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The images of many distant galaxies are displaced, distorted and often multiplied by the presence of
foreground massive galaxies near the line of sight; the foreground galaxies act as gravitational lenses. Com-
monly, the lens equation, which relates the placement and distortion of the images to the real source position
in the thin-lens scenario, is obtained by extremizing the time of arrival among all the null paths from the source
to the observefFermat's principleg We show that the construction of envelopes of certain families of null
surfaces constitutes an alternative variational principle or version of Fermat’s principle that leads naturally to
a lens equation in a generic spacetime with any given metric. We illustrate the construction by deriving the lens
equation for static asymptotically flat thin lens spacetimes. As an application of the approach, we find the
bending angle for moving thin lenses in terms of the bending angle for the same deflector at rest. Finally we
apply this construction to cosmological spacetinffe®W) by using the fact they are all conformally related to
Minkowski space.
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[. INTRODUCTION curves, not necessarily geodesic, that connect the source and
the observe1-3]. The extremization produces a suitable

It is the purpose of this paper to point out, study and applyens equation by selecting those curves that are geodesic, i.e.,
an idealized construction of gravitational lens equations thathe variation of the travel time with respect to the paths,
is of potential use in many physical situations—from exactrestricted to the condition that the paths be null, is equivalent
lensing to the weak-field thin-lens scenario—by means of ario the geodesic equation with null tangents.
alternative version of the standard usage of Fermat’s prin- We wish to show that there is an attractive alternative
ciple. (and significantly differentvariational principle(an alterna-

The fundamental aspect of gravitational lensing theory igive Fermat'’s principlgfor use in lensing that can be applied,
the construction of the past light cone of an observer. Thist least in principlgand, with approximations, also in prac-
directly leads to the idea of the mapping from the space ofice), in a generic situation. The basic framework is to begin
images—the celestial sphere of the observer—to the space wfith a general four-dimensional Lorentzian spacetime where
the sources—usually to the “source plane,” though this spethe geometrythe metri¢ of the spacetime is to be consid-
cialization is by no means necessary. The mapping is carriedred as the “gravitational lens.” In other words, the detailed
out by following, backwards in time, the null geodesics of lens properties are to be coded directly into the metric tensor.
the light cone, from the observer to the source. In otheMe then consider a 2-parameter family of ni@ character-
words, by knowing where an image appears on the obsenistic) surfaces passing through an observer’s world line at a
er’s celestial sphere and knowing the null geodesics that gemiven time. In fact, we assume that the family of surfaces is
erate the past null cone, one could in principle follow thesufficiently generic for the null normals at the observer to be
rays back to the source. In addition, it is often of consider-distinct and span the sphere of null directigofien just an
able importance to know the transit times between the emisspen neighborhood of the sphere is sufficjemhis family of
sion of light and its arrival at the observer. In fact, in view of null surfaces then contains all the points on the observer’s
Fermat’s principle, the actual path taken by light is a locallight cone(or the open neighborhogdsince at the intersec-
extremum of the transit time of all possible neighboring nulltion of the observer’s world line with each surface the nor-
paths, which leads to the formulation of gravitational lensingmal vector to the surface is null, geodesic, and lies on the
via Fermat's principle. Much of contemporary lensing theorysurface. Each null geodesic that passes through the observ-
is based on the construction, on a simple backgrdeitier  er’s world line on each of the null surfaces can then be fol-
Minkowski or a cosmological spacetimefor weak fields lowed into the past. These are the rays that an observer sees
and with a thin-lens and small-angle approximation, of anand constitute hiselestialsphere(or an open neighborhood
appropriate transit time function. Then, by the local extrem-of it).
ization of the time function, a lens equation is constructed. In - Now consider a point source of light moving along some
the usual approach, the time functigeferred to as a Fermat given(source timelike world line. We are interested in those
potentia) represents the transit time along all possible nullnull geodesics moving back in time from the observer to the
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source, i.e., those geodesics that the observer “sees” as corin Sec. V we apply the construction to thin lenses that are
ing from the source. Aainy given observer momeithe ob-  moving in order to obtain the corrections to the lens equation
server will “see” a number of different light raygor im-  due to the motion of the lens. In Sec. VI these ideas are
ages, each of which, in general, will have intersected theapplied to the FRW cosmologies using the fact that they all
source (or equivalently, will have been emitted by the are conformally related to Minkowski space. We conclude, in
source at different source times. These countably few nullSec. VII, with remarks and an outlook of the potential appli-
geodesics lie on countably few of the null surfaces in thecations of the construction.

family that we are considering. Thus there are a number of We find this method quite enlightening concerning the
surfaces in the 2-parameter family that intersect the worldinderlying ideas in gravitational lensing theory. And al-
line of the source at a point that can be connected to théhough it might be difficult to apply in many practical physi-
observer by a null geodesic on the surface. Howeveaingt cal situations without the use of heavy approximations, pre-
observer momenall (or almost all the other surfaces in the liminary calculations suggest that, with further development,
family intersect the source’s world line as well, at varying it could well be of practical use.

times. In general, however, there are no curves lying on these

surfaces connecting the source intersection point to the ob- . (MPLICITLY DEFINED GENERALIZED EERMAT

server that are null geodesics. In fact, most of the curves that POTENTIALS

can be used to connect the source and the observer on each

of these null surfaces are piecewise spacelike and/or null. For We assume that we have a four-dimensional Lorentzian
this reason, we prefer to drop any reference to paths, an@anifold, (M,x?) with a given Lorentzian metriqg,,. We
keep the argument in terms of the null surfaces. Sberce ~ further assume that null geodesics and null surfasetu-
time t at the intersection point is thus a function on thetions to the eikonal equatigrcan be constructed, in some
sphereof null surfaces intersecting the observer’s world linelocal coordinates, wherever needed. In general, null surfaces

at a particular observer’s timey: develop wave front singularities and, in principle, one must
worry about them. However, the trouble caused by the sin-
t=T(0,¢,Ty), (1) gularities is easily bypassed if the surfaces are parametrized

by the null geodesics that rule them. The fundamental objects
where (@, ¢) label the null surfaces. We now ask for the local for us will be complete integrals of the eikonal equation:

extremes ofT as a function of ¢,¢): two-parameter families of foliations of the spacetime by null
surfaces, so that at any spacetime point there is a sphere’s
dgT=T,4(0,¢,T0)=0, (28 \yorth of null surfaces through that point. The two parameters
are arbitrary, but for our purposes we specify them as points
9o T=T,,(6,¢,To)=0. b on the sphere. In the following, then, we adopt this particular

This operation picks out those null surfaces that possesChO'Ce of parameters to label the solutions of the eikonal

curves from the observer traveling backwards to the sourcégquatIon in the compllete '”tegra" arEI we specify them by
which are null geodesicdt constitutes our version of Fer- COMplex stereographic coordinateg,{), rather than the

mat's principle. This version differs from the usual one notfegular spherical coordinates, (). The complete integral is
merely in form. If one thinks of it in terms of paths connect- 9iven analytically by an expression of the form
ing the source and the observer, this version of Fermat's

principle allows for curves that are neither null nor geodesic. Z(x*%,4,90) ©)
It concentrates on and varies the null surfaces rather than the ) —
null curves. such that for each fixed value of () the level surfaces of

For this reason we think of our version of Fermat's prin- EQ- (3) are null. Equivalently, Eq(3) satisfies the eikonal
ciple as an alternative to the usual one. Correspondingly, wgduation
refer to the functionT as ageneralized Fermat potential.

With respect to the underlying meaning of our version of
Fermats principle, one can see that Eqga), (2b) are with two further conditions: the four functions

equivalent to the construction of the envelope of the null - :
surfaces passing through the observer, which in turn is th 2,0¢Z,0¢Z,9¢Z) form a rank-four set with respect tc*

€S p 9 9 S Imost everywherewhereasglobally the three functions
past light cone of the observer. Thus we arrive at the obsery, Z,0,2,d;Z) form a rank-three set. How these conditions are

er’s light cone starting from s_urfaces in-away an,al(_)gous Qised is explained shortly below. In addition, the null covec-
the usual approach, which arrives at the observer’s light cone

starting from null paths. tors Ia(xa,g,g)E%Z(xa,g,g) at fixed x? sweep out all null
In Sec. Il we describe this construction in greater detaildirections as {,{) vary, thus reproducing the local light

and justify the claim that it does pick out the null surfaces sacone. We rewrite Eq(3) as the two-point function

that null geodesics connect the observer with the source thus _ _ _

yielding the past light cone. In Sec. Ill we illustrate the con- G(x®x0,4,0)=Z(x*,{,{) — Z(x5,¢,£) =0. )

struction for the trivial case of Minkowski space without a .

lens, while in Sec. IV we illustrate it for a Minkowski space Any two points &?,x5) satisfying Eq.(5) for fixed (£,¢) lie

background with a static thin lens, the conventional scenaricon the same null surface. It is clear that the gradienGof

9%°9,29,Z2=0, (4)
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with respect to either point is a null covector.x is fixed, (=Y (x3,x5), (11a
however, then the point€ that satisfy Eq(5) for each ¢,¢)

lie on different null surfaces, but] belongs to all. So we =Y (x3,x3). (11b)
think of x§ as a special point where all the null surfaces

intersect. When they are substituted into E¢$0a—(100), we have the

The pointx3 is chosen to lie on the observer’s world line equation for a three-surface, namely the envelope:
given byx§=x§(To), T being some observer time. Though _
it is not needed and is used only for convenience, we choose,  Gen(X?,X5) =G (x%,x5, Y (x*,x3), Y (x?,x5))=0. (12)
in the neighborhood of the source, a special coordinate sys-
tem where the source remains at a fixed spatial poijt, ThatGen,(x*x5)=0 is a null surface follows from both the
and only the source time®=t evolves. The equation fact thatdG/dx? is a null vector(by assumptiopand from

G(xa,xg,g,Z):O then becomes Egs.(10b and(10¢). That it is the null cone of the poing
is shown by demonstrating that = x{ the surface has a
G(x‘,t,xS(To),g,Z)=O (6) sphere’s worth of tangents. This is seen by the following
argument: in the limit ag®—x§, Eqgs.(10b), (100 are iden-
or, rewritten(sinced,G#0 by assumptionas tically satisfied for all values of{(£). This is a degenerate
) — point where Eqs(113), (11b) do nothold. It then follows that
t=T(x',To,¢,0), (7)  the tangent vector, given by
it gives rise to our time function, Eql). As a matter of JG 3
notation, by analogy with the usual theory of gravitational e = —G(x2,x3,,0) , (13)
L . a a 0
lensing it is natural for us to refer t& as ageneralized IX X

R . R = X=X,
Fermat potentialHowever, the functiors arises more natu- 0 0

rally from the starting point of the eikonal equation; there-pas multiple values, yielding a null vector that sweeps out
fore, with a slight abuse of terminology, we refer to it as the ~

R . : the tangent-space null conexg, as (£,{) moves over the
implicit Fermat potentigl and for all practical purposes we sphere

use Eq.(6) instead of Eq(7). Our task is now to show that this extremization process

The extremal values oT are calculated in terms of the icks out the particular surfaces that connect the source and
implicit Fermat potentialG by implicit differentiation of Eq. P P

(6). Thusd, T andJ;T are obtained from observer by null geodesics; namely, the values{ot) for
each pair x2,x§) given explicitly by Egs.(11a, (11b—or
G,d,T+9,G=0, (8a)  implicitly by Egs.(10b), (10c—Iabel a geodesic null vector
whose integral line passes through and x2. In order to
G, T+3,G=0, (8b)  show this, we notice that when Eq4.0b), (10¢) cannot be

inverted, i.e., when the Jacobian
so that the vanishing of, T andd; T implies the vanishing of

both 9,G and 7;G, and the reverse, i.e., 3:,G ;G
J= (14)
(9,T,0;T)=0<(9,G,9,G)=0. 9 96 956G

Thus, setting’,G=d,;G=0 gives us the extreme valuesBf  yanjshes, the null surfaces develop wave front singularities
There is a deeper meaning to the extremizatioi,ah con- [5]. But by the assumption that(x2,x® g?) is a complete

nection with the null surfaces in the family, as we subse- " co
quently show. integral and the rank conditions, in either case the three

) I a equationg10a—(10¢) can be solved for thregayx') of the
Returning to Eq(5)_, with fixedxp, we see that we have four spacetime coordinates, in terms of a fourth onex*)
a two-parameter family of surfaces through a fixed pafht 46D |
A new surface, with common tangent curves all passingan (¢.9), namely

throughxg, is the envelope of the family and is constructed
by requiring thats,G=g;G=0. The triple

— As a consequence of EqEl0g9—(100), it turns out that the

X =X(x@,x*,2,0). (15)

G(x%x5,£,{)=0, (10a . R,
curves described by EQL5) by keeping ¢,{) fixed are null
9.G=0 (10b) geodesics. This can be seen by implicit differentiation
¢ ' of Egs. (108—(100 with respect tox*. Defining t?
5;G=0, (100 =(1,0X'19x*|;7), we obtain
defines the envelope. Foi®#x3 and in a regionwithout G,a(x2x3,4,0)13=0, (163
wave front singularitieg5,4], Egs.(10b) and (100 can be
algebraically inverted so that 9,G,,t*=0, (16b
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@G.atazo (160) Gvuu G!Uv
521-: -

G (20

where G,4,9,G,a,3;G,,) are independent, by the rank con- Guw G

dition, again. Equatiori16a implies thatt® has no compo- .
e _ab Thus, up to a factor of-1/G,, the eigenvalues are the same

+ X X
nent pointing out of the surface, $5=ag™(G,, + £9,G.p as those of5°G. In order to fix unnecessary sign freedom

+BJ;G,p). Using this in Egs(le) and (16¢) implies that  (gince— G for our purposes is just as good @y, we assume
B=pB=0 and henc¢®= ag®°G,;,, and thus the tangent vec- that G,,<0 at the extremum in question. It remains to re-

tor is proportional tog®°G,;, being therefore null, and the phrase our conditions for maximum, minimum and saddle in

integral curves are null geodesics. o terms of the complex variablg. Since{=u+iv, we have
We thus obtain the parametric description of all the ”“”a/au=a/ag+a/afand lav=i(ala¢—dlag), thus

geodesics througk . Notice that having this parametric de-

scription of the light conéin terms of the observer’s celestial G,uu=0C,+ G, 712G, 7, (218
spherg is entirely equivalent to having a lens equation relat-

ing the angular position of the source at a given distance to Gw=—G, ;=G 1t2G, 7, (21b
the angular position of the image on the celestial sphere, plus

a time of arrival equation yielding the transit time of the light Guw=i(G,=G, ). (219

signal from the source to the obserér7]. To see this, the ¢ hink of ) iah ¢ . h h
pointx§ is taken to represent a point on the observer’s worldf We think of G as spin-weight zero function on the sphere

— then, using the envelope conditio@, ,.=G,;=0 we have
line. By treating ¢,{) as the celestial sphere of the observer, g P ¢ ¢

x* as a measure of “distance” backwards along the null 52G=(1+{0)%G,, (223
geodesic to a source andl as representing the “time” and
“angular position” of the source at the moment of emission, 62G=(1+§Z)ZG,§, (22b)

we have constructed a lens equation together with the transit

time equation. Thus one can see that, in a completely generghd hence

context, our version of Fermat's principle, Eq2a), (2b),

leads immediately to the construction of the observer’s past 2

light cone, with associated lens and time of arrival equations. 8T=— Y
When we extremize the functiol we could obtain a (1+40)°Gy

maximum, a minimum or a saddle point. We wish to know % 2 _ 2

how to rephrase the conditions for maximum, minimum or 806G +Re(6°G) IM(5°G)

saddle in terms of our implicit Fermat potenti@, In prin- X ) . ) - (23

ciple, we need to look at the eigenvalues of the matrix con- —Im(3°G) 00G—Re0°G)

taining the second derivatives dfevaluated at the extrema.

. . ) - The eigenvalue equation f@T is given b
We now switch to real variablesi(v) instead of ¢,{), via g d 9 y

{=u++iv , and calculate the eigenvalues of the matrix (N — 06G)2— 3°G5°G=0 (24)
T T whereX = — (1+¢£)?G,;\/2 andX is an eigenvalue 062T.
5T= . (17) SinceG,; is assumed to be negative, then the sigih @ the
T T same as the sign of. The solutions are
Because ofT being implicitly defined via Eq(6), we just A+ =00G*|5%G|. (25)

need to take second derivatives of Eg). For instance, if we
take twou derivatives of Eq.(6) [with Eq. (7) for t] we  Finally, the conditions are: 53G|<|3%G|, the extremum is
obtain a saddle, since the eigenvalues have opposite sigd€iGf
>|32G|, the extremum is a minimum, since both eigenvalues
Gt Tu(2G,ut Gy T+ Gy T,uw=0.  (18)  are positive. I33G < —|32G|, the extremum is a maximum,
since both eigenvalues are negative.

Since we are interested only in the valueTof,, at the ex- On the other hand, the envelope develops singularities
tremum, thenr,,=0 and when
Xn2_x2~ X2
T;uu:_ G ’ (19) L . . . .
it as anticipated earlidthe vanishing of the determinant of the

Jacobian matrix The type of extremum is of fundamental
which presents no difficulty, since by assumptiGn, must  importance. For instance, in a very weak field, no singulari-
be nonvanishing. Likewise, the other components of the maties develop in the observer’s light cone, there is no multi-
trix come out proportional to the second derivative<of plicity of images and the lens equation represents a local
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minimum of the Fermat potential. Increasing the strength othat can be solved fos'. The fourth equation remains a
the field, in a situation where there are three images, one willunction ofs'. So Eq.(27) can always be viewed in the form
be a minimum, one a maximum and the remaining one will

be a saddle. The minimum corresponds to the primary image, 1“‘(si,§,§;x8)—xi =0, (309
produced by a ray that does not encounter a caustic in its
path. The saddle corresponds to a ray that passes the caustic F(s‘,(,ng) —x4=0, (30b)
once. The maximum yields the ray that passes the caustic
twice and yields the faintestimage. The generalization of this r=r+ (300
interpretation to cases of more than three images is compli-
cated[1,3] and lies beyond our present interest. where Eq. (30b is interpreted as the equation
G(x3,x§,£,£)=0 if s is thought of as implicitly given in
A. Parametric version of the implicit Fermat potential terms ofx' via Eg.(303. In other words,
We finish this section by presenting a very important 4 T i e s a4
method for describing implicit Fermat potentials. In many G(x%%0, £, )=T(s'(X',{,{i%0), £, Eixg) —x*. (31

cases it is difficult or impossibléas we will se¢to obtain a

closed-formG for a family of surfacesG(xa,xg,g,Z)=O,
especially if the surfaces self-intersect and have singularities.

In the envelope construction we then have

ar .
In such cases, it is simpler to describe the family of surfaces 0=3,Glya=d,I|s+ —|.9,5'x, (32
in parametric form adapted to the null geodesics ruling the s

face, ly, b ifying th T . -
surface, namely, by specifying the map whered,s'|,i is determined by implicit differentiation of Eq.

x3= l“a(s,r,q,g,?) (27) (30a. .Both Eq's.(31) and(32) will be extensively used in the
following sections.
where &,r,q)=s' are coordinates on the surface, given for This appears to be a convenient method for constructing
each fixed value 0|f§f]- Since each member of the family implicit Fermat potentials and for obtaining lens equations,

[for fixed (g,?)] is a null surface, it is automatically ruled by as demonstrated in the following sections.
null geodesics(except at singular points of the surface
Therefore the surface coordinagsan always be chosen as
geodesic coordinatesr Q) labeling the null geodesics rul-
ing the surface, and as an affine parameter along the geo-  The case of Minkowski spacetime is quite trivial but is
desics. However, our interest is in surfaces that intersect aligelpful as an illustration of the main ideas underlying the
given pointxg . Therefore, all the surfaces in the family must concept of the implicit Fermat potenti@. In Cartesian co-
contain the common pointj. We can make use of this fact ordinatesx?, null surfaces in Minkowski spacetime are level
by adapting the coordinates,(,q) to this point. Sincesis a  surfaces of the solutions to the eikonal equatigiG, .G,
parameter along the geodesics, we fix it by demanding that 0, with »,,=diag(1;-1,—1,—1). There is a 2-parameter
the 2-surfaces=0 be transverséo the null geodesics in the family of distinct foliations by null planes with the two pa-
null surface and contain the poink§. This is, then, the rameters corresponding to a sphere’s worth of null directions
initial-data surface for the geodesics in the null surface. Orat any given spacetime point. Using complex stereographic
this initial-data 2-surface, the origin of coordinates fand coordinates, the null directions can be Specified|w,z)

g can be taken to b . In this manner, all the null surfaces given by

in the family will single out the observer’s point as the point

with s=r=qg=0, namely — i 1(§+?) _i(é—?) _1—§Z) 33
ok

Ill. THE IMPLICIT FERMAT POTENTIAL IN
MINKOWSKI SPACETIME

1%(£,0) —, —,
X3=T"2(0,0,0¢£,2) 28) V2\ 1400 1+ 1+¢

The null planes with null normdF containing the observer’s

so thatl'® depends ox3, i.e., : .
P 0 locationx3(T,) are given by

X=THSA%0. D). 9 GO L D=0 DI D=0. (34

The envelope of this 2-parameter family of null planes is the
. . S . . . .
In the case that the family of surfacg&x®x2,£,2) =0 is light cone of the poinkg and is obtained by taking the partial

given parametrically via Eq27), the envelope construction derivatives with respect tof and ¢ of the function
proceeds in an implicit manner as follows. In the first place G(x?,x§,¢,¢) and setting these derivatives equal to zero. In
the ruling of the null surface via null geodesics guaranteeshis case,

that the Jacobian matrix of the m#p7), namelydI'®/ds',

has rank threéexcept at singular pointsTherefore, locally, 9G a adla (353
from the equation$27) one can always choose 3 equations al B

Often we takex§ as the observation tim&, at the spatial
origin and omit it from the equations.
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9G Jl It is clear that the families of null surfaces to be used on
__:(xa—xg)—_azo. (35  the observer’s side of the spacetime are all the null planes
Z4 4 that contain the observer’s location, labeled by the direction

. , . of the null normal. On the source’s side, however, the appro-
Equations(34) and (358, (35b) define a 3-surface in the 316 nyIl surfaces to use are not null planes but the distor-

spacetime. One way to obtain a single equation defining su ion of the null planes by the lens. For this reason they must,

aasurface is to solve Eq€35a, (35b) for casa function of iy yeneral, be given in parametric form. We use the paramet-
x%, wherever possible, and substituéx) back into EQ. jc" method, via Eq(27), explained in Sec. II, for the enve-

(34). Then the envelope is thus given, in principle, by lope construction.
B — For the purpose of clarity of presentation, we first develop
Gen (X)) =G(x*x5,£(x*),£(x*))=0. (36)  our construction of the null surfaces in a lower-dimensional

. . . . etting. We then generalize the argument t6l3limensions.
In this case, this procedure can be carried out in closeg g g g

form. Using the notatiol x*=x?—x§, Eq. (35b) is equiva-
A. 2+1 static lens planes

lent to
) ) o The 2+ 1 lensing setting is described in Cartesian coordi-

(Ax—i4y){"—2Az{— Ax—iAy=0 37 natesx®=(t,x,y). The observer is ati=(T,0,0), and the
with solution lens surface is a plane locatedyaty,. The metric of the

spacetime is flat everywhere except at the lens plane:

Az+Ar
N ——— ds?=c?dt?—dx?—dy?. (40)
(= 5 Tay (38 y

Our aim is to construct a 1-parameter family of null folia-
tions which in principle can be given as the level surfaces of

a functionG(x?,¢) which replaces th&(x?,¢,¢) of the four

[The other equation, E435a), is the complex conjugate of dimensional lensing scenariéThe origin, x§, is omitted)
Eq. (35b) and yields no new informatiohSubstitutingZ (x?) This function will be entirely equivalent to the Fermat po-

given by Eq.(389 and its complex conjuga@(x?) into Eq.  tential in this lensing scenario, and the envelope of the sur-

Ar=\(Ax)’+(Ay)’°+(A2)°.
(38b)

(34) yields facesG(x?,¢) =0 will simultaneously give us the lens equa-
tion and time of arrival. In the approximation of small
Gen, (X3, X3)=G(x3,x3,£(x?), {(x?)) angles, the Fermat potential and the lens equation will reduce
to the standard astrophysical lensing scenario.
1 Roughly our construction is as follows: we define a
= E(MINFO. (39 1-parameter family of null surfaceparametrized byp) by

imagining a straight line of photons traveliigackwards in

where the minus sign is for the future light cone and the plusg rr??np?éa”vevlit;o t?\iCha?:ideg”trzzyS)hlc;loan(sjl:ﬁgf/lgn theakltrrlgce
sign is for the past light cone of the poixg. Consequently, g'ee y : P ey

. ) a null plane in the spacetime. The moment each photon ar-
the set of three equatiori87) and(34) are equivalent to the rives at the lens plane, it is “detained” for a length of tirfie
lens and time of arrival equations. Because there is no tim ' . . :
occurrence in Eq(37), then one can think of it as the lens fhat depends only on the point at which the photon hits the

. ; - . - lens plane. After this time, the photon is released in a new
equation since it relates the spatial position of souxGg,g) direction’ = ¢ — a, deviating by an angler from its origi-

to its corresponding image on the celestial sph&ig)( In ) direction. The bending angtedepends only on the point
principle, solving for two of k,y,z) in terms of (,{) and  at which the photon hits the lens plane, and it should be
substituting into Eq.(34) turns Eq.(34) into an equation entirely determined by the “detention timeZ. Because dif-
relating the time of emissionfrom a source atx,y,z) with  ferent photons arrive at the lens plane at different times and
image direction (,Z) seen at the observeg . are detained for different lengths of time, the wave front they
make up after leaving the lens plane is not necessarily plane.
The scheme that we have just described has a correspond-
ing analog in the wave front distortion produced by a thin
sheet of glass with a variable index of refraction. A light ray
In geometrical terms, a thin lens can be modeled as anpinging nearly normally on the sheet will bend inside the
spacetime with vanishing curvature everywhere except at glass due to the component of the gradient of the index of
timelike surface, where the “lens” lives. Accordingly, the refraction perpendicular to its path, exiting the glass with a
spacetime consists of two flat spacetimes, matched appropfiinite deviation angle. A plane incident wave front then
ately at the lens’ worldsheet, with the observer lying in onecomes out of the glass distorted. The local index of refraction
flat spacetime and the source lying in the other one. We refeait the point of incidence multiplied by the thickness of the
to these two flat spacetimes as the observer’s side and tlgdass is a measure of the time spent by each light ray inside
source’s side of the spacetime. the glass, or equivalently, the “detention” time of light inside

IV. THE IMPLICIT FERMAT POTENTIAL FOR A STATIC
ASYMPTOTICALLY FLAT THIN-LENS SPACETIME
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y |optical axis whereas the space coordinates of the light rays are given by

X=CT7Sing+r CoSy, (433
lens pla .
<iplane Yy=C7COS¢—T Sing. (43b)
P (Note that asr increases time is going backwards.is clear

thatr = =0 defines the observer at,{/) =(0,0). Each light
ray (for fixed ¢) reaches the lens plane at 7, wheny
ohserver T ¥ =y, hitting a lens poink=x; :

’\1:=0

X|=C7| Sing+r cosg, (449

FIG. 1. Parametric construction of the null surfaces. On the
observer side, the surface is a null plane ruled by parallel light rays
making an anglep with the y axis. The light rays are labeled by These, in turn, can be solved for andr and yield
their distance away from the observer, and are parametrized by the
distancecr away from the wave front that passes by the observer.
On the other side of the lens, the light rays bend through an un-
specified anglex that depends on the position at which the light
rays reach the lens plane.

Y|=CT7 COSeo—T Sine. (44b)

CcT=X; Sing+Yy, cosy, (459
r =X, CoOSp—Yy, Sing. (45b)

L Equations(43a), (43b) hold while 7< 7.

the glass. For later purposes, it is important that we make the . : .

following point with respect to the limit in which the thick- detce) rnrrfir;eegtgertj\;gih?;tg? :ﬁgsb"er;%i;heavr\gl\g( ;rc;r;[j mg be

ness of the glass tends to zero. The “detention time” in the o y gs. ga '

region occupied by the glass defined in this way has tw ravitational time delay imposed on the light rays at the lens
oo oo - line, which we here denote b¥{x,). The bending angle is to

contributions: the transit time in vacuum through the reglonbe determined in terms f{x,). The bending angle and the

[the "vacuum® time:c™*x (thickness of the glasbplus the time delay can be incorporated into the parametric equations
amount of time that light is delayed by the slowing down in ! Y incorp ; .p Ic equatl
Eor these light rays in the following way:

the presence of the medium, with respect to vacuum. In th
limit in which the thickness of the glass tends to zero, the
first (vacuum) term vanishes and the “detention time” coin-
cides with the time delay with respect to vacuum. o B

In the case of interest to us, the detention tiffis deter- y=c(r=m=T)cose—a)ty. (460
mined by the gravitational field of a deflector on the 'enSThese equations hold fot> 7,
plane and it coincides with the gravitational time delay Withlight rays are
respect to vacuum:

x=c(r—7n—T)sin(¢g—a)+X, (469

+7. For times in between, the
“delayed” at the lens plane, so we have

X=X, (479

-2
T=—| UdlI 41
c? 4D Y=Y, (47b

whereU is the Newtonian potential of an isolated mass dis-for 7 <7<+ 7. Equations(43a, (43b), (463, (46b) and

tribution and the integration takes place along the null ray o473, (47b) represent the parametric expression of a one-

line of sight. The situation we are contemplating is the lim-parameter family of null surfaces which in principle can also

iting case in which the support &f tends to zero, while the be expressed by a single equation of the fdafx,y,t,¢)

integral of U remains constant, namely is a distribution =0 away from caustics.

along each null ray. On the observer side this can be done explicitly by elimi-

More preciselyon the observer sidef the spacetime we natingr from Eqgs.(433, (43b) yielding

consider the parallel light rays traced by a plane wave front,

moving (backwards in timgat an anglep with the optical G(x,y,7,¢)=y cosp+Xxtanp—7=0. (48)

axis (they axig) as defining our null surface. See Fig. 1. The

wave front passes by the observer at tifie The (perpen- ~ On the source side, however, this cannot be done explicitly.

diculan distance from the observer to the wave front at laterThe parameter that labels the null geodesics,isas op-

times divided byc, which is denoted by, can be used as a Posed tor on the observer side. They are related by Eg.

parameter along each light ray. The individual light rays at(45b. The idea would be to eliminatq between Eqs(46a

=0, can be labeled by their distancéom the observer. In  and(46b) but this is impossible since bothanda are func-

terms of these parameters, the time coordinate of the lighions of X;. We thus need to defing as a function ofx

rays is given by implicitly by Eq. (463. We take Eq.(46b) as the equation
that defines the functio® wherex; is the implicit function

t=To— 7, (420  of x given by Eq.(463:
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G(X,y,7,¢)=y—y,— (CT—X; Sinp—Yy, cOSe—C7(X))) B=1-cod¢—a)(cTy—ct—X, Sing—y, coSep

X cog¢—a(x))=0. (49 —cT)j—Xa—sin(@—a)(cj—xTJrsimp). (56b)
We have used Ed453 to eliminater; in terms ofx, andy; . ! '

The envelope is obtained by settia®G(x,y,t,¢)/de=0, From Eq.(55), and some algebra, E¢b4) becomes
where the partial derivative is taken at constant values of
(x,y,t). On the observer side, i.e., fgry,, takingd/d¢ on

. oT .
Eq. (48) we obtain 0= —Sln((,p—a)+C&—)(l+Sln(p+(y| Sing—X| COSe)

—ysing+xcose=0 (50) cofp—a) _da 57
(CTo—ct—x;sinp—y,cose—Cc7) x|
or
Using Eg.(53), the first parenthesis in the last term of Eq.
X .
tanp= (51) (57) vanishes, so that Eq57) reduces to
’ O=si i + il 58
an equation fokp as a function ok? on the observer’s side. =sine—sinte—a) Cax| ' (58)
Substituting Eq.(51) back into Eq.(48) we have (for y o ) . ) ]
<), This is the basic relationship between the bending angle and
the gravitational time delay that holds for large as well as
XZ+y2+c(t—To) =0 (529  small angles. Using the regime of small angles, E&f)
reduces to
which is the observer’s past light cone, as expected. Notice JT
that when Eq(51) is evaluated at the lens plane it yields = —C— (59)
ax;’
X
tanq;:—'_ (53)  the standard relationship in the astrophysical approach to
Yi lensing in a two-dimensional scenario.

The standard lens equation is obtained in the following
énanner. Elimination ofr—7,—7 in Egs. (469, (46b) im-
lies

From Eq.(45b), we see that this implies that=0, i.e., that
these rays come from the observer. In other words, of all th
light rays at anglep, the envelope condition picks the null
ray that passes through the observer. This light ray hits the (x—x)cog o — a)— (y—y,)sin(¢— a)=0. (60)
lens plane ak= X, and subsequently bends through an as yet
undetermined angla(x,). In order to determine the bending With small angles, and witly,=D, andy=Dg (the source
anglea we use the envelope condition on the source’s sidedistance, this becomes
imposing on it the conditiont53).

The envelope is obtained by setting to zero the implicit X=X = (Ds—Dp)(¢—a)=0. (61)
differentiation ofG(x,y, r,¢) from Eq. (49 with respect to

¢ keepingx® fixed. We obtain From the envelope condition, E3), with the small-angle

approximation p=tane=x,/D,), we finally have
(9X| Ja

X X (Ds—=Dy)
aQDaX| = -

D, b D, ©

0=sin(¢—a) (62)

X (cTy—ct—x,Sinp—Yy, cose—Cc7)+cog¢o— a)
aT )

the standard lens equation, which is understood as a map
from X, on the lens line tox on the source lingi.e., x,—X),
: (54 with fixed values oD, andDy.

As an illustration, Fig. 2 shows how the envelope con-
struction works for the case of a bending angle that does not
depend on the point on the lens plang(x,)=const and
¢7 =—ax,. Panel(a) shows a spacetime picture of one
Xy A member of the 1-parameter family of null surfaces that is
90 B’ (55 used to construct the envelope. In this case, two null planes

¢ - L )
in the directionsp and ¢ — a are matched at the lens’ world-
sheet. The vertical separation between the intersections of
the two null planes with the lens’ worldsheet represents the
time delayZ. A spatial projection of the resulting null surface
shows the bending of light rays, whereas the time delay is
+sin(¢— a)(y, sing—X| Cose) (563 observed in the shift of the wave fronts in passing through

) X
Sing— X, COSp— —
Y1 Sing—X| [ Je

X c—+sing

(9X|

The quantitydx, /d¢ is calculated by implicit differentia-
tion of Eq. (463 with respect top, keepingx? fixed:

with

A=cog¢—a)(cTy—Cct—x,Sing—Yy, cosp—cT)
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ightrays
15+
wavefronts

10t ‘_—,===E

<

0 L
P 5 L.

0 3 70 15 20

(b)

141

121

10}

() B

FIG. 2. Envelope construction for the case of a bending angle independent of the location on the lgnlarel(a) shows a spacetime
picture of one member of the 1-parameter family of null surfaces that is used to construct the envelopé) Paaespace picture of the
null surface, where both the light rays and the associated wave fronts are shown(cPahelvs a spacetime picture of the envelope of the
1-parameter family. The family is labeled by the direction of the plane wave that hits the lens line.

the lens line. The envelope of the-dependent family of delay of the form7(x,)=To(1—In[1+(x, /XO)Z])_ This repro-
such null surfaces yields the light cone of the observer on theuces qualitatively the time delay of a compact lens in the
observer’s side of the lens, which is matched to another lighticinity of the optical axis, since the delay is greater for
cone with a shifted origin on the other side of the lens. smaller impact parameters. The spatial projection of the null
A more physical example is provided by the use of a timesurface obtained in this case is shown in the top panel of Fig.
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3. The center panel of the figure shows the projection of thend thus

envelope. In this case, a caustic develops on the source’s side

of the observer’s light cone. The caustic is traced by cusps in r-p

the wave fronts, as shown in the bottom panel of the figure. =T - (69)
The equation for the time delag = (the difference in

arrival time between a lensed light ray and an unlensed ong; jg very useful to change the geodesic labels ot ;l by

can be obtained from our approach by solving foin Eq.  ,6ans of

(46b) and subtracting from it the travel time in the absence of

the lens: s=r,—(r;-p)p (70)
= i+ n+T- 1 212, (63  for use on both the observer and source side of the space-
ccofe—a) c time. Equation(67) becomes

The equation for the time delay is usually given up to second T PR
order in the angles. We need expansionx,aind 7;, from r=Cr=(r-phptr. (72)
Egs. (434, (43b) with r=0, up to second-order terms: We thus have in this picture that the wave front, in direction
vi @2 5 consists of null geodesics parallel to each other, param-
=73 1+ > +0(¢%), (648  etrized by the values ofx(,y,) where they hit the lens plane
atz,. Once a ray reaches the lens plane, it is delayed for a
X =y,0+0(0%). (64b) time 7(x;,y,), during which it just “sits” at the lens plane,

before leaving in a different directiqﬁ’. Thus, in our model,
These, as well as Eq62) for x, are used in Eq(63). We  we have

obtain o

r=r (72

Ar=T 2128 2 (65)
T 2eD ¢ and then
which agrees with the usual expression for the time delay. r=c(To—t—m—T)p' +r, (73)
B. 3+1 static lens planes where
The generalization of our scheme for the thin-lens space- -, s -

times to 3+1 dimensions is straightforward. We consider a p'=p—alXi ). (74)

spacetime with coordinatest,k,y,z) consisting of two . )

Minkowski spacetimes matched together at the lens plandjere we have defined(x;,y|) in the usual manner, repre-

which in this case is the timelike 3-surfaze-z and is pa- Senting the de\_/latlon of the nl_JII g_eodesm, which depends_ on

rametrized by (,x, ;). A generic null direction id? given the point at which the geo_desm hits the Ien; plane. Equatlons

in terms of stereographic coordinates as in 8. For our (71, (72), and (73) constitute a parametric expression of

present purposes, we relabel the component$ af G(t,x,y,2,px,py)=0. In this approach, the time delay
7(x;,y,) is assumed to be prescribed, whereds, ,y,) is

. 1 determined by the envelope condition. The envelope condi-
' :E(llpwpy*pz) (66)  tion in this case takes the form
aG  9G

where (,,p,) label the sphere of null directions argj

apy dpy
=1-p;—p;. As in the(2+1) case, we choose our family Px 7By

of null surfaces as null planes on the observer's side of thgynich is carried out implicitly as in thé2+1) case, and
spacetime, and write it parametrically as which yields

(75

r=crp+s (67) oT

) ) ) ) S~ XY, (769

with r=(x,y,2), p=(px.Py.P,) ands=(sy,s,,s;), with s

-520, representing the null surfaceat 0. The values of g7

label the null geodesics of the null plane. ca—yl= —ay(X ), (76D
Then, if 7 represents the time that it takes for a light ray

to reach the poirlf|E(x| ,Y1,Z;) measured from the time that thus reproducing the relationship between the time delay and

the wave front passes the observer, we must have the bending angle in the more standard astrophysical ap-
_ o proach to lensing. The detailed calculations, which can be
r=crp+s (68  omitted, are reproduced below.
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The implicit G function on the observer’s side is given by
i the z component of Eq(71)

G(T,X,y,Z,px,py)=Z*Z|*(T* m)pz=0, (77
while x; andy, are defined implicitly by thex,y) compo-
nents of Eq(71). Solving forx; andy, from these equations

T and substituting back int@ yields
1
T G=p—(—t+xpx+ypy+zpz)=0. (78)
z
of On the source side we implicitly define the thin-léagunc-
tion by
-30 -20 ~1o 0 10 2

(@)

0

G:Z_Z|_(T_T|_T)p£:0, (79)

wherex, andy, are implicitly defined by thex,y) compo-
nents of Eq(73). The envelope of is obtained by setting to
zero the partial derivatives @ with respect top, andpy,
holding (t,x,y,z) fixed. Applying this prescription to th&
function before the lens plane, we have

oG 0 P,—0 (803
— =0=x——z=0,

IPx P,

G Py

— =0=y— Yz=0. 80b
o, Y=o, (80b)

We note that Eqs(80a), (80b) imply that

X_yi_z

— ==, (81)
1=17.5010 Px py P

19.704T

Solving forp, andp, from Eqgs.(803, (80b) and substituting
into the G function, we obtain our final expression for the

170y =17.4985  thin-lensG function on the observer’s side

p,G=—t+xXp+yp,+zp,=—t+ %(x2+y2+ z%)

19.696 1

the observer’s light cone.
© On the source’s side, the envelope construction re-
18694 ¥ ENT = ¥ 562 quires computing the following partial derivatives:

FIG. 3. Envelope construction for the case of a time delayaxl/ﬁpx"?yll‘?px"?xlmpy and :5% /fpya from the (.y)
T(x)=To—In(1+ (X /%0)?). The top panel shows a space projec- components of Eq(73). Sincep’=p—a(Xx,y,), we need
tion of one member of the family of null surfaces. The null surfacesthe derivatives oﬁf_
are labeled by the direction of the plane that hits the lens line. The \we define
center panel contains a space picture of the envelope showing the
light rays. Notice the caustic line that develops after the light rays ' ' ' '
pass through the lens line. The bottom panel shows a greatly mag- OPx = Px & % % %
nified view of a few of the wave fronts associated with the light OPx  Ipx 9% Py dY| Py’
rays of the center panel. Notice the cusp in each wave front. These
wave fronts occur around the value 20 in the vertical axis of theand  similar quantities for all combinations of
center panel. (Px.P} .Px.Py). After a lengthy calculation, we obtain

/;, = —t+ xZryZi 2=0 (82)
= ’
/

(83
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Py T ., opy(oT ,

x| (7 TI_T)[_5px<1_a_wpy_pypy)_a_px(a_wpx'{'pxpy)]

(9_p)(: ,(97 !aT ! ! , (84a
- pXé’X| - py(9_)/|_ PxPx — PyPy
op., 5p,

ay, (77T T)(—5?,1(1—j—zp;—p;px)—é—g(j—zpﬁp;px)]

o T T ' (840

1—p;a—xl—p§a—w—pxp;—pyp§

and similar expressions faix, /dp, anddy, /dp,, .

The envelope construction consists in setting pheand
p, partial derivativegholding (t,x,y,z) fixed] of Eq.(79) to
zero. Explicitly, we have

ap, py Py Op,
o=—(7—r.—7)(if px+if py)
apy OPx Ipy OPy

, aX| &y| oT (9X| T t9y|
+p; o5t v 0.

_+ —_ —_
Ppy " PYap, T ax apy  dy; py

(853

ap, opy  Ip, Sp,
0= — (s | 2P 30, 704 90,
apx 5py apy 6py
, X ay, dT dx,  IT dy,
Pyl P Pyt ot o,
&py apy X &py Y &py

(85b)

where we have again used H&1). In these two equations,

rigidly along the line of sight. The idea is to obtain the bend-
ing angle and compare with the bending angle by the same
deflector at rest.

Again our basic picture is a family of parallel null geode-
sics at an angle with the normal to the lens plane forming
a null plane. The rays each arrive at the lens plane at a time
71, and then remain in the lens plane for a length of time
that depends only on the point at which they hit the now
moving lens plane, before exiting the lens plane at an angle
o' =p—any.

We point out that the “detention time7 of a thin rigid
lens in(slow) motion is the same as that of the same deflec-
tor at rest. The reason for this becomes clear if we consider
the situation of a glass sheet of thicknésthat is moving. In
the rest frame of the glass, light has a spegand takes a
time to=A/uy between entering and exiting the glass. The
time in the laboratory frame in which the glass is moving
with speedv is t’=t,—vA/c? (neglecting higher powers in
v/c) following from the fact that the length for light to travel
changes due to the motion of the glass, and with the fact that
the speed of light also changes if the glass is moyimgthe
Fizeau effegt Thust’ differs fromt, only by a term pro-

we substitute the partial derivatives given above and 5°|V‘foortiona| to the thickness of the glass, but completely unre-

for 971 9%, and 971 dy, , obtaining

T

lated to the glass properties. In the limit in which the thick-
ness of the glass tends to zero while the rest-frame travel

—=pl—pe=ag(X(,Y)), 36 time, ty, is kept constant, the difference vanishes.

X P Pu= el Y1) (863 As before, we assume that the observer lies at the origin
T of coordinatesx§=(T,,0,0). The lens plane, however, is
o _ moving, being described by?=[t,x,,y,(t)]. The (affine

a_yl_ py_py_ay(xl ,yl)_ (86b) g g )(l [ | y|( )]

parameterr describing the evolution of the null geodesics of
the null surface is such that the wave frant 0 passes by

~ Equations(864a), (86h) determine the new direction of the the observer at=T,. The parameter runs backwards in
light ray on the source’s side with respect to the initial direc-time, so that the time coordinate of the light rays is given by

tion of the light ray on the observer’s sidiee., the bending

t=Ty— 7 as before. We will slightly abuse our notation by

anglg as the gradient of the time delay function. Note thatysingy,() to denotey,(t=T,— 7). If the individual light
we have not made use of the small angle approximation ifays in the beam are labeled bywith r=0 being the ray

these calculations.

V. MOVING LENS PLANES IN 2 +1 DIMENSIONS

that passes through the origin, then we can give them para-
metrically as

As an application of our approach, we consider a gener- X=rcose+crsing, (879
alization of our(2+1) results to the case of a lens plane that _
is moving in the observer’s frame of reference, but is other- y=-—rsing+Cc7Ccose. (87b)

wise unchanging. In other words, the deflector has a given
configuration, which does not change with time, but movedndividual light rays reach the lens plane at time at which
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X|=T COS¢+CT Sing (883 %  —c(r—7—T)coso—an) day
e 1—c(r— n—7T)codo—ay) X

(&T sing
—-C

yi(7))=—r Sing+C7 COSep. (88h)

x| msmﬁp—am)- (99

The rays remain at the lens plane for a tiffi;) and then
leave in a directionp — a,(X,), where the bending angle for

a moving lensa, (X)), is to be determined. At the time the
rays leave the lens plane, however, the lens plane has move

to a pointy,(7+7), carrying the rays with it. On the other

d Finally, settingdG/d¢e=0 from Eq.(89b) yields

- . dry 07T X -
side of the lens, the source side, we have (2,22 _ o
0 (9(p+ 7% ﬁ(P)(CCOS(qD am)tv)t+c(r—7—T)
x=c(r—7n—T)sin(¢—amy) +X, (893 So dx
X sin( g — am)| 1— =2 —') 96
y=c(r—n—T)cofo—ap) +y(n+T). e a”‘)( x| de =
(89b
_ which, using Egs.(94), (95 and the fact thatx,cose
Equationg874a), (87b) hold whenr<r, whereas Eq€89a,  —singy(7)=0 [from Egs.(90a), (90b)] becomes
(89b) hold for 7>7,+7. On the observer side, E¢87b)
represent$(x,y,t,¢)=0 if r is thought of as a function of sin( @ — ay) — (c+ 0,008 o — apy))
(t,x,¢) given implicitly by Eq.(878. The envelope condi-
tion 9G/d¢=0 on the observer side, implemented by taking T sing
ald of Eq. (874, yields, as we had earlier=0 or x (9_x|+ WTSQD) =0. (97)
X|=C7 Sing, (903

Now, using the results of the envelope condition on the
(90b) observer side where is a function ofx; given implicitly by
eliminating 7, from Egs. (909, (90b), we can interpret Eq.
As we had earlier, we consider E(B9b) as the equation (97) as an equation defining the bending angig,, as a
G(x,y,t,¢)=0 on the source’s side by interpreting as a function of x; if 7(x|) is known. In the regime of small

yi(7))=CT COSep.

function of (r,x,¢): angles, keeping only linear terms gnand «,,, it reduces to
X =X/(7.% @), 91) ~ [T
- p—ap—(C+v)| —+ QDA =0 (99
29 (c+uv))

given implicitly by Eg. (899. The implementation of the
envelope conditiongG/de=0, involves several steps that
must be explained.

First, we have to evaluatty, /dr, the velocity of the lens

or, the equation for, in terms of the gradient of :

when the light first enters it, at+ 7, and when it exits the o= —| 1+ ﬂ)cfE 14 v o (99)
lens, atr;, on the observer side. Since the lens is thin and m c/ % c/
moving slowly, we consider the two values to be the same
(or equal to an averagend call This is the relationship between the bending angle and the
gravitational time delay at the lens plane when the lens is
dy, - moving. It represents a correction of a factor of+{#/c)

U (92 with respect to the bending angle for the same deflector at

rest. This is in agreement with aberratif], according to
The second point is that, though E§9b) containsx, via  which the angles made by light rays as observed in a moving
a and7, it also containg which is a function of bottx, and ~ frame are corrected by a factor of t/c) with respect to
¢ and is thus needed in the envelope condition. It is obtainethe angles made by the same light rays as observed in the rest

dr

by eliminatingr from Eqgs.(873, (87b): frame. In our case both the directions of incoming and out-
. going light rays are corrected by the same factor, and conse-
cr—Xx sing—y(7)=0. (93)  quently their deviationy is corrected by the same factor.

. L i ) The lens equation
Taking thee derivative of Eq.(93) and using Eq(92), with

r=0, yields X=x+y=y(n+7T)Htane—ay), (100

It _ K sing (94 is obtained from by eliminating— 7, from Eqs.(893), (89b).
de  do (c+cos<p8,)' We are interested in the small angle regime so, neglecting
higher order terms, we have
Next we need thep derivative ofx,, calculated from Eq. R
(893, which, using Eq(94), yields Xx=X+(y—y)(e—any), (101
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where we have used the assumption thas small (of the

same order ag and a,,) and introduced the notatiog,
=vy,(7). From the ratio of Eq(909 over Eq.(90b) and for
small ¢, we have

== (102
Yi
which leads, via Eq(102), to
y -
X=X = (YY) an (103
Y
or
X X y-—y
AR b [ (104)
Y vy y

Since in flat space the coordinate distance is equal to thg:p
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times that(apart from the lensare described by Friedmann-
Robertson-Walke(FRW) metrics. Our approach is to utilize
the fact that all the FRW spacetimes are conformally flat to
rescale physical quantities in the flat lensing case into physi-
cal quantities for observers living in a FRW universe. We
begin by noting that there is, for each FRW spacetike (
+1,0), a coordinate transformation between the “natural”
FRW coordinates %, x, 0, $)=xg to “Minkowski” coordi-
nates ,x,y,z) =Xy ,

Xy = X5 (xR), (109
such that the metric can be written as
ds?=d7?—a%(n)dlZ(x,0,¢)
=02(dt?—dx?—dy’—dZ?). (110

Here, dI2 is the metric of a constant curvature three-space
here folkk= + 1, hyperboloid fokk=—1, or flat space for
0). In general, the conformal transformation is such that

angular diameter distance, we can use the substitutjons
=D, y,=D, andy—y,=D,s to denote the distance to the
source, the distance to the lens and the distance between the
lens plane and the source plane at the time the wave froffior some functionf,. Because conformal transformations
passes by the lens plane. With these substitutions the leqseserve light rays, the implicit Fermat potentials for lensing

Q=f (x¥a(7), (111)

equation becomes

(105

in our previous sections are implicit Fermat potentials for the
cosmological spacetime and can be expressed in terms of
either coordinate system? or x§, , via Eq.(109).

Often, when a symbol is used for a quantity described in
the Minkowski space and we want to distinguish it from the

Thus the changes in the lens equation from lens motiosame quantity in the cosmological space we will indicate that

amount to a factor of (%fnlc) in the bending anglg&from

by a twiddle, i.e., ArersusA. Also, often when we are refer-

Eq. (99)] and the evaluation of the instantaneous position ofng to a quantity associated with a moving lens we will in-
the lens plane at the average time that the wave front reachékcate that by a “hat,” e.g., thg, position of the moving lens

it.
The time delay can be obtained by solving foin Eq.

becomesy,(7)=VY;.
Several subtle issues arise from the fact that, in general, a

(89b) and subtracting the travel time of a ray in the absencdixed space point X, 6, ¢) =const moving with the cosmo-

of the lens. We have thus

1y-y(n+7)
=220 "7
C coSo—a)

1
+7+T- E\/x2+ y%. (106

From Eq.(105 and Eq.(90b), for small ¢,

(107)

A1
71=C 7Y

1
122
1 Zcp)

but keeping up to second-order ternvee find the time delay
equation corrected for a moving lens:

DD
|Sa2

~ |
Ar=(1+v,/c)T+ 20D,

(108)

VI. COSMOLOGICAL THIN LENSES

logical flow in the k=*x1 cases, has in the associated
Minkowski space a coordinate velocity; thus comoving
lenses in the FRW coordinates are modeled by lenses that
move, i.e., have a coordinate velocity, in the Minkowski
space. This, in turn, leads to the consideration of aberration
affects in the bending angle and source angles which then
influence angular-diameter distances. A second subtle issue is
the relationship between the gravitational time delay as com-
puted in the FRW spaces compared to those computed in the
associated Minkowski space. We point out that the time de-
lays are not simply conformally related; the cosmological
time delay must be calculated independently from the
Minkowski delays. This issue will be further explored later
in this section.

We consider the universe to be two sections of a FRW
spacetime appropriately matched at a lens plane. The matter
distribution in the lens plane determines two related gravita-
tional time delay functions: theMinkowski) coordinate time

In Secs. IV and V, we derived the implicit Fermat poten- de|ay"]" and the related Cosmo|ogica| proper time de@”

tials for lensing by static and moving thin lenses where theyjith
lens plane separated two regions of flat spacetimes. In this
section, we expand these results to consider lensing in space-

Te=Q,T (112
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where(}, is the conformal factor evaluated at the lens at the

v
time of arrival of the ray. The relevant functions depend on am=al 1+ - , (117
the Minkowski coordinates in the lens plang, We interpret ¢
7c(x) as the cosmological proper time measured by a per-
son just past the len®n the observer’s siddetween a light S0 that Eq(116) becomes
ray emitted at the source at timg that passed through the B B -
lens and one emitted at the samgthat was not influenced B=p— iam:(p_ sl Y (118
by the lens. Ds Ds c

As we saw for the moving lens in Sec.V, our implicit R
Fermat potential, in 21 dimensions, is given by Eqé89a,  with D5 the time-dependent angular-diameter distance of the
(89b) with the envelope condition yielding lens to the sourcas seen by a stationary observén the
other hand, if we wish to us@as we will in a momentthe
angular-diameter distance measured from the lens to the

~ dT N
am= _(C+v')(9_x|5(1+vl Io)a, (113 sourcein the comoving lens fram®(S? , we have that

wherey, is the average speed of the lens during the time the D(co):L As (119

light ray is delayed and, is the bending angle observed by 's YO 4fco)’

a stationary observer with a moving lens amadhe bending

angle for an observer comoving with the lens. Our lens equawhere y(°? is the angle thak subtends according to an ob-

tion (in the small angle approximatipiis simply server comoving with the lens plane. Using the aberration
equation, Eq(117), for the angley, we have

X=@y—(Yy=Yy)anm, (114
A Djs=D(¢” (120

where ,y) are the source positiory, is the position of the 1+ K)
lens plane when the light ray leaves the lens, ani the c
observation angle.

We consider how to introduce sontmodified angular- The (moving) lens equation becomes
diameter distances for lenses that are moving in a
Minkowski spacetime. Here, we interpret the source coordi- D|(§°)
nate x, as themetric distanceA, between the sourd@n the B=e¢- D, & (121
source planeand the optical axisi.e. x=A). We then con-
vert the coordinate distanceg, and y—y, into angular- Note that neitherD{¢® or D are directly observable

diameter distanced) and D, as follows. LetB be the quantities. The issue of which to use depends on the physical
unlensed angle that the sourcexatubtends at the observer situation that is being addressed. If we utilize the coordinate
and lety be the angle that subtends at the lens plafnghen  transformation, Eq(109), that relates the Minkowski coor-
the light ray leaves the lens pland@hen dinates to the “natural” FRW coordinates, the moving lens in
the Minkowski background becomes a stationary lens in the

Ag conformally related cosmological spacetime. Herb({-go)

X

VEDSZE— 5 (1158 should be used in the lens equation in the case where our

interest lies in the FRW space.

A The just completed discussion pertained to the Minkowski

y—y =D =—=—. (115p  background; we now transform the lens equation, Eg1),

Y to the cosmological background. We assume that the observ-
er's world line is given by ¢, x=0,6=0,4=0) in the stan-

Eliminating y and y—y, from Eq. (114), the lens equation dard FRW coordinates. In any of the three FRW models,

[

becomes such an observer is stationary atr&0,0=0,6=0). How-
ever, the lens and source, located along the world lines of
D constant f, 6, ¢) will be “moving” in the Minkowski coor-
B=¢— D %m- (116 dinates.(The motion of the source in the Minkowski coordi-
s nates plays no important roJén the cosmological space, the

. , . , . metric distance between the source location and the optical
This expression for the lens equation with a moving lens_ . . L ~ a
is (in the source planeis given by A;=Q(xg)Ag where

is in terms of distances and angles relative to the frame of : .
stationary observer in the Minkowski space. As we saw eart"® c_onformal factor is evaluated at the source location when
lier, by the aberratiorfof light) equation, the bending angle "€ light ray leaves the source. Using
seen by the stationary observey,, is related to the bending
angle « seen in the frame comoving with the lens, by Eq.

(113, Ds=

=Q(x3)D, (1223

w|
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- A . ~ ~ Q D, Djs
_ _ (co) - l =52
B N Q(x®)DS (122b A= (1+01/0) | Tet 5¢ il (128
for the cosmological angular-diameter distances, our len¥here we have used
equation immediately becomes Te=O0,T (1293
Dis ATo=Q0AT (129

B=¢—="a, (123

s the latter being the cosmological proper time between recep-

tion of the two rays at the observer.

which is identical(in form) to the flat-space lens equation From the relation

with a stationary lens and to the conventional cosmological
lens equatiori1,3]. A O ap

We now turn from the cosmological lens equation to the (1+v, /c)§~—51+z, (130
cosmological time of arrival equation. In Sec. V, we derived LA

an expression for the “time delay” at the observer betweenypich, is derived in the Appendix for small coordinate veloci-

the true “lensed” path and the “unlensed” path in a ties o /c. in th iated Minkowski f E
Minkowski model with a moving lens, namely, €S, v /C, In he associated Minkowski space, rom £q.
(128), our final cosmological time delay equation is

_ o 6' DIS 2 ~ 5| 5|S
AT—(1+U|/C)T+2—CD—Sa/m. (124) ATOI(1+Z) ,TC_'—E'D_CYZ ) (131)
S
Using the transformation properties af, and lf),S just de- Our last issue is to describe how the cosmological proper
scribed, Eq(124) has the form time delayZ; is to be computed. To comput®., and, by
association, the Minkowksi coordinate time dela¥;
R D, D{¢® =0, '7¢, we first consider the Newtonian potential
Ar=(1+v,/lc)| T+ — a?l, (129
2c DS ’
dm
. ) ) ) UC:_JT, (132
where « is the bending angle seen in the comoving frame [Xx—=X"|c

and 7 is the Minkowski coordinate time delayneasured , a3 . .,
along a world line just to the observer’s side of the lensheredm’=pc(x")d*x" is the “observable” mass element

between the arrival time for a lensed and unlensed ray. T8 the cosmological space, atie norm in the denominator

transform Eq(125) to cosmological variables, we first note IS taken in the cosmological metrigo find the cosmological
that gravitational time delay, one integrates the Newtonian poten-

tial over the path from the source to the observer,
D¢
Ds

(W)

_ Is _2
5. (126 Te=— | Ucdlc, (133

(W)

where the ratio on the right side refers to cosmologicalyhered| is the distance element along the path in the cos-
angular-diameter distances. Next, we see thakifis the  mology In the standard thin-lens approximation, it is as-
Minkowski metric distance from the OptiC&' axis to the “im- sumed thabc(x’) iS nonzero 0n|y in a thin region perpen-
age location” in the lens plane ang is the angle this dis- dicular to the optical axis. Thus, when computing the time
tance subtends at the observer we have delay from the integral in Eq133), one need only consider
the region along the trajectory that is very close to the lens

- Q(xMHA, R plane. First, we point out that under conformal rescaling,
D= © =0(x)Dy, (127 sincedm’ is conformally invariant, that
which relates the angular-diameter distance from observer to __ j dm' - _f dm’ —0-y
the lens in the FRW cosmology to the conformally related ¢ IXx—x'|c Qlx=xy M
“Minkowski” angular-diameter distance(Here, the confor- (134

mal factor is evaluated at the location of the lens at the time L

the light ray leaves the lendf we multiply both sides of Eq.  where|x—x’|y= is the metric distance between two points
(125 by Q,0Q, whereQ, and (), are respectively the con- in the lens plane taken in the conformally related Minkowski
formal factor evaluated at the observer at the observatiometric. BecauséJ only has support in the vicinity of the
time and at the lens at the time the light ray leaves the lendens anddl-=Qdl,, , wheredl, is the distance elementin a
we have Minkowski spacetime, we have
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_2 ) conformal rescaling of an associated Minkowski space can
%z—af UCdlcz—af Undly=7u. (1395 be extended, largely unchanged, to any spacetime that is con-
c c formally related to Minkowski space. It is not clear whether

There is an apparent conundrum hefg.is the physical this observation has any physical application.

proper-time delay whichappears to be the samas the
Minkowski space proper-time delay for the same physical

situation, i.e., arising from potentials VIl. CONCLUDING REMARKS AND OUTLOOK
dm’ We have introduced a novel approach to gravitational
Ue=— j S (1363 lensing built on a variational principle that is analogous to,
IX—=X"|c but distinctly different from, the conventional version of Fer-
mat's principle.
dam’ Our approach is to find the envelope of an appropriate
Unw=- m (136b family of null surfaces containing the observer’s location.

We have shown how this approach reproduces the astro-
with the samalm’ in both cases. The conundrum is resolvedphysical scenario of static thin lenses as an illustration. More
by noting that though thdm'’ are the same the density func- interestingly, though, we have been able to use this approach
tions are different. to obtain the correction to first order in/'c that the motion

We compute the mass densities by introducphysical  of the deflector imposes on the bending angle in the approxi-
coordinatesat the lenglocal Lorentzian coordinatgsso that  mation of thin lenses. This calculation can alternatively be
the cosmological metriat the lenstakes the form done by direct integration of the null geodesics in time-

2 2 5 dependent spacetime perturbations off flat space. In this re-
ds’= (dtg—dx¢—dye—dz) spect, our result agrees with such a direct calculation of the
=Q2(dt?—dx?—dy?—d7) (137  bending angle by moving thin lenses carried out by Pyne and

Birkinshaw [9], whereas it differs from otherglQ] by an
with overall sign and a factor of 2. Work is in progress to clarify

this difference and will be reported elsewhere. Notice that a

Xe= e, (138 redshift of 0.001 might conceivably bring this effect into the
Using observable regime in the future.
Because in the thin-lens case in cosmology our approach
dm’ = pc(x@)d3xc= pc(Qx) Q3d3x is based entirely on the underlying conformally flat space,
we also have an alternative derivation of the lens equation in
= pm(x?)dx (139  cosmology, which does not seem to have been exploited in

the literature so far. We feel our derivation clarifies some
points that remain obscure in the presentations of the lens
(x) mapping in cosmology that appear [ifi] and [3]. On the
Pm ' other hand, the reader interested in a very complete deriva-
pM(Xa):pC(lea)le_ (140) tion of the Igns mapping in cosmolpgy by integration of the
null geodesics will definitely benefit from the excellent ar-
Returning to the issue of the cosmological lens equationticle by Pyne and Birkinshal1].
Eg. (123, and associated bending angle, Etl3), we see Throughout this work, we have assumed that a metric is
that the present results concerning the cosmological time deiven that represents the structure of the deflector or lens. In
lay agree with the earlier results, since from E(&293, this sense, we have kept ourselves within the kinematics of

we have the relationship between the physical denpity,
and the equivalent fictitious Minkowski space density

(139, and (113, we have the implicit Fermat potential. We have not addressed the is-
sue of the dynamics of the Fermat potential; namely, how the
oT 00T dTc implicit Fermat potential is directly affected by the structure
a=—Co-=-¢C = Co (14D of the defl Th lution of this i ion i
X Q,0x, X of the deflectors. The resolution of this important question in
principle involves two steps: to solve the Einstein equations
the cosmological bending angle. for the metric, and then to use the metric as a given source

All our results obtained from the envelope constructioninto the eikonal equation for the implicit Fermat potential.
now agree with the standard results appearing in the pulBy contrast, in the standard thin-lens scenario, the Fermat
lished literature. In addition, it is clear that the method can bepotential is obtained directly from the surface mass distribu-
used to extend the results to the case of a lens plane that hésn by means of a 2-dimensional equation of the Poisson
a peculiar motion above the Hubble flow by letting the ve-type. It is reasonable to ask whether an analogous scheme to
locity of the lens plane in the underlaying flat space be arbiobtain field equations for the implicit Fermat potential di-
trary. rectly in terms of the structure of the deflector exists in cases

As a final comment here, we point out that this method ofother than the thin-lens scenario. This question will be dis-
obtaining the FRW lens equation and time delay equation bgussed elsewhere.
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APPENDIX
and we have
In the main text we quoted the approximate equation,
Mo~ M=Xi - (A6)
a, a .
Q_°~ 5‘(1+v| /c), (A1) Using Eqgs.(A5) and (A6) we can construct
0 [

Q, B Q¢ coshy,+cosh x,— 79)

which relates the ratio of conformal factdisto the cosmo- 2" a 17 cosh (A7)
logical scale factom, at two different points, the observer ! 0 7o
and the lens, that are connected by a null geodesic. Thg, for smally,,
guantity v, is the velocity of the lens in the associated
Minkowski coordinates evaluated as the ray leaves the lens. Q, Qg X1 Sinhzg
For the case ok=0 this result is trivially true since then ?I“ a, |~ 1+coshy,)” (A8)
a={() andv,=0. For ease of presentation we will only give
the proof for thek=—1 spacetime, but the calculations are By calculating the velocity from
exactly paralled in the case &f=+1 and the result is ex-
actly the same. We start by recalling that we have the metric a_r
in the two forms dr 97 N
~ dt ot (A9)
ds?=a?(dn?—dx?—sintfx(d 6>+ sirf0d¢?)) —
(A2a) anl,
=02(cdt?—dr?—r?(d#?+sirf6d¢?)) we have
(A2D) v sinhy sinh# AL
with Eq. (109 explicitly given by ¢ 1+coshycoshy’ (A10)
t= sinhz A3 We thus see that a FWR lens plane approaches the observer
ct= coshzn+ coshy (A38) in the conformally related Minkowski space. Evaluating at
the lens time we have
sinhx A3b sinhy, sink( )
' coshzn+ coshy (A3D) g Xl X 7o (A11)
¢ 1+coshy, cosh x,— 79)
and
and for small values of;
2 .
02= 4a , (A4) u ~— thno (A12)
(1-(ct+r)?)(1—(ct=r)?) c 1+coshyy’
or, from Eq.(A3), Using Eq.(A12) with Eq. (A8), we have our result, EGAL).
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