformation of this metric. The
sulting conformal factor ingmn is undone by the effective
Weyl transformation induced by Eq.~58!, leaving the leading
asymptotic metric unchanged@10#:

ds2→2dt21e2t/ ldz1dz21
l 2

2
~]1

3 j1!~dz1!2

1
l 2

2
~]2

3 j2!~dz2!2. ~59!

We learn from this that the asymptotic symmetry group
dS3, subject to the boundary conditions~55!, is the two di-
mensional Euclidean conformal group, which contains
isometries discussed above as a subgroup. Indeed, the
tailed analysis of Brown and Henneaux@38# can be formally
analytically continued to arrive at a Virasoro symmetry alg
bra, but we will not present the details here. Clearly, a sim
analysis can be carried out to show that there is a confor
group of asymptotic symmetries at past infinity also.

In summary, the asymptotic symmetry group of de Sit
space is the conformal group. Interestingly, time translat
in the inflating patch of de Sitter space is related to the d
tation generator of the conformal group. Explicitly, the iso
etry generator~50! in the static patch shows that a dilatatio
of the boundary can be undone by a time translation. I
also illuminating to rewrite the isometry generators~49!–
~51! using the conformal time introduced in Eq.~4!. They
become:

L2152]z , L052
h

2
]h2z]z ,

L152zh]h2z2]z2h2] z̄ . ~60!

It is then clear that ash→0, reaching the boundary of d
Sitter space, the isometries reduce to standard confo
transformations of the plane, whileL0 and the conjugateL̄0
12350
n

n-

-

f

e
de-

-
r
al

r
n
-

-

is

al

generate dilatations of the boundary. As we will see later
there is a holographic dual to de Sitter space, this leads
correspondence between the renormalization group of
dual and time translation in de Sitter space.

We will compute the central charge of the asymptotic co
formal symmetry using the methods of@30#. We have shown
in this section that there is an asymptotic group of conform
symmetries. However, as we will see, the action~7! is not
left invariant by these conformal transformations; there is
anomaly produced by the procedure of cutting off the sp
to regulate divergences and then removing the cutoff.@This
anomaly is intimately connected to the logarithmic dive
gences discussed below Eq.~9!. Such divergences and th
resulting conformal anomlies were discussed for asympt
cally AdS spaces in@29,32#.# The stress tensor~12! computes
the change in the action to variations of the boundary met
Hence we can measure the central charge of the confo
symmetry group of dS3 by computing the anomalous tran
formation of this stress tensor under the diffeomorphis
~56!–~58!, which produce the transformed metric~59!. We
showed in Eq.~14! that the boundary stress tensor of t
inflating patch vanishes. After the diffeomorphism
~56!,~57!, the boundary stress tensor becomes

T1152
l

16pG
]1

3 j1, T2252
l

16pG
]2

3 j2. ~61!

Using the standard formulas for the anomalous transfor
tion of the stress tensor in a two dimensional conform
theory, we read off the central chargec523l /2G, which has
the same formal dependence on the cosmological len
scale as the central charge of AdS3. The negative sign ofc is
not problematic here since we are dealing with a class
stress tensor. If, as metioned before, we had chosen to d
a stress tensor with the opposite overall sign
(22/Ah)dI /dhmn , the resulting object would of course hav
a positive central charge under conformal transformatio
The same result for the central charge is obtained by ex
ining the trace of the stress tensor in global coordinates
t→` ~15!. Remembering thatT52(c/24p)R, whereR is
the scalar curvature of the spherical boundary, we again
c523l /2G.

The analysis outlined above can be repeated in four
five dimensions. We can compute the Brown-York stress t
sor on the spacetime boundary, and the anomalous varia
of this tensor for five dimensional de Sitter space will yield
central charge. However, the absence of such an anomal
four dimensional de Sitter space prevents use of this too
that case. All computations proceed in analogy to those
@30#.

C. Brown-York, Cardy and Bekenstein-Hawking

The Kerr-dS spacetimes~35! have cosmological horizon
giving rise to a Bekenstein-Hawking entropy@39–41#

SBH
K2dS5

A2p l

4G
A~8Gm!1A~8Gm!21

~8GJ!2

l 2
.

~62!
8-8



-

c
ry
a
re

ze
d
o
p

T
ze
na
r
r

de

e
es
in

ec
th
fo
t

ev
sig
w

ea
ti

ra
n

tr
ve
e
t

r’
TZ
e
a

en
r-

-

of

cts

ive

ev-

la
n-
ro-

dy
D

t

f the
these

ull-
ade

MASS, ENTROPY, AND HOLOGRAPHY IN . . . PHYSICAL REVIEW D65 123508
In particular whenJ50, the horizon is atr 5 lA8Gm and the
entropy isS5p lA8Gm/2G. As illustrated in the previous
sections~also see@33,9,10,15#! there is an asymptotic con
formal algebra in dS3 in detailed analogy with the AdS3
symmetry algebra uncovered by Brown and Henneaux@38#.
Therefore, if there is a holographic dual to de Sitter spa
we might expect it to be a Euclidean conformal field theo
@9,10#. Alternatively, the dual theory might be in fact
Lorentzian conformal field theory with a Euclidean signatu
Virasoro algebra. In addition, Strominger has emphasi
that the results of Brown and Henneaux can be understoo
saying that states of any well defined quantum gravity
AdS3 transform in representations of the conformal grou
and that the same applies to dS3.

If there is a duality between de Sitter space and a CF
is not yet on a solid footing—we neither know how to reali
de Sitter space in string theory, nor how the gravitatio
data could be related to a dual. However, it might be natu
to suppose that in analogy with AdS, the dS stress tenso
related to the stress tensor of a dual. Indeed, the actual
nition of spacetime conserved charges in Eqs.~17!,~18!,~19!
is in formal analogy to the standard definition of conserv
charges in a Euclidean CFT. In effect our treatment excis
point onI 1 where the static patch meets future or past
finity and the contour integral in Eq.~17! is carried out
around this point. We might imagine that from the persp
tive of a dual theory the operator responsible for creating
spacetime state is placed at this excised point and our
mula computes the charges of the state after mapping
plane to the cylinder.

However, in making such an identification there are s
eral subtle issues. First of all, there are various possible
flips that may be relevant. For example, if we want to follo
the radial quantization analogy given above, the Euclid
time coordinate obtained by continuation out of the sta
patch flows in the wrong direction atI 1. ~After mapping to
the plane it flows towards the radial origin where the ope
tor onI 1 would be inserted rather than towards radial infi
ity.! For similar reasons, CFT stress tensors onI 1 andI 2

that describe the same space might be related to our dS s
tensor with opposite signs. Issues of this kind can be sol
properly if an actual technical definition of a dS/CFT corr
spondence is devised. Here we content ourselves with
following tempting numerological observation.

The considerations above, coupled with Strominge
well-known observations regarding the entropy of the B
black hole@42#, suggest that the entropy of Kerr-dS spac
could be explained by applying a Cardy-like formula to
CFT with left and right energy levels measured by the eig
values of theL0 and L̄0 conformal generators in static coo
dinates, as defined in Eq.~53!. From their definition, we see
that theseL0 andL̄0 eigenvalues are related to the mass~18!
and angular momentum~19! by

L01L̄05 lm, L02L̄05 iJ. ~63!

Formally, this gives
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L05
1

2
~ml1 iJ !, L̄05

1

2
~ml2 iJ !. ~64!

~Also see@10# for details relating the Brown-York stress ten
sor to the Virasoro generators.! When J50, naive applica-
tion of a Cardy-like formula for the asymptotic density
states of a unitary CFT,

SC52pAucuL0

6
12pAucuL̄0

6
, ~65!

gives the entropy

S5p lA8Gm

2G
~66!

in exact agreement with the entropy of the conical defe
~31! ~also see@14#!.6

Now observe that the spinning Kerr-dS spacetimes g
rise to complex eigenvalues forL0 andL̄0. A CFT with these
left and right energy levels therefore cannot be unitary. N
ertheless, we naively apply a Cardy-like formula~65! and
find that

S52pAucu~ml1 iJ !

12
12pAucu~ml2 iJ !

12
~67!

5
A2p l

4G
A~8Gm!1A~8Gm!21

~8GJ!2

l 2
. ~68!

The complexL0 eigenvalues suggest that the Cardy formu
cannot be valid, since it does not generally apply to no
unitary theories, but we have nevertheless exactly rep
duced the Kerr-dS entropy~62!.

In fact, there is a further subtlety. The complete Car
formula for the asymptotic density of states of a unitary 2
CFT is:

SC52pAc

6
~L02c/24!12pAc

6
~ L̄02c/24! ~69!

and we might expect large corrections whenL0 ,L̄0;c/24.
For dS3 , M51/8G and soL05L̄051/16G5ucu/24 and so
it is surprising that dropping theucu/24 shift still gives the
‘‘right’’ answer for the entropy. The important point is tha
the entropy of dS3 ~and of the conical defects! scales linearly

6We have placed absolute value signs aroundc because in our
definition of the spacetime stress tensorc,0. As we mentioned
above there are several subtle issues in relating the signs o
spacetime stress tensor to possible duals and one hopes that
issues could be resolved given a technical definition of a f
fledged duality. Regardless, the numerological observation m
here remains interesting.
8-9
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with the central charge. We have in fact found that in gene
CFTs with a central chargec, when L0;c/24, the degen-
eracy of states behaves as

d;elc ~70!

with a non-universal coefficientl. Also, if the CFT dual to
dS3 is related to the D1-D5 CFT which was dual to AdS3,
one might be able to useU duality to show that the formula
~65! applies even whenL0;c/24.

Actually, in the above discussion we have been somew
imprecise regarding the Hermiticity conditions and real
conditions onLk and L̄k . As one can see from Eqs.~52!–
~54!, theLk satisfy the Hermiticity conditionLk

†52L̄k . On
the other hand, the eigenvalues given in Eq.~64! are not
compatible with this Hermiticity condition. The reason
that conventionally, the energy or mass is the eigenva
associated to the operator2 i ] t , while the mass is compute
from the Brown-York tensor using the] t Killing vector. In
our case, the operator2 i ] t is 2 i (L01L̄0), as is clear from
Eqs.~52!–~54!. Therefore, we could have identifiedlm with
2 i (L01L̄0), and iJ with 2 i (L02L̄0), which gives L0

5 i /2(ml1 iJ) and L̄05 i /2(ml2 iJ). At the same time, the
modes of the stress tensor as we defined it would no
identified withLk , but rather withiL k . This implies that the
central charge should have been equal to23i l /2G. Putting
these values forL0 ,L̄0 andc into the Cardy formula repro
duces the Kerr-dS entropy; they are also identical to the
ues obtained from a Chern-Simons theory analysis by P
@13#. The central lesson to be learned here is that while
lating a Lorentzian bulk to a Euclidean boundary there
factors ofi and unusual reality conditions which will be im
portant to understand for the definition of a possible dS/C
correspondence.

It is interesting to note that similar conclusions can
reached by naively continuing the AdS results in@42# to dS
by complexifying the scale:l→ i l . The central charge andL0
eigenvalues become imaginary, but conspire to correctly g
the entropies of the de Sitter conical defects in a naive
plication of the Cardy formula.

Finally, the expression for the Brown-York mass of
conical defect allows us to compute the Hawking tempe
ture from the first law of thermodynamics,

dE5TdS, ~71!

and the fact thatE5g2/8G, while the entropy is S
5gp l /2G. ~We have writteng258Gm.! By considering
variations overg we deduce that

TH5
dE

dS
5

g

2p l
~72!

as it should be@43,40,41#. In the limit wheng51 we obtain
the correct expression for the Hawking temperature of
Sitter space.

Banks has emphasized that the finite entropy of de S
space leads us to expect that quantum gravity in a univ
with a positive cosmological constant has a finite numbe
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degrees of freedom@44,45#. It is worth examining how this
might be reconciled with the proposition that a Euclide
conformal field theory may be dual to de Sitter space, si
any local field theory has an infinite number of degrees
freedom. The picture emerged above is that de Sitter sp
should be described by an ensemble of states withL05L̄0
5ucu/24. The finite degeneracy of such states would acco
for de Sitter entropy.~This is reminiscent of@46#.! Likewise,
states of lowerL0 contribute to ensembles that describe t
classical conical defects. In this picture it is natural that
conical defects and Kerr-dS spaces have masses smaller
that of dS3.

But what about states with the real part ofL0.ucu/24?
These correspond to spacetimes with mass bigger than
of dS3. Consider such a universe, which is asymptotica
dS3 at early times and in which the mass formula~18! at I 2

measures a massM.1/8G. It is likely that such a space
evolves to a singularity and is not asymptotically de Sitte
like in the future. Hence, most states, having Re(L0)
.ucu/24, would not lead to de Sitter–like evolution an
therefore the specification of de Sitter boundary conditio
would restrict the dual theory to a finite number of states.
turn this implies that the conical parameter 8Gm<1.

V. HIGHER DIMENSIONAL de SITTER SPACE
AND A MASS BOUND

We can test the picture of de Sitter entropy that emer
in the previous section by examining what our mass form
says about black holes in higher dimensions. Whend11
.3 the action~1! admits Schwarzschild-dS black hole sol
tions of the form

ds252V~r !dt21V~r !21dr21r 2dVd22 , ~73!

V~r !512
2Gm

r d22
2

2Lr 2

d~d21!
512

2Gm

r d22
2

r 2

l 2
. ~74!

This space has horizons at locations whereV(r )50.
When m50 we recover static coordinates for empty

Sitter space with a single cosmological horizon atr 5 l and
an entropyS5 l d22Vd22/4G whereVd22 is the volume of
the unit (d22) sphere. Asm increases, a black hole horizo
appears, increasing in size withm. Simultaneously the cos
mological horizon shrinks in size, pulled inwards by th
gravitational attraction of the black hole. As a result there
the largest black hole, the Nariai solution, which occu
when

m5mN5S 1

dGD F ~d21!~d22!

2L G (d22)/2

. ~75!

For this critical choice of mass, the black hole and cosm
logical horizons coincide at a radiusr 25(d21)(d22)/2L
5 l 2(d22)/d, giving rise to a Bekenstein-Hawking entrop
of S5 l d22Vd22(122/d)(d22)/2/4G. Spaces withm.mN
have unacceptable naked singularities. The Nariai solu
can also be reparametrized as~e.g., see@53#!
8-10
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ds252W~r !dt21W~r !21dr2

1
~d21!~d22!

2L
dVd22 , ~76!

W~r !512
2Lr 2

~d21!
512

dr2

l 2
. ~77!

As we noted above, the Nariai solution has a smaller
tropy than that of de Sitter space. Indeed, the sum of
entropies of black hole horizons, cosmological horizons a
matter fields cannot exceed the entropy of de Sitter sp
given suitable energy conditions on the matter@20#.

We can compute the masses of the black holes~73! using
Eq. ~18!. In four dimensions we find that

M452m. ~78!

So dS4 has a vanishing mass according to our formula wh
the Nariai black hole hasM452(1/3GAL). In five dimen-
sions the mass formula becomes

M55
3p l 2

32G
2

3pm

4
. ~79!

~Note that this result differs in sign from@15#.! So the mass
of dS5 is 2p l 2/32G, and, pleasantly, the mass of the 5
Nariai black hole is 0. This is parallel to the three dime
sional case where the biggest conical defect had a mas
zero.

If there is a CFT dual to dS4 and dS5, defined in the style
of the AdS/CFT correspondence@11,12,6–10#, the masses
that we have computed translate into the energies of a
Euclidean conformal field theory. Generically such theor
have entropies that increase with energy. Therefore, if t
are also to reproduce the decreasing entropy of larger b
holes, these spaces should map into ensembles of decre
energy. Our results~78!, ~79! have precisely this property. In
this regard, the fact that the 4D masses are negative nee
be worrisome because there can easily be a shift in the
mula relating energies to entropy.

It is also interesting that the numerical mass of de Si
space in all three examples that we have studied is the s
~up to a sign! as the numerical mass of AdS spaces in
same dimension@30#. This may be an indication that if dual
to de Sitter space exist, they may be related to the d
already known for AdS spaces. Indeed, in the Chern-Sim
formulation of 211 gravity, intriguing relations are known
between the theories with positive and negative cosmolog
constants. Classical Euclidean AdS3 gravity and Lorentzian
dS3 are Chern-Simons theories of the same group, but
endowed with different Hilbert space structures@47#. ~We
hope to return to this in a later publication.!

The total entropy of black hole and cosmological horizo
can be computed in gravity for generalm. It would be inter-
esting to test whether a Cardy-Verlinde-like expression
the asymptotic density of states of a higher dimensional C
@48# could reproduce this entropy.
12350
-
e
d
e,

e

-
of

al
s
y
ck
ing

not
r-

r
me
e

ls
s

al

re

s

r
T

A bound on de Sitter masses

Bousso has shown that, under suitable positive ene
conditions on matter fields, the entropy of de Sitter spac
an upper bound on the total entropy that can be stored
space with a positive cosmological constant@20,49#. Above
we have shown that our measure of mass increases m
tonically as the entropy increases, and argued that it wo
be natural to map this quantity into the energy of states i
dual field theory. The entropy of de Sitter space is then
derstood as the degeneracy of such states. Now, consid
space which is asymptotically de Sitter–like in the past,
which has a mass measured by Eq.~18! exceeding the mas
of de Sitter space. From a field theory perspective an
semble with this larger energy would have a larger entro
Therefore, in view of the de Sitter entropy bound, we co
jecture the following:Any asymptotically de Sitter spac
whose mass as defined in Eq. (18) exceeds that of de S
space contains a cosmological singularity.Note that spaces
with masses less than or equal to de Sitter space may sti
singular for other reasons.7

A potential counterexample to our conjecture is provid
by the negative-mass Schwarzschild–de Sitter spacetim
which the timelike singularity always remains within a sing
cosmological region. However, this space is nakedly singu
and the Cauchy problem is actually not well defined—hen
it is unclear whether the space can be admitted into con
eration. In addition, small fluctuations are likely to lead
evolution in which the singularity propagates along the n
cone of the past cosmological horizon cutting off the ‘‘low
triangular’’ region outside the cosmological horizon in a Pe
rose diagram of de Sitter space.8

VI. RG FLOW VERSUS COSMOLOGICAL EVOLUTION

Finally, we would like to consider the meaning of th
holographic@50# UV/IR relation @51# in de Sitter space. Ou
discussion is motivated by a possible dS/CFT corresp
dence@6,8–10# in the manner of the AdS/CFT duality@9,10#.
In analogy with the AdS/CFT correspondence the presc
tion for the computation of the boundary stress tensor,
presented above, leads quite naturally to the relation betw
the trace of the stress tensor and the RG equation of a p
tive dual field theory. In particular, the precise relation b
tween the generators of dilatations on the boundary and
generator of time translations in the bulk, as discussed
Sec. IV B, points to a natural relation between the RG flo
of a possible dual boundary theory and the time evolution
the bulk of de Sitter space. This statement is complet
analogous to the known relation between the RG transfor
tions and bulk equations of motion in the context of t
AdS/CFT correspondence@24–26#.

7We have mentioned several times that we could have chose
define a de Sitter stress tensor as (22/Ah)dI /dhmn , thereby revers-
ing the sign of our mass formula. With this definition, we would
making a positive mass conjecture: all non-singular asymptotic
de Sitter spacetimes have mass greater than de Sitter space.

8We thank Rob Myers for discussions of this point.
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In particular, consider the Wick rotated ‘‘kink’’ solution
of @23# which were found in the context of the AdS/CF
duality. These solutions describe spaces interpolating
tween two asymptotically AdS5 spaces and are dual to we
understood RG flows of supersymmetric 4D field theori
Wick rotating these ‘‘kink’’ spaces produces solutions th
correspond to Friedmann-Robertson-Walker~FRW! cos-
mologies interpolating between two de Sitter vacua. It is w
known that RG flows discussed by@23# are characterized by
a positive and monotonicc-function provided that a weak
energy condition is satisfied in the bulk gravitational theo
This holographicc-function coincides with the trace anoma
of the dual field theory, and thus can be precisely related
the trace of the boundary stress tensor@26#. In our situation,
we can analogously postulate a holographicc-function deter-
mined by the expression for the trace of the Brown-Yo
tensor and dimensional analysis@26#. The candidate holo-
graphicc-function is proportional to

c;
1

~A8!D22
~80!

in the case of a Wick rotated kink solution interpolating b
tween twoD-dimensional de Sitter spaces, where the me
of the kink solution is

ds252dt21eAh i j dxidxj . ~81!

Here the prime denotes thet derivative. The asymptotic form
of the Wick rotated warp factor isA5ALt. Inserting this
expression into the formula for the holographicc-function
gives the correct scaling of the expected number of deg
of freedom in the asymptotic de Sitter region~essentially
determined by the value of the holographicc-function at the
fixed point! with the cosmological constantL, as implied by
the Bekenstein-Hawking entropy formula.9

The correspondence between the RG evolution and
bulk cosmological time evolution offers a nice reinterpre
tion of the monotonicity of our candidate holograph
c-function from a cosmological point of view. In our sce
nario, the IR fixed point corresponds to the period of infl
tion which is driven by a large effective cosmological co
stant L in f—the number of degrees of freedom bei
proportional to 1/L in f—in 4D. On the other hand, the UV
fixed point corresponds to an asymptotically de Sitter sp
with a small positive cosmological constantLobs ~as implied
by current observational data!. This in turn, according to the
relation between thec-function and the cosmological con
stant, corresponds to a large number of degrees of free
proportional to 1/Lobs. Indeed, this is consistent with a ho
lographicc-theorem according to whichcUV.cIR .

In the AdS/CFT correspondence, radial flow of the bu
spacetime solutions corresponded in the dual field theor
RG flow @24–26#. Here we are proposing a relationship b
tween the RG flow of a putative holographic dual to de Sit

9These observations were originally made in collaboration w
Petr Horava.
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space andtime evolution. In a theory of gravity, the bulk
Hamiltonian is zero, and so this is really a map betwee
holographic RG equation and the Hamiltonian constraint
the bulk gravitation theory, which at the quantum mechani
level becomes the Wheeler-DeWitt equation.~The corre-
spondence between boundary dilatations and bulk time tr
lations is also an example of the spacetime uncertainty r
tion @52#.!

More precisely, following the treatment of holograph
RG flows in asymptotically AdS spaces, we fix the gauge
that the bulk metric can be written as

ds252dt21gi j dxidxj . ~82!

The Hamiltonian constraint reads

H50 ~83!

where in the case of 5D bulk gravity

H5S p i j p i j 2
1

3
p i

ip j
j D1

1

2
p IG

IJpJ1L. ~84!

Herep i j andp I are the canonical momenta conjugate togi j

andf I(f I denotes some background test scalar fields!. L is
a local Lagrangian density andGIJ denotes the metric on th
space of background scalar fields.

As in the context of the AdS/CFT duality@25#, the Hamil-
tonian constraint can be formally rewritten as a Calla
Symanzik equation for the dual RG flow

1

Ag
F1

3 S gi j
dS

dgi j D 2

2
dS

dgi j

dS

dgi j
2

1

2
GIJ

dS

df I

dS

df I G5AgL,

~85!

provided the local 5D actionS can be separated into a loc
and a non-local piece

S~g,f!5Sloc~g,f!1G~g,f!. ~86!

In that case the Hamiltonian constraint can be formally
written as a Callan-Symanzik RG equation

1

Ag
S gi j

d

dgi j
2b I

d

df I D G5HO ~87!

whereHO denotes higher derivative terms. Here the ‘‘be
function’’ is defined~in analogy with the AdS situation! to be
b I5]Af I where A denotes the cutoff of the putative du
Euclidean theory.

In Eq. ~80! we proposed a holographicc-function for as-
ymptotically de Sitter spaces taking a special form. Mo
generally, in analogy with the AdS/CFT corresponden
@26#, the holographicc-function can be related to the extrin
sic curvature, or equivalently, to the trace of the Brown-Yo
tensor. In a five dimensional bulk space we would have

c;
1

Gu3
. ~88!h
8-12
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Here, as we have seen

^Ti
i&;u ~89!

up to some terms constructed from local intrinsic curvat
invariants of equal time surfaces. The RG equation is gi
by the conformal Ward identity for the trace of the stre
tensor

^Ti
i&;

dG

dA
5b I

]G

]f I
. ~90!

The Raychauduri equation then implies the monotonicity
the trace of the Brown-York stress tensor

du

dt
<0, ~91!

as long as a form of the weak positive energy condition
satisfied by the background test scalar fields. This in t
guarantees the fundamental monotonicity property we wo
require of a holographicc-function.

Finally, there might be a holographic reinterpretation
the known gravitational instabilities of de Sitter space@53#.
One might speculate that the splitting of a de Sitter sp
into two asymptotically de Sitter spaces@53# could be de-
scribed by adding non-linear terms in the Wheeler-DeW
equation. It is tempting to conjecture that some non-lin
version of the Wheeler-DeWitt equation can be related to
fully non-linear Wegner-Wilson-Polchinski@54# nonpertur-
bative RG equations. This in turn might imply an interesti
revival of the wormhole ideas@55# in the context of a pos-
sible dS/CFT correspondence.

VII. DISCUSSION

In this paper we have computed the Brown-York boun
ary stress tensor of asymptotically de Sitter spacetimes
used it to define a novel notion of mass and conser
charges. We were motivated to carry out this procedure
order to study the prospects for a duality between quan
gravity on de Sitter space and a Euclidean field theory
fined on the spacelike surfaces atI 6. The quantities we
compute would be the stress tensor and charges of the
theory, if such a theory were defined for de Sitter space
manner analogous to the AdS/CFT corresponde
@9,10,8,6,12#.

Several interesting results have emerged. In all dim
sions, we found that classical objects like black holes pla
in a world with a positive cosmological constant have mas
less than the mass of de Sitter space itself, and we conjec
that all non-singular asymptotically de Sitter spacetimes h
mass less than de Sitter space.10 These facts make it possibl

10We could have chosen the opposite overall sign for our defi
tion of a stress tensor and mass for de Sitter space in which cas
would have a conjecture that all non-singular asymptotically
Sitter spacetimes have masses greater than or equal to de
space.
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that the entropy of asymptotically de Sitter spacetime co
be explained from the density of states of a dual field the
at an energy level equal to the mass that we measure. Ind
our mass formula is strongly reminiscent of the definition
energy in a Euclidean conformal field theory. What is mo
in three dimensions we showed that naive application o
Cardy-like formula exactly reproduced the entropies of
Kerr-dS spacetimes, as also observed in@13,14#. However,
despite this naive agreement, there are two important iss
that need to be addressed—there are indications of non
tarity ~e.g., theL0 eigenvalues are complex in general!, and
there is a puzzle regarding neglect of the Casimir ene
contribution to the asymptotic Cardy formula.

Our results might be regarded as preliminary eviden
that a Euclidean CFT dual to de Sitter space could exist
first sight, this does not seem to jibe with the philosop
advocated particularly by Banks, that the finite de Sitter
tropy requires a finite dimensional Hilbert space@44,45#.
However, in the picture advocated above, the finite entro
emerges because de Sitter space has a particular mas
only states of quantum gravity with this energy contribute
the entropy. This observation, and Bousso’s de Sitter entr
bound@20#, lead to a conjecture: Any asymptotically de S
ter spacetime with mass greater than that of de Sitter sp
develops a cosmological singularity. In effect, even if t
Hilbert space is formally infinite dimensional, the space
initial data giving rise to de Sitter–like evolution may b
finite dimensional.11

The emerging picture is that Euclidean conformal fie
theories do contain information about asymptotic de Si
spaces in various sectors. A fascinating possibility is t
these Euclidean theories are related to the Euclidean con
mal field theories that appear in the AdS/CFT duality. E
dence in favor of this was presented in@8# where it was
argued that some Euclidean de Sitter spaces have dua
scriptions as sectors of the CFTs dual to AdS spaces. Fur
evidence, from the Chern-Simons description of 3D grav
appeared in the work of Witten@47#. In this work, de Sitter
and anti–de Sitter gravity were related by a change of
Hilbert space structure in the same underlying Chern-Sim
theory. In our case, we would define a Hilbert space struc
formally by cutting open the path integral of the Euclide
field theory dual to Euclidean anti–de Sitter space. The na
ral conjecture is that choosing a non-canonical Hilbert sp
structure would yield a dual to Lorentzian de Sitter space
is very tempting to adopt this idea as a working hypothesis
trying to unearth the more precise relation between de S
spaces and Euclidean conformal field theories.
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