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Unified treatment of the electron propagator near the mass shell in three temperature regions
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The behavior of the electron propagator near the mass shell is quite different in three regimes: zero tem-
perature; low temperaturd,<m; and high temperature>m. A unified explanation of the behavior in all
three regimes is given in terms of the space-time dependence of the photon propagator along the trajectory
r=ut, ast—o, whereo is the appropriate group velocity of the electron.
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I INTRODUCTION exponential:Sg(t,p) = —ie '*te~ TN The same result

, ) , ) was found by Boyanovskegt al. [14] using completely dif-
In quantum field theories without massless particles, thggrent methods.

renormalized self-energies are finite functions of momentum. ¢ purpose of this paper is to explain all three results in

In particular, the self-energies are analytic at the mass shelkys (1.19—(1.19 in a simple, physical fashion. The com-

the value of the self-energies are finite and their derivativesnony feature of Egs(1.1a and (1.10 is that they are not

are finite. Consequently the mass shift and the wave-functiognaytic at the mass shell of the electron. It is curious that in

renormalization are finite. , the intermediate temperature ranges D<m, the electron
QED does not enjoy these properties because of the masgg|t.energy is analytic at the mass shell despite the massless

less photon. At zero temperature the one-loop self-energy CHhoton[G].

the electron is finite on the mass shell, but the derivative is | jgefy| guidance as to the source of nonanalyticity can be

infinite. This behavior has long been understdaet5]. At gained from considering the zero-temperature self-energy,

non-zero temperature the behavior is quite different and haé‘xpressed in terms of the Feynman propagators:
not been explained. At low temperatures; T<<m, conven-

tional finite-temperature perturbation theory applies and the 4K
electron self-energy is found to be analytic at the mass shell EF(P)=iezf 7 YuSe(P—K)y, DE"(K). (1.2
[6]. The analytic behavior does not hold at high tempera- )

tures. Wherm>m, it is necessary to use the Braaten-Pisarski

hard-thermal-loop propagatof2,8]. In this regime the dis- ropagator, the self-energy will have a branch point when
persion curve that defines the mass shell condition for th P—K)2=m? and K2=)2. The branch point will occur

electron is a complicated function of momentuap). It 5 > : . o
turns out the one-loop electron self-energy is infinite at theWhe.n P*=(m+1) e_md IS pro_duced .by two singularities in
mass shello(p) and has an infinite derivative at that energy. the integrand that pinch the integration contour at the value
The behavior of the one-loop electron self-energy in these N

three temperature regimes can be summarized as follows: K#= N
m

If a fictitious photon masa is introduced into the photon

I

_0- e?(p _
T=0: X(P)~e“(po—E)In(po—E) (1.18  As long as\ #0, the branch point &®2=(m+\)? is sepa-

rated from the electron pole & =m?. However, true QED

0<T<m: X(P)~analytic (1.1b requires that —0 and this shifts the branch point down to
P2=m?2. The region of integration which produces the
T>m:  *3(P)~ie?ln(py—w). (1.1¢  branch point is thed*~0.

At non-zero temperature, both with and without HTL re-
summation, the region of integration that determines whether
damping rateg9-12 in which the goal was to calculate th_e sglf-energy has a brarjch cut at th_e ellectron mass shell
Im*3.(P) evaluated ap,=w. It was found that the quark will still bg K“%O..Some simple analysis will show that the_

Qonanalytic behavior of the one-loop electron self-energy is

damping rate in QCD has infrared divergences that aris lied entirely by th ic behavi fthe ti
from static, transverse gluons and that these are cut off by tHgPntrolled entirely by the asymptotic behavior of the time-

putative magnetic mass. It was also found that the electrofrdered photon propagator in space-time,

damping rate at high temperature has similar infrared diver- wve u )

gences from static, transverse photons and there is no mag- D (t,r)=—iTr{e TIA*(x)A"(0)1}, 1.3

netic screening. Consequently the imaginary part of the elec- . . . . .

tron self—energ?y diverg(gs Ioggrithmicalﬂ/ at )t/hré mass shell. whereg |sﬁthe density oPerator. The limit that contributes is
The situation was greatly clarified by Blaizot and lancut—, r =vt—, wherev is the group velocity of the elec-

[13], who obtained Eq(1.19 and showed that it leads to a tron. At zero temperatureD4/(t,vt) falls like 142. At any

retarded electron propagator that decays more rapidly than aron-zero temperature below the electron mass, it falls expo-

The result forT>m emerged from calculations of fermion
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nentially witht [15]. At temperatures well above the electron therefore be ignored. This section will analyZé to isolate
mass, it is necessary to use Braaten-Pisarski resummelde cause for a branch cut at the mass shell. The first step is
propagators. The resummed photon propagafry(t,uvt)  to examine the free retarded propagator in &99):
behaves asymptotically like t1f{16]. The present paper will
show that these three asymptotic behaviors directly deter- Sy(P—K)= y:-(P=K)+m
mine the results displayed in Eqd.18—(1.10. (P—K)2—m2+in(po—ko)

Section Il computes the self-energy at zero temperature
and at low temperature. Section Il examines the high temThe behavior oB3(P) at P>~m? is controlled by the region
perature behavior where the hard-thermal-loop propagatoiis which K* is small. Sincep, will always be positive and
must be used. Section IV discusses the results in terms of theuch larger thark,, the imaginary part of the denominator
Bloch-Nordsieck approximation. Many of the details arecan be replaced bye. The p, derivative of 23(P) could

contained in the Appendixes. only diverge atpo=(m?+ p?)¥2 if the integrationfd*K di-
verges at smalK#. One can safely omit thE* dependence
Il. LOW TEMPERATURE: 0 <T<m of the numerator and omit th&? term in the denominator
and use

At zero or low temperature,9T<m, there is no need for
hard-thermal-loop  resummation. Conventional finite-
temperature perturbation theory is directly applicable. The Sg(P—K)~ 5
results of such a perturbative calculation are most easily ex- P
pressed in terms of the retarded self-energy for the electro
3.r(P), which is related to the full retarded propagator by

v-P+m
—m2—2P-K+ie

rEbmitting the K? in the denominator spoils the ultraviolet
convergence of the integration. The largé behavior will
Sk Y P)=y-P-m—3x(P). (2.2 have to be regulated lateSince the mass shell is the region
of interest, one can pyiy,=E+ (po—E) and omit the terms
Appendix A summarizes the relation between the retardedf order (p,— E)? from the denominator. This gives
propagator and the path-ordered propagators; and the relation
between the retarded self-energy and the path-ordered self- v-P+m

: Sr(P—K)=~ E—
energies. R CEtRb—Katie
In the rest frame of the plasma, rotational invariance re- 2E(po—Erk-v—ko) tie

quires thatt g be a combination of the matricesﬂ,,;w f) where the group velocity of the electron is

and y,- p. With this decomposition it is straightforward to )
compute the inverse of E§2.1) and obtain o= AE_ P
Yop E°

(2.6

Y, PH+m+3g— 3T 3R]
S (P)r= > - (2.2 It is convenient to write this approximate propagator as an
P=—m"—1IIx(P) integral over time:

The scalar self-energy in the denominator is —j o L
K~ —— (. it(po—E+k-v—kgtie)

1 S(P—-K) 2E(7 Per)fO dt€e .
g(P)= ETr[(P+ m)3g]
When this is substituted into EQ.5) the integration oveK

1 1 becomes
- 7RI+ g(T2R)2. (2.3

4
J’ d’K eiﬁ-;t*ikot D,MV(K)
For one-loop calculations only the first term iz(P) (2m)* 1A

should be retained.

Appendix B performs some preliminary analyses of therhjs integration produces the Fourier transform frdcg,K)
one-loop retarded self-energy for the electron. The computat-0 space-time T(F) on the trajectoryF= Jt. The Fourier

tion is organized into two parts: transformed propagator is denoted by

SR(P)=33P)+3P(P), (2.4 "
where Di‘l’/(t’r):f(ZT)“elk-r|k0tDiL£/(K)'
d*K : :
Ea(P):iezf o YuSk(P—K) 1, DE(K). (2.5 'LhEe irs)art of the self-energy that could be nonanalytipat
v

2

The other contributiony, is defined in Eq(B4b). Appen- 33(P)~ e_y (y-P+m)y,f4(P) 273
2E "# v ' '

dix B 2 shows thaB is analytic at the mass shell and it will
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where D . igh” . IXHx?
(0=—(E+ D oG+ (E D ooy
fA7(P)= " dtelttpo- Eridpur(tot).  (2.7b (2.10
to
The necessary projection is

In f#”(P) the lower limit on the time integration has been set
at ty in order to regulate the spurious short-distance diver- i(£—3)
gence that was introduced by omitting K& term from the v D)= (2.11
denominator ofSg(P—K). 87

Substituting the spinor self-ener@? into Eq.(2.3) gives
the scalar self-energy

Note that from dimensional analysis alone the right-hand
side must be proportional tot?/ The required time integra-
> > tion is

a 2e v e 2 ’ ,
i (P):?P’upyf# (P)_E(P -m )g,uyfﬂ (P). © . m
[ e

t2

' . . tg tom= m—1)m!
Near the mass shell the first term is the more important an o tor=z2 ( )

inP,P, one can sepo=E: ~i(po=E){In[ —i(po—E)to] = 1+ 7}.

P”|pO=E= Ev#, vE=(1p). (2.9 In the vicinity of the mass shell the non-analytic behavior is
(po— E)IN[(po—E)tg]. The non-analytic part of the self-

Note that* does not transform like a four-vector. The quan-€N€ray aPo~E is

tity v# determines both the polarization components of the

virtual photon and the space-time trajectory of the photon. M3(P)~(£é—3 EE —E)n —Et 21
The part of the self-energy that is potentially nonanalytic at (P)=(¢ )77 (Po=B)IN[(Po=E)to].  (2.12

the mass shell is
This is the result indicated in Eql.13.

One can go a step further to make contact with conven-

I1%(P)~2E€? “dt gtPo £y WU, DA (tut). tional results for the full electron propagator. Appendix C
fo 2.9 summarizes how to obtain the full propagator in the Bloch-

' Nordsieck approximation from the one-loop self-energy and

This result shows that it is the Iargebehavior of the time- 9"V©° the final result, E(C3).

ordered photon propagatorD{7(t, vt) that determines
whether I13(P) is finite at pO—E and also whether
II3(P)/dp, is finite atpy=E. In the Coulomb gaugeP®(x)=é(t)/4nr is instanta-

The remainder of this section evaluatB$ in various neous and thus does not contribute to E9). The trans-
cases. At zero temperature the asymptotic behavioverse propagator

2)’1‘1”(t,5t)—>1/t2 will produce a self-energyf1#(P)~ (pg

B. Coulomb gauge atT=0

I
—E)In(pp—E). At non-zero temperature below the electron Di(K)=| & - k_k] ;
mass, the asymptotic behavi@ 4/ (t,ut)— exd —27Tt(1 k? | K?+ie
—v)] will guarantee thatl?®(P) is analytlc atpo=E )
It is worth emphasizing that one cannot set=0 (or  has a space-time transforfiis]
equivalentlyv = 1) in these formulas. Proper treatment of the
massless case requires hard thermal loop propagators anq i it
will be discussed in Sec. Il =(8"—rlr )47r2(t2—r2)
A. Covariant gauges atT=0 (s —3FiFj)I—(E— lln 'i (213
The behavior of the electron self-energy near the mass 8m?\r? 3 [t-r
shell has long been known at zero temperature and provides
a useful check. In covariant gauges labeled by a paranjeter The necessary projection is
the free photon propagator is
ib(v)
D)= T 1 iy (219
(K2+ie)?
From dimensional analysis thus must be proportional t& 1/
The Fourier transform to space-time gid$] as in Eq.(2.11). The functionb(v) is
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Because of the exponential fall off with time, the function
(2.19  f(p) in Eq. (2.9 is finite atp,=E. Likewise all the deriva-
tives 9"f (P)/dpg are finite atpy=E. This implies thatf (P)
The required time integration is the same and the self-energlp analytic at the mass shell as was foundéh
in the regionpy~E is

b(v)= 2+1|
(v)= S

1+v
1-v

D. Coulomb gauge at 6<T<€m

[13(P)~ Eb(v)E(po—E)ln[(po—E)to]. (2.16 At low temperatures, &€ T<m, the time-ordered propa-
m gator in the Coulomb gauge is

The analytic structure is the same as in covariant gauges.

Only the coefficient has changed. In the Bloch-Nordsieck Dilil(K):
approximation the one-loop correction exponentiates to give

an electron propagator displayed in EG4).

1 271 8(K?)
K2+ie eflk—1

The Fourier transform to space-time is performed]155]

C. Covariant gauges at &<T<m with the result

At non-zero temperatures that are low<U<m, the Dilil(x):(gii_Fi§j)p>(x)+(5ii_3Fifj)E(X),
time-ordered photon propagator in a general covariant gauge
is where

d —iT 1 1
D(K)=| —g*"+(1—- ¢ KK — = -
11 (K) 9 (1-9) Ik21K2+ie D=(x) 4ar | @2aT(t+r) _q esz(t—r)_ll
2i v e v J (K2 i
_m —g +(1_§)K K ﬁ (K ) E(X): . 2r2In[l_e72ﬂ'T(t+r)][l_e*ZTrT(t*I’)]

The Fourier transform of this to space-time is computed in i =1

[15] with the result —_ ~[e2mTt-")
1673r3T n=1 n?

Dy (x)=[—g*" O+ (1~ £)d*9"]d~(x),

_e—27rnT(t+r)]_
where One can show15] that atT=0 this propagator reduces to
i Eq. (2.13. The appropriate projection is
do(x)= In{sin #T(r+t)]sin{#T(r—t)]}. o
-0 1672 ST Isini=T(r =01} viv; DH(X) === 20°E(X) |75t -

One can check that &=0 the propagator reduces to Eq. At large timest(1—v)>1/#T, the leading behavior is
(2.10. The necessary projection is

iT(1-02) 0 DI =i 5L 2T e 2],
F:Jt:TUt[COtI'[WTt(l-FU)] 8mvt

—cotf nTt(1—v)]]

v,0,D17(X)

As before, the exponential fall off with time guarantees that
f(P) is analytic atpo=E. This is a new result since the

iT2 (1+v)2 momentum space calculation [ii] did not include the Cou-
+(é-1)—= lomb gauge.
ST, sintf[ 7 Tt(1+v)]
(1_0)2 lll. HIGH TEMPERATURE: T>m
* sinff[#Tt(1—v)]] This section deals with the extreme high temperature re-

gime, where it is necessary to use hard-thermal-loop propa-
At zero temperature this coincides with E@.11). (Recall ~ 9ators[7,8]. Some simple analysis leads to K£8.11), which
thatv#1 sincem#0.) The behavior of the electron self- links the nonanalytic behavior of the electron self-energy to
energy in the regiopy,~E is determined by the large time the asymptotic time dependence of the HTL photon propaga-
behavior of the photon propagator. At large timgd,—v) O

> 1/xT, the behavior is The starting point is the retarded HTL electron propagator
. iT1-v?) — 2(vo=7'P) %ty Pp)
0,0, D (i —f ——Le T —em ], P~ m " Do @ G

4arut
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whereD .. (P) are known functions op, andp. Perturbative A. One-loop self-energy
corrections beyond the HTL approximation give a self- the mogified Feynman rules that result from HTL expan-
energy*%g(P) and thus an inverse propagator sion include a momentum-dependent vertex function for the
o photon and a new two-photon vert¢x,8]. These must be
*S (P)=[*Sg(P)] 1= *3k(P). (3.20  included in computing the one-loop self-energy of the elec-
R

tron. However, if the electron momentum is large=T,

. - L then only the bare vertex* is required. The following
Invariance under chirality and parity limits the self-energy toanalysis will deal only with a hard electron,

_be a linear combination _ofro and{w |5 This makes it easy to Appendix B1 shows that the one-loop retarded self-
invert Eq.(3.2) and obtain energy for the HTL propagator can be organized into two
o o parts,
(v~ yp) . 3(vot v p)
D, (P)-IL.(P) D_(P)-II_(P)’

*SR(P)=*33(P)+ *30(P), (3.9

3.3 as defined in EqgB6a) and(B6b). Appendix B 3 shows that

) ) *3b is analytic atpy~w,(p). Therefore we need only ex-
where the scalar functiond .. are given by amine * 3,:

*Sr(P)

4

I (P)=3Tr[( Ty-p)Sr(P)] (3.4) xva L[ 9K
- 4 Yo+ ¥ R ' ' 23(P)=ie f(zﬂ)4'yﬂ

*Sp(P—K)y,* D17 (K).

. . o (3.9

The question under investigation is hd¥v. (P) behave near

the zeros oD .. (P). As before, a divergence in thg, derivative of this atp,
The HTL propagatof3.1) has two positive-energy poles: =w.(p) can only come fronkK* small. Thus in the electron

D, (P) has a simple zero gip2=w,(p) andD_(P) has a propagator one can onit* in the numerator and can linear-

simple zero atpy=w_(p). Both dispersion curves start at ize the denominators with respectko

w.(0)=eT/\/8 and have the limiting behavian.. (p)—p

asp—. The residues of the HTL propagator poles are de- _ D ,(P)
fined by D(r(P_K)ND(T(P)_KMW'

1 dD,(P) In the regionpy~ .. (p) one can linearize in the small dif-

Z,  dpo o ' ferencepy,— w-(p) using Egs(3.5 and(3.7) to get

0~ Yo
1 o
so that D{,(P—K)~Z—(po—w(,+|e+k-v(,—ko).
Po—w,: D,(P)— Potie— w(,. (3.5 The HTL electron propagator that occurs in the loop integra-
Z, tion can be approximated as

At zero momentumZ_,=Z_=1/2; at infinite momentum, Z, (vo—0oy-p)
Z,—1andZ_ —0. *Sg(P—K)~

The group velocity along each dispersion relation is Po—w,tietkv,—k
As before it is convenient to express the denominator as an
- _~doy(p) (3.  integral over time:

1 I s
, - —iZ,=(yo— 0y i(po—wg+ietkv,~ko)t,
It will be necessary to express the group velocity differently. "ZWO Y p)fo dte

When the defining relatioB ,(w,(p),p)=0 is differentiated
with respect tgp the result is When this is substituted into E@3.9) the integration over
d*K performs the Fourier transform of the photon propagator

dw, D, to space-time on the trajectory=v ,t:

dp apo

D,
p

Pp= Pp=w . ) 1 N
2r(P)~e Ze5Yu( Yo=Y P) Yy

This allows the group velocity to be expressed as

xf dtgtPoestix purit 4 t),

- ~ dD(P)lap 0

Vo= "P 3D (P)pq (3.7

Po= @, (3 1@
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As before, the lower limit of the time integration gives spu-
rious ultraviolet divergences that were introduced by keeping
only the terms in the electron propagator that are important
for small K#. The ultraviolet divergences are regularized by
changing the lower limit on the time integration to some

PHYSICAL REVIEW D65 116007

=dt i(Po— w +ie)t 7
t —@'Po~@q =—‘y+|§_|n[(p0_wa)t0]
0

oo

[i(Po— w,)to]"

non-zero valud,. The trace in Eq(3.4) then gives for the
part of the self-energy that is potentially non-analytiqogt
~wy(p) is

HU(P)QGZZ(,LO dt ei(Po*wﬁif)t(j;Mgbv*D’fl”(t,z;(,t),
(3.1)

where ¢* is a light-like vector

¢*=(1,0p). (3.12

B. Coulomb gauge results

The asymptotic behavior ofD’l‘lV(t,Jt) for t—o was
calculated in[16] in the Coulomb gauge. The momentum
space propagatof D47 (K) contains quasiparticle poles in
the region of time-likeK and an electron-positron cut in the
region of space-liké&k. The contribution to* D(t,vt) from
the poles falls like 172 and the contribution from the cut

falls like 143. The contribution to*Diljl(t,Jt) from the pole
falls like 1432 and the contribution from the cut falls liket1/

The latter is thus the dominant contribution. The specific

behavior is

T
"D = g (8T, (3.13

in the limit t>1/m, with a fixed ratior/t<1. Herem

=1 n'n

Since the logarithm is the only non-analytic term, the non-
analytic part of the self-energy is

ie?T
H(r( P) ~ 4—Z¢r|n[( Po— w(r)tO] .

T,

(3.1

The self-energy and its derivative are both infinite in value at
po=w, . For theo=+ mode at high momentum, —1
andZ,—1 and the result agrees with Blaizot and lantg]
and with Boyanovskyet al. [14]. For theoc=—1 mode the
result is new. Of course, at large momentum— 1 but the
residue is exponentially small_ — Rexp(—R—1) whereR
=16p?/(eT)2. Appendix C summarizes the arguments that
lead from this result to the propagator displayed in &8).

IV. DISCUSSION

The known results displayed in Eqdl.139—(1.10 have
been obtained by isolating that part of the electron self-
energy integral that could diverge at the mass shell or whose
derivative could diverge at the mass shell. The emphasis was
on isolating the nonanalytic contributions.

At zero temperature and low temperature the only pos-
sible nonanalytic contribution was E¢R.5. In coordinate
space this reads

23(x)=ie?y,Sr(X) 7, D11 (X).

y . . .
—eT/3 is the photon effective thermal mass that occurs inl N€ @Pproximations in momentum space that led to(Eq)
the HTL photon propagator. This behavior is quite unusual@'® €quivalent to employing the approximate propagator

It comes from the momentum space region in whigh
~k¥/m? [16].

The non-analytic contribution to the electron self-energy

comes from* D' ¢t rt) with r=ot. On this trajectoryr
=p=p. The necessary projection is

¢M¢v *DH(tv,t)— 4

s (3.19

o

Sw(X)— o2 (v P+ m) e & 57 —01).

This is the standard Bloch-Nordsieck approximation for the
electron propagatdr2—4].

Similarly, in the high temperature regime the only pos-
sible non-analytic contribution to the electron self-energy for
a hard electron{=T) was isolated in Eq(3.9). In coordi-
nate space that contribution is

The only part of the electron self-energy that can be non-

analytic atpg~w,, is

ie?T

o
4mv,

>dt

— gi(Po—wgtiat

I, (P)~— (3.19

to

For simplicityt, has been chosen larger thaml/ The time
integration gives a logarithmic singularity:

*3(x)=ie?y, *Sr(X)y, * Di7(X).

The approximations in momentum space that led to Eq.
(3.10 can be summarized by the replacement

-iz, e ..
*Sr(x) = 2 5 (vo—oypeT e B (r=u, ),
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where o=+ accounts for the two positive energy modes, The parameterr lies in the range & o< pg. The real-time
one with the helicity equal to the chirality and the other with self-energies are related to the inverse full propagator by
the helicity opposite to the chirality. This approximation is
equivalent to the high-temperature Bloch-Nordsieck approxi- [D '(K)*l]{;b”:[D(K)’l]gg’—ﬂgg(K). (A3)
mation used by Blaizot and land¢3].

The nonanalytic part of the electron self-energy comedn terms of the retarded and advanced self-energies this im-
from soft photons and in retrospect could be obtained bylies
using the approximate Bloch-Nordsieck propagators shown

above. However, for the analysis to succeed it was essential 57 (K)=[1+n(ko) JIr(K) = (ko) ITA(K)  (A4d)
to first split the fermion self-energy into two parts, EB3)
at low temperature and E@B5) at high temperature, and IT 1K) = e®on(Ko)[ — ITr(K) +TTA(K)] (Adb)
then to eliminate2? and * 3 because they could not spoil
the analyticity at the mass shell. I1,,(K) =B~ on(ko)[ —ITr(K) + T z(K)]
(Adc)
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2. Electrons
APPENDIX A: RETARDED PROPAGATORS For electrons the retarded and advanced propagators are

The Feynman rules for finite-temperature calculations ifi€fined in terms of the anticommutator:
real time are conventionally formulated by doubling the

number of degrees of freedo@,17,18. All propagators be- [SrO)Jap=—T10() T e{¢ha(X),45(0)}]  (ASE)
come 2x< 2 matrices in an auxiliary space. It is also possible _

to formulate real-time Feynman rules directly in terms of [Sa(X)]ap=10(=TrL e{(X),5(0)}],
retarded and advanced propagafd@]. This appendix gives (ASb)
the standard relations between the propagators in the differ-

wherep is again the density operator. The Fermi-Dirac func-

t . . - .
ent bases tion (without absolute value barss denoted

1. Photons f(po)= 1/[eﬁpo+ 1].

The retarded and advanced propagators for photons d

pend upon the thermal average of the commutator: q’he path-ordered propagators in momentum space are

DEY(x)=—i6() Tr{e [A*(x),A*(0)]}  (Ala) S1(P)=[1—f(po)ISr(P)+f(Po)SA(P)  (A6a)
DEY(x)=16(—t)Tr{e [A*(x),A*(0)]} Sio(P) =€7Pof (pg)[ — Sg(P) + Sp(P)]
(Alb) (A6b)
where o =exp(— SH)/Tr{ exp(~BH)] is the density operator Syy(P)=elF~ Pof (py)[ Sp(P) — SA(P) ]
at temperaturd = 1/3. In the following formulasn(ky) is (A6c)
the Bose-Einstein function with no absolute value bars on the , , ,
energy: Sy K) == 1(Po) Sr(P) —[1—f(po) JSA(P), A6d)

= BKo_
n(ko)=11e 1], where O<o=<p. The real-time self-energies are related to

In momentum space the path-ordered photon propagators CQ?F inverse full propagator by

be expressed 449] [S (P) Nap=[S(P) Yap—San(P). (A7)

mv — y72% _ y’3%
D17 (K)=[1+n(ko) IDR™(K) =n(ko) DR™(K) (A23) In terms of the retarded and advanced self-energies this im-

D4(K)=e*on(ky)[ DL"(K) — D4*(K)] plies

(A2b) S1(P)=[1—f(po) I2r(P)+f(pe)Sa(P) (A8a)
DA(K) =t ¥on(ko) [DA"(K) = D4"(K)] 3 12(P)=€7Pof (o) [Xr(P) ~ X(P)]

"2 (A8b)
D55 (K)=n(ko)Dg"(K)—=[1+n(ko) IDA"(K). 3 51(P) =€ )Pof (po)[ —Sr(P)+Za(P)]

(A2d) sl
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250 P)=—Tf(po)Zr(P)—[1—f(po)JZa(P). d*K
(n80) S2(P)=ie? | — oy, S(P—K)yDI(K) (B4a
(27)
APPENDIX B: ELECTRON SELF-ENERGY 2
b 2 d*K yﬂpf(P_K)yv wv
This appendix will derive the one-loop contribution to the 27(P)=e f 2m)4 efPo—ko 4 1 DRY(K).
retarded electron self-energy and perform some preliminary (2m)™ e (B4b)
analysis leading to Eq92.5 and (3.9), which isolate the
possible nonanalytic behavior. The first of these is displayed in E(.5).
As already discussed, at high temperature the unperturbed
1. The retarded self-energy propagators are the HTL resummed propagators. The self-

gnergy correction to the resummed electron propagator is
computed in terms of loop integrals containing resummed
Jropagators. For electron momerngee T the bare vertices
may be used7,8]. The retarded self-energy then has the

The unperturbed electron propagator in the path-ordere
basis is the matrix5;. The magnitude of the temperature

is—at low temperatur&;; denotes the free thermal propaga-

tor; at high temperatures; will be replaced by the HTL decomposition:
resummed propagatdrs;; . *S _(P)=*S2(P)+ *>b(p B5
The one-loop contribution to the electron self-energy in TR(P)="2AHP)+*XNP). (B5)
the path-ordered basis is given by Only the bare vertices appear in the loop integrations:
in2 i+] 'K mv d*
2j(P)=ief(—1) f (zw)4yﬂS;(P—K)7VDij (K). *za(P)=ie2f (2m)° ¥, ¥ Sr(P—K)y, * D/ (K)
(B6a)
From Eqgs.(A8a) and (A8b) the retarded self-energy for the
electron is 4 *
d*K P—K
o *Eb(P):ezf - Yu pf(ik )’yV*D’gV(K)
2R(P)=211(P)+e 7Po% 4 P). (B1) (2m)*  ePlPoko 41
(B6b)

Direct substitution gives

The first of these is displayed in E(B.9).
4

d*K
—in2 _ 3%
2r(P)=ie f(27)4[7#511(|3 K)7,D11(K) 2. Low T: Analysis of 3°
_ It is straightforward to show that the contribution in Eq.
_a—op _ g

e 77,51 P=K) 7, D1 (K)]. (B4b) cannot produce a logarithmic singularity. Specifically
_the derivatived3.°(P)/dp, will be finite whenp, is on the

This can be reorganized into a form that will be more con
mass shell:

venient for the subsequent analysis. First use Esga) and
(ABb) to expressS;; and S, in terms of Sy and S,. The
difference betweersgz and S, defines the fermion spectral
function: dPo

SPP) f d*K  y,p(P—K)y, IDE"(K)
-¢ (27)* eBfPo—ko) 41 kg
. (B7)
i pr(P)=Sg(P)—Sa(P), (B2) _
The photon propagator is the free thermal propagator. For
which, of course, involves Dirac matrices. The retarded selfexample, in Feynman gauge the contribution is
energy becomes

4

g [ =g\ grrk
( g )_g 0 =8

{7,8:(P—K)7,D(K) o\ K2 | (K22

se(Py=ie? [
=ie

i (2m)*

. The spectral function for the free electron is

_If(pO_kO)’}/,upf(P_K)’YV

X[DT{’(K)—eigkoD’ﬂ)(K)]}. Pf(P_K):Z'”'E(po_kO)é((P_K)z_mz)

— : . X (Y (P=K)#+m).
The combination of photon propagators in square brackets is

Dr(K) because of EqsA2a) and(A2b). The retarded self- \when the self-energy is evaluatedmt=E(p), the support
energy is therefore of the spectral function is at,=E(p)+E(p—k). For the

3 (P)=33(P)+35(P). (B3)  upper signkg is large and Eq(B8) is never large. For the
lower sign, at smalk, ky~v -k, wherev = p/E. The poten-
The two integrals are tially divergent contribution to Eq(B7) is
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[ o

The leading term in the integrand is oddkrand integrates
to zero. Therefore the surviving terms attk k?/k* and give
finite integrals. This shows that E(B7) is finite at the elec-
tron mass shell.

v-k+O(k?)
[(v-k?=KT?

3. High T: Analysis of *3,°

A similar argument applies to EqB6b). The HTL re-
summed propagatct Sg(P) has poles at two positive ener-
gies: po=w (p) and pg=w_(p). We are interested in
whether * 2 gz(p) contains either a term of the fornp{

w,)In(pg—w,) or a term Infy—w,,). In either case the,
derivative of the self-energy would diverge @=

e D& (K)
ke

a*3P(P)
dPo

d*K v, *pi(P=K)y, 0*
(2m)*  ePPoko) 41

(B9)

The HTL spectral function for the electron has support in the

space-like regiohpo—ko| <|p—k|, but when the self-energy
is evaluated apy= w,(p)>p the space-like condition can-
not be satisfied for vanishingly small component&éf The

spectral function also has support on the dispersion curves,

i.e. atpy— ko= * w, (p—K) wheres’ = =. When the self-
energy is evaluated on one of the dispersion curygs,
=w,(p), the support is aky= w,(p) F w, (p—K). Of the
eight possible cases, the only ones in which tjscan be

small is wheno' = ¢ and the minus sign is chosen. Then at

smallk, ky~v -k, wherev,=dw,(p)/dp is the group ve-
locity. Using this gives for the only contribution to E@7)
that is potentially divergent

f d3k

9*DE'(K)
ko

However, since the HTL photon propagator is a even func-

tion of ko, after settingko=uv, - k, the above integrand is odd

PHYSICAL REVIEW D65 116007

4

zV(P)=ie2f (: K
au

G

Sr(P=K)7,

= cot Ko | bunK) - DEY(K B11
5 Co E[R() A (K)] (B11)

d*K
s(p)=ie? [ o

1
XE tan

This was convenient because3rf the photon is on shell; in
3¢ the electron was on shell. The difference between the
on-shell decomposition and that in E@®3) is as follows.
The differencd is defined as

Yul SR(P=K)=Sa(P=K)]y,

Po—
2T

% DA (K). (B12)

23(P)=2Y(P)=1(P), (B13)
where
|(P)=§J LKAPV,LSR(P—K)
(2m)
Xy,[DR"(K)+DR"(K)].
Similarly, the differencel is defined as
3P(P)—38(P)=J(P), (B14)

where

d*K
IP)= f( S nISPK)

—Sa(P=K)]7,DR"(K)

The sum ofl andJ is

|(P)+J(P)——f (2m )47,LSR(P K)y,DR"(K)
ie? [ dK
5 (2m )47;LSA(P_K)7VD§V(K)

in k. It therefore integrates to zero, which shows that EqBoth these integrands vanish: the first, because the integrand

(B9) is finite atpy= w,(p).

4. Alternate decomposition of2 g

There are various other ways to organkg. In a previ-

ous papef6] on the low-temperature behavior, which per-
formed using momentum-space integration, it was conve<

nient to use the decomposition

2R(P)=2Y(P)+X%(P), (B10)

in which the two contributions were defined as follows:

has no singularities in the lower-half of the compliy
plane; the second, because the integrand has no singularities

in the upper-half of the complésk, plane. This confirms that
S24+3P=37+3¢ (B15)

and thus the two decompositions of the retarded self-energy
are equivalent.

APPENDIX C: BLOCH-NORDSIECK PROPAGATOR

The Bloch-Nordsieck approximation allows one to take a

one-loop electron self-energy and immediately compute an
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approximation to the full electron propagator. The proof of This is the standard result for the electron propagator in co-
this method is best done using functional integf@g!,13  variant gauges[2—4]. At zero temperature the electron
and will not be repeated here. This appendix only displaygropagator in the Coulomb gauge follows directly from Eq.
the Bloch-Nordsieck prescription for passing from the one<2.14):

loop self-energy to the full propagator.

[(Po— E)to]"®). (C4

N ()

1. Low temperature: O<T<m

At zero temperature or low temperature, the electron self- _ _
energy approximation given in E(.9) can be expressed as In both cases the Dirac matricey-(P+m)/2E have been
a function of time as omitted.

II(t,p)=2E€? efiEtU,LU D1 (tot). 2. High temperature: T>m

In the high temperature regime, where hard thermal loop
propagators are required, the justification of the Bloch
=Nordsieck scheme is non-trivial. The detailed arguments
are presented by Blaizot and lanEl3]. The approximate
propagator is

From this self-energy compute the phase

dt’ (t—t")v,v, DIt vt").  (C1)
0

Y(t,p)=e? ft

Then the Bloch-Nordsieck approximation to the electron

propagator is Sgn(t,p)=—iZ e @ot=iZaut), (C5)

Sen(t,p)=—ie EIHD, (C2  where they function

At zero temperature in covariant gauges E2j11) implies

that lﬂ(t,ﬁ)zezﬁ dt’ (t—t') ¢, ¢, * D4L(t' v,t"). (CH)
0
- H(§=3aft t-t
Ytp)=—— ftodt 2 Using Eq.(3.14 this gives
- TZ,(, [t
_edal Lt t)=—i~ [tln——t+to . (C7)
21 tO to ) o tO
The logarithm is the nontrivial part and gives The propagator is
S . al t aTZ2 t
Sen(t,p)=—Texp —IEt=(¢=3) 7 in . SBN(t,p)z—iZ,,exp{—int— "tlnt—]. (o)
o 0

The Fourier transform of this is ) o )
For theo=+ mode this coincides with the well-known re-

sult [13,14). The Dirac matrices §,— o y-p)/2 have been

(€3 omitted.

1
Sgn(P)~ m[(po_ E)to] ¢~ 3e/2m,
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