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We investigate dynamical chiral symmetry breaking in vectorlike gauge theori@sdimensions withD
—4 compactified extra dimensions, based on the gap equéicimvinger-Dyson equatigorand the effective
potential for the bulk gauge theories within the improved ladder approximation. The nonlocal gauge fixing
method is adopted so as to keep the ladder approximation consistent with the Ward-Takahashi identities. Using
the one-loop modified minimal subtraction scheﬁ%{) gauge coupling of the truncated Kaluza-Klein effec-
tive theory, which has a nontrivial ultraviolet fixed pomg for the (dimensionlessbulk gauge coupling, we
find that there exists a critical number of flavoM§™ [=4.2,1.8 forD=6,8 for SU3) gauge theory For N;
>N‘§”t, the dynamical chiral symmetry breaking takes place not only in the “strong-coupling phgse” (
>g, ) but also in the “weak-coupling phasefjk g, ) when the cutoff is large enough. Fisk< N?”t, on the
other hand, only the strong-coupling phase is a broken phase and we can formally define a cofitifiniten
cutoff) limit, so that the physics is insensitive to the cutoff in this case. We also perform a similar analysis
using the one-loop “effective gauge coupling.” We find tmﬁ”t turns out to be a value similar to that of the
MS case, notwithstanding the enhancement of the coupling compared with thatMBthe
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I. INTRODUCTION tigate dynamically whether the top condensate really takes
place in this scenario. In | we used tBedimensional gap
Much attention has been paid to extra dimension physicsgquation[improved ladder Schwinger-Dysdi$D) equation
particularly the large scale scenarids2]. Although the no-  [13]] with one-loop modified minimal subtraction scheme
tion of the “extra dimension” might be “deconstructed” in (MS) running (bulk) gauge coupling of the truncated KK
terms of certain renormalizable four-dimensional gauge theoceffective theory[14] for this purposé.In | we found[5] that

ries[3,4], there still exist attractive features of gauge theoriesne (dimensionlessbulk gauge couplingy has a nontrivial
with extra dimensions which deserve further nonperturbativeitraviolet fixed pointUV-FP) g, in the same one-loop trun-
studies. cated KK effective theory as that ACDH was based on. Since
As such three of us if5] (referred to as | hereafter the running bulk gauge coupling rapidly reaches the UV-FP,
recently studied dynamical symmetry breaking of the topthe gap equation is essentially governed by the UV-FP and
mode standard modéTMSM) [6—8] in a version inD di-  can well be approximated by that with the running coupling

mensions, withD —4 being compactified extra dimensions replaced by the UV-FP valug®—g? (“gap equation on the
[Arkani-Hamed—Cheng—-Dobrescu—H#ACDH) scenari¢ ~ UV-FP"). If we assume the UV-FP persists nonperturba-
[9]. The ACDH scenario was based on an earlier proposaively, then the bulk QCD coupling is in the weak-coupling
[10] of the TMSM with extra dimensions, which was moti- region @<g, ), since the coupling to be matched with the
vated by top-color idegsl1], and found that thédimension-  three-brane QCD coupling at the compactification scale is
les bulk QCD coupling above the compactified scale be-certainly a weak coupling there and hence never exceeds the
comes strong due to Kaluza-Kle{K) mode contributions  Uv-FP. This implies that top-quark condensate is possible

and hence may trigger the top-quark condensate withdut crit

only wheng, >0 (kp> & in the notation of I, with
hoc four-fermion interactions as in the original TMSMJn- y wheng, %C”t (ko> xp _ _ D
like Ref.[10] in which only tg is in the bulk, a somewhat proportloqal 109, ), Whereg is dgtermmed by the SD gap
simpler situation is assumed in the ACDH scenario: the en€duation just on the UV-FP mentioned above. We then found

tire third family lives in the bulk, which enables us to inves- that the top-quark condensate cannot occur in the S.impleSt
case of the ACDH scenari@ =6 andN;=2 (only the third
family in addition to gauge bosons exists in the bulkhere
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ries in D dimensions with theD —4 dimensions compacti- above more sophisticated treatment, however, we find that

fied, not restricted to the TMSM. Since the gap equation ory2_ is larger than that of | by a factdd/4, which is a sub-
the UV-FP possesses a scale invariance, the phase transitiggntial change foD>4. This result implies that the dy-
takes the form of a “conformal phase transitioif6] having  namical symmetry breaking gets suppressed compared with
an essential-singularity-type scaling. When>g.i, the the result of I. For the S{8) gauge theory our new gap
dynamical mass function has a slowly damping asymptotiequation yields
behavior which corresponds to a large anomalous dimension
vm=D/2—1, somewhat similar to walking technicolft7]. 4.2 for D=6,
We also discussed in | another gap equation, with the NOt—{ 1.8 for D=8
one-loopMS running coupling replaced by the one-loop “ef- f ' ’
fective coupling” which includes finite renormalization ef-
fects. Since the effective coupling turned out to be consider- _
ably enhanced compared with th&S one, we argued that ~ Based on the gap equation bath and off the UV-FPwe
there might exist a possibility that even the simplest case dfurther reveal dull phase structurén the g>-N; plane: Al-
the ACDH scenario withD =6 andN;=2 may give rise to a though the solution of the gap equation the UV-FR as in
top-quark condensate. the analysis of I, just separates the phasedlpy N{™ (g,
In this paper, we further study the nonperturbative dynam=g_.) and Ny<N{™ (g, <g.), we here also analyze the
ics of various vectorlike gauge theories with extra dimen-gap equationoff the UV-FP which further separates the

sion_s, not restricted to_ the TMSM. Singé (o_r_KD) is writ- phases byg>g, (“strong-coupling phasel and g<g,
ten in terms ofN;, we find that there existsaitical number (“weak-coupling phasey.

of flavors N{:I’it, SUCh thath> N(f:m for g*.>écrit- We f|nd For Nf> N(f:l’it (g* >écrit)1 which is the case we studied in
that there exists a rich phase structure in such theories: The ihe dynamical chiral symmetry breaking takes place not
phase i_ts separated not onlylint¢>£>N?”‘ (9> 9geri) aﬁd only in the strong-coupling phasg¥g,) but also in the
N¢<Nf" (9, <Qen), but also intog>g, (strong coupling  weak-coupling oned<g, ) as long as the cutofh is large

phase andg<g, (weak coupling phage(see Fig. 2 This  enoughnamely,g(u=A) is rather close ta, ]. This case is
may be useful for building a large variety of models beyondrelevant to the TMSM with extra dimensio8CDH sce-
the standard model. ~ nario) [9], whose bulk QCD coupling is matched with that of
In order to systematically study the SD gap equation in ghe hrane QCD at the compactification scale, which is cer-
manner consistent with the Ward-Takahashi identity, W&ainly weak, and hence the theory necessarily should be set
adopt the so-calledhonlocal gauge fixingActually, as is  in the weak-coupling phase. In order to have dynamical sym-
known in the four-dimensional cagé8], the chiral Ward-  metry breaking even in the weak-coupling phase, we need to
Takahashi identity is violated in the gap equation of I, WhiCharrangel\lf>N?m: From the result Eq(3) we conclude that
is “improved” from the ladder SD equation by a simple {he gimplest version of the ACDH scenario with=2 does
ansatz to replace the constaftimensionful bulk gauge ot give rise to a top-quark condensate B 6, while it
couplinggp by the running one agl3] can forD=8 andD = 10.

2 2 2 _ 42 For N;>N¢™" we further find it impossible to define the
max —p*,—q°)), 1 e . )
95— gp(max—p*, ~ %) @ continuum limit, despite the fact that the essential-

wherep” andg* are the momenta of the external and loop Singularity-type scaling with respect tg, found in | super-

fermions, respectively. This problem can be solved by takingdicially suggests a conformal phase transition having a large
the running coupling akl18] anomalous dimensiof,,= D/2—1: Actually the value ok
is not continuous and hence cannot be taken arbitrarily close
95— 095(— (p—q)?), (2)  to «&™. Then the UV cutoff should be considered as a physi-
_ cal one and the low-energy physics remains cutoff sensitive
namely, a function of gauge boson loop momentum. Thenn this case.
the Landau gauge used in | no longer guarantegs p?) Moreover, in the ACDH scenario the scale of the physical
= 1, which is then inconsistent with the bare vertex ansatz OUV cutoff A is no |onger an adjustab|e parameter but a “pre_
the ladder approximation. This problem can also be remediegictable one” in contrast to the treatment in REJ], since
by employing the so-called nonlocal gauge fixifig—21], the bulk gauge couplincﬁ; is completely controlled by the

by which the gauge parameter Is arranged to be momentugy eq_hrane QCD coupling at the compactification scale and
dependent so as to kegy(—p%)=1. Note that the above ho ki effective theory, and hencé is uniquely tied up

problems are numerically not serious in four—dimensiona\Nith the dynamical mass of the condensed fermitsp

cases and the method of | is widely used accordingly. HOW’quark} through the gap equation. If we use as an input the

ever, the situation in the higher dimensional case with g, o of (=250 GeV), which is also tied up with the

pov\yver ][_untning coluplintgh may be draf_tically Ct?]ange\}/dﬁp _thtop-quark mass, then the cutoff is “predicted” in terms of
e first reanalyze the gap equation on the LV-F wi F .. The situation is completely different from the original

g=g, . in which the dynamical symmetry breaking takes TMSM whereA is related through the gap equation only to
place forg, >gqi (N;>N"™) as in I: As a result of the two parameters: the dynamical mass and the four-fermion

©)
0.8 for D=10.
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coupling, which is a free parameter. This implies that everpendix A is devoted to yet another effective potential than the
when the model is arranged &>N{", the phenomeno- CJT potential, which has a more direct relevance for the
logical analysis of Ref[9] should be modified substantially bound state picture. In Appendix B we present a

by taking account of this fact, which we shall report in a Schralinger-like equation which yields some insight into the
separate paper. D dependence of the phase transition. The effects of the in-

frared cutoff in the gap equation are discussed in Appendix

crit A .
For '_\lf<'.\|f (9x <Ger), ON th_e other hand, we find a Appendix D gathers the formulas for the effective cou-
novel situation: The strong-coupling phagexg, ) is in the pling.

chiral symmetry broken phase, while the weak-coupling
phase §<g,) is in the unbroken one, and we can formally ||. GAP EQUATION WITH NONLOCAL GAUGE FIXING

define a continuum limitinfinite cutoff limit) at the phase ] ] ] ]
boundary §=g, with a large anomalous dimension _ Alyhough theD—dlmenS|onaI L_orentz symmetry is exphc—
* = - m itly violated by the compactification of the extra dimensions,
=(D/2-1)(1-v) [0<v=\1—(0, /gei)><1], asituation  this effect should be proportional to the inverse of the com-
similar to ladder QED22]. This fact implies that low-energy pactification radiusR™*. For sufficiently large momentum
physics becomesnsensitive to the details of the physics |p2|>R~2, we thus expect that thB-dimensional Lorentz
around the cutoff(stringy physicsR Then, no matter what symmetry is restored approximately, which enables us to
physics may exist at the cutoff, the strong-coupling phase ofmake an ansatz for the bulk fermion propagator in a Lorentz
this case may be useful within the framework of local field covariant form:
theory (without referring to, e.g., stringy physicsr model
building, such as a “bulk technicolor.” The bulk technicolor iS™H(p)=A(—p?)p—B(—p. 4
then resembles the walking technicolpt7] with large .
anomalous dimension and hence is expected to be free from The appearance of the nonzero fermion magap
flavor-changing neutral curreflECNC) problems. B(—p?)#0 is a signal of the chiral symmetry breaking in
We also perform a similar ana|ysis using the 0ne-|oopthe bulk. The aim of this section is to construct an appropri-
“effective gauge Coup”ng_” A|th0ugh the gauge boson ate gap equation, by which we investigate the Chiral phase
propagator explicitly depends on the UV cutoff and cannotiransition in vectorlike gauge theories with extra dimensions.
be renormalized in this scheme, we find the critidalturns Let us start with the naive ladder approximation of the
out to have a value similar to that of théS case, 4<N‘f"“ Schwinger-Dyson equation of the bulk fermion propagator
<5 (D=6). This is rather surprising, considering the fact[24]:
that as we showed in | the effective coupling is roughly

D 2
double that of thaIS. Then this result strongly suggests that s (_ p2)—1 ¢ Ce f d”q A(—a9)
because of all the ambiguities of the approximations of the —p?J) (2m)Pi —A%(—g%)q?+B3(—g?)
gap equation, the simplest case of the ACDH scenario with
N¢=2 is quite unlikely forD=6. p-q
The paper is organized as follows. In Sec. Il we write X _(3_D_§)(p_q)2
down the SD gap equation i dimensions with nonlocal
gauge fixing. In Sec. Ill we obtain an analytical solution to p-(P~a)q-(p—a)| ,
the SD equation on the UV-FP with the running coupling set +2(1-§) 2 o (5
to be just on the UV-FRy=g, . The ground state is identi- (P=a)
fied through the Cornwall-Jackiw-Tombouli€JT) effective b
potential[23]. In Sec. IV we present the full phase structure B(_pz):mo+CFJ d“q
in the g?-N; plane, based on the solution of the gap equation (2)Pi
both on and off the UV-FP: FaK;>N{" we find that both , )
the strong-coupling phas@ g, ) and the weak coupling- % B(—a°) . (D—1+8gp
phase §<g,) are broken phases and are relevant to the —A*(—g)g*+B*(—q>) —(p—0q)?
ACDH scenario of the TMSM, whose model building is then (6)

constrained by the value o™ . We also find no continuum

limit in this case and the cutoff is predictable in terms ofwith Cr being the Casimir of the fermion representation
F,=250 GeV. On the other hand, fof;<N{™ we find that [Cg=(N2—1)/(2N) for the fundamental representation of
the UV-FP separates a broken ph&®e the strong-coupling the SUN) gauge group Heregp, & andmg are the bulk
phase¢ and an unbroken phag®r the weak-coupling phage gauge coupling strength, the gauge fixing parameter, and the
We can formally define a continuum limit at the UV-FP with fermion bare mass, respectively. It should be noted that the
large anomalous dimension and the theory may be useful fanass dimension of the gauge coupling strergihis nega-
“bulk technicolor.” In Sec. V we analyze the gap equation tive, — &, for D=4+ §>4.

with the effective coupling instead of thédS running cou- Within the naive ladder approximation, the effect of the
pling through nonlocal gauge fixing. We also find a mean-running gauge coupling strength is completely ignored, how-
field scaling. Section VI is for summary and discussion. Ap-ever. In order to remedy this drawback, the gauge coupling
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constantgp needs to be replaced by something in which the The integral kerneK, is given by
running effect is incorporated appropriately.

Since there exist three different momenta= — p?, _ Qnpa g . D22
y=-0° z=—(p—q)? in the Schwinger-Dyson equations Ka(x,y) = B(1/2D/2—-1/2) J, do(sin6)~“go(2)
(5) and (6), there exist various ways to incorporate the run-

ning effect in the gap equation. In R¢&], we improved the \/E/cosa
Schwinger-Dyson equation using a simple replacerfisi; X|[D-1-¢@)]——
gh—gh(max(x,y)), (7)

—2[1—§(z)]X—Zsin20 , (10
A

with g%[max(x,y)] being the running gauge coupling. This

prescription is widely used and has various technical advan-

tages: The angular integrals in the gap equation can be pewith )\ pa being the naive dimensional analy$iéDA) [25]

formed in an analytical manner. The wave function factor factor,

is shown to be unity in the Landau gauge 0, which makes

the ladder approximation consistent with the vector Ward- 1

Takahashi identity. Qnpa= (4mP2r(D12)’ 11
Although the prescription Eq7) has been used widely in

the analysis of the dynamical chiral symmetry breaking inpq anglef is the angle between Euclidean momemgeand

four-dimensional QCD, it has been pointed ¢18] that Eq. Pe:

(7) is not consistent with the chiral Ward-Takahashi identity, £

if the same prescription is applied to the axial-vector vertex. z=x+y—2\/x—ycosa. (12)
In this paper, we therefore use a different chdit8),

95— 0p(2), (8)

in which the gauge boson momentwis used as the scale of (sin®)P2cosh= 1 i[(sin 6)° 1],
the running gauge coupling strength. The prescription(&q. D-1d¢

is consistent with the chiral Ward-Takahashi identity, but it
induces a nontrivial wave function factér within conven-
tional gauge fixing methods, leading to an inconsistency with Q 1

the ladder approximation and the vector Ward-Takahashi  ,(x,y)= NDA { -5 1J dé(sing)P?

Noting that

we find

identity. B(1/2D/2—-1/2) 0

In order to avoid such a dilemma, we use the nonlocal q 1
gauge fixing method. The method was originally invented in el 1 2,02
the analysis of four-dimensional gauge theofi&g] and ex- KXY dﬁ([D 1-£2)195(2) Z)
tended to gauge theories i dimensiong20]. It was then
reformulated into a compact formula in the analysis of four-
dimensional QCD by using a different approdd8]. The
method of Ref[18] was extended to gauge theories in arbi-
trary dimension$21]. Here we give a brief derivation of the where we have integratedfdé by parts.
nonlocal gauge in order to explain the notation used in this The ¢ differentiationd/dé in Eq. (13) can be written as
paper.

The nonlocal gauge fixing method is based on the obser- d dzd i
vation that the parametér can be generalized to a function d6 _dedz 2xysin 047
of the momentuni,&(z), by introducing a nonlocal gauge
fixing operator. It is then possible to choose the specific formae then obtain
of £(z) so as to make the wave function factde=1.

—wade(sine)D[l—f(z)]g%(z) %’] (13
0 z

We start with the Schwinger-Dyson equation of the fer- _ Onpa G b
mion wave functionA, Eq. (5). After Wick rotation, it reads Ka(x,y)= _25(1/2,[)/2_ 172, d(sing)
Cr (A2 A(y) 1 d 95(2)
A(x)=1+—f dyy?t—— - - _1_ b
X Jo vy A%(y)y+BA(y) X1 dz| P71 E2
_ _ +[1-&2)1——|. (14)
We introduced the ultraviolet cutoffA, where the z
D-dimensional effective field theory is considered to be re-
placed by yet unknown underlying physi¢g.g., string The conditionK ,=0 can be guaranteed §f(z) satisfies
theory, (de)constructed extra dimensioh3,4], etc]. the differential equation
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95(2) )

z

=0.
(15

D-1

t[1-&(2)]

95(z
2

z

o
47| [D-1-¢(2)]

It is easy to solve Eq(l5). We find the solution(nonlocal
gauge is given by

z d
f dz2% - g5(2),

93(2)2° 2Jo (10

§(2)=

where the integration constant is taken so as to néke
regular atz=0.

Using the nonlocal gauge fixing parameter Etg), the
wave function factoA can be set to unity. The gap equation
(6) then reads

_ A2 o1 B(Y)
B0=my-+Ce | ayy? e Kew). @7
where
Q
Kg(X,y)= o

B(1/2,D/2—1/2)

)D_Z[D—1+§<z>]gé(z>_
Z

X jo do(sing
(18)

Equations(16), (17), and(18) are our basic equations to be
solved in this paper.

It should be kept in mind that the gap equation Ed) is
not valid forx,y<R~? (x,y=1|p?[,|q?) due to the compac-
tification of the extra dimensions. In order to estimate uncer
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It is then shown that the dimensionless bulk gauge coupling
obeys the renormalization group equati®@GE)

d .

O n
M@gz §9+(1+ 812) Qnpab' g® (21)

at the one-loop approximation of thds coupling of the
truncated KK effective theory. The RGE factbf is given

by
26—D
6

n
3

!

(22)

= Co+ 5 TrN¢,

where 7 represents the dimension of the spinor representa-
tion of SO(1P—1),

n=trr1=2°2  foreven D, (23
and N is the number of fermions in the bulk. The group-
theoretical factor€Cgs and Ty are given byCz=N and Ty
=1/2 for SUN) gauge theory.

It is interesting to note that the dimensionless gauge cou-

pling g has a nontrivial asymptotically stable ultraviolet
fixed point

1
20pp=—— 24)
AT s 1) (
for b’ <0 or
(26—D)Cg
N¢< N}ANSE W (25

On the other hand, the couplir@ggrows without a bound
in the high-energy regiofasymptotically not stabléANS)]

tainties coming from the compactification sensitive infraredand the UV-FP disappears fbf >0 or N;> NﬁNS_ Hereafter

region, we introduce an infrared cutd¥f3~R ™2 on and off
in the following analyses. We will actually find that many
results are insensitive 3 if the ultraviolet cutoff is taken
to be sufficiently largeA?>M2.

IIl. SOLUTION AT THE FIXED POINT

We next consider the running of the gauge coupling in

we thus restrict ourselves to analysis of gauge theories with
N <NPNS,

It is straightforward to solve the RGE E@1). In particu-
lar, the couplingg? behaves as

2
©og;

— 3 (26)
p2=(AR)?

92(u?)=

theories with extra dimensions compactified to an orbifold

T9/Z, with radiusR. HereZ,, represents the discrete group
with order ofn.

In Ref. [5], the dimensionless bulk gauge coupliggs
defined as

, (2mRw)?

n ’

g (19
with g being the gauge coupling of the truncated KK effec-
tive theory[14]. The bulk gauge couplingp is given by

, %)
gD_ S
)

(20

11600

in D=(4+2)-dimensional gauge theories. HerA(-',\%))2 is
the scale parameter of the theory. Vanishing m%)zzo

corresponds to the UV-FP solutio@z(z gi) and it implies
that the theory becomes approximately scale invariant, ex-
cept that the scale invariance is violated by the cutofind

the compactification scalR™ 1. On the other hand, positive
(AP)2>0 [negative (\(2)?<0] corresponds to a strongly
interacting phaseg®>g2 (weakly interacting phasey?
<g?). See Fig. 1.

Although the renormalization group structure calculated
above in the one-loop level cannot be justified within a per-
turbative analysis, the existence of the nontrivial UV-FP is
supported by a recent lattice calculation in a certain case
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k

FIG. 1. The one-loop renor-
malization group flow ofg? in
SU(3) gauge theory inD=4+2
dimensions for varioudN;. The
gauge couplingg approaches its
UV-FP for p—oo.

A2 <0

N
% 1 2 3 4 5 6 7 8 f
[26]. Moreover, the existence of such a UV-FP may open an (D—1)(D—4)
interesting possibility in the model building with the com- §)=-——p (29)

pactified extra dimensions. Absence of such a nontrivial

UV-FP is implicitly assumed in conventional models with We note that Eq(29) is merely a constant. The gauge fixing

extra dimensions, in which a physical UV cutoff needs to beoperator is thus a local one in this case at the UV-FP.

introduced and the predictions depend on the non-field-" |, . . . ;
theoretical physics at the cutoff scaleq., stringy physids (18|)t is straightforward to perform the angular integral in Eq.

On the other hand, if there exists a nontrivial UV-FP in the
model with extra dimensions, the low-energy physics can be 4D-1) 1
predicted almost entirely from the field theoretical properties Kg(X,y)= g2 QNDA( o(x—y)
of the UV-FP. The low-energy predictions become insensi- D * D/2=1
tive to the physics at the UV cutoff.

We believe that this new possibility is interesting enough
to justify an investigation of the dynamical properties of the +yD/2—1 0(y=x)|.
chiral phase transition around the presumed UV-FP. It should
be noted, however, that the value of the one-loop UV-FP Etyse thus obtain the gap equation
(24) can be affected substantially by higher-loop or nonper-
turbative effects. Nevertheless, we adopt the one-loop formu-

(30)

_ D/2—1
las Egs.(21) and (24) in the following sections, assuming B(X)=mg+ MKDJAZ yﬂ
optimistically that the qualitative behavior can be obtained D 0 y+B?(y)
within one-loop formulas. L L
We are now ready to start the analysis of the gap equation. _ B
The running effect of the gauge coupling is taken into ac- X xP/2-1 O(x=y)+ yDlzfla(y X) 3D

count by replacing the renormalization scale) (dependence

with the gauge boson momentum with
2(w= 1z —c 2
gzD(Z): g (/:5/2\/—) . (27) Kp CFg*QNDA . (32)

We next try to solve the gap equati¢®l) analytically.
We start with the simplest case where the dimensionless Differentiating Eq.(31) over x, we find that the integral

gauge coupling is standing at the UV-gP: equation(31) is equivalent to the differential equation
2 D/2—-1
g d d 2(b-1)(D—-2) x B
205 2% D/2 _
gD(z)—zm. (28) ax| x dXB}vL D Kp B2 0, (33

Substituting Eq.(28) into Eq. (16) we find that theA=1 and a sef(infrared and ultraviolgtof boundary conditions
gauge is given by the simple form (BC9:
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d crit
Di2_— _ . 2 D
X2~ B(x) . 0 (IR-BO), (34) O™ o (42)
1 d We note that«<3" is larger than in the previous calcula-
1+ —x—|B(x) =my (UV-BC), (35  tions in the Landau gauge:
2w dx A2
! D-—
with o being defined by kg'=gp—7 (Landaugauge (43
_1/b (36) where the prescription Eq7) was adopted. The difference
“=3212 between Eq(41) and Eq.(43) becomes significant for larger

D> 4. Moreover, Eq(41) indicates that the critical coupling
The differential equatio33) is still nonlinear and cannot be is stronger than the NDA estimated"'~O(1) for D>4.
solved analytically. In Refl5], we discussed a similar equa- This property can be related to the “bound state” problem in
tion using a bifurcation methd@7] in order to deal with the  D-dimensional quantum mechanics. In order to investigate
nonlinearity. Here in this paper we use a different methocthis issue, we will rewrite the gap equation in the form of an

[28], in which Eq.(33) is replaced by a linearized one, equivalent Schrdinger-like equation in Appendix B.
We first consider the solution in the subcritical region, Eq.

d[ ,,d 2(D-1)(D-2) xP?'B 0. 37 (39). In the asymptotic energy regioms B3), Eq. (39) be-

dx dx Kp =Y haves as

dx dx D X+ Bg ) )

) i o y ) » 5 X —w(l-v) N X —w(1l+v)
combined with a subsidiary normalization condition B(x)=B, Co(?) +d0(§)

Bo=B(x=0). (39) o ’
X —o(l-v)—1

The approximation Eq(37) can be shown to work reason- +0 (—2) )] (44
ably well in both high- and low-energy regions. It has also Bo

been used widely in analysis of the dynamical chiral symme- -
try breaking. with ¢y anddg being given by
It is now easy to solve the differential equatid@?).

Combining it with the IR-BC(34) and the normalization To= I'(D/I2)T (2wv)
condition(38), we find that the solution is given in terms of 0 Fo(l+ ) A+ o(1+7))’
the hypergeometric function
~ 5 , - ['(D/2)T(—2wv)
B(X) =BoF (w(1+7),0(1-7),D/2;—x/B}), do= Mot a(l-3)
~_ [1_ crit
v=\1-rplip, (39 Substituting Eq(44) into the UV-BC Eq.(35), we obtain
for ko<, and 1(1 . A2\ —ea-n "
—(1+v)C — =Mg.
B(X)=BoF (o(1+iv),w(1—iv),D/2;—x/BY), 2 070 B2 °
v=ykpl/kI'-1, (400 The nontrivial solutiorB,# 0 exists only wherm,#0, i.e.,
_ _ dynamical chiral symmetry breaking does not occur in the
for kp>«p", wherexd" is given by subcritical regionkp<x§". _
The situation differs significantly fokp> «3". The high-
ait_ D D=2 energy behavior of Eq40) is
Kb =55 = - (41)
32D-1 —w(1-iv) —o(1+iv)
i B(x)=By| C x +d al
The critical x3" separates chiral symmetric and broken 0 ~0 B2 0 B2

phases as shown below. Chiral symmetry breaking takes -
place forkp> k3", while the theory remains chiral symmet- o x| “ 46
ric for kp<«&". We also define the “critical couplingdi * B2 : (46)

0
for later purposes:

with

3The sign in the definition of», Eq. (36), is opposite to the defi- co= (DI (2iwv) do=c*
nition in Ref. [5]. " T(w(l+in) I A+w(l+iv)’ oo
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Unlike the solution atkp<«&", Eq. (46) is an oscillating

function. Actually, Eq.(46) can be written as

X e X
B(x)=2|cy|By - sin| 0+ wvln—2 ,
Bg 5

(47)

with 6 being given bye? ’= —c,/d,. The UV-BC Eq.(35)
thus reads

2
0+ wv In—2 +tan
B
0

1 :mo.

A%\
\/1+V |C0|Bo(§> Sin

0

(48)

Nontrivial solutionsBy# 0 exist even in the chiral limitn,
=0 of Eq.(498):

PHYSICAL REVIEW D 65 116008

nm
Bo=CA exr{ -

(CEEE) “

with n being a positive integer describing the number of
nodes inB(x). Then=1 solution corresponds to the node-
less one. Here the factoC is given by C=exp(d
+tan 1v)/[(D/2—1)v]}, which remains finite in the/—0
limit (v=kp/kg"—1).

Although we found an infinite number of solutions in Eq.
(49) labeled byn, these solutions may correspond to unstable
vacua. We need to evaluate the vacuum energy in order to
find the true vacuum with minimum energy. We thus com-
pare energies of different vacua=1,2,...) byusing the
Cornwall-Jackiw-Tomboulis effective potentig23]. Within
the improved ladder approximation, the CJT potential is
given by

 VerlBimg,A) (a2 o, )1 ( Bz(x))_BZ(x)—moB(x)
7NNt Qnpa _fo A 2" x+B?(x)
. B a2 . B(y)
"2 CFJ d” x+Bz(x)f dyy” x+32(y)KB(X’y)' (%0

It is easy to show that the stationary condition of the CJTwith minimum energy in the chiral limitny=0 corresponds
potential 6V;1/5B=0 is identical to the gap equation Eq. to then=1 solutiorf (largestB,) in Eq. (49) at the super-

(17).
Using a scaling technique described in Re0] we can
evaluate the CJT effective potential,

VCJT( BsoI Mo ,A)

B 77NNfQNDA
=APIn 1+B—i +——-———AP"2(B,—mg)m
4(D—1)kp Ao
(51
where
BA=Bg(Xx=A2), (52

with B, being the solution of the gap equation Eg1). We

note that the vacuum enerd¢ ;7 is a decreasing function of

|B,| in the chiral limitmg=0. Combining Eq(49) and Eq.
(47), it is easy to obtain

(53

critical kp> k&M,
We thus obtain the scaling relation fap=x3":

- aT

Box A ex
0 p[(Dlz 1)Vrp /x3T—1

As pointed out in Ref[5], the chiral phase transition Eq.
(54) is an essential-singularity tyd@as a result of the “con-
formal phase transition[16]), which enables us to obtain a
hierarchy between the cuto and the dynamical mad3,

in a model withkp sufficiently close to the criticak3".
Actually, it is easy to realize a hierarchy @(10) level
without any fine-tuning, e.gA/By=12 in the SW3) gauge
theory withN;=5 andD=4+2.

Note, however, thakp is not an adjustable free param-
eter, but a definite number once the model is set up. We are
thus not able to obtain an arbitrarily large hierarchiB, in
models standing at the UV-FP. In order to clarify the point, it
is useful to translate<°“t to the critical number of flavors
NS™ by noting thatxp depends oy,

(54)

41t should be mentioned that thre= 1 solution is not an absolute
minimum, but a saddle point of the CJT potential. However, this
fact does not indicate the instability of this vacuum, since negative
curvature in the CJT potential does not necessarily imply the exis-

We thus find that the vacuum energy is a decreasing functiotence of a tachyonic mode. We will discuss another potential with
of By. It is now straightforward to show that the vacuum possibly better perspective in Appendix A.
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3 |26—D
77TR 6

Cr 32(D—1)
Ce™ 2(D—4)+1 D(D-2) |’
(55)

crit__

where we have used E(R2) and Eq.(24). (kp< 2™ corre-

sponds toN;<N¢™.) For SU3) gauge theories, the critical

N; is evaluated as

4.2 for D=4+2,
N¢M=< 1.8 for D=4+4,
0.8 for D=4+6.

(56)

The largest hierarchy in SB) gauge theories is then ob-

tained whenN;=5, N;=2, andN;=1 inD=4+2, D=4
+4, andD=4+6 dimensions, respectively.

In order to estimate the uncertainties coming from th

e

PHYSICAL REVIEW D 65 116008

IV. PHASE STRUCTURE

We have so far discussed the chiral phase transition as-

suming that the gauge couplingis standing at the UV-FP.
We found the criticaN$™, Eq. (55). Chiral symmetry break-
ing takes place only wheN;>N¢" at the UV-FP.

In particle models with extra dimensions, however, the

gauge couplingy is not necessarily on its UV-FB, . The
bulk QCD coupling of the ACDH scenario of the top con-
densate, for example, is shown to be below its UV-FP. In this
section, we therefore try to draw a more concrete picture of
the phase diagram including the gauge coupling strength
apart from the UV-FP. It is illuminating to discuss the phase
diagram in theg®-N; plane.

In the following analysis, particular interest is paid to
SU(3) gauge theories iD =4+ 2 dimensions, in which the
critical N; is evaluated adl{"'=4.2. Since chiral symmetry

compactification scal® %, we next consider the effects of breaking (¢SB) is our main concern, we take the chiral limit

an infrared cutofﬂ\/I§~R*2. It is shown in Appendix C that

the critical kp is a function ofM3 in the presence of the IR

cutoff M2,

KM =kF(MZ=0)[1+2MD)],  (57)

crit

with «2"(M3=0) being the critical point without IR cutoff
and given by Eq(41). v¢(M3) is a solution of

AZ
2 tan v+ wvcan =. (58
0
For A>Mg, v(M3) is thus given by
2
vo(M (59

PP —
O 2+ wIin(AZ/M2)

The difference betweer&'(M3+0) and <Z"(M3=0) can
be neglected for sufficiently large UV cutoft.

On the other hand, the scaling behaviorBi{fM g) coin-
cides with Eq.(54) [see also Eq(49)] for Mq<B(M3)<A,
while

~9
Yerit
v—v(Mj)
B(ME)=Mo=—— 5> (60)
ve(Mo) x Sym. (IT)
for B(M2)<M,. Equation (60) indicates mean-field-type , (I,H) , . , . ,
scaling. We thus need a fine-tuning of the model in order to % 1 2 3 4 5 6 7

realize the hierarchy between the fermion mB¢M S) and
the IR cutoffMy(~R™1).

If the effects of the compactification scalR ! can be
mimicked by the IR cutoffM, the result Eq(60) implies

that the dynamical fermion mad3, cannot be made ex-

tremely smaller tharR™! without severe fine-tuning. It is,
however, relatively easy to achieve &{10) level hierarchy
between the UV cutoff\ andB, as we discussed before.

me=0 in this section.

Before starting the detailed numerical analysis, we first
discuss the qualitative picture of the phase diagt&ig. 2)
by using the result of the gap equation at the UV-FP.

Let us start with the casB?">>N;>NS™. The typical
behavior of the beta function of the dimensionless gauge
couplingg is depicted in Fig. 3 with thi®\;. The UV-FP is
above the critical coupling,;. The bulk fermion then ac-
quires its dynamical mass proportional to the cutdff Eq.
(54), even at the UV-FP. We therefore expect chiral symme-
try breaking to take place in the strongly coupled regimne
>g, (region | in Fig. 2. Since the gauge couplirgquickly
approaches its UV-FP in the asymptotic region, the coupling
exceeds its critical value for a sufficiently large energy scale
even in the weakly coupled regiofmegion Il). It is then

. asymptotically non-stable

8
N;I‘lt N}"XNS

FIG. 2. The phase diagram of &) gauge theory ilD=4+2
dimensions. While the theory remains chirally symmetric figr
<NfCrit with §;< g, , the dynamical chiral symmetry breaking takes
place in the entire region (@;‘ with a sulfficiently large cutoff\ for
NSM<N;<NfNS=7.5. The theory becomes asymptotically non-
stable without an UV-FP foN;>NNS .
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N :
> v ' —~
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Jerit G« g oY
| 0 X g
i Gerit
0 5 10 15 20 25 30 35 40 ! ) L L L ! ! !
FIG. 3. The beta function of SB) gauge theory witiN;=6 in 0 10 20 30 40 5 60 70 80

D=4+2 dimensions. The UV-FP is above the critical coupling FIG. 5. The beta function of SB3) gauge theory withN,=8 in

Yerit - D=4+2 dimensions. The theory becomes asymptotically non-
stable.
expected that dynamical chiral symmetry breaking occurs
even in region Il for a sufficiently large cutoff. In order to
keep the fermion mass finite, the cutaffneeds to be finite.
The situation should be substantially different fbi
<N{™ (see Fig. 4 In this case, the fermion remains mass-

symmetric in region lll. The cutoff\ can be arbitrarily large
in the analysis of the gap equation fidg< N¢™.

If we neglect the effects of the weak gauge interactions,
- ©) D) 1. the minimal ACDH scenario corresponds to the
less at the UV-FRy=g, or Ags=0 with Ag being the b _ (442 dimensional S(B) (QCD) gauge theory with
Scale_Of the gauge theory defined in 3%)'_ The gauge  N,=2 andg<g, . Equation(56) implies thatN™=4.2 in
couplingg, therefore, does not exceed its critical vaig:  thjs case and Fig. 2 shows that the model is in its chiral
in the weakly coupled regimeA(2)?<0 (region I11in Fig.  gymmetric phaséregion Ill). The QCD gauge coupling is
4). On the other hand, the gauge coupling in the stronglyh s not strong enough to trigger the chiral condensate in this
coupled phase {{zd)?>0 (region IV) becomes extremely scenario no matter how large the cutaffis. The model thus
strong at the infrared regiop?=(A{X)2 and the coupling needs to be modified in order to explain the electroweak

becomes stronger than its critical valgg;. It is therefore ~symmetry breaking. For example, the
expected that the fermion acquires its dynamical md$s D= (4+4)-dimensional version of the ACDH scenario is
~(A®)2 in region IV, while the theory remains chirally shown to be in the chiral symmetry breaking phasagion

1) (N{"=1.8) and it may explain the mass of the weak
- gauge bosons.

It is also worth pointing out that region IV in the phase
diagram(Fig. 2 may open an interesting possibility in the
building of models of electroweak symmetry breaking. Re-
gion IV is very interesting because we can formally take the
A—oo limit in the analysis of the gap equation. The low-
energy predictions of the models in this phase are thus insen-
J sitive to the physics around the UV cutoff. One of the pos-
sibilities is the idea of a “bulk technicolor” model. The
phenomenology of this scenario will be discussed in a sepa-
rate publication.

Finally, we consider the case with;>Nf"°  where the
theory becomes asymptotically nonstalsee Fig. 5 The

gauge coupling grows without a bound and exceegls; in
, the high-energy region. The chiral symmetry is then expected
to be broken spontaneously for sufficiently large cutbff
In order to confirm these expectations, however, we need
FIG. 4. The beta function of SB) gauge theory witiN;=2 in  to investigate the gap equation with the gauge coupling
D=4+2 dimensions. The UV-FP is below the critical coupling strength away from its fixed point, which we will perform in
Dot - the following subsections.

0 5 10 15 20 25
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0.8 fome 2t e ]
< 3t '
52 0.6 g
c \N/ 4
~ W,
) 5l
6
0 0 v 2 3 2 5 g -7 0 v '2‘”' 3 2 5 g
10 10 10 10 210 10 10 10 10 10 10 210 10 10
2/ M3 z[ M

FIG. 6. The momentum dependence of the running gauge cou- FIG. 7. The momentum dependence of the nonlocal gauge fix-
pling in the strongly coupled phase of tile=4+2 SU3) gauge ing parameter in the strongly coupled phase ofBhe4+2 SU3)
theory[N¢=2, (A(D))2= 10°PM3]. The infrared regularizatiogr is  gauge theoryN;=2, (A(D))zz 10°M2]. The infrared regularization
taken to be 0.Zsolid line) and 0.8(dashed ling The dotted line is g is taken to be 0.Zsolid line) and 0.8(dashed ling
the critical coupling §2,Qnpa=9/80).

_ The gap equation is solved in a numerical manner by
A Ne<N{™ adopting the recursion meth¢8]. We also introduce an in-

Let us first consider the chiral symmetry breaking in thefra[g;dzcutoﬁ “é'o- In Zthe follgwmg numerical analysis,
strongly interacting phase/\(%)2>0 with N¢<N¢™ (region (Aws) ™= 102M0 andA = 10°Mg are assumegl. _

IV in Fig. 2). The numerical solution of the gap equatiBiix)/Mg is

Note here that Eq26) has a dlfflculty assomated with the §hown in Fig. 8 for various choices of the infrared regulator
(tachyonig pole singularity for ({2)2>0 (strongly 9=Qnpa - We find
coupled phase Such a singularity appears only when the

gauge coupling becomes extremely strong. So it should be an gi
artifact of one-loop approximation of the beta function. In B(MO) fvl—zA - (63
order to avoid the difficulty, we make an ansatz of the di- g(u=A)
mensionless gauge coupli@@z,uzgzD in the infrared region .
w’< T(A(D))2 with 7>1, for sufficiently largeg,r, as we expected before. The solu-

tion is insensitive to the choice of the UV cutaff?. We can

s 1 1 5 w? thus formally define a continuum limitnfinite cutoff limit),
9°(n)QAnpa= b TITCON (61)  which implies that the low-energy physics beconmesensi-
B (r=1) (Ayis) tive to the details of the physics around cutdffshould be
for u <T(A(D))2. The form Eq.(61) is a linear function of 18
w12 and is taken so as to maké(?) and its first derivative 14k
continuous af®=r(A{P))2. The regulatorr(A2)? is cho-
sen to make the coupling g@(,u,2=0) sufficiently large: § 12 ¢
~2 ~20 2 = T
irOQnpa=0 (1 )QNDA|M2=O 5 8t
R st
1 ' o) 4k
—2b’ (7—1)? ' ol
(62
0 : S :
10 10" 102 10®.  10*  10®  10f

The behaviors of the gauge coupling Df=4+2 SU3) 9
N;=2 gauge theory are shown in Fig. 6 for positive x/Mo

ALH2=102M2>0. The lin rrespon he nonregu-
(Aws) *M>0. The lines correspond to the nonregu FIG. 8. The solution of the gap equation of

larized and the regularizeg with ggQnpa=0.2 and 0.8. p_ (4+2)-dimensional S gauge theory witNy=2. (AL2)?

The nonregularized diverges at the scale/\(,(v,%))z. The cor-  =10°M3 and A?=10PM2 are assumed. The results with various
responding behaviors of the nonlocal gauge fixing parameteshoices of the infrared regulatayQypa=0.2 (solid line), 0.5
¢ are shown in Fig. 7. (dashed ling and 0.8(bold line) are depicted.
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05
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5, 05|
S sl
\IQ .
N ol
25+
3+
-35 : : : : :
10° 100 102 10*. 10*  10°  10f 108 i < ;
T / MOQ 10 9 10 10
x /Mg
FIG. 9. The “power” behavior of the numerical solution. The _ ) )
infrared regulator is taken @g;Qnpa= 0.2 (solid line), 0.5(dashed  _ FIG. 10. The asymptotic behavior of the mass function for
line), and 0.8(bold line). glzRQNDA=O.2(solid ling), 0.5 (dashed ling and 0.8(bold line).
emphasized that this phase may be useful within the framdD Fig- 9. The asymptotic behavibof Eq. (66) is consistent
work of local field theory, no matter what physics may existWith “power” =—1.6 in Fig. 9, which agrees well with the
behind the UV cutoff. expected value- w(1+v) wherew=1, v=0.6 for theD
We next consider the high-energiys>(A2)2~B?] be-  =(4+2) dimensional S(8) gauge theory withN;=2.

havior of the mass function. In the asymptotic energy region, \We also note that the “power” is related to the anomalous
the gauge coupling strength very quickly approaches its Uvdimension of the fermion masyy, as “power”= y,/2

FP. We therefore expect that the asymptotic solution satisfies (D/2—1) [5]. The anomalous dimensiory,, in the
the differential equation Eq:33) and the UV-BC Eq(35),  asymptotic region is then given by

which were derived originally at the UV-FP. On the other
(1-V1-g5/gZ). (68)

hand, the infrared behavior of the solution should be substan- Y= (E -1
tially different from the solution at the UV-FP. We therefore 2
do not adopt the IR-BC Ed34). We next examine the absolute magnitude of the mass

Equation(33) can be approximated further faeB?, function in the asymptotic region. For this purpose, we show
a log-log plot of the mass function in the asymptotic region
(see Fig. 10 We find that the asymptotic mass function be-
comes insensitive to the infrared regulap, if we take
0 Qnpa=0.5.

The infrared behavior of the solution depends signifi-
cantly on the choice of the infrared regula@fﬁ. The infra-
)w(lz) red behavior is therefore not trustworthy enough in this cal-

, (69

d
d—XX

d

D/2

2(D—-1)(D-2)
dx

5 kpxP272B=0. (64)

It is easy to solve Eq(64) and Eq.(35). We find that the
asymptotic solution is given by

X —w(1+7) 1-3
B(X)Oc ( F)

x culation. It should be emphasized, however, that the
A? ultraviolet behavior is relatively insensitive to the choice of
infrared regulator.

with v=\1—«p/x3"=+/1—g2/g%;. The second term is We have so far discussed the case Wh@k}%’ is suffi-
negligible for A?>x. We thus expect that the mass function ciently large compared with the IR cutdfl, and found the

B behaves as dynamical chiral symmetry breakin@(M%)~A%. The

situation differs substantially fcytfvl—DS)< My, where the gauge

1+

B(x)o i) e (66) couplingéﬂcannot exceed its critical value of the chiral phase
A2 transitiong;. Actually, dynamical chiral symmetry break-
ing does not take place fm%<Mo.
in the energy region(\2>x>(A,(\,l—DS))2 if a nontrivial B#0 A similar analysis was also performed in the weakly in-
solution exists. teracting phasez‘(%))2<0 (region Il in Fig. 2. As we ex-

In order to confirm the above expectation, we next plotpected, we find no signal of chiral symmetry breaking in this
the “power” behavior of the numerical solution of the mass phase withN;< Ntf?rit_

function,

X dB(x)

(67) The behavior near the cutoff=A? in Fig. 9 is an artifact due to
B(x) dx '’

‘power” =
P the sharp cutoff introduced in the analysis of the gap equé#6h
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FIG. 11. The running of the gauge coupling strengih=4

()32 FIG. 12. The scaling behavior @&(M3)/A as a function of
+2,N=3,N;=6, (AL)m2=

—100. The dashed line is the s2/|(\(O)2| in the D=(4+2)-dimensional S(B) theory with

critical coupling @ngNDAZQ/SO). N¢=6. (A%)Z/MS: —100 is assumed.
B. N;>N¢ Stokar formulg 31].° We are thus able to test the scenario by
comparing the calculatedy with the actual valuev
We next discuss gauge theories \NMI}’I> N(f:rit (regions | =250 GeV. In other WOde, we can “predict" the UV cutoff

and Il in Fig. 2. In these models, the UV-FP of the gauge Once we fix the VEWy to the actual value. This property is
coupling is strong enough to trigger dynamical chiral Sym_due to the fact that the top condensate is driven solely by the
metry breaking. We therefore expect that the bulk fermionPU/k QCD gauge coupling, which cannot be adjusted arbi-

acquires its dynamical mass even in the weakly couple(;jrar'ly in thl_s 'scenario. It is therefore completely different
(D)\2 . ' . rom the original version of the top-mode standard model,
phase (\75)“<<0 (region II). In order to confirm this expec-

) . . . ) . where the four-fermion coupling is introduced as an adjust-
tation, we next investigate the gap equation with negative,p|e free parameter.

(A{R)? ie., a weakly coupled phase wibth>N{™. This fact is in sharp contrast to the renormalization group
Figure 11 shows the behavior of théS gauge coupling analysis of ACDH, where the cutoft is treated as an ad-
of SU(3) gauge theory withD=4+2, N;=6. The scale justable parameter of the model. Unfortunately, however, it is
(A%)Z is taken as A%)QMSZ —100 in this figure. The Very difficult to perform such a quantitative calculation with

; : . _ sufficient reliability. We therefore do not discuss this prob-
gauge coupling approaches |t§ UV IgéQNDA 0.25 very lem hereafter in this paper.
quickly. We expect that dynamical chiral symmetry breaking

occurs when the gauge coupling strength exceeds its critical It should also be noted that the cutolf needs to be
value: gaug ping 9 fine-tuned to its critical value in order to obtain a hierarchy

between the cutofA and the fermion masE(MS). The
precise prediction of the cutoff and the order of fine-tuning

Cr320 >K°”t=3 (69) depend on the details of the model parameter, however. Ac-

FS TENDA 20’ tually, the scaling relation foN;=5 (Fig. 13 indicates that

the critical cutoff is much IargerAzzgd(A,(v'—DS))zl, in the
N{=5 model.

which is actually satisfied for.?=|(A2)?.

It is straightforward to solve the gap equation numerically. V. THE GAP EQUATION WITH USE OF THE EFFECTIVE
We find that dynamical chiral symmetry breaking actually COUPLING
occurs when the cutoff\ is large enoughA225|(Af\A—DS))2|,

with the above mentioned parameters. Figure 12 shows the We have so far investigated the dynamical chiral symme-
: . - tfy breaking and the phase structure in vectorlike gauge theo-
scaling behavior oB(M2)/A as a function ofv%/|(A{2)?. y g P gaug

: ] ries with extra dimensions. In particular, we found that the
It should be emphasized that the cutdffcan be determined  gjmplest ACDH version of the top-mode standard model

in this case onc8(M?) and (A{2)? are fixed. (D=4+2N;=2) is in its chirally symmetric phase, indicat-
The top-mode standard model with extra dimensions

would be one of the most important applications of this

phase. As we discussed before, we note that the cixfofs, 81t is also possible to evaluate by adopting the Bardeen-Hill-

in principle, a calculable parameter in the analysis of the gapindner (BHL) type compositeness conditid] in the renormal-

equation. Once the cutoft is determined, we can evaluate ization group analysis, but without freedom to adjiistThe decay

the decay constant of the NG boddhe vacuum expectation constant is given byv =+2m,/y, with y, being the Yukawa cou-

value (VEV) of the Higgs bosohv by using the Pagels- pling satisfying the BHL condition.
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0.5 ' - - - - Summing the KK-mode contributions up toxk<Ag
we obtain a relation between effective alib couphngs
04t
2
i 03 | "21 = M_ ~2 - o i2
No geff(z) z gM_S(M) Ox
~— 02} 1
A —— [Kg(=2,A) +Kp(—2,A)
(4m)*
01 _
, +Ki(—2z,A2)], (72)

50 100 150 200 250 300 350 at one-loop level inD=4+2 dimensions. Definitions of
A2/|(A@)2| Kg(a?A%), Kp(a? Aj), andK(g? Aj) are given in Appen-
MS dix D. We also defmed the dlmensmnless bulk gauge cou-

. ~9 ~ . P .
FIG. 13. The scaling behavior witk;= 5. Other parameters are PliNgS Ger(2) andgws(w) in a similar manner to Eq19):
the same as in Fig. 12.

Y (2mR\2)?
ing that the simplest ACDH scenario does not work properly Jerl(2)= n ger(2),
as a model to explain the mass of the weak gauge bosons. ) (73
Our results, however, rely on our bold assumption, i.e., - _(27Ru)* ,
the nonperturbative existence of the UV-FP. If the gauge cou- Iiis ()= n Oivis (#4)-

pling becomes stronger than our estimate of the UV-FP, there

is a chance to obtain dynamical electroweak symmetnSubstituting the solution of th&1S renormalization group

breaking even within the simplest ACDH model. Moreover, equation(26) into Eq.(72), we can confirm the renormaliza-

there is no justification for identifying the renormalization tion scale independence of the effective coupling:

scaleu? of theMS scheme with the gauge boson momentum (D)2

=—q? beyond the leading order in the improved ladder 1 1 (Ays) N 1

appr(_)ximation. _ _ _ @ﬁﬁ(Z) g* z (4)3
It is therefore worth analyzing the gap equation with use

of a different definition of the gauge coupling. Hereafter, we +Ky( —z,A§)+ Kf(_Z'AS)]- (74)

will investigate the gap equation numerically with use of the o

effective gauge coupling defined in R¢g]. The effective  The MS gauge coupling |n the ACDH scenario is in the

coupling is closely related to the gauge boson propagator angleakly interacting reglon/(MS) <0.

its momentum. _ . It should be emphasized that the effective coupling Eq.
The effective gauge couplingey in the truncated KK (79) depends on the choice of cutoff,, no matter how

effective theory on the three-brane is given by large it is. This behavior implies violation of the decoupling

theorem. The low-energy<A ) predictions are sensitive to
(q) D(O)W(Q) (9 9,0~ 0,011 (9?), the physics at the cutoff scale. There is no UV-FP in the

g( - Z,AS)

92— 02 ) usual sense due to the violation of the decoupling theorem,
although there still exists an upper boundggf; i e
(70) lthough th ill exi boundggf; if (A2)2
with go being the bare gauge coupling of the truncated KK$0'
effective theoryD ,, andD g, are normalized as Y Y ) (41)3
geﬂ(z)$geﬁ(zzAg)|(A§M—DS))2=o: K (79

4,9, ) 71

D, (q)= 7 (gw [1- &%)~ with
. - K=Kg(—AZAD+Ky(—AZAD+K(—AAD),
Dm),w(q):?(gw [1-&(q >]g ) (71b) (76

where we identified\ ; with the cutoff for the gauge boson
Precise definitions of other notation are given in R6f.and  propagator. The factdf is evaluated in S(N) gauge theory
the vacuum polarization functiongfg,,—q,d,)I1(q?) is  with N¢ flavors:
evaluated using the background gauge fixing method so as to

keep manifest gauge invariance. The vacuum polarization 88 105 1| 32
functionII is the sum of the loop contributions of each KK K=N| - 4_5jL Tarctanh\/—_ 45Nf

mode. It includes not only logarithmically divergent contri-

butions but also finite loop corrections. =1.6N—-0.7IN;. (77
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2/ Ay Ny
FIG. 14. The typical flow of the effective coupllrﬁﬁ defined FIG. 16. The scaling behavior for the dynamical mass with the

by Eq. (74) with (A(D))2 0. The dashed and solid lines represent effective coupllnggeff The lines from right to left are graphs for
the graphs foN;=2,4, respectively. In both graphs, we todbk  (A/Mg)?=10%1C°,1C°, 10" with N=3 and (A4/A)*=4, respec-

=3 and (A4R)*=4x10". tively.
We note that the upper bound of, is roughly twice as large It is difficult to take fully into account the effect of the
as the correspondinglS UV-FP. compactification scal® 1. We introduce an infrared cutoff

Flgure 14 shows the typical behavior of the effective cou-M5~R 2 in the gap equation and negleRt * sensitive in-
pling 92 with (A(D))Z_O Substituting the effective cou- frared behaviors in the following analysis instead. We find
eff ' the dynamical chiral symmetry breaking is insensitivévig

pling shown in Fig. 14 into the formula for nonlocal gaugefor sufficiently largeA anyway.

(NLG) fixing Eqg. (16), we obtain the corresponding behavior o :
of the nonlocal gauge fixing functio&(z). (See Fig. 185. The minimal ACDH scenario corresponds to SWUgauge

In order to solve the gap equation, we first recall B@), theory in ”}g)D; (4+2)-d|men§|0nal space-ﬂmg Wity
the relation between the gauge boson momerzuand the —2 @nd (Ays)“<0. The effective gauge coupling of the
fermion momenta,y in the gap equation. The gauge bosonACDH scenario ({#))2<0 is always weaker than in the
momentune reaches its maximumA? whenx=y=A?and  case with @(D))Z 0. It is therefore sufficient to investigate
cosf=—1 in Eq.(12). The cutoff of the gauge boson mo- the casel(x,(\,lDS))2 0 for the determination of the condition of
mentumA? thus needs to satisfy the bulk chiral symmetry breaking. The aim of our numerical
analysis is then to find the critichl; , above which dynami-

2 2
Ag=4A~. (78) cal chiral symmetry breaking takes place in the bulk with
Hereafter we simply assumAeS=4A2 unless noted other- (Aws)“=0. We take the chiral limitny=0 in the following
wise. analyses.
It is now easy to perform a numerical analysis of the gap
e equation by using the recursion methdsl. Hereafter, we

formally allow N; to take nonintegefreal) values and evalu-
ate the scaling behavior cB(MS) as a function ofN;. For
SU(3) gauge theory iD=4+2 dimensions, we obtain the
scaling behavior shown in Fig. 16. Dynamical chiral symme-
try breaking takes place for

&(=)

Ni>N§{"=4.23  with (A4/A)2=4 (79

in this model.
ForAS>4A2, the criticalN; tends to be larger than Eq.
(79). For instance, we obtain

_1'10'151&‘415"31&121&”1o“‘°1;‘9 1:)'8 1;'7 1:)'6 1;‘5 1;“‘ 1:1'3 1:1'2 18“ 10°
Z/A2 crit ; 2
g9 Nf =462  with (A4/A)“=10. (80
FIG. 15. The typical behavior of the NL&(z) for the effective ] ) ) ) ) )
coupling defined by Eq(74) with (A{2)2=0. We tookN=3, The physics behind this result is obviously understood if we
(AgR)2=4x 10, andN;=4. The graph foN;=2 almost over- Note Eq.(75). The effective coupling does not reach its maxi-
laps with that foN;=4. The NLG approaches= —5/3 in the limit ~mum value in the gap equation fq}(é>4A2>z. We thus
of z—0. conclude that Eq(79) is a very conservative estimate and
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that the simplest version of the ACDH model wily=2 2.8
does not work even with the effective coupling.
Noting that the upper bound @ﬁﬁ is approximately twice = 28
as large as the UV-FP qf;‘f,l—S it is somewhat surprising to ~ sl
find that NS with the effective coupling Eq(79) is rather Ng
close toN{" with the MS coupling Eq.(56). It should be EQ/ 821
emphasized that Fig. 14 shows that the effective couglfg S sl
is close to its maximum value only when the gauge boson —
momentune is sufficiently close td\g, however. Unlike the a6 L
corresponding UV-FP of thBIS coupling, the effective cou-
pling is well below its maximum value in the wide region of -3.8 T
momentum space. 52 -5 -48 -46 -44 42 -4 ‘-3.8 36 34 32 3
Actually, a similar situation was also found in the analysis In (Nf - N}’“t)
of four-dimensional QED including vacuum polarization ef-
fects [32]. In the case ofN;=1 QED,, dynamical chiral FIG. 17. The log-log plot of the scaling relation Fig. 16. We
symmetry breaking takes place only when the coupling at thesed (\/M)?=10"and (A4/A)?=4. The bold line represents the
cutoff exceeds the critical value line obtained through the least-squares method for the data set of
(N;—NS™)/NS™<0.01 with N§™=4.23. We also plot numerical
a,>1.95 (N¢=1), (81 data with crossed points.

which is about twice as large as the quenched oa . . , S
= 7/3). g . e the existence of an ultraviolet fixed-poigy in the truncated

We finally make a brief comment on the scaling relation. KK €ffective theory of a non-Abelian gauge theory with

; i ; ; tified extra dimensions. The existence of such an
Unlike the essential-singularity-type scaling E§4) found ~ ¢OMpPac _ _ (e exi .
in the analysis with thels coupling, the scaling behavior of UV-FP may open interesting possibilities in the model build-

Fig. 16 seems like mean-field-type scaling. In order to con!Ng Of high-energy particle theory. The top-mode standard

. X . X model scenarios in extra dimensions, for example, are af-
firm the mean-field type scaling, we perform a fit of thefected significantly by the existence of such an UV-FP. It is
scaling behavior assuming power-law scaling, 9 y by §

therefore interesting to investigate the consequences of an

B(M2)oc A(N¢— Nty (82) UV-FP in the bulk field theories. We therefore first analyzed
the gap equation with the gauge coupling both on and off the
in Fig. 17. We find that the best fit valugis given by UV-FP, assuming that the qualitative structure of the UV-FP
is unchanged beyond the one-loop approximation. We found
y=0.51 (83  that the critical UV-FP gauge coupling B/4 times larger

than in our previous calculation in the Landau gauge. The
result was then converted to the critical number of flavors
N[ — NCT NE™. For Ny>N{™ dyngmlcal chiral symmgtry brealflng
———=0.01. (84) takes place not only in the “strong-coupling phasg”
N >g, , but also in the “weak-coupling phase@’< g, When
This result is consistent with the mean-field-type scaling (he cutoff is large enough. F‘N_f<N?m’ however, the chiral
=1/2. In contrast to the case with the essential-singularitySYMmetry remains unbroken in the “weak-coupling phase”

type scaling, the cutoff needs to be small enough to keep 9<g, no matter how large the cutoff is. We fourlf™
the dynamical mass small even whipis sufficiently close  =4.2, 1.8 inD=86, 8 dimensions for the S8) gauge theory

for the data set with

to N with the mean-field-type scaling. (bulk QCD).
In a scenario with the extra dimensiof/CDH scenari)
V1. SUMMARY AND DISCUSSION of the TMSM, the gauge coupling is obviously weak and the

N; needs to be larger than the critical one in order to trigger

In this paper, we have systematically studied the bulk dydynamical electroweak symmetry breaking. The simplest
namical chiral symmetry breaking in vectorlike gauge theo-ACDH scenario withN;=2 thus does not work iD=6,
ries with extra dimensions and revealed a new phase strugvhile there is a chance to construct a viable modeDin
ture of such theories. Extending our previous study based oa 8 dimensions. Moreover, the UV cutoff needs to be finite
the gap equatioiithe SD equation within the improved lad- in order to obtain a finite top-quark mass. Actually, once we
der approximatioj) we adopted in the present study the non-fix the top mass, it is possible to predict the UV cutoff in the
local gauge fixing method in order to keep thepart of the ~ ACDH scenario in the analysis of the gap equation, in con-
fermion propagator trivial, i.e. A(—p?)=1, which is thus trast to the original treatment of ACDH. The phenomenologi-
consistent with the Ward-Takahashi identity and the bare vereal analysis done by ACDH therefore needs to be modified
tex approximation in the ladder SD equation. by taking account of this fact.

The one-loop analysis of th€lS beta function suggests On the other hand, we found a novel situation fof
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<N?r", where we can formally define a continuum lirfiib- larly important among them, because it corresponds to the
finite cutoff). The low-energy physics is controlled by the Higgs boson in models of dynamical electroweak symmetry
properties of the UV-FP and it becomes insensitive to thdreaking. However, the CJT potential discussed in Sec. lll is
physics around the UV cutoff. The anomalous dimension ofa functional of the mass functioB(x), and is not directly

the fermion masg,, is shown to be large. This phase may berelated to these bound states. In addition, it is shown that the
useful for model building of “bulk technicolor,” where the CJT is not bounded from below. It is therefore not perfectly

large anomalous dimension can be used as a suppressieppropriate to study the stability of the vacuum by using the
mechanism for the excess of FCNCs. CJT potential.

It should be emphasized, however, that nonperturbative In this appendix, we thus discuss yet another effective
existence of an UV-FP is no more than an assumption apotentialV(o), which is a function of the local composite
present in a wide class of models. Actually, the one-loogfield o~ s and is connected to the dynamical properties of
effective gauge coupling of the truncated KK effective the ¢ boson more closely.
theory withD=4+2 dimensions is shown to have an ex-  We consider the effective actidi{ o],
plicit cutoff dependence, which implies absence of the
UV-FP in the usual sense. We therefore performed an analy- b
sis of the gap equation by using the effective coupling for F[‘T]EW[J]_f d”xJo, (A1)
D=4+ 2 dimensions. We found that there also exisi¢d
notwithstanding the absence of an UV-FP in the usual sensevith
Although the effective coupling at the UV cutoff is much
larger than that oMS, we found that th&l{™ in this scheme
actually is very close to thBIS one. The simplest version of
the ACDH scenario withiN¢=2 is therefore quite unlikely to
work in theD=4+2 dimensions. o IWLJ]

Many issues remain unsolved and need further study, dJ
however. For example, the existence of a nontrivial UV-FP is
yet to be proved. It should be investigated more definitely inThe corresponding effective potential can be obtained by tak-
the future whether the nontrivial UV-FP really exists or not.ing the coordinate independent part of this effective action.

The uncertainties coming from the compactification sen- In the following, we briefly outline the derivation of the
sitive infrared region are also important. In the present papegffective potentialV (o) based on the method of Ref33]
this effect was only roughly estimated by introducing the IR(see also Ref.16]). N _
cutoff M3~R~2 in the gap equation. It turned out that the ~ FOr @ constant source terdnthe partition functionV[J]
effects tend to increase the critical couplingMf™. Hence IS obtained as
there is a possibility that the simplest version of the ACDH
scenario may not work even f@r=4+4. We need to invent W[J]= f dJ‘?W[J] dPx. (A3)

a more sophisticated way to take into account the compacti- dJ
fication effect, particularly for the cad®,<R 1. )

Finally, the results presented in this paper provide basidNoting that
tools for particle model building with dynamical chiral sym-
metry breaking in extra dimensions. We need to construct IWLI] R (Ad)
concrete and viable models such as the top condensate or ad I
technicolor in the bulk by using these tools. More quantita-
tive studies of these models will be dealt with in a separateve find that the effective potential is given by
publication.

W[J]Ei}lnj [d¢dﬂ[gaug@exp<ij de(L+J$¢//)),

. (A2)

J o
V(0')=J0'—f dJU(=f dox]), (A5)
ACKNOWLEDGMENTS

This work was supported by Grant-in-Aid for Scientific WhereJ should be regarded as a function ®f _
ResearcliB) No. 11695030K.Y., V.G.), JSPS through grant ~ 1he effect of the constant sourdecan be obtained by
No. 01170 (M.H.), and partially by the grant SCOPES feplacing the bare mass, in Egs.(31), (35), (45), and(48),
project 7 IP 062607 of the Swiss NS¥.G.). V.G. wishes to

acknowledge JSPS for financial support. Mo— Mp—J. (A6)
We thus find
APPENDIX A: THE EFFECTIVE POTENTIAL B
FOR A LOCAL COMPOSITE FIELD 1 o 2\ —e(1-v)
J— J:mo_—(1+ V)C()BO -y (A?)
We expect the appearance of various compogiig 2 ( BS)

bound states in gauge theories with extra dimensionsoThe A
the chiral partner of the Nambu-Goldstone boson, is particufor kp<«3" and
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A2\
J:mo_\ 1+v |C0|Bo(_2>

B0
2
Xsin 0+ wvIn— +tan 'y (A8)
0
for kp>«3". The relation between the mass functiB(x)

and o is given by

B(x)

— A2
o= ()=~ ﬂNNfQNDAI dxx*?7t——, (A9)
0 X+B
which leads to
crit
— KD dB(x)
o=(¢ih) ;= PNN;Qypa—, — AP ax :
W Kp x=A2
(A10)

where we have used the gap equation £4). The chiral
condensater can be expressed in terms B,

- 0 (1—'\1;)KCDrit
a(Bg) = —ConNNiQypa wkp
A —20(1-7)-1
xADl(B—O> (A11)
for kp<xZ" and
2|co| PN N Q)
o(Bg)=— |col NN NDAAszng
w1+ v?
AZ
Xsin 6+ wvin— —tan v (A12)
0
for xkp> k",

We are now ready to evaluate the effective potential Eq

(A5). Thed (or o) integral in Eq.(A5) can be performed by
using

dJ do
dJ=dBod—B (or d(r=dBod?). (A13)
0 0

Combining Egs(A5), (A7), (A10), and(A1l), we finally
obtain the effective potential in the subcritical regiaf

< KCDm ,

2
_ 1 ~2,D| 0
V(U)—mﬂNNfQNDAC oA (P

(A14)

>1+2w(17/)

in the chiral limitmy=0. The effective potential in the su-
percritical region can be obtained in a similar manner,

PHYSICAL REVIEW D 65 116008

2
V(o)=g5—5 "N NeQnpalCol?Bg

A2
X| —co§ 20+2wvin—| +A (A15)
Bo
with
_KCDrit 1+6w ,
T ko \ T 1420 )

We here regard, as a function ofo- defined implicitly in
Eq. (A10).

It is now straightforward to find the stationary points of
the effective potential. The stationary conditidv/do=0
of Eq. (A14) has only the trivial solutiorBo=0 for «p
<«g", while we find nontrivial solutions8,=B{"+0 (n
=1,2,...) forkp>«3" in the stationary condition of Eq.
(A15). Here,B{" is given by

—na+6+tan v

2wv

B{V=A exp[ , (A16)

which coincides with the solution of Eg48) with my=0.
Hereafter, we concentrate on the supercritical regign
> k3", The stability of the vacuan(=1,2, ...) can be in-

vestigated by taking the second derivative of the potential,

d2V_ dJ  dJ
do? do dBy

do)_l

TN (AL7)

It is easy to show that the curvature of the potential at the
stationary point is positive,

d?v

do?

B w?(1+1?)
2(1+3w— wv?) pNNiQppa

A~ (P-2>0

o= u—(Bg]))
(A18)

for ¥”’<3+ w ! irrespective ofn. We thus find that every
stationary point is a local minimum of the potenti4o’).

" We need to compare vacuum energies in order to find the
absolute minimum of the potential, i.e., the true vacuum
then. The value of the potential at eatlis obtained as

crit

) |col 27NN Qppa(BE)P <O,
(A19)

(my_ _ 4
VB =-5|1-

b
Kp
which is actually consistent with the result of the CJT poten-
tial Eq. (51) for smallB{"” . Then=1 solution, i.e., the larg-
est fermion mass, gives the global minimum\éfo). We
thus conclude that the=1 solution corresponds to the most
stable vacuum.

We should comment here on the properties of the false
vacuan=2. Although we found that the mass squareraf
positive even in these false vacua, it does not necessarily
imply the metastability of these vacua. Actually, in the analy-
sis of the Bethe-Salpeter equations in the strong coupling
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QED, (QED in four dimensionk it is known that these false limit. This means that the branch of the potential also shrinks
vacua have tachyonic mo@in the pseudoscalar channel in to o=0, exhibiting a fractal structure arourngd=0.
addition to the massless Nambu-Goldstone m{i35. It is known that the long-range nature of interactions in
The false vacua=2 are therefore saddle points of the ef- scale invariant theories also leads to other peculiar properties
fective potential with negative curvature in the direction ofsuch as the existence of the infinite number of resonances
the pseudoscalar channel when pseudoscalar degrees of fré&d the nonanalyticity of the potential at the poin{B,
dom are included in the potential. =0) causing its fractal structure aroumdBy=0) [34]. It

As we described before, we found that every stationaryshould be noted, however, that the gauge theories with extra
point of the potential Eq(A15) is a local minimum in ther ~ dimensions are not scale invariant below the compactifica-
direction. There is no stationary point corresponding to &ion scale which should serve as an infrared cutoff in the SD
local maximum. This fact perhaps may sound rather peculia€quation for the fermion mass function. Introducing such a
Actually, it is tied to the interesting and bizarre properties ofcutoff explicitly, one can show that the SD equation has only
the effective potential E(A15). The effective potential Eq. a finite number of solutiongsee Refs[35,36 and Appendix
(A15) is a multibranched and multivalued function@fWe  C of the present papeand the solutions with small dynami-

next try to grasp the shape of the effective potential morecal masse8({™™ " disappear. Accordingly, the potenth{ o)

closely. will have only a finite number of branches. We thus expect
We first consider the derivatives of [Eq. (A12)] andJ  that bizarre behavior near=0 does not actually occur in
[Eq. (A8)] with respect taBy: the models treated in this paper.
Finally, we discuss the properties of the effective potential
do . A2 for sufficiently large cutoffA>B{". For this purpose, we
d—%*A Bg“sin 0+wvln§ take an infinite cutoff limitA— o with B being fixed by
0 P _ CHt :
formally adjustingv= \/kp /x5 —1. The anomalous dimen-
| 2(D-1)v sion of the fermion mass is found to hg,=2w in Ref.[5]
no————l/ (A20)  in such a formal limit. We thus define a “renormalized” op-
D-(D-2)» erator
and . o ez
43 5 (pih)r=Zn( ), Zm“(K> ; (A23)
—— A" 2Bisin| 6+ wvin—;
dBo Bo and
2 J—
ttam | ————— . (A21) ar=(($)R)- (A24)
D+(D-2)»?
Taking the formalA —co limit of Eq. (A12) as described
We note thado/dB, vanishes for before, it is easy to obtain
A? 2(D-1)v 1 B
0+wvIin——tan Y ——— =nm, 20pD/2[ — —0
2 D—(D-2)12 or* u?“Bg (anB(l) . (A25)
0
n=12,..., (A22)  Asexpected from the argument of the anomalous dimension,
] ] o ) o remains finite even in this formal — oo limit.
while dJ/dB, remains finite forB, with Eq. (A22). The Equation(A25) can be used to defir@, as a function of

second derivative of the potential Eeh17) thus diverges at ;. “\we are thus able to rewrite the effective potential Eq.

Eqg. (A22). We note here, however, that the first derivative of(A15) as a function of the renormalized fieltk(o). In the
the potentiadV/do (=dV/dBy-dB,/do) remains finite in  t5rmal A — o limit. we obtain

Eq. (A22) even thoughdV/dB,=0, since there exists in

dV/dB, the same sine function as uho/dBy. Something [[(D/2)]2
very bizarre should take place at the points E&R2). Vr(or) = 7NN Qnpa 2 o

Plotting the shape of the effective potential, we find that it [I'(1+w)]
has a structure quite similar to the potential in Fig. 1 of Ref.

[34], in which the diquark condensate is studied in high- %
density QCD by using the local composite effective poten-

tial. The potentiaM (o) is a multibranched and multivalued

function of o: The points Eq.(A22) are cusps and corre- with By=By(oRg) being the function ofrg determined im-
spond to branching points. The stationary poh(]Bg”)) cor-  plicitly from Eg. (A25).

responds to the local minimum in each branch of the effec- It is somewhat surprising to find such a finite expression
tive potential. We also find easily from Eq#22) and(A12) of the effective potential Eq(A26) in the A—oo limit in

that the branching point converges ¢0=0 in the n—o nonrenormalizable higher-dimensional gauge theories. This

® (A26)

2
BO 0
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property is actually related to the approximate scale invari-

ance, i.e., the existence of the UV-FP.

APPENDIX B: CONVERSION
TO THE SCHRODINGER-LIKE EQUATION

We discuss dynamical mass generation in the bulk from Hamely

slightly different point of view. The SD equatidB1) for the
mass function without the bare mass temy can be rewrit-
ten in the form of Schidinger-like equatiorf37], in which

PHYSICAL REVIEW D 65 116008

Hy(u)=Ey(u), (B7)

with

=—A,+V(u), E=-m? (B8)
nontrivial solutions of the SD equation correspond
to bound statesE<0) in the Schrdinger-like equation.

In order to solve the Schdinger-like equatior(B7), we
rewrite it in spherical coordinates. The “wave function” is

the DySB takes place when a “bound state” exists. The S“b'decomposed as
ject of whether the bulk fermion condenses or not is thus

reduced to the “bound state problem” in quantum mechan-

ics.
Let us start by introducing the “wave function”

tﬂ(U)Ef

The Fourier transform of the mass functiBnis then given
by

d°qe €= UB(gf)
(2m)P

qg+m? ey

D
[ S e viqn =~ i)

2y (B2)

pu)=r"C"VRI)X(H), r=lul, (B9
where R(r) and X(¢;) denote the radial function and an
analogue of the spherical surface harmonicB idimensions
(the Gegenbauer functipnrespectively. For an S-wave
wave function” with X(¢;)=1, the D-dimensional Laplac-

ian can be written as

We next consider a linearized version of the ladder SD equd? is straightforward to show that E¢B7) leads to

tion,

d®ge B(gd) (D-1+&€)g?

(2m)° gg+m? (pe—qg) 2D’
(B3)

B(pé)chJ

where the couplinggzD is replaced by the running one
92/(pe—qe)?®22 and we taken=B(0). It is straightfor-
ward to show that the Fourier transform of E§3) is for-
mally given by

quE igg-u 2y
oot S BER= VW), (B
where the “potential”V(u) is defined by
de eipE»u
V<u>z—(D—1+§D>chif(Zw)i[pé]m (B5)

and the gauge fixing parametgis taken at the value of Eq.
(29),

_ (D—-1)(D-4)
§D=——D . (B6)
Here, the momentum shift invariancepd— pg—0qg) is
assumed. Equations (B2) and (B4) then lead to the
Schralinger-like equation

“It should be noted, however, that the UV cutdff in the SD

1%
Aulﬂs(U)=r|371(9—r rD_j—E[r_(D_l)/ZR(r)] .
(B10)
072
~ o2 T Ver(1) RN =ER() (B11)
with

(D-1)(D-3) 1
Va=Vn+ =22 S (12

4 r2

We find that an additiongbositive centrifugal potentiahp-
pears from the kinetic term in the case@f>3 even if we
consider theSwave solution.

The “potential” V(r) in Eqg. (B5) also has the same power
of r (anattractive inverse squarépotential”):

(D—-2)% kp 1

V(r)=— 2 Emr—z

(B13)

The competition between therépulsive centrifugal poten-
tial” and the “attractiveinverse square potential” thus deter-
mines the dynamical symmetry breaking.

The bound state spectrum with an inverse square potential
can be found in various textbooks of quantum mechanics
[38]. The equation

FR(r)
ar?

+ R(r)=0 (B14)

a
€+ —
r2

equation violates the momentum shift invariance. The analysis oh@s an infinite number of bound state solutions only when
the Schrdinger-like equation can thus be regarded as an analysis o> 1/4. In the present case, the parameteasida are given
the SD equation with a different choice of the UV-cutoff procedure.by
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D—2)? 1 d
e=—m?, a=( ) ( Kc'fit—l) +=. (B15) XZ“’”d—XB(X) =0 (IR-BO), (C2
4 KD 4 X:MS
The bound states of the Schiinger-like equation exist if x d
and only if kp>«3". The analysis of the Schdinger-like +5. d_x> B(X)’ =my (UV-BC) (C3
x=A2

equation gives the critical pointZ™, which coincides with
the value in the SD equation. _ _ (hereafter, we consider the chiral limiity=0).
We note here that the size of the “repulsive centrifugal Tphe general solution of EGC1) has the form

potential” becomes significant fob>4. This is the very
crit

reason why we obtairp" larger than the NDA estimate. Bo(X)/Bg=C1U(X)+ Cyus(X), (C9
We next comment on the case with nonrunngyg[37]. ) ] ) )
In this case, the “potentialVV(r) is given by whereas for two independent solutions of the differential

equation we take
deE dpEu
(2m® pg uy(x)=F

V(r)=—(D-1)g3
2| %

w(l+iv),w(l—-iv),1+2w;— Bi) , (CH

[(D/2—-1) g3

—w(1+iv)
=—(D-1 — B16
( ) 47P2 D2 (B19 u2(X)E(§) F(w(1+iv),
0
in the Landau gaugeéE 0). When the potential behaves as 52
—1/r® (0<s<2) for sufficiently larger, the spectrum con- —w(1=iv),1+ 2wy — lice (C6)
tains a countably infinite number of bound stafd8]. The ' X

dynamical symmetry breaking thus occurs for any value of i orit
the gauge coupling in 2D <4 [37]. However, it is not true (W€ consider the casep>«p). .
in D>4. There is a critical point and the scaling relation is 1he boundary conditionéC2),(C3) lead to the following

powerlike in the numerical analysis f@r=>5,6[24]. equation determining the mass spectrum:
=A,B,—A,B,=0, C
APPENDIX C: EFFECTS OF IR CUTOFF IN THE GAP ¢=AB2m A8, (€D
EQUATION AT THE FIXED POINT where we defined the functions ,B; as
In this appendix we solve the linearized equati{@m) in d
the presence of the IR cutoffl,~R™ 1. Ai=|1+ 2—xd—)ul(x) ,
The integral gap equation is written as the differential one X x=A2
du;(x)
d’B(x) 2w+1 dB(x B(x oy
( )+ ( )+w2(1+ vz)—( )2 =0, Bi=x dx 2 (€8
dx? X dx X(x+Bg) x=M
(CY , . - .
Using the formulas for differentiating hypergeometric func-
with two (infrared and ultraviolgtboundary conditions tions [40], the functionsA, ,B; can be recast as
|
A2
A =F w(l+iv),w(l—iv),2w;—?), (C9
0
Bz w(l+iv) BZ
A,=Rd (1—iv)| — Fl o(14iv),1- o(1—iv),14 2 wv: — — (€10
2 14 A2 w V), w v), wvV, A2 y

B CACh MSF 1 1+iv),1 1-iv),2+2w; MS Cl1
1—-—'——Iquz;—'igg +—w( +iv), 1+ w(l-iv),2+ w,—’igg , ( )

82
1+w(1+iv),—w(l—iv),1+2ia)v;—M—02

2\ w(l+iv)
. BO
B,=—2wRe (1+iv)| — F
M 0

0

-

] . (C12

Since we always assume thHag§/A <1 we can use foA,; their asymptotic expressions
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BZ w A2
A;=|co| 1+ 12 A_O) Sin(a)vln?-l—tanlv-l- 0), (C13

0

BZ @ A2
AZZ\/].-FVZ(—Z) co§ wvin— +tan ‘v |, (C14
wherec, and 6,

e I'1+2iwv) o1
A (i) A+ o(1+ir)’ (C19

are defined after Eq$46),(47). For the functionB; we use the formul&2.10.2 from [40] in order to rewrite it in a form
similar to B,; thus we have

B2\ B2\'" B2
Bi=2w\I+ 7 col| —5| Im{| —5| e TRl 14 o(1+i),0(—1+iv), 1+ 20— — |, (C1O)

MO MO MO

82 ® 82 oy » Bz
Bz=—2w\/1+V2(M—02) Re| M—°2 gl tan g 1+w(l+iV),w(—1+iv),1+2iwv;——02)}. (C17)

0 0 0

Combining Egs(C13),(C14),(C16),(C17), the gap equation is transformed to the form

) 2w iov

A2
M3

BS

2
0
2 2
MO

¢=—2w|co|(1+ v?)cosh

. — Bz
e2| tan 1VF( 1+w(1+|V),(D(_1+|V)!1+2|wV,_M_O)‘|: .

2
0
(C18

One can convince oneself that fbty<B, the last equation The nontrivial solution for the dynamical mass arises when
is equivalent to v=\kp/k3"'—1 exceeds the critical value determined by
the equation

A? A?
sin( wvln?—l— 0+tan1y) =0, (C19 wvcan-l-Z tan tv.= . (C2)
0 0

It should be noted that. is a small number,

which gives the solution$49). On the other hand, foB, -
<M, we can use a power expansion of the hypergeometric Vo= o<
function to get the equation for the dynamical mass near the 2+ wIn(A%/Mp)

phase transition point:

1, (C22

for A>M,. Note also that the form of the gap equation
(C18) is different in two region$ ;<<B,y andM ;> B,: while
A2 in the first one My<B,) we observe oscillations in the mass
sin( wvln—2+2tan1v) variable, in the second oné(>B,) such oscillations dis-
0 appear. This is reflected in the character of the mass depen-

2 24 2,22 g2 dence on the coupling constaftompare Egs.54) and
Yo (A+27(A+w)"+ ™) By (C24) below]. In general, it can be shown that EG18) has
1+4w?v? M3 n nontrivial solutions where the numberis given by
2
A? v N | A —1
xsin wvIn— —tan 22epr+tan —— +tan 1y | =0. n=|m ‘ovin—s+2tan “v|, (€23
M2 1+w M3

(C20 and the symbo[C] means the integer part of the numlger
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Near the critical point we thus obtain the mean-field scal- = 5 1 o) 2 12
ing relation for the dynamical mass Kp(a%Ag)= JO dx(2x—1)f(g%, Ag,Xx),
2 16A7 28 31 ¢?
Bo T V=V -9 -, =

= —+ _
- = 1 2 2
M2 w(2w’+20+1) v 15q7 45 450Ag

V=, <1, (C29

which is cited in Eq.(60). —?
Xarctanhy [ ————, (D5)
4A5—q

APPENDIX D: FORMULAS FOR THE EFFECTIVE

_ 1
GAUGE COUPLING STRENGTH Kf(qz,Aé)EJ dxx(1—x)f(q2,A§,x)
The relation between effective aldS couplings D=4 0
+2) is given by Eq(72) where the term&, Ky, K; denote 9 )
one-loop contributions from gauge bosons, gauge scalars, =_iﬁ_i+£q_
and fermions, respectively. The formulas Ky, K;,, andK; 1592 45 900 AS
are given by
1 % 32 %
-2l 4= 1+—=
A2 A2 15 Ag Ag
2 A2y ~ - g 9 = 2 42
Kg(q vAg)_4CG 18+ 6|n(—q2) +(_q2)'\g(q 1Ag) ’ Aé 3/2 2
(D1) X| —| arctan > (D6)
2—
Kb(qz,Aé —_2C, with f being
2
2 2 q
E ih". Ag 9 K (q2 AZ) f(qszE-X)E 1_X(1_X)_2>
45030 (—qp) (—qp) O ) Ag
D2 2
(b2) XIn l—q—zx(l—x)).
AQ
Kf(qZ,Ag)E—ZnTRNf We next discuss the behavior of the effective coupling
égﬁ(z) in the energy regiom<A 2. Expanding the functiof
X( a7 1, AS .\ A2 R (A2 aroundg?=0,
——+ —In K(Q~, )
900 30 (—g? — g2 9
(=99 (=099 Y
51 03
where the sum of the KK modes is approximated by replac- Zz 4.5 L
ing it with a corresponding integral. The functiof§ (i = o2
=g,b,f) are defined by 2 "
~g 015
1 0.1
Ro(a?AD) = [ dxt(a?A3 . 005 |
0
O L 'l o o l l l l l L
102107 10° 10" 102 10% 10* 10° 10°® 107 10® 10°
4 5 1 ¢\ 2/(AL))?
=—c+—-——+-|4-— MS
3 18 Ag 3 AS

FIG. 18. The effective coupling in the strongly interacting phase
A2\ 12 —q? [(A%)2>0]. The solid and dashed lines represent the graphs for
x| —%| arctanhy/—5——, (D4)  (AR)>=4x101%4x 10° with Ny=2,N=3,(A{R)2= 107, respec-
ANZ—0? i

g—4d tively.
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2 A2 @ 1, . a* S Ki(-zAY=2c nTNIAg
f(0% A5 X) = —x(1-x) 5+ 5x(1-x)?-= oy i(=2Ag)=|5Ce— 75 TrNr[In—"
Ag Ag
9 3 1 77
Ag
. z
we find +0 P) (D7)
~ 192 1[q?\° ?
Ke(? A2 =—~ —+ —| — Inserting Eq.(D7) into Eq. (74), we find
g g 6 A2 60| A2
g g
ol [ € 1 1 (A’ 1
+ — 1, = == —
A2 g2 9i Z (4m)®
2 2
19> 1 (¢ 3 n A
242y _ A -4 e 9.
Kp(q%,Ag) 30A§+420 AS X 5CG 15TRNf In z +e (D8)
q? 3 Note here that the effective couplingf,; depends on the
+0 P ' ultraviolet cutoff A4, indicating the violation of the decou-
9 ) pling theorem.
% (@A) 1 9° N 1 Q_2 It is now easy to see that the effective coupligg re-
(A% A= 30 A2 280| A2 mains finite in the infrared region s@z<AS for (Af\,,—DS))2
g . g <0 for Cg> TrN¢/9, which is automatically satisfied when
q° —b’'=(10Cg— 7#TgN;)/3>0. On the other hand, Fig. 18
+0 P shows typical behaviors of the effective coupling with
g (A%)2>O. We find that the effective coupling diverges at
It is then easy to obtain z~(A%)2>0 in this case.
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