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Gravitational wave detectors will need optimal signal-processing algorithms to extract weak signals from the
detector noise. Most algorithms designed to date are based on the unrealistic assumption that the detector noise
may be modeled as a stationary Gaussian process. However most experiments exhibit a non-Gaussian “tail” in
the probability distribution. This “excess” of large signals can be a troublesome source of false alarms. This
article derives an optimain the Neyman-Pearson sense, for weak sigredmal processing strategy when the
detector noise is non-Gaussian and exhibits tail terms. This strategy is robust, meaning that it is close to
optimal for Gaussian noise but far less sensitive than conventional methods to the excess large events that form
the tail of the distribution. The method is analyzed for two different signal analysis prob{@n@sknown
waveform(e.g., a binary inspiral chijpand(ii) a stochastic background, which requires a multi-detector signal
processing algorithm. The methods should be easy to implement: they amount to truncation or clipping of
sample values which lie in the outlier part of the probability distribution.
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[. INTRODUCTION processing techniques to search for deterministic and sto-
chastic gravitational waves. These techniques raf®ist
The construction of several new detectors of gravitationameaning that they will work well even if the detector noise is
radiation is currently approaching completion. These instrunot Gaussian but falls into a broader statistical class that we
ments are of a different design and have significantly betteexpect includes realistic detectors. In large part, these new
sensitivity and broader bandwidth than previous detectorsnethods are similar to the older ones: one constructs
They include the LIGO detector being built in the United matched filters to search for known waveforms or cross-
States by a joint Caltech-MIT Collaboratiofi,2], the correlates the instrument outputs at the different detector
VIRGO detector being built near Pisa by an lItalian-Frenchsites to search for a stochastic background. The essential
Collaboration[3], the GEO-600 detector being built in Han- difference is that by using locally optimal methdd$)] these
nover by an Anglo-German Collaboratioj#], and the statistical measures are modified. The effect isuacatethe
TAMA-300 detector near Toky@5]. There are also several statistics: detector samples that fall outside the central
resonant bar detectors currently in operafiéh and several Gaussian-like part of the sample distributiore., the outli-
more refined bar and interferometric detectors presently ierg are excluded fronfor saturated when constructinthe
the planning and proposal stagfs]. These instruments measurement statistic. For both cases, a robust statistic is
search for very weak signals. For the most likely sources, théound which performs better than the optimal linear filter in
signals will be buried in the noise of the detectors, and neethe case where the detector noise is non-Gaussian, and al-
to be extracted with sophisticated optimal signal-processingnost as well in the Gaussian-noise case.
strategie48]. The paper is organized as follows. In Sec. Il we derive the
The standard assumption made in the literature is that thiecally most powerful signal-processing tests for determinis-
detector noise has multivariate Gaussian statistics. This asic signals. We begin in Sec. Il A with a derivation of the
sumption is certainly incorrect: every sensitive gravitationalNeyman-Pearson criteria for optimality, in the case where a
wave detector operated to date has been characterized kBpown waveform is hidden in white noise. We define the
noise that is both non-stationary and non-Gaussian. Somgower function of a test and derive a criteria for the locally
experimentation has shown that this is a serious m@@er optimal test in the weak-signal regime. The locally optimal
existing detection strategies for both deterministic and stotest is analyzed for a number of different types of non-
chastic signals do not perform nearly as well when non-Gaussian noise, and we show that the locally optimal deci-
Gaussian noise is present. Roughly speaking, if the norsion statistic is a matched filter where the non-Gaussian
Gaussian fluctuations are large, they bias the statistics arghmple values are truncated or excluded. In Sec. Il B the
make it more difficult to achieve a given level of statistical results are generalized to the case where a known waveform
confidence. is hidden in colored noise, and we introduce models for non-
In this paper, we develop a new set of statistical signal-Gaussian colored noise. In Sec. Ill, we turn to the detection
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of a stochastic background. Section Ill A considers the caswhen in facte vanishes. This is given bif(5|0). The false
of a stochastic signali.e., where the waveform is not dismissal probability is the probability with which we con-
known) and derives the locally optimal statistic which can becjyde thate=0 when in fact it ise= e#0. This is given by
used to correlate two identical detectors, where we assu R 5|:)

that each detector has independent white noise and is co- One sténdard definition of the “best” testis that it mini-

aligned and coincident. In Sec. Ill B, these results are gener- . e o :
. L mizes the false dismissal probability for a given false alarm
alized to the case where the noise is colored, and the dete P y 9

o i . . robability. This is called the Neyman-Pearson test. One can
tors are in different locations, and not aligned in parallel. Inﬁ Y y

. . . o d this test using calculus of variations, with a Lagrange
Sec. IV, we discuss an implementation of these statistics, a 9 grang

we illustrate how on n compare th rforman £ dif) ultiplier A to enforce the constraint that the false alarm
€ fiustrate how one can compare the periormance o \probability is fixed. The best test is obtained by partitioning
ferent statistics using Monte Carlo simulations. Section

. . RN as follows. Choose a constaft,>0. Then, setf=1 in
contains a short conclusion and summary. regions where the likelihood ratio

Il. DETERMINISTIC SIGNALS B p(x|e€)

A. Single detector, white noise ~ p(x|0) @3

In order to describe the idea in a simple way we flrsti greater tharh . Sets=0 elsewhere(We assume that the

Q|scuss the case where we are searching for a known siang undary between these two regions is a set of probability
in the data stream of a single detector, where the time-

domain detector noise samples are independent in the timg. oo o zerp The value of the constantt, determines the
P P M&ise alarm probability. Thus, the likelihood ratio is a “deci-

domain. . .

. sion statistic:” a number that can be calculated from the ob-
. Denote the data s;ream (.)f the.flrst detectonxpy Xy, for served data. If the statistic is less than some value, we con-
j=0,... N—1. In this section, since we are going to only

clude that the null hypothesis holds. If the statistic is greater
than this value, we conclude the opposite. The decision sta-
tistic provides a partition of the space of observations into

two disjoint regions.

In the case where the noise is GausgiaR) this criteria

consider this single detector, we will drop the subscript “1.”
Imagine that we are looking for a signal of known waveform
but unknown amplitude, which we will denote byes; . Our
primary interest is in the case where the ampliteds either

S’T‘a”' or zero. For convenience, |mag|ne'for the momept thai% easily understood. The optimal Neyman-Pearson test di-
this parameter can have only two possible values, e#ner ;4o the space of observation along ah-(1)-dimensional
=0 ore=e+0. . ~ plane. On one side of this plade=1 and on the other sidé

The detection problem that we need to solve is to partitionanishes. The plane is defined by setting the likelihood ratio

the space of possible observatidRs into two disjoint sub-  (2.3) to a constant. For the Gaussian probability distribution
sets. When the observatiarfalls into one of these, we con- (2.2) the plane is defined by

clude thate=0 and that the null hypothesis is true. When the

observation falls into the other set we conclude that the sig- N1 2o
nal has been observed wig¥ 0. To describe the partition of const= _HO e (i es)zhy
RN into two regions, define a functioA(xe RN) which is .
zero in the null hypothesis region and unity elsewhere. This N—1
function is called dest Our goal is to find the “best” choice — conste >, X;s;. (2.4)
of a testé. i=0
To help characterize tests, it is helpful to define the _ ) _ ) )
power function of a test: This plane is perpendicular to the vectDifferent choices

of this plane correspond to different false alarm rates.
In the case where the noise is not Gaussian, the problem
F(dle)= fRN 8(x)p(x|€)d"x. (2.1 becomes more challenging. In the Gaussian test, the decision
statistic is independent of the signal amplitueleHowever
Here p(x|€) is the probability distribution of the measure- when the noise is not Gaussian, the choice of decision sta-
mentx given signal amplitudes. For example, for additive tistic depends upor. Consider the graph in Fig. 1 showing
white, stationary Gaussian noise of unit variance and vanishthe power functionF(5|€) as a function ofe for several
ing mean different tests. All the tests have the same false alarm rate,
N—1 but the optimal test depends upon the value .of
- 12— (xi— €5)2/2 For the case of weak signals in non-Gaussian noise, there
P(xle)= iHO (2m) i e, 22 is a useful test called the “gi’ocally optimal” test. For a given
noise probability distribution, the locally optimal test is easy
The quality of the test can be expressed in terms of the poweb describe, and leads to a simple decision statistic which can
function. be calculated from the observed dgté]. To define this test,
We characterize the quality of the test by the false alarnit is useful to again consider the set of all tests with a given
and the false dismissal probabilities. The false alarm probfalse alarm rate, as shown for example in Fig. 1. The locally
ability is the probability with which we conclude thatt 0 optimal test is the one that maximizd&(5|e)/de at e=0
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Power Function N-1
dInp(x|e) )
1 —g. -~ 2 sf(xi—es) (2.9

wheref’ denotes the derivative dfwith respect to its argu-
ment. Settinge=0 in this expression one can easily find the
locally optimal test(2.5). This is defined by setting=1 in

Locally optimal test

3 the region

'

'*E's 05| N-1

g A(l): z Sif’(Xi)>ConSt (29)
2 =0

and settingd=0 elsewhere[Note: if e can take either sign

* e then an absolute value sign should enclose the LHS of

the inequality in Eq(2.9).] As before, the value of the con-

05 stant determines the false alarm probability. Here are several
Amplitude ¢ examples:

Gaussian noisef (x) =x%/2+In(2m)/2, sof'(x)=x. For

FIG. 1. The power functiofr (5| €) is shown for three different this case the locally optimal te2.9) and the optimal test
tests. All have the same false alarm probabifi|0). Tests; has (2.4) both give the same statistieN “Lsx . This is the stan-
the best performance for large Testd, is not the best test for any ’ i=0 9% -

value ofe. Testd, is the best test for smad. Thelocally optimal dard optlmal_ linear fllter. ,

test 8, is the one for whichdF(8|€)/de is largest ate=0. If the Exponential ~ noise f(x)=alx|~In(a/2), so f'(x)
first derivative of the power function with respectdovanishes for ~— aSgn(). Here the locally optimal statistic is given by Eq.
all tests, then the locally optimal test is the one with the Iargest(z-g) as
second derivativéand so on, if additional derivatives vanjsh

N—-1

for a fixed false alarm probability. As above, one can show 20 Sisgrixi) (210
that the locally optimal test sets=1 inside the region where

where the sgr() function is +1 for x=0 and —1 for x

A@y=[dInp(x|e)/de]._o>const (25 <o.
Sum of distinct Gaussian processeéhis is a white-noise

for some constant, and=0 elsewhere(see Fig. 1L The  version of the model given ifl1]:
value of the constant determinésr is determined bythe
false alarm probability. More generally, if the first derivative e f0=(1-P)(2m7) V2o le~¥I20°
vanishes, the locally optimal test is determined by the first _ .
non-zero +P(2m) Yoo~ e X 120", (2.11)

1 d"p(x|e) where 0<o <o and P e (0,1). Usually one also haB<1.
OZ5X0) g | (2.6)  This noise model is discussed in more detail later in this
e=0 paper. It often arises when the most common source of noise
is Gaussian, but there is also a “tail” of “outlier” events
To understand the implications of this, it is helpful to con-hich dominates the wings of the distribution. Here the lo-

sider several examples. N cally optimal statistic is defined by E¢.9) where
The examples here are for the case where(&uglitive

detector noise is independent for each sample védoehe (1-P)+ P(Ulg)sexz’((fZ—(?Z)/z
noise spectrum is whiiébut has an arbitrary probability dis- f'(x)=x0"2 = %o e |
tribution. For convenience, we write (1-P)+P(olo)e

N-1 This function is showrtfor the caser=1, o=4,P= 1%) in
p(x|e)=[] e e (2.7 Fig. 2. Roughly speaking, fdix| small compared ter one

=0 hasf’(x)~x/c?. For large|x| one hasf’(x)~x/c?.
where the functiorf is a quadratic function of its argument Gau|SS|ar1]c nmsg pllijs umfgrm backgrocljurldbre, we'have .
for the case where the probability distribution of the noise isaf(smal) uniform dac groun superﬁ_osg dor}_Ga:jusglnar] noise
Gaussian[Note: any probability distribution for stationary °f Z6roc mean and unit variance. This is defined @&mal)
additive noise where the sample values are independent &0 by
be written in this way. If the noise is not stationary but is still

—1/2,—x%12
additive and independent, then each functi@ppearing in e f0= (1-P)(2m) Y% 2+Pi2L, [x|<L,
Eq. (2.7 may be differen (x;— es;) — f;(X;— €s;).] The first 0, [x|>L.
derivative of the PDR2.7) with respect toe is (2.12
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3 y y . . T probability density functionfPDF) of the detector samples
may be expressed as

p(x)=(2w)—N/2(detR)—1/2exp( - %XT- Q-x) (2.13
1 (0

where theN X N correlation matrixR=(x@x") is a positive-
definite real symmetric matrix with(N+1)/2 real degrees
of freedom andQ=R ™. We have assumed that the process
) has zero mean. The volume element associated with this PDF
gt ] is dx=1I}55dx;. In the time domainx is a vector of real
numbers so'=x".

In the case where the random process is stationary, the

@) and f'(x)/x
o

-2r i matrix R is a Toeplitz matrix, which depends only upgin
—j|. Such a process is defined by the first row or first col-
3 ! ! s s ! umn of the matrix and has only real degrees of freedom.
-6 -4 -2 0 2 4 6 Thus stationary Gaussian processes are a tiny subsat of
* Gaussian processes.
FIG. 2. The functiond’(x) andf’(x)/x are shown for the sum Now consider the PDF of new~random variables that are
of distinct Gaussian processes, defined by @qll) with param-  linear combinations of the old ones=U- x. TakeU to be an

eterso=1, =4, andP=1%. For small|x| one hasf’'(x)~x.  arbitrary unitary matrix. Clearly the PDF of these new vari-
Outside the central Gaussian regigvhich dominates the probabil- gplesx is still Gaussian. The matrix) can be chosen to
ity density, i.e., for large|x|, f'(x) falls off. This effectively  diagonalize the correlation matrix: this is called a Karhunen-
“clips” the correlation statistic for outlier data samples. Loeve transformation. In the limit where the time interval
occupied by theN samples is much larger than the correla-
tion time of the noise, the linear combinations of random
variables that diagonalize the correlation matrix asymptoti-
cally approach the discrete Fourier transfoiid#T). This is
given by

Here we assume that>1 is the scale size of the uniform
backgroundthe probability distribution is correctly normal-
ized only in the limitL—~). In this case one finds that
f’'(x)~x for [x|=1 andf’(x)=0 for 1<|x|<L.

While the results for the different probability distributions
are technically different, they all carry the same message, U, =N~ Y22mikiN, (2.14
which is the central result of this papéfthe distribution of :
sample values has a central Gaussian region, then samplghus, if N is sufficiently large, to a good approximation the

values falling in this region should be correlated exactly aspPDF of the new variables in the Gaussian case may be writ-
they would be in the Gaussian case. If a sample value fallgen as

outside this region, its value should be truncated (or clipped)
to the largest allowed value in the central region, or even - . -
dropped from any correlation statistic, depending upon the p(x)= kH 27 1P texp(—2[xd?/Py)  (2.19
shape of the probability distribution -t

Let us repeat this ce_ntrgl point one more time. The res_ult§\,here P, is the (real, positivé mean spectral amplitude in
show that when the noise is not Gaussian, the normal optimghq kih frequency bin:
filter used to construct a decision statistic is replaced by a
somewhat different sum. The values of the expected signal . 1
are multiplied, not by the observed databut by some non- XXy = 5 Ok P (2.19
linear function of that data, then summed. In the event that
the probability distribution of the noise has a non—GaussiaqOr 1<k.Kk' <[(N—1)/2]; thus R=U-R-U"1=1Ldiag P,].

o o el ot ool o7 WoTGS. 1  good appromaton 0 Gxpess e
P 9 DF of a stationary colored Gaussian process as a diagonal

the probability distribution function. process in frequency space.

The limits of the product in Eq(2.15 appear strange

) _ because cannot take on arbitrary values sincés real. The
If the detector’s noise spectrum is colored rather thanonsequences include:

v_vh|te, then the previous analysis does not apply: the assump- ;k:;(ﬁ—k- Hence the amplitudes 0}k for k=[N/2]

tion that the different sample values are uncorrelated no

[(N-1)/2]

B. Single detector, colored noise

longer holds. However the analysis can be generalized to thé 1, - - - N—1 are completely determined by, for k
colored case if we make assumptions that are motivated by 1 - - - L(N=1)/2]. -
the properties of stationary detector noise. Xo and, for everN, x» are real. However, we assume that

In explaining this, it helps to begin by describing the sta-the data set has had the mean vall¥ term) removed:
tionary Gaussian case. For a colored Gaussian process, tﬁé‘z’ol j=0. Since gravitational wave detectors are AC-
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coupled and have no useful low-frequency response, this is a The locally optimal statistic may now be easily derived.

valid assumption. It implies th5¢0 is identically zero. Sec- Letting's, denote the DFT of the expected waveform, and as
ond, whenN is even, we assume that there is no energy irbefore zeroing its DC and Nyquist components, the condi-
the Nyquist frequency binxy,, also vanishes identically. tional probability distribution of the detector output is given
This is a very reasonable assumption, since an experimeﬁ‘b’

will include an anti-aliasing filter whose responss a func- [(N-1)/2]

tion of frequency falls off rapidly as the Nyquist frequenc = 1p- = ~

o approaghed_ y pIcy va WY pXle= 11 27 P lexd —gu(2x— esd?/Py)].
The volume element associated with this PDF is therefore

TN-D21g(97%,) d (3%, The locally optimal test can then be obtained from the first
k=1 derivative:

The likelihood ratio in the case of colored, stationary,
Gaussian noise is [(N=1)/2]

— PN ’ |2
In A=1Inp(x—es)—Inp(x) Awy=4 gl R(sc X/ P9k (2[x T Py). (2.2D)

In the colored Gaussian cagg(u)=1 this is the ordinary
optimal linear matched filter. The contributions of the differ-
ent frequency bins are weighted by the inverse noise power
or, in the frequency domain, spectrum in that bin. In the non-Gaussian case, just as for the
[(N=1)/2] case qf u?colocrjed white nociisfz, the correkl)gﬂt'ion inlfrequljency
~ space is clipped or truncated fdrequency-bin samples that
In A =(cons)+edR g‘l Sic X/ Py (2.18 lie outside the central Gaussian part of the probability distri-
bution, wherdg’(u)|<1. An example of this may be seen in
Thus, the matched filter statistic, with a weighting equal toFig. 2: for the illustrated casg’ (x%/2)=f'(x)/x.
the inverse of the noise spectrum, is the optimal detection Let us consider another form of non-Gaussian noise that
statistic. describes a process in which there is an ambient Gaussian
This motivates a more general model for the statisticahoise background interrupted occasionally by a large noise
distribution of colored non-Gaussian detector noise, assunburst, which we will model a second component of Gaussian
ing that it is still stationary. In this case, to good approxima-noise with a much larger variance. The probability distribu-
tion, the two-point correlation matrixxx;,) is diagonal. tion we adopt ig11]
There may be higher-order correlations present between the 1
Fourier amplitudes at different frequencies, but we will as-  p(x)=(1— P)(ZW)N’Z(detR)l’Zexp{ — Zxt Q.)()
sume that this additional correlation is negligible, and that to 2
a reasonable approximation the probability distribution of the 1
noise in the non-Gaussian case is described by a PDF in +p(27-,)N/Z(deﬁ)l/Zexi{__xT.(j. x) (2.22
which the different frequency components are independent: 2

1
=esT-Q~x—§est-Q-s (2.17

[(N-1)/2] whereR is the autocorrelation matrix for the normal ambient

px)= [I 27 P texd —gu(2[Xd%PW)1, detector noise anR is the composite autocorrelation matrix
=1 21 for the detector noise when a noise burst is present. The
(2.19 noise bursts occur with probability in this model. Also,

with volume eIementHL(:Nf1)/2]d(9%7<k)d(3§<k). The func- Q=R ! and (5= R~ We assume tha® is much smaller

tions gy (u) depend upon the frequency bin indexso that  thanQ, meaning tthT~Q-x>xT- Q- x for all vectorsx. The
the statistical distribution can depend upon the frequencyocally optimal statistic is
For the colored Gaussian case the functionggata) =u. In

order that the PDF be properly normalized, and that _dInp(x=es) =m(ST'Q'X) (2.23
(XiXp) = 3 8o Pi, the functionsg,(u) must obey W de =0 1ta .
o o where
f efgk(”)du=f ue %Wdu=1. (2.20
0 0 P [detR [1 . _
Respectively, these constrain the additive constant in the ““1-P V ger xr{zx (Q-Qx) (224

definition ofg,, and the multiplicative scale of the argument

of g,. This is not the most general possible form of the is a detector of possible bursts. When a burst is abgei,
probability distribution of a stationary random process, but intypically small and the locally optimal statistic reduces to the
many situations it should be a reasonable approximatiomnatched filter. However, when a burst is presenis typi-
particularly if the quantities of interest are dominated by thecally large and the matched filter is suppressed. Thus the
second moments. locally optimal statistic is nearly equivalent to the matched
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filter statistic with a veto if a segment of data has a largeThis system can be analyzed in exactly the same way as in

amount of excess power as measured by Sec. Il A. However the stochastic background does not pro-
. duce a known(deterministig signal, so that the probability
E=x1-Q-x (2.29 distribution needs to be averaged over its expected distribu-
. . tion pg(Sps - - - Sy_1) (Which, by reason of the central limit
or, in the frequency domain, theorem, is almost certainly a multivariate Gauskidrhis
[(N-1)/2] leads to a joint probability distribution which is given by

E=4 kZ X2/ Py.. (2.26)
=1

p(X11X2|€)=f dsp- - f dsy-1Psi(Sos - - - Sn-1)

The lengthgin time) of the data chunks used to estimate the

autocorrelation matrices should be chosen to be significantly N-1

longer than the characteristic time of the signals being X [] e fatxaimes)—faleji-es)

searched for, but still short enough that the detector behavior =0

is quasi-stationary. For inspiral signals, typical signals are in N—1

the detector band for tens of seconds, so the matrix estima- :J dspey(s) [T e frlaies)—Ta0c—es),

tion time should be at least of the order of tens of minutes. SO0

For stochastic background detection, the correlation time be- (3.2

tween the two instruments is tens of milliseconds, so that the

matrix estimation time should be at least a few seconds. Heree may be thought of as the coupling of the detector. The
Based on the two forms of non-Gaussian noise consideregase of smalk corresponds to a detector that is only weakly

in this section, it seems reasonable to adopt the followingoupled to the signal. For this non-deterministic signal, it is

detection rules(i) veto immediately any segment of data that still straightforward to construct a locally optimal test, and a

has an excess of power as measured by the excess powggresponding decision statistic or threshold criterion.

statistic;(ii ) for segments of data without an excess of power, The locally optimal statistic is obtained from the deriva-

construct the matched filter in the frequency domain, butive of the probability distribution with respect @ This is

exclude those frequency bins in which the detector power igiven by

too large. The resultingtruncated matched filter is a good

approximation of the locally optimal statistic for a wide va- dp(X1,Xo|€)
riety of possible non-Gaussian noise distribution. In this de
sense, it is a robust, nearly optimal detection statistic. N-1
= | dspgys Si[f1(Xq;— €S
Ill. STOCHASTIC SIGNALS f Psif )( ,Zo iLTa0x,~es))
Observational limits from nucleosynthesis demonstrate N1
that the stochastic background of gravitational radiation has +fp(xpy—esp]| I] e Talxaimesd=faloi—es),
such small amplitude that it would not be detectable with a 1=0
single instrumenit12]. In a single instrument, there would be (3.3

no practical way to discriminate between intrinsic detector

noise and the small additional noise-like output arising fromSettinge=0 and dividing byp(x;,x,|0) yields the locally
a stochastic background. However, one can correlate the ougptimal statistic:

puts of two different instruments and search for a common
signal in this way. If the instrumental noise is not Gaussian, , ,

then the previous single-detector analysis can be easily gen- A= ,—Z‘o [f1(x1))+ fz(xz,i)]f SjPsy(S)ds. (3.4
eralized.

N—-1

Unfortunately this vanishes if the random process described
A. Two coincident co-aligned detectors, white noise by psS) has vanishing mean, since in this case

We begin by considering the simple case in which the two/ SjPsi(8)ds=0. This is indeed the case for the gravitational-
detectors are coincident and co-aligned, so that they hay¥@ve stochastic background. _
identical output contributions from the stochastic back- When thefirstderivative vanishes, the locally optimal sta-
ground but independent intrinsic noise. We also assume thd#tic is defined by having the largesecondderivative ate
the intrinsic noise samples in each detector are independerit,0- See€ Fig. 1 for example. Taking another derivative of Eq.
and hence white. (3.3 and settinge=0 yields

If the signal were deterministi¢known) then the joint N—1

robability distribution for the samples in the two detectors
P y P A(z):f dSpsb(S)[< 2

2
could be written as “ SJ[fl(Xl,i)“sz(Xz,J)])

N—-1 N—-1
p(xl,lee): Il:[o e f1lxqj—es) g falxz—es) (3.1 - 120 sz[fllr(Xl’j)-ng(Xz'j)]] . (3.5
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The terms that appear in this statistic have different characthis generalized cross-correlation statistic reduces to the or-
ter, and before moving on, some discussion is required.  dinary cross-correlation statistic in the case where the detec-

The locally optimal statistic depends upon the statisticator noise is Gaussiariz (x) = f,(x) = x%/2+ log(2m)/2. It can
character of the stochastic background radiation through thee easily generalized to the case of three or more detectors
second-order moments. We will assume that the stochastld0l.

background is a stationary process, so that the second order In practical workC will vanish for lags greater than the
correlation(s;s;) is a function of the ladi—j| only: light travel time between the two detectdise., 10 ms for

the LIGO detectors This means that even N is chosen to

be very large,Agcc only correlates samples from the two
C(li—j |):<3isj>:f dspsy( 9)s;sS; - (3.6) detectors taken within this time windoyote: if the detec-

tor noise is colored, then the time window may be larger, as

_ _ will be seen shortly.
In a stochastic background search, the “signal model” only

requires an assumption about the form of the spectrum. Thi8. Two non-coincident non-co-aligned detectors, colored noise

is (roughly) the Fourier transform o€(A). Without loss of In this section, we generalize the work of Sec. Il Ato the
generality we normaliz€(A) so thatC(0)=1 (this simply  case where the two detectors are not coincident or co-
scales the value af). Expressing the locally optimal statistic aligned, and their noise power spectrum is not white. We

in terms of the correlation functio@ then gives assume that the intrinsic detector noise of the two detectors
is independent. If the two detectors are widely separated and
N-1 N-1 subject to different environmental influences, this assump-

Apy=— iZO [f’l’(xlj)+1"2’(x2,i)]+1_;O C(|j—k|) tion should hold.

Let us start by assuming that the two detectors each have
/ / / / internal (instrumental colored Gaussian noise with known
XEF 2O ) Ta(Xap) +T5(%z) Ta(Xak) autocorr(elation mat?ice@in,l andR;,,, and that the instru-
+2F1(xq5) F3(Xap) 1. (3.77  mental noise of the two detectors is independent. The sto-
chastic background produces an additional source of colored
Gaussian noise that is correlated between the two detectors.
The stochastic background noise is measured by the autocor-
Yrelation matricesS;;=(s,®5!), S,»=(s,®5}), and the cross-
correlation matricesS;,=(s,®s}), S,;=(s,®s}). Since the
tochastic background is isotropi8;;= S,»= Ry, (the sto-
hastic background contribution to the detector’s autocorre-

Each of the five terms that appear in E§.7) has a specific

interpretation. The first four terms that appear in the locall
optimal estimator\ , are generalized “single-detector” sta-
tistics which do not cross-correlate the two detectors. The
are generalized measures of the “energy” received by eac

individual detector, and provide useful information only if | ;0 matrices and S;,= S,,= S (the cross-correlated noise
the stochastic background contributes substantially more tBetween the detector32 duelto the stochastic backgyolihd

the measured signal than the detector output does, or if @) autocorrelation noise of the two detectorsRis=R;, 1
detector's intrinsic noise contributions can somehow bey (2R andR,=R, ,+ €2Ry,. In the presence of the Sto-

separated from the noise contribution arising from the stogpastic background., the likelihood ratio is
chastic backgroundThis will not be the case for the first

few generations of gravitational wave detectpfBhe last _ N 1 _ 1.«

term in Eq.(3.7) is a generalized cross-correlati¢&CC) P(X1,%p|€)=(2m) "(det®)~"ex Eg R
statistic that provides useful information even if the detector (3.9
noise dominates the signal: the expected case fo\yvhere

gravitational-wave stochastic background. To quote from

Kassam[following Egs.(7)—(24) in Ref.[10]]: R, €°S
“It is important to note that the increase in power level &= 2

occurs whenever random signals are present at the individual €S R

receivers of the array regardless of whether the signalfn the weak signal approximation,

acrossthe array are one common signal or are completely

uncorrelated. The GCC part of the locally optinthD) sta- s-1o Qn1 O

tistic responds only to aommonsignal or at least to signals 1o Qinz

which are spatially correlated across the array elements. This

is a major reason why it is useful to employ only the GCC 5 Qin1'Rso Qint  Qina S Qin2 }

Qin,z' S Qin,l Qin,Z' Rsb‘ Qin,2

X
' and XY=

X2

part of the LO statistic in applications involving detection as T €
well as location of signal sources.”

For this reason(and others[19]) we drop the single- 4] | QinaRsp Qin1 Rspr Qin1,0
detector terms from the statistic, and define the GCC statistic € 0,Qin2* Rsp' Qin2- Rep Qin 2
as
{Qin,l' S Qin,z' S Qin,lvo} ] n O( 6)
- 6 1
< 0.Qn2 S Qin1-S Q2

Agec= ZH(E:O C(li—kDfi(x ) fa(xep). (3.8 (3.10
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In det¥ =In detR;, 1+ In detRy, o+ €[ tr(Qjn.1* Rep) In det>=In detR; + IndetR,— €*tr(Q,-S-Q;- S

+0(€b), (3.149

1
+tr(Qin,2' Rsb)] - 64 Etr(Qin,l' Rsb' Qin,l' Rsb)

1 and
+ Etr(Qin,Z' Rsb' Qin,2' Rsb)

InA=e*R(x5Qp-S-Qp-Xq) +O(€%) (3.15

+1r(Qin2' S+ Qi1 S) | +O(€°), (3.1)

whereQ;=R; ' andQ,=R, *. The locally optimal detection
and statistic.(which !s appropriate for weak signalis the cross-
correlation statistic.
To generalize to non-Gaussian noise, it is helpful to use
In A =1np(xy,%| €) — In p(X1,%,|0) moment ggnerating functions. Su_ppo_se the venforepre-
sents the internafinstrumental noise in the first detector.

o 1 1 The moment generating function fay is
—€3) Etr(Qin,l' Rsp) — Etr(Qin,z' Rsp)

1 D, 4(Wy)=(e" M 3.1
+ (X5 Qino* S Qin 1 Xa) + EXI'Qin,l' Rsp Qin1 X1 (W) =( ) (319
1 and the probability distribution fon, is the Fourier trans-
liAa b A 4 p ility distribution fon, is the Fourier trans
% Qin2' Ryt Qin.z Xz +O(€) (312 form of the moment generating function:
whereQ;,,=R;; 1 and Qi, =R 5. The last two terms rep- D a(ny) = f dwye MY, . (3.17)
resent the autocorrelation “energy” detectors. ' '

The following question now becomes important: how
does one obtain the quantiti&, ; andR;, ,? There are two ) . i
possible methods(i) by a theoretical understanding of the Th_e m_oment generatlng funcﬂa_hi,}’z(wz) for the internal
detector, ofii) by shielding the instrument from the stochas- N0ise in detector 2 is defined similarly. We assume that the
tic background and measuring the noise autocorrelation. Fgitochastic background is a multivariate Gaussian with a mo-
gravitational wave searches, meth@id is not available as Ment generating function
there is no way to shield the detector from a stochastic back-
ground of gravitational waves. Methdd holds more prom- 1
ise, but if the stochastic background is expected to be weak, _ T2 Ty .
it is unlikely that our understanding of the detector will be Dof Wy W) ex;{ 2¢ e w) (3.18
sufficient to distinguish between the noise autocorrelations
Rin and Rj,+ €eRg,. We expect that the noise matrices that
should be used are thmeasurednoise matricesR;=(x,  With
®x]) and R,=(x,®x}), which contain both the internal,
instrumental noise as well as the stochastic background

“noise.” Since it is these quantities rather thRg, ; andRy, » = W1 and S.= Ry S
that are known, the previous analysis must be modified. We A TS Ry
now have

Then the moment generating function for the detectors’ out-

2_1_[Q1 0} put is
0 @
62[ 0 Q1S Qz} CI)(Wl,W2)=<e‘WI‘X1eiW;X2> (3.19
Q2:S-Q 0
Lt Q:1:S:Q2:SQq, O } =Dy 1(Wp) P o(W2) Py Wy, W2)
0, Q2:S:Q1-S:Q;
+0(€%), (3.13 and the joint probability distribution is
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1
:f dwexq_if-r'w)q)in,l(wl)q)in,z(WZ)[ 1- EEZwT'Esb' w+0(e%)

=p(X1,X%,|0) + €2

1
+ E(VTpin,z)(Xz) ‘Rsp (VPin2) (X2)

+0(€Y).

1
(VTpin,z)(Xz) S (Vpin,) (X)) + E(VTpin,l)(Xl) ‘Rsp (VPin 1) (X1)

(3.20

Thus, if we ignore the autocorrelation terms, the locally op-between the amplitudes in the two detectors, since we will

timal statistic is

A2y=(VTINPin 2 (X2)- S (VInpin)(Xg).  (3.20)

assume that the stochastic background is unpolarized. An
additional loss of correlation occurs because the two detec-
tors are separated. This loss of correlation becomes increas-
ingly greater for shorter wavelengths. Roughly speaking,

This equation for the locally optimal statistic is good for the there s no significant loss of correlation for wavelengths
time domain, in which the detectors’ output vectors are realych |onger than the inter-detector distance, and there is a

and so the derivative is meaningful.

complete loss of correlations for wavelengths much shorter

To extend the result to complex vectors, and thus to gugp this[12].

frequency-domain representation, we use the following for-

mal replacement: replace every complex numbera+ib
and derivativeV with the matrices

a b
—-b

—dldb
dl da

dlda
alob

1

X—X= and V—>Y=§

Note that this means* is represented bx' and |x|? by
x"-x. Also, the meaning oW |x|? is V(x"-x)=x". The lo-
cally optimal statistic is

Aoy= 3(VTin Pin2) (X2) - S- (VY In pin 1) (Xq) + 3(Vin Pin2)
X(%X2) - S (V1IN Pin ) (X1)- (3.22

For example, for the noise model in which gp(x)
e SIN-D2lg (1%, %/P,) andS=diad yco?], the locally op-
timal statistic is

N-1)/2 <
A _%[( z) ] 'yko'i;(,l(,kxz,k
@77 & PuPy

(3.23

X g1 (X1 2 P10 95 ([ Xkl 2 Pay).

The loss of amplitude correlation due to the separation
and non-alignment of the two detectors may be described
(for an unpolarized and isotropic stochastic backgrgund
terms of the overlap reduction functiop(f) defined by
Flanagar 13]. This quantity is the average value of the prod-
uct of the detector outputs, for a stochastic background of a
given frequencyf, averaged over the possible directions of
arrival and phases. It is given by

5 N o h A
y(f)= —Sﬂfszdﬂez"'m‘Ax’c(FIF;+ FIF5).
(3.2

Here() is a unit-length vector on the two-spherex is the
separation between the two detector sites, B{id* is the
response of detectoto the+ or X polarization. For théth
detector {(=1,2) one has

1 o .
Fﬁ’X:E(x?xF—YEYP)e;;X(Q), (3.29

XA o o
Before we examine specific non-Gaussian noise modeld/heree,;” () are the gravitational wave polarization ten-

we will describe the form of the matricd®,, and S. A sto-

sors for a wave propagating in directiéh The normaliza-

chastic background, if present, contributes to the signal amtion of y(f) is chosen so that for coincident and co-aligned
plitude at each detector. To simplify the analysis, in Secdetectors;y(f)=1. For co-aligned but not coincident detec-
Il A, we assumed that the detectors were coincident andors, y(f=0)=1. For coincident but unaligned detectors,
co-aligned, so that the amplitude contribution in each indi-y(f) is a frequency-independent constant that depends only
vidual detector is identical. Here, we drop that assumption.upon the relative orientation of the two detectors, and van-
Because the detectors are not co-aligned, the axes of thghes if the two detectors are sensitive to orthogonal polar-
two interferometer arms point in different directions, and areizations.
sensitive to different linear combinations of the two possible General expressions foy(f) for arbitrary detectors may
gravitational wave polarizations. This reduces the correlatiorbe found in Refs[13,14]. For the pair of Laser Interferomet-
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0.2 ,Y 0.2 'Y
1 A% 3 4
i A F\r;:incjofo;?o Frequency £ () _ FIG. 3. The overlap reduction functiop(f)
-0.2 -0.2 is shown for the two LIGO detectors as a func-
tion of frequencyf. The left or right graphs have
-0.4 -0.4 linear or log, frequency axes. Because the detec-
tors are almost anti-aligned, the function is close
-0.6 -0.6 to —1 at low frequencies. The first root is at 64
Hz.
-0.8 -0.8
. 1

ric Gravitational Wave ObservatofiIGO) detectorsy(f) is tistics will be stationanf15] and Gaussian. This means that

shown in Fig. 3, and is given by it is characterized by the single-site second moments
[1(X) J 2(X) I -~
y(f)~—0.12480(x)—2.906X—+3.00§X—2 <51,k5’1c,kr>:<52,k52k'>:Uiékk" (3.30)
(3.2

wherex=2mrfd/c is a frequency variableg=3010 km is  With
the detector separation=2.998<10° km/s is the speed of
light, andj, is a spherical Bessel function. It is helpful to

2
introduce notation for the overlap reduction function’s values 2= 3HQgu( i) (3.3
in the frequency bins of interest. L&t=k/(NAt)=k/T de- K 20m2Atf 3 '
note the frequency of th&th bin, with k=0, ... [N/2].
Here At is the sample interval anfi=NAt is the total ob-
servation time. Then As before, we have assumed ti\ats chosen so tha¥lAt is
much larger than the correlation time of the stochastic back-
v=y(fi)=y(KIT) (3.27  ground(filtered by the instrument response funcioso that

the RHS of Eq.3.33 is proportional tod,,, . The expecta-
are the values of the overlap reduction function in Kile  tion value of the product of the strain at the two different
bin. sites is reduced by the overlap reduction function:
The stochastic background is characterized by its dimen-
sionless energy density o o o
<51,kS;,k/> = <52,kSI,k'> = 7k<51,k5,1‘,k'> = Yk Skt -
1 dpgw (3.33

Pericar d IN T’

ng(f): (3.28
This follows from Eq.(3.56) of Ref.[14]. In practice, since
the shape of the stochastic background spectrum is not
known, the dependence of tlag on k should be assumed to
fit some simple parametrized model, such as a power law

wheredpg, is the energy density of the gravitational radia-
tion contained in the frequency rangéo f+df, and pgiscal
is the critical energy density requirgtbday) to close the

universe:
o2ck® for a reasonable range af.
302H§ We can now express the locally optimal detection statistic
Pcrmcm:m%lﬁx 10*8hfooerg cm 3. (3.29 for a stochastic background in colored Gaussian noise. It is
Hg is the Hubble expansion rateoday): [(N=1)/2]

In A= €e*R X3 Xa | (PP 3.3
Ho=h100< 100 km s 1 Mpc™1=3.2x 10" $8h, s 2, € kzl YkOiX1Xo k! (P1iPag)  (3.34

(3.30

andhyq is a dimensionless factor that we have included towhereP, ) andP, are the measured noise spectra in the two
account for the different values &f, that are quoted in the detectors.
literature[20]. Let us now turn to our first non-Gaussian noise model.
The probability distribution functiofPDPF of the sto-  Our starting point is a PDF for the noise in the two detectors
chastic background strain can usually be expressed in closad the absence of any stochastic background signal. We make
form. The central limit theorem shows that if the stochasticthe same assumptions about the detector noise as in Sec.
background has been producéss it is in many scenarips 1l B. The PDF is given in frequency space by a product of
by an incoherent sum of many small processes, then its stéwo terms identical to E¢(2.19),
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[(N=1)/2]

[1

27 P e 201 k([x1,6/%/P 1)
k=1 :

P(X1,Xp) =

[(N-1)/2]

< 11

12 - (X512 /
2 lp2k,e 2g i (IX2 k| TP2 k1)
K =1 '

[(N-1)/2]

[]

k=1

4w 2P 2P,

% @~ 201k(X1 2P 1)) — 202 ([Xaul /P2

The statistical distribution of the stochastic background is

[(N=1)/2]

I

-

We can now find the locally optimal statistic. Since the
detector is linear, as before, one has a joint probability dis
tribution for the observed Fourier amplitudes:

Pe(S1,S) = (mof) " 2(1—yp) !

B [S1kl2+ [S2xl = 2 7R (ST S0
or(1- %)

(3.39

P 5ol )= [ dSpal3 3

X p(X,— €81, X, €5)).

PHYSICAL REVIEW B5 122002

Nooe= 16 dEdEpaf5 %)
(N D m(gi,k;(l,k) g1kl X142/ P1g)
Pix

X
kk'=1

y 2)‘*(~S"2<,k5<2,k/)gé,kr(|‘>~<2,k' | 2/P2,k’)

Pz,k'

(3.39

Since the expectation value of the product of the stochastic
background at the two sites is given by

(Busas) = | uopas 575,38 e 1
(3.39

one obtains the generalized cross-correlation statistic

[(N=1)/2] Tk
YO X1 X2k
Agec=16R D, 0
ey P1kP2k

X g1 ([Xe kTP 1) 954 [Xakl 2/ P2y).  (3.40

If the functionsg’ are replaced by unity, this reduces to the
standard result for the optimal filter for the case where the
detector noise is assumed to be stationary and Gaussian. For
typical non-Gaussian noise models, the effect ofghéunc-

tions is to exclude those frequency bins in whjgh/%/P, is
large in either detector.

Our second non-Gaussian noise model is similar to the
noise burst model used in Sec. Il B, generalized to the two
detector case. The composite PDF for this model is

This corresponds to a stochastic background with a charac-

teristic energy-density functioe(,(f) [21]. The locally
optimal statistic is

<§,2(,k>';(2,kgé,k( |7<2,k| 2l Pay)
Pox

[(N=1)/2]
A(l)=49’¢ kzl

(st X191 k(X142 P1g)
Pk

l

where the quantitieés},) and(sj,) are mean values of the
stochastic background’s Fourier amplitudes at each of th
two detector sites. These both vanish,

(3.36

(Shaw= f ds,dPefS1,%)(124=0, (3.3

D(Xl,Xz|€)=(2W)N( (1=P)(1-Py)(det) *

+Py(1-Py)(detx;) *

xex;{ - %g*-z‘l-g

+P,(1—P,)(dets,) !

1
Xex;{ —§§T~E[l~§

+P,P,(detS;,) "t

1
><ex;< - §§T~2;1~§
e

1 -1
xXexp — EfT'Elz § (341)
whereP, andP, are the probabilities of bursts in detectors 1
and 2. The matrice¥,, 3,, and, represent the correla-
tion matrices when a noise burst is present. As in Sec. Il B, a

since the mean values of the Fourier amplitudes are zergyyst effectively changes the noise level for the detector ex-

Hence, as in Sec. Il A one must look for the locally optimal
statistic at the next order ia. Taking an additional deriva-
tive, one can easily compute ;). As in Sec. lll A this con-

sists of two types of terms. For the same reasons as before,

we discard from this decision statistic all thimgle detector
terms. This leaves us with the following generalized cross
correlation statistic:

periencing the burst. '@us, if there is a burst in detector 1,
simply replaceR; with Ry in % to obtain¥,,;. Then we find

- 6261‘ S Q
Q2

Q

31 _
'ol-€Q,5Q;

l +0(eh
(3.42
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and eme=7%3 QS Qe Xy (3.49

Indet;=In detR; + In detR,+tr(Q; - R;) + O(€*) where
(3.43
7 1=—t(Q2 S Q19 +x{ Q1S QS Qi xg

to first order in(s1 and similarly for>,. We also have +
+%3:Q2:S: Q1S Q2 X2 (3.50

Q 0
0 Q,

-1__

= (3.49 is a measure of how sensitive the detectors were to the sto-

chastic background. Normalky will be on the order of unity
o) ef,lLE is approximately just the cross-correlation statistic.
and However, if the detectors were abnormally noisy, then
_ _ _ _ would be less than unity and the estimate of the stochastic
IndetX;=IndetR;+IndetR,+tr(Q;-R;) +1r(Q,-Ry,) background strength would be smaller than the cross-
(3.49 correlation statistic would indicate: this is a correction that
o o compensates for artificially large values of the cross-
to first order inQ,; and Q.. correlation statistic due to noise fluctuations.
We can now compute the locally optimal statistic:

; IV. IMPLEMENTATION AND SIMULATIONS
2R(%z-Q2-S-Q1-X)

@7 1+ a;+tartajas

(3.49 A. Implementation
A nice feature of these techniques is that in practice, they

where should be easy to implement. Work by Scott and Whiting
[16] has shown that the PDFs of the Fourier amplitudes in

P, detR; 1 ; different fre_quency bins can be easil_y obtained. Since the

ar=7= P, detR. eXF<§X1'Q1'X> (3.47 characteristic time scale for stochastic background correla-

1 tionis~10 ms, these can be computed using data segments

des is ai b il ion. H h with lengths of seconds or tens of seconds. These PDFs can
andaz IS given by a similar expression. Here we Nave Neypen pe ysed to determine where to truncate or clip the cor-
glected allQ terms. The termsy; and«, detect bursts, and  relation, frequency bin by frequency bin. Provided that the
their role is to suppresA ;) when a burst is present in either instrument’s characteristics are stable over periods of min-
detector. utes or hours, it should be simple to accumulate sufficient
C. Estimators statist_ics to determine the PDFs and therefore the truncation
) _ ) or weighting functions with reasonable accuracy.

_In analyzing experimental data, there are different pos- | practice, it may also be desirable to “discard” a small
sible goals. One goal might be to set an upper limith a 4t of the “attainable-in-principle” correlation in exchange
certain statistical confideng@n the stochastic background fq, obtaining more robust statistics. For example, one can
energy density ina part_|cular frequenc_y b_and- Anether goaérbitrarily zero the 1% of frequency bins that are the largest
might be to estimate this energy density in a particular frey,ymper of standard deviations away from the mean value
quency band. _ _ _ (for that bin. Since the dominant contribution in any bin

For this !atter purpose, there are dlﬁerent p055|_ble estlmaah,\,‘,ﬂyS comes from the detector noise, this is only very
tors that might be used. One standard estimator is the maxjgeakly correlated with the actual stochastic background sig-
mum likelihood estimatoréMLE). In this section, we show na| and the net effect is to discard just a bit more than 1% of
how this estimator is related to the cross-correlation statisticye «in principle” attainable signal-to-noise ratio. But in ex-

Recall that the probability distribution for the joint detec- change, the detection statistic becomes far less sensitive to
tor output is non-Gaussian detector fluctuations. The precise effects of
such treatment, and the appropriate truncation thresholds,

Inp(xy.xp| €) = (terms that do not depend @ can be easily determined with Monte Carlo simulations using

)t 1, simulated signals added into real detector noise.
+ €% Q'S Qp X+ 5 tr(Q S Q109 In searching for a known waveforfe.g., binary inspiral
the methods are again easily implementable. Here, since the
-x1-Q1-S:'Q,-5Q;- % signal time scale is less than a minute, the frequency-bin by

: frequency-bin statistics take a bit more time to accumulate,
—X3Q2-S:Q1-S- Q2 %} +0(€®). (348 and the detector’s statistical properties have to be stable over
a slightly longer time scaléan hour, perhapsThis appears
Suppose we wish to estimate the strengfttof the stochastic likely.
background. The maximum likelihood estimator is the value  Since certain non-Gaussian noise features are more likely
eme for which this probability is maximized: to appear as outlier points in the time domain, and others in
[dInp(x; ,X2|E)/d62]E§ALE=0. The result is the frequency domain, a combination of the time- and
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frequency-domain methods may be desirable. Unfortunately, For sufficiently simple statistics with sufficiently simple

if the detector noise is not white, this may require the re-signal and noise models, it may be possible to analytically

moval (vetoing of entire small sections of time-series data. calculate the corresponding false dismissal versus false alarm
This is easy in the stochastic background case, where onfurves. But for most cases of interest, we must resort to

tens of milliseconds around a glitch need excision. It may bd/ionté Carlo simulationdo generate the curves. This con-

more problematic for signals like binary inspiral chirps that SISt of adding simulated signals to simulatedrea) detec-
. tor noise, and then processing the resulting data with a sta-
have longer duration.

tistic. For each stretch of data, the statistic outputs a single
S o number which is then compared to a threshold to determine
B. Comparing different statistics if we should claim detection. Since we know if a signal is
In Secs. Il and 11, we derived locally optimal statistics to preser:;[] ”:{] ttr?e (;Jlat_a,_ we clan easily deterrlnlr;ﬁ thebfractlon fOf
search for deterministic and stochastic gravitational wavé'.meS at the decision rule was In error. in th€ absence of a
) . . . signal, this procedure yields the false alarm probabilitgs
signals in the presence of non-Gaussian noise. These stat

. d h dard hed-filteri d % Function of the threshold . In the presence of a signal
tics reduce to the standard matched-filtering and CroSSs,,ing fixed amplitude, we obtain the false dismissal prob-

correlation statistics _When the dete_gtor noise 'is Gaussian. B‘é%ility 8., again as a function of the threshold. If we invert
they are mqreobust(l.e., less s'ensmve to outliersvhen the a(Ag) for Ag=Ay(@), and substitute this expression back
detector noise has non-Gaussian components. For both casgfo g (A ), we obtain the false dismissal versus false alarm
the standard and robust statistics t&ke inpuf the output of  curve g_(a). We can then repeat these steps for a different
one or more detectors, and retui@s outpuk a single real  signal amplitudee’ to produce a new curvg,(a). The
number. But the statistics also depend on the gravitationginal result will be a set of curves similar to those shown in
wave signal and detector noise models, which are not diFig. 4.
rectly observable. Different choices for the signal and noise Alternatively, we can plot + a— 8, or € 2(1—a—,)
models correspond to different statistics, and these differentersusa, as shown in Figs. 5 and 6. Note that the quantity
statistics will in general perform differently given the same1— «a— g, is the difference of two probabilities:-13, is the
detector output. In order to compare and evaluate the statigprobability that the statistic exceeds some threshold in the
tics, we need a way to quantify their performance. presence of a signalkt0), while « is the probability that

As mentioned in Sec. II, the quality of a tegk., a deci- the statistic exceeds the same threshold in the absence of a
sion rule based on a particular statisigcharacterized by its  signal(i.e., e=0). Although Figs. 5 and 6 contain the same
false alarm and false dismissalprobabilities for a given information as the false dismissal versus false alarm curves
source. These are, respectively, the probability that the teFig. 4), plotting e *(1— a— B.) versusa has the nice prop-
leads us to conclude that a signal is present, when in fact it iy that, for stochastic signals, the curves have a well-
absent €=0), and the probability that the test leads us todefinede—0 limit.
conclude that a signal is absent, when in fact it is present
(e>0). These two probabilitiegdenotede and B,) com- C. Example
pletely specify the long-term performance of a statistic. But To illustrate how we can compare different statistics using
to rank different tests, we need to reduce these multiMonte Carlo simulations, consider the simple case of a
dimensional error measures to a single figure of merit. Howsearch for a white, Gaussian stochastic background signal
we do this depends on the problem we are trying to solvaising two independent, identical, coincident and coaligned
(see, e.g[17]), but in the context of gravitational wave de- detectors. Statistic 1 will be the standard cross-correlation
tection, it is common to look for a test that minimizes the statistic defined by a white, Gaussian stochastic background
false dismissal probability, keeping the false alarm probabilsignal and white, Gaussian detector noise. Statistic 2 will be
ity less than or equal to some maximum tolerable value. Thi locally optimal statistic, also defined by a white, Gaussian
criterion is known as théleyman-Pearsowriterion, and it ~ stochastic background signal, but with white, 2-component,
was used in Sec. Il to define the locally optimal statistics. mixture Gaussian noise with an arbitrary knee. We will as-

Thus, to compare the performance of different statisticssume that we knowa priori) that the two detectors are iden-
we should plot false dismissal versus false alarm curves folical and have uncorrelated white noise. We will not assume,
different values of the signal amplitude The best testor ~ however, that we knowa priori) the parameters describing
best statistigis the one that has the smallest false dismissathe statistical properties of the detector noise or the overall
probability B.(«), for fixed false alarm probabilityy and  amplitude of the stochastic background signal. Each statistic
fixed signal amplitudes. Note that since the false dismissal Will have to internally estimate the parameters from the de-
probability depends on both ande, it is possible that the tector output, without any other prior knowledge.
best test for one choice Ofa(e) is not the best test for a We perform Monte Carlo simulations of the two statistics
different choice of &, €). Note also that this method of com- for the following three cases:
paring statistics is different than simply comparing expected (i) Uncorrelated, white, Gaussian detector noise with zero
signal-to-noise ratios. What is important when determiningnean and unit variance.

error rategand hence the performance of a particulartisst (if) Uncorrelated, white, 2-component, mixture Gaussian
not the expected value of the statistic, but rather its probabildetector noise with zero mean, unit varianeé¢g=4, and
ity distribution P=1% [see Eq.2.1D)].
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False Dismissal vs False Alarm
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i FIG. 4. False dismissal versus false alarm
g0 curves for a typical statistic. Lower curves corre-
§ spond to larger values of the signal amplitude
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False alarm probability: o

(iii) Uncorrelated, white, exponential detector noise with (i) The simulated stochastic gravitational-wave signal
zero mean and unit varian¢see Eq(2.10)]. strengths are?=.0025, .005, .010, .020, and .040, where

The first two simulations test the optimal behavior of theis the ratio of the rms amplitude of the stochastic background
statistics. Statistic 1 is designed for the data of déseand  signal to the rms amplitude of the detector noise. These sig-
statistic 2 is designed for the data of cadi¢. The third 3| strengths correspond to signal-to-noise ratios{y/N)

simulation tests the two statistics in a sub-optimal situationram‘:]ing from approximately 0.1 to 1 for a single stretch of
representative of a real search where we do not know i

advance the exact statistical character of the detector noise.

bellg\?vt'alls of the Monte Carlo simulations are summarlzedhave a smaller value af (~10"%), we would need a much

() singe st of tata consists 1024 iscrte. 210% SZSENLON e sl up S Sl ovase
time samples. ThidN is sufficiently large that the large ob- . 1o illustrate h ' purp wo diff pt ,t tisti -
servation time approximation is valid. Since we are consig-> '© ustrate how.one can compare two difierent statistics,

ering white noise(which has zero correlation lengthany it is not meant to simulate a reak(4 month stochastic
N=100 would do. background search.

Note: Since a real stochastic background is expected to

0.45

FIG. 5. 1-a— 3, versus the false alarm
probability « for a typical statistic. Lower curves
correspond to smaller values of the signal ampli-
tudee.

0 1 1 1
0 01 0.2 0.3 04 05 06 07 038 09 1
False alarm probability: o
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FIG. 6. ¢ ?(1—a—pB,) versus the false
alarm probabilitya for a typical statistic. Higher
curves correspond to smaller values of the signal
amplitudee.

1 1 1
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(iii) For all three types of simulated detector noise, thecorrelation statisti¢cf. Eq. (3.9)]:
standard cross-correlation statistic estimates the variance of
the noise by calculating the sample variance of a stretch of DA = E 0202 4.1
detector output equal to 180 Since the detector output con- GCCTN 5 X1X2j10107%, '
sists in general of signal plus noise, the estimate of the noise
variance gets worse as the signal amplitude increases. Théhereos and o’ are the estimated variances of the noise in
sample variance is needed to specify the white, Gaussiagletectors 1 and 2, respectively.
noise model that enters the definition of the standard cross-

N—-1

False Dismissal vs False Alarm

(mixture Gaussian detector noise)

False Dismissal vs False Alarm 1R ‘
(Gaussian detector noise)
1 T
(=%
z
a 3
2 s
= = 0.5 1
5 7
g €
o 2
T 05 : °
8 8
£ £
o
3
©
[
0 L S >
0 0.5 1
False alarm probability: o
0 0 0‘5 1
False alarm probability: o FIG. 8. False dismissal versus false alarm curves for the stan-

dard cross-correlation and locally optimal statistics for simulated

FIG. 7. False dismissal versus false alarm curves for the stanwhite, 2-component, mixture Gaussian detector noise. The solid
dard cross-correlation and locally optimal statistics for simulatedines correspond to the standard cross-correlation statistic; the
white, Gaussian detector noise. The solid lines correspond to théashed lines correspond to the locally optimal statistic. The top
standard cross-correlation statistic; the dashed lines correspond toirve for each statistic hag=.0025; €? increases by a factor of 2
the locally optimal statistic. The top curve for each statistic éfas as one moves to successively lower curves in the graph. Since the
=.0025; €2 increases by a factor of 2 as one moves to successiveljocally optimal statistic has a lower false dismissal probability
lower curves in the graph. As explained in the text, the two statisticg3.(«) for each false alarm probability and each signal amplitude
perform almost identically for this case. €, it is clearly the better test for this case, as expected.
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False Dismissal vs False Alarm False Dismissal vs False Alarm
(exponential detector noise) (exponential detector noise)
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FIG. 9. False dismissal versus false alarm curves for the stan- FIG. 10. A blowup of the false dismissal versus false alarm
dard cross-correlation and locally optimal statistics for simulatedcurves from Fig. 9 for small values of the false alarm probability
white, exponential detector noise. The solid lines correspond to the

standard cross-correlation statistic; the dashed lines correspond t(% tistic @A ffectivel d to th tandard
the locally optimal statistic. The top curve for each statistic éfas stalistic ccc Elteclively reduces (o the standard Cross-

=.0025; €2 increases by a factor of 2 as one moves to successivel§0"eIatIon Stat'Sti(é_)AGCC when the noise is purg Ggussmn.
lower curves in the graph. Since the locally optimal statistic has a (V) We use 1B trials to generate each false dismissal ver-
lower false dismissal probabilitg () for each false alarm prob- SUs false alarm curve.

ability @ and each signal amplitudg it is the better test for this

case. Performance of the statistics

. . . . . (exponential detector noise)
(iv) In addition to estimating the variance of the detector 15 . . .

noise, the locally optimal statistic also estimates the vari- o

anceso, o, and breakpoink, of the 2-component, mixture soonrs *esae,
Gaussian model that define this statistic. It does this by fit- * 50007 0050
ting two straight lines to a Ip(x)) vs x? plot obtained from ¢ o’ "%,
a histogram of a stretch of detector output, again equal tc 10} 20 .
100N. Best-fit lines at smalk and largex, respectively, yield ot oo et
estimates ofo and o, while the intersection of the lines
yields an estimate af,. Actually, only the breakpoints for
the detector noise are needed to define the following locally
optimal statistic: s .

"(1-0-B)

€
.
.

N-1 .0 8
(2)AGCC:N JZO X1j0(X1p— |X1,j|) . .

2 2 ‘ . . .
XX2j0 (Xap—|X25])/ o105, (4.2 % 02 0.4 0.6 08 1

False alarm probability: oo

which is a truncated version 8P A 5. (See the discussion
of truncation in the previous subsectipilere O (x) is the
usual step function, which equals 0x& 0, and equals 1 if

x=0. . L signal limit (small €). The top curve(filled circles corresponds to

Note: In order to handle pure Gaussian ndisich is @ e |ocally optimal statistic; the lower curv@pen circles corre-
pathological case when one tries to model it as asponds to the standard cross-correlation statistic. The difference be-
2-component, mixture Gaussian distributiothe locally op-  tween the performance of the two statistics in the small signal limit
timal statistic sets the breakpoirg to - whenever the esti- is more apparent in this pldtf. Fig. 9. Since the locally optimal
mated slopes at small and large valuescdfave a percent statistic has a larger value af 2(1—a—B,.) for each false alarm
difference less than 10%. By doing this, the locally optimalprobability «, it is the better test for this case.

FIG. 11. A plot ofe ?(1— a— B,) versus the false alarm prob-
ability « for the standard cross-correlation and locally optimal sta-
tistics for simulated white, exponential detector noise in the weak
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(vi) The simulations were written in Matlgi 8]. V. CONCLUSION

The results of the simulation are shown in Figs. 7-11.

As noted in(iv) above, our implementation of the locally  In this paper, we have constructed a replacement for the
optimal statistic reduces to the standard cross-correlation stgtandard linear matched filter estimators used for gravita-
tistic when the detector noise is pure Gaussian. That is whyional wave detection. The replacements are more robust be-
the false dismissal versus false alarm curves for the two stgause they are less susceptible to corruption by non-Gaussian
tistics are effectively identical in Fig. 7. detector noise.

From Fig. 8 we see that the locally optimal statistic per- e have explicitly illustrated the locally optimal detection
forms better than the standard cross-correlation Stat'St'gtrategies for a variety of different noise PDFs, and for two

when the simulated detector noise is mixture Gaussian. FQ§iarent detection problemgsingle detector known wave-
each value of the stochastic signal strengthand for each form, and two-detector stochastic backgrourld all cases,

faI?e) ?(l)a:rtr;:eF;gzgﬁb'gtﬁ%;r:t;i;i iglferzrs];s?r?;nﬂrhoabtiglr“ge the optimal strategy is similar to the one for Gaussian noise
Bela yop except that data samples that lie outside the central part of

standard cross-correlation statistic. This is as expected, sin T .
the locally optimal statistic was constructed precisely to(%ﬁe distribution(the outliers are excluded from the sums

handle mixture Gaussian noise. Wh\'/(\:/h fgrrp the ehst|mfatorf1. f . f "
Finally, from Figs. 9—11 we see that the locally optimal Ve believe that for the future generation of sensitive

statistic also performs better than the standard Crossgravitational wave detectors,_these strategies may be_ e_asily
correlation statistic when the simulated detector noise has df'Plemented and offer an improvement on the existing
exponential distribution. The difference in performance be.matched filter algorithms.

tween the two statistics for this case is less than that for

mixture Gaussian noise, but it is still noticeallEigure 10
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