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We explore various pitfalls and challenges in determining the equation of (sttef the dark energy
component that dominates the universe and causes the current accelerated expansion. We demonstrated in an
earlier paper the existence of a degeneracy that makes it impossible to resolve well the valoeitsftime
derivative with supernovae data. Here we consider standard practices, such as assuming tioaistant or
greater than-1, and show that they also can lead to gross errors in estimating the true equation of state. We
further consider combining measurements of the cosmic microwave background anisotropy and the Alcock-
Paczynski test with supernovae data and find that the improvement in resolving the time derivative of
marginal, although the combination can constrain its present value perhaps to 20% uncertainty.
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[. INTRODUCTION (wq) versus the mean value for the total energy denity
cluding ordinary and dark materw;. The degeneracy
Measurements of type IA supernovae have shown that thproblem is less severe fav;, but this parameter provides
expansion of the universe is acceleratirig?], suggesting less useful information. We consider possibilities of breaking
that most of the energy density of the universe consists aothe degeneracy betweananddw/dz by combining super-
some form of dark energy with negative pressi8e Com-  novae results with either cosmic microwave background an-
bining measurements of the cosmic microwave backgroundotropy measurements and/or the Alcock-Paczynski test. We
anisotropy and observations of large-scale structure provideshall show that neither additional test significantly improves
important corroborating evidendd,5]. Two candidates for the measurement of the time variationwf although opti-
the dark energy are a cosmological constantvacuum den- mistic assumptions about the Alcock-Paczynski test suggest
sity) and quintessend®], a time-varying, spatially inhomo- that the current value af can be measured to within 20% or
geneous component. In a previous pap&r (paper ), we  so.
addressed the question of whether supernova measurementsWe conclude that a new, yet to be found test has to be
can be used to measure the equation of gat@S of the  devised to resolve well the cosmic EOS and its time varia-
negative pressure component, the rati@f the pressure to tion. We stress that with current data it is possible to deter-
the energy density. The issue is important because—1 mine the EOS to about a factor of two. For a future experi-
for a cosmological constant whereastakes on different ment to significantly enhance the determination of the EOS,
values and can be significantly time varying in the case ofind enable the distinction between a constant EOS and a
quintessencé¢6,8,9. Under the assumption that is con- time-dependent one, it needs to resolve the equation of state
stant, its value can be determined to better than 5 percent kgt the 10% level or better.
measuring several thousand supernovae distributed equally The results of our analysis agree with many other analy-
between redshift=0 andz=2. However, we showed that a ses[10-22, although not always with their interpretation,
degeneracy opens upW is time-dependent which makes it and can be used to explain why some other analyses seem to
impossible to determine accurately the current valueof  indicate a superior resolving power of SN measurements
its time derivative. The cause of the degeneracy is that sualone[23-26, or in combination with other measurements
pernovae measure luminosity distance, which is related by f27—-30. Some of the latter analyses implicitly assume unre-
multi-integral expression to the EOS as a function of red-alistic accuracy in independent determination of cosmologi-
shift, w(z). Widely differentw(z) can have the same multi- cal parameters, by not including self-consistently the uncer-
integral value. tainty in w(z) in all measurements. For example, assume a
The purpose of this paper is to explore some pitfalls andeported resolution of matter energy density which was based
challenges in determining the EOS and its time variationon assumingvo=—1, or assumeavy>—1 as a prior.
using supernovae. For example, we shall show how the stan- Type IA supernovae have intrinsic variability of about
dard practice of considering only models with=—1 or  0.15 in absolute magnitude, but currently the errors in mea-
only models with constant when doing likelihood analyses suring distant SN are above this. There are ongoing programs
can lead to grossly incorrect results. For example, we wilto extend the search to deeper redshifts and improve mea-
illustrate cases where the standard practice will suggest thaurement quality. The proposed SNAP satellite plans to mea-
w is near— 1 or much more negative thanl when, in fact, sure 2000 SN per year, mostly in the range of redshifts 0.1
w is significantly greater thar-1 and rapidly time varying. <z<1.2, and some as far as=1.7 [31]. The anticipated
We shall show that a nonzero valuedi/dz is more easily error in individual magnitudes idam=0.15 statistical and
detected ifdw/dz>0 than ifdw/dz<0. We shall also con- 0.02 systematic error, which yields about 1% relative error in
trast measuringy for the negative pressure component aloneluminosity distanced, .
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For our numerical estimates, we have generated 50 SiSince
magnitudes randomly chosen from a uniform distribution in )
z values, betweer=0.1 andz=2. Magnitudes were gener- (i) __PmtPqo 9 (1+2)3
ated from a Gaussian distribution with mean vatug) cal- Ho (Pmot(pglo 1+
culated using fiducial models. We have used our 50 points to 3
simulate approximately 2000 SN by reducing their magni- n (1+2) ex;{ flﬂw %
tude error by a factor/40 to 0.03 from the minimal 0.15 1+g9 1 Q x
magnitude. Thus each generated point corresponds to 40 )
SNAP-like points, binned together. This corresponds to 1.494vhereg denotes the present ratio of matter to dark energy
relative error ind, . Hence, our analysis is based on a SNdensitiesg=(n/{q)o. H can be expressed as
search more extensive than the actual SNAP proposal. To g 1 147 dy]\ M2
obtain a quantitative estimate of how well models are re- H=H (1+2)% ——+ _eXF{?’f Wo— ) )
solved, we use one of two procedures. First, we can find the 1+g 1+g 1 X
maximum likelihood contours of the various models for each (7)
of the fiducial models and explore the degeneracy in para
eter space. Alternatively, we can assume that all mode
which predictd, (z) within 1% of the fiducial cosmological

, (6)

I- ubstituting this intad, gives

model for allz between 0 and 2 are deemed indistinguish- d = (1+2) (1+g)1/2flﬂ%

able. We find that both approaches give comparable results. Ho 1 X302

That is, the 95% C.L. likelihood contours using the first pro- . gy -1

cgdure are roughly equivalent to the indistinguishability re- x| g+ex 3J WQ(y)—y @)
gion of the second. 1 y

An equivalent approach is to treat the sum of dark matter
and the dark energy component as a single cosmic fluid with
average equation of staver(z) =Qq(z)wg(2), where

Luminosity distance is defined to be the ratio of luminos-
ity £ to flux F:

Il. DEPENDENCE OF LUMINOSITY DISTANCE
ON DARK AND TOTAL EOS

_ Wo _ Wq
VT T i)

F{ 1+z )dx ’
L l+gex —3f Wo(X) —
= —_— 1 X
do=\/z_7=(1+2r, 1)

C)

where the present value of the scale facgiis normalized ~ Since H? is proportional to the total energy density in the
to unity (throughout subscript O denotes present vatuess  universe, it can be expressed in termsagfas follows:

the coordinate distance
H 2 1+z dx
H—O) —EXF{?)fl (1+WT(X))?

1+zdx
S @
1 . .
Here we have used the conservation equation for the total
energy density. Using Eq10) we can expresd, in terms of
W as follows:

. (10)

and H is the Hubble parametdd =a/a. The observed SN
magnitudes are related tf ,

(1+2) (1+z 3 (x dy
m(z)=M +25+5 log;d Hod, (2)], (3 d.= dxex ——f (L+w(y))—
Ho 1 2 1 y
M being the SN absolute magnitude.

i : 1+
For a flat universe with two energy sources, matier = (1+2) 2dx

cluding dark mattérand a darkQ component, there are two Ho J1 x%?

equivalent routes to computing, without assuming any-

thing about the time dependencewg. One way is to use <exng — 3~ wo(y) dy
the algebraic relation between the total energy density and 2)1 y du| |y

the Hubble parametdd. Using conservation equations, the 1+gex _3f1 WQ(”)?

energy densities of the dark componegtand that of ordi- 1

nary matterp,, are given by

This expression fod, as a function ofwg has one more
(4)  integral than the relation in Ed8), but it is pedagogically

useful in demonstrating thatl, is sensitive only to a

weighted average ofir or wg and not to their detailed time
pm(2)=(pm)o(1+2)3. (5)  dependence.

1+z dx
PQ(Z):(PQ)O(l*’Z)seXF{?’L Wo -
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FIG. 1. w(z) for three best fit models of three fits under three
different assumptions: constant, (dashed linearwq (solid), and

guadraticwy (dotted, to data generated from a single fiducial 5 15
model: o ,Qn)=(—0.7-0.82,0.3). All fits preferw;=w(z* )
=0.15)=—0.52, but diverge for other values af red shift z
lIl. CONSTRAINING DARK AND TOTAL EOS FIG. 2. Models within 95% C.L. region of a fit to data generated
' USING SN MEASUREMENTS from the fiducial model Wq,Q,)=(—1,0.3) assumingvo=wg

+w;z. Top: The total EOSv,(2z), for three different linear models.

) . Middle: wg(2) assuming,= 0.3 exactly, for the same linear mod-
Based on the previous sections, a number of lessons caly Bottom:w,(2) for nine models, assuming that 6:2),,<0.4

be learned about measuring the EOS. First, the relation bgqg relation between the dashed, dotted and solid lines of the bot-
tweenwy andd, in Eq. (11) involves an integral, so we do {gm panel to those of the middle and top ones

expect some degeneracy in the determinatiowgfz) from
SN measurements. To determine the EOS of the dark energyhat is seen in the figure, we have chosen three examples to
itself, wg, the total energy density must be resolved into aillustrate the existence afF andz*. As can be seen, the fits
matter component and a dark energy component. Hence, #fisagree significantly foz far from z*=0.15, but all fits
O, andQq are not known from independent measurementsagree near*.
determiningwg entails an additional uncertainty. For ex-  Unfortunately, the resolution ofvy(z*), the quantity
ample, consider a flat universe wit;=Q,+Qq=1.  which most interests us, is degraded when we do nd®fix
Since the matter EOS isv,=0, it follows that wr  but, instead, allow for the current uncertainty in its value. In
=Wgq{lq. Two models with different values ®fg may pro-  Fig. 2, we show some linear fits to simulated data generated
duce the same value of; and, consequentlyd, , due to  from the fiducial model Wq,Q,)=(—1,0.3). The fits are
offsetting differences in the value 6i,,. representative examples which fit the fiducial model to
The more negativevt is, the faster is the expansion. within the 95% confidence region. The upper plot shows that
Therefore, a more negatipositive) wr will make d, larger — w+(z) (with Q, fixed at 0.3 is relatively well resolved, and
(smalley. In addition, light from earlier timesemitted at particularly well resolved at around redshift =0.3. The
higher z valueg must pass through the low universe to  resolution is not that sharp in the middle plot which shows
reach us. This means that changesvinat lowerz affectd,  the correspondinavq, but a special point of enhanced reso-
at higherz. The converse is not true. Changesaip at high  lution aroundz=0.4 is still clearly seen. If one leQ,, vary
z do not affectd, at lowerz in the realistic range of 0:20.4, thenwy becomes poorly
Consequently, it is not surprising that SN measurementgesolved and the spread zt increases significantly. Simi-
of d,_ provide stronger constraints an(z) at low zthan at  larly the spread iw* andz* increases significantly if more
high z In particular, if all cosmic parameters other than general functional forms of the EOS are considered.
Wq(2) are fixed, there is a particular, relatively low value of  We would like to stress that the constant or linear forms of
z=2z* for which wy(z) is most tightly constrained. This Wwq that we use are not meant to be anything more than
value ofz* is clearly seen in our numerical results and wassimple concrete examples to highlight the fact that we are
noted independently bjl1,27. For example, Fig. 1 shows dealing with a degenerate parameter space. Showing that if
the EOSw+(2) for three models each of which is obtained one assumes a lineary(z), then it can be resolved to, say,
by best fit tod, (z) for a fiducial model Wq,2,)=(—0.7  50% does not logically mean that it can be measured to 50%
—0.82, 0.3 using one of three fitting assumptiond) that  accuracy generally sinceig(z) is resolved with different
the dark EOS is constant?) that the dark EOS is linear accuracy depending on its functional form. This can be illus-
Wo=Wp+Ww;Zz, and (3) that the total EOS is quadratie;  trated with the following examples. In Fig. 3, the difference
=A+Bz+CZ%. While the real degeneracy is stronger thanin magnitude Am) for models with various EOS is shown.
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sumption of constancy is relaxed and a lineatependence
is allowed it becomes clear that the data can determine well
0.6F o s _ only a single relation between, andw; and thatwy(2) is

) poorly resolved.

w0 PR o The degree of degeneracy exhibited in tixg= const fits
g e PR % ) o’ depends on whethev,, is positive or negative. Recall that if
AmM | 0 ., * o o °°°oo o % different models yield a total EO®r=w{)q that is ap-
°%°° L ;,cg °o0 g 80 % proximately equal, they are degenerate, and therefore
& go:.’{?% ° changes inwg can be compensated by changestig (or
$ ”}‘ s o equivalently, inQ),)). The difference between the case where
oF®° "5 ‘gia % oiog°°°‘”oo%o° o o W, is positive is due to the specific way in which this com-
° 9303802000 <’ °. ° pensation mechanism operatesw is positive, the curva-
| | ¢ | oo .. ture of .degengracy lines i%,ﬂm) plane is_ positive, as
05 15 shown in the right panel of Fig. 4 for a fiducial model with
’ . wo=+0.5. Conversely, ifvg is negative, the curvature of
red shift z the degeneracy line im(y,{2,) plane is negative, as dem-

onstrated in the left panel of Fig. 4. We have found that this
fesult is unaffected by the value of the derivativeva§,
even if it is quite large.

FIG. 3. Magnitude differences between pairs of degenerat
models and a flat pure mattef)(,=1) universe. Each pair consists
of simulated data points generated from one constagntmodel
(open circles and one lineawg model with a large(positive or
negative derivative(full square$. The pairs are well separated but
it is hard to separate between “members” of each pair. All models
are flat and with fixed2,,=0.3. The specific models shown are
somewhat extreme, and seem to diverge at tagbut they are
statistically indistinguishable as shown in Fig. 2 of paper I.

IV. COMMON PRACTICES AND PITFALLS
IN DETERMINING W (2)

The previous sectiofand paper)l show that the determi-
nation ofwg(z) from SN data is a more delicate process than
it would seem. If we knova priori thatwg, is constant, then
There are three clusters of points, each of which correspondts value can be determined quite accurately. However, with-
to a simulation of SN data for a pair of different models. out this assumptionwg is poorly determined, and a larger
Each pair consists of a constant and linegr. Each pair can (smallep value forwl can be compensated with a smaller
be clearly separated from other pairs but the constant andargep value ofwg. Matters get much worse {2, is uncer-
linear “members” of a pair cannot be distinguished by SN tain: raising the value of botlw,; andw, can be compensated
data. The examples chosen for Fig. 3 have unrealistic larg@ith a change in the value dd,.
derivatives (of order unity and therefore start to diverge = The analysis can be further confounded if certain common
from their constant partners for large More realistic ex- practices are followed. For example, many analyses assume
amples with smaller derivatives or oscillatory behavior will that wg is constant and presume that, evenam§ is time
be much harder to distinguish from a constant EOS. varying, the constant, fit will provide the mean value over

Clearly the treatment of the SN analysis is important. If itrecent epochs. Another common practice is to impose the
is assumed thawq, is constant, the figure shows that differ- condition thatw(z) be limited to—1<wq(z)<1, based on
ent values can be resolved to high accuracy, but if the aghe positivity and stability conditions that apply to mdstit

08+ 08}
/

0.4} 0.4
g g
z 0 = O

-04 ¢ —\ ] -0.4 ¢t

-0.8 -0.8}

0.2 0.4 0.6 0.2 0.4 0.6
Q m Q m

FIG. 4. 95% C.L. contours of fits to data generated from two fiducial models. The curvature of degeneracy contours is positive for a

positivewq, fiducial model(right) and negative for a negatiweg fiducial model(left).
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-0.5 I I | ] T so decreasing bottv, andw, has opposite and compensat-
o ing effects, which tends to cancel each other’s influence on
with prior d,_. The exponential factor determines the quantitative de-
Ab |- T, | tails of this compensation since changesvinneed to com-
pensate also for changes in the exponential factor. It is there-
no prior fore clear that the compensation cannot be perfect over a
o range ofz’s. If we insist on the constant EO&e., w;=0),
= -5 _ the fitting procedure will pick out a value af, which is
much more negative than the fiducial value. In the figure we
have picked a fiducial with a large positive derivative to
2k - illustrate our point, but it is clear from our discussion that the
same problem arises when time dependence is weaker, or in
cases that the EOS has a more general functional form.
Introducingwo>—1 can give a very misleading impres-

25 | | ] |

0.4 0.6 0.8 sion of how wellwy is resolved. For example, suppose that
0 we assume thawq is constant anavo>—1, as is standard
m practice. The results are shown in Fig. 5, the small contours

G.5 C . I and . d truncated atwo=—1. They seem to suggest that the data
. Flt. .esés;nsrt]gagsegsmanli_gnn unco:tstr?me?ar?;a; az tmoren support the conclusion thatg=—1 with a high level of
egaive He% a © confidence contours ot a TIL10 dala geNerijence. The best fit isvg , 2 m) =(— 1,0.58). Yet, this is

ated from a fiducial model with lineawy (wg,Q,)=(—0.7 . - ; - .
+0.82,0.3). The fit is done under tf(evrong?assSmption thatvg not related in any O_bV'OUS way to the f'dé"c'al model,=

is constant. The example is somewhat extreme in thgtshifts ~_ O-/+ 0.8 and,=0.3. The values of” per degree of
from 0.3 to 0.64, but in less extreme exampls stays within the freedom for the b.est fltimodels of Fig. 5 are reasqnablg: 0.95
range 0.20,,<0.4 and the best fit fowg, is still negative and for the unconstrained fit, and 1.39 for the qonstramed fit. So,
completely off from the actualo(z). what appears to be a compelling result is actually a total

distortion. Of course, it is also conceivable that the actual
not all) forms of dark energy. We shall see that both practicedVq(2) is less than—1, in which case the same procedure of
can produce enormous distortions of the likelihood surfacéntroducing a prior would falsely suggest that=—1 fits
that lead to grossly incorrect conclusions. well.

For example, we have tried to fit data generated from a

fiducial model withwo=—0.7+0.8z, and},=0.3 over a  y, ASYMMETRY IN DETERMINATION OF THE TIME
redshift range 8:z<2. Note that the fiducial model has DEPENDENCE OF THE DARK EOS
wo>—1 for all z. Yet, if we do a best-fit assuming that, . . o _
is constant, we find it to bew(y,Q)=(—1.75,0.65). Not _ An EOS in whichw(z) has a large positive time deriva-
only does the best fit haveio<—1, but the whole 95% tive is easier to detect than one which has a large negative
Conﬁdence contour |ieS in a region Wh%< —1. The re- t|me deriVatiVe. In either case, the derivative must be |arge to
sults are the elongated contours in the lower part of Fig. 5P€ detected, as pointed out in paper |, but here we are dem-
The reason for such a strange result can be understood froffistrating that the challenge is asymmetric. The point is il-
the functional dependence of and w,. Assuming that lustrated in Fig. 6. The middle panel shows a fiducial model

is given in Eq.(4), case cannot be distinguished from a model in whigh=0.
That is, the 95% C.L. contours overlap the lwg=0, cor-
sz(pQ)0(1+z)3(W0‘Wl+1)exqswlz], (12 responding to no time variation. The left and right panels
2 T T T T ; T T T T 2 T T T T 1 T T T 2 T T T T T T T T T T

FIG. 6. Likelihood contour$68% (lighter) and 95%(darkey C.L.] in the (wq,w4) plane, for fits to data generated from 3 different
fiducial models. Left: Wg,wq,Q,,) =(—0.7,0.8,0.3). Middle:\{y,w,,Q,)=(—0.7,0.2,0.3). Right:\W{y,w,,Q,)=(—0.7,—-0.8,0.3). Only
the results shown in the left panel are inconsistent with a constant Q)wg model. In all fits(),,, is marginalized over the range 0.2-0.4.
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show cases in whichv;=0.8 and—0.8, respectively. The
contours for thew,;=0.8 case(left) lie far from thew;=0 0.8}
line, so the time variation is detectable in this example. On
the other hand, the contours for tiag = —0.8 case(right)
overlay thew;=0, so the time variation is not resolved.

This effect can be explained by considering the variation _
of the total average EOSv; with respect tow;, Awg = 0
=f(wy)Awy:

0.4}

f(w)=Qqg[z+3wo(z—IN(1+2))(1-Qq)]. (13 04]

We considemw; because the measurementsipfare directly
sensitive towr, so that models can only be distinguished if 0.8}
they have differentv;. As can be seen from EL3), wy is

much less sensitive to changesap when it is negative than
when it is positive, mainly due to the value 6f, being

larger for positive values of/;. We conclude that, in order to
detect thatw, is time dependent, it must be that the time  FIG. 7. Two-sigma contours in the wg,w;)=(Wg(z

variation is large, roughlyw,;>0.5, and it helps ifw, is =0), dwg/dz) plane for two idealized experiments. One mea-
positive. This corresponds to the case where acceleration fires thousands of supernovae betwee0 andz=2 (dashed con-
becoming stronger as time evolves. tours. The supernovae are divided into 50 bins with a net error of

1.4% per bin. The second experiment is an optimistic estimate for
the AP test(solid contoury assuming 50 bins of Lyman-alpha
clouds uniformly distributed betweer=1.5 andz=3 with each

bin measured with an accuracy of 3%. Both experiments assume a

Measurements to determine the EOS of the dark energfjducial model with,=0.3, Q4=0.7, wq=—0.7=const, in-
can be direct or indirect. Direct methods, such as SNla obdicated by the X. In both experiment, is marginalized over the
servations, the Alcock-PaczynsiiP) test[32], and the cos- range 0.2 to 0.4. The two-sigma joint likelihood for the two obser-

. o ' vations is shown in the shaded region.
mic microwave backgroundCMB) attempt to measure the

Hubble parameteH, its derivativeH" and (), or some 4 highly precise measurement combined with a highly pre-
function of them. Indirect methods, such as structure formagise measurement of SNe could determine the present value
tion aspects of the CMB and measurements of large scalgs \y to within 15 or 20%. However, it does not help signifi-
structure(LSS) try to infer wq(2) from its effects on struc-  cantly with the particular problem of pinning down the time
ture evolution. o variation of the equation of state.

An example of a complementary observation is the peasurements of the CMB anisotropy provide an addi-
AIcock-chzynsk(AP) test. The physical transverse size of tional probe ofw(z). This probe also suffers from a degen-
an object is given by =daA0=[r/(1+2)]A6, dabeing  gracy problem, even in the case wheveis constant. The
the angular distance anilf the observed angular size. The ,gitions of the acoustic peaks in the temperature anisotropy
physical radial size isdr=/ g, dr=[1/(1+2)H(2)]AZ.  power spectrum depend on the angular distamtg (o the
For a population of spherical objects, the AP test is given by(ast scattering surface which, just like the luminosity distance
equating the transverse and radial siz&$>(z2)=Az/A0  for supernovae, depends on a multi-integral over
=H(2)r(2)=H(2) /1 "dx/H. w(z), da=d,/(1+2)% In addition, the heights of the

The AP test on its own is not expected to improve thepeaks depend ol and the Hubble parameteit,
resolution of the dark EOS since it has a more complex de=h100 km/parsec/sec. When all effects are considered,
pendence owg thand, . What does seem promising, as then, as shown by Huegt al. [35], the power spectrum is
pointed out by McDonald33,34, is that the AP test can ynchanged as certain combinations(hf , h, andw are var-
further constrain the range 6i,. ied. Consequently, none of these parameters can be deter-

Figure 7 shows the likelihood contours assuming optimismined well by the CMB data alone. Instead, measurements
tic anticipated errors over a continuous range betweef can only constrain these parameters to a thin two-
andz=2 of 1.4% ford,, and, for the AP test, 50 bins be- dimensional surface in this three-dimensional parameter sub-
tween redshifz=1.5 andz=3 measured with 3% error per space.
bin [34]. Both simulations represent highly optimistic as- ~ The reason why one might be optimistic about combining
sumptions about future measurements. The results are inteCMB anisotropy and SN measurements is that the degen-
esting. The better constraint éby,, from the AP test reduces eracy surface for the CMB anisotropy measurements is
the uncertainty inv,, but does not significantly change the nearly orthogonal to the degeneracy surface for the SN mea-
uncertainty in the time variationy;. This is not surprising surements for the case of constantFigure 8 illustrates the
since even a perfect determination(®f, would leave a con- small overlap between the SN and CMB degeneracy regions
siderable uncertainty iw,, as shown in paper I. To be sure, in theQ,,-w plane. Other authors have considered adding the
the Alcock-Paczynski test is useful and worth pursuing, andCMB contribution[27,28 but they have not included the

VI. COMBINING SUPERNOVAE WITH OTHER
APPROACHES
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0 the zdependence cutoff unimportant. Fraza=2 until the
last scattering surface, this model will hawe=—1.
w2 The value ofwg in our time-varying examples is fixed to
4 be —2/3 except where otherwise stated. In each of these
models, we also have=0.65, (15=0.7, 1,=0.3, and(},,
-6 / =0.04. HereQ),, is the baryon density anf),, is the total
\,’ matter density(baryonic plus nonbaryonicNote that lumi-
-8 / nosity distance-redshift measurements are not sensitive to
p /I Qp/Q,,, but the CMB measurements are.
0 2 4 B B 1 The time-varying models were treated as the fiducial
9 model, and then a numerical search was performed for a
m

constant EOS model that is indistinguishable from the fidu-
FIG. 8. A simulation of the problem that arises if one assumesC'aClj m]?del based on thedccl)mblned mea%urergednt of the CMB
w(z) is constant in the fitting procedure. For a given fiducial model,an of supernovae. Models were considered degenerate un

the likelihood fit for the CMB anisotropydashed ling and SN der the combined tests (fl) the percent difference between
luminosity distance-redshiftcontouj observations are illustrated. the luminosity distance-redshift predictions for the two mod-
The degeneracy curve for the CMB assumes cosmic variance lin€!S i less than one percent outzte 2 (the same criterion as
ited sampling, and the SN contour assumes 1% error in luminosityn Paper ); and(2) the CMB predictions for the two models
distance. Each degeneracy region is long and thin, and the two agssuming a full-sky cosmic-variance limited measurement
nearly orthogonal. Based on the small overlap, one is tempted t6n10 experimental errgrcannot be distinguished to better than
conclude that constancy af is well established and its value is 3o. Both criteria are based on optimistic predictions of what
well determined. However, that conclusion is absolutely wrong. Thewill be realistically possible.

fiducial model in this example actually has a rapidly time-varying  For the CMB, distinguishability between a model with a
w(z) = —2/3—1/6z for z<2 andw(z)=—1 for z>2. The degen- constantw and a fiducial with a time-dependewtwas de-
eracy regions were computed assumvig=0, but, ifw, is fixed at  termined by a log-likelihood analysis. The log-likelihood

a value somewhat less than zero, say, there are once again tWpas calculated according to the log-likelihood formula ob-
narrow degeneracy regions which intersect over a small region, bygined by Hueyet al. [35]:

the value ofwg in the overlap region is significantly shifted. That is,
the two experiments produce two degeneracy surfaces that intersect

. " . c(F cP
along a curve in thev, direction along which a degeneracy re- _ l _
mains. EFC E |+ 5 1 _CI(C) + |Og@ . (15)

degeneracy aspect. As we shall show below, introducinghe coefficientsC(™ and C(®) are the CMB multiple mo-
time-varying w(z) introduces additional degeneracy that ments corresponding to the fiducial and constant equation of
spoils the resolution even when the SN and CMB anisotropyiate models, respectively.
measurements are combined. o ~ Figure 8 illustrates the problem that arises if one assumes
Rather than do another complete survey, which is a majofy(z) ‘is constant in the fitting procedure. We have already
technical challenge on its own, we illustrate the degeneracypserved that this distorts results for the case of SN data
in parameter space with a simple example in which we congione. Here we show that the problem remains if CMB data
sider the family ofw(z) of the form is co-added. Assuming is constant ¥, =0), both measure-
ments produce a thin degeneracy region in&hgw plane.
w(z)=wgo+wyz for z<2 Based on the small overlap, one is tempted to conclude that
constancy ofw is well established and its value is well de-
termined. However, this conclusion is absolutely wrong. In
this example, the fiducial model actually has a rapidly time-
This form was chosen to allow significant time variation re-varying EOSw(z) = — 2/3— 1/6z for z<2 (which produces a
cently when(l, is large and, in particular, to be similar to change inw of 50% over this range andw(z)=—1 for z
the models considered in paper | fex2. Forz<2, the = >2. The degeneracy regions were computed assuming
degeneracy problem with respect to SN data was already 0. If w; were to be fixed at a different value, once again
demonstrated and they-w,; degeneracy region was charac- the two measurements will give two narrow degeneracy re-
terized. However, we could not simply maintain the lineargions with a small overlap, but the value wf, in this over-
change inw(z) with respect toz out to the last scattering lap region is significantly shifted. For example, as shown in
surface az=1000 because the value wfwould be ridicu-  Fig. 8, fixingw; =0 results inwy= —0.74 with a few percent
lously nonphysical. Hence, we cut off tiedependence at a error. However, ifw; were to be fixed at its correct value
value of z where () is negligible andw(z) is physically ~w;=—1/6, the result would have beem,=—2/3, again
plausible. We then maintain that condition back to the lastvith a few percent error. But the central values differ by
scattering surface. For example, far=—2/3—1/6z and more than 10%. It is clear, then, that the two measurements
(2)0=0.7, atz=2 the dark energy contribution to the total produce two degeneracy surfaces which intersect along a de-
energy density is less than 15%, which makes the details gjenerate curve which passes through a range of models with

=wp+2w,; for z=2. (14
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FIG. 9. lllustration of the degeneracy problem for a model with consteantd two models with time-varying as discussed in the text.
The upper left hand panel compares the CMB power spectra. The lower left shows the differences between the time-varying models and the
constantv model and shows that they are less than or comparable to the full-sky cosmic variance theoretical uncertainty, the envelope shown
in the figure(dotted line$. The upper right panel compares predictions for the luminosity distance-redshift relation. The lower right panel
shows the differences with respect to a constant model are less than the 1% resolution anticipated from supernovae measurements.

varying values fow, andw., that remain degenerate under ment in the sense that,; andwg are more constrained than
the combined observations. For more complicated functionalvith SN data alone based on our earlier analysis or in paper
forms ofwg(2) the degeneracy curve becomes a more com!. The improvement is by a factor of four or sssuming a
plicated higher dimensional surface, and the range of degefinear form for w(z), which is significant. However, there
eracy in parameter spa¢say, forw,) increases. remains a large uncertainty in the EOS. Furthermore, we
The complications in the process of extracting the EOSvould stress once again that the accuracy in determining
from both measurements are further illustrated in Fig. 9strongly depends on its assumed functional form. The range
There we show two time-varying models with slofes| of degeneracy obtained for; (a bit more thant0.1) in our
>0.1, one of which is degeneratey the log-likelihood tegt ~ €xample underestimates the degeneracy for genefa).
with a constantw model with w=wy,=-0.72 andQ, For example, for parabolic forms, the uncertainty vin
=0.04,Q,=0.31,0,=0.69, anch=0.64. The other can be blows up to*0.5. Given the extraordinarily precise data that
barely resolved making the most optimistic estimates aboufas been brought to bear, the allowed variationy) w;,
cosmic variance. A slight decreasevin, or a slight decrease and{}, is disappointing.
in experimental sensitivity would render the second model
degenerate. The lower two plots magnify the differences be- VIl. CONCLUSIONS

CMB, we have also shown the envelope based on the COfneasure the equation of state of the dark enawgyz). This
stantw model corresponding to the full-sky cosmic variance

limit. For the SN, we have constrained the limits to lie be- 0
tween*+1%.

If |w,| is larger than 1/6 for our particular form of(z), w2
we find that there is no overlap between the degeneracy .4
curve picked out by CMB measurements and the degeneracy ’
contour picked out by SN measuremeftuhere both fit as- -6 /
sumingw is constant An example is shown in Fig. 10. In /
the case of negativéositive w,; the CMB measurements -8 /
that fit best suggest lowhigh) ()., whereas the SN measure- ] / \

. . - v
ments suggest higllow) . If this absence of overlap 6 =2 4 & 8 1
were to be found in the real data, an interpretation to pursue Q
m

is thatw is rapidly time varying. Yet such an extreme sce-

nario is not favored by most theoretical models, most of £ 10 The same as Fig. 8 but with a fiducial model with
which predict a moderately time-varying. For the more  _1/3 Forcases like this with very rapid time variation is, a
likely case, in which the two measurements do overlap, cOMgymptom is that the CMB and SN degeneracy regions do not over-
bining them reduces degeneracy by only a modest amountp. Forw;, large and positive, as in this example, the SN contour
generally not even enough to decide whether the dark energyolid black lies to the right of the very thin CMB degeneracy

in the universe has a time varying equation of state or not.region (dashed curje For w; large and negative, the SN contour
Coadding the CMB to the SN data represents an improveties to the left.
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can provide important information about the fundamentalprovide the needed resolution to constrain the time variation
physics that is responsible for the accelerated expansion ¢Sec. V).

the universe. Measurements of the distance-redshift relation Our principal conclusion is that a new test is required to
using supernovae, perhaps combined with other direct mettchieve the goal of measuring,(z). In devising a new test,

ods such as the Alcock-Paczynski test or the cosmic microthe two considerations must be precision and model depen-
wave background, would appear to be promising methodgient. Thus far, among the measurements that we have con-
Indeed, analyses based on thpriori assumption that/o(2) sidered, the measurements which are precise give constraints
is constant suggest that, can be resolved to 5% accuracy O" Wo that are highly model dependent, leading to degen-
or better. eracy problems. Tests which are not model dependent turn

In this paper and paper I, though, we have uncovered qut to be difficult to measure precisely. So, there lies the

number of problems and pitfalls that arise when trying tochallenge.

. . . . : In considering alternatives, it is critical to include practi-
determinewq(2) W|thoqt making prior assumptions. Our les- cal estimates of their uncertainties. Furthermore, one must
sons may be summarized as follows.

Because measures of luminosity or angular distance d consider how the new tests themselves dependg(z). For
pend on integrals ovewg(z), a first degeneracy problem eexample, claims have been made g and(1q have been
Q\4/ or will be measured very accurately by measurements of the

arises in which neither the current value nor its time variagsmic microwave backgrouniB6]. However, those esti-
tion can be resolved to any useful accuraBgc. 1. mates are based on assuming thigt= — 1. Making no prior
an X Gssumption about(z), a degeneracy problem once again
depends on the combination()q rather thanwg itself, 8 5yises[35] that spoils the resolution dRo and wo(z), as
second degeneracy problem arises in whighandQq are  giscussed in Sec. VI.

changed simultaneously so as to keegl), fixed (Sec. Il While trying to devise a new test to determing, it is
Although SN measurements may extendto2, they are  \yorth mentioning that a precise measurementéfwill be
most sensitive to the behavior wfy(z) at a modest value of extremely useful. The dependencevnf onH, H’ (prime

z 20-1_0-4(330 !;D.th v the first d denotes a derivative with respect x=1+2) and Q,, is
onsequently, if there were only the first degeneracy . _ 2 L2 2 2.3 i
problem,wq(z) could be well resolved a=2z* even though given bwa;,(?xl-:H | H )/(.I_: (ﬁmHOX I) Ago‘;d mbea
it is not well resolved for other values af Unfortunately, surement oH" s clearly cr/uc!a to the resolution o¥q, but
the resolution ofwo(z*) is totally degraded when one in- current tests do not probi¢’ directly. The next best option is

cludes uncertainty il 5 and the second degeneracy problem;[j0 r_nea}surel-léz_), a?d thh_en estlmatHh by clalpulalfttljng |ij
(Sec. Ill, especially Fig. 2 erivative. Obviously, this worsens the resolution fbr an

The common practice of fitting data assuming thg(z) ~ 'Ncreases the uncertainty g . _
is constant can lead to grossly distorted results. Similarly, the 1 Nree additional approaches that we have not tried yet are
common practice of assuming,=—1 can lead to grossly Measuring the time dependence of structure growtiv()
distorted results. Figure 5 shows a dramatic example ir537]’ gravitational lensing, and direct measurementszstit
which these practices lead to the conclusion thgt=—1 be discussed elsewhel(&)).
and is well resolved when, in realityo>—1 and rapidly
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