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Dynamical chiral symmetry breaking in gauge theories with extra dimensions
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We investigate dynamical chiral symmetry breaking in vectorlike gauge theories inD dimensions withD
24 compactified extra dimensions, based on the gap equation~Schwinger-Dyson equation! and the effective
potential for the bulk gauge theories within the improved ladder approximation. The nonlocal gauge fixing
method is adopted so as to keep the ladder approximation consistent with the Ward-Takahashi identities. Using
the one-loop modified minimal subtraction scheme (MS) gauge coupling of the truncated Kaluza-Klein effec-

tive theory, which has a nontrivial ultraviolet fixed pointg* for the ~dimensionless! bulk gauge couplingĝ, we
find that there exists a critical number of flavorsNf

crit @.4.2,1.8 forD56,8 for SU~3! gauge theory#. For Nf

.Nf
crit , the dynamical chiral symmetry breaking takes place not only in the ‘‘strong-coupling phase’’ (ĝ

.g* ) but also in the ‘‘weak-coupling phase’’ (ĝ,g* ) when the cutoff is large enough. ForNf,Nf
crit , on the

other hand, only the strong-coupling phase is a broken phase and we can formally define a continuum~infinite
cutoff! limit, so that the physics is insensitive to the cutoff in this case. We also perform a similar analysis
using the one-loop ‘‘effective gauge coupling.’’ We find thatNf

crit turns out to be a value similar to that of the
MS case, notwithstanding the enhancement of the coupling compared with that of theMS.

DOI: 10.1103/PhysRevD.65.116008 PACS number~s!: 11.15.Ex, 11.10.Kk, 11.25.Mj, 12.60.Rc
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I. INTRODUCTION

Much attention has been paid to extra dimension phys
particularly the large scale scenarios@1,2#. Although the no-
tion of the ‘‘extra dimension’’ might be ‘‘deconstructed’’ in
terms of certain renormalizable four-dimensional gauge th
ries@3,4#, there still exist attractive features of gauge theor
with extra dimensions which deserve further nonperturba
studies.

As such three of us in@5# ~referred to as I hereafter!
recently studied dynamical symmetry breaking of the to
mode standard model~TMSM! @6–8# in a version inD di-
mensions, withD24 being compactified extra dimension
@Arkani-Hamed–Cheng–Dobrescu–Hall~ACDH! scenario#
@9#. The ACDH scenario was based on an earlier propo
@10# of the TMSM with extra dimensions, which was mot
vated by top-color ideas@11#, and found that the~dimension-
less! bulk QCD coupling above the compactified scale b
comes strong due to Kaluza-Klein~KK ! mode contributions
and hence may trigger the top-quark condensate withouad
hoc four-fermion interactions as in the original TMSM.1 Un-
like Ref. @10# in which only tR is in the bulk, a somewha
simpler situation is assumed in the ACDH scenario: the
tire third family lives in the bulk, which enables us to inve

*Email address: vgusynin@bitp.kiev.ua
†Present address: Theory Group, KEK, Oho1-1, Tsukuba, Iba

305-0801, Japan. Email address: michioh@tuhep.phys.tohoku.a
michioh@post.kek.jp

‡Email address: tanabash@tuhep.phys.tohoku.ac.jp
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1In Ref. @12# a combination of the original version of the TMSM

with the space-time having extra dimensions is discussed.
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tigate dynamically whether the top condensate really ta
place in this scenario. In I we used theD-dimensional gap
equation@improved ladder Schwinger-Dyson~SD! equation
@13## with one-loop modified minimal subtraction schem
(MS) running ~bulk! gauge coupling of the truncated KK
effective theory@14# for this purpose.2 In I we found@5# that
the ~dimensionless! bulk gauge couplingĝ has a nontrivial
ultraviolet fixed point~UV-FP! g* in the same one-loop trun
cated KK effective theory as that ACDH was based on. Sin
the running bulk gauge coupling rapidly reaches the UV-
the gap equation is essentially governed by the UV-FP
can well be approximated by that with the running coupli
replaced by the UV-FP value:ĝ2→g

*
2 ~‘‘gap equation on the

UV-FP’’ !. If we assume the UV-FP persists nonperturb
tively, then the bulk QCD coupling is in the weak-couplin
region (ĝ,g* ), since the coupling to be matched with th
three-brane QCD coupling at the compactification scale
certainly a weak coupling there and hence never exceeds
UV-FP. This implies that top-quark condensate is possi
only wheng* .ĝcrit (kD.kD

crit in the notation of I, withkD

proportional tog
*
2 ), whereĝcrit is determined by the SD ga

equation just on the UV-FP mentioned above. We then fou
that the top-quark condensate cannot occur in the simp
case of the ACDH scenario,D56 andNf52 ~only the third
family in addition to gauge bosons exists in the bulk!, where
we found the UV-FP value is smaller than the critical val
(g* ,ĝcrit), while in the case withD58 and Nf52 we
found it can (g* .ĝcrit).

In I we further studied the phase structure of gauge th

ki
.jp,

2Dynamical chiral symmetry breaking in other types of mod
with extra dimensions is studied in Ref.@15#.
©2002 The American Physical Society08-1
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ries in D dimensions with theD24 dimensions compacti
fied, not restricted to the TMSM. Since the gap equation
the UV-FP possesses a scale invariance, the phase tran
takes the form of a ‘‘conformal phase transition’’@16# having
an essential-singularity-type scaling. Wheng* .ĝcrit , the
dynamical mass function has a slowly damping asympt
behavior which corresponds to a large anomalous dimen
gm5D/221, somewhat similar to walking technicolor@17#.

We also discussed in I another gap equation, with
one-loopMS running coupling replaced by the one-loop ‘‘e
fective coupling’’ which includes finite renormalization e
fects. Since the effective coupling turned out to be consid
ably enhanced compared with theMS one, we argued tha
there might exist a possibility that even the simplest case
the ACDH scenario withD56 andNf52 may give rise to a
top-quark condensate.

In this paper, we further study the nonperturbative dyna
ics of various vectorlike gauge theories with extra dime
sions, not restricted to the TMSM. Sinceg

*
2 ~or kD) is writ-

ten in terms ofNf , we find that there exists acritical number

of flavors Nf
crit , such thatNf.Nf

crit for g* .ĝcrit . We find
that there exists a rich phase structure in such theories:
phase is separated not only intoNf.Nf

crit (g* .ĝcrit) and

Nf,Nf
crit (g* ,ĝcrit), but also intoĝ.g* ~strong coupling

phase! and ĝ,g* ~weak coupling phase! ~see Fig. 2!. This
may be useful for building a large variety of models beyo
the standard model.

In order to systematically study the SD gap equation i
manner consistent with the Ward-Takahashi identity,
adopt the so-callednonlocal gauge fixing. Actually, as is
known in the four-dimensional case@18#, the chiral Ward-
Takahashi identity is violated in the gap equation of I, whi
is ‘‘improved’’ from the ladder SD equation by a simp
ansatz to replace the constant~dimensionful! bulk gauge
couplinggD by the running one as@13#

gD
2 →gD

2
„max~2p2,2q2!…, ~1!

wherepm andqm are the momenta of the external and lo
fermions, respectively. This problem can be solved by tak
the running coupling as@18#

gD
2 →gD

2
„2~p2q!2

…, ~2!

namely, a function of gauge boson loop momentum. Th
the Landau gauge used in I no longer guaranteesA(2p2)
[1, which is then inconsistent with the bare vertex ansatz
the ladder approximation. This problem can also be remed
by employing the so-called nonlocal gauge fixing@18–21#,
by which the gauge parameter is arranged to be momen
dependent so as to keepA(2p2)[1. Note that the above
problems are numerically not serious in four-dimensio
cases and the method of I is widely used accordingly. Ho
ever, the situation in the higher dimensional case with
power running coupling may be drastically changed.

We first reanalyze the gap equation on the UV-FP w
ĝ[g* , in which the dynamical symmetry breaking tak
place for g* .ĝcrit (Nf.Nf

crit) as in I: As a result of the
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above more sophisticated treatment, however, we find
ĝcrit

2 is larger than that of I by a factorD/4, which is a sub-
stantial change forD@4. This result implies that the dy
namical symmetry breaking gets suppressed compared
the result of I. For the SU~3! gauge theory our new ga
equation yields

Nf
crit.H 4.2 for D56,

1.8 for D58,

0.8 for D510.

~3!

Based on the gap equation bothon and off the UV-FP, we
further reveal afull phase structurein the ĝ2-Nf plane: Al-
though the solution of the gap equationon the UV-FP, as in
the analysis of I, just separates the phases byNf.Nf

crit (g*
.ĝcrit) and Nf,Nf

crit (g* ,ĝcrit), we here also analyze th
gap equationoff the UV-FP which further separates th
phases byĝ.g* ~‘‘strong-coupling phase’’! and ĝ,g*
~‘‘weak-coupling phase’’!.

For Nf.Nf
crit (g* .ĝcrit), which is the case we studied i

I, the dynamical chiral symmetry breaking takes place
only in the strong-coupling phase (ĝ.g* ) but also in the
weak-coupling one (ĝ,g* ) as long as the cutoffL is large
enough@namely,ĝ(m5L) is rather close tog* #. This case is
relevant to the TMSM with extra dimensions~ACDH sce-
nario! @9#, whose bulk QCD coupling is matched with that
the brane QCD at the compactification scale, which is c
tainly weak, and hence the theory necessarily should be
in the weak-coupling phase. In order to have dynamical sy
metry breaking even in the weak-coupling phase, we nee
arrangeNf.Nf

crit : From the result Eq.~3! we conclude that
the simplest version of the ACDH scenario withNf52 does
not give rise to a top-quark condensate forD56, while it
can forD58 andD510.

For Nf.Nf
crit , we further find it impossible to define th

continuum limit, despite the fact that the essenti
singularity-type scaling with respect tokD found in I super-
ficially suggests a conformal phase transition having a la
anomalous dimensiongm5D/221: Actually the value ofkD
is not continuous and hence cannot be taken arbitrarily c
to kD

crit . Then the UV cutoff should be considered as a phy
cal one and the low-energy physics remains cutoff sensi
in this case.

Moreover, in the ACDH scenario the scale of the physi
UV cutoff L is no longer an adjustable parameter but a ‘‘p
dictable one’’ in contrast to the treatment in Ref.@9#, since
the bulk gauge couplingĝ is completely controlled by the
three-brane QCD coupling at the compactification scale
the KK effective theory, and henceL is uniquely tied up
with the dynamical mass of the condensed fermion~top
quark! through the gap equation. If we use as an input
value of Fp (.250 GeV), which is also tied up with the
top-quark mass, then the cutoff is ‘‘predicted’’ in terms
Fp . The situation is completely different from the origin
TMSM whereL is related through the gap equation only
two parameters: the dynamical mass and the four-ferm
8-2
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DYNAMICAL CHIRAL SYMMETRY BREAKING IN GAUG E . . . PHYSICAL REVIEW D 65 116008
coupling, which is a free parameter. This implies that ev
when the model is arranged asNf.Nf

crit , the phenomeno-
logical analysis of Ref.@9# should be modified substantiall
by taking account of this fact, which we shall report in
separate paper.

For Nf,Nf
crit (g* ,ĝcrit), on the other hand, we find

novel situation: The strong-coupling phase (ĝ.g* ) is in the
chiral symmetry broken phase, while the weak-coupl

phase (ĝ,g* ) is in the unbroken one, and we can forma
define a continuum limit~infinite cutoff limit! at the phase

boundary ĝ5g* with a large anomalous dimensiongm

5(D/221)(12 ñ) @0, ñ[A12(g* /ĝcrit)
2,1#, a situation

similar to ladder QED@22#. This fact implies that low-energy
physics becomesinsensitive to the details of the physi
around the cutoff~stringy physics?!. Then, no matter wha
physics may exist at the cutoff, the strong-coupling phase
this case may be useful within the framework of local fie
theory ~without referring to, e.g., stringy physics! for model
building, such as a ‘‘bulk technicolor.’’ The bulk technicolo
then resembles the walking technicolor@17# with large
anomalous dimension and hence is expected to be free
flavor-changing neutral current~FCNC! problems.

We also perform a similar analysis using the one-lo
‘‘effective gauge coupling.’’ Although the gauge boso
propagator explicitly depends on the UV cutoff and can
be renormalized in this scheme, we find the criticalNf turns
out to have a value similar to that of theMS case, 4,Nf

crit

,5 (D56). This is rather surprising, considering the fa
that as we showed in I the effective coupling is rough
double that of theMS. Then this result strongly suggests th
because of all the ambiguities of the approximations of
gap equation, the simplest case of the ACDH scenario w
Nf52 is quite unlikely forD56.

The paper is organized as follows. In Sec. II we wr
down the SD gap equation inD dimensions with nonloca
gauge fixing. In Sec. III we obtain an analytical solution
the SD equation on the UV-FP with the running coupling
to be just on the UV-FP,ĝ[g* . The ground state is identi
fied through the Cornwall-Jackiw-Tomboulis~CJT! effective
potential@23#. In Sec. IV we present the full phase structu
in the ĝ2-Nf plane, based on the solution of the gap equat
both on and off the UV-FP: ForNf.Nf

crit we find that both

the strong-coupling phase (ĝ.g* ) and the weak coupling
phase (ĝ,g* ) are broken phases and are relevant to
ACDH scenario of the TMSM, whose model building is the
constrained by the value ofNf

crit . We also find no continuum
limit in this case and the cutoff is predictable in terms
Fp.250 GeV. On the other hand, forNf,Nf

crit we find that
the UV-FP separates a broken phase~for the strong-coupling
phase! and an unbroken phase~for the weak-coupling phase!:
We can formally define a continuum limit at the UV-FP wi
large anomalous dimension and the theory may be usefu
‘‘bulk technicolor.’’ In Sec. V we analyze the gap equatio
with the effective coupling instead of theMS running cou-
pling through nonlocal gauge fixing. We also find a mea
field scaling. Section VI is for summary and discussion. A
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pendix A is devoted to yet another effective potential than
CJT potential, which has a more direct relevance for
bound state picture. In Appendix B we present
Schrödinger-like equation which yields some insight into th
D dependence of the phase transition. The effects of the
frared cutoff in the gap equation are discussed in Appen
C. Appendix D gathers the formulas for the effective co
pling.

II. GAP EQUATION WITH NONLOCAL GAUGE FIXING

Although theD-dimensional Lorentz symmetry is explic
itly violated by the compactification of the extra dimension
this effect should be proportional to the inverse of the co
pactification radiusR21. For sufficiently large momentum
up2u@R22, we thus expect that theD-dimensional Lorentz
symmetry is restored approximately, which enables us
make an ansatz for the bulk fermion propagator in a Lore
covariant form:

iS21~p!5A~2p2!p”2B~2p2!. ~4!

The appearance of the nonzero fermion mass~gap!
B(2p2)Þ0 is a signal of the chiral symmetry breaking
the bulk. The aim of this section is to construct an approp
ate gap equation, by which we investigate the chiral ph
transition in vectorlike gauge theories with extra dimensio

Let us start with the naive ladder approximation of t
Schwinger-Dyson equation of the bulk fermion propaga
@24#:

A~2p2!511
CF

2p2E dDq

~2p!Di

A~2q2!

2A2~2q2!q21B2~2q2!

3F2~32D2j!
p•q

~p2q!2

12~12j!
p•~p2q!q•~p2q!

~p2q!4 GgD
2 , ~5!

B~2p2!5m01CFE dDq

~2p!Di

3
B~2q2!

2A2~2q2!q21B2~2q2!
•

~D211j!gD
2

2~p2q!2
,

~6!

with CF being the Casimir of the fermion representati
@CF5(N221)/(2N) for the fundamental representation
the SU~N! gauge group#. HeregD , j, andm0 are the bulk
gauge coupling strength, the gauge fixing parameter, and
fermion bare mass, respectively. It should be noted that
mass dimension of the gauge coupling strengthgD

2 is nega-
tive, 2d, for D541d.4.

Within the naive ladder approximation, the effect of th
running gauge coupling strength is completely ignored, ho
ever. In order to remedy this drawback, the gauge coup
8-3
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constantgD needs to be replaced by something in which
running effect is incorporated appropriately.

Since there exist three different momentax[2p2,
y[2q2, z[2(p2q)2 in the Schwinger-Dyson equation
~5! and ~6!, there exist various ways to incorporate the ru
ning effect in the gap equation. In Ref.@5#, we improved the
Schwinger-Dyson equation using a simple replacement@13#,

gD
2 →gD

2
„max~x,y!…, ~7!

with gD
2 @max(x,y)# being the running gauge coupling. Th

prescription is widely used and has various technical adv
tages: The angular integrals in the gap equation can be
formed in an analytical manner. The wave function factoA
is shown to be unity in the Landau gaugej50, which makes
the ladder approximation consistent with the vector Wa
Takahashi identity.

Although the prescription Eq.~7! has been used widely in
the analysis of the dynamical chiral symmetry breaking
four-dimensional QCD, it has been pointed out@18# that Eq.
~7! is not consistent with the chiral Ward-Takahashi ident
if the same prescription is applied to the axial-vector vert

In this paper, we therefore use a different choice@18#,

gD
2 →gD

2 ~z!, ~8!

in which the gauge boson momentumz is used as the scale o
the running gauge coupling strength. The prescription Eq.~8!
is consistent with the chiral Ward-Takahashi identity, bu
induces a nontrivial wave function factorA within conven-
tional gauge fixing methods, leading to an inconsistency w
the ladder approximation and the vector Ward-Takaha
identity.

In order to avoid such a dilemma, we use the nonlo
gauge fixing method. The method was originally invented
the analysis of four-dimensional gauge theories@19# and ex-
tended to gauge theories inD dimensions@20#. It was then
reformulated into a compact formula in the analysis of fo
dimensional QCD by using a different approach@18#. The
method of Ref.@18# was extended to gauge theories in ar
trary dimensions@21#. Here we give a brief derivation of th
nonlocal gauge in order to explain the notation used in
paper.

The nonlocal gauge fixing method is based on the ob
vation that the parameterj can be generalized to a functio
of the momentumz,j(z), by introducing a nonlocal gaug
fixing operator. It is then possible to choose the specific fo
of j(z) so as to make the wave function factorA[1.

We start with the Schwinger-Dyson equation of the f
mion wave functionA, Eq. ~5!. After Wick rotation, it reads

A~x!511
CF

x E
0

L2

dyyD/221
A~y!

A2~y!y1B2~y!

3KA~x,y!. ~9!

We introduced the ultraviolet cutoffL, where the
D-dimensional effective field theory is considered to be
placed by yet unknown underlying physics@e.g., string
theory,~de!constructed extra dimensions@3,4#, etc.#.
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The integral kernelKA is given by

KA~x,y!5
VNDA

B~1/2,D/221/2!
E

0

p

du~sinu!D22gD
2 ~z!

3F @D212j~z!#
Axycosu

z

22@12j~z!#
xy

z2
sin2uG , ~10!

with VNDA being the naive dimensional analysis~NDA! @25#
factor,

VNDA[
1

~4p!D/2G~D/2!
. ~11!

The angleu is the angle between Euclidean momentaqE and
pE :

z5x1y22Axycosu. ~12!

Noting that

~sinu!D22cosu5
1

D21

d

du
@~sinu!D21#,

we find

KA~x,y!5
VNDA

B~1/2,D/221/2! H 2
1

D21E0

p

du~sinu!D21

3Axy
d

du S @D212j~z!#gD
2 ~z!

1

zD
22E

0

p

du~sinu!D@12j~z!#gD
2 ~z!

xy

z2 J , ~13!

where we have integratedd/du by parts.
The u differentiationd/du in Eq. ~13! can be written as

d

du
5

dz

du

d

dz
52Axysinu

d

dz
.

We then obtain

KA~x,y!522
VNDA

B~1/2,D/221/2!
xyE

0

p

du~sinu!D

3F 1

D21

d

dzS @D212j~z!#
gD

2 ~z!

z D
1@12j~z!#

gD
2 ~z!

z2 G . ~14!

The conditionKA[0 can be guaranteed ifj(z) satisfies
the differential equation
8-4
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1

D21

d

dzS @D212j~z!#
gD

2 ~z!

z D 1@12j~z!#
gD

2 ~z!

z2
50.

~15!

It is easy to solve Eq.~15!. We find the solution~nonlocal
gauge! is given by

j~z!5
D21

gD
2 ~z!zD22E0

z

dzzD22
d

dz
gD

2 ~z!, ~16!

where the integration constant is taken so as to makej(z)
regular atz50.

Using the nonlocal gauge fixing parameter Eq.~16!, the
wave function factorA can be set to unity. The gap equatio
~6! then reads

B~x!5m01CFE
0

L2

dyyD/221
B~y!

y1B2~y!
KB~x,y!, ~17!

where

KB~x,y![
VNDA

B~1/2, D/221/2!

3E
0

p

du~sinu!D22
@D211j~z!#gD

2 ~z!

z
.

~18!

Equations~16!, ~17!, and~18! are our basic equations to b
solved in this paper.

It should be kept in mind that the gap equation Eq.~17! is
not valid for x,y&R22 (x,y[up2u,uq2u) due to the compac
tification of the extra dimensions. In order to estimate unc
tainties coming from the compactification sensitive infrar
region, we introduce an infrared cutoffM0

2;R22 on and off
in the following analyses. We will actually find that man
results are insensitive toM0

2 if the ultraviolet cutoff is taken
to be sufficiently large,L2@M0

2.

III. SOLUTION AT THE FIXED POINT

We next consider the running of the gauge coupling
theories with extra dimensions compactified to an orbif
Td/Zn with radiusR. HereZn represents the discrete grou
with order ofn.

In Ref. @5#, the dimensionless bulk gauge couplingĝ is
defined as

ĝ2[
~2pRm!d

n
g2, ~19!

with g being the gauge coupling of the truncated KK effe
tive theory@14#. The bulk gauge couplinggD is given by

gD
2 5

ĝ2~m!

md
. ~20!
11600
r-
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It is then shown that the dimensionless bulk gauge coup
obeys the renormalization group equation~RGE!

m
d

dm
ĝ5

d

2
ĝ1~11d/2!VNDAb8ĝ3 ~21!

at the one-loop approximation of theMS coupling of the
truncated KK effective theory. The RGE factorb8 is given
by

b852
262D

6
CG1

h

3
TRNf , ~22!

whereh represents the dimension of the spinor represe
tion of SO(1,D21),

h[trG152D/2 for even D, ~23!

and Nf is the number of fermions in the bulk. The grou
theoretical factorsCG and TR are given byCG5N and TR
51/2 for SU(N) gauge theory.

It is interesting to note that the dimensionless gauge c
pling ĝ has a nontrivial asymptotically stable ultraviol
fixed point

g
*
2 VNDA5

1

2~2/d11!b8
~24!

for b8,0 or

Nf,Nf
ANS[

~262D !CG

2hTR
. ~25!

On the other hand, the couplingĝ grows without a bound
in the high-energy region@asymptotically not stable~ANS!#
and the UV-FP disappears forb8.0 or Nf.Nf

ANS. Hereafter
we thus restrict ourselves to analysis of gauge theories w
Nf,Nf

ANS.
It is straightforward to solve the RGE Eq.~21!. In particu-

lar, the couplingĝ2 behaves as

ĝ2~m2!5
m2g

*
2

m22~LMS
(D)

!2
, ~26!

in D5(412)-dimensional gauge theories. Here (LMS
(D))2 is

the scale parameter of the theory. Vanishing of (LMS
(D))250

corresponds to the UV-FP solution (ĝ25g
*
2 ) and it implies

that the theory becomes approximately scale invariant,
cept that the scale invariance is violated by the cutoffL and
the compactification scaleR21. On the other hand, positive
(LMS

(D))2.0 @negative (LMS
(D))2,0# corresponds to a strongl

interacting phaseĝ2.g
*
2 ~weakly interacting phaseĝ2

,g
*
2 ). See Fig. 1.

Although the renormalization group structure calculat
above in the one-loop level cannot be justified within a p
turbative analysis, the existence of the nontrivial UV-FP
supported by a recent lattice calculation in a certain c
8-5
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FIG. 1. The one-loop renor-

malization group flow of ĝ2 in
SU~3! gauge theory inD5412
dimensions for variousNf . The

gauge couplingĝ approaches its
UV-FP for m→`.
a
-
ia

th
b
ld

he
b

ie
s

gh
he
u
E
e
m
g
e

io
ac

le

g

q.
@26#. Moreover, the existence of such a UV-FP may open
interesting possibility in the model building with the com
pactified extra dimensions. Absence of such a nontriv
UV-FP is implicitly assumed in conventional models wi
extra dimensions, in which a physical UV cutoff needs to
introduced and the predictions depend on the non-fie
theoretical physics at the cutoff scale~e.g., stringy physics!.
On the other hand, if there exists a nontrivial UV-FP in t
model with extra dimensions, the low-energy physics can
predicted almost entirely from the field theoretical propert
of the UV-FP. The low-energy predictions become insen
tive to the physics at the UV cutoff.

We believe that this new possibility is interesting enou
to justify an investigation of the dynamical properties of t
chiral phase transition around the presumed UV-FP. It sho
be noted, however, that the value of the one-loop UV-FP
~24! can be affected substantially by higher-loop or nonp
turbative effects. Nevertheless, we adopt the one-loop for
las Eqs.~21! and ~24! in the following sections, assumin
optimistically that the qualitative behavior can be obtain
within one-loop formulas.

We are now ready to start the analysis of the gap equat
The running effect of the gauge coupling is taken into
count by replacing the renormalization scale (m) dependence
with the gauge boson momentumz:

gD
2 ~z!5

ĝ2~m5Az!

zd/2
. ~27!

We start with the simplest case where the dimension
gauge coupling is standing at the UV-FPg

*
2 :

gD
2 ~z!5

g
*
2

zd/2
. ~28!

Substituting Eq.~28! into Eq. ~16! we find that theA[1
gauge is given by the simple form
11600
n

l

e
-

e
s
i-

ld
q.
r-
u-

d

n.
-

ss

j~z!52
~D21!~D24!

D
. ~29!

We note that Eq.~29! is merely a constant. The gauge fixin
operator is thus a local one in this case at the UV-FP.

It is straightforward to perform the angular integral in E
~18!,

KB~x,y!5
4~D21!

D
g
*
2 VNDAS 1

xD/221
u~x2y!

1
1

yD/221
u~y2x!D . ~30!

We thus obtain the gap equation

B~x!5m01
4~D21!

D
kDE

0

L2

dy
yD/221B~y!

y1B2~y!

3S 1

xD/221
u~x2y!1

1

yD/221
u~y2x!D ~31!

with

kD[CFg
*
2 VNDA . ~32!

We next try to solve the gap equation~31! analytically.
Differentiating Eq.~31! over x, we find that the integral

equation~31! is equivalent to the differential equation

d

dx FxD/2
d

dx
BG1

2~D21!~D22!

D
kD

xD/221B

x1B2
50, ~33!

and a set~infrared and ultraviolet! of boundary conditions
~BCs!:
8-6
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xD/2
d

dx
B~x!U

x50

50 ~ IR-BC!, ~34!

S 11
1

2v
x

d

dxDB~x!U
x5L2

5m0 ~UV-BC!, ~35!

with v being defined by3

v[
1

2 S D

2
21D . ~36!

The differential equation~33! is still nonlinear and cannot b
solved analytically. In Ref.@5#, we discussed a similar equa
tion using a bifurcation method@27# in order to deal with the
nonlinearity. Here in this paper we use a different meth
@28#, in which Eq.~33! is replaced by a linearized one,

d

dx FxD/2
d

dx
BG1

2~D21!~D22!

D
kD

xD/221B

x1B0
2

50, ~37!

combined with a subsidiary normalization condition

B0[B~x50!. ~38!

The approximation Eq.~37! can be shown to work reason
ably well in both high- and low-energy regions. It has al
been used widely in analysis of the dynamical chiral symm
try breaking.

It is now easy to solve the differential equation~37!.
Combining it with the IR-BC~34! and the normalization
condition~38!, we find that the solution is given in terms o
the hypergeometric function

B~x!5B0F„v~11 ñ !,v~12 ñ !,D/2;2x/B0
2
…,

ñ[A12kD /kD
crit, ~39!

for kD,kD
crit , and

B~x!5B0F„v~11 in!,v~12 in!,D/2;2x/B0
2
…,

n[AkD /kD
crit21, ~40!

for kD.kD
crit , wherekD

crit is given by

kD
crit5

D

32

D22

D21
. ~41!

The critical kD
crit separates chiral symmetric and brok

phases as shown below. Chiral symmetry breaking ta
place forkD.kD

crit , while the theory remains chiral symme

ric for kD,kD
crit . We also define the ‘‘critical coupling’’ĝcrit

for later purposes:

3The sign in the definition ofv, Eq. ~36!, is opposite to the defi-
nition in Ref. @5#.
11600
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ĝcrit
2 [

kD
crit

CFVNDA
. ~42!

We note thatkD
crit is larger than in the previous calcula

tions in the Landau gauge:

kD
crit5

1

8

D22

D21
~Landau gauge!, ~43!

where the prescription Eq.~7! was adopted. The differenc
between Eq.~41! and Eq.~43! becomes significant for large
D@4. Moreover, Eq.~41! indicates that the critical coupling
is stronger than the NDA estimatekD

crit;O(1) for D@4.
This property can be related to the ‘‘bound state’’ problem
D-dimensional quantum mechanics. In order to investig
this issue, we will rewrite the gap equation in the form of
equivalent Schro¨dinger-like equation in Appendix B.

We first consider the solution in the subcritical region, E
~39!. In the asymptotic energy region (x@B0

2), Eq. ~39! be-
haves as

B~x!5B0F c̃0S x

B0
2D 2v(12 ñ)

1d̃0S x

B0
2D 2v(11 ñ)

1OS S x

B0
2D 2v(12 ñ)21D G , ~44!

with c̃0 and d̃0 being given by

c̃0[
G~D/2!G~2vñ!

G„v~11 ñ !…G„11v~11 ñ !…
,

d̃0[
G~D/2!G~22vñ!

G„v~12 ñ !…G„11v~12 ñ !…
.

Substituting Eq.~44! into the UV-BC Eq.~35!, we obtain

1

2
~11 ñ !c̃0B0S L2

B0
2 D 2v(12 ñ)

.m0 . ~45!

The nontrivial solutionB0Þ0 exists only whenm0Þ0, i.e.,
dynamical chiral symmetry breaking does not occur in
subcritical regionkD,kD

crit .
The situation differs significantly forkD.kD

crit . The high-
energy behavior of Eq.~40! is

B~x!5B0F c0S x

B0
2D 2v(12 in)

1d0S x

B0
2D 2v(11 in)

1OS S x

B0
2D 2v21D G , ~46!

with

c0[
G~D/2!G~2ivn!

G„v~11 in!…G„11v~11 in!…
, d0[c0* .
8-7
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Unlike the solution atkD,kD
crit , Eq. ~46! is an oscillating

function. Actually, Eq.~46! can be written as

B~x!.2uc0uB0S x

B0
2D 2v

sinF u1vn ln
x

B0
2G , ~47!

with u being given bye2iu52c0 /d0. The UV-BC Eq.~35!
thus reads

A11n2uc0uB0S L2

B0
2 D 2v

sinF u1vn ln
L2

B0
2

1tan21nG5m0 .

~48!

Nontrivial solutionsB0Þ0 exist even in the chiral limitm0
50 of Eq. ~48!:
J
.

f

tio
m

11600
B0.CL expF2
np

~D/221!nG , ~49!

with n being a positive integer describing the number
nodes inB(x). The n51 solution corresponds to the nod
less one. Here the factorC is given by C[exp$(u
1tan21n)/@(D/221)n#%, which remains finite in then→0
limit ( n[AkD /kD

crit21).
Although we found an infinite number of solutions in E

~49! labeled byn, these solutions may correspond to unsta
vacua. We need to evaluate the vacuum energy in orde
find the true vacuum with minimum energy. We thus co
pare energies of different vacua (n51,2, . . . ) byusing the
Cornwall-Jackiw-Tomboulis effective potential@23#. Within
the improved ladder approximation, the CJT potential
given by
2
VCJT@B,m0 ,L!

hNNfVNDA
5E

0

L2

dxxD/221H 1

2
lnS 11

B2~x!

x D2
B2~x!2m0B~x!

x1B2~x!
J

1
1

2
CFE

0

L2

dxxD/221
B~x!

x1B2~x!
E

0

L2

dyyD/221
B~y!

x1B2~y!
KB~x,y!. ~50!
.

a

-
are

, it

his
tive
xis-
ith
It is easy to show that the stationary condition of the C
potentialdVCJT/dB50 is identical to the gap equation Eq
~17!.

Using a scaling technique described in Ref.@29# we can
evaluate the CJT effective potential,

2
D

hNNfVNDA
VCJT~Bsol,m0 ,L!

5LDlnS 11
BL

2

L2D 1
D

4~D21!kD
LD22~BL2m0!m0 ,

~51!

where

BL[Bsol~x5L2!, ~52!

with Bsol being the solution of the gap equation Eq.~31!. We
note that the vacuum energyVCJT is a decreasing function o
uBLu in the chiral limit m050. Combining Eq.~49! and Eq.
~47!, it is easy to obtain

uBLu.
2uc0un

A11n2
LS B0

L D D/2

. ~53!

We thus find that the vacuum energy is a decreasing func
of B0. It is now straightforward to show that the vacuu
T

n

with minimum energy in the chiral limitm050 corresponds
to the n51 solution4 ~largestB0) in Eq. ~49! at the super-
critical kD.kD

crit .
We thus obtain the scaling relation forkD.kD

crit :

B0}L expF 2p

~D/221!AkD /kD
crit21

G . ~54!

As pointed out in Ref.@5#, the chiral phase transition Eq
~54! is an essential-singularity type~as a result of the ‘‘con-
formal phase transition’’@16#!, which enables us to obtain
hierarchy between the cutoffL and the dynamical massB0

in a model withkD sufficiently close to the criticalkD
crit .

Actually, it is easy to realize a hierarchy ofO(10) level
without any fine-tuning, e.g.,L/B0.12 in the SU~3! gauge
theory withNf55 andD5412.

Note, however, thatkD is not an adjustable free param
eter, but a definite number once the model is set up. We
thus not able to obtain an arbitrarily large hierarchyL/B0 in
models standing at the UV-FP. In order to clarify the point
is useful to translatekD

crit to the critical number of flavors
Nf

crit by noting thatkD depends onNf ,

4It should be mentioned that then51 solution is not an absolute
minimum, but a saddle point of the CJT potential. However, t
fact does not indicate the instability of this vacuum, since nega
curvature in the CJT potential does not necessarily imply the e
tence of a tachyonic mode. We will discuss another potential w
possibly better perspective in Appendix A.
8-8
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Nf
crit5

3

hTR
F262D

6
CG2

CF

2/~D24!11

32~D21!

D~D22! G ,
~55!

where we have used Eq.~22! and Eq.~24!. (kD,kD
crit corre-

sponds toNf,Nf
crit .! For SU~3! gauge theories, the critica

Nf is evaluated as

Nf
crit.H 4.2 for D5412,

1.8 for D5414,

0.8 for D5416.

~56!

The largest hierarchy in SU~3! gauge theories is then ob
tained whenNf55, Nf52, andNf51 in D5412, D54
14, andD5416 dimensions, respectively.

In order to estimate the uncertainties coming from
compactification scaleR21, we next consider the effects o
an infrared cutoffM0

2;R22. It is shown in Appendix C that
the criticalkD is a function ofM0

2 in the presence of the IR
cutoff M0

2,

kD
crit~M0

2!5kD
crit~M0

250!@11nc
2~M0

2!#, ~57!

with kD
crit(M0

250) being the critical point without IR cutof
and given by Eq.~41!. nc(M0

2) is a solution of

2 tan21nc1vncln
L2

M0
2

5p. ~58!

For L@M0 , nc(M0
2) is thus given by

nc~M0
2!.

p

21v ln~L2/M0
2!

!1. ~59!

The difference betweenkD
crit(M0

2Þ0) andkD
crit(M0

250) can
be neglected for sufficiently large UV cutoffL.

On the other hand, the scaling behavior ofB(M0
2) coin-

cides with Eq.~54! @see also Eq.~49!# for M0!B(M0
2)!L,

while

B~M0
2!}M0

An2nc~M0
2!

nc~M0
2!

~60!

for B(M0
2)!M0. Equation ~60! indicates mean-field-type

scaling. We thus need a fine-tuning of the model in orde
realize the hierarchy between the fermion massB(M0

2) and
the IR cutoffM0(;R21).

If the effects of the compactification scaleR21 can be
mimicked by the IR cutoffM0, the result Eq.~60! implies
that the dynamical fermion massB0 cannot be made ex
tremely smaller thanR21 without severe fine-tuning. It is
however, relatively easy to achieve anO(10) level hierarchy
between the UV cutoffL andB0 as we discussed before.
11600
e

o

IV. PHASE STRUCTURE

We have so far discussed the chiral phase transition
suming that the gauge couplingĝ is standing at the UV-FP
We found the criticalNf

crit , Eq. ~55!. Chiral symmetry break-
ing takes place only whenNf.Nf

crit at the UV-FP.
In particle models with extra dimensions, however, t

gauge couplingĝ is not necessarily on its UV-FPg* . The
bulk QCD coupling of the ACDH scenario of the top co
densate, for example, is shown to be below its UV-FP. In t
section, we therefore try to draw a more concrete picture
the phase diagram including the gauge coupling stren
apart from the UV-FP. It is illuminating to discuss the pha
diagram in theĝ2-Nf plane.

In the following analysis, particular interest is paid
SU~3! gauge theories inD5412 dimensions, in which the
critical Nf is evaluated asNf

crit.4.2. Since chiral symmetry
breaking (xSB) is our main concern, we take the chiral lim
m050 in this section.

Before starting the detailed numerical analysis, we fi
discuss the qualitative picture of the phase diagram~Fig. 2!
by using the result of the gap equation at the UV-FP.

Let us start with the caseNf
ANS.Nf.Nf

crit . The typical
behavior of the beta function of the dimensionless gau
coupling ĝ is depicted in Fig. 3 with thisNf . The UV-FP is
above the critical couplingĝcrit . The bulk fermion then ac-
quires its dynamical mass proportional to the cutoffL, Eq.
~54!, even at the UV-FP. We therefore expect chiral symm
try breaking to take place in the strongly coupled regimeĝ

.g* ~region I in Fig. 2!. Since the gauge couplingĝ quickly
approaches its UV-FP in the asymptotic region, the coupl
exceeds its critical value for a sufficiently large energy sc
even in the weakly coupled region~region II!. It is then

FIG. 2. The phase diagram of SU~3! gauge theory inD5412
dimensions. While the theory remains chirally symmetric forNf

,Nf
crit with ĝ,g* , the dynamical chiral symmetry breaking take

place in the entire region ofĝ with a sufficiently large cutoffL for
Nf

crit,Nf,Nf
ANS57.5. The theory becomes asymptotically no

stable without an UV-FP forNf.Nf
ANS .
8-9
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expected that dynamical chiral symmetry breaking occ
even in region II for a sufficiently large cutoff. In order t
keep the fermion mass finite, the cutoffL needs to be finite.

The situation should be substantially different forNf

,Nf
crit ~see Fig. 4!. In this case, the fermion remains mas

less at the UV-FPĝ5g* or LMS
(D)

50 with LMS
(D) being the

scale of the gauge theory defined in Eq.~26!. The gauge
coupling ĝ, therefore, does not exceed its critical valueĝcrit

in the weakly coupled regime (LMS
(D))2,0 ~region III in Fig.

4!. On the other hand, the gauge coupling in the stron
coupled phase (LMS

(D))2.0 ~region IV! becomes extremely
strong at the infrared regionm2.(LMS

(D))2 and the coupling

becomes stronger than its critical valueĝcrit . It is therefore
expected that the fermion acquires its dynamical massM2

;(LMS
(D))2 in region IV, while the theory remains chirall

FIG. 3. The beta function of SU~3! gauge theory withNf56 in
D5412 dimensions. The UV-FP is above the critical coupli

ĝcrit .

FIG. 4. The beta function of SU~3! gauge theory withNf52 in
D5412 dimensions. The UV-FP is below the critical couplin

ĝcrit .
11600
s
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symmetric in region III. The cutoffL can be arbitrarily large
in the analysis of the gap equation forNf,Nf

crit .
If we neglect the effects of the weak gauge interactio

the minimal ACDH scenario corresponds to th
D5(412)-dimensional SU~3! ~QCD! gauge theory with

Nf52 and ĝ,g* . Equation~56! implies thatNf
crit.4.2 in

this case and Fig. 2 shows that the model is in its ch
symmetric phase~region III!. The QCD gauge coupling is
thus not strong enough to trigger the chiral condensate in
scenario no matter how large the cutoffL is. The model thus
needs to be modified in order to explain the electrowe
symmetry breaking. For example, th
D5(414)-dimensional version of the ACDH scenario
shown to be in the chiral symmetry breaking phase~region
II ! (Nf

crit.1.8) and it may explain the mass of the we
gauge bosons.

It is also worth pointing out that region IV in the phas
diagram~Fig. 2! may open an interesting possibility in th
building of models of electroweak symmetry breaking. R
gion IV is very interesting because we can formally take
L→` limit in the analysis of the gap equation. The low
energy predictions of the models in this phase are thus in
sitive to the physics around the UV cutoff. One of the po
sibilities is the idea of a ‘‘bulk technicolor’’ model. The
phenomenology of this scenario will be discussed in a se
rate publication.

Finally, we consider the case withNf.Nf
ANS, where the

theory becomes asymptotically nonstable~see Fig. 5!. The
gauge couplingĝ grows without a bound and exceedsĝcrit in
the high-energy region. The chiral symmetry is then expec
to be broken spontaneously for sufficiently large cutoffL.

In order to confirm these expectations, however, we n
to investigate the gap equation with the gauge coupl
strength away from its fixed point, which we will perform i
the following subsections.

FIG. 5. The beta function of SU~3! gauge theory withNf58 in
D5412 dimensions. The theory becomes asymptotically n
stable.
8-10
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A. NfËNf
crit

Let us first consider the chiral symmetry breaking in t
strongly interacting phase (LMS

(D))2.0 with Nf,Nf
crit ~region

IV in Fig. 2!.
Note here that Eq.~26! has a difficulty associated with th

~tachyonic! pole singularity for (LMS
(D))2.0 ~strongly

coupled phase!. Such a singularity appears only when t
gauge coupling becomes extremely strong. So it should b
artifact of one-loop approximation of the beta function.
order to avoid the difficulty, we make an ansatz of the
mensionless gauge couplingĝ2[m2gD

2 in the infrared region
m2,t(LMS

(D))2 with t.1,

ĝ2~m2!VNDA5
1

22b8

1

~t21!2 F t22
m2

~LMS
(D)

!2G ~61!

for m2,t(LMS
(D))2. The form Eq.~61! is a linear function of

m2 and is taken so as to makeĝ2(m2) and its first derivative
continuous atm25t(LMS

(D))2. The regulatort(LMS
(D))2 is cho-

sen to make the coupling atgD
2 (m250) sufficiently large:

ĝIR
2 VNDA5ĝ2~m2!VNDAum250

5
1

22b8

t2

~t21!2
;O~1!.

~62!

The behaviors of the gauge coupling ofD5412 SU~3!
Nf52 gauge theory are shown in Fig. 6 for positiv
(LMS

(D))25102M0
2.0. The lines correspond to the nonreg

larized and the regularizedĝ with ĝIRVNDA50.2 and 0.8.
The nonregularizedĝ diverges at the scale (LMS

(D))2. The cor-
responding behaviors of the nonlocal gauge fixing param
j are shown in Fig. 7.

FIG. 6. The momentum dependence of the running gauge
pling in the strongly coupled phase of theD5412 SU~3! gauge
theory@Nf52,(LMS

(D))25102M0
2#. The infrared regularizationgIR is

taken to be 0.2~solid line! and 0.8~dashed line!. The dotted line is

the critical coupling (ĝcrit
2 VNDA59/80).
11600
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The gap equation is solved in a numerical manner
adopting the recursion method@5#. We also introduce an in-
frared cutoff M0. In the following numerical analysis
(LMS

(D))25102M0
2 andL25106M0

2 are assumed.
The numerical solution of the gap equationB(x)/M0 is

shown in Fig. 8 for various choices of the infrared regula
ĝIR

2 VNDA . We find

B~M0
2!;LMS

(D)
5LA12

g
*
2

ĝ2~m5L!
~63!

for sufficiently largeĝIR , as we expected before. The sol
tion is insensitive to the choice of the UV cutoffL2. We can
thus formally define a continuum limit~infinite cutoff limit!,
which implies that the low-energy physics becomesinsensi-
tive to the details of the physics around cutoff. It should be

u- FIG. 7. The momentum dependence of the nonlocal gauge
ing parameter in the strongly coupled phase of theD5412 SU~3!
gauge theory@Nf52,(LMS

(D))25102M0
2#. The infrared regularization

gIR is taken to be 0.2~solid line! and 0.8~dashed line!.

FIG. 8. The solution of the gap equation o
D5(412)-dimensional SU~3! gauge theory withNf52. (LMS

(D))2

5102M0
2 and L25106M0

2 are assumed. The results with variou

choices of the infrared regulatorĝIR
2 VNDA50.2 ~solid line!, 0.5

~dashed line!, and 0.8~bold line! are depicted.
8-11
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emphasized that this phase may be useful within the fra
work of local field theory, no matter what physics may ex
behind the UV cutoff.

We next consider the high-energy@x@(LMS
(D))2;B2# be-

havior of the mass function. In the asymptotic energy regi
the gauge coupling strength very quickly approaches its U
FP. We therefore expect that the asymptotic solution satis
the differential equation Eq.~33! and the UV-BC Eq.~35!,
which were derived originally at the UV-FP. On the oth
hand, the infrared behavior of the solution should be subs
tially different from the solution at the UV-FP. We therefo
do not adopt the IR-BC Eq.~34!.

Equation~33! can be approximated further forx@B2,

d

dx FxD/2
d

dx
BG1

2~D21!~D22!

D
kDxD/222B50. ~64!

It is easy to solve Eq.~64! and Eq.~35!. We find that the
asymptotic solution is given by

B~x!}S x

L2D 2v(11 ñ)

2
12 ñ

11 ñ
S x

L2D 2v(12 ñ)

, ~65!

with ñ[A12kD /kD
crit5A12g

*
2 /ĝcrit

2 . The second term is
negligible forL2@x. We thus expect that the mass functio
B behaves as

B~x!}S x

L2D 2v(11 ñ)

~66!

in the energy regionL2@x@(LMS
(D))2 if a nontrivial BÞ0

solution exists.
In order to confirm the above expectation, we next p

the ‘‘power’’ behavior of the numerical solution of the ma
function,

‘‘power’’ 5
x

B~x!

dB~x!

dx
, ~67!

FIG. 9. The ‘‘power’’ behavior of the numerical solution. Th

infrared regulator is taken asĝIR
2 VNDA50.2 ~solid line!, 0.5~dashed

line!, and 0.8~bold line!.
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in Fig. 9. The asymptotic behavior5 of Eq. ~66! is consistent
with ‘‘power’’ .21.6 in Fig. 9, which agrees well with the
expected value2v(11 ñ) where v51, ñ.0.6 for theD
5(412) dimensional SU~3! gauge theory withNf52.

We also note that the ‘‘power’’ is related to the anomalo
dimension of the fermion massgm as ‘‘power’’5gm/2
2(D/221) @5#. The anomalous dimensiongm in the
asymptotic region is then given by

gm5S D

2
21D ~12A12g

*
2 /ĝcrit

2 !. ~68!

We next examine the absolute magnitude of the m
function in the asymptotic region. For this purpose, we sh
a log-log plot of the mass function in the asymptotic regi
~see Fig. 10!. We find that the asymptotic mass function b
comes insensitive to the infrared regulatorĝIR if we take
ĝIR

2 VNDA*0.5.
The infrared behavior of the solution depends sign

cantly on the choice of the infrared regulatorĝIR
2 . The infra-

red behavior is therefore not trustworthy enough in this c
culation. It should be emphasized, however, that
ultraviolet behavior is relatively insensitive to the choice
infrared regulator.

We have so far discussed the case whereLMS
(D) is suffi-

ciently large compared with the IR cutoffM0 and found the
dynamical chiral symmetry breakingB(M0

2);LMS
(D) . The

situation differs substantially forLMS
(D)

!M0, where the gauge

couplingĝ cannot exceed its critical value of the chiral pha
transition ĝcrit . Actually, dynamical chiral symmetry break
ing does not take place forLMS

(D)
!M0.

A similar analysis was also performed in the weakly i
teracting phase (LMS

(D))2,0 ~region III in Fig. 2!. As we ex-
pected, we find no signal of chiral symmetry breaking in th
phase withNf,Nf

crit .

5The behavior near the cutoffx.L2 in Fig. 9 is an artifact due to
the sharp cutoff introduced in the analysis of the gap equation@30#.

FIG. 10. The asymptotic behavior of the mass function

ĝIR
2 VNDA50.2 ~solid line!, 0.5 ~dashed line!, and 0.8~bold line!.
8-12
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B. NfÌNf
crit

We next discuss gauge theories withNf.Nf
crit ~regions I

and II in Fig. 2!. In these models, the UV-FP of the gau
coupling is strong enough to trigger dynamical chiral sy
metry breaking. We therefore expect that the bulk ferm
acquires its dynamical mass even in the weakly coup
phase (LMS

(D))2,0 ~region II!. In order to confirm this expec
tation, we next investigate the gap equation with nega
(LMS

(D))2, i.e., a weakly coupled phase withNf.Nf
crit .

Figure 11 shows the behavior of theMS gauge coupling
of SU~3! gauge theory withD5412, Nf56. The scale
(LMS

(D))2 is taken as (LMS
(D))2/M0

252100 in this figure. The
gauge coupling approaches its UV-FPg

*
2 VNDA50.25 very

quickly. We expect that dynamical chiral symmetry breaki
occurs when the gauge coupling strength exceeds its cri
value:

CFĝ2VNDA.kD
crit5

3

20
, ~69!

which is actually satisfied form2*u(LMS
(D))2u.

It is straightforward to solve the gap equation numerica
We find that dynamical chiral symmetry breaking actua
occurs when the cutoffL is large enough,L2*5u(LMS

(D))2u,
with the above mentioned parameters. Figure 12 shows
scaling behavior ofB(M0

2)/L as a function ofL2/u(LMS
(D))2u.

It should be emphasized that the cutoffL can be determined
in this case onceB(M0

2) and (LMS
(D))2 are fixed.

The top-mode standard model with extra dimensio
would be one of the most important applications of th
phase. As we discussed before, we note that the cutoffL2 is,
in principle, a calculable parameter in the analysis of the
equation. Once the cutoffL is determined, we can evalua
the decay constant of the NG boson@the vacuum expectation
value ~VEV! of the Higgs boson# v by using the Pagels

FIG. 11. The running of the gauge coupling strength.D54
12, N53, Nf56, (LMS

(D))2/M0
252100. The dashed line is th

critical coupling (ĝcrit
2 VNDA59/80).
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Stokar formula@31#.6 We are thus able to test the scenario
comparing the calculatedv with the actual valuev
.250 GeV. In other words, we can ‘‘predict’’ the UV cutof
once we fix the VEVv to the actual value. This property i
due to the fact that the top condensate is driven solely by
bulk QCD gauge coupling, which cannot be adjusted ar
trarily in this scenario. It is therefore completely differe
from the original version of the top-mode standard mod
where the four-fermion coupling is introduced as an adju
able free parameter.

This fact is in sharp contrast to the renormalization gro
analysis of ACDH, where the cutoffL is treated as an ad
justable parameter of the model. Unfortunately, however,
very difficult to perform such a quantitative calculation wi
sufficient reliability. We therefore do not discuss this pro
lem hereafter in this paper.

It should also be noted that the cutoffL needs to be
fine-tuned to its critical value in order to obtain a hierarc
between the cutoffL and the fermion massB(M0

2). The
precise prediction of the cutoff and the order of fine-tuni
depend on the details of the model parameter, however.
tually, the scaling relation forNf55 ~Fig. 13! indicates that
the critical cutoff is much larger,L2*90u(LMS

(D))2u, in the
Nf55 model.

V. THE GAP EQUATION WITH USE OF THE EFFECTIVE
COUPLING

We have so far investigated the dynamical chiral symm
try breaking and the phase structure in vectorlike gauge th
ries with extra dimensions. In particular, we found that t
simplest ACDH version of the top-mode standard mo
(D5412,Nf52) is in its chirally symmetric phase, indica

6It is also possible to evaluatev by adopting the Bardeen-Hill-
Lindner ~BHL! type compositeness condition@8# in the renormal-
ization group analysis, but without freedom to adjustL. The decay
constantv is given byv5A2mt /yt with yt being the Yukawa cou-
pling satisfying the BHL condition.

FIG. 12. The scaling behavior ofB(M0
2)/L as a function of

L2/u(LMS
(D))2u in the D5(412)-dimensional SU~3! theory with

Nf56. (LMS
(D))2/M0

252100 is assumed.
8-13
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ing that the simplest ACDH scenario does not work prope
as a model to explain the mass of the weak gauge boso

Our results, however, rely on our bold assumption, i
the nonperturbative existence of the UV-FP. If the gauge c
pling becomes stronger than our estimate of the UV-FP, th
is a chance to obtain dynamical electroweak symme
breaking even within the simplest ACDH model. Moreov
there is no justification for identifying the renormalizatio
scalem2 of theMS scheme with the gauge boson moment
z[2q2 beyond the leading order in the improved ladd
approximation.

It is therefore worth analyzing the gap equation with u
of a different definition of the gauge coupling. Hereafter,
will investigate the gap equation numerically with use of t
effective gauge coupling defined in Ref.@5#. The effective
coupling is closely related to the gauge boson propagator
its momentum.

The effective gauge couplinggeff in the truncated KK
effective theory on the three-brane is given by

2 i

geff
2 ~2q2!

Dmn
21~q![

2 i

g0
2

D (0)mn
21 ~q!2~q2gmn2qmqn!P~q2!,

~70!

with g0 being the bare gauge coupling of the truncated K
effective theory.Dmn andD (0)mn are normalized as

Dmn~q!5
2 i

q2 S gmn2@12j~q2!#
qmqn

q2 D , ~71a!

D (0)mn~q!5
2 i

q2 S gmn2@12j0~q2!#
qmqn

q2 D . ~71b!

Precise definitions of other notation are given in Ref.@5# and
the vacuum polarization function (q2gmn2qmqn)P(q2) is
evaluated using the background gauge fixing method so a
keep manifest gauge invariance. The vacuum polariza
function P is the sum of the loop contributions of each K
mode. It includes not only logarithmically divergent cont
butions but also finite loop corrections.

FIG. 13. The scaling behavior withNf55. Other parameters ar
the same as in Fig. 12.
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Summing the KK-mode contributions up tomKK<Lg ,
we obtain a relation between effective andMS couplings,

1

ĝeff
2 ~z!

5
m2

z S 1

ĝMS
2

~m!
2

1

g
*
2 D

1
1

~4p!3
@Kg~2z,Lg

2!1Kb~2z,Lg
2!

1K f~2z,Lg
2!#, ~72!

at one-loop level inD5412 dimensions. Definitions of
Kg(q2,Lg

2), Kb(q2,Lg
2), andK f(q

2,Lg
2) are given in Appen-

dix D. We also defined the dimensionless bulk gauge c
plings ĝeff

2 (z) and ĝMS(m) in a similar manner to Eq.~19!:

ĝeff
2 ~z!5

~2pRAz!2

n
geff

2 ~z!,

~73!

ĝMS
2

~m!5
~2pRm!2

n
gMS

2
~m!.

Substituting the solution of theMS renormalization group
equation~26! into Eq.~72!, we can confirm the renormaliza
tion scale independence of the effective coupling:

1

ĝeff
2 ~z!

52
1

g
*
2

~LMS
(D)

!2

z
1

1

~4p!3
@Kg~2z,Lg

2!

1Kb~2z,Lg
2!1K f~2z,Lg

2!#. ~74!

The MS gauge coupling in the ACDH scenario is in th
weakly interacting region (LMS

(D))2,0.
It should be emphasized that the effective coupling E

~72! depends on the choice of cutoffLg , no matter how
large it is. This behavior implies violation of the decouplin
theorem. The low-energy (!Lg) predictions are sensitive to
the physics at the cutoff scale. There is no UV-FP in t
usual sense due to the violation of the decoupling theor
although there still exists an upper bound ofĝeff if ( LMS

(D))2

<0,

ĝeff
2 ~z!<ĝeff

2 ~z5Lg
2!u(L

MS
(D))2505

~4p!3

K
, ~75!

with

K[Kg~2Lg
2 ,Lg

2!1Kb~2Lg
2 ,Lg

2!1K f~2Lg
2 ,Lg

2!,
~76!

where we identifiedLg with the cutoff for the gauge boso
propagator. The factorK is evaluated in SU~N! gauge theory
with Nf flavors:

K[NS 2
88

45
1

10A5

3
arctanh

1

A5
D 2

32

45
Nf

.1.63N20.71Nf . ~77!
8-14
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We note that the upper bound ofĝeff
2 is roughly twice as large

as the correspondingMS UV-FP.
Figure 14 shows the typical behavior of the effective co

pling ĝeff
2 with (LMS

(D))250. Substituting the effective cou
pling shown in Fig. 14 into the formula for nonlocal gaug
~NLG! fixing Eq. ~16!, we obtain the corresponding behavi
of the nonlocal gauge fixing functionj(z). ~See Fig. 15.!

In order to solve the gap equation, we first recall Eq.~12!,
the relation between the gauge boson momentumz and the
fermion momentax,y in the gap equation. The gauge bos
momentumz reaches its maximum 4L2 whenx5y5L2 and
cosu521 in Eq. ~12!. The cutoff of the gauge boson mo
mentumLg

2 thus needs to satisfy

Lg
2>4L2. ~78!

Hereafter we simply assumeLg
254L2 unless noted other

wise.

FIG. 14. The typical flow of the effective couplingĝeff
2 defined

by Eq. ~74! with (LMS
(D))250. The dashed and solid lines represe

the graphs forNf52,4, respectively. In both graphs, we tookN
53 and (LgR)25431010.

FIG. 15. The typical behavior of the NLGj(z) for the effective
coupling defined by Eq.~74! with (LMS

(D))250. We took N53,
(LgR)25431010, and Nf54. The graph forNf52 almost over-
laps with that forNf54. The NLG approachesj525/3 in the limit
of z→0.
11600
-

It is difficult to take fully into account the effect of the
compactification scaleR21. We introduce an infrared cutof
M0

2;R22 in the gap equation and neglectR21 sensitive in-
frared behaviors in the following analysis instead. We fi
the dynamical chiral symmetry breaking is insensitive toM0
for sufficiently largeL anyway.

The minimal ACDH scenario corresponds to SU~3! gauge
theory in theD5(412)-dimensional space-time withNf

52 and (LMS
(D))2,0. The effective gauge coupling of th

ACDH scenario (LMS
(D))2,0 is always weaker than in th

case with (LMS
(D))250. It is therefore sufficient to investigat

the case (LMS
(D))250 for the determination of the condition o

the bulk chiral symmetry breaking. The aim of our numeric
analysis is then to find the criticalNf , above which dynami-
cal chiral symmetry breaking takes place in the bulk w
(LMS

(D))250. We take the chiral limitm050 in the following
analyses.

It is now easy to perform a numerical analysis of the g
equation by using the recursion method@5#. Hereafter, we
formally allow Nf to take noninteger~real! values and evalu-
ate the scaling behavior ofB(M0

2) as a function ofNf . For
SU~3! gauge theory inD5412 dimensions, we obtain the
scaling behavior shown in Fig. 16. Dynamical chiral symm
try breaking takes place for

Nf.Nf
crit54.23 with ~Lg /L!254 ~79!

in this model.
For Lg

2.4L2, the criticalNf tends to be larger than Eq
~79!. For instance, we obtain

Nf
crit54.62 with ~Lg /L!2510. ~80!

The physics behind this result is obviously understood if
note Eq.~75!. The effective coupling does not reach its max
mum value in the gap equation forLg

2.4L2>z. We thus
conclude that Eq.~79! is a very conservative estimate an

t

FIG. 16. The scaling behavior for the dynamical mass with

effective couplingĝeff
2 . The lines from right to left are graphs fo

(L/M0)25102,103,105,1010 with N53 and (Lg /L)254, respec-
tively.
8-15
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that the simplest version of the ACDH model withNf52
does not work even with the effective coupling.

Noting that the upper bound ofĝeff
2 is approximately twice

as large as the UV-FP ofĝMS
2 , it is somewhat surprising to

find that Nf
crit with the effective coupling Eq.~79! is rather

close toNf
crit with the MS coupling Eq.~56!. It should be

emphasized that Fig. 14 shows that the effective couplingĝeff
2

is close to its maximum value only when the gauge bo
momentumz is sufficiently close toLg

2 , however. Unlike the
corresponding UV-FP of theMS coupling, the effective cou
pling is well below its maximum value in the wide region
momentum space.

Actually, a similar situation was also found in the analy
of four-dimensional QED including vacuum polarization e
fects @32#. In the case ofNf51 QED4, dynamical chiral
symmetry breaking takes place only when the coupling at
cutoff exceeds the critical value

aL.1.95 ~Nf51!, ~81!

which is about twice as large as the quenched oneac
5p/3).

We finally make a brief comment on the scaling relatio
Unlike the essential-singularity-type scaling Eq.~54! found
in the analysis with theMS coupling, the scaling behavior o
Fig. 16 seems like mean-field-type scaling. In order to c
firm the mean-field type scaling, we perform a fit of th
scaling behavior assuming power-law scaling,

B~M0
2!}L~Nf2Nf

crit!g, ~82!

in Fig. 17. We find that the best fit valueg is given by

g50.51 ~83!

for the data set with

Nf2Nf
crit

Nf
crit

<0.01. ~84!

This result is consistent with the mean-field-type scalingg
51/2. In contrast to the case with the essential-singular
type scaling, the cutoffL needs to be small enough to kee
the dynamical mass small even whenNf is sufficiently close
to Nf

crit with the mean-field-type scaling.

VI. SUMMARY AND DISCUSSION

In this paper, we have systematically studied the bulk
namical chiral symmetry breaking in vectorlike gauge the
ries with extra dimensions and revealed a new phase s
ture of such theories. Extending our previous study based
the gap equation~the SD equation within the improved lad
der approximation!, we adopted in the present study the no
local gauge fixing method in order to keep thep” part of the
fermion propagator trivial, i.e.,A(2p2)[1, which is thus
consistent with the Ward-Takahashi identity and the bare
tex approximation in the ladder SD equation.

The one-loop analysis of theMS beta function suggest
11600
n

e

.

-

-

-
-
c-

on

-

r-

the existence of an ultraviolet fixed-pointg* in the truncated
KK effective theory of a non-Abelian gauge theory wi
compactified extra dimensions. The existence of such
UV-FP may open interesting possibilities in the model bui
ing of high-energy particle theory. The top-mode stand
model scenarios in extra dimensions, for example, are
fected significantly by the existence of such an UV-FP. It
therefore interesting to investigate the consequences o
UV-FP in the bulk field theories. We therefore first analyz
the gap equation with the gauge coupling both on and off
UV-FP, assuming that the qualitative structure of the UV-
is unchanged beyond the one-loop approximation. We fo
that the critical UV-FP gauge coupling isD/4 times larger
than in our previous calculation in the Landau gauge. T
result was then converted to the critical number of flav
Nf

crit . For Nf.Nf
crit dynamical chiral symmetry breakin

takes place not only in the ‘‘strong-coupling phase’’ĝ

.g* , but also in the ‘‘weak-coupling phase’’ĝ,g* when
the cutoff is large enough. ForNf,Nf

crit , however, the chiral
symmetry remains unbroken in the ‘‘weak-coupling phas
ĝ,g* no matter how large the cutoff is. We foundNf

crit

.4.2, 1.8 inD56, 8 dimensions for the SU~3! gauge theory
~bulk QCD!.

In a scenario with the extra dimensions~ACDH scenario!
of the TMSM, the gauge coupling is obviously weak and t
Nf needs to be larger than the critical one in order to trig
dynamical electroweak symmetry breaking. The simpl
ACDH scenario withNf52 thus does not work inD56,
while there is a chance to construct a viable model inD
58 dimensions. Moreover, the UV cutoff needs to be fin
in order to obtain a finite top-quark mass. Actually, once
fix the top mass, it is possible to predict the UV cutoff in th
ACDH scenario in the analysis of the gap equation, in co
trast to the original treatment of ACDH. The phenomenolo
cal analysis done by ACDH therefore needs to be modifi
by taking account of this fact.

On the other hand, we found a novel situation forNf

FIG. 17. The log-log plot of the scaling relation Fig. 16. W
used (L/M0)251010 and (Lg /L)254. The bold line represents th
line obtained through the least-squares method for the data s
(Nf2Nf

crit)/Nf
crit,0.01 with Nf

crit54.23. We also plot numerica
data with crossed points.
8-16
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,Nf
crit , where we can formally define a continuum limit~in-

finite cutoff!. The low-energy physics is controlled by th
properties of the UV-FP and it becomes insensitive to
physics around the UV cutoff. The anomalous dimension
the fermion massgm is shown to be large. This phase may
useful for model building of ‘‘bulk technicolor,’’ where the
large anomalous dimension can be used as a suppre
mechanism for the excess of FCNCs.

It should be emphasized, however, that nonperturba
existence of an UV-FP is no more than an assumption
present in a wide class of models. Actually, the one-lo
effective gauge coupling of the truncated KK effecti
theory with D5412 dimensions is shown to have an e
plicit cutoff dependence, which implies absence of t
UV-FP in the usual sense. We therefore performed an an
sis of the gap equation by using the effective coupling
D5412 dimensions. We found that there also exists aNf

crit ,
notwithstanding the absence of an UV-FP in the usual se
Although the effective coupling at the UV cutoff is muc
larger than that ofMS, we found that theNf

crit in this scheme
actually is very close to theMS one. The simplest version o
the ACDH scenario withNf52 is therefore quite unlikely to
work in theD5412 dimensions.

Many issues remain unsolved and need further stu
however. For example, the existence of a nontrivial UV-FP
yet to be proved. It should be investigated more definitely
the future whether the nontrivial UV-FP really exists or n

The uncertainties coming from the compactification s
sitive infrared region are also important. In the present pa
this effect was only roughly estimated by introducing the
cutoff M0

2;R22 in the gap equation. It turned out that th
effects tend to increase the critical coupling orNf

crit . Hence
there is a possibility that the simplest version of the ACD
scenario may not work even forD5414. We need to invent
a more sophisticated way to take into account the compa
fication effect, particularly for the caseB0!R21.

Finally, the results presented in this paper provide ba
tools for particle model building with dynamical chiral sym
metry breaking in extra dimensions. We need to constr
concrete and viable models such as the top condensa
technicolor in the bulk by using these tools. More quanti
tive studies of these models will be dealt with in a separ
publication.
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APPENDIX A: THE EFFECTIVE POTENTIAL
FOR A LOCAL COMPOSITE FIELD

We expect the appearance of various compositec̄c
bound states in gauge theories with extra dimensions. Ths,
the chiral partner of the Nambu-Goldstone boson, is part
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larly important among them, because it corresponds to
Higgs boson in models of dynamical electroweak symme
breaking. However, the CJT potential discussed in Sec. II
a functional of the mass functionB(x), and is not directly
related to these bound states. In addition, it is shown that
CJT is not bounded from below. It is therefore not perfec
appropriate to study the stability of the vacuum by using
CJT potential.

In this appendix, we thus discuss yet another effect
potentialV(s), which is a function of the local composit
field s;c̄c and is connected to the dynamical properties
the s boson more closely.

We consider the effective actionG@s#,

G@s#[W@J#2E dDxJs, ~A1!

with

W@J#[
1

i
lnE @dcdc̄#@gauge#expS i E dDx~L1Jc̄c! D ,

s[
]W@J#

]J
. ~A2!

The corresponding effective potential can be obtained by
ing the coordinate independent part of this effective actio

In the following, we briefly outline the derivation of th
effective potentialV(s) based on the method of Ref.@33#
~see also Ref.@16#!.

For a constant source termJ, the partition functionW@J#
is obtained as

W@J#5E dJ
]W@J#

]J E dDx. ~A3!

Noting that

]W@J#

]J
5^c̄c&J5s, ~A4!

we find that the effective potential is given by

V~s!5Js2EJ

dJsS 5Es

dsJD , ~A5!

whereJ should be regarded as a function ofs.
The effect of the constant sourceJ can be obtained by

replacing the bare massm0 in Eqs.~31!, ~35!, ~45!, and~48!,

m0→m02J. ~A6!

We thus find

J5m02
1

2
~11 ñ !c̃0B0S L2

B0
2 D 2v(12 ñ)

~A7!

for kD,kD
crit and
8-17
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J5m02A11n2uc0uB0S L2

B0
2 D 2v

3sinF u1vn ln
L2

B0
2

1tan21nG ~A8!

for kD.kD
crit . The relation between the mass functionB(x)

ands is given by

s5^c̄c&J52hNNfVNDAE
0

L2

dxxD/221
B~x!

x1B2
, ~A9!

which leads to

s5^c̄c&J5hNNfVNDA

kD
crit

v2kD

LD
dB~x!

dx U
x5L2

,

~A10!

where we have used the gap equation Eq.~31!. The chiral
condensates can be expressed in terms ofB0,

s~B0!52 c̃0hNNfVNDA

~12 ñ !kD
crit

vkD

3LD21S L

B0
D 22v(12 ñ)21

~A11!

for kD,kD
crit and

s~B0!52
2uc0uhNNfVNDA

vA11n2
L2vB0

2v11

3sinF u1vn ln
L2

B0
2

2tan21nG ~A12!

for kD.kD
crit .

We are now ready to evaluate the effective potential
~A5!. TheJ ~or s) integral in Eq.~A5! can be performed by
using

dJ5dB0

dJ

dB0
S or ds5dB0

ds

dB0
D . ~A13!

Combining Eqs.~A5!, ~A7!, ~A10!, and~A11!, we finally
obtain the effective potential in the subcritical regionkD

,kD
crit ,

V~s!5
1

D22
hNNfVNDAc̃ 0

2LDS B0
2

L2D 112v(12 ñ)

,

~A14!

in the chiral limit m050. The effective potential in the su
percritical region can be obtained in a similar manner,
11600
.

V~s!5
2

D22
hNNfVNDAuc0u2B0

D

3F2cosS 2u12vn ln
L2

B0
2 D 1AG ~A15!

with

A[
kD

crit

kD
S 12

116v

112v
n2D .

We here regardB0 as a function ofs defined implicitly in
Eq. ~A10!.

It is now straightforward to find the stationary points
the effective potential. The stationary conditiondV/ds50
of Eq. ~A14! has only the trivial solutionB050 for kD

,kD
crit , while we find nontrivial solutionsB05B0

(n)Þ0 (n
51,2, . . . ) for kD.kD

crit in the stationary condition of Eq
~A15!. Here,B0

(n) is given by

B0
(n)[L expF2np1u1tan21n

2vn G , ~A16!

which coincides with the solution of Eq.~48! with m050.
Hereafter, we concentrate on the supercritical regionkD

.kD
crit . The stability of the vacua (n51,2, . . . ) can be in-

vestigated by taking the second derivative of the potentia

d2V

ds2
5

dJ

ds
5

dJ

dB0
•S ds

dB0
D 21

. ~A17!

It is easy to show that the curvature of the potential at
stationary point is positive,

d2V

ds2U
s5s(B

0
(n))

5
v2~11n2!

2~113v2vn2!hNNfVNDA

L2(D22).0

~A18!

for n2,31v21 irrespective ofn. We thus find that every
stationary point is a local minimum of the potentialV(s).

We need to compare vacuum energies in order to find
absolute minimum of the potential, i.e., the true vacuu
then. The value of the potential at eachn is obtained as

V~B0
(n)!52

4

D S 12
kD

crit

kD
D uc0u2hNNfVNDA~B0

(n)!D,0,

~A19!

which is actually consistent with the result of the CJT pote
tial Eq. ~51! for smallB0

(n) . Then51 solution, i.e., the larg-
est fermion mass, gives the global minimum ofV(s). We
thus conclude that then51 solution corresponds to the mo
stable vacuum.

We should comment here on the properties of the fa
vacuan>2. Although we found that the mass square ofs is
positive even in these false vacua, it does not necess
imply the metastability of these vacua. Actually, in the ana
sis of the Bethe-Salpeter equations in the strong coup
8-18
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QED4 ~QED in four dimensions!, it is known that these false
vacua have tachyonic mode~s! in the pseudoscalar channel
addition to the massless Nambu-Goldstone mode@28,35#.
The false vacuan>2 are therefore saddle points of the e
fective potential with negative curvature in the direction
the pseudoscalar channel when pseudoscalar degrees of
dom are included in the potential.

As we described before, we found that every station
point of the potential Eq.~A15! is a local minimum in thes
direction. There is no stationary point corresponding to
local maximum. This fact perhaps may sound rather pecu
Actually, it is tied to the interesting and bizarre properties
the effective potential Eq.~A15!. The effective potential Eq
~A15! is a multibranched and multivalued function ofs. We
next try to grasp the shape of the effective potential m
closely.

We first consider the derivatives ofs @Eq. ~A12!# and J
@Eq. ~A8!# with respect toB0:

ds

dB0
}L2vB0

2vsinS u1vn ln
L2

B0
2

2tan21F 2~D21!n

D2~D22!n2G D , ~A20!

and

dJ

dB0
}L22vB0

2vsinS u1vn ln
L2

B0
2

1tan21F 2n

D1~D22!n2G D . ~A21!

We note thatds/dB0 vanishes for

u1vn ln
L2

B0
2

2tan21S 2~D21!n

D2~D22!n2D 5np,

n51,2, . . . , ~A22!

while dJ/dB0 remains finite forB0 with Eq. ~A22!. The
second derivative of the potential Eq.~A17! thus diverges at
Eq. ~A22!. We note here, however, that the first derivative
the potentialdV/ds (5dV/dB0•dB0 /ds) remains finite in
Eq. ~A22! even thoughdV/dB050, since there exists in
dV/dB0 the same sine function as inds/dB0. Something
very bizarre should take place at the points Eq.~A22!.

Plotting the shape of the effective potential, we find tha
has a structure quite similar to the potential in Fig. 1 of R
@34#, in which the diquark condensate is studied in hig
density QCD by using the local composite effective pote
tial. The potentialV(s) is a multibranched and multivalue
function of s: The points Eq.~A22! are cusps and corre
spond to branching points. The stationary points(B0

(n)) cor-
responds to the local minimum in each branch of the eff
tive potential. We also find easily from Eqs.~A22! and~A12!
that the branching point converges tos50 in the n→`
11600
f
ree-

y

a
r.
f

e

f

t
.
-
-

-

limit. This means that the branch of the potential also shrin
to s50, exhibiting a fractal structure arounds50.

It is known that the long-range nature of interactions
scale invariant theories also leads to other peculiar prope
such as the existence of the infinite number of resonan
and the nonanalyticity of the potential at the points(B0
50) causing its fractal structure arounds(B050) @34#. It
should be noted, however, that the gauge theories with e
dimensions are not scale invariant below the compactifi
tion scale which should serve as an infrared cutoff in the
equation for the fermion mass function. Introducing such
cutoff explicitly, one can show that the SD equation has o
a finite number of solutions~see Refs.@35,36# and Appendix
C of the present paper! and the solutions with small dynam
cal massesB0

(n@1) disappear. Accordingly, the potentialV(s)
will have only a finite number of branches. We thus exp
that bizarre behavior nears50 does not actually occur in
the models treated in this paper.

Finally, we discuss the properties of the effective poten
for sufficiently large cutoffL@B0

(1) . For this purpose, we
take an infinite cutoff limitL→` with B0

(1) being fixed by
formally adjustingn[AkD /kD

crit21. The anomalous dimen
sion of the fermion mass is found to begm52v in Ref. @5#
in such a formal limit. We thus define a ‘‘renormalized’’ op
erator,

~ c̄c!R[Zm~ c̄c!, Zm}S m

L D 2v

, ~A23!

and

sR[^~c̄c!R&J . ~A24!

Taking the formalL→` limit of Eq. ~A12! as described
before, it is easy to obtain

sR}m2vB0
D/2S 1

v
1 ln

B0

B0
(1)D . ~A25!

As expected from the argument of the anomalous dimens
sR remains finite even in this formalL→` limit.

Equation~A25! can be used to defineB0 as a function of
sR . We are thus able to rewrite the effective potential E
~A15! as a function of the renormalized fieldVR(sR). In the
formal L→` limit, we obtain

VR~sR!5hNNfVNDA

@G~D/2!#2

@G~11v!#4
B0

D

3FvS ln
B0

B0
(1)D 2

1 ln
B0

B0
(1)

2
1

DG ~A26!

with B05B0(sR) being the function ofsR determined im-
plicitly from Eq. ~A25!.

It is somewhat surprising to find such a finite express
of the effective potential Eq.~A26! in the L→` limit in
nonrenormalizable higher-dimensional gauge theories. T
8-19
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property is actually related to the approximate scale inv
ance, i.e., the existence of the UV-FP.

APPENDIX B: CONVERSION
TO THE SCHRÖDINGER-LIKE EQUATION

We discuss dynamical mass generation in the bulk from
slightly different point of view. The SD equation~31! for the
mass function without the bare mass termm0 can be rewrit-
ten in the form of Schro¨dinger-like equation@37#, in which
the DxSB takes place when a ‘‘bound state’’ exists. The su
ject of whether the bulk fermion condenses or not is th
reduced to the ‘‘bound state problem’’ in quantum mech
ics.

Let us start by introducing the ‘‘wave function’’

c~u![E dDqE

~2p!D

eiqE•uB~qE
2 !

qE
21m2

. ~B1!

The Fourier transform of the mass functionB is then given
by

E dDqE

~2p!D
eiqE•uB~qE

2 !5~2Du1m2!c~u!. ~B2!

We next consider a linearized version of the ladder SD eq
tion,

B~pE
2 !5CFE dDqE

~2p!D

B~qE
2 !

qE
21m2

~D211j!g
*
2

~pE2qE!2(D/221)
,

~B3!

where the couplinggD
2 is replaced by the running on

g
*
2 /(pE2qE)2(D/222) and we takem5B(0). It is straightfor-

ward to show that the Fourier transform of Eq.~B3! is for-
mally given by

E dDqE

~2p!D
eiqE•uB~qE

2 !52V~u!c~u!, ~B4!

where the ‘‘potential’’V(u) is defined by

V~u![2~D211jD!CFg
*
2 E dDpE

~2p!D

eipE•u

@pE
2 #D/221

~B5!

and the gauge fixing parameterj is taken at the value of Eq
~29!,

jD[2
~D21!~D24!

D
. ~B6!

Here, the momentum shift invariance (pE→pE2qE) is
assumed.7 Equations ~B2! and ~B4! then lead to the
Schrödinger-like equation

7It should be noted, however, that the UV cutoffL in the SD
equation violates the momentum shift invariance. The analysi
the Schro¨dinger-like equation can thus be regarded as an analys
the SD equation with a different choice of the UV-cutoff procedu
11600
i-

a

-
s
-

a-

Hc~u!5Ec~u!, ~B7!

with

H[2Du1V~u!, E[2m2; ~B8!

namely, nontrivial solutions of the SD equation correspo
to bound states (E,0) in the Schro¨dinger-like equation.

In order to solve the Schro¨dinger-like equation~B7!, we
rewrite it in spherical coordinates. The ‘‘wave function’’ i
decomposed as

c~u![r 2(D21)/2R~r !X~f i !, r 5uuu, ~B9!

where R(r ) and X(f i) denote the radial function and a
analogue of the spherical surface harmonics inD dimensions
~the Gegenbauer function!, respectively. For an ‘‘S-wave
wave function’’ with X(f i)[1, the D-dimensional Laplac-
ian can be written as

DucS~u!5
1

r D21

]

]r F r D21
]

]r
@r 2(D21)/2R~r !#G .

~B10!

It is straightforward to show that Eq.~B7! leads to

F2
]2

]r 2
1Veff~r !GR~r !5ER~r ! ~B11!

with

Veff~r ![V~r !1
~D21!~D23!

4

1

r 2
. ~B12!

We find that an additionalpositive centrifugal potentialap-
pears from the kinetic term in the case ofD.3 even if we
consider theS-wave solution.

The ‘‘potential’’ V(r ) in Eq. ~B5! also has the same powe
of r ~an attractive inverse square‘‘potential’’ !:

V~r !52
~D22!2

4

kD

kD
crit

1

r 2
. ~B13!

The competition between the ‘‘repulsivecentrifugal poten-
tial’’ and the ‘‘attractiveinverse square potential’’ thus dete
mines the dynamical symmetry breaking.

The bound state spectrum with an inverse square pote
can be found in various textbooks of quantum mechan
@38#. The equation

]2R~r !

]r 2
1F e1

a

r 2GR~r !50 ~B14!

has an infinite number of bound state solutions only wh
a.1/4. In the present case, the parameterse anda are given
by

of
of
.
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e52m2, a5
~D22!2

4 S kD

kD
crit

21D 1
1

4
. ~B15!

The bound states of the Schro¨dinger-like equation exist if
and only if kD.kD

crit . The analysis of the Schro¨dinger-like
equation gives the critical pointkD

crit , which coincides with
the value in the SD equation.

We note here that the size of the ‘‘repulsive centrifug
potential’’ becomes significant forD@4. This is the very
reason why we obtainkD

crit larger than the NDA estimate.
We next comment on the case with nonrunninggD @37#.

In this case, the ‘‘potential’’V(r ) is given by

V~r ![2~D21!gD
2 E dDpE

~2p!D

eipE•u

pE
2

52~D21!
G~D/221!

4pD/2

gD
2

r D22
~B16!

in the Landau gauge (j50). When the potential behaves a
21/r s (0,s,2) for sufficiently larger, the spectrum con-
tains a countably infinite number of bound states@39#. The
dynamical symmetry breaking thus occurs for any value
the gauge coupling in 2,D,4 @37#. However, it is not true
in D.4. There is a critical point and the scaling relation
powerlike in the numerical analysis forD55,6 @24#.

APPENDIX C: EFFECTS OF IR CUTOFF IN THE GAP
EQUATION AT THE FIXED POINT

In this appendix we solve the linearized equation~37! in
the presence of the IR cutoffM0;R21.

The integral gap equation is written as the differential o

d2B~x!

dx2
1

2v11

x

dB~x!

dx
1v2~11n2!

B~x!

x~x1B0
2!

50,

~C1!

with two ~infrared and ultraviolet! boundary conditions
11600
l

f

e

x2v11
d

dx
B~x!U

x5M
0
2
50 ~IR-BC!, ~C2!

S 11
x

2v

d

dxDB~x!U
x5L2

5m0 ~UV-BC! ~C3!

~hereafter, we consider the chiral limitm050).
The general solution of Eq.~C1! has the form

B0~x!/B05C1u1~x!1C2u2~x!, ~C4!

whereas for two independent solutions of the differen
equation we take

u1~x![FS v~11 in!,v~12 in!,112v;2
x

B0
2D , ~C5!

u2~x![S x

B0
2D 2v(11 in)

FS v~11 in!,

2v~12 in!,112ivn;2
B0

2

x D 1c. c. ~C6!

~we consider the casekD.kD
crit).

The boundary conditions~C2!,~C3! lead to the following
equation determining the mass spectrum:

f5A1B22A2B150, ~C7!

where we defined the functionsAi ,Bi as

Ai5S 11
1

2v
x

d

dxDui~x!U
x5L2

,

Bi5x
dui~x!

dx U
x5M

0
2

. ~C8!

Using the formulas for differentiating hypergeometric fun
tions @40#, the functionsAi ,Bi can be recast as
A15FS v~11 in!,v~12 in!,2v;2
L2

B0
2 D , ~C9!

A25ReF ~12 in!S B0
2

L2D v(11 in)

FS v~11 in!,12v~12 in!,112ivn;2
B0

2

L2D G , ~C10!

B152
v2~11n2!

112v

M0
2

B0
2

FS 11v~11 in!,11v~12 in!,212v;2
M0

2

B0
2 D , ~C11!

B2522vReF ~11 in!S B0
2

M0
2D v(11 in)

FS 11v~11 in!,2v~12 in!,112ivn;2
B0

2

M0
2D G . ~C12!

Since we always assume thatB0 /L!1 we can use forAi their asymptotic expressions
8-21
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A1.uc0uA11n2S B0
2

L2D v

sinS vn ln
L2

B0
2

1tan21n1u D , ~C13!

A2.A11n2S B0
2

L2D v

cosS vn ln
L2

B0
2

1tan21n D , ~C14!

wherec0 andu,

u5arg
G~112ivn!

G„v~11 in!…G„11v~11 in!…
, ~C15!

are defined after Eqs.~46!,~47!. For the functionB1 we use the formula~2.10.2! from @40# in order to rewrite it in a form
similar to B2; thus we have

B152vA11n2uc0uS B0
2

M0
2D v

ImH S B0
2

M0
2D ivn

e2 iu1 i tan21nFS 11v~11 in!,v~211 in!,112ivn;2
B0

2

M0
2D J , ~C16!

B2522vA11n2S B0
2

M0
2D v

ReH S B0
2

M0
2D ivn

ei tan21nFS 11v~11 in!,v~211 in!,112ivn;2
B0

2

M0
2D J . ~C17!

Combining Eqs.~C13!,~C14!,~C16!,~C17!, the gap equation is transformed to the form

f.22vuc0u~11n2!cosuS M0
2

L2 D vS B0
2

M0
2D 2v

ImF S L2

M0
2D ivn

e2i tan21nFS 11v~11 in!,v~211 in!,112ivn;2
B0

2

M0
2D G50.

~C18!
tr
th

en
by

n

s

pen-
One can convince oneself that forM0!B0 the last equation
is equivalent to

sinS vn ln
L2

B0
2

1u1tan21n D 50, ~C19!

which gives the solutions~49!. On the other hand, forB0
!M0 we can use a power expansion of the hypergeome
function to get the equation for the dynamical mass near
phase transition point:

sinS vn ln
L2

M0
2

12tan21n D
1vF ~11n2!~~11v!21v2n2!

114v2n2 G 1/2
B0

2

M0
2

3sinS vn ln
L2

M0
2

2tan212vn1tan21
vn

11v
1tan21n D 50.

~C20!
11600
ic
e

The nontrivial solution for the dynamical mass arises wh
n[AkD /kD

crit21 exceeds the critical value determined
the equation

vncln
L2

M0
2

12 tan21nc5p. ~C21!

It should be noted thatnc is a small number,

nc.
p

21v ln~L2/M0
2!

!1, ~C22!

for L@M0. Note also that the form of the gap equatio
~C18! is different in two regionsM0!B0 andM0@B0: while
in the first one (M0!B0) we observe oscillations in the mas
variable, in the second one (M0@B0) such oscillations dis-
appear. This is reflected in the character of the mass de
dence on the coupling constant@compare Eqs.~54! and
~C24! below#. In general, it can be shown that Eq.~C18! has
n nontrivial solutions where the numbern is given by

n5Fp21vn ln
L2

M0
2

12 tan21nG , ~C23!

and the symbol@C# means the integer part of the numberC.
8-22
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Near the critical point we thus obtain the mean-field sc
ing relation for the dynamical mass

B0
2

M0
2

5
p

v~2v212v11!

n2nc

nc
2

,

n*nc , nc!1, ~C24!

which is cited in Eq.~60!.

APPENDIX D: FORMULAS FOR THE EFFECTIVE
GAUGE COUPLING STRENGTH

The relation between effective andMS couplings (D54
12) is given by Eq.~72! where the termsKg ,Kb,K f denote
one-loop contributions from gauge bosons, gauge sca
and fermions, respectively. The formulas forKg , Kb , andK f
are given by

Kg~q2,Lg
2![4CGS 5

18
1

1

6
ln

Lg
2

~2q2!
1

Lg
2

~2q2!
K̃g~q2,Lg

2!D ,

~D1!

Kb~q2,Lg
2![22CG

3S 31

450
1

1

30
ln

Lg
2

~2q2!
1

Lg
2

~2q2!
K̃b~q2,Lg

2!D ,

~D2!

K f~q2,Lg
2![22hTRNf

3S 47

900
1

1

30
ln

Lg
2

~2q2!
1

Lg
2

~2q2!
K̃ f~q2,Lg

2!D ,

~D3!

where the sum of the KK modes is approximated by repl
ing it with a corresponding integral. The functionsK̃ i ( i
5g,b, f ) are defined by

K̃g~q2,Lg
2![E

0

1

dx f~q2,Lg
2 ,x!,

52
4

3
1

5

18

q2

Lg
2

1
1

3 S 42
q2

Lg
2D 3/2

3S Lg
2

2q2D 1/2

arctanhA 2q2

4Lg
22q2

, ~D4!
11600
l-
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-

K̃b~q2,Lg
2![E

0

1

dx~2x21!2f ~q2,Lg
2 ,x!,

5
16

15

Lg
2

q2
2

28

45
1

31

450

q2

Lg
2

1
1

15S 42
q2

Lg
2D 5/2S Lg

2

2q2D 3/2

3arctanhA 2q2

4Lg
22q2

, ~D5!

K̃ f~q2,Lg
2![E

0

1

dxx~12x! f ~q2,Lg
2 ,x!

52
4

15

Lg
2

q2
2

8

45
1

47

900

q2

Lg
2

2
1

15S 42
q2

Lg
2D 3/2S 11

q2

Lg
2D

3S Lg
2

2q2D 3/2

arctanhA 2q2

4Lg
22q2

, ~D6!

with f being

f ~q2,Lg
2 ,x![S 12x~12x!

q2

Lg
2D

3 lnS 12
q2

Lg
2

x~12x!D .

We next discuss the behavior of the effective coupli
ĝeff

2 (z) in the energy regionz!L2. Expanding the functionf
aroundq250,

FIG. 18. The effective coupling in the strongly interacting pha
@(LMS

(D))2.0#. The solid and dashed lines represent the graphs
(LgR)25431010,43105 with Nf52,N53,(LMS

(D))25102, respec-
tively.
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f ~q2,Lg
2 ,x!52x~12x!

q2

Lg
2

1
1

2
x2~12x!2

q4

Lg
4

1OS S q2

Lg
2D 3D ,

we find

K̃g~q2,Lg
2!52

1

6

q2

Lg
2

1
1

60S q2

Lg
2D 2

1OS S q2

Lg
2D 3D ,

K̃b~q2,Lg
2!52

1

30

q2

Lg
2

1
1

420S q2

Lg
2D 2

1OS S q2
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It is then easy to obtain
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5
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2

z

1
1

75S 118CG2
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hTRNf D

1OS z

Lg
2D . ~D7!

Inserting Eq.~D7! into Eq. ~74!, we find

1

ĝeff
2 ~z!

52
1

g
*
2

~LMS
(D)

!2

z
1

1

~4p!3

3S 3

5
CG2

h

15
TRNf D ln

Lg
2

z
1•••. ~D8!

Note here that the effective couplingĝeff
2 depends on the

ultraviolet cutoffLg , indicating the violation of the decou
pling theorem.

It is now easy to see that the effective couplingĝeff
2 re-

mains finite in the infrared region 0<z!Lg
2 for (LMS

(D))2

,0 for CG.hTRNf /9, which is automatically satisfied whe
2b85(10CG2hTRNf)/3.0. On the other hand, Fig. 18
shows typical behaviors of the effective coupling wi
(LMS

(D))2.0. We find that the effective coupling diverges
z;(LMS

(D))2.0 in this case.
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