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Fermat potentials for nonperturbative gravitational lensing
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The images of many distant galaxies are displaced, distorted and often multiplied by the presence of
foreground massive galaxies near the line of sight; the foreground galaxies act as gravitational lenses. Com-
monly, the lens equation, which relates the placement and distortion of the images to the real source position
in the thin-lens scenario, is obtained by extremizing the time of arrival among all the null paths from the source
to the observer~Fermat’s principle!. We show that the construction of envelopes of certain families of null
surfaces constitutes an alternative variational principle or version of Fermat’s principle that leads naturally to
a lens equation in a generic spacetime with any given metric. We illustrate the construction by deriving the lens
equation for static asymptotically flat thin lens spacetimes. As an application of the approach, we find the
bending angle for moving thin lenses in terms of the bending angle for the same deflector at rest. Finally we
apply this construction to cosmological spacetimes~FRW! by using the fact they are all conformally related to
Minkowski space.
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I. INTRODUCTION

It is the purpose of this paper to point out, study and ap
an idealized construction of gravitational lens equations
is of potential use in many physical situations—from ex
lensing to the weak-field thin-lens scenario—by means o
alternative version of the standard usage of Fermat’s p
ciple.

The fundamental aspect of gravitational lensing theory
the construction of the past light cone of an observer. T
directly leads to the idea of the mapping from the space
images—the celestial sphere of the observer—to the spac
the sources—usually to the ‘‘source plane,’’ though this s
cialization is by no means necessary. The mapping is car
out by following, backwards in time, the null geodesics
the light cone, from the observer to the source. In ot
words, by knowing where an image appears on the obs
er’s celestial sphere and knowing the null geodesics that g
erate the past null cone, one could in principle follow t
rays back to the source. In addition, it is often of consid
able importance to know the transit times between the em
sion of light and its arrival at the observer. In fact, in view
Fermat’s principle, the actual path taken by light is a lo
extremum of the transit time of all possible neighboring n
paths, which leads to the formulation of gravitational lens
via Fermat’s principle. Much of contemporary lensing theo
is based on the construction, on a simple background~either
Minkowski or a cosmological spacetime!, for weak fields
and with a thin-lens and small-angle approximation, of
appropriate transit time function. Then, by the local extre
ization of the time function, a lens equation is constructed
the usual approach, the time function~referred to as a Ferma
potential! represents the transit time along all possible n
0556-2821/2002/65~12!/123007~18!/$20.00 65 1230
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curves, not necessarily geodesic, that connect the source
the observer@1–3#. The extremization produces a suitab
lens equation by selecting those curves that are geodesic
the variation of the travel time with respect to the path
restricted to the condition that the paths be null, is equival
to the geodesic equation with null tangents.

We wish to show that there is an attractive alternat
~and significantly different! variational principle~an alterna-
tive Fermat’s principle! for use in lensing that can be applie
at least in principle~and, with approximations, also in prac
tice!, in a generic situation. The basic framework is to beg
with a general four-dimensional Lorentzian spacetime wh
the geometry~the metric! of the spacetime is to be consid
ered as the ‘‘gravitational lens.’’ In other words, the detail
lens properties are to be coded directly into the metric ten
We then consider a 2-parameter family of null~or character-
istic! surfaces passing through an observer’s world line a
given time. In fact, we assume that the family of surfaces
sufficiently generic for the null normals at the observer to
distinct and span the sphere of null directions~often just an
open neighborhood of the sphere is sufficient!. This family of
null surfaces then contains all the points on the observ
light cone~or the open neighborhood!, since at the intersec
tion of the observer’s world line with each surface the n
mal vector to the surface is null, geodesic, and lies on
surface. Each null geodesic that passes through the obs
er’s world line on each of the null surfaces can then be f
lowed into the past. These are the rays that an observer
and constitute hiscelestialsphere~or an open neighborhood
of it!.

Now consider a point source of light moving along som
given ~source! timelike world line. We are interested in thos
null geodesics moving back in time from the observer to
©2002 The American Physical Society07-1
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FRITTELLI, KLING, AND NEWMAN PHYSICAL REVIEW D 65 123007
source, i.e., those geodesics that the observer ‘‘sees’’ as c
ing from the source. Atany given observer moment, the ob-
server will ‘‘see’’ a number of different light rays~or im-
ages!, each of which, in general, will have intersected t
source ~or equivalently, will have been emitted by th
source! at different source times. These countably few n
geodesics lie on countably few of the null surfaces in
family that we are considering. Thus there are a numbe
surfaces in the 2-parameter family that intersect the wo
line of the source at a point that can be connected to
observer by a null geodesic on the surface. However, atany
observer moment, all ~or almost all! the other surfaces in th
family intersect the source’s world line as well, at varyin
times. In general, however, there are no curves lying on th
surfaces connecting the source intersection point to the
server that are null geodesics. In fact, most of the curves
can be used to connect the source and the observer on
of these null surfaces are piecewise spacelike and/or null.
this reason, we prefer to drop any reference to paths,
keep the argument in terms of the null surfaces. Thesource
time t at the intersection point is thus a function on t
sphereof null surfaces intersecting the observer’s world li
at a particular observer’s timeT0:

t5T~u,w,T0!, ~1!

where (u,w) label the null surfaces. We now ask for the loc
extremes ofT as a function of (u,w):

]uT[T,u~u,w,T0!50, ~2a!

]wT[T,w~u,w,T0!50. ~2b!

This operation picks out those null surfaces that poss
curves from the observer traveling backwards to the sou
which are null geodesics. It constitutes our version of Fer
mat’s principle. This version differs from the usual one n
merely in form. If one thinks of it in terms of paths connec
ing the source and the observer, this version of Ferm
principle allows for curves that are neither null nor geodes
It concentrates on and varies the null surfaces rather than
null curves.

For this reason we think of our version of Fermat’s pr
ciple as an alternative to the usual one. Correspondingly,
refer to the functionT as ageneralized Fermat potential
With respect to the underlying meaning of our version
Fermat’s principle, one can see that Eqs.~2a!, ~2b! are
equivalent to the construction of the envelope of the n
surfaces passing through the observer, which in turn is
past light cone of the observer. Thus we arrive at the obs
er’s light cone starting from surfaces in a way analogous
the usual approach, which arrives at the observer’s light c
starting from null paths.

In Sec. II we describe this construction in greater de
and justify the claim that it does pick out the null surfaces
that null geodesics connect the observer with the source
yielding the past light cone. In Sec. III we illustrate the co
struction for the trivial case of Minkowski space without
lens, while in Sec. IV we illustrate it for a Minkowski spac
background with a static thin lens, the conventional scena
12300
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In Sec. V we apply the construction to thin lenses that
moving in order to obtain the corrections to the lens equat
due to the motion of the lens. In Sec. VI these ideas
applied to the FRW cosmologies using the fact that they
are conformally related to Minkowski space. We conclude
Sec. VII, with remarks and an outlook of the potential app
cations of the construction.

We find this method quite enlightening concerning t
underlying ideas in gravitational lensing theory. And a
though it might be difficult to apply in many practical phys
cal situations without the use of heavy approximations, p
liminary calculations suggest that, with further developme
it could well be of practical use.

II. IMPLICITLY DEFINED GENERALIZED FERMAT
POTENTIALS

We assume that we have a four-dimensional Lorentz
manifold, (M ,xa) with a given Lorentzian metric,gab . We
further assume that null geodesics and null surfaces~solu-
tions to the eikonal equation! can be constructed, in som
local coordinates, wherever needed. In general, null surfa
develop wave front singularities and, in principle, one m
worry about them. However, the trouble caused by the s
gularities is easily bypassed if the surfaces are parametr
by the null geodesics that rule them. The fundamental obje
for us will be complete integrals of the eikonal equatio
two-parameter families of foliations of the spacetime by n
surfaces, so that at any spacetime point there is a sph
worth of null surfaces through that point. The two paramet
are arbitrary, but for our purposes we specify them as po
on the sphere. In the following, then, we adopt this particu
choice of parameters to label the solutions of the eiko
equation in the complete integral, and we specify them
complex stereographic coordinates (z,z̄), rather than the
regular spherical coordinates (u,w). The complete integral is
given analytically by an expression of the form

Z~xa,z,z̄ ! ~3!

such that for each fixed value of (z,z̄) the level surfaces of
Eq. ~3! are null. Equivalently, Eq.~3! satisfies the eikona
equation

gab]aZ]bZ50, ~4!

with two further conditions: the four function
(Z,]zZ,]z̄Z,]zz̄Z) form a rank-four set with respect toxa

almost everywhere, whereasglobally the three functions
(Z,]zZ,]z̄Z) form a rank-three set. How these conditions a
used is explained shortly below. In addition, the null cove
tors l a(xa,z,z̄)[]aZ(xa,z,z̄) at fixed xa sweep out all null
directions as (z,z̄) vary, thus reproducing the local ligh
cone. We rewrite Eq.~3! as the two-point function

G~xa,x0
a ,z,z̄ ![Z~xa,z,z̄ !2Z~x0

a ,z,z̄ !50. ~5!

Any two points (xa,x0
a) satisfying Eq.~5! for fixed (z,z̄) lie

on the same null surface. It is clear that the gradient oG
7-2
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FERMAT POTENTIALS FOR NONPERTURBATIVE . . . PHYSICAL REVIEW D 65 123007
with respect to either point is a null covector. Ifx0
a is fixed,

however, then the pointsxa that satisfy Eq.~5! for each (z,z̄)
lie on different null surfaces, butx0

a belongs to all. So we
think of x0

a as a special point where all the null surfac
intersect.

The pointx0
a is chosen to lie on the observer’s world lin

given byx0
a5x0

a(T0), T0 being some observer time. Thoug
it is not needed and is used only for convenience, we cho
in the neighborhood of the source, a special coordinate
tem where the source remains at a fixed spatial point,xi ,
and only the source timex05t evolves. The equation
G(xa,x0

a ,z,z̄)50 then becomes

G„xi ,t,x0
a~T0!,z,z̄…50 ~6!

or, rewritten~since] tGÞ0 by assumption! as

t5T~xi ,T0 ,z,z̄ !, ~7!

it gives rise to our time function, Eq.~1!. As a matter of
notation, by analogy with the usual theory of gravitation
lensing it is natural for us to refer toT as a generalized
Fermat potential.However, the functionG arises more natu
rally from the starting point of the eikonal equation; ther
fore, with a slight abuse of terminology, we refer to it as t
implicit Fermat potential, and for all practical purposes w
use Eq.~6! instead of Eq.~7!.

The extremal values ofT are calculated in terms of th
implicit Fermat potentialG by implicit differentiation of Eq.
~6!. Thus]zT and]z̄T are obtained from

G,t]zT1]zG50, ~8a!

G,t]z̄T1]z̄G50, ~8b!

so that the vanishing of]zT and]z̄T implies the vanishing of
both ]zG and]z̄G, and the reverse, i.e.,

~]zT,]z̄T!50⇔~]zG,]z̄G!50. ~9!

Thus, setting]zG5]z̄G50 gives us the extreme values ofT.
There is a deeper meaning to the extremization ofT, in con-
nection with the null surfaces in the family, as we sub
quently show.

Returning to Eq.~5!, with fixed x0
a , we see that we have

a two-parameter family of surfaces through a fixed pointx0
a .

A new surface, with common tangent curves all pass
throughx0

a , is the envelope of the family and is construct
by requiring that]zG5]z̄G50. The triple

G~xa,x0
a ,z,z̄ !50, ~10a!

]zG50, ~10b!

]z̄G50, ~10c!

defines the envelope. ForxaÞx0
a and in a regionwithout

wave front singularities@5,4#, Eqs. ~10b! and ~10c! can be
algebraically inverted so that
12300
e,
s-

l

-

-

g

z5Y~xa,x0
a!, ~11a!

z̄5Ȳ~xa,x0
a!. ~11b!

When they are substituted into Eqs.~10a!–~10c!, we have the
equation for a three-surface, namely the envelope:

Genv~xa,x0
a![G„xa,x0

a ,Y~xa,x0
a!,Ȳ~xa,x0

a!…50. ~12!

That Genv(xa,x0
a)50 is a null surface follows from both the

fact that]G/]xa is a null vector~by assumption! and from
Eqs.~10b! and~10c!. That it is the null cone of the pointx0

a

is shown by demonstrating that atxa5x0
a the surface has a

sphere’s worth of tangents. This is seen by the followi
argument: in the limit asxa→x0

a , Eqs.~10b!, ~10c! are iden-

tically satisfied for all values of (z,z̄). This is a degenerate
point where Eqs.~11a!, ~11b! do nothold. It then follows that
the tangent vector, given by

]Genv

]xa U
x5x0

5
]

]xa
G~xa,x0

a ,z,z̄ !U
x5x0

, ~13!

has multiple values, yielding a null vector that sweeps
the tangent-space null cone atx0

a , as (z,z̄) moves over the
sphere.

Our task is now to show that this extremization proce
picks out the particular surfaces that connect the source
observer by null geodesics; namely, the values of (z,z̄) for
each pair (xa,x0

a) given explicitly by Eqs.~11a!, ~11b!—or
implicitly by Eqs. ~10b!, ~10c!—label a geodesic null vecto
whose integral line passes throughx0

a and xa. In order to
show this, we notice that when Eqs.~10b!, ~10c! cannot be
inverted, i.e., when the Jacobian

J5U]zzG ]z̄zG

]zz̄G ]z̄z̄G
U ~14!

vanishes, the null surfaces develop wave front singulari
@5#. But by the assumption thatZ(x0

a ,xa,z,z̄) is a complete
integral and the rank conditions, in either case the th
equations~10a!–~10c! can be solved for three~sayxi) of the
four spacetime coordinatesxa, in terms of a fourth one (x* )
and (z,z̄), namely

xi5Xi~x0
a ,x* ,z,z̄ !. ~15!

As a consequence of Eqs.~10a!–~10c!, it turns out that the
curves described by Eq.~15! by keeping (z,z̄) fixed are null
geodesics. This can be seen by implicit differentiati
of Eqs. ~10a!–~10c! with respect to x* . Defining ta

[(1,]Xi /]x* uz,z̄), we obtain

G,a~xa,x0
a ,z,z̄ !ta50, ~16a!

]zG,ata50, ~16b!
7-3
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FRITTELLI, KLING, AND NEWMAN PHYSICAL REVIEW D 65 123007
]z̄G,ata50 ~16c!

where (G,a ,]zG,a ,]z̄G,a) are independent, by the rank co
dition, again. Equation~16a! implies thatta has no compo-
nent pointing out of the surface, sota5agab(G,b1b]zG,b

1b̄] z̄G,b). Using this in Eqs.~16b! and ~16c! implies that
b5b̄50 and henceta5agabG,b , and thus the tangent vec
tor is proportional togabG,b being therefore null, and the
integral curves are null geodesics.

We thus obtain the parametric description of all the n
geodesics throughx0

a . Notice that having this parametric de
scription of the light cone~in terms of the observer’s celestia
sphere! is entirely equivalent to having a lens equation rel
ing the angular position of the source at a given distanc
the angular position of the image on the celestial sphere,
a time of arrival equation yielding the transit time of the lig
signal from the source to the observer@6,7#. To see this, the
point x0

a is taken to represent a point on the observer’s wo

line. By treating (z,z̄) as the celestial sphere of the observ
x* as a measure of ‘‘distance’’ backwards along the n
geodesic to a source andxi as representing the ‘‘time’’ and
‘‘angular position’’ of the source at the moment of emissio
we have constructed a lens equation together with the tra
time equation. Thus one can see that, in a completely gen
context, our version of Fermat’s principle, Eqs.~2a!, ~2b!,
leads immediately to the construction of the observer’s p
light cone, with associated lens and time of arrival equatio

When we extremize the functionT we could obtain a
maximum, a minimum or a saddle point. We wish to kno
how to rephrase the conditions for maximum, minimum
saddle in terms of our implicit Fermat potential,G. In prin-
ciple, we need to look at the eigenvalues of the matrix c
taining the second derivatives ofT evaluated at the extrema
We now switch to real variables (u,v) instead of (z,z̄), via
z[u1 iv , and calculate the eigenvalues of the matrix

d2T[S T,uu T,uv

T,uv T,vv
D . ~17!

Because ofT being implicitly defined via Eq.~6!, we just
need to take second derivatives of Eq.~6!. For instance, if we
take two u derivatives of Eq.~6! @with Eq. ~7! for t# we
obtain

G,uu1T,u~2G,ut1G,ttT,u!1G,tT,uu50. ~18!

Since we are interested only in the value ofT,uu at the ex-
tremum, thenT,u50 and

T,uu52
G,uu

G,t
, ~19!

which presents no difficulty, since by assumptionG,t must
be nonvanishing. Likewise, the other components of the
trix come out proportional to the second derivatives ofG:
12300
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d2T52
1

G,t
S G,uu G,uv

G,uv G,vv
D . ~20!

Thus, up to a factor of21/G,t the eigenvalues are the sam
as those ofd2G. In order to fix unnecessary sign freedo
~since2G for our purposes is just as good asG), we assume
that G,t,0 at the extremum in question. It remains to r
phrase our conditions for maximum, minimum and saddle
terms of the complex variablez. Sincez5u1 iv, we have
]/]u5]/]z1]/]z̄ and]/]v5 i (]/]z2]/]z̄), thus

G,uu5G,zz1G, z̄ z̄12G,zz̄ , ~21a!

G,vv52G,zz2G, z̄ z̄12G,zz̄ , ~21b!

G,uv5 i ~G,zz2G, z̄ z̄ !. ~21c!

If we think of G as spin-weight zero function on the sphe
then, using the envelope condition,G,z5G, z̄50 we have

Z2G5~11zz̄ !2G,zz , ~22a!

Zp2G5~11zz̄ !2G, z̄ z̄ , ~22b!

and hence

d2T52
2

~11zz̄ !2G,t

3S ZZpG1Re~Z2G! 2Im~Z2G!

2Im~Z2G! ZZpG2Re~Z2G!
D . ~23!

The eigenvalue equation ford2T is given by

~ l̃2ZZpG!22Z2GZp2G50, ~24!

wherel̃52(11zz̄)2G,tl/2 andl is an eigenvalue ofd2T.
SinceG,t is assumed to be negative, then the sign ofl is the
same as the sign ofl̃. The solutions are

l̃65ZZpG6uZ2Gu. ~25!

Finally, the conditions are: IfuZZpGu,uZ2Gu, the extremum is
a saddle, since the eigenvalues have opposite signs. IfZZpG
.uZ2Gu, the extremum is a minimum, since both eigenvalu
are positive. IfZZpG,2uZ2Gu, the extremum is a maximum
since both eigenvalues are negative.

On the other hand, the envelope develops singulari
when

ZZpG25Z2GZp2G ~26!

as anticipated earlier~the vanishing of the determinant of th
Jacobian matrix!. The type of extremum is of fundamenta
importance. For instance, in a very weak field, no singula
ties develop in the observer’s light cone, there is no mu
plicity of images and the lens equation represents a lo
7-4
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FERMAT POTENTIALS FOR NONPERTURBATIVE . . . PHYSICAL REVIEW D 65 123007
minimum of the Fermat potential. Increasing the strength
the field, in a situation where there are three images, one
be a minimum, one a maximum and the remaining one w
be a saddle. The minimum corresponds to the primary ima
produced by a ray that does not encounter a caustic in
path. The saddle corresponds to a ray that passes the ca
once. The maximum yields the ray that passes the cau
twice and yields the faintest image. The generalization of
interpretation to cases of more than three images is com
cated@1,3# and lies beyond our present interest.

A. Parametric version of the implicit Fermat potential

We finish this section by presenting a very importa
method for describing implicit Fermat potentials. In ma
cases it is difficult or impossible~as we will see! to obtain a
closed-formG for a family of surfacesG(xa,x0

a ,z,z̄)50,
especially if the surfaces self-intersect and have singulari
In such cases, it is simpler to describe the family of surfa
in parametric form adapted to the null geodesics ruling
surface, namely, by specifying the map

xa5Ga~s,r ,q,z,z̄ ! ~27!

where (s,r ,q)[si are coordinates on the surface, given f
each fixed value of@z,z̄ #. Since each member of the famil
@for fixed (z,z̄)# is a null surface, it is automatically ruled b
null geodesics~except at singular points of the surface!.
Therefore the surface coordinatessi can always be chosen a
geodesic coordinates: (r ,q) labeling the null geodesics rul
ing the surface, ands as an affine parameter along the ge
desics. However, our interest is in surfaces that intersect
given pointx0

a . Therefore, all the surfaces in the family mu
contain the common pointx0

a . We can make use of this fac
by adapting the coordinates (s,r ,q) to this point. Sinces is a
parameter along the geodesics, we fix it by demanding
the 2-surfaces50 be transverse~to the null geodesics in the
null surface! and contain the pointx0

a . This is, then, the
initial-data surface for the geodesics in the null surface.
this initial-data 2-surface, the origin of coordinates forr and
q can be taken to bex0

a . In this manner, all the null surface
in the family will single out the observer’s point as the po
with s5r 5q50, namely

x0
a5Ga~0,0,0,z,z̄ ! ~28!

so thatGa depends onx0
a , i.e.,

xa5Ga~s,r ,q,x0
a ,z,z̄ !. ~29!

Often we takex0
a as the observation timeT0 at the spatial

origin and omit it from the equations.
In the case that the family of surfacesG(xa,x0

a ,z,z̄)50 is
given parametrically via Eq.~27!, the envelope constructio
proceeds in an implicit manner as follows. In the first pla
the ruling of the null surface via null geodesics guarant
that the Jacobian matrix of the map~27!, namely]Ga/]si ,
has rank three~except at singular points!. Therefore, locally,
from the equations~27! one can always choose 3 equatio
12300
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that can be solved forsi . The fourth equation remains
function ofsi . So Eq.~27! can always be viewed in the form

G i~si ,z,z̄;x0
a!2xi50, ~30a!

G~si ,z,z̄;x0
a!2x450, ~30b!

G[G4 ~30c!

where Eq. ~30b! is interpreted as the equatio
G(xa,x0

a ,z,z̄)50 if si is thought of as implicitly given in
terms ofxi via Eq. ~30a!. In other words,

G~xa,x0
a ,z,z̄ ![G„si~xi ,z,z̄;x0

a!,z,z̄;x0
a
…2x4. ~31!

In the envelope construction we then have

05]zGuxa5]zGusi1
]G

]si
uz]zs

i uxi, ~32!

where]zs
i uxi is determined by implicit differentiation of Eq

~30a!. Both Eqs.~31! and~32! will be extensively used in the
following sections.

This appears to be a convenient method for construc
implicit Fermat potentials and for obtaining lens equatio
as demonstrated in the following sections.

III. THE IMPLICIT FERMAT POTENTIAL IN
MINKOWSKI SPACETIME

The case of Minkowski spacetime is quite trivial but
helpful as an illustration of the main ideas underlying t
concept of the implicit Fermat potentialG. In Cartesian co-
ordinatesxa, null surfaces in Minkowski spacetime are lev
surfaces of the solutions to the eikonal equationhabG,aG,b
50, with hab5diag(1,21,21,21). There is a 2-paramete
family of distinct foliations by null planes with the two pa
rameters corresponding to a sphere’s worth of null directi
at any given spacetime point. Using complex stereograp
coordinates, the null directions can be specified byl a(z,z̄)
given by

l a~z,z̄ ![
1

A2
S 1,

~z1 z̄ !

11zz̄
,2

i ~z2 z̄ !

11zz̄
,2

12zz̄

11zz̄
D . ~33!

The null planes with null normall a containing the observer’s
locationx0

a(T0) are given by

G~xa,x0
a ,z,z̄ ![~xa2x0

a!l a~z,z̄ !50. ~34!

The envelope of this 2-parameter family of null planes is
light cone of the pointx0

a and is obtained by taking the partia

derivatives with respect toz and z̄ of the function
G(xa,x0

a ,z,z̄) and setting these derivatives equal to zero.
this case,

]G

]z
5~xa2x0

a!
] l a

]z
50, ~35a!
7-5
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]G

]z̄
5~xa2x0

a!
] l a

]z̄
50. ~35b!

Equations~34! and ~35a!, ~35b! define a 3-surface in the
spacetime. One way to obtain a single equation defining s
a surface is to solve Eqs.~35a!, ~35b! for z as a function of
xa, wherever possible, and substitutez(xa) back into Eq.
~34!. Then the envelope is thus given, in principle, by

Genv~xa![G„xa,x0
a ,z~xa!,z̄~xa!…50. ~36!

In this case, this procedure can be carried out in clo
form. Using the notationDxa[xa2x0

a , Eq. ~35b! is equiva-
lent to

~Dx2 iDy!z222Dzz2Dx2 iDy50 ~37!

with solution

z~xa!5
Dz6Dr

Dx2 iDy
, ~38a!

Dr[A~Dx!21~Dy!21~Dz!2.
~38b!

@The other equation, Eq.~35a!, is the complex conjugate o
Eq. ~35b! and yields no new information.# Substitutingz(xa)
given by Eq.~38a! and its complex conjugatez̄(xa) into Eq.
~34! yields

Genv~xa,x0
a!5G„xa,x0

a ,z~xa!,z̄~xa!…

5
1

A2
~Dt7Dr !50, ~39!

where the minus sign is for the future light cone and the p
sign is for the past light cone of the pointx0

a . Consequently,
the set of three equations~37! and~34! are equivalent to the
lens and time of arrival equations. Because there is no t
occurrence in Eq.~37!, then one can think of it as the len
equation since it relates the spatial position of source (x,y,z)
to its corresponding image on the celestial sphere (z,z̄). In
principle, solving for two of (x,y,z) in terms of (z,z̄) and
substituting into Eq.~34! turns Eq. ~34! into an equation
relating the time of emissiont from a source at (x,y,z) with
image direction (z,z̄) seen at the observerx0

a .

IV. THE IMPLICIT FERMAT POTENTIAL FOR A STATIC
ASYMPTOTICALLY FLAT THIN-LENS SPACETIME

In geometrical terms, a thin lens can be modeled a
spacetime with vanishing curvature everywhere except
timelike surface, where the ‘‘lens’’ lives. Accordingly, th
spacetime consists of two flat spacetimes, matched appr
ately at the lens’ worldsheet, with the observer lying in o
flat spacetime and the source lying in the other one. We r
to these two flat spacetimes as the observer’s side and
source’s side of the spacetime.
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It is clear that the families of null surfaces to be used
the observer’s side of the spacetime are all the null pla
that contain the observer’s location, labeled by the direct
of the null normal. On the source’s side, however, the app
priate null surfaces to use are not null planes but the dis
tion of the null planes by the lens. For this reason they m
in general, be given in parametric form. We use the param
ric method, via Eq.~27!, explained in Sec. II, for the enve
lope construction.

For the purpose of clarity of presentation, we first deve
our construction of the null surfaces in a lower-dimensio
setting. We then generalize the argument to 311 dimensions.

A. 2¿1 static lens planes

The 211 lensing setting is described in Cartesian coor
natesxa5(t,x,y). The observer is atx0

a5(T0,0,0), and the
lens surface is a plane located aty5yl . The metric of the
spacetime is flat everywhere except at the lens plane:

ds25c2dt22dx22dy2. ~40!

Our aim is to construct a 1-parameter family of null foli
tions which in principle can be given as the level surfaces
a functionG(xa,w) which replaces theG(xa,z,z̄) of the four
dimensional lensing scenario.~The origin, x0

a , is omitted.!
This function will be entirely equivalent to the Fermat p
tential in this lensing scenario, and the envelope of the s
facesG(xa,w)50 will simultaneously give us the lens equ
tion and time of arrival. In the approximation of sma
angles, the Fermat potential and the lens equation will red
to the standard astrophysical lensing scenario.

Roughly our construction is as follows: we define
1-parameter family of null surfaces~parametrized byw) by
imagining a straight line of photons traveling~backwards in
time! parallel to each other~null rays! in a direction making
an anglew with the y axis. As the photons move, they trac
a null plane in the spacetime. The moment each photon
rives at the lens plane, it is ‘‘detained’’ for a length of timeT
that depends only on the point at which the photon hits
lens plane. After this time, the photon is released in a n
directionw85w2a, deviating by an anglea from its origi-
nal direction. The bending anglea depends only on the poin
at which the photon hits the lens plane, and it should
entirely determined by the ‘‘detention time’’T. Because dif-
ferent photons arrive at the lens plane at different times
are detained for different lengths of time, the wave front th
make up after leaving the lens plane is not necessarily pla

The scheme that we have just described has a corresp
ing analog in the wave front distortion produced by a th
sheet of glass with a variable index of refraction. A light r
impinging nearly normally on the sheet will bend inside t
glass due to the component of the gradient of the index
refraction perpendicular to its path, exiting the glass with
finite deviation angle. A plane incident wave front the
comes out of the glass distorted. The local index of refract
at the point of incidence multiplied by the thickness of t
glass is a measure of the time spent by each light ray in
the glass, or equivalently, the ‘‘detention’’ time of light insid
7-6
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the glass. For later purposes, it is important that we make
following point with respect to the limit in which the thick
ness of the glass tends to zero. The ‘‘detention time’’ in
region occupied by the glass defined in this way has
contributions: the transit time in vacuum through the reg
@the ‘‘vacuum’’ time:c213 ~thickness of the glass!# plus the
amount of time that light is delayed by the slowing down
the presence of the medium, with respect to vacuum. In
limit in which the thickness of the glass tends to zero,
first ~vacuum! term vanishes and the ‘‘detention time’’ coin
cides with the time delay with respect to vacuum.

In the case of interest to us, the detention timeT is deter-
mined by the gravitational field of a deflector on the le
plane and it coincides with the gravitational time delay w
respect to vacuum:

T5
22

c3 E Udl ~41!

whereU is the Newtonian potential of an isolated mass d
tribution and the integration takes place along the null ray
line of sight. The situation we are contemplating is the li
iting case in which the support ofU tends to zero, while the
integral of U remains constant, namely,U is a distribution
along each null ray.

More precisely,on the observer sideof the spacetime we
consider the parallel light rays traced by a plane wave fro
moving ~backwards in time! at an anglew with the optical
axis ~they axis! as defining our null surface. See Fig. 1. T
wave front passes by the observer at timeT0. The ~perpen-
dicular! distance from the observer to the wave front at la
times divided byc, which is denoted byt, can be used as
parameter along each light ray. The individual light rays
t50, can be labeled by their distancer from the observer. In
terms of these parameters, the time coordinate of the l
rays is given by

t5T02t, ~42!

FIG. 1. Parametric construction of the null surfaces. On
observer side, the surface is a null plane ruled by parallel light r
making an anglew with the y axis. The light rays are labeled b
their distancer away from the observer, and are parametrized by
distancect away from the wave front that passes by the obser
On the other side of the lens, the light rays bend through an
specified anglea that depends on the position at which the lig
rays reach the lens plane.
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whereas the space coordinates of the light rays are give

x5ct sinw1r cosw, ~43a!

y5ct cosw2r sinw. ~43b!

~Note that ast increases time is going backwards.! It is clear
that r 5t50 defines the observer at (x,y)5(0,0). Each light
ray ~for fixed w) reaches the lens plane att5t l when y
5yl , hitting a lens pointx5xl :

xl5ct l sinw1r cosw, ~44a!

yl5ct l cosw2r sinw. ~44b!

These, in turn, can be solved fort l and r and yield

ct l5xl sinw1yl cosw, ~45a!

r 5xl cosw2yl sinw. ~45b!

Equations~43a!, ~43b! hold while t,t l .
On the other side of the lens line, the wave fronts will

determined by two things: the bending anglea(xl) and the
gravitational time delay imposed on the light rays at the le
line, which we here denote byT(xl). The bending angle is to
be determined in terms ofT(xl). The bending angle and th
time delay can be incorporated into the parametric equat
for these light rays in the following way:

x5c~t2t l2T !sin~w2a!1xl , ~46a!

y5c~t2t l2T !cos~w2a!1yl . ~46b!

These equations hold fort.t l1T. For times in between, the
light rays are ‘‘delayed’’ at the lens plane, so we have

x5xl , ~47a!

y5yl , ~47b!

for t l,t,t l1T. Equations~43a!, ~43b!, ~46a!, ~46b! and
~47a!, ~47b! represent the parametric expression of a o
parameter family of null surfaces which in principle can al
be expressed by a single equation of the formG(x,y,t,w)
50 away from caustics.

On the observer side this can be done explicitly by elim
nating r from Eqs.~43a!, ~43b! yielding

G~x,y,t,w![y cosw1x tanw2t50. ~48!

On the source side, however, this cannot be done explic
The parameter that labels the null geodesics isxl , as op-
posed tor on the observer side. They are related by E
~45b!. The idea would be to eliminatexl between Eqs.~46a!
and~46b! but this is impossible since bothT anda are func-
tions of xl . We thus need to definexl as a function ofx
implicitly by Eq. ~46a!. We take Eq.~46b! as the equation
that defines the functionG wherexl is the implicit function
of x given by Eq.~46a!:

e
s

e
r.
n-
7-7
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G~x,y,t,w!5y2yl2„ct2xl sinw2yl cosw2cT~xl !…

3cos„w2a~xl !…50. ~49!

We have used Eq.~45a! to eliminatet l in terms ofxl andyl .
The envelope is obtained by setting]G(x,y,t,w)/]w50,

where the partial derivative is taken at constant values
(x,y,t). On the observer side, i.e., fory,yl , taking]/]w on
Eq. ~48! we obtain

2y sinw1x cosw50 ~50!

or

tanw5
x

y
, ~51!

an equation forw as a function ofxa on the observer’s side
Substituting Eq.~51! back into Eq.~48! we have ~for y
,yl),

Ax21y21c~ t2T0!50 ~52!

which is the observer’s past light cone, as expected. No
that when Eq.~51! is evaluated at the lens plane it yields

tanw5
xl

yl
. ~53!

From Eq.~45b!, we see that this implies thatr 50, i.e., that
these rays come from the observer. In other words, of all
light rays at anglew, the envelope condition picks the nu
ray that passes through the observer. This light ray hits
lens plane atx5xl and subsequently bends through an as
undetermined anglea(xl). In order to determine the bendin
anglea we use the envelope condition on the source’s s
imposing on it the condition~53!.

The envelope is obtained by setting to zero the impl
differentiation ofG(x,y,t,w) from Eq. ~49! with respect to
w keepingxa fixed. We obtain

05sin~w2a!F]xl

]w

]a

]xl
21G

3~cT02ct2xl sinw2yl cosw2cT !1cos~w2a!

3Fyl sinw2xl cosw2
]xl

]w S c
]T
]xl

1sinw D G . ~54!

The quantity]xl /]w is calculated by implicit differentia-
tion of Eq. ~46a! with respect tow, keepingxa fixed:

]xl

]w
52

A

B
, ~55!

with

A5cos~w2a!~cT02ct2xl sinw2yl cosw2cT !

1sin~w2a!~yl sinw2xl cosw! ~56a!
12300
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B512cos~w2a!~cT02ct2xl sinw2yl cosw

2cT !
]a

]xl
2sin~w2a!S c

]T
]xl

1sinw D . ~56b!

From Eq.~55!, and some algebra, Eq.~54! becomes

052sin~w2a!1c
]T
]xl

1sinw1~yl sinw2xl cosw!

3F cos~w2a!

~cT02ct2xl sinw2yl cosw2cT !
2

]a

]xl
G . ~57!

Using Eq.~53!, the first parenthesis in the last term of E
~57! vanishes, so that Eq.~57! reduces to

05sinw2sin~w2a!1c
]T
]xl

. ~58!

This is the basic relationship between the bending angle
the gravitational time delay that holds for large as well
small angles. Using the regime of small angles, Eq.~58!
reduces to

a52c
]T
]xl

, ~59!

the standard relationship in the astrophysical approach
lensing in a two-dimensional scenario.

The standard lens equation is obtained in the follow
manner. Elimination oft2t l2T in Eqs. ~46a!, ~46b! im-
plies

~x2xl !cos~w2a!2~y2yl !sin~w2a!50. ~60!

With small angles, and withyl5Dl and y5Ds ~the source
distance!, this becomes

x2xl2~Ds2Dl !~w2a!50. ~61!

From the envelope condition, Eq.~53!, with the small-angle
approximation (w5tanw5xl /Dl), we finally have

x

Ds
5

xl

Dl
2

~Ds2Dl !

Ds
a, ~62!

the standard lens equation, which is understood as a
from xl on the lens line tox on the source line~i.e., xl→x),
with fixed values ofDl andDs .

As an illustration, Fig. 2 shows how the envelope co
struction works for the case of a bending angle that does
depend on the point on the lens plane:a(xl)5const and
cT 52axl . Panel ~a! shows a spacetime picture of on
member of the 1-parameter family of null surfaces that
used to construct the envelope. In this case, two null pla
in the directionsw andw2a are matched at the lens’ world
sheet. The vertical separation between the intersection
the two null planes with the lens’ worldsheet represents
time delayT. A spatial projection of the resulting null surfac
shows the bending of light rays, whereas the time delay
observed in the shift of the wave fronts in passing throu
7-8
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FIG. 2. Envelope construction for the case of a bending angle independent of the location on the lens linexl . Panel~a! shows a spacetime
picture of one member of the 1-parameter family of null surfaces that is used to construct the envelope. Panel~b! is a space picture of the
null surface, where both the light rays and the associated wave fronts are shown. Panel~c! shows a spacetime picture of the envelope of t
1-parameter family. The family is labeled by the direction of the plane wave that hits the lens line.
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Fig.
the lens line. The envelope of thew-dependent family of
such null surfaces yields the light cone of the observer on
observer’s side of the lens, which is matched to another l
cone with a shifted origin on the other side of the lens.

A more physical example is provided by the use of a ti
12300
e
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delay of the formT(xl)5T0„12 ln@11(xl /x0)
2#…. This repro-

duces qualitatively the time delay of a compact lens in
vicinity of the optical axis, since the delay is greater f
smaller impact parameters. The spatial projection of the n
surface obtained in this case is shown in the top panel of
7-9
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3. The center panel of the figure shows the projection of
envelope. In this case, a caustic develops on the source’s
of the observer’s light cone. The caustic is traced by cusp
the wave fronts, as shown in the bottom panel of the figu

The equation for the time delayDt ~the difference in
arrival time between a lensed light ray and an unlensed o!
can be obtained from our approach by solving fort in Eq.
~46b! and subtracting from it the travel time in the absence
the lens:

Dt5
y2yl

c cos~w2a!
1t l1T2

1

c
Ax21y2. ~63!

The equation for the time delay is usually given up to seco
order in the angles. We need expansions ofxl andt l , from
Eqs.~43a!, ~43b! with r 50, up to second-order terms:

t l5
yl

c F11
w2

2 G1O~w3!, ~64a!

xl5ylw1O~w3!. ~64b!

These, as well as Eq.~62! for x, are used in Eq.~63!. We
obtain

Dt5T1
DlDls

2cDs
a2, ~65!

which agrees with the usual expression for the time dela

B. 3¿1 static lens planes

The generalization of our scheme for the thin-lens spa
times to 311 dimensions is straightforward. We consider
spacetime with coordinates (t,x,y,z) consisting of two
Minkowski spacetimes matched together at the lens pla
which in this case is the timelike 3-surfacez5zl and is pa-
rametrized by (t,xl ,yl). A generic null direction isl a given
in terms of stereographic coordinates as in Eq.~33!. For our
present purposes, we relabel the components ofl a as

l a5
1

A2
~1,px ,py ,pz! ~66!

where (px ,py) label the sphere of null directions andpz

[A12px
22py

2. As in the~211! case, we choose our famil
of null surfaces as null planes on the observer’s side of
spacetime, and write it parametrically as

rW5ctpW 1sW ~67!

with rW[(x,y,z), pW [(px ,py ,pz) and sW5(sx ,sy ,sz), with sW

•pW 50, representing the null surface att50. The values ofsW

label the null geodesics of thepW null plane.
Then, if t l represents the time that it takes for a light r

to reach the pointrW l[(xl ,yl ,zl) measured from the time tha
the wave front passes the observer, we must have

rW l5ct l pW 1sW ~68!
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and thus

t l5
rW l•pW

c
. ~69!

It is very useful to change the geodesic labels fromsW to rW l by
means of

sW5rW l2~rW l•pW !pW ~70!

for use on both the observer and source side of the sp
time. Equation~67! becomes

rW5„ct2~rW l•pW !…pW 1rW l . ~71!

We thus have in this picture that the wave front, in directi
pW , consists of null geodesics parallel to each other, par
etrized by the values of (xl ,yl) where they hit the lens plan
at zl . Once a ray reaches the lens plane, it is delayed fo
time T(xl ,yl), during which it just ‘‘sits’’ at the lens plane
before leaving in a different directionpW 8. Thus, in our model,
we have

rW5rW l ~72!

and then

rW5c~T02t2t l2T !pW 81rW l ~73!

where

pW 85pW 2aW ~xl ,yl !. ~74!

Here we have definedaW (xl ,yl) in the usual manner, repre
senting the deviation of the null geodesic, which depends
the point at which the geodesic hits the lens plane. Equat
~71!, ~72!, and ~73! constitute a parametric expression
G(t,x,y,z,px ,py)50. In this approach, the time dela
T(xl ,yl) is assumed to be prescribed, whereasaW (xl ,yl) is
determined by the envelope condition. The envelope con
tion in this case takes the form

]G

]px
5

]G

]py
50 ~75!

which is carried out implicitly as in the~211! case, and
which yields

c
]T
]xl

52ax~xl ,yl !, ~76a!

c
]T
]yl

52ay~xl ,yl !, ~76b!

thus reproducing the relationship between the time delay
the bending angle in the more standard astrophysical
proach to lensing. The detailed calculations, which can
omitted, are reproduced below.
7-10
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FIG. 3. Envelope construction for the case of a time de
T(xl)5T02 ln„11(xl /x0)2

…. The top panel shows a space proje
tion of one member of the family of null surfaces. The null surfac
are labeled by the direction of the plane that hits the lens line.
center panel contains a space picture of the envelope showing
light rays. Notice the caustic line that develops after the light r
pass through the lens line. The bottom panel shows a greatly m
nified view of a few of the wave fronts associated with the lig
rays of the center panel. Notice the cusp in each wave front. Th
wave fronts occur around the value 20 in the vertical axis of
center panel.
12300
The implicit G function on the observer’s side is given b
the z component of Eq.~71!

G~t,x,y,z,px ,py!5z2zl2~t2t l !pz50, ~77!

while xl and yl are defined implicitly by the (x,y) compo-
nents of Eq.~71!. Solving forxl andyl from these equations
and substituting back intoG yields

G5
1

pz
~2t1xpx1ypy1zpz!50. ~78!

On the source side we implicitly define the thin-lensG func-
tion by

G5z2zl2~t2t l2T !pz850, ~79!

wherexl and yl are implicitly defined by the (x,y) compo-
nents of Eq.~73!. The envelope ofG is obtained by setting to
zero the partial derivatives ofG with respect topx and py ,
holding (t,x,y,z) fixed. Applying this prescription to theG
function before the lens plane, we have

]G

]px
50⇒x2

px

pz
z50, ~80a!

]G

]py
50⇒y2

py

pz
z50. ~80b!

We note that Eqs.~80a!, ~80b! imply that

xl

px
5

yl

py
5

zl

pz
. ~81!

Solving forpx andpy from Eqs.~80a!, ~80b! and substituting
into the G function, we obtain our final expression for th
thin-lensG function on the observer’s side

pzG52t1xpx1ypy1zpz52t1
pz

z
~x21y21z2!

52t6Ax21y21z250, ~82!

the observer’s light cone.
On the source’s side, the envelope construction

quires computing the following partial derivative
]xl /]px ,]yl /]px ,]xl /]py and ]yl /]py from the (x,y)
components of Eq.~73!. Since pW 85pW 2aW (xl ,yl), we need
the derivatives ofpW 8.

We define

dpx8

dpx
[

]px8

]px
1

]px8

]xl

]xl

]px
1

]px8

]yl

]yl

]px
, ~83!

and similar quantities for all combinations o
(px8 ,py8 ,px ,py). After a lengthy calculation, we obtain
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]xl

]px
5

~t2t l2T !H 2
dpx8

dpx
S 12

]T
]yl

py82py8pyD2
dpy8

dpx
S ]T
]yl

px81px8pyD J
12px8

]T
]xl

2py8
]T
]yl

2pxpx82pypy8

, ~84a!

]yl

]px
5

~t2t l2T !H 2
dpy8

dpx
S 12

]T
]xl

px82px8pxD2
dpx8

dpx
S ]T
]xl

py81py8pxD J
12px8

]T
]xl

2py8
]T
]yl

2pxpx82pypy8

, ~84b!
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and similar expressions for]xl /]py and]yl /]py .
The envelope construction consists in setting thepx and

py partial derivatives@holding (t,x,y,z) fixed# of Eq. ~79! to
zero. Explicitly, we have

052~t2t l2T !S ]pz8

]px8

dpx8

dpx
1

]pz8

]py8

dpy8

dpx
D

1pz8S px

]xl

]px
1py

]yl

]px
1

]T
]xl

]xl

]px
1

]T
]yl

]yl

]px
D ,

~85a!

052~t2t l2T !S ]pz8

]px8

dpx8

dpy
1

]pz8

]py8

dpy8

dpy
D

1pz8S px

]xl

]py
1py

]yl

]py
1

]T
]xl

]xl

]py
1

]T
]yl

]yl

]py
D ,

~85b!

where we have again used Eq.~81!. In these two equations
we substitute the partial derivatives given above and so
for ]T/]xl and]T/]yl , obtaining

]T
]xl

5px82px5ax~xl ,yl !, ~86a!

]T
]yl

5py82py5ay~xl ,yl !. ~86b!

Equations~86a!, ~86b! determine the new direction of th
light ray on the source’s side with respect to the initial dire
tion of the light ray on the observer’s side~i.e., the bending
angle! as the gradient of the time delay function. Note th
we have not made use of the small angle approximation
these calculations.

V. MOVING LENS PLANES IN 2 ¿1 DIMENSIONS

As an application of our approach, we consider a gen
alization of our~211! results to the case of a lens plane th
is moving in the observer’s frame of reference, but is oth
wise unchanging. In other words, the deflector has a gi
configuration, which does not change with time, but mov
12300
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rigidly along the line of sight. The idea is to obtain the ben
ing angle and compare with the bending angle by the sa
deflector at rest.

Again our basic picture is a family of parallel null geod
sics at an anglew with the normal to the lens plane formin
a null plane. The rays each arrive at the lens plane at a t
t l , and then remain in the lens plane for a length of timeT
that depends only on the point at which they hit the n
moving lens plane, before exiting the lens plane at an an
w85w2am .

We point out that the ‘‘detention time’’T of a thin rigid
lens in~slow! motion is the same as that of the same defl
tor at rest. The reason for this becomes clear if we cons
the situation of a glass sheet of thicknessD that is moving. In
the rest frame of the glass, light has a speedu0 and takes a
time t05D/u0 between entering and exiting the glass. T
time in the laboratory frame in which the glass is movi
with speedv is t85t02vD/c2 ~neglecting higher powers in
v/c) following from the fact that the length for light to trave
changes due to the motion of the glass, and with the fact
the speed of light also changes if the glass is moving~by the
Fizeau effect!. Thus t8 differs from t0 only by a term pro-
portional to the thickness of the glass, but completely un
lated to the glass properties. In the limit in which the thic
ness of the glass tends to zero while the rest-frame tra
time, t0, is kept constant, the difference vanishes.

As before, we assume that the observer lies at the or
of coordinatesx0

a5(T0,0,0). The lens plane, however,
moving, being described byxl

a5@ t,xl ,yl(t)#. The ~affine!
parametert describing the evolution of the null geodesics
the null surface is such that the wave frontt50 passes by
the observer att5T0. The parametert runs backwards in
time, so that the time coordinate of the light rays is given
t5T02t as before. We will slightly abuse our notation b
using yl(t) to denoteyl(t5T02t). If the individual light
rays in the beam are labeled byr, with r 50 being the ray
that passes through the origin, then we can give them p
metrically as

x5r cosw1ct sinw, ~87a!

y52r sinw1ct cosw. ~87b!

Individual light rays reach the lens plane at timet l , at which
7-12
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xl5r cosw1ct l sinw ~88a!

yl~t l !52r sinw1ct l cosw. ~88b!

The rays remain at the lens plane for a timeT(xl) and then
leave in a directionw2am(xl), where the bending angle fo
a moving lens,am(xl), is to be determined. At the time th
rays leave the lens plane, however, the lens plane has m
to a pointyl(t l1T ), carrying the rays with it. On the othe
side of the lens, the source side, we have

x5c~t2t l2T !sin~w2am!1xl , ~89a!

y5c~t2t l2T !cos~w2am!1yl~t l1T !.
~89b!

Equations~87a!, ~87b! hold whent,t l , whereas Eqs.~89a!,
~89b! hold for t.t l1T. On the observer side, Eq.~87b!
representsG(x,y,t,w)50 if r is thought of as a function o
(t,x,w) given implicitly by Eq. ~87a!. The envelope condi-
tion ]G/]w50 on the observer side, implemented by taki
]/]w of Eq. ~87a!, yields, as we had earlier,r 50 or

xl5ct l sinw, ~90a!

yl~t l !5ct l cosw. ~90b!

As we had earlier, we consider Eq.~89b! as the equation
G(x,y,t,w)50 on the source’s side by interpretingxl as a
function of (t,x,w):

xl5xl~t,x,w!, ~91!

given implicitly by Eq. ~89a!. The implementation of the
envelope condition,]G/]w50, involves several steps tha
must be explained.

First, we have to evaluatedyl /dt, the velocity of the lens
when the light first enters it, att l1T, and when it exits the
lens, att l , on the observer side. Since the lens is thin a
moving slowly, we consider the two values to be the sa
~or equal to an average! and call

dyl

dt
52 v̂ l . ~92!

The second point is that, though Eq.~89b! containsxl via
a andT, it also containst l which is a function of bothxl and
w and is thus needed in the envelope condition. It is obtai
by eliminatingr from Eqs.~87a!, ~87b!:

ct l2xl sinw2yl~t l !50. ~93!

Taking thew derivative of Eq.~93! and using Eq.~92!, with
r 50, yields

]t l

]w
5

]xl

]w

sinw

~c1cosw v̂ l !
. ~94!

Next we need thew derivative of xl , calculated from Eq.
~89a!, which, using Eq.~94!, yields
12300
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]xl

]w
5

2c~t2t l2T !cos~w2am!

12c~t2t l2T !cos~w2am!

]am

]xl

2cS ]T
]xl

1
sinw

~c1 v̂ l cosw!
D sin~w2am!. ~95!

Finally, setting]G/]w50 from Eq.~89b! yields

05S ]t l

]w
1

]T
]xl

]xl

]w D „c cos~w2am!1 v̂ l…1c~t2t l2T !

3sin~w2am!S 12
]am

]xl

]xl

]w D ~96!

which, using Eqs.~94!, ~95! and the fact thatxlcosw
2sinwyl(tl)50 @from Eqs.~90a!, ~90b!# becomes

sin~w2am!2„c1 v̂ lcos~w2am!…

3S ]T
]xl

1
sinw

~c1 v̂ l cosw!
D 50. ~97!

Now, using the results of the envelope condition on t
observer side wherew is a function ofxl given implicitly by
eliminating t l from Eqs.~90a!, ~90b!, we can interpret Eq.
~97! as an equation defining the bending angle,am , as a
function of xl if T(xl) is known. In the regime of smal
angles, keeping only linear terms inw andam , it reduces to

w2am2~c1 v̂ l !S ]T
]xl

1
w

~c1 v̂ l !
D 50 ~98!

or, the equation foram in terms of the gradient ofT :

am52S 11
v̂ l

c
D c

]T
]xl

[S 11
v̂ l

c
Da. ~99!

This is the relationship between the bending angle and
gravitational time delay at the lens plane when the lens
moving. It represents a correction of a factor of (11v/c)
with respect to the bending angle for the same deflecto
rest. This is in agreement with aberration@8#, according to
which the angles made by light rays as observed in a mov
frame are corrected by a factor of (11v/c) with respect to
the angles made by the same light rays as observed in the
frame. In our case both the directions of incoming and o
going light rays are corrected by the same factor, and con
quently their deviationa is corrected by the same factor.

The lens equation

x5xl1„y2yl~t l1T !…tan~w2am!, ~100!

is obtained from by eliminatingt2t l from Eqs.~89a!, ~89b!.
We are interested in the small angle regime so, neglec
higher order terms, we have

x5xl1~y2 ŷl !~w2am!, ~101!
7-13
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where we have used the assumption thatT is small ~of the
same order asw and am) and introduced the notationŷl
[yl(t l). From the ratio of Eq.~90a! over Eq.~90b! and for
small w, we have

w5
xl

ŷl

~102!

which leads, via Eq.~101!, to

x5
y

ŷl

xl2~y2 ŷl !am ~103!

or

x

y
5

xl

ŷl

2
y2 ŷl

y
am . ~104!

Since in flat space the coordinate distance is equal to
angular diameter distance, we can use the substitutiony

5Ds , ŷl5D̂ l and y2 ŷl5D̂ ls to denote the distance to th
source, the distance to the lens and the distance betwee
lens plane and the source plane at the time the wave f
passes by the lens plane. With these substitutions the
equation becomes

x

Ds
5

xl

D̂ l

2
D̂ ls

Ds
am . ~105!

Thus the changes in the lens equation from lens mo
amount to a factor of (11 v̂ l /c) in the bending angle@from
Eq. ~99!# and the evaluation of the instantaneous position
the lens plane at the average time that the wave front rea
it.

The time delay can be obtained by solving fort in Eq.
~89b! and subtracting the travel time of a ray in the abse
of the lens. We have thus

Dt5
1

c

y2yl~t l1T !

cos~w2a!
1t l1T2

1

c
Ax21y2. ~106!

From Eq.~105! and Eq.~90b!, for smallw,

t l5c21ŷl S 11
1

2
w2D ~107!

but keeping up to second-order terms, we find the time delay
equation corrected for a moving lens:

Dt5~11 v̂ l /c!T1
D̂ l D̂ ls

2cDs
a2. ~108!

VI. COSMOLOGICAL THIN LENSES

In Secs. IV and V, we derived the implicit Fermat pote
tials for lensing by static and moving thin lenses where
lens plane separated two regions of flat spacetimes. In
section, we expand these results to consider lensing in sp
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times that~apart from the lens! are described by Friedmann
Robertson-Walker~FRW! metrics. Our approach is to utilize
the fact that all the FRW spacetimes are conformally flat
rescale physical quantities in the flat lensing case into ph
cal quantities for observers living in a FRW universe. W
begin by noting that there is, for each FRW spacetime (k5
61,0), a coordinate transformation between the ‘‘natur
FRW coordinates (t,x,u,f)5xF

a to ‘‘Minkowski’’ coordi-
nates (t,x,y,z)5xM

a ,

xM
a 5xM

a ~xF
a !, ~109!

such that the metric can be written as

ds̃25dt22a2~t!dlk
2~x,u,f!

5V2~dt22dx22dy22dz2!. ~110!

Here, dlk
2 is the metric of a constant curvature three-spa

~sphere fork511, hyperboloid fork521, or flat space for
k50). In general, the conformal transformation is such t

V5 f k~xa!a~t!, ~111!

for some functionf k . Because conformal transformation
preserve light rays, the implicit Fermat potentials for lensi
in our previous sections are implicit Fermat potentials for
cosmological spacetime and can be expressed in term
either coordinate system,xF

a or xM
a , via Eq. ~109!.

Often, when a symbol is used for a quantity described
the Minkowski space and we want to distinguish it from
same quantity in the cosmological space we will indicate t

by a twiddle, i.e., AversusÃ. Also, often when we are refer
ing to a quantity associated with a moving lens we will i
dicate that by a ‘‘hat,’’ e.g., theyl position of the moving lens
becomesyl(t)5 ŷl .

Several subtle issues arise from the fact that, in gener
fixed space point (x,u,f)5const moving with the cosmo
logical flow in the k561 cases, has in the associat
Minkowski space a coordinate velocity; thus comovi
lenses in the FRW coordinates are modeled by lenses
move, i.e., have a coordinate velocity, in the Minkows
space. This, in turn, leads to the consideration of aberra
affects in the bending angle and source angles which t
influence angular-diameter distances. A second subtle iss
the relationship between the gravitational time delay as co
puted in the FRW spaces compared to those computed in
associated Minkowski space. We point out that the time
lays are not simply conformally related; the cosmologic
time delay must be calculated independently from
Minkowski delays. This issue will be further explored lat
in this section.

We consider the universe to be two sections of a FR
spacetime appropriately matched at a lens plane. The m
distribution in the lens plane determines two related grav
tional time delay functions: the~Minkowski! coordinate time
delay,T, and the related cosmological proper time delay,TC ,
with

TC5V lT ~112!
7-14
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whereV l is the conformal factor evaluated at the lens at
time of arrival of the ray. The relevant functions depend
the Minkowski coordinates in the lens plane,xl . We interpret
TC(xl) as the cosmological proper time measured by a p
son just past the lens~on the observer’s side! between a light
ray emitted at the source at timets that passed through th
lens and one emitted at the samets that was not influenced
by the lens.

As we saw for the moving lens in Sec.V, our implic
Fermat potential, in 211 dimensions, is given by Eqs.~89a!,
~89b! with the envelope condition yielding

am52~c1 v̂ l !
]T
]xl

[~11 v̂ l /c!a, ~113!

wherev̂ l is the average speed of the lens during the time
light ray is delayed andam is the bending angle observed b
a stationary observer with a moving lens anda the bending
angle for an observer comoving with the lens. Our lens eq
tion ~in the small angle approximation! is simply

x5wy2~y2 ŷl !am , ~114!

where (x,y) are the source position,ŷl is the position of the
lens plane when the light ray leaves the lens, andw is the
observation angle.

We consider how to introduce some~modified! angular-
diameter distances for lenses that are moving in
Minkowski spacetime. Here, we interpret the source coo
nate,x, as themetric distance, Ds , between the source~in the
source plane! and the optical axis~i.e. x[Ds!. We then con-
vert the coordinate distances,y, and y2 ŷl into angular-
diameter distances,Ds and D̂ ls , as follows. Letb be the
unlensed angle that the source atx subtends at the observe
and letg be the angle thatx subtends at the lens plane~when
the light ray leaves the lens plane!. Then

y[Ds5
x

b
5

Ds

b
, ~115a!

y2 ŷl[D̂ ls5
x

g
5

Ds

g
. ~115b!

Eliminating y and y2 ŷl from Eq. ~114!, the lens equation
becomes

b5w2
D̂ ls

Ds
am . ~116!

This expression for the lens equation with a moving le
is in terms of distances and angles relative to the frame
stationary observer in the Minkowski space. As we saw e
lier, by the aberration~of light! equation, the bending angl
seen by the stationary observer,am , is related to the bending
anglea seen in the frame comoving with the lens, by E
~113!,
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am5aS 11
v̂ l

c
D , ~117!

so that Eq.~116! becomes

b5w2
D̂ ls

Ds
am5w2

D̂ ls

Ds
aS 11

v̂ l

c
D ~118!

with D̂ ls the time-dependent angular-diameter distance of
lens to the sourceas seen by a stationary observer. On the
other hand, if we wish to use~as we will in a moment! the
angular-diameter distance measured from the lens to
sourcein the comoving lens frame, Dls

(co) , we have that

Dls
(co)5

x

g (co)
5

Ds

g (co)
, ~119!

whereg (co) is the angle thatx subtends according to an ob
server comoving with the lens plane. Using the aberrat
equation, Eq.~117!, for the angleg, we have

D̂ ls5Dls
(co) 1

S 11
v
cD . ~120!

The ~moving! lens equation becomes

b5w2
Dls

(co)

Ds
a. ~121!

Note that neitherDls
(co) or D̂ ls are directly observable

quantities. The issue of which to use depends on the phys
situation that is being addressed. If we utilize the coordin
transformation, Eq.~109!, that relates the Minkowski coor
dinates to the ‘‘natural’’ FRW coordinates, the moving lens
the Minkowski background becomes a stationary lens in
conformally related cosmological spacetime. Hence,Dls

(co)

should be used in the lens equation in the case where
interest lies in the FRW space.

The just completed discussion pertained to the Minkow
background; we now transform the lens equation, Eq.~121!,
to the cosmological background. We assume that the obs
er’s world line is given by (t,x50,u50,f50) in the stan-
dard FRW coordinates. In any of the three FRW mode
such an observer is stationary at (t,r 50,u50,f50). How-
ever, the lens and source, located along the world lines
constant (x,u,f) will be ‘‘moving’’ in the Minkowski coor-
dinates.~The motion of the source in the Minkowski coord
nates plays no important role.! In the cosmological space, th
metric distance between the source location and the op
axis ~in the source plane! is given by D̃s5V(xs

a)Ds where
the conformal factor is evaluated at the source location w
the light ray leaves the source. Using

D̃s5
D̃s

b
5V~xs

a!Ds ~122a!
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D̃ ls5
D̃s

g (co)
5V~xs

a!Dls
(co) ~122b!

for the cosmological angular-diameter distances, our l
equation immediately becomes

b5w2
D̃ ls

D̃s

a, ~123!

which is identical~in form! to the flat-space lens equatio
with a stationary lens and to the conventional cosmolog
lens equation@1,3#.

We now turn from the cosmological lens equation to t
cosmological time of arrival equation. In Sec. V, we deriv
an expression for the ‘‘time delay’’ at the observer betwe
the true ‘‘lensed’’ path and the ‘‘unlensed’’ path in
Minkowski model with a moving lens, namely,

Dt5~11 v̂ l /c!T1
D̂ l

2c

D̂ls

Ds
am

2 . ~124!

Using the transformation properties ofam and D̂ ls just de-
scribed, Eq.~124! has the form

Dt5~11 v̂ l /c!S T1
Dl

2c

Dls
(co)

Ds
a2D , ~125!

wherea is the bending angle seen in the comoving fra
and T is the Minkowski coordinate time delaymeasured
along a world line just to the observer’s side of the le
between the arrival time for a lensed and unlensed ray
transform Eq.~125! to cosmological variables, we first not
that

Dls
(co)

Ds
5

D̃ ls

D̃s

~126!

where the ratio on the right side refers to cosmologi
angular-diameter distances. Next, we see that ifD l is the
Minkowski metric distance from the optical axis to the ‘‘im
age location’’ in the lens plane andw is the angle this dis-
tance subtends at the observer we have

D̃ l5
V~xl

a!D l

w
5V~xl

a!D̂ l , ~127!

which relates the angular-diameter distance from observe
the lens in the FRW cosmology to the conformally relat
‘‘Minkowski’’ angular-diameter distance.~Here, the confor-
mal factor is evaluated at the location of the lens at the t
the light ray leaves the lens.! If we multiply both sides of Eq.
~125! by V0V l whereV0 and V l are respectively the con
formal factor evaluated at the observer at the observa
time and at the lens at the time the light ray leaves the le
we have
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Dt̃05~11 v̂ l /c!
V0

V l
S TC1

D̃ l

2c

D̃ls

D̃s

a2D , ~128!

where we have used

TC5V lT ~129a!

Dt̃05V0Dt ~129b!

the latter being the cosmological proper time between rec
tion of the two rays at the observer.

From the relation

~11 v̂ l /c!
V0

V l
'

a0

al
[11z, ~130!

which is derived in the Appendix for small coordinate veloc
ties, v̂ l /c, in the associated Minkowski space, from E
~128!, our final cosmological time delay equation is

Dt̃05~11z!S TC1
D̃ l

2c

D̃ls

D̃s

a2D . ~131!

Our last issue is to describe how the cosmological pro
time delayTC is to be computed. To computeTC , and, by
association, the Minkowksi coordinate time delay,T
5V l

21TC , we first consider the Newtonian potential

UC52E dm8

uxW2xW8uC

, ~132!

wheredm85rC(x8)d3x8 is the ‘‘observable’’ mass elemen
in the cosmological space, andthe norm in the denominato
is taken in the cosmological metric. To find the cosmological
gravitational time delay, one integrates the Newtonian pot
tial over the path from the source to the observer,

TC5
22

c3 E UCdlC , ~133!

wheredlC is the distance element along the path in the co
mology. In the standard thin-lens approximation, it is a
sumed thatrC(x8) is nonzero only in a thin region perpen
dicular to the optical axis. Thus, when computing the tim
delay from the integral in Eq.~133!, one need only conside
the region along the trajectory that is very close to the le
plane. First, we point out that under conformal rescalin
sincedm8 is conformally invariant, that

UC52E dm8

uxW2xW8uC

'2E dm8

V l uxW2xW8uM

5V l
21UM

~134!

whereuxW2xW8uM5 is the metric distance between two poin
in the lens plane taken in the conformally related Minkows
metric. BecauseUC only has support in the vicinity of the
lens anddlC5VdlM , wheredlM is the distance element in
Minkowski spacetime, we have
7-16
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TC5
22

c3 E UCdlC5
22

c3 E UMdlM5TM . ~135!

There is an apparent conundrum here.TC is the physical
proper-time delay whichappears to be the sameas the
Minkowski space proper-time delay for the same physi
situation, i.e., arising from potentials

UC52E dm8

uxW2xW8uC
~136a!

UM52E dm8

uxW2xW8uM

~136b!

with the samedm8 in both cases. The conundrum is resolv
by noting that though thedm8 are the same the density fun
tions are different.

We compute the mass densities by introducingphysical
coordinatesat the lens~local Lorentzian coordinates!, so that
the cosmological metricat the lenstakes the form

ds25~dtC
2 2dxC

2 2dyC
2 2dzC

2 !

5V l
2~dt22dx22dy22dz2! ~137!

with

xC
a 5V lx

a. ~138!

Using

dm85rC~xC
a !d3xC5rC~V lx

a!V l
3d3x

5rM~xa!d3x ~139!

we have the relationship between the physical density,rC ,
and the equivalent fictitious Minkowski space density
rM(xa),

rM~xa!5rC~V lx
a!V l

3 . ~140!

Returning to the issue of the cosmological lens equat
Eq. ~123!, and associated bending angle, Eq.~113!, we see
that the present results concerning the cosmological time
lay agree with the earlier results, since from Eqs.~129a!,
~138!, and~113!, we have

a52c
]T
]xl

52c
V l]T
V l]xl

52c
]TC

]xCl
, ~141!

the cosmological bending angle.
All our results obtained from the envelope constructi

now agree with the standard results appearing in the p
lished literature. In addition, it is clear that the method can
used to extend the results to the case of a lens plane tha
a peculiar motion above the Hubble flow by letting the v
locity of the lens plane in the underlaying flat space be a
trary.

As a final comment here, we point out that this method
obtaining the FRW lens equation and time delay equation
12300
l

n,

e-

b-
e
as

-
i-

f
y

conformal rescaling of an associated Minkowski space
be extended, largely unchanged, to any spacetime that is
formally related to Minkowski space. It is not clear wheth
this observation has any physical application.

VII. CONCLUDING REMARKS AND OUTLOOK

We have introduced a novel approach to gravitatio
lensing built on a variational principle that is analogous
but distinctly different from, the conventional version of Fe
mat’s principle.

Our approach is to find the envelope of an appropri
family of null surfaces containing the observer’s locatio
We have shown how this approach reproduces the as
physical scenario of static thin lenses as an illustration. M
interestingly, though, we have been able to use this appro
to obtain the correction to first order inv/c that the motion
of the deflector imposes on the bending angle in the appr
mation of thin lenses. This calculation can alternatively
done by direct integration of the null geodesics in tim
dependent spacetime perturbations off flat space. In this
spect, our result agrees with such a direct calculation of
bending angle by moving thin lenses carried out by Pyne
Birkinshaw @9#, whereas it differs from others@10# by an
overall sign and a factor of 2. Work is in progress to clar
this difference and will be reported elsewhere. Notice tha
redshift of 0.001 might conceivably bring this effect into th
observable regime in the future.

Because in the thin-lens case in cosmology our appro
is based entirely on the underlying conformally flat spa
we also have an alternative derivation of the lens equatio
cosmology, which does not seem to have been exploite
the literature so far. We feel our derivation clarifies som
points that remain obscure in the presentations of the
mapping in cosmology that appear in@1# and @3#. On the
other hand, the reader interested in a very complete der
tion of the lens mapping in cosmology by integration of t
null geodesics will definitely benefit from the excellent a
ticle by Pyne and Birkinshaw@11#.

Throughout this work, we have assumed that a metric
given that represents the structure of the deflector or lens
this sense, we have kept ourselves within the kinematic
the implicit Fermat potential. We have not addressed the
sue of the dynamics of the Fermat potential; namely, how
implicit Fermat potential is directly affected by the structu
of the deflectors. The resolution of this important question
principle involves two steps: to solve the Einstein equatio
for the metric, and then to use the metric as a given sou
into the eikonal equation for the implicit Fermat potentia
By contrast, in the standard thin-lens scenario, the Fer
potential is obtained directly from the surface mass distri
tion by means of a 2-dimensional equation of the Pois
type. It is reasonable to ask whether an analogous schem
obtain field equations for the implicit Fermat potential d
rectly in terms of the structure of the deflector exists in ca
other than the thin-lens scenario. This question will be d
cussed elsewhere.
7-17
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APPENDIX

In the main text we quoted the approximate equation,

a0

V0
'

al

V l
~11v l /c!, ~A1!

which relates the ratio of conformal factorsV to the cosmo-
logical scale factora, at two different points, the observe
and the lens, that are connected by a null geodesic.
quantity v l is the velocity of the lens in the associate
Minkowski coordinates evaluated as the ray leaves the l

For the case ofk50 this result is trivially true since then
a5V andv l50. For ease of presentation we will only giv
the proof for thek521 spacetime, but the calculations a
exactly paralled in the case ofk511 and the result is ex
actly the same. We start by recalling that we have the me
in the two forms

ds̃25a2
„dh22dx22sinh2x~du21sin2udw2!…

~A2a!

5V2
„c2dt22dr22r 2~du21sin2udw2!…

~A2b!

with Eq. ~109! explicitly given by

ct5
sinhh

coshh1coshx
~A3a!

r 5
sinhx

coshh1coshx
~A3b!

and

V25
4a2

„12~ct1r !2
…„12~ct2r !2

…

, ~A4!

or, from Eq.~A3!,
o

h.

12300
g
r

he

s.

ic

V

a
5coshx1coshh. ~A5!

We are interested in a lens at some fixed value ofu,w and
x5x l , sending a light signal to the observer located atx
50. The lens and arrival times areh l andh0, respectively,
and we have

h02h l5x l . ~A6!

Using Eqs.~A5! and ~A6! we can construct

V l

al
5

V0

a0

coshx l1cosh~x l2h0!

11coshh0
~A7!

or, for smallx l ,

V l

al
'

V0

a0
S 12

x l sinhh0

11coshh0
D . ~A8!

By calculating the velocity from

dr

dt
5

]r

]h U
x

]t

]h U
x

~A9!

we have

v
c

[2
sinhx sinhh

11coshx coshh
. ~A10!

We thus see that a FWR lens plane approaches the obs
in the conformally related Minkowski space. Evaluating
the lens time we have

v l

c
5

sinhx l sinh~x l2h0!

11coshx l cosh~x l2h0!
~A11!

and for small values ofx l

v l

c
'2

x l sinhh0

11coshh0
. ~A12!

Using Eq.~A12! with Eq. ~A8!, we have our result, Eq.~A1!.
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