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Spin-dependent forces of quarks in a baryon
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Nonperturbative spin-dependent forces of quarks in a baryon are calculated directly from the QCD Lagrang-
ian in the framework of the field correlator method both for heavy and light quarks. The resulting forces
contain terms of five different structures, only one being known before in asymptotic form. The perturbative
terms obtained by the same method are standard and have different signs and structures with respect to the
corresponding nonperturbative ones, implying possible cancellations for some baryonic states.
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I. INTRODUCTION The decisive check of this procedure is the calculation of
baryon magnetic moments, since they are inversely propor-
The spin structure of baryons presents a still unsolvedional to the quark constituent masses. That was doh&7h
problem, both on the partonic and quark model levels. For amnd results agreed with all known experimental data within
excited baryon spectrum the apparent small spin-orbit split~10%.
ting of some baryonic states is a topic of vivid discussions The SD forces derived below are computed as a series in
[1-3]. Some baryonic states, such as Roper resonandggeld correlatorsicumulant$ with growing powers of fields.
N(1440) orA(1405), are not yet explained in the traditional  The lowest(Gaussiah term yields SD forces inversely
framework of the relativistic quark modeRQM) [2,4].  proportional to the square of constituent quark masses. Hav-
More detailed information about the spin structure of bary—ing in mind the high accuracy of the Gaussian approximation
ons comes from the polarization experiments on electropror13] and baryon magnetic momerjts7], one should expect
duction of excited resonanc¢s, 6], which effectively mea-  that SD forces found below have an accuracy of the order of
sure the convolution of the baryon wave function, and is veryj goy
sensitive to its structure. Analogous expressions for heavy quarkofi®,19 and
Meanwhile the theoretical knowledge of the quark spinjight mesong20] have been reported earlier and estimated
forces in the baryon is limited to the perturbative expressiongor 3 realistic meson system, respectively[24] and[22].
calculated decades ad@], and the nonperturbative spin-  The plan of the paper is as follows. In Sec. II, a general
orbit Thomas term, written in the framework of the RQM expression for the @ baryon Green's function is introduced,
(8]. _ _ _ and the Fock-Feynman-Schwinger representatiéfSR is
In applying these results to light baryons, the notion ofysed to reveal the dependence on gauge fields with spin op-
constituent quark masses is introduced in the RQM, whiclerators explicitly written. Averaging over those with the help
appear in spin-depende(D) forces and play the role of of the field correlator metho6FCM), one finally obtains an

fitting parameters. _ expression for the Green’s function written in terms of field
It is the purpose of the present paper to derive SD forcegqrrelators.

in a baryon in a most straightforward way from the QCD | sec. IIl, a special case of heavy quark masses is con-
Lagrangian with the nonperturbative vacuum described byjdered and all SD forces are obtained in closed form, ex-
lowest (Gaussiap field correlators, we can express all the | Sec. |V, the perturbative contribution to SD forces is
terms of SD forces through the scalar functiddsandD;  \ritten down. In Sec. V, a general case is considered when
representing this Gaussian correldtht]. The high accuracy cyrrent quark masses can also be vanishingly small, and SD
of such a procedure is supported by recent lattice 22 forces are written again in terms of integrals over functions
and the contribution of higher correlators can be estimated tgy gnqg D, with constituent(dynamical masses entering in

be of the order of a few perceft3]. the denominator.
_ The functionsD, D, are themselves measured on the lat-  section VI is devoted to the discussion of the relativistic
tice [14] and also found in analytic approachés,16. structure of SD forces in the excited baryon spectrum. Com-

An essential element of the present approach is that it iparison to other results in the literature is also made and
not connected to the heavy mass expansion, and can be ggsssible extension of the method is suggested. The main

plied also to light quarks in a baryon. In this case an effectiveygints of the paper are summarized in the Conclusions.
Hamiltonian is constructed from first principles, which con-

tains einbeinauxiliary) fields. It was shown previously that
the stationary point of these einbein fields yields exactly the
constituent quark masses which can be expressed unambigu-
ously through the only parameter of this approach—the Following [9,10,23, we consider the @ Green’s func-
string tensiono. tion, which can be written as

II. 3g GREEN'S FUNCTION WITH SPIN INSERTIONS

0556-2821/2002/63.1)/11600410)/$20.00 65 116004-1 ©2002 The American Physical Society



YU. A. SIMONOV

3
qu(X'Y):trL{Fouriljl (mi_D)f DDz

x e~ Ki(W; expg oF)T'j, |, (1)

where ty is the trace over Dirac matrix indiceB, (I';,) are
final (initial) state operators created givai~ assignment to
the 3 state, and we have also denoted aglin,20

T 2
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2m(t)
(W3 exp(goF))y=try exr{
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Mi(t) -
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In EqQ. (2), m; is the currenipole)quark mass renormalized at
the typical scale of 1 GeV, ang(t) is the einbein field

PHYSICAL REVIEW D 65 116004

have_ also denoteq‘wzl 1/4 (‘yM')_/,,— ¥,»¥,) and everywhere
Euclidean space-time is usé@ghtil the last moment when the
resulting Hamiltonian is obtained in Minkowski space-time
with y-matrices

Ya=Yvo=B; vi=—iBai, v,V V., V.=26,,.

Note also that notation\frmeans

®)

trYPE geabcealbrc/ Pabda’b’c’ .

In the combinatiorF(k)dp(k) in Eq. (3) one can write
"B,
E,

oE

a(‘)|3>’ i=1,23. (6)

Fofl=|

As it was shown if 10], the spin-independent part of E@)
which is obtained neglecting the term in Eq.(4) yields at

large quark separationgg®—zY|>Ty, i=1,23, the fa-
miliar area-law asymptotics
(Wa)=exf —o(S;+S,+S3)] 0

discussed in the Introduction, yielding constituent quarkimpying linear confinement for each quark. In what follows,
mass when taken at the stationary point of the effectivgye shall use the general expressidj to derive the spin-

Hamiltonian. Here and in what follows;(1) is always

implied to be gauge-transported to one poiyg, nam-

ely  F(1)=F(z(1),x0)=P(Xo,2(1))F(z(1))P(z(1),x0),

where ®(x,y) is defined in the Appendix, and finally,
dp(n)==2_,dpM(n), with

. . 1., dt
dpO(n)=ds},), (u™)+ o) k

w2ty Y

dependent part of the interaction both for heavy quéaelks
pansion in inverse powers of massd for light quarks.

Ill. SPIN-DEPENDENT INTERACTION
IN 1/m EXPANSION

To illustrate the method, we shall start with the derivation
of spin-depender(SD) forces via a Ih expansion. Defining
the SD potential as/sp, one can writeGzq~e™ ' Vso~1

The integration in Eq(3) extends over all three lobes of the —TVgp, and for Vg the following general form will be

minimal area surface§; +S,+S;) inside the quark trajec-
tories z()(t) and the string-junction trajectorg’"(t). We

obtained below, similatbut not identical to the correspond-
ing form for heavy quarkonif24,18:

3 (i) () DI () () () ()
oL 1 dv 1 de 1 oL+ gL 1 dV,(RO R
Vgp(RW,RP R®) = — | = L — : ( )—_ 2 : )
=1 2m: R0 grM 2R grM N.—1i5 2m;m, R drY)
dDeMVLR) 36V (ein)— (o) gl
N ( IVa( |,)+ ( )( )—( )Vs(Ri‘) iV, ®
i<j lZm,mJ(Nc—l) 12[n|mJ(NC_1) ]

where n=R;; /R;;, Rjj=R;—R;. We assume that current
quark masses are largen>\o, i=1,2,3, and hence
alsou; are large, since the latter are defined throoghand
o in the stationary point analysj40,17 and always satisfy
mi=m;+0O(1/m;). Hence for simplicity we keep in the
following w;=m;>+o and expand in inverse powers of
1/mi .
As was observed in18,19, the SD terms of the lowest
order (1rni2, 1/m;m;) come from three different sources.
(A) Diagonal terms in Eq(6) are kept together with di-

agonal terms inA;=(m;—D,v,), yielding one power of
1/m; . An additional power of In; or 1/m; then comes from
the expansion ofW,). This yields spin-orbit term¥7,V5,
andVs.

(B) The off-diagonal terms are kept both in E§) and in
A;. This gives a spin-orbit potentias/dR.

(C) Diagonal terms from two matrice®) with i #| are
retained. This yields spin-spin potentidg andV,. We now
calculate the SD contributions frof)—(C) point by point.

(A) From Eqgs.(3) and(4) one gets fori=1
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g9 o7 W 1) 0 one obtains
tI’Y 1+ Z_rnla'k fo Bk(Z ,t )dtl W3 ml_TVSD' o ) 1 dVl 0)
i _ ___ =+

9 ot (R dR)
Using the relationgF , , W=[4/ 60 ,,(z) JW which obtains 1 T OO _ _
easily with non-abelian Stokes representationVibrone has = —ng ﬁdﬁf du4<i§/v—r>1 B(2,1))Bn(BZ',uy)

0 0 3
<trYF}\a(XaZO)W(C)> O'(i)l_(i) T (?Ao
_ _ _Wfo dU4(U4—t1)dB&—u4, (17)
trY g ds,uv(z)F;LV(Z!ZO)F)\U'(X'ZO)WIB(C)

(10) where we have used the relation

and one can rewrite the left-hand side of E9). as Un(Ug) =257 (t) =2{P(u) (ug—ty).

in?2
|
try W+ 9 o) f

T
1 1 . . .
2m, dt1<trYBk(z( )t Until now we have not used the Gaussian dominance of

° the vacuum, i.e., the fact the¥Vs) is saturated by the lowest
, cumulant(FF), which is found to be an accurate approxi-
><L(C,)dsw(u)Fw(u,xo)Wg(C )>- (1) mation[13]. Using it one can writd FFWa)—(FF)(Ws),
and introduce scalar functiori3,D, for tensor(FF), as it
In Eq. (10) and(11), the common reference poigg is cho- ~ Was done ir{11].
sen to make both expressions gauge invariant; as will be Referring the reader to the Appendix for the correspond-
seen, this point will not appear in the final equations. ing relations, one finally obtains
In Eqg. (11), the contourC’ is deformed due to orbital 1dv,\® Rd A
momentum of quarks as compared to the zeroth-order con- ( ) = —f —( )
tour C, consisting of straight lines. This is essential since o R
otherwise the vacuum averag®,W;(Cy)) vanishes be- .
cause it is odd with respect to reflectian— —z, i#k. XJ dv
Therefore, all nonzero contribution in EGL1) is due to de- o
flection of the quark path i€’ from the straight line irCy,.

R dR

R

dD4
2
D(\,v)+Dq(\,v)+A 2

At this point we shall describe the quark trajectaf}(t) B J"” o, [RA\ 9Dy 19
and the corresponding string pie\té/l) from the quark po- LR o R ;a\2°
sition to the string junctiorfwhich for simplicity we take at
the origin: Until now we have taken into account the interaction of the
0 W spin of theith quark with the surfac&;, which yields the
w,'(tL,B)=2, (1B, 1=p=0, (12 term[(1/R)V}]D multiplied with (m?)~1. At this point we
ALO consider the interaction of thieh quark spin with thegde-
ds)=dBMdtem — (13y  formed surfaceS;, which will give the termV; in Eq. (8).
im;

[ For this one needs to consider a vacuum average ofRwo
from two different surface§; ands;.

0 i i
wherelL/ is the (Minkowskian angular momentum of the In general we have for tw&’s transported to the same

ith quark, pointx (a, . .. ,n are fundamental color indices
LO=imegRVZY, RO=z20—2M=70_ (14 (trFF) 1
T (FUXagF (0030 = 17| BunPey™ - Puern |
Similarly do{)=R{"dB"du,, and one arrives at the result c ¢ 19
B (z(),t,)W5(C’ L .
(Bu(Z,t)Ws(C1)) Taking into account Eq5) and the relation
‘ OIRQ)
:|gf dﬂ(l)dU4 im . <Ban(U4,ﬁ)W> trY(I’aa'(X-Y)qjﬁﬂ'(X,Y)‘I’yy'(X:Y)E1, (20)
i
one obtains
+ig f dBVdusRY (ug)(B(Ei(us, BW).  (15) (T (U F(0,%))
try<Faar(u,X)FBBr(U,X)>: y (21)

No(N—1
Denoting o(Ne=1)
IA where we have also accounted for different orientation of
B (zW,t,)E; (u,us)Wa)=en(u,— z2V)—2 (16  Plaquettes i ands;.
(B 1B (U, g W) =En(Un =2, duy Now proceeding as in Eq15) one has
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(1)

(B(')W3(C ))y= gf B(J)dﬁ(J)du(J)L (I)B(J)(u(l) lg(J)R(J))W3>+|gf d,B(J)du(‘)R(”(u(‘))(B(')E(J)W3> (22)

At this point one can use Gaussian dominance and relat@isto obtain finally

1 1
(—Vé(R)) :f dB(J)IB(I)f dv
R ] 0 —

D(r )+ Dy +[(r11)2+ p2]——— (23

ar "”) ]

In a similar way one obtains from the first term on the (C) Here one considers spin-spin interaction and the cor-
right-hand side(r.h.s) of Eqg. (22), with the use of the last responding term looks such as
term on the r.h.s. of EqAL),

(oMt (L D)
.>,J 2 (o= 1) 1—VgpT=try,

1>]

1+—J a<'>B<'>(z(')t)dt)

(9D1(r(”),v)
a(r(ij))Z

Here we have defined’)=R( — gRW) and one should
take into account thdd,D; depend on their arguments as

g L

x 0dg0dy (24)

(29
Identifying spin-spin terms in Eq29) and using Eq(21)
D(r,»)=D(\rZ+12). and relations fo{BBW;) in the Appendix one arrives at

This concludes derivation of terms with the procedig

and one goes over to the next point. = dvallol) D,
(B) Following Eq.(9) one can write for the corresponding V&)=, | S| DD+ (u)?
i Ammi(N.—1) 2
term of a given quarki( 1<) ST e J(u)
i) (i dD
m+/.L — 0-(')p(') _ ) 1
VET=- g < o e a(u)?|’ %0
(2my) op m; — i
0 oE
X oE 0 )W3(C)>. (250  where the following notations are used:
Now one can use relation u=RO-RM,  p=t;—1;. (31
i i (W3(Cop))
(i) () = > .
(Ex(z2",t")W;5(Cop)) g 00 (20010 Rewriting Eq.(30) as
__ 1 e (W5(Cp)),  (26) ooV 4(u) +S;V5(u)
i (1 ' (00) —
9 iR v ; omm (No— (32
where the following notation was introduced for the spin-
independent potential(R®),R(?),RE)):
one has
(W5(Co))=exf —(RW,R®,R)T]. (27)
Note that in Eqs(25)—(27) one can keep iW;(C) the un- [ ,9D1
perturbed(straight-ling contours for quark trajectories since Va(u)= ﬂcd” 3D(u,»)+3D4(u,»)+2u W
the prefactor in Eq(25) is alreadyO(1/m?). Keeping in (33
mind the relation
oVED o0 —EPp) + e VEPR (29 . b
2771V
V3(u)=—f dvu?———, (34)
one recovers the second term on the r.h.s. of(Byg. —o u?
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0 0 W) u V; . Instead of using replaceme(®6) and doing integrations
Sj=3(a¢""n)(0’n)— " aV, n:ﬂ' (39 in Eq.(23), we start from the more general expressiBnto
derive

This concludes the definition of all NP spin-dependent terms 20

in Eq. (8) to the orderO(1/m?) and in the approximation V@peo 5

when only the lowest{FF), correlator is retained in the 3(Ne—1)

Wilson loop. [O.(i)(R(iJ)xp(j))+0.(1)(R(ii)><p(i))]
Now comparing our expressions for;,V;,e',V3,V, xz_ e

with the corresponding ones for the he@@¥) case, given in - mym; (RT)

[18,19, one can see that they coincide exactly, the only dif- (39

ference being that one should sum up over all three quarks, . , . o ,

, , o , Which is again in agreement wiff7].
for\_/_ ande 'af‘d takeadouble sums-J, forVa, Vs, V. In Next we consider the spin-spin interaction. Here it is
addition, there is a terri's which is of three-body character

straightforward to replace W, (33) D; as in Eq.(36) D,

and vanishes in two-body situation since in that situation - (pert)_ 4 ;
L= Dr=0. —Di™=16a¢/37Xx" to obtain

- (pert)
IV. PERTURBATIVE SPIN-DEPENDENT FORCES Vﬁpe")(f)=J' de(3D(1pe")(r,V)+2r2 (;2 )
We are now in a position to consider also perturbative
contributions to the SD potentials, which were calculated in Bas * 2 4|1
[7]. The easiest way for us is to remember that to the lowest ~ T 3r EJ“ Yorlr
order,O(«ay), all perturbative terms are pairwise interactions
of quarks, and they can be reconstructed from the expres- 327 aq 3)
sions obtained above, Eqg&l8), (23), (24),and (32)—(34), -3 o(r). (40
using anO(as) contribution toD (), while D(x) does not
have contributions at this ordg25], In a similar way one obtains fov{*",
dag
D(x)=DNP(x), Dl(x)=;6ai+D'I‘P(x). (36) V() = i (41)
X

. ) ) , , One can also persuade oneself that has no pertubative
It is rewarding to realize thaD, does not enter intd/; counterpart since there— L) and it is orthogonal to

[terms containindD, in Eq. (18) cancel exactly so that the (i) and therefore the total perturbative SD contribution to
perturbative contribution occurs only in the nondiagomal, ¢ orderO(a,) can be written as

#j, terms in Eq.(8) and ine’. (ber)._« seper). (26t
- . ) _ y I y I
In the QQ case, analogous calculations have been done V5 = Vg™ "+ Vep™
and compared to standard oneq 18,19 oii)a(j)vgpen)( R(ii))+SijV(3pe’°( RU)

We start with thede/dR term and rewrite it in the original +>
form (26), not assuming that depends oR(" only, but also <) 12m;m;(Ne—1) ’
onRW—RU) as it is for the Coulomb term which should be 42)
added tce. In this way one obtains, from Eg&5), (26) and
(29), where the explicit form of four terms on the r.h.s. of E4Q)
is given in Eqs(398), (39), (40), and(41).
© eanpVa®  ge Our results forV(Sszf"),V(spe”),Vflpe”) coinci((;lee:/t\)/i_th the
Vsp= 4—m.2 Fﬁi) (370 corresponding expressions[®], however ouv§:P*"is two

times smaller than the corresponding ternj8f In the next
sections, we shall argue that for light quarks this term gets
indeed twice as big, since there one should replage
—ui, and forV(S% the coefficient appears to be two times

and for e—e+Veou, Veou= —(2as/3)Si- (1R
—RY)|) one obtains

(o pery_ 2% | (RDxp) 0 et
g,pert)_ — S
Vso 3 5 4mi2(R(ii))3 V. SPIN-DEPENDENT FORCES FOR LIGHT QUARKS
R 3¢ p(i0) ) In Secs. Il and 1V, the SD forces have been obtained as
( P __) (38) an expansion in i ,1/m; taking all three quark current
4m?(R1D)3 masses largen;>\o, i=1,2,3.

It was noticed befor¢20], however, that the general ex-
This expression coincides with the corresponding on&Jjn  pressions(1)—(4) for Green’s functions written in FFSR,
Consider now a nondiagonal spin-orbit term, equivalent towith the einbein functionu;(t) introduced as if10], allow

116004-5



YU. A. SIMONOV PHYSICAL REVIEW D 65 116004

us to obtain expressions for SD forces also for light quarkgo different lobesS,,S, of the S;,; surface, hence=1 for
without 1/m expansion, and the corresponding terms for theeach of them; moreover one uses E(K9) and (21), the
meson case have been written bef$pl®,22. Below we latter with opposite sign, since the orientationSgfL,3) and
demonstrate in this section that the same procedure work§(2,3) is the same in our case. As a result, one obtains
also for the 3| case with light current quark masses as well.

We start again with the general forf8) and instead of an (00) d(ti—t;)
expansion in Ih (or 1l/u, which is equivalent for heavy Vsp =E. f Auw(N—1)
. . . . i>j J-w M|/~L]( c )
quarks we shall do the only approximation, keeping in the
i i PR
sum in the exponent3) the lowest(Gaussiah cumulant xol), ‘il ,<FM. MOLA V(])> (43

((F(1)F(2))). This approximation was recently supported
by lattice data for Casimir scalind 2], while higher cumu- o I .
lants provide(for the Wilson loop less than 29413]. The  The combinationsoV in Eq. (43) is a product of two 4
spin-spin interaction is easily obtained keeping in &), the X4 matrices, which can be split into thie prodAuct of Pauli
bilocal term and in Eq4) only theo-dependent term. In Eq. spin matricess; and chiral 2<2 matrices land plz(%).
(3), one should take into account tHat1) andF(2) belong  Thus one can rewrite E¢43) as

% 2d
Vi) =2 f % o [(rB()Ba(1)) (13 1)+ +(UEm(1) (1)) (P2 pa) +(UBrm(DEN()) (1% p1)
1> — [iad]

X(rEm(1)Bn(j))(p1 X 1) 1=V (BB) + VI (EE) + V) (BE) + VY (EB). (44)
Using formulas from the Appendix for correlators BfE, one has

oD oDV, (u)+ S Va(u)
(a'(r) 4 i3
(BiB)= 2 N D)

(1x1), (45)

whereu=R® - R,
One can see that E@5) coincides with Eqs(32)—(35) with substitutionm; ,m;— u; ,u; . For theEE term one obtains

VoWV, (u)+S;Va(u) . .

VI (EE)= X p1), 46
SD ( ) ; 12Mi,U~j(Nc_1) (p1Xp1) (46)
where we have defined
~ * 2 2 aDl(U,V)
V4(u)=f dv| 3D(u,v)+3D;(u,v)+(3v°+u )T , 47
— 14
~ o dD4(u,v
vg(u):f dvuz#=—v3(u). (48)
—o Jdu
Finally for the last two terms in Eq44) one has
() M
e T o
VI (BE)= -V (EB ! ! f L 2. (49
(BE=VEEB-2 D ) o
This concludes the calculation of the spin-spin interaction.
We turn now to the calculation of spin-orbit terms. The corresponding expression {3)En be written as
(W3 exp(goF))so= ex;{E f 04880 (UD o (ZU) + = ;J 2, 450V TLAD s po(ZW) (- (50)

In Eq. (50) we have defined as in the Appendix

2
g
D,u,v,p(r(zau) = N_<ter,v(Z(ti))Fp(r(u)> = D(h)(a,u.pgwr_ 5,u051/p) + %[a,uhpgwr—i_ perm]Dl(h)
C
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andh,=z,(t)—u,.
The Dirac structure of the exponent in E§Q) is a sum, which can be written with notations from E44) as
3

V= 3 VIS L )+ VE R0 ), ik (51)
In the 4X 4 matrix oﬁ,[)y we first consider the diagonal part. Repeating all the steps leading t¢1Bys(23), and(24) one has
the same expressions with the replacemmapt u; ,i=1,2,3, namely
3 i @ OINU) () ()
Viso. deg oL ldv 1 oPLO+o0LY 1 dv, | 52
=1 2,U«i2 RO drR®  N¢—1 =] 2 [4i RO gr
Let us now consider the nondiagonal part in Egfl), which can be written as
(W5 exp(goF)) so, nond.agrexr{ > f o [D{)a(2,1)ds(U) + Dygmn(zW)dS(W)]
dt Orpn (1) (i) (1)
+'§] ﬂ“k [Dkaja(z,u)dsy (U) + DignmdSym(W] [ - (53
Now taking into account Eq$13) and(14), one can write Eq(53) in the form
3
<W3 exmgUF»(so,nondiag): ex;{ [ E V(so nondlag) ]_E:l Vggo),nondiag} } (54
One finds from Eq(53), replacingD ,, ,, from Eq. (A1) and using Egs(13) and(14),
V(so nondmgTAglE)"_AglE)"_A(“) (55)
and similarly forV{Z) ,niagy FOT terms on the r.h.s. of E¢55) one obtains
()
INO AN}
2uR®
- r® dD
A<“>:f dvdu| D(v,u)+Dy+v2— |,
0 2%
(56)
Al E):_'J' (ou)( R(')u)—(v wdvdgR®, u=ROg;
N E— ,,zd,,Mf B0dEO(L D x D),
2ui) =
Similarly for A} one obtains from the second term on the r.h.s. of (5§),
) oRM  AUD
A=
2M R(J) (N —1)
A(ij):Rmfldﬂ(J)fw dv D(V,r(ij))JrDlJr,,z‘?_Dl ,
0 —o Iv?
(j) Myii) (i)
~ of RYr L dD(v,r
2pi(Ne—1) 0 a(r(i))2
N i % D (v, rMy ra o pt p®
AlD = _f vzdv—j DL x i)y _+ () (57)
B8 2uiny) - PICE s w P Ki
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Here we have defined')=R® — gHRW), Green’s function, or from the stationary point of the Hamil-
tonian. Now the spin-independent part of the Hamiltonian is
VI. DISCUSSION a unit matrix and hence can produce scalar stationary values

) ) ) for u; . The situation changes, however, if one tries to incor-
Let us now discuss the results obtained in the paper. FQforate also the SD part of the Hamiltonian in the stationary

the heavy-quark case the nonperturbative spin-dependent pgoint equation foru, since it would requirex to have a
tential is given in Eq.(8), and the perturbative part in Eq. matrix form similar to that 01\75
D.

(42), so that the total SD potential is This is possible in the generalized form of the FFSR,
y/(total) _  (nonpert) \ /(pert) (58) which is now under investigation, but in the present form the
sb SD sbo- only possible way of treating the SD part of the Hamiltonian

The perturbative part agrees with that obtained long agd® t© consider it as a perturbation. For light quarks itis not an
in [7] and repeated in many subsequent papers. However, fPansion in 3;, and the whole expressid80) is obtained
[8] the termV( P2 js taken twice as big as E¢B8) (or the with the only and numerically good approximation—keeping
corresponding term ifi7]). A possible modification for light the bilocal(Gaussiahcorrelator, neglecting all higher ones.

quarks, which can produce this increase, is discussed later. AS Was shown in the meson cg29,28, this perturbation
The nonperturbative parv(sn[gmpert) (8) consists of six procedure works well even for the lowest mesons, where SD

terms, which were never fully written before corrections produce up to around 15% of the total mass

Only asymptotics at large distances of the first term in Eqsimilar situation holds true in earlier quark model calcula-
(8) has been written before {126]. One can find it from Eq. tions with fixed and prescribed constituent masses, see, e.g.,

®) [8]). For heavier meson and baryon states the magses
’ grow rapidly with quantum numbef&0] and the validity of
() the perturbative treatment of SD terms becomes even better
. g g . . .
ynonperty R, 00) = — —. (59) established. In what follows, we describe a perturbative pro-
4mRY cedure for treating the nondiagonal terms.

o _ _ _ To this end we must remembéas in point(B) of the
In [8], the pairwise nonperturbative spin-orbit forces werederivation in Sec. IV that nondiagonal terms are also present
postulated instead, which contradict expressions derived I the preexponential factorr(—f)) in Eq. (1). Consider the

31,|svpa\p/)er ag(\j/ |n£]26]. Al othber termtst, p:copct)rr]tlogal 0 |argest nondiagonal term{? in Eq. (56), and take for sim-
2.V3,Va, andVs, have never been written for the 3q case, Jici "o aeumntotic form

while for the qa case the corresponding terrfesxcept for

Vi) have been written ifil8,19. The termVs, which has no 3 0
counterpart in theyq case, is completely new and its physi- Vee=—12, —. n=RO/RO), (62
cal implication is still unclear. =1 Hi

We now turn to the light quark case. Here the total SD o ) o
“potential” is in general a sum of products of ¢44) matri-  One hadomitting index(i) for simplicity]
ces, which can be written as A

(m—D) exp(—VeeT)

vight auarks, % (Vgijzal)gii X1+ VD diag (60) m+u, —op

op, mM-pu

g
1+iz—anT+---|. (63
2u

where V{}) ;.o contains terms such as>p;,p1i X 1;,pa; _ _ . _
Xfm, andp1=(gé), where each entry ip; is a 2<2 unit Comparing with the Ieadmg term, given by the upper left
matrix. corner, one normalizegr(—D) by extracting the factorrg

Now for Vgija)g one has +u) and thus obtains
VGi),= V) (BB) +VESTia0) (61) Eq. (63=(1-V@T+---),

64
where the first term on the r.h.s. of E@&1) is given in Eq. 3 colL 0 (64
(45) and the second in E¢52). One can see in these expres- V(SSD): >
sions forV{l) the same terms as in E¢B) with exchange =1 2i(my+ )RV
m;— u; except for the spin-orbit term proportional to
de/dR. Before discussing two different strategies for obtain-In the heavy quark limitu;~m; and Eq.(61) coincides with
ing this last term, let us look at the general structure of Eqthe term proportional to (R)(de/dR) in Eq. (8). For light
(60). It has the described above matrix form and depends oguarks , whenu;>m;, however, one has a twice as large
einbein fieldsu;, 1=1,2,3. The latter have been defined coefficient in(61), which coincides with the corresponding
previously in [10,17,20,23,27,28 as scalars, 2, coefficient in[8], thus reconciling the heavy quark expansion
=dz(7)/d7, and are assumed to be found from the station-and the light quark expression. Hence our total expression
ary point equation in the path-integral form of the mesonfor the SD potential treated as perturbation is>a2 matrix

116004-8
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~ (light quarks)_ D) 1 \/(e) change forces. The latter were not considered in the present
Vg auanel. 3 v+ Ve, (65  paper, but can be easily included in the same formalism,
i,] K . . . .
using the new chiral Lagrangian derived[B0]. It is shown

wherevg'{gg is given in Eqs.(61), (45) and(52) andV{) is  there that in they—string—q system pions are emitted by
given in Eq.(64), with a general form obtained by replacing quarks with the known amplitude, so that the pion-exchange
o—delJR. Now one can see from these expressions that wéorce can be predicted unambiguously and added to those
have a full correspondence between terms in Bgand in  obtained in the present work. This would complete the over-

Eq. (65), where each term in Eq65) is obtained from the all picture of SD forces in a baryon.

corresponding one in Eq8) by the replacementn,— u;,

except for the term wittde/dR, where one replacesn® ACKNOWLEDGMENTS
— st my). This work was supported by DOE Contract No. DE-
ACOS-84ER 40150 under which SURA operates the Tho-
VIl. CONCLUDING REMARKS mas Jefferson National Accelerator Facility. The author is

We have obtained all perturbative and nonperturbativ@rateml to J. Goity for useful discussion, remarks and sug-

spin-dependent terms in they 3ystem in the approximation gestions.
when the lowestbilocal) field correlator is retained in the

Wilson loop. The analogous procedure for mesornd 819

yielded SD potentials satisfying Gromes relati@4], with From general definitions CUZ<F,WFM7> throughD, D1 in
correct asymptotics at large distances of Thomas precessign1] one gets

type. For the § system we also get this asymptotics for

spin-orbit terms in the form of a sum of one-body Thomas (2

terms, in agreement with earlier results [i26]. All other —tr(FW(x)d)(x,y)Fpg(y)tb(y,x))

nonperturbative terms and the exact nonasymptotic form ofN €

Thomas terms are new. The signs of perturbative and non- 1

perturbative spin-orbit terms are different and one may ex- = (3p0vs~ 8,59,,)D(2) + 5[d,2,6,,+ perm]Da(2),
pect some cancellation, which should be checked in exact

calculations of baryon spectra with spin splittings. All non- (A1)
perturbative SD terms in E¢8) except forVs have a struc- 5

ture similar to that of théQ Q case, considered 9], ex- g—tr(Bi(x)CD(x,y)Bj(y)CD(y,x)}

cept that spin-orbit terms are of one-body rather than two- Nc

body character. The new terky, (24) does not have Q

analog, and after averaging over coordinates has a structure =4
similar to two-body spin-orbit force.

The largeN, structure of SD interaction can be clearly o
seen from explicit expressions and may be represented as 9. .
leading[O(N9)] terms of one-body spin-orbit interaction, thr(E,(x)QD(x,y)EJ(y)d)(y,x))
when both fields in the field correlator are on the same sheet
of the three-sheet surface, and supprei@(j\lgl)] terms — 5
of spin-spin interactions and spin orbit from two different !
sheets. Hence theg3dynamics in the larg&l. limit reduces
to the uncorrelated motion dfi; quarks around a common g° D,
center (string junction, which can be taken as infinitely N_Ctr<Bi(X)q)(Xry)Ej(Y)q)(er)>:eiij4ZkFr (A4)
heavy.

The general structure of the SD potenti@l at largeN. is  where we have defined
in agreement with the classification done[28] where the
terms unsuppressed at larbje are one-body spin-orbit po- 2,=X,~ Y., w»=1234,
tentials, while two-body spin-dependent terms até.13up-
pressed. In addition, if29] there appear also spin-flavor ®(x y)=PexpingA (u)du
terms which can be associated with with pion and kaon ex- ' y * ”e

APPENDIX A: FIELD CORRELATORS

9D, 9D
D(2)+Dy(2)+ 27— | ~ 27—,
0z 0z

D,

+Zi2j?,

(A3)

,dD1
D(2)+Dy(2) +z;—
0z
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