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Spin-dependent forces of quarks in a baryon
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Nonperturbative spin-dependent forces of quarks in a baryon are calculated directly from the QCD Lagrang-
ian in the framework of the field correlator method both for heavy and light quarks. The resulting forces
contain terms of five different structures, only one being known before in asymptotic form. The perturbative
terms obtained by the same method are standard and have different signs and structures with respect to the
corresponding nonperturbative ones, implying possible cancellations for some baryonic states.
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I. INTRODUCTION

The spin structure of baryons presents a still unsol
problem, both on the partonic and quark model levels. Fo
excited baryon spectrum the apparent small spin-orbit s
ting of some baryonic states is a topic of vivid discussio
@1–3#. Some baryonic states, such as Roper resona
N(1440) orL(1405), are not yet explained in the tradition
framework of the relativistic quark model~RQM! @2,4#.
More detailed information about the spin structure of ba
ons comes from the polarization experiments on electrop
duction of excited resonances@5,6#, which effectively mea-
sure the convolution of the baryon wave function, and is v
sensitive to its structure.

Meanwhile the theoretical knowledge of the quark sp
forces in the baryon is limited to the perturbative expressi
calculated decades ago@7#, and the nonperturbative spin
orbit Thomas term, written in the framework of the RQ
@8#.

In applying these results to light baryons, the notion
constituent quark masses is introduced in the RQM, wh
appear in spin-dependent~SD! forces and play the role o
fitting parameters.

It is the purpose of the present paper to derive SD for
in a baryon in a most straightforward way from the QC
Lagrangian with the nonperturbative vacuum described
vacuum field correlators@9,10#. Limiting ourselves to the
lowest ~Gaussian! field correlators, we can express all th
terms of SD forces through the scalar functionsD and D1
representing this Gaussian correlator@11#. The high accuracy
of such a procedure is supported by recent lattice data@12#
and the contribution of higher correlators can be estimate
be of the order of a few percent@13#.

The functionsD,D1 are themselves measured on the l
tice @14# and also found in analytic approaches@15,16#.

An essential element of the present approach is that
not connected to the heavy mass expansion, and can b
plied also to light quarks in a baryon. In this case an effect
Hamiltonian is constructed from first principles, which co
tains einbein~auxiliary! fields. It was shown previously tha
the stationary point of these einbein fields yields exactly
constituent quark masses which can be expressed unam
ously through the only parameter of this approach—
string tensions.
0556-2821/2002/65~11!/116004~10!/$20.00 65 1160
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The decisive check of this procedure is the calculation
baryon magnetic moments, since they are inversely pro
tional to the quark constituent masses. That was done in@17#
and results agreed with all known experimental data wit
;10%.

The SD forces derived below are computed as a serie
field correlators~cumulants! with growing powers of fields.

The lowest~Gaussian! term yields SD forces inversely
proportional to the square of constituent quark masses. H
ing in mind the high accuracy of the Gaussian approximat
@13# and baryon magnetic moments@17#, one should expec
that SD forces found below have an accuracy of the orde
10%.

Analogous expressions for heavy quarkonia@18,19# and
light mesons@20# have been reported earlier and estima
for a realistic meson system, respectively, in@21# and @22#.

The plan of the paper is as follows. In Sec. II, a gene
expression for the 3q baryon Green’s function is introduced
and the Fock-Feynman-Schwinger representation~FFSR! is
used to reveal the dependence on gauge fields with spin
erators explicitly written. Averaging over those with the he
of the field correlator method~FCM!, one finally obtains an
expression for the Green’s function written in terms of fie
correlators.

In Sec. III, a special case of heavy quark masses is c
sidered and all SD forces are obtained in closed form,
pressed in terms of correlator functionsD andD1.

In Sec. IV, the perturbative contribution to SD forces
written down. In Sec. V, a general case is considered w
current quark masses can also be vanishingly small, and
forces are written again in terms of integrals over functio
D and D1 with constituent~dynamical! masses entering in
the denominator.

Section VI is devoted to the discussion of the relativis
structure of SD forces in the excited baryon spectrum. Co
parison to other results in the literature is also made
possible extension of the method is suggested. The m
points of the paper are summarized in the Conclusions.

II. 3 q GREEN’S FUNCTION WITH SPIN INSERTIONS

Following @9,10,23#, we consider the 3q Green’s func-
tion, which can be written as
©2002 The American Physical Society04-1



t

r
tiv

,

e
-

e

s,

on

YU. A. SIMONOV PHYSICAL REVIEW D 65 116004
G3q~x,y!5trLFGout)
i 51

3

~mi2D̂ !E Dm iDz( i )

3e2Ki^W3 expg sF&G inG , ~1!

where trL is the trace over Dirac matrix indices,Gout(G in) are
final ~initial! state operators created givenJPC assignment to
the 3q state, and we have also denoted as in@17,20#

Ki5E
0

T

dtF mi
2

2m i~ t !
1

m i~ t !

2
@ ż2~ t !11#G , ~2!

^W3 exp~gsF !&5trY expF (
n50

`
~ ig !n

n! E ^^F~1!•••F~n!&&

3dr~1!•••dr~n!G . ~3!

In Eq. ~2!, mi is the current~pole!quark mass renormalized a
the typical scale of 1 GeV, andm(t) is the einbein field
discussed in the Introduction, yielding constituent qua
mass when taken at the stationary point of the effec
Hamiltonian. Here and in what follows,F(1) is always
implied to be gauge-transported to one pointx0, nam-
ely F(1)[F„z(1),x0…5F„x0 ,z(1)…F(z(1))F„z(1),x0…,
where F(x,y) is defined in the Appendix, and finally
dr(n)5( i 51

3 dr ( i )(n), with

dr ( i )~n![dsmnnn

( i ) ~u(n)!1
1

i
smnnn

( i ) dtn
2m i~ tn!

. ~4!

The integration in Eq.~3! extends over all three lobes of th
minimal area surface (S11S21S3) inside the quark trajec
tories z( i )(t) and the string-junction trajectoryz(Y)(t). We
t

f

t
.
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have also denotedsmn51/4i (gmgn2gngm) and everywhere
Euclidean space-time is used~until the last moment when the
resulting Hamiltonian is obtained in Minkowski space-tim!
with g-matrices

g45g0[b; g i52 iba i , gmgn1gngm52dmn .

Note also that notation trY means

trYP[
1

6
eabcea8b8c8Pabc/a8b8c8 . ~5!

In the combinationF(k)dr(k) in Eq. ~3! one can write

Fmnsmn
( i ) 5S s( i )B, s( i )E

s( i )E, s( i )BD , i 51,2,3. ~6!

As it was shown in@10#, the spin-independent part of Eq.~3!
which is obtained neglecting theS term in Eq.~4! yields at
large quark separations,uz( i )2z(Y)u@Tg , i 51,2,3, the fa-
miliar area-law asymptotics

^W3&5exp@2s~S11S21S3!# ~7!

implying linear confinement for each quark. In what follow
we shall use the general expression~1! to derive the spin-
dependent part of the interaction both for heavy quarks~ex-
pansion in inverse powers of mass! and for light quarks.

III. SPIN-DEPENDENT INTERACTION
IN 1Õm EXPANSION

To illustrate the method, we shall start with the derivati
of spin-dependent~SD! forces via a 1/m expansion. Defining
the SD potential asVSD, one can writeG3q;e2TVSD;1
2TVSD, and for VSD the following general form will be
obtained below, similar~but not identical! to the correspond-
ing form for heavy quarkonia@24,18#:
VSD~R(1),R(2),R(3)!5(
i 51

3
s( i )L ( i )

2mi
2 S 1

R( i )

dV1

dR( i )
1

1

2R( i )

d«

dR( i )D 1
1

Nc21 (
i , j

~s( i )L ( j )1s( j )L ( i )!

2mimj

1

R( j )

dV2~R( i ),R( j )!

dR( j )

1(
i , j

F ~s( i )s( j )!V4~Ri j !

12mimj~Nc21!
1

3~s( i )n!~s( j )n!2~s( i )s( j )!

12mimj~Nc21!
V3~Ri j !G1V5 , ~8!
where n5Ri j /Ri j , Ri j 5Ri2Rj . We assume that curren
quark masses are large,mi@As, i 51,2,3, and hence
alsom i are large, since the latter are defined throughmi and
s in the stationary point analysis@10,17# and always satisfy
m i5mi1O(1/mi). Hence for simplicity we keep in the
following m i5mi@As and expand in inverse powers o
1/mi .

As was observed in@18,19#, the SD terms of the lowes
order (1/mi

2 , 1/mimj ) come from three different sources
~A! Diagonal terms in Eq.~6! are kept together with di-
agonal terms inL i[(mi2Dmgm), yielding one power of
1/mi . An additional power of 1/mi or 1/mj then comes from
the expansion of̂W3&. This yields spin-orbit termsV18 ,V28 ,
andV5.

~B! The off-diagonal terms are kept both in Eq.~6! and in
L i . This gives a spin-orbit potentiald«/dR.

~C! Diagonal terms from two matrices~6! with iÞ j are
retained. This yields spin-spin potentialsV3 andV4. We now
calculate the SD contributions from~A!–~C! point by point.

~A! From Eqs.~3! and ~4! one gets fori 51
4-2
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K trYF S 11
g

2m1
sk

(1)E
0

T

Bk~z(1),t (1)!dt1DW3G L '12TVSD
(1) .

~9!

Using the relationigFmnW5@d/dsmn(z)#W which obtains
easily with non-abelian Stokes representation forW, one has

^trYFls~x,z0!W~C!&

5 K trYH igE dsmn~z!Fmn~z,z0!Fls~x,z0!W3~C!J L
~10!

and one can rewrite the left-hand side of Eq.~9! as

trYW1
ig2

2m1
sk

(1)E
0

T

dt1K trYBk~z(1),t (1)!

3E
S(C8)

dsmn~u!Fmn~u,x0!W3~C8!L . ~11!

In Eq. ~10! and ~11!, the common reference pointz0 is cho-
sen to make both expressions gauge invariant; as will
seen, this point will not appear in the final equations.

In Eq. ~11!, the contourC8 is deformed due to orbita
momentum of quarks as compared to the zeroth-order c
tour C0 consisting of straight lines. This is essential sin
otherwise the vacuum average^BkW3(C0)& vanishes be-
cause it is odd with respect to reflectionzi→2zi , iÞk.
Therefore, all nonzero contribution in Eq.~11! is due to de-
flection of the quark path inC8 from the straight line inC0.

At this point we shall describe the quark trajectoryzm
( i )(t)

and the corresponding string pieceWm
( i ) from the quark po-

sition to the string junction~which for simplicity we take at
the origin!:

wm
( i )~ t,b!5zm

( i )~ t !b, 1>b>0, ~12!

dsik
( i )5db ( i )dteikm

bLm
( i )

imi
~13!

whereLm
( i ) is the ~Minkowskian! angular momentum of the

i th quark,

Ls
( i )5 imieskmRk

( i )żm
( i ) , R( i )5z( i )2z(Y)5z( i ). ~14!

Similarly dsk4
( i )5Rk

( i )db ( i )du4, and one arrives at the resul

^Bk~z( i ),t i !W3~C8!&

5 igE db ( i )du4

b ( i )Ln
( i )

imi
^BkBn~u4 ,b!W&

1 igE db ( i )du4Rl
( i )~u4!^BkEl~u4 ,b ( i )!W&. ~15!

Denoting

^Bk~z(1),t1!Ei~u,u4!W3&[ekin~un2zn
(1)!

]L0

]u4
~16!
11600
e

n-

one obtains

s( i )L ( i )S 1

R

dV1

dR D ( i )

52g2E
0

1

bdbE
0

T

du4

sk
( i )Ln

( i )

^W3&
Bk~z( i ),t i !Bn~bzi ,u4!

2
s( i )L ( i )

^W3&
E

0

T

du4~u42t1!db
]L0

]u4
, ~17!

where we have used the relation

un~u4!2zn
(1)~ t1!> żn

(1)~u4!~u42t1!.
.

Until now we have not used the Gaussian dominance
the vacuum, i.e., the fact that^W3& is saturated by the lowes
cumulant^FF&, which is found to be an accurate approx
mation @13#. Using it one can writê FFW3&→^FF&^W3&,
and introduce scalar functionsD,D1 for tensor^FF&, as it
was done in@11#.

Referring the reader to the Appendix for the correspo
ing relations, one finally obtains

S 1

R

dV1

dR D ( i )

52E
0

Rdl

R S 12
l

RD
3E

2`

`

dnFD~l,n!1D1~l,n!1l2
]D1

]l2 G
2E

2`

`

n2dnE
0

Rdl

R

]D1

]l2
. ~18!

Until now we have taken into account the interaction of t
spin of thei th quark with the surfaceSi , which yields the
term @(1/R)V18# ( i ) multiplied with (mi

2)21. At this point we
consider the interaction of thei th quark spin with the~de-
formed! surfaceSj , which will give the termV28 in Eq. ~8!.
For this one needs to consider a vacuum average of twoF ’s
from two different surfacesSi andSj .

In general we have for twoF ’s transported to the sam
point x (a, . . . ,h are fundamental color indices!

^F~u,x!ajF~v,x!gh&5
^trFF&

Nc
221

S dahdjg2
1

Nc
dajdghD .

~19!

Taking into account Eq.~5! and the relation

trYFaa8~x,y!Fbb8~x,y!Fgg8~x,y![1, ~20!

one obtains

trY^Faa8~u,x!Fbb8~v,x!&5
^trF~u,x!F~v,x!&

Nc~Nc21!
, ~21!

where we have also accounted for different orientation
plaquettes inSi andSj .

Now proceeding as in Eq.~15! one has
4-3



YU. A. SIMONOV PHYSICAL REVIEW D 65 116004
^Bk
( i )W3~Cj8!&5gE

0

1

b ( j )db ( j )du4
( j )

Ln
( j )

mj
^Bk

( i )Bn
( j )~u4

( j ) ,b ( j )R( j )!W3&1 igE db ( j )du4
( j )Rl

( j )~u4
( j )!^Bk

( i )El
( j )W3&. ~22!

At this point one can use Gaussian dominance and relations~21! to obtain finally

S 1

R
V28~R! D

j

5E
0

1

db ( j )b ( j )E
2`

`

dnFD~r ( i j ),n!1D11@~r ( i j )!21n2#
]D1

]~r ( i j )!2G . ~23!
he
t

g

in

e

or-
In a similar way one obtains from the first term on t
right-hand side~r.h.s.! of Eq. ~22!, with the use of the las
term on the r.h.s. of Eq.~A1!,

V552(
i . j

E ~s( i )r ( i j )!~L ( j )r ( i j )!

2mimj~Nc21!

3b ( j )db ( j )dn
]D1~r ( i j ),n!

]~r ( i j )!2
. ~24!

Here we have definedr ( i j )5R( i )2b ( j )R( j ), and one should
take into account thatD,D1 depend on their arguments as

D~r ,n!5D~Ar 21n2!.

This concludes derivation of terms with the procedure~A!
and one goes over to the next point.

~B! Following Eq.~9! one can write for the correspondin
term of a given quark (i )

VSD
(«)T52

g

~2mi !
2 K S mi1m i 2s( i )p( i )

s( i )p( i ) mi2m i
D

3S 0 s( i )E

s( i )E 0 DW3~C!L . ~25!

Now one can use relation

^Ek~z( i ),t ( i )!W3~C0!&5
d^W3~C0!&

igdsk4~z( i ),t ( i )!

52
1

ig

]«

]Rk
( i ) ^W3~C0!&, ~26!

where the following notation was introduced for the sp
independent potential«(R(1),R(2),R(3)):

^W3~C0!&5exp@2«~R(1),R(2),R(3)!T#. ~27!

Note that in Eqs.~25!–~27! one can keep inW3(C) the un-
perturbed~straight-line! contours for quark trajectories sinc
the prefactor in Eq.~25! is alreadyO(1/m2). Keeping in
mind the relation

sk
( i )Ek

( i )s l
( i )pl

( i )5Ek
( i )pk

( i )1 ieklnsn
( i )Ek

( i )pl
( i ) ~28!

one recovers the second term on the r.h.s. of Eq.~8!.
11600
-

~C! Here one considers spin-spin interaction and the c
responding term looks such as

12VSDT5trY(
i . j

K S 11
g

2mi
E s( i )B( i )~z( i ),t i !dti D

3S 11
g

2mj
E s( j )B( j )~z( j ),t j !dtj DW3L .

~29!

Identifying spin-spin terms in Eq.~29! and using Eq.~21!
and relations for̂ BBW3& in the Appendix one arrives at

VSD
(ss)5(

i , j
E

2`

` dnsk
( i )sk8

( j )

4mimj~Nc21! Fdkk8S D1D11~u!2
]D1

]~u!2D
2ukuk8

]D1

]~u!2G , ~30!

where the following notations are used:

u5R( i )2R( j ), n5t i2t j . ~31!

Rewriting Eq.~30! as

VSD
(ss)5(

i , j

s( i )s( j )V4~u!1Si j V3~u!

12mimj~Nc21!
~32!

one has

V4~u!5E
2`

`

dnS 3D~u,n!13D1~u,n!12u2
]D1

]u2 D
~33!

V3~u!52E
2`

`

dnu2
]D1~u,n!

]u2
, ~34!
4-4
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Si j 53~s( i )n!~s( j )n!2s( i )s( j ), n5
u

uuu
. ~35!

This concludes the definition of all NP spin-dependent ter
in Eq. ~8! to the orderO(1/m2) and in the approximation
when only the lowest,̂ FF&, correlator is retained in the
Wilson loop.

Now comparing our expressions forV18 ,V28 ,«8,V3 ,V4

with the corresponding ones for the heavyQQ̄ case, given in
@18,19#, one can see that they coincide exactly, the only d
ference being that one should sum up over all three qu
for V8 and«8, and take a double sum,i , j , for V28 ,V3 ,V4. In
addition, there is a termV5 which is of three-body characte
and vanishes in two-body situation since in that situat
L ( j )r ( i j )5L ( j )r[0.

IV. PERTURBATIVE SPIN-DEPENDENT FORCES

We are now in a position to consider also perturbat
contributions to the SD potentials, which were calculated
@7#. The easiest way for us is to remember that to the low
order,O(as), all perturbative terms are pairwise interactio
of quarks, and they can be reconstructed from the exp
sions obtained above, Eqs.~18!, ~23!, ~24!,and ~32!–~34!,
using anO(as) contribution toD1(x), while D(x) does not
have contributions at this order@25#,

D~x!5DNP~x!, D1~x!5
16as

3px4
1D1

NP~x!. ~36!

It is rewarding to realize thatD1 does not enter intoV18
@terms containingD1 in Eq. ~18! cancel exactly#, so that the
perturbative contribution occurs only in the nondiagonai
Þ j , terms in Eq.~8! and in«8.

In the QQ̄ case, analogous calculations have been d
and compared to standard ones in@18,19#.

We start with thed«/dR term and rewrite it in the origina
form ~26!, not assuming that« depends onR( i ) only, but also
on R( i )2R( j ), as it is for the Coulomb term which should b
added to«. In this way one obtains, from Eqs.~25!, ~26! and
~28!,

VSD
(«)5

eklnpl
( i )sn

( i )

4mi
2

]«

]Rk
( i )

~37!

and for «→«1VCoul, VCoul52(2as/3)( i . j (1/uR( i )

2R( j )u) one obtains

VSD
(«,pert)5

2as

3 (
i . j

F ~R( i j )3p( i )!s( i )

4mi
2~R( i j )!3

1
~R( j i )3p( j )!s( j )

4mj
2~R( i j )!3 G . ~38!

This expression coincides with the corresponding one in@7#.
Consider now a nondiagonal spin-orbit term, equivalent
11600
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V28 . Instead of using replacement~36! and doing integrations
in Eq. ~23!, we start from the more general expression~9! to
derive

VSD
(2,pert)52

2as

3~Nc21!

3(
i . j

@s( i )~R( i j )3p( j )!1s( j )~R( j i )3p( i )!#

mimj~R( i j )!3
,

~39!

which is again in agreement with@7#.
Next we consider the spin-spin interaction. Here it

straightforward to replace inV4 ~33! D1 as in Eq.~36! D1

→D1
(pert)516as/3px4 to obtain

V4
(pert)~r !5E

2`

`

dnS 3D1
(pert)~r ,n!12r 2

]D1
(pert)

]r 2 D
52

8as

3r S ]2

]r 2
1

2

r

]

]r D 1

r

5
32pas

3
d (3)~r !. ~40!

In a similar way one obtains forV3
(pert) ,

V3
(pert)~r !5

4as

r 3
. ~41!

One can also persuade oneself thatV5 has no pertubative
counterpart since thereL ( j )→L ( i j ) and it is orthogonal to
r ( i j ) and therefore the total perturbative SD contribution
the orderO(as) can be written as

VSD
(pert)5VSD

(«,pert)1VSD
(2,pert)

1(
i , j

s( i )s( j )V4
(pert)~R( i j )!1Si j V3

(pert)~R( i j )!

12mimj~Nc21!
,

~42!

where the explicit form of four terms on the r.h.s. of Eq.~42!
is given in Eqs.~38!, ~39!, ~40!, and~41!.

Our results forVSD
(2,pert),V3

(pert) ,V4
(pert) coincide with the

corresponding expressions in@8#, however ourVSD
(«,pert) is two

times smaller than the corresponding term in@8#. In the next
sections, we shall argue that for light quarks this term g
indeed twice as big, since there one should replacemi

→m i , and forVSD
(«) the coefficient appears to be two time

larger.

V. SPIN-DEPENDENT FORCES FOR LIGHT QUARKS

In Secs. III and IV, the SD forces have been obtained
an expansion in 1/mi ,1/mj taking all three quark curren
masses large,mi@As, i 51,2,3.

It was noticed before@20#, however, that the general ex
pressions~1!–~4! for Green’s functions written in FFSR
with the einbein functionm i(t) introduced as in@10#, allow
4-5
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us to obtain expressions for SD forces also for light qua
without 1/m expansion, and the corresponding terms for
meson case have been written before@10,22#. Below we
demonstrate in this section that the same procedure w
also for the 3q case with light current quark masses as we

We start again with the general form~3! and instead of an
expansion in 1/m ~or 1/m, which is equivalent for heavy
quarks! we shall do the only approximation, keeping in th
sum in the exponent~3! the lowest ~Gaussian! cumulant
^^F(1)F(2)&&. This approximation was recently supporte
by lattice data for Casimir scaling@12#, while higher cumu-
lants provide~for the Wilson loop! less than 2%@13#. The
spin-spin interaction is easily obtained keeping in Eq.~3!, the
bilocal term and in Eq.~4! only thes-dependent term. In Eq
~3!, one should take into account thatF(1) andF(2) belong
11600
s
e

ks
.

to different lobesS1 ,S2 of the S123 surface, hencen51 for
each of them; moreover one uses Eqs.~19! and ~21!, the
latter with opposite sign, since the orientation ofS(1,3) and
S(2,3) is the same in our case. As a result, one obtains

VSD
(ss)5(

i . j
E

2`

` d~ t i2t j !

4m im j~Nc21!

3sm in i

( i ) sm jn j

( j ) ^Fm in i
~ i !Fm jn j

~ j !&. ~43!

The combinations ( i )s ( j ) in Eq. ~43! is a product of two 4
34 matrices, which can be split into the product of Pa
spin matricess i and chiral 232 matrices 1ˆ and r̂1[(10

01).
Thus one can rewrite Eq.~43! as
VSD
(ss)5(

i . j
E

2`

` g2d~ t i2t j !

4m im j~Nc21!
sm

( i )sn
( j )@^trBm~ i !Bn~ j !&~ 1̂31̂!11^trEm~ i !En~ j !&~ r̂13 r̂1!1^trBm~ i !En~ j !&~ 1̂3 r̂1!

3^trEm~ i !Bn~ j !&~ r̂131̂!#[VSD
(ss)~BB!1VSD

(ss)~EE!1VSD
(ss)~BE!1VSD

(ss)~EB!. ~44!

Using formulas from the Appendix for correlators ofB,E, one has

VSD
(ss)~B1B!5(

i . j

s( i )s( j )V4~u!1Si j V3~u!

12m im j~Nc21!
~ 1̂31̂!, ~45!

whereu[R( i )2R( j ).
One can see that Eq.~45! coincides with Eqs.~32!–~35! with substitutionmi ,mj→m i ,m j . For theEE term one obtains

VSD
(ss)~EE!5(

i . j

s( i )s( j )~̃V4~u!1Si j Ṽ3~u!

12m im j~NC21!
~ r̂13 r̂1!, ~46!

where we have defined

Ṽ4~u!5E
2`

`

dnS 3D~u,n!13D1~u,n!1~3n21u2!
]D1~u,n!

]n2 D , ~47!

Ṽ3~u!5E
2`

`

dnu2
]D1~u,n!

]u2
52V3~u!. ~48!

Finally for the last two terms in Eq.~44! one has

VSD
(ss)~BE!52VSD

(ss)~EB!5(
i . j

~s( i )3s( j )!
1

2i S p( i )

m i
1

p( j )

m j
D

4m im j~Nc21!
E

2`

` ]D1~u,n!

]u2
n2dn. ~49!

This concludes the calculation of the spin-spin interaction.
We turn now to the calculation of spin-orbit terms. The corresponding expression in Eq.~3! can be written as

^W3 exp~gsF !&so5 expH (
i 51

3

i E dti
2m i

smn
( i ) dsrs

( i ) ~u!Dmn,rs~z,u!1
i

Nc21 (
iÞ j

E dti
2m i

dsrs
( j )~u!smn

( i ) Dmn,rs~z,u!J . ~50!

In Eq. ~50! we have defined as in the Appendix

Dmn,rs~z,u!5
g2

Nc
^trFmn„z~ t i !…Frs~u!&5D~h!~dmrdns2dmsdnr!1 1

2 @]mhrdns1perm.#D1~h!
4-6
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andhm5zm(t i)2um .
The Dirac structure of the exponent in Eq.~50! is a sum, which can be written with notations from Eq.~44! as

V(so)5(
i 51

3

Vi
(so,diag)~ 1̂i31̂ jk!1Vi

(so,nondiag)~ r̂1
( i )31̂ jk!, iÞ j ,k. ~51!

In the 434 matrixsmn
( i ) we first consider the diagonal part. Repeating all the steps leading to Eqs.~18!, ~23!, and~24! one has

the same expressions with the replacementmi→m i ,i 51,2,3, namely

VSD
(so, diag)5H (

i 51

3
s( i )L ( i )

2m i
2

1

R( i )

dV1

dR( i )
1

1

Nc21 (
i , j

s( i )L ( i )1s( j )L ( i )

2m im j

1

R( j )

dV2

dR( j )J . ~52!

Let us now consider the nondiagonal part in Eq.~51!, which can be written as

^W3 exp~gsF !& (so,nondiag)5expH i(
i 51

3 E dti
2m i

sk
( i )@Dk4,l4

( i i ) ~z,u!dsl4
( i )~u!1Dk4,mn~zu!dsnm

( i ) ~u!#

1 i(
iÞ j

E dti
2m i

sk
( i )@Dk4,l4

( i j ) ~z,u!dsl4
( j )~u!1Dk4nm

( i j ) dsnm
( j ) ~u!#J . ~53!

Now taking into account Eqs.~13! and ~14!, one can write Eq.~53! in the form

^W3 exp~gsF !& (so,nondiag)5expF2TH (
i 51

3

V(so,nondiag)
( i i ) 1 (

i , j 51

3

V(so,nondiag)
( i j ) J G . ~54!

One finds from Eq.~53!, replacingDmn,rs from Eq. ~A1! and using Eqs.~13! and ~14!,

V(so,nondiag)
( i i ) 5DEE

( i i )1D̃EE
( i i )1DEB

( i i ) ~55!

and similarly forV(so,nondiag)
( i j ) . For terms on the r.h.s. of Eq.~55! one obtains

DEE
( i i )52 i

sR( i )

2m iR
( i )

L ( i i ),

L ( i i )5E
0

R( i )

dnduS D~n,u!1D11n2
]D1

]n2 D ,

~56!

D̃EE
( i i )52 i E ~su!~R( i )u!

]D1

]u2
~n,u!dndbR( i ), u5R( i )b;

DEB
( i i )5

i

2m i
3E

2`

`

n2dn
]D1~n1 ,h!

]n2 E
0

1

b ( i )db ( i )~L ( i )3s( i )!p( i ).

Similarly for D ( i j ) one obtains from the second term on the r.h.s. of Eq.~53!,

DEE
( i i )52 i

sR( j )

2m iR
( j )

L ( i j )

~Nc21!
,

L ( i j )5R( i )E
0

1

db ( j )E
2`

`

dnS D~n,r ( i j )!1D11n2
]D1

]n2 D ,

D̃EE
( i i )52 i E ~sr ( i j )!~R( j )r i j )!

2m i~Nc21!
dnE

0

1

db ( j )
]D1~n,r ( i j )!

]~r ( i j )!2
,

DEB
( i j )5

i

2m im j
E

2`

`

n2dn
]D1~n,r ( i j )!

]n2 E
0

1

b ( j )db ( j )~L ( j )3s( j )!S p( i )

m i
1b ( j )

p( j )

m j
D . ~57!
116004-7
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Here we have definedr ( i j )5R( i )2b ( j )R( j ).

VI. DISCUSSION

Let us now discuss the results obtained in the paper.
the heavy-quark case the nonperturbative spin-dependen
tential is given in Eq.~8!, and the perturbative part in Eq
~42!, so that the total SD potential is

VSD
(total)5VSD

(nonpert)1VSD
(pert) . ~58!

The perturbative part agrees with that obtained long
in @7# and repeated in many subsequent papers. Howeve
@8# the termV(«,pert) is taken twice as big as Eq.~38! ~or the
corresponding term in@7#!. A possible modification for light
quarks, which can produce this increase, is discussed la

The nonperturbative partVSD
(nonpert) ~8! consists of six

terms, which were never fully written before.
Only asymptotics at large distances of the first term in E

~8! has been written before in@26#. One can find it from Eq.
~8!,

V(nonpert)~R( i )→`!52
s( i )L ( i )s

4mi
2R( i )

. ~59!

In @8#, the pairwise nonperturbative spin-orbit forces we
postulated instead, which contradict expressions derive
this paper and in@26#. All other terms, proportional to
V28 ,V3 ,V4, andV5, have never been written for the 3q cas

while for the qq̄ case the corresponding terms~except for
V5) have been written in@18,19#. The termV5, which has no
counterpart in theqq̄ case, is completely new and its phys
cal implication is still unclear.

We now turn to the light quark case. Here the total S
‘‘potential’’ is in general a sum of products of (434) matri-
ces, which can be written as

V̂SD
(light quarks)5(

i , j
~Vdiag

( i j ) 1̂i31̂ j1V̂nondiag
( i j ) !, ~60!

where V̂nondiag
( i j ) contains terms such as 1ˆ

i3 r̂1 j ,r̂1i31̂ j ,r̂1i

3 r̂1 j , andr15( 1̂0
01̂), where each entry inr1 is a 232 unit

matrix.
Now for Vdiag

( i j ) one has

Vdiag
( i j ) 5VSD

(ss)~BB!1VSD
(so,diag) , ~61!

where the first term on the r.h.s. of Eq.~61! is given in Eq.
~45! and the second in Eq.~52!. One can see in these expre
sions forVdiag

( i j ) the same terms as in Eq.~8! with exchange
mi→m i except for the spin-orbit term proportional t
d«/dR. Before discussing two different strategies for obta
ing this last term, let us look at the general structure of
~60!. It has the described above matrix form and depends
einbein fieldsm i , i 51,2,3. The latter have been define
previously in @10,17,20,23,27,28# as scalars, 2m i
5dzi(t)/dt, and are assumed to be found from the stati
ary point equation in the path-integral form of the mes
11600
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Green’s function, or from the stationary point of the Ham
tonian. Now the spin-independent part of the Hamiltonian
a unit matrix and hence can produce scalar stationary va
for m i . The situation changes, however, if one tries to inc
porate also the SD part of the Hamiltonian in the station
point equation form, since it would requirem to have a
matrix form similar to that ofV̂SD.

This is possible in the generalized form of the FFS
which is now under investigation, but in the present form t
only possible way of treating the SD part of the Hamiltoni
is to consider it as a perturbation. For light quarks it is not
expansion in 1/m i , and the whole expression~60! is obtained
with the only and numerically good approximation—keepi
the bilocal~Gaussian! correlator, neglecting all higher ones

As was shown in the meson case@20,28#, this perturbation
procedure works well even for the lowest mesons, where
corrections produce up to around 15% of the total mass~a
similar situation holds true in earlier quark model calcu
tions with fixed and prescribed constituent masses, see,
@8#!. For heavier meson and baryon states the massem i
grow rapidly with quantum numbers@20# and the validity of
the perturbative treatment of SD terms becomes even b
established. In what follows, we describe a perturbative p
cedure for treating the nondiagonal terms.

To this end we must remember@as in point ~B! of the
derivation in Sec. IV that nondiagonal terms are also pres
in the preexponential factor (m2D̂) in Eq. ~1!. Consider the
largest nondiagonal termDEE

( i i ) in Eq. ~56!, and take for sim-
plicity its asymptotic form

VEE52 i(
i 51

3
a( i )n( i )s

2m i
, n( i )5R( i )/R( i ). ~62!

One has@omitting index~i! for simplicity#

~m2D̂ ! exp~2VEET!

>S m1m, 2sp

sp, m2m D S 11 i
s

2m
anT1••• D . ~63!

Comparing with the leading term, given by the upper l
corner, one normalizes (m2D̂) by extracting the factor (m
1m) and thus obtains

Eq. ~63!5~12VSD
(«)T1••• !,

~64!

VSD
(«)5(

i 51

3
ss( i )L ( i )

2m i~mi1m i !R
( i )

.

In the heavy quark limit,m i'mi and Eq.~61! coincides with
the term proportional to (1/R)(d«/dR) in Eq. ~8!. For light
quarks , whenm i@mi , however, one has a twice as larg
coefficient in ~61!, which coincides with the correspondin
coefficient in@8#, thus reconciling the heavy quark expansi
and the light quark expression. Hence our total express
for the SD potential treated as perturbation is a 232 matrix
4-8
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ṼSD
(light quarks)5(

i , j
Vdiag

( i j ) 1VSD
(«) , ~65!

whereVdiag
( i j ) is given in Eqs.~61!, ~45! and ~52! andVSD

(«) is
given in Eq.~64!, with a general form obtained by replacin
s→]«/]R. Now one can see from these expressions that
have a full correspondence between terms in Eq.~8! and in
Eq. ~65!, where each term in Eq.~65! is obtained from the
corresponding one in Eq.~8! by the replacementmi→m i ,
except for the term withd«/dR, where one replaces 2mi

2

→m i(m i1mi).

VII. CONCLUDING REMARKS

We have obtained all perturbative and nonperturba
spin-dependent terms in the 3q system in the approximation
when the lowest~bilocal! field correlator is retained in the
Wilson loop. The analogous procedure for mesons in@18,19#
yielded SD potentials satisfying Gromes relation@24#, with
correct asymptotics at large distances of Thomas preces
type. For the 3q system we also get this asymptotics f
spin-orbit terms in the form of a sum of one-body Thom
terms, in agreement with earlier results in@26#. All other
nonperturbative terms and the exact nonasymptotic form
Thomas terms are new. The signs of perturbative and n
perturbative spin-orbit terms are different and one may
pect some cancellation, which should be checked in ex
calculations of baryon spectra with spin splittings. All no
perturbative SD terms in Eq.~8! except forV5 have a struc-
ture similar to that of theQQ̄ case, considered in@19#, ex-
cept that spin-orbit terms are of one-body rather than tw
body character. The new termV5 ~24! does not have aQQ̄
analog, and after averaging over coordinates has a struc
similar to two-body spin-orbit force.

The largeNc structure of SD interaction can be clear
seen from explicit expressions and may be represente
leading @O(Nc

0)# terms of one-body spin-orbit interaction
when both fields in the field correlator are on the same sh
of the three-sheet surface, and suppressed@O(Nc

21)# terms
of spin-spin interactions and spin orbit from two differe
sheets. Hence the 3q dynamics in the largeNc limit reduces
to the uncorrelated motion ofNc quarks around a commo
center ~string junction!, which can be taken as infinitel
heavy.

The general structure of the SD potential~8! at largeNc is
in agreement with the classification done in@29# where the
terms unsuppressed at largeNc are one-body spin-orbit po
tentials, while two-body spin-dependent terms are 1/Nc sup-
pressed. In addition, in@29# there appear also spin-flavo
terms which can be associated with with pion and kaon
11600
e
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ion

s

of
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ct

-

re
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et
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change forces. The latter were not considered in the pre
paper, but can be easily included in the same formali
using the new chiral Lagrangian derived in@30#. It is shown
there that in theq2string2q̄ system pions are emitted b
quarks with the known amplitude, so that the pion-exchan
force can be predicted unambiguously and added to th
obtained in the present work. This would complete the ov
all picture of SD forces in a baryon.
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APPENDIX A: FIELD CORRELATORS

From general definitions ofg2^FmnFls& throughD,D1 in
@11# one gets

g2

Nc
tr^Fmn~x!F~x,y!Frs~y!F~y,x!&

5~dmrdns2dmsdnr!D~z!1
1

2
@]mzrdnr1perm.#D1~z!,

~A1!

g2

Nc
tr^Bi~x!F~x,y!Bj~y!F~y,x!&

5d i j S D~z!1D1~z!1z2
]D1

]z2 D 2zizj

]D1

]z2
, ~A2!

g2

Nc
tr^Ei~x!F~x,y!Ej~y!F~y,x!&

5d i j S D~z!1D1~z!1z4
2]D1

]z2 D 1zizj

]D1

]z2
, ~A3!

g2

Nc
tr^Bi~x!F~x,y!Ej~y!F~y,x!&5ei jkz4zk

]D1

]z2
, ~A4!

where we have defined

zm5xm2ym , m51,2,3,4,

F~x,y!5P expigE
y

x

Am~u!dum .
s-
,

@1# N. Isgur, Phys. Rev. D62, 054026~2000!.
@2# N. Isgur, nucl-th/0007008.
@3# L.Ya. Glozman, Phys. Lett. B475, 329~2000!; L.Ya. Glozman

and D.O. Riska, Phys. Rep.268, 263 ~1996!.
@4# V. Burkert, in Perspectives in the Structure of Hadronic Sy
tems, edited by M.N. Harakehet al. ~Plenum Press, New York
1994!.

@5# V. Burkert, hep-ph/0106143
4-9



is,

i-

. C
s.

B

,

.A.

YU. A. SIMONOV PHYSICAL REVIEW D 65 116004
@6# CLAS Collaboration, V. Burkert, Nucl. Phys.A684, 16 ~2001!.
@7# A. De Rujula, H. Georgi, and S.L. Glashow, Phys. Rev. D12,

147~1975!; T. De Grand, R.L. Jaffe, K. Johnson, and J. Kisk
ibid. D12, 2060~1975!.

@8# S. Capstick and N. Isgur, Phys. Rev. D34, 2809~1996!.
@9# A. Di Giacomo, H.G. Dosch, V.I. Shevchenko, and Yu.A. S

monov, hep-ph/0007223; Yu.A. Simonov, Nucl. Phys.B307,
512 ~1988!.

@10# Yu.A. Simonov, Phys. Lett. B228, 413~1989!; M. Fabre de la
Ripelle, and Yu.A. Simonov, Ann. Phys.~N.Y.! 212, 235
~1991!.

@11# H.G. Dosch and Yu.A. Simonov, Phys. Lett. B205, 339
~1988!.

@12# G.S. Bali, Nucl. Phys. B~Proc. Suppl.! 82, 422 ~2000!; Phys.
Rev. D62, 114503~2000!; S. Deldar,ibid. 62, 034509~2000!.

@13# Yu.A. Simonov, JETP Lett.71, 187 ~2000!; V.I. Shevchenko
and Yu.A. Simonov, Phys. Rev. Lett.85, 1811 ~2000!; V.I.
Shevchenko and Yu.A. Simonov, hep-ph/0104135.

@14# M. Campostrini, A. Di Giacomo, and G. Mussardo, Z. Phys
25, 173 ~1984!; A. Di Giacomo, and H. Panagopoulos, Phy
Lett. B 285, 133 ~1992!; M. D’Elia, A. Di Giacomo, and E.
Meggiolaro,ibid. 408, 315 ~1997!; A. Di Giacomo, E. Meggi-
olaro, and H. Panagopoulos, Nucl. Phys.B483, 371 ~1997!.

@15# M. Eidemueller, H.G. Dosch, and M. Jamin, Nucl. Phys.
~Proc. Suppl.! 86, 421 ~2000!.

@16# Yu.A. Simonov, Nucl. Phys.B592, 350 ~2001!.
11600
@17# B.O. Kerbikov and Yu.A. Simonov, Phys. Rev. D62, 093016
~2000!.

@18# Yu.A. Simonov, Nucl. Phys.B324, 67 ~1989!; M. Schiestl and
H.G. Dosch, Phys. Lett. B209, 85 ~1988!.

@19# A.M. Badalian and Yu.A. Simonov, Phys. At. Nucl.59, 2164
~1996!.

@20# Yu.A. Simonov, hep-ph/9911237.
@21# A.M. Badalian and V.l. Morgunov, Phys. Rev. D60, 116008

~1999!; A.M. Badalian, V.l. Morgunov, and B.L.G. Bakker
Phys. At. Nucl.63, 1635 ~2000!; A.M. Badalian and B.L.G.
Bakker, Phys. Rev. D62, 094031~2000!.

@22# A.M. Badalian and B.L.G. Bakker, Phys. Rev. D64, 114010
~2001!.

@23# Yu.A. Simonov~in preparation!.
@24# E. Eichten and F. Feinberg, Phys. Rev. D23, 2724~1981!; D.

Gromes, Z. Phys. C26, 401 ~1984!.
@25# M. Eidemueller and M. Jamin, Phys. Lett. B416, 415 ~1998!;

V.I. Shevchenko, hep-ph/9802274; V.I. Shevchenko and Yu
Simonov, Phys. Lett. B437, 131 ~1998!.

@26# C. Ford, J. Phys. G15, 1641~1989!; N. Brambilla, P. Consoli,
and G.M. Prosperi, Phys. Rev. D50, 5878 ~1994!; N. Bram-
billa, P. Consoli, and G.M. Prosperi, hep-th/9401051.

@27# A.Yu. Dubin, A.B. Kaidalov, and Yu.A. Simonov, Yad. Fiz.56,
213 ~1993!.

@28# A.M. Badalian and B.L.G. Bakker, hep-ph/0202246.
@29# J.L. Goity, Phys. Lett. B414, 40 ~1997!; C.L. Schat, J.L. Goity,

and N.N. Scoccola, Phys. Rev. Lett.88, 102002~2002!.
@30# Yu.A. Simonov, Phys. Rev. D65, 094018~2002!.
4-10


