
PHYSICAL REVIEW D, VOLUME 65, 116007
Unified treatment of the electron propagator near the mass shell in three temperature regions

H. Arthur Weldon
Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315

~Received 28 March 2002; published 20 June 2002!

The behavior of the electron propagator near the mass shell is quite different in three regimes: zero tem-
perature; low temperature,T!m; and high temperature,T@m. A unified explanation of the behavior in all
three regimes is given in terms of the space-time dependence of the photon propagator along the trajectory

rW5vW t, ast→`, wherevW is the appropriate group velocity of the electron.
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I. INTRODUCTION

In quantum field theories without massless particles,
renormalized self-energies are finite functions of momentu
In particular, the self-energies are analytic at the mass s
the value of the self-energies are finite and their derivati
are finite. Consequently the mass shift and the wave-func
renormalization are finite.

QED does not enjoy these properties because of the m
less photon. At zero temperature the one-loop self-energ
the electron is finite on the mass shell, but the derivative
infinite. This behavior has long been understood@1–5#. At
non-zero temperature the behavior is quite different and
not been explained. At low temperatures, 0,T!m, conven-
tional finite-temperature perturbation theory applies and
electron self-energy is found to be analytic at the mass s
@6#. The analytic behavior does not hold at high tempe
tures. WhenT@m, it is necessary to use the Braaten-Pisar
hard-thermal-loop propagators@7,8#. In this regime the dis-
persion curve that defines the mass shell condition for
electron is a complicated function of momentum,v(p). It
turns out the one-loop electron self-energy is infinite at
mass shellv(p) and has an infinite derivative at that energ
The behavior of the one-loop electron self-energy in th
three temperature regimes can be summarized as follow

T50: S~P!;e2~p02E!ln~p02E! ~1.1a!

0,T!m: S~P!;analytic ~1.1b!

T@m: * S~P!; ie2ln~p02v!. ~1.1c!

The result forT@m emerged from calculations of fermio
damping rates@9–12# in which the goal was to calculat
Im * S(P) evaluated atp05v. It was found that the quark
damping rate in QCD has infrared divergences that a
from static, transverse gluons and that these are cut off by
putative magnetic mass. It was also found that the elec
damping rate at high temperature has similar infrared div
gences from static, transverse photons and there is no m
netic screening. Consequently the imaginary part of the e
tron self-energy diverges logarithmically at the mass she

The situation was greatly clarified by Blaizot and Ian
@13#, who obtained Eq.~1.1c! and showed that it leads to
retarded electron propagator that decays more rapidly tha
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exponential:SR(t,pW )52 ie2 ivte2aTtln(t/t0). The same result
was found by Boyanovskyet al. @14# using completely dif-
ferent methods.

The purpose of this paper is to explain all three results
Eqs. ~1.1a!–~1.1c! in a simple, physical fashion. The com
mon feature of Eqs.~1.1a! and ~1.1c! is that they are not
analytic at the mass shell of the electron. It is curious tha
the intermediate temperature range, 0,T!m, the electron
self-energy is analytic at the mass shell despite the mass
photon@6#.

Useful guidance as to the source of nonanalyticity can
gained from considering the zero-temperature self-ene
expressed in terms of the Feynman propagators:

SF~P!5 ie2E d4K

~2p!4
gmSF~P2K !gn DF

mn~K !. ~1.2!

If a fictitious photon massl is introduced into the photon
propagator, the self-energy will have a branch point wh
(P2K)25m2 and K25l2. The branch point will occur
when P25(m1l)2 and is produced by two singularities i
the integrand that pinch the integration contour at the va

Km5
l

m1l
Pm.

As long aslÞ0, the branch point atP25(m1l)2 is sepa-
rated from the electron pole atP25m2. However, true QED
requires thatl→0 and this shifts the branch point down
P25m2. The region of integration which produces th
branch point is thenKm'0.

At non-zero temperature, both with and without HTL r
summation, the region of integration that determines whet
the self-energy has a branch cut at the electron mass
will still be Km'0. Some simple analysis will show that th
nonanalytic behavior of the one-loop electron self-energy
controlled entirely by the asymptotic behavior of the tim
ordered photon propagator in space-time,

D 11
mn~ t,rW !52 iTr$% T@Am~x!An~0!#%, ~1.3!

where% is the density operator. The limit that contributes
t→`, rW5vW t→`, wherevW is the group velocity of the elec
tron. At zero temperature,D 11

mn(t,vW t) falls like 1/t2. At any
non-zero temperature below the electron mass, it falls ex
©2002 The American Physical Society07-1
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nentially with t @15#. At temperatures well above the electro
mass, it is necessary to use Braaten-Pisarski resum
propagators. The resummed photon propagator* D 11

mn(t,vW t)
behaves asymptotically like 1/t @16#. The present paper wil
show that these three asymptotic behaviors directly de
mine the results displayed in Eqs.~1.1a!–~1.1c!.

Section II computes the self-energy at zero tempera
and at low temperature. Section III examines the high te
perature behavior where the hard-thermal-loop propaga
must be used. Section IV discusses the results in terms o
Bloch-Nordsieck approximation. Many of the details a
contained in the Appendixes.

II. LOW TEMPERATURE: 0 ÏT™m

At zero or low temperature, 0<T!m, there is no need for
hard-thermal-loop resummation. Conventional fini
temperature perturbation theory is directly applicable. T
results of such a perturbative calculation are most easily
pressed in terms of the retarded self-energy for the elect
SR(P), which is related to the full retarded propagator by

SR8
21~P!5g•P2m2SR~P!. ~2.1!

Appendix A summarizes the relation between the retar
propagator and the path-ordered propagators; and the rel
between the retarded self-energy and the path-ordered
energies.

In the rest frame of the plasma, rotational invariance
quires thatSR be a combination of the matrices 1,g0 ,gW •pW ,
andg0gW •pW . With this decomposition it is straightforward t
compute the inverse of Eq.~2.1! and obtain

S8~P!R5
gmPm1m1SR2 1

2 Tr@SR#

P22m22PR~P!
. ~2.2!

The scalar self-energy in the denominator is

PR~P!5
1

2
Tr@~P” 1m!SR#

2
1

4
Tr@SR

2 #1
1

8
~Tr@SR# !2. ~2.3!

For one-loop calculations only the first term inPR(P)
should be retained.

Appendix B performs some preliminary analyses of t
one-loop retarded self-energy for the electron. The comp
tion is organized into two parts:

SR~P!5Sa~P!1Sb~P!, ~2.4!

where

Sa~P!5 ie2E d4K

~2p!4
gmSR~P2K !gnD11

mn~K !. ~2.5!

The other contribution,Sb, is defined in Eq.~B4b!. Appen-
dix B 2 shows thatSb is analytic at the mass shell and it wi
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therefore be ignored. This section will analyzeSa to isolate
the cause for a branch cut at the mass shell. The first ste
to examine the free retarded propagator in Eq.~2.5!:

SR~P2K !5
g•~P2K !1m

~P2K !22m21 ih~p02k0!
.

The behavior ofSa(P) at P2'm2 is controlled by the region
in which Km is small. Sincep0 will always be positive and
much larger thank0, the imaginary part of the denominato
can be replaced byi e. The p0 derivative of Sa(P) could
only diverge atp05(m21p2)1/2 if the integration*d4K di-
verges at smallKm. One can safely omit theKm dependence
of the numerator and omit theK2 term in the denominator
and use

SR~P2K !'
g•P1m

P22m222P•K1 i e
.

~Omitting the K2 in the denominator spoils the ultraviole
convergence of the integration. The largeKm behavior will
have to be regulated later.! Since the mass shell is the regio
of interest, one can putp05E1(p02E) and omit the terms
of order (p02E)2 from the denominator. This gives

SR~P2K !'
g•P1m

2E~p02E1kW•vW 2k0!1 i e
,

where the group velocity of the electron is

vW 5 p̂
]E

]p
5

pW

E
. ~2.6!

It is convenient to write this approximate propagator as
integral over time:

S~P2K !'
2 i

2E
~g•P1m!E

0

`

dt eit (p02E1kW•vW 2k01 i e).

When this is substituted into Eq.~2.5! the integration overK
becomes

E d4K

~2p!4
eikW•vW t2 ik0t D11

mn~K !.

This integration produces the Fourier transform from (k0 ,kW )
to space-time (t,rW) on the trajectoryrW5vW t. The Fourier
transformed propagator is denoted by

D 11
mn~ t,rW !5E d4K

~2p!4
eikW•rW2 ik0tD11

mn~K !.

The part of the self-energy that could be nonanalytic atp0
5E is

Sa~P!'
e2

2E
gm~g•P1m!gn f mn~P!, ~2.7a!
7-2
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where

f mn~P!5E
t0

`

dteit (p02E1 i e) D 11
mn~ t,vW t !. ~2.7b!

In f mn(P) the lower limit on the time integration has been s
at t0 in order to regulate the spurious short-distance div
gence that was introduced by omitting theK2 term from the
denominator ofSR(P2K).

Substituting the spinor self-energySa into Eq.~2.3! gives
the scalar self-energy

Pa~P!5
2e2

E
PmPn f mn~P!2

e2

E
~P22m2!gmn f mn~P!.

Near the mass shell the first term is the more important
in PmPn one can setp05E:

Pmup05E5E vm; vm5~1,vW !. ~2.8!

Note thatvm does not transform like a four-vector. The qua
tity vm determines both the polarization components of
virtual photon and the space-time trajectory of the phot
The part of the self-energy that is potentially nonanalytic
the mass shell is

Pa~P!'2Ee2E
t0

`

dt eit (p02E1 i e)vmvnD 11
mn~ t,vW t !.

~2.9!

This result shows that it is the larget behavior of the time-
ordered photon propagator,D 11

mn(t,vW t), that determines
whether Pa(P) is finite at p05E and also whether
]Pa(P)/]p0 is finite atp05E.

The remainder of this section evaluatesPa in various
cases. At zero temperature the asymptotic beha
D 11

mn(t,vW t)→1/t2 will produce a self-energyPa(P);(p0

2E)ln(p02E). At non-zero temperature below the electr
mass, the asymptotic behaviorD 11

mn(t,vW t)→ exp@22pTt(1
2v)# will guarantee thatPa(P) is analytic atp05E.

It is worth emphasizing that one cannot setm50 ~or
equivalentlyv51) in these formulas. Proper treatment of t
massless case requires hard thermal loop propagators
will be discussed in Sec. III.

A. Covariant gauges atTÄ0

The behavior of the electron self-energy near the m
shell has long been known at zero temperature and prov
a useful check. In covariant gauges labeled by a paramej
the free photon propagator is

Dmn~K !5
2gmn

K21 i e
1~12j!

KmKn

~K21 i e!2
.

The Fourier transform to space-time gives@15#
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D mn~x!52~j11!
igmn

8p2x2
1~j21!

ixmxn

4p2~x2!2
.

~2.10!

The necessary projection is

vmvnD mn~x!urW5vW t5
i ~j23!

8p2t2
. ~2.11!

Note that from dimensional analysis alone the right-ha
side must be proportional to 1/t2. The required time integra
tion is

E
t0

`dt

t2
eit (p02E1 i e)5

1

t0
2

1

t0
(

m52

`
@ i ~p02E!t0#m

~m21!m!

2 i ~p02E!$ ln@2 i ~p02E!t0#211g%.

In the vicinity of the mass shell the non-analytic behavior
(p02E)ln@(p02E)t0#. The non-analytic part of the self
energy atp0'E is

Pa~P!'~j23!
a

p
E~p02E!ln@~p02E!t0#. ~2.12!

This is the result indicated in Eq.~1.1a!.
One can go a step further to make contact with conv

tional results for the full electron propagator. Appendix
summarizes how to obtain the full propagator in the Bloc
Nordsieck approximation from the one-loop self-energy a
gives the final result, Eq.~C3!.

B. Coulomb gauge atTÄ0

In the Coulomb gauge,D 00(x)5d(t)/4pr is instanta-
neous and thus does not contribute to Eq.~2.9!. The trans-
verse propagator

Di j ~K !5S d i j 2
kikj

k2 D 1

K21 i e

has a space-time transform@15#

D i j ~x!5~d i j 2 r̂ i r̂ j !
i

4p2~ t22r 2!

1~d i j 23r̂ i r̂ j !
i

8p2 S 2

r 2
2

t

r 3
lnF t1r

t2r G D . ~2.13!

The necessary projection is

v iv jD i j ~x!urW5vW t5
ib~v !

8p2t2
. ~2.14!

From dimensional analysis thus must be proportional to 1t2

as in Eq.~2.11!. The functionb(v) is
7-3
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b~v !5221
1

v
lnF11v

12vG . ~2.15!

The required time integration is the same and the self-ene
in the regionp0'E is

Pa~P!'
a

p
b~v !E~p02E!ln@~p02E!t0#. ~2.16!

The analytic structure is the same as in covariant gau
Only the coefficient has changed. In the Bloch-Nordsie
approximation the one-loop correction exponentiates to g
an electron propagator displayed in Eq.~C4!.

C. Covariant gauges at 0ËT™m

At non-zero temperatures that are low, 0,T!m, the
time-ordered photon propagator in a general covariant ga
is

D11
mn~K !5F2gmn1~12j!KmKn

]

]k2G 1

K21 i e

2
2p i

ebuk0u21
F2gmn1~12j!KmKn

]

]k2Gd~K2!.

The Fourier transform of this to space-time is computed
@15# with the result

D 11
mn~x!5@2gmn h1~12j!]m]n#d.~x!,

where

d.~x!5
i

16p2
ln$ sinh@pT~r 1t !# sinh@pT~r 2t !#%.

One can check that atT50 the propagator reduces to E
~2.10!. The necessary projection is

vmvnD 11
mn~x!urW5vW t5

iT~12v2!

8pvt
@coth@pTt~11v !#

2coth@pTt~12v !##

1~j21!
iT2

16 F ~11v !2

sinh2@pTt~11v !#

1
~12v !2

sinh2@pTt~12v !#
G .

At zero temperature this coincides with Eq.~2.11!. ~Recall
that vÞ1 sincemÞ0.! The behavior of the electron sel
energy in the regionp0'E is determined by the large tim
behavior of the photon propagator. At large times,t(12v)
@1/pT, the behavior is

vmvnD 11
mn~x!urW5vW t→

iT~12v2!

4pvt
@e2pTt(11v)2e2pTt(12v)#.
11600
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Because of the exponential fall off with time, the functio
f (p) in Eq. ~2.9! is finite atp05E. Likewise all the deriva-
tives ]nf (P)/]p0

n are finite atp05E. This implies thatf (P)
is analytic at the mass shell as was found in@6#.

D. Coulomb gauge at 0ËT™m

At low temperatures, 0,T!m, the time-ordered propa
gator in the Coulomb gauge is

D11
i j ~K !5S d i j 2

kikj

k2 D F 1

K21 i e
2

2p id~K2!

ebuk0u21
G .

The Fourier transform to space-time is performed in@15#
with the result

D 11
i j ~x!5~d i j 2 r̂ i r̂ j !D.~x!1~d i j 23r̂ i r̂ j !E~x!,

where

D.~x!5
2 iT

4pr F 1

e2pT(t1r )21
2

1

e2pT(t2r )21
G

E~x!5
i

8p2r 2
ln@12e22pT(t1r )#@12e22pT(t2r )#

1
i

16p3r 3T
(
n51

`
1

n2
@e22pnT(t2r )

2e22pnT(t1r )#.

One can show@15# that atT50 this propagator reduces t
Eq. ~2.13!. The appropriate projection is

v iv jD 11
i j ~x!urW5vW t522v2E~x!urW5vW t .

At large times,t(12v)@1/pT, the leading behavior is

v iv jD 11
i j ~x!urW5vW t→

2 i

8p2v2t2
@e22pTt(11v)1e22pTt(12v)#.

As before, the exponential fall off with time guarantees th
f (P) is analytic atp05E. This is a new result since th
momentum space calculation in@6# did not include the Cou-
lomb gauge.

III. HIGH TEMPERATURE: Tšm

This section deals with the extreme high temperature
gime, where it is necessary to use hard-thermal-loop pro
gators@7,8#. Some simple analysis leads to Eq.~3.11!, which
links the nonanalytic behavior of the electron self-energy
the asymptotic time dependence of the HTL photon propa
tor.

The starting point is the retarded HTL electron propaga

* SR~P!5

1
2 ~g02gW • p̂!

D1~P!
1

1
2 ~g01gW • p̂!

D2~P!
, ~3.1!
7-4
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whereD6(P) are known functions ofp0 andp. Perturbative
corrections beyond the HTL approximation give a se
energy* SR(P) and thus an inverse propagator

* S
R

821
~P!5@ * SR~P!#212 * SR~P!. ~3.2!

Invariance under chirality and parity limits the self-energy
be a linear combination ofg0 andgW •pW . This makes it easy to
invert Eq.~3.2! and obtain

* SR~P!5

1
2 ~g02gW • p̂!

D1~P!2P1~P!
1

1
2 ~g01gW • p̂!

D2~P!2P2~P!
,

~3.3!

where the scalar functionsP6 are given by

P6~P!5
1

4
Tr@~g07gW • p̂!SR~P!#. ~3.4!

The question under investigation is howP6(P) behave near
the zeros ofD6(P).

The HTL propagator~3.1! has two positive-energy poles
D1(P) has a simple zero atp05v1(p) and D2(P) has a
simple zero atp05v2(p). Both dispersion curves start a
v6(0)5eT/A8 and have the limiting behaviorv6(p)→p
asp→`. The residues of the HTL propagator poles are
fined by

1

Zs
5

]Ds~P!

]p0
U

p05vs

,

so that

p0→vs : Ds~P!→ p01 i e2vs

Zs
. ~3.5!

At zero momentum,Z15Z251/2; at infinite momentum,
Z1→1 andZ2→0.

The group velocity along each dispersion relation is

vW s5 p̂
dvs~p!

dp
. ~3.6!

It will be necessary to express the group velocity differen
When the defining relationDs„vs(p),p…50 is differentiated
with respect top the result is

dvs

dp

]Ds

]p0
U

p05v

1
]Ds

]p U
p05v

50.

This allows the group velocity to be expressed as

vW s52 p̂
]Ds~P!/]p

]Ds~P!/]p0
U

p05vs

. ~3.7!
11600
-

-

.

A. One-loop self-energy

The modified Feynman rules that result from HTL expa
sion include a momentum-dependent vertex function for
photon and a new two-photon vertex@7,8#. These must be
included in computing the one-loop self-energy of the el
tron. However, if the electron momentum is large,p>T,
then only the bare vertexgm is required. The following
analysis will deal only with a hard electron.

Appendix B 1 shows that the one-loop retarded se
energy for the HTL propagator can be organized into t
parts,

* SR~P!5 * Sa~P!1 * Sb~P!, ~3.8!

as defined in Eqs.~B6a! and~B6b!. Appendix B 3 shows that
* Sb is analytic atp0'vs(p). Therefore we need only ex
amine * Sa:

* Sa~P!5 ie2E d4K

~2p!4
gm* SR~P2K !gn* D11

mn~K !.

~3.9!

As before, a divergence in thep0 derivative of this atp0
5v6(p) can only come fromKm small. Thus in the electron
propagator one can omitKm in the numerator and can linea
ize the denominators with respect toK:

Ds~P2K !'Ds~P!2Km
]Ds~P!

]Pm
.

In the regionp0'v6(p) one can linearize in the small dif
ferencep02v6(p) using Eqs.~3.5! and ~3.7! to get

Ds~P2K !'
1

Zs
~p02vs1 i e1kW•vW s2k0!.

The HTL electron propagator that occurs in the loop integ
tion can be approximated as

* SR~P2K !'
Zs

1
2 ~g02sgW •pW !

p02vs1 i e1kW•vW s2k0

.

As before it is convenient to express the denominator as
integral over time:

2 iZs

1

2
~g02sgW •pW !E

0

`

dt ei (p02vs1 i e1kW•vW s2k0)t.

When this is substituted into Eq.~3.9! the integration over
d4K performs the Fourier transform of the photon propaga
to space-time on the trajectoryrW5vW st:

* SR~P!'e2Zs

1

2
gm~g02sgW • p̂!gn

3E
0

`

dt eit (p02vs1 i e) * D 11
mn~ t,vW st !.

~3.10!
7-5



u-
in

ta
by
e

m
n
e

t

ifi

i
a

g

on

n-

at

at

elf-
ose
was

os-

he

s-
for

Eq.

H. ARTHUR WELDON PHYSICAL REVIEW D65 116007
As before, the lower limit of the time integration gives sp
rious ultraviolet divergences that were introduced by keep
only the terms in the electron propagator that are impor
for small Km. The ultraviolet divergences are regularized
changing the lower limit on the time integration to som
non-zero valuet0. The trace in Eq.~3.4! then gives for the
part of the self-energy that is potentially non-analytic atp0
'vs(p) is

Ps~P!'e2ZsE
t0

`

dt ei (p02vs1 i e)tfmfn * D 11
mn~ t,vW st !,

~3.11!

wherefm is a light-like vector

fm5~1,s p̂!. ~3.12!

B. Coulomb gauge results

The asymptotic behavior of* D 11
mn(t,vW t) for t→` was

calculated in@16# in the Coulomb gauge. The momentu
space propagator* D11

mn(K) contains quasiparticle poles i
the region of time-likeK and an electron-positron cut in th
region of space-likeK. The contribution to* D 11

00(t,vW t) from
the poles falls like 1/t3/2 and the contribution from the cu
falls like 1/t3. The contribution to* D 11

i j (t,vW t) from the pole
falls like 1/t3/2 and the contribution from the cut falls like 1/t.
The latter is thus the dominant contribution. The spec
behavior is

* D 11
i j cut~ t,rW !→ 2 iT

8pr
~d i j 1 r̂ i r̂ j !, ~3.13!

in the limit t@1/mg with a fixed ratio r /t,1. Here mg
5eT/3 is the photon effective thermal mass that occurs
the HTL photon propagator. This behavior is quite unusu
It comes from the momentum space region in whichk0

;k3/mg
2 @16#.

The non-analytic contribution to the electron self-ener
comes from* D i j cut(t,rWt) with rW5vW t. On this trajectory,r̂
5 v̂5 p̂. The necessary projection is

fmfn * D mn~ t,vW st !→ 2 iT

4pvst
. ~3.14!

The only part of the electron self-energy that can be n
analytic atp0'vs is

Ps~P!'2
ie2T

4pvs
ZsE

t0

`dt

t
ei (p02vs1 i e)t. ~3.15!

For simplicity t0 has been chosen larger than 1/mg . The time
integration gives a logarithmic singularity:
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E
t0

`dt

t
ei (p02vs1 i e)t52g1 i

p

2
2 ln@~p02vs!t0#

2 (
n51

`
@ i ~p02vs!t0#n

n!n
.

Since the logarithm is the only non-analytic term, the no
analytic part of the self-energy is

Ps~P!'
ie2T

4pvs
Zsln@~p02vs!t0#. ~3.16!

The self-energy and its derivative are both infinite in value
p05vs . For the s51 mode at high momentumv1→1
andZ1→1 and the result agrees with Blaizot and Iancu@13#
and with Boyanovskyet al. @14#. For thes521 mode the
result is new. Of course, at large momentumv2→1 but the
residue is exponentially small:Z2→Rexp(2R21) whereR
516p2/(eT)2. Appendix C summarizes the arguments th
lead from this result to the propagator displayed in Eq.~C8!.

IV. DISCUSSION

The known results displayed in Eqs.~1.1a!–~1.1c! have
been obtained by isolating that part of the electron s
energy integral that could diverge at the mass shell or wh
derivative could diverge at the mass shell. The emphasis
on isolating the nonanalytic contributions.

At zero temperature and low temperature the only p
sible nonanalytic contribution was Eq.~2.5!. In coordinate
space this reads

Sa~x!5 ie2gmSR~x!gnD 11
mn~x!.

The approximations in momentum space that led to Eq.~2.7!
are equivalent to employing the approximate propagator

SR~x!→ 2 i

2E
~g•P1m! e2 iEt d3~rW2vW t !.

This is the standard Bloch-Nordsieck approximation for t
electron propagator@2–4#.

Similarly, in the high temperature regime the only po
sible non-analytic contribution to the electron self-energy
a hard electron (p>T) was isolated in Eq.~3.9!. In coordi-
nate space that contribution is

* S~x!5 ie2gm * SR~x!gn * D 11
mn~x!.

The approximations in momentum space that led to
~3.10! can be summarized by the replacement

* SR~x!→ (
s56

2 iZs

2
~g02sgW • p̂! e2 ivst d3~rW2vW st !,
7-6
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where s56 accounts for the two positive energy mode
one with the helicity equal to the chirality and the other w
the helicity opposite to the chirality. This approximation
equivalent to the high-temperature Bloch-Nordsieck appro
mation used by Blaizot and Iancu@13#.

The nonanalytic part of the electron self-energy com
from soft photons and in retrospect could be obtained
using the approximate Bloch-Nordsieck propagators sho
above. However, for the analysis to succeed it was esse
to first split the fermion self-energy into two parts, Eq.~B3!
at low temperature and Eq.~B5! at high temperature, an
then to eliminateSb and * Sb because they could not spo
the analyticity at the mass shell.
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APPENDIX A: RETARDED PROPAGATORS

The Feynman rules for finite-temperature calculations
real time are conventionally formulated by doubling t
number of degrees of freedom@8,17,18#. All propagators be-
come 232 matrices in an auxiliary space. It is also possib
to formulate real-time Feynman rules directly in terms
retarded and advanced propagators@19#. This appendix gives
the standard relations between the propagators in the di
ent bases.

1. Photons

The retarded and advanced propagators for photons
pend upon the thermal average of the commutator:

D R
mn~x!52 iu~ t !Tr$% @Am~x!,An~0!#% ~A1a!

D A
mn~x!5 iu~2t !Tr$% @Am~x!,An~0!#%

~A1b!

where%5exp(2bH)/Tr@exp(2bH)# is the density operato
at temperatureT51/b. In the following formulasn(k0) is
the Bose-Einstein function with no absolute value bars on
energy:

n~k0!51/@ebk021#.

In momentum space the path-ordered photon propagators
be expressed as@19#

D11
mn~K !5@11n~k0!#DR

mn~K !2n~k0!DA
mn~K ! ~A2a!

D12
mn~K !5esk0n~k0!@DR

mn~K !2DA
mn~K !#

~A2b!

D21
mn~K !5e(b2s)k0n~k0!@DR

mn~K !2DA
mn~K !#

~A2c!

D22
mn~K !5n~k0!DR

mn~K !2@11n~k0!#DA
mn~K !.

~A2d!
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The parameters lies in the range 0<s<b. The real-time
self-energies are related to the inverse full propagator by

@D 8~K !21#ab
mn5@D~K !21#ab

mn2Pab
mn~K !. ~A3!

In terms of the retarded and advanced self-energies this
plies

P11
mn~K !5@11n~k0!#PR~K !2n~k0!PA~K ! ~A4a!

P12~K !5esk0n~k0!@2PR~K !1PA~K !# ~A4b!

P21~K !5e(b2s)k0n~k0!@2PR~K !1PA~K !#
~A4c!

P22~K !5n~k0!PR~K !2@11n~k0!#PA~K !.
~A4d!

2. Electrons

For electrons the retarded and advanced propagators
defined in terms of the anticommutator:

@SR~x!#ab52 iu~ t !Tr@%$ca~x!,c̄b~0!%# ~A5a!

@SA~x!#ab5 iu~2t !Tr@%$ca~x!,c̄b~0!%#,
~A5b!

where% is again the density operator. The Fermi-Dirac fun
tion ~without absolute value bars! is denoted

f ~p0!51/@ebp011#.

The path-ordered propagators in momentum space are

S118 ~P!5@12 f ~p0!#SR8 ~P!1 f ~p0!SA8 ~P! ~A6a!

S128 ~P!5esp0f ~p0!@2SR8 ~P!1SA8 ~P!#
~A6b!

S218 ~P!5e(b2s)p0f ~p0!@SR8 ~P!2SA8 ~P!#
~A6c!

S228 ~k!52 f ~p0!SR8 ~P!2@12 f ~p0!#SA8 ~P!,
~A6d!

where 0<s<b. The real-time self-energies are related
the inverse full propagator by

@S8~P!21#ab5@S~P!21#ab2Sab~P!. ~A7!

In terms of the retarded and advanced self-energies this
plies

S11~P!5@12 f ~p0!#SR~P!1 f ~p0!SA~P! ~A8a!

S12~P!5esp0f ~p0!@SR~P!2SA~P!#
~A8b!

S21~P!5e(b2s)p0f ~p0!@2SR~P!1SA~P!#
~A8c!
7-7
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S22~P!52 f ~p0!SR~P!2@12 f ~p0!#SA~P!.
~A8d!

APPENDIX B: ELECTRON SELF-ENERGY

This appendix will derive the one-loop contribution to th
retarded electron self-energy and perform some prelimin
analysis leading to Eqs.~2.5! and ~3.9!, which isolate the
possible nonanalytic behavior.

1. The retarded self-energy

The unperturbed electron propagator in the path-orde
basis is the matrixSi j . The magnitude of the temperatu
determines what the appropriate unperturbed propag
is—at low temperatureSi j denotes the free thermal propag
tor; at high temperatureSi j will be replaced by the HTL
resummed propagator* Si j .

The one-loop contribution to the electron self-energy
the path-ordered basis is given by

S i j ~P!5 ie2~21! i 1 jE d4K

~2p!4
gmSi j ~P2K !gnDi j

mn~K !.

From Eqs.~A8a! and ~A8b! the retarded self-energy for th
electron is

SR~P!5S11~P!1e2sp0S12~P!. ~B1!

Direct substitution gives

SR~P!5 ie2E d4K

~2p!4
@gmS11~P2K !gnD11

mn~K !

2e2sp0gmS12~P2K !gnD12
mn~K !#.

This can be reorganized into a form that will be more co
venient for the subsequent analysis. First use Eqs.~A6a! and
~A6b! to expressS11 and S12 in terms ofSR and SA . The
difference betweenSR and SA defines the fermion spectra
function:

i r f~P!5SR~P!2SA~P!, ~B2!

which, of course, involves Dirac matrices. The retarded s
energy becomes

SR~P!5 ie2E d4K

~2p!4
$gmSR~P2K !gnD11

mn~K !

2 i f ~p02k0!gmr f~P2K !gn

3@D11
mn~K !2e2sk0D12

mn~K !#%.

The combination of photon propagators in square bracke
DR(K) because of Eqs.~A2a! and ~A2b!. The retarded self-
energy is therefore

SR~P!5Sa~P!1Sb~P!. ~B3!

The two integrals are
11600
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Sa~P!5 ie2E d4K

~2p!4
gmSR~P2K !gnD11

mn~K ! ~B4a!

Sb~P!5e2E d4K

~2p!4

gmr f~P2K !gn

eb(p02k0)11
DR

mn~K !.

~B4b!

The first of these is displayed in Eq.~2.5!.
As already discussed, at high temperature the unpertu

propagators are the HTL resummed propagators. The s
energy correction to the resummed electron propagato
computed in terms of loop integrals containing resumm
propagators. For electron momentap>T the bare vertices
may be used@7,8#. The retarded self-energy then has t
decomposition:

* SR~P!5 * Sa~P!1 * Sb~P!. ~B5!

Only the bare vertices appear in the loop integrations:

* Sa~P!5 ie2E d4K

~2p!4
gm * SR~P2K !gn * D11

mn~K !

~B6a!

* Sb~P!5e2E d4K

~2p!4

gm * r f~P2K !gn

eb(p02k0)11
* DR

mn~K !.

~B6b!

The first of these is displayed in Eq.~3.9!.

2. Low T: Analysis of Sb

It is straightforward to show that the contribution in E
~B4b! cannot produce a logarithmic singularity. Specifica
the derivative]Sb(P)/]p0 will be finite whenp0 is on the
mass shell:

]Sb~P!

]p0
5e2E d4K

~2p!4

gmr f~P2K !gn

eb(p02k0)11

]DR
mn~K !

]k0
.

~B7!

The photon propagator is the free thermal propagator.
example, in Feynman gauge the contribution is

]

]k0
S 2gmn

K2 D 5
gmn2k0

~K2!2
. ~B8!

The spectral function for the free electron is

r f~P2K !52pe~p02k0!d„~P2K !22m2
…

3„gm~P2K !m1m….

When the self-energy is evaluated atp05E(p), the support
of the spectral function is atk05E(p)6E(pW 2kW ). For the
upper sign,k0 is large and Eq.~B8! is never large. For the
lower sign, at smallkW , k0'vW •kW , wherevW 5pW /E. The poten-
tially divergent contribution to Eq.~B7! is
7-8
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E d3k
vW •kW1O~k2!

@~vW •kW !22k2#2
.

The leading term in the integrand is odd inkW and integrates
to zero. Therefore the surviving terms ared3k k2/k4 and give
finite integrals. This shows that Eq.~B7! is finite at the elec-
tron mass shell.

3. High T: Analysis of * Sb

A similar argument applies to Eq.~B6b!. The HTL re-
summed propagator* SR(P) has poles at two positive ene
gies: p05v1(p) and p05v2(p). We are interested in
whether * SR(p) contains either a term of the form (p0
2vs)ln(p02vs) or a term ln(p02vs). In either case thep0
derivative of the self-energy would diverge atp05vs :

] * Sb~P!

]p0
5e2E d4K

~2p!4

gm * r f~P2K !gn

eb(p02k0)11

] * DR
mn~K !

]k0
.

~B9!

The HTL spectral function for the electron has support in
space-like regionup02k0u,upW 2kW u, but when the self-energy
is evaluated atp05vs(p).p the space-like condition can
not be satisfied for vanishingly small components ofKm. The
spectral function also has support on the dispersion cur
i.e. at p02k056vs8(pW 2kW ) wheres856. When the self-
energy is evaluated on one of the dispersion curves,p0

5vs(p), the support is atk05vs(p)7vs8(pW 2kW ). Of the
eight possible cases, the only ones in which thisk0 can be
small is whens85s and the minus sign is chosen. Then
small kW , k0'vW s•kW , wherevW s5dvs(p)/dp is the group ve-
locity. Using this gives for the only contribution to Eq.~B7!
that is potentially divergent

E d3k
] * DR

mn~K !

]k0
U

k05vW s•kW

However, since the HTL photon propagator is a even fu
tion of k0, after settingk05vW s•kW , the above integrand is od
in kW . It therefore integrates to zero, which shows that E
~B9! is finite atp05vs(p).

4. Alternate decomposition ofSR

There are various other ways to organizeSR . In a previ-
ous paper@6# on the low-temperature behavior, which pe
formed using momentum-space integration, it was con
nient to use the decomposition

SR~P!5Sg~P!1Se~P!, ~B10!

in which the two contributions were defined as follows:
11600
e
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Sg~P!5 ie2E d4K

~2p!4
gmSR~P2K !gn

3
1

2
cothS k0

2TD @DR
mn~K !2DA

mn~K !# ~B11!

Se~P!5 ie2E d4K

~2p!4
gm@SR~P2K !2SA~P2K !#gn

3
1

2
tanhS p02k0

2T DDR
mn~K !. ~B12!

This was convenient because inSg the photon is on shell; in
Se the electron was on shell. The difference between
on-shell decomposition and that in Eq.~B3! is as follows.
The differenceI is defined as

Sa~P!2Sg~P!5I ~P!, ~B13!

where

I ~P!5
ie2

2 E d4K

~2p!4
gmSR~P2K !

3gn@DR
mn~K !1DA

mn~K !#.

Similarly, the differenceJ is defined as

Sb~P!2Se~P!5J~P!, ~B14!

where

J~P!5
2 ie2

2 E d4K

~2p!4
gm@SR~P2K !

2SA~P2K !#gnDR
mn~K !

The sum ofI andJ is

I ~P!1J~P!5
ie2

2 E d4K

~2p!4
gmSR~P2K !gnDA

mn~K !

1
ie2

2 E d4K

~2p!4
gmSA~P2K !gnDR

mn~K !.

Both these integrands vanish: the first, because the integ
has no singularities in the lower-half of the complexk0
plane; the second, because the integrand has no singula
in the upper-half of the complexk0 plane. This confirms tha

Sa1Sb5Sg1Se, ~B15!

and thus the two decompositions of the retarded self-ene
are equivalent.

APPENDIX C: BLOCH-NORDSIECK PROPAGATOR

The Bloch-Nordsieck approximation allows one to take
one-loop electron self-energy and immediately compute
7-9
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approximation to the full electron propagator. The proof
this method is best done using functional integrals@2,4,13#
and will not be repeated here. This appendix only displ
the Bloch-Nordsieck prescription for passing from the on
loop self-energy to the full propagator.

1. Low temperature: 0ÏT™m

At zero temperature or low temperature, the electron s
energy approximation given in Eq.~2.9! can be expressed a
a function of time as

P~ t,pW !52Ee2 e2 iEt vmvnD 11
mn~ t,vW t !.

From this self-energy compute the phase

c~ t,pW !5e2E
t0

`

dt8 ~ t2t8! vmvnD 11
mn~ t8,vW t8!. ~C1!

Then the Bloch-Nordsieck approximation to the electr
propagator is

SBN~ t,pW !52 ie2 iEt2 ic(t). ~C2!

At zero temperature in covariant gauges Eq.~2.11! implies
that

c~ t,pW !5
i ~j23!a

2p E
t0

t

dt8
t2t8

t82

5
i ~j23!a

2p F211
t

t0
2 ln

t

t0
G .

The logarithm is the nontrivial part and gives

SBN~ t,pW !52 i expF2 iEt2~j23!
a

2p
ln

t

t0
G .

The Fourier transform of this is

SBN~P!'
1

~p02E!
@~p02E!t0# (j23)a/2p. ~C3!
,

ry

11600
f
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This is the standard result for the electron propagator in
variant gauges@2–4#. At zero temperature the electro
propagator in the Coulomb gauge follows directly from E
~2.14!:

SBN~P!'
1

~p02E!
@~p02E!t0#b(v). ~C4!

In both cases the Dirac matrices (g•P1m)/2E have been
omitted.

2. High temperature: Tšm

In the high temperature regime, where hard thermal lo
propagators are required, the justification of the Blo
5Nordsieck scheme is non-trivial. The detailed argume
are presented by Blaizot and Iancu@13#. The approximate
propagator is

SBN~ t,pW !52 iZse2 ivst2 iZsc(t). ~C5!

where thec function

c~ t,pW !5e2E
t0

`

dt8 ~ t2t8! fmfn * D 11
mn~ t8,vW st8!. ~C6!

Using Eq.~3.14! this gives

c~ t !52 i
aTZs

vs
H t lnF t

t0
G2t1t0J . ~C7!

The propagator is

SBN~ t,pW !52 iZs expH 2 ivst2
aTZs

2

vs
t lnF t

t0
G J . ~C8!

For thes51 mode this coincides with the well-known re
sult @13,14#. The Dirac matrices (g02sgW • p̂)/2 have been
omitted.
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