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I compute the two-loop effective potential in the Landau gauge for a general renormalizable field theory in
four dimensions. Results are presented for M renormalization scheme based on dimensional regulariza-
tion, and for theDR andDR’ schemes based on regularization by dimensional reduction. The last of these is
appropriate for models with softly broken supersymmetry, such as the minimal supersymmetric standard
model. | find the parameter redefinition which relates Bf® and DR’ schemes at two-loop order. | also
discuss the renormalization group invariance of the two-loop effective potential, and compute the anomalous
dimensions for scalars and the beta function for the vacuum energy at two-loop order in softly broken super-
symmetry. Several illustrative examples and consistency checks are included.
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I. INTRODUCTION eral field theory, and is reviewed in Sec. Ill. In REf], Ford,
Jack and Jones have calculaiéd in the special case of the
The Fermilab Tevatron collider and the CERN Large Had-standard model using dimensional regularizati@REG)
ron Collider (LHC) hold the promise of exposing the nature with minimal subtraction or modified minimal subtraction
of spontaneous electroweak symmetry breaking. In the stam\viS). Their calculations can be generalized to obtain the

dard model, this mechanism relies on a nonzero vacuum exyoresponding result for any renormalizable field theory, as |
pectation valugVEV) for a fundamental Higgs scalar field. i 4o explicitly in Sec. IV.
There are good theoretical and experimental reasons to sus- However, it is well known that the DREG regularization

pect that thi.s picture is correct, but incomplete, and must bﬂwethod is not convenient for theories based on supersymme-
embedded in a "’?‘fgef theqry suc_h as supersymnidia} trfy. This is because in DREG, the vector field only has 4
When new experimental discoveries are made, the tasks of, _ components, introducing a spurious nonsupersymmet-

telling the difference between different candidate models OPic mismatch with the number of dearees of freedom of the
electroweak symmetry breaking and constraining the under- g

lying parameters of the successful theory will require high-gﬁﬁglsn\?v'h-imegifgsled 'r?o%ﬁﬁi tshoitlr;ls:goklsnhfjpt;?;\;vr?]er;]eiﬁg-
precision calculational tools at the two-loop level or better.

) . : theory are violated even at one-loop order. Instead, one can
The_ effective potentidl3—3] allows the calcglanon of the use tr%e dimensional reductiQDRED)pmethod[S] in which
VEVS in the true vacuum state of a theory with spontaneou%op integrals are still regularized by taking momenta in 4

symmetry breaking. In this for_malism, the scalar fielc_Js of the_ze dimensions, but all 4 components of each vector field
theory are each separated into a constant classical back- '

round ¢ plus quantum fluctuations. The effective potential are kept. The extra & components of the gauge field in
3( ) is e pual t?) the tree-level oten.tial in the cIassiE):aI back_DRED transform like scalars in the adjoint representation of
q P he gauge group, and are known as epsilon scalars. The

ground, plus the sum of one-particle-irreducible connecte enormalization scheme based on DRED with modified mini-
vacuum graphs. These are calculated using the Feynman

rules with ¢-dependent masses and couplings. Thus one ma&]@l'subtracpon is known aBR. I has the virtue of main-
write aining manifest supersymmetry in theories where supersym-

metry is not explicitly broken.
Realistic models of the physics at the TeV scale do in-
(1.1  volve explicit soft violations of supersymmetry, however. In
such models, th®R renormalized dimensionless couplings

whereV(™ represents the-loop correctiort: In this paper, | of the theory obey the relations' prescribed .by unbroken su-
will be concerned with the effective potential in Landau PErsymmetry. However, the epsilon scalars in general do not
gauge. Although the effective potential itself is gauge_have the same masses or dimensionful couplings as do the

dependent, physical properties following from it, such as itLrdinary 4-2e vector field. In fact, computation of the
value at stationary points, and the question of whether or nd€hormalization grougRG) equations shows that the run-
spontaneous symmetry breaking occurs, are gauge invariaffn9 squared masses of the epsilon scalars_cannot be consis-
[6]. The one-loop contributiol’®) is well known for a gen- tently set equal to those of the corresponding vector gauge
bosons[9]. This makes theDR scheme also inconvenient,
since the epsilon-scalar masses are unphysical. A better
7o save ink, a factor of 1/(1€)" is always factored out of the Scheme is th®R’ scheme 10], which differs fromDR by a

n-loop contribution to the loop expansion of the effective potential,parameter redefinition. ThBR’ scheme offers the advan-

B functions, and anomalous dimensions in this paper. tages that the epsilon-scalar masses completely decouple
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Q-dependent functions obtained by performing the appropri-

ate two-loop integrations. So the task is to identify these
objects for each combination of particle types that can con-
tribute.

) o ) The rest of this paper is organized as follows. Section Il
FIG. 1. Topologies of one-particle-irreducible connected jescripes the field-dependent masses and couplings, lists the
vacuum Feynman diagrams for the one-loop and two-loop contrize|ayant Feynman diagrams, and presents necessary conven-
butions to the effective potential. tions. Section Il reviews the one-loop effective potential,
from all RG equations, and also from the equations that reg's‘t'r.]guIShIng between thé4S, DR, and DR’ schemes..
: %ectlons IV=VI present the results for the two-loop effective

late running renormalized parameters to pole masses an . A .
other physi?:al observables P P potential contribution in each of those schemes. Section VI

In this paper, | will present results for the two-loop effec- also explicitly gives the redefinitions necessary to go from

tive potential in the Landau gauge and in each of thePR t0 DR’. Section Vil discusses the RG invariance of the
MS. DR. andDR’ renormalization schemes. For models &ffective potential in th®R' scheme, and derives some nec-

with exact supersymmetry, the last two schemes are th8SS&TY results for the scalar anomalous dimension and

same, while for models with softly broken supersymmetryVacuum energy beta function in softly broken supersymme-

the DR’ scheme is by far the most convenient. try. S_ection VIII contains some illustrative examples and
The topologies of the one-particle-irreducible connecteoconsIStenCy checks.

vacuum graphs at one- and two-loop orders are shown in Fig.

1. Because the one-loop graph topology does not involve Il. CONVENTIONS AND SETUP

interaction verticesV?) clearly depends only on the field-

dependent squared massa$, where the index runs over _ . .

all of the real scalars, two-component fermions, and vector L€t us write the quantum fields of a general renormaliz-

degrees of freedom in the theory. Note that any complex@Ple field theory as a set of real scal&s, two-component

scalar can be written in terms of two real scalars, while fourWeyl fermionsyy , and vector fieldsA;*. Scalar flavor in-

A. Field-dependent masses and couplings

component Dirac and Majorana fermions can always be writdices arei,j,k, ... ; fermion flavor indices aré¢,J,K, .. .;

ten in terms of two-component left-handed Weyl fermions, inand a,b,c, ... run over the adjoint representation of the
a way thoroughly familiar to disciples of supersymmegge  gauge group. Space-time vector indices are written as Greek
Refs. [1,2] for a discussion In any dimensional- lettersu,v,p, ... . | use a metric with signature—(+ +

continuation regularization scheme, quadratic divergences ), and the notations for fermions folloft,2]. The primes
are automatically discarded, and one finds for the renormalare used to indicate that these fields are not squared-mass

ized effective potential at one-loop order: eigenstates. The kinetic part of the Lagrangian includes
(1) 1 2s, 22/ 1 2 _1 2D/ 1 NN 1 2 YN
V =7 zn: (—=1)*°n(2s,+ 1) (mp)“(Inm;—Kp). —L= imiiRi Rj+ E(m 1 wj—kc.c.)—kzmabAe1 Aup-
(1.2 (2.2
Here | have adopted the notation The symmetric fermion mass matrix" yields a fermion

_ squared-mass matrix
In(x)=In(x/Q?), (1.3
_ o m?=mit,mk?, (2.2
where Q is the renormalization scale, arg}=0,1/2,1 for
real scalars, twq—component fermion, and vector. degrees qfhenmizj and mgb are real symmetric matrices, amf'J is a
freedom respectlveli/an_d Ky are constants depending on the e rmitian matrix, and in general they all depend on the clas-
details of the renormalization scheme. sical background scalar fields. In order to calculate the effec-
From Fig. 1, it is clear that at two-loop order the resultye hotential, the first step is to rotate to squared-mass eigen-

must be of the form state basesR;, ¢, ALY. This can be done by using
orthogonal matrice8l®, N) for the scalar and vector de-
V=3 gPrf(m2 ,m?) grees of freedom, and a unitary math&™ for the fermion
n-p degrees of freedom. So, the rotations
+n%q |9"PY2f pg(M2, M2, m3), (1.4) R =N{¥R;, (2.3
. r—nNF)
where g"P9" and g"P? are field-dependent four- and three- i =Ny by, 24
particle couplings, andf,,(x,y) and f,,(X,y,2) are ,
AL =NWIAL, (2.9
°The contribution of epsilon scalars is discussed in Sec. IIl. are chosen such that
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NETMEN(P = am?, (2.6) e 0

(F)m2 N(F)* — 2 b 3 ::*::

NIK mKLNJL = 5|Jm| , (27) \\\ ’// ' I
55 FFS

Ng\é)mngE,\é) = 5abma21 . (2.9 535 5 Frs
Herem?, m?, andm? are respectively the scalar, fermion, R
and vector squared-mass eigenvalues which will appear in I A
the effective potential. It should be noted that in genbf&l AN
diagonalizes the fermion squared-mass manﬁ(, but need ssv Vs vvs FFV

not diagonalize the fermion mass matri®’. All that is re-

quired is that P
M =NE* mKENGD* (2.9 A

has a block diagonal form, with nonzero entries only be- FFV vV vy 9V

tween states with the same squared-mass eigenvalue. Indeed,riG. 2. The one-particle-irreducible connected Feynman dia-
it is quite often not particularly desirable fot") to diago- grams contributing to the two-loop effective potential. Dashed lines
nalize the fermion mass matrix, for example in the case Ofienote real scalars, solid lines denote Weyl fermions carrying he-
charged Dirac fermions, with doubly-degenerate eigenvaluelkity along the arrow direction, wavy lines are for vector bosons,
for m,z, whereM" is best left off-diagonal in X2 blocks. and dotted lines are for ghosts. The large dots between opposing
The matrixM'? and its complex conjugathl}; will appear  arrows on the fermion lines in tHeFS andFFV diagrams denote

as mass insertions. In practical applications, the diagonalizanass insertions. ThEF S diagram is accompanied by its complex
tions just described are easily performed numerically using gonjugate(the same diagram with all arrows reversed

computer, and under favorable circumstan@gh as those N

studied in Sec. VIl they can be done analytically. In either couplingg®! is antisymmetric under interchangeioj. The

case, the problem amounts to finding the orthonormal eigeriPure gauge interactiog°® is completely antisymmetric; it is

vectors ofmizj, mlzJ, andmﬁb. determined by the original gauge coupliag the antisym-

Now the interaction terms in a general renormalizablemetric structure constanf$"® of the gauge group, and"’,
theory can be written in terms of the squared-mass eigensta@&cording to
fields as Vs (V) n 1 (V
g**e=gferINFINEINE . (219

1 . 1 .
L= )\'J"RiRij——)\'Jk'RiRijRl, (2.10  Similarly, if the fermions, transform under the gauge

=—=
6 24 group with representation matrice§'aof, then the vector-
1 fermion-fermion couplings are
Lse=— =y g 4R+ c.C., 2.1
si=— 5 Y YRy (2.1 g™=g(T?)FNE* NN . (2.16
1 1 Note that even the dimensionless couplings generically de-
Ley=— Egab'AZA“bRi— Zgab”AZA“bRiRj pend on the classical scalar background fiedidsthrough
) their dependence on the rotation matrieés), NP, and
_gaI]AZRi&p.Rj , (2.12 NV
Loy= gf“Ade“;"l/fJ, (2.13 B. The Feynman diagrams

The two-loop effective potential is to be evaluated by
computing the one-particle-irreducible connected vacuum
Feynman diagrams appearing in Fig. 2. The masses and cou-
_ plings of fields appearing in these diagrams are as indicated

+g?PA% w0 0", (2.149  on the right sides of Eq$2.6)—(2.14). Dashed lines denote
o scalar propagators. Solid lines denote fermion propagators
where »? and »? are masslessin Landau gaugeghost with helicity along the direction of the arrow, and large dots
fields. This defines the field-dependent couplings to be useldetween opposing arrows denote insertions of the fermion
in the two-loop effective potential calculation. The scalar in-mass matrixM'” or its complex conjugaté/};, depending
teraction couplings.’® and\''*' are each completely sym- on whether the arrows are incoming or outgoing. Vector
metric under interchange of indices, and real. The Yukawgropagators are indicated by wavy lines, and ghost propaga-
couplingsy* are symmetric under interchange of the fer-tors by dotted lines. Each graph is also labeled by the type of
mion flavor indicesl,J. The remaining couplings all have propagators it contains, wit§,F,V,g standing respectively
their origins in gauge interactions. The vector-scalar-scalafor scalar, fermion, vector and ghost. Also, the presence of

1
Lgauge= 9 AL A AT~ 4 g2 egCIcALaAPAC AT
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mass insertions in fermion lines is indicated by the overlines Im[Liy,(x*i8)]= ximIn(x), (2.25

in the labelsFFS and FFV. The results for these Feynman

diagrams(plus countertermsare reported in Secs. IV, V, and for § real and infinitesimal, while IfiLi,(x)]=0 if x is real

VI and less than 1. The functioné(x,y,z) and therefore
I(x,y,2) are invariant under interchange of any twaxgy, z.

C. Two-loop integral functions needed for vacuum graphs It is useful to have expressions for these functions in the
special cases of vanishing arguments. In addition to the
trivial identities J(0)=0, J(x,0)=J(0x)=0 and1(0,0,0)
=0, one findg15]

All of the effective potential two-loop integrals can be
expressed in terms of linear combinations of functions intro
duced and studied by Ford, Jack and Jone$7in | will
follow a notation similar but not identical to theirs: the func-
tions1(x,y,2), J(x,y), andJ(x) used here are equal to the

_ 1
- X 1(0X,y)=(x—V)| Lio(y/x)—=In (x/y)In(x—y)+ = (In x)?2
e-independent parts of the functiohéx,y,z), J(x,y), and ( V= y)[ 2(¥/x) (Iy)ln(x=y) 2( )

J(x) used in Ref[7], up to obvious factors of 1/4. Ex- 2 B o o
plicitly I choose to express results in terms of — ?} - §(X+y)+zx Inx+2yIny—xInxlIny,
J(x)=x(Inx—1), (2.17 (2.26
J(xy)=xy(Inx=1)(Iny-1), (2.18

1(0X,X)=2J(X)—2X— ;](x,x)

1 — — 1 —
[(X,y,2)==(X—y—2)InyInz+ = (y—x—2)InxInz _ _
2 2 = —x(Inx)%+4x In x— 5x, (2.27

1 _ _ _
+E(z—x—y)lnxIny+2x|nx+2y|ny 5 T2

1 — _

=—_ 2 Y — —
i ) 1(0,0%) 2x(Inx) +2x1Inx 2x 6 X.
+ZZEZ—E(x+y+z)—§§(x,y,z). (2.19 (2.28

It is also sometimes useful to expand these functions for
Here £(x,y,z) was originally found in terms of Lobachev- infinitesimal arguments:
skiy’s function or related integrals in RdfZ] using methods
developed 11,12, but it can also be expressg3—15 in 1(8,%,y) =1(0x,y) + 8l — (x+y)1 (0X,y) — 2J(X,y)
terms of dilogarithms according tdor x,y<z):
+3xJ(x) +3yJ(y) —yI(x) —xI(y) = (x+y)?

+(x=y)[I(Y)—I)]In 8}/ (x—y)?+ - - -,
(2.29

&(x,y,2)=R{2 In[(z+x—y—R)/2z]
XIn[(z+y—x—R)/2z]
—In(x/z)In(y/z)—2Li,[ (z+x—y—R)/2z]

; 1 1
T2z xR A 220 (5,0 =23(0 - 2X— ZI(%,X)+ 5] 4+ 5 73(,X)
with
J(X) |—
R= [X2+y2+z2_2Xy_ 2% 7— 2yz]1/2_ (2.20) + ;J(X)— 1+ T Inéf+---, (2.30
The dilogarithm function is defined in the standat®] way 5
for any complexz (81,82, =1(0,0%)+ [ ~x=1(0,0)+3(x)
) zIn(1—-t)
Liy(2)= —f dt. (2.22 _ 5,
o t =300l 8]+ [ =x=1(0,0%) +3J(x)
To resolve branch cut ambiguities which could arise, consis- - 5.5
tently choose ArgR) =0 or /2 along with —J(x)In 8,]+ _)1(2_2{_2| (0,0%) +4J(x) — 2x

—a<Im[in(z)]s= (2.23 _ _ _
—[x+JI(X)](In 81 +1In 55)+x1In 5, In 8,}
for all logarithms of negative or complex including the
logarithm appearing in the integral definition of the diloga- RERRE (2.31

rithm. So, for example, whek is real and greater than 1, ) )
where the ellipses stand for terms with more than one power

Im[Lix(x)]=—imIn(x), (2.249  of 6 or eitherd, or 6,.
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D. Conventions for softly-broken supersymmetric models Ill. ONE-LOOP EFFECTIVE POTENTIAL IN THE

One of the main applications of the results of this paper is MS, DR, AND DR’ SCHEMES

to models with softly broken supersymmetry, such as the |n this section, | review the known answers for the one-

minimal supersymmetric standard mod@ISSM). Therefore  |oop effective potential. This will allow us to carefully dis-
| now list the relevant conventions to be used here for SUC'?inguish the results in th81S. DR. andDR’ schemes.

models. In general, the superpotential is given in terms of the

chiral superfieldsb; by In the MS scheme and Landau gauge, one has

1 1 V= v+ v 4 y(p 3.0

W= Y0, 0,0+ uldd;, (2.32
6 2 where the different contributions arise from scalars, fermi-

ons, and vectors going around the loop in Fig. 1:

and the soft supersymmetry-breaking part of the Lagrangian

'S v = % > (m)A(inmi-372), (3.2
= Lsoft= %aijk¢i¢j dit %bij bipj+c i+ %M)\a)\a 1 _
Vi=—2 ZI (m)?(InmZ—3/2),
+ c.c.) +(m)lg*Tp+A, (2.33 (3.3

3 _
_> 2,2 2
where theg; are the complex scalar field components of the Vv 4 Ea: (mg)~(In mg—5/6). @4

®;, and the\, are the two-component gaugino fermions

with massM. The parametec' can only appear if there is a The appearance of 5/6 rather than 3/2\/1&) is due to the
gauge-singlet chiral superfield in the theory. Note the presfact that there are only 42e, rather than 4, vector degrees
ence of a vacuum energy term. This is required in order of freedom inMS.

for the full effective potential to be RG invariafit7-20. In the DR scheme, one must include also the effects of the
The two-loop beta function fok is obtained in Sec. VII, and  gpsilon scalars. Now, it is tempting to assume that the epsilon
the beta functions for each of the other couplings at two-lo0R;c51ars have the same field-dependent mass as thele 4
order are given irf21,22,9,1Q. Flipping the heights on all \ector counterparts. However, as pointed out in K&, this
'nd'C.ekS of a coupling implies cqrpplex conjugation, ¥g s actually inconsistent except in models with exact super-
=(YT)*, wi=(u")*, aj=(a")*, etc. The representa- symmetry, unless one sticks to only one fixed value of the
tion matrices for the chiral superfields are denoted B){.  renormalization scal€, because the epsilon-scalar squared
They satisfy mass has a beta function which is not homogeneous. There-

fore, in general one must allow the epsilon scalars to have

[T2,TP]=if2PeTe, (2.34  squared-mass eigenvalued which are distinct from then?

for the ordinary vectors. To be specific, consider the explicit

where f2°¢ are the totally antisymmetric structure constantsform of the field-dependent squared-mass matrix for the or-

of the gauge grougs. Then dinary 4—2e€ vector fields:
) ) 2 _ *ifTa Thj 4.
(Ta-l—a){ :C(|)5f , (235) Map gagbd) {T T }l d)J . (35)
This has eigenvaluemg. For the epsilon-scalar squared-
T T3T]=S(R) 62", (2.3  mass matrix, one has instead
facdfbcdz Ceéab (23D r’hgb: mgb‘l- 6abm§ y (36)

. . o . . where m§ is an “evanescent]23] parameter. This matrix
define the quadratic Casimir invariad(i) for each repre- yoqyjires an orthogonal diagonalization mati) which dif-
sentation, the total Dynkin indeR(R) summed over all rep-  ¢or5 fromNM/:

resentations, and the Casimir invariant of the adjoint repre-
sentation. The dimension of the adjoint representation is By € -
) P NSIMEZN{D = Sapm3. (3.7

de=Tr[C(i)]/S(R). (2.38  Unless supersymmetry is not explicitly broken, the eigenval-
uesm? will in general differ fromm2, and the corresponding
| use a normalization such that each fundamental representaeuplings of the squared-mass eigenstate epsilon scalars are
tion of SU(N) hasC(i)=(N?—1)/2N and contributes 1/2 to  different from the couplings of squared-mass eigenstate vec-
S(R). tors, becaus&l(® differs from NV).
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In the DR scheme, with epsilon scalars included, one nowtheory, so it has been successfully decoupled from all prac-

finds tical calculations. It would be quite clumsy to use the origi-
nal DR scheme in studies of realistic models like the MSSM,
V=V +v® Py (3.8 since in RG running and evaluation of the effective potential
one would have to keep extra contributions from epsilon-
wherevVd), v V(I are as before, and scalar masses in order to avoid inconsistencies. Therefore the
DR’ scheme is the preferred one.
v= _ E E (M2)2 3.9 After making this painful distinction, it must be admitted
¢ 29 ' that theDR’ final result for the effective potential has ex-

actly the same form that one would have obtained if one had
However,m? is an additional parameter with no physi- naively setm? equal to zero in the first place in tHBR

cally observable counterpart, and so its appearance in th&heme calculation. However, this naive procedure is techni-
effective potential is quite inconvenient. The functional form cally inconsistent whenever RG running is involvé& and
of the effective potential is also not directly physically ob- does not work for other calculations involving epsilon sca-
servable, so there is no contradicticmi must cancel only lars, so one should really distinguish between the two
from observable quantities. However, clearly one would likeschemes as a matter of principle. The parameters appearing
to avoid having to include a distinct epsilon-scalar mass inn the DR’ effective potential obeyDR’ renormalization
calculations in the first place. This problem was solved in thegroup equations, which differ from tHeR ones withm? set
context of softly broken supersymmetric models in R&@] equal to 0. ¢
with the introduction of theDR’ scheme. The point is that The procedure of going from thBR scheme to th®R'

one can remove the dependence of the full one-loop effective;heme is similar at two loops, and is described explicitly in
potential onm; by redefining the ordinary scalar squared gg¢ .

masses and the vacuum energy term appearing in the tree-

level part Eq.(2.33: __
IV. TWO-LOOP EFFECTIVE POTENTIAL IN THE MS

SCHEME

. o1 _

(M5! = (M)l — 752l 8/2g°C(Hm?],  (3.10 _
The two-loop effective potential in thdS scheme for the

general theory with masses and couplings described by Egs.

2\2
N — 1 dg(m) (3.11) (2.6—(2.14) can be computed by the methods described in
R RO16x2 2 ' [7]. In fact, all of the hard work of evaluating the relevant

_ ~ Feynman loop integrals has already been accomplished
[These hold for a simple dd(1) gauge group. If there is there; no new types of integrals arise. Momentum integrals
more than one simple d¥(1) gauge group, then the correc- and vector indices each run over2e dimensions. For each
tion terms should be summed over subgroups, with a disting{yo-loop diagram, one must include counterterms for the
mZ for each subgroup.The result is theDR’ scheme, and  various one-loop divergent subdiagrams. The result still in-
the effective potential in this scheme is the one usuallycludes single and double poles énwhich are then simply
quoted in the literaturdand often slightly incorrectly re- removed by two-loop counterterms in modified minimal sub-
ferred to as théR one: traction. The final result can be divided into parts corre-
sponding to the various graphs of Fig. 2. Because the
1 _ 2s 2 2 VV, VVV, and ggV graphs all involve the same field-
Vﬁ’_; (= D)™n(2sp+ Dh(my) =STLh(M)], dependent coupling®®S, it is natural to combine their con-
(3.12 tributions into a pure gauge piesés),
For the result, I find
where

2
W2 _ VR=VR ¢+ VR VA +VE + VA 4 VR+ V) +VE,
h(x)=z[ln(x)—3/2], (3.13

2
+VE2, +V2) . (4.1

and n runs over all real scalar, Weyl fermion, and vector
degrees of freedom. The scalar squared masses occurring\here, in terms of the masses and couplings as specified in
Eg.(3.12 are the ones following from the redefinition in Eq. Egs.(2.6)—(2.14,

(3.10, and the vector squared masses are the eigenvalues of

Eqg. (3.5. TheDR’ effective potential is both manifestly su- 1.

persymmetric when the soft terms vanish, and independent V@& l—z(R"k)Zfssémiz-mjz,mE), 4.2

of the unphysical evanescent parame’mﬁr when the soft

terms do not vanish. It is not hard to see thgtis simulta-

neously banished from the equations which relate the physi- V(st):

1
: ; N\ fggm?, m? 4,
cal pole masses to th®@-dependent running masses in the A Esdmi,mp), “.3

8
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1
Vis= 51y *fees(m? m3,my), (4.4

1
2
V%sz 4y|Jky| v kM||fIVIJJIfFFS(mI vaymk)

+c.c., (4.5
(2) _ 1 aijy2 2 2 2
Vssv= (9% Fssdmi,my,my), (4.9
(2) 1 aaii 2
Vvszzg fyg(mg,my) 4.7
(2) _1 abiy2 2 2 2
VVVS_Z(g )“fyvdmg,mg,my), (4.8
V&, :_|9| IPPtepv(m?,md,m3), (4.9
VEL, = Zg:”gf‘,J M MY, fery(m? m3,m2),
(4.10
1
E:]il)uge: l_z(gabc)zfgauge( mg,mﬁ ,mg): (4.1

in which all indices on the right side are summed over. The

loop-integral functions appearing here are given by

fsséx,y,2)=—1(x,y,2), (4.12
fsgdx.y)=J(x.y), (4.13
frrs(X,Y,2)=J(Xy) = J(X,2) = I(y,2) + (X +Yy
-2)1(x,y,2), (4.19
fers(X,Y,2)=21(X,Y,2), (4.15

fssuX,y,2)= ;{( —x2—y?— 724 2xy+ 2xz
+2y2)1(X,y,2)+ (x—y)?1(0X,y)
+(y—x=2)J(X,2) +(x—=y—2)J(Y,2)

(4.16

(4.17

+zJI(X,y)}+2(x+y—2/3)I(z),

fus(x,y)=3J(x,y)+2xJ(y),

fuvgX,Y,2) = {( x2—y?— 72— 10xy+ 2xz

+2y2)1(X,Y,2)

+(x—2)21(0x,2)+ (y—2)?1(0y,2)
—7%1(0,02)

+(z—x=y)I(x,y) +yJI(x,z) +xI(y,2)}

=J
+ X

1
+ EJ(y)+ZJ(z)—x—y—z,

(4.18

1
frev(x.y,2) = {(X+y? =22 = 2xy+Xxz+y2) (X,Y,2)

- (X_Y)2| (O,X’Y)
+(X—y—22)J(X,2) +(y—%x—22)J(Y,2)

+2zJ(x,y)}
+2(—x—y+2/3)I(z) — 2xI(x) — 2yJ(y)
+(x+y)?=27, (4.19

ferv(X,Y,2) =61(X,y,2) +2(x+y+2z)—4J(x)—4J(y),
(4.20

fgauge{xryaz)

e L x*—8x3y—8x3z+ 32y z+ 18y?7?)1(X,y,2)

4xy
+(y—2)2(y?>+10yz+2%)1(0y,z) +x3(2y z
=x*)1(0,0x)

+(x2—9y?—97%+ 9xy+ 9xz+ 14y 2)x J(Y,Z)
+4x3y 7+ 48xy? 72+ (22y + 222— 16x/3)xy I X)}
(4.21

Symmetry factors have been explicitly factored out of Egs.
(4.2—(4.11), but fermion-loop minus signs and other factors
associated with the evaluation of the Feynman diagrams are
contained in the definitions of the functions. The functions
obey obvious symmetriesssdx,y,z) andfg,4dX,y,2) are
invariant under interchange of any two o0K,y,z,
while fséX,y), fFFS(X!yvz)! fﬁS(leiz)l fss\(X,y,Z),
fuvdX,Y,2), frrv(X,Y,2), andfeey(X,y,2) are each invari-
ant under interchange ofy.

The functions involving vector fields contain factors
1/, 1k, and 1% which appear to be singular in the massless
vector limit. This is due to the appearance in the Landau
gauge of vector propagators

+(Xey)+(X—=2).

1 p*"—ptp"lp?
i_( p2+m?—ie .22
which give rise to factors
1 1/1 1
P 2 preme) 4B

in the loop integrals. The massless limits are actually
smooth, and arise often in practice. It is therefore useful to
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have explicit expressions for those massless limits that are V. TWO-LOOP EFFECTIVE POTENTIAL IN THE DR
not immediately obvious. Using EqR.29—(2.31), they are

found to be

fssux,y,0) =

5
fyvg0,02)=-31(0,02) + EJ(Z)— R
ferv(X,y,0) =

fgaugéxvyao):

(X+Yy)2+3(x+y)l(x,y,0)+3J(x,y)
—2xJ(x) =2y J(y), (4.24

9 3
7 1(0x,2)+ &J(x,z)+2\](z),
(4.29
(4.26
0, (4.27)
i{(43x2 +43xy*—7x3
4xy y y

—7y3)1(0x,y)+ (2y+ 7x)x?1(0,0%)
+(2x+7y)y?1(0,0y) + (34xy— 7x?

35
—7y?)I(X,y)}+4x2+ 4y + > XY

19
— 5 X300 +yd(y)]+5[yIx)

SCHEME

In this section, | report the results for the effective poten-
tial in the DR scheme. These are obtained by keeping all 4
components of each vector field, but performing momentum
integrations in 4-2e dimensions. The difference, compared
to the results foMS, can be organized in terms of the extra
epsilon scalars with multiplicity & Of course, the
SSS SS FFS, andFFS diagrams in Fig. 2 are unaffected
by this procedure. Also, th8 SVandggV diagrams are un-
changed in going fronMS to DR, because in those cases all
the vector indices are contracted with a loop momentum. The
VS, FFV and FFV diagrams yield new contributions,
which we can calkS, FFe andFFe, when the vector line
in each case is turned into an epsilon-scalar line. INMi&
diagram, a nonvanishing additional contribution arises only
when both vectors are turned into epsilon scalars; call this
contribution €€S. In the VV diagram, one or both of the
vector lines can become an epsilon scalar, yielding contribu-
tions to be calledeV and ee, respectively. Finally, in the
VVV diagram, any two of the vector lines can be turned into
epsilon-scalar lines, resulting in a contributieaV.

As discussed in Sec. lll, the couplings of epsilon scalars
have exactly the form indicated for vectors in E¢®.12—
(2.14), except that when an epsilon scalar is involved, the
rotation to the squared-mass eigenstate basis reqhitf@s
rather thanN("). This distinction is indicated by replacing
the vector indexa,b,c,... by an epsilon-scalar index
a,b,c, ... on the couplings. For exampleompare to Egs.
(2.15,(2.16], the epsilon scalar-epsilon scalar-vector, epsi-
lon scalar-vector-vector, and fermion-fermion-epsilon scalar

Y] (4.28 couplings are
59 23 3 €
Foaugd X,0,0) = 131(0,00) — =XxJ(x) + Zx2. g?°°=gfeIINEINGPNGG | (5.9
All of the functions vanishby dimensional analysisvhen-
ever all arguments vanish. g™ =g(T?)*NE* NFING (5.3

It may also be of interest to see the individual contribu-

tions of the Feynman diagrams labeM¥, VVV, andggV

in Fig. 2, even though these can always be combined into
These contributions are listed in Appendix A.
The classic results of Ford, Jack and Jones for the stan-

v

gauge

Then the result in th®R scheme can be written

(2) (2) 2 2 (2) 2 2 2
VE=VEL VD1 v vE) 1 vE v 4 vE V)

(5.4

dard mode([7] are a particularly useful special case of thoseWhere
found in this section, with which | have checked agreement.

In fact, each type of term that can occur in a general model in

MS does in fact arise in the standard model case; no new
types of integrals arise, so that the results of Egsl2-

(4.21) could be inferred froni7] by some forensic combina-

torics. Their functions A(X,y,z), B(x,y,z), C(X,y),

D(x,Y,2), E(x,y), 2(x,y), and A(x,y,z) are respectively

equal to the functions fss\(X,y,2), —fyvdX,y,2), 1
fVS(va)1 _prv(X,y,Z), \/X—yfﬁv(x,y,Z), fVV(va)1 and Vl(:zF)e: —|g|aJ Zf,:,:e(m|2,m§,rAn§),
—fyyv(X,y¥,2) given in this section and in Appendix A. 2

[Note that after the published erratum of RET], a few

further minor typographical errors have been recently cor- v
rected in the eprint archive versign. Fe

1
V=20 f(mi,m?), (5.5

V= 4(gab'> fees(M3, Mg, m?),

(5.6
6.7

aJ.al’

Zgl g|'

M''M3 ) feed(mZ m3,md), (5.9
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1. .

V=5 (%)% (G mp), (5.9
1o,

V=209 (m3.m)), (5.10
1 -

V=7 (9% cou(mG g md), (5.1

with the loop functions given by

fes(X,y)=—2xJ3(y), (5.12
fees(X,Y,2)=—23(2) +xX+y+2z, (5.13
fere(X,y,2)=2x3(x) + 2y J(y) — (x+y)?*+ 2,

(5.19
fEE(X,Y,2)=43(X)+4J(y) —2Xx— 2y — 22,
(5.15

feV(X7y):_4Xy_ 6X‘J(y)1 (516

fee(Xy)=4xy, (5.17

feov(X,Y,2)=—X2—y2+ 72— 6xy—Xxz— yz+ (6X
+6y—22)J(2). (5.18

This completes the result for the two-loop effective potential

in the DR scheme.

VI. TWO-LOOP EFFECTIVE POTENTIAL IN THE DR’
SCHEME

PHYSICAL REVIEW D 65 116003

1 dg(m?)?
Aor=AoR™ 16,2 5

1
+ oy | 3 ISR~ Col(my?

+0%dcCq|M|?mZ+g?uli w;;C(i)mZ . (6.3

If there is more than one simple br(1) group, then each of
the correction terms should be summed over subgroups, with
a differentmi for each subgroup. The exception is that the
term

g“cm%g ; 9292C4()Cy(i), (6.4

involves a double sum over subgroups labedgll. Follow-

ing these redefinitions, the result for the full two-loop effec-
tive potential turns out to have the same functional form as if
one naively took th®R result and sein? to 0, removing the
distinction betweemN(©) andN"), between hatted and unhat-
ted vector squared-mass eigenstate indices on the couplings,
and betweem? andm? . It is therefore convenient to define
functions which combine the effects of the-2¢ vectors

and the epsilon scalars:

Fusx,y)=fvs(Xxy) +fes(x,y), (6.5

FuvdX,Y,2)=fyvdX,y,2) + fs(X,Y,2),

As explained in the Introduction and in Sec. lll, it is con-
venient in models of softly broken supersymmetry to go to
the DR’ scheme. This scheme is defined so that (the
difference between the squared masses of epsilon scalars and
their vector counterpantgloes not appear in the beta func-
tions of other couplings, or in the effective potential, or in
the equations relating pole masses to running masses. Start-
ing from theDR results of the previous section, | find that
this is done at two-loop order by the following parameter
redefinition of soft terms appearing in E@.33:

. ' 1 '
(mem)| = (M) — 5[ 8l20°C(i)m?]
1 . 1
+ (mﬂ—z)z(v'k'vjk.gz[qk)— Ec:(i)}mi

+5594C(i)[ZS(R)+4C(i)—6CG]m§], by

(6.6)
Frev(X,Y,2) =fepu(X,Y,2) + feed(X,Y,2),

(6.7
FﬁV(vaiz) = fﬁV(X!yiz) + fﬁe(x!yiz)y

(6.8

Fgaugéx-yaz) = fgaugéx1yvz) +feev(X,Y,2)
+ feeV(vaiy) + feeV(yszX)
(X Y) + fouly,x) +foy(x,2)
Tz X) +fou(y,2) +fa(z,y)

(X Y) +fee(X,2) +f (Y, 2).
(6.9

Note that | useF’s rather thanf’s to distinguish theDR’
functions from the correspondingS functions.
Therefore, theDR’ two-loop effective potential is given

2) _\/(2 2 2 (2) 2 2 2 2
6D V-V VR VRV VRV Vs VE

i 1 ijk 2\ 2
Cor =Cpr™T W[Y Mik9°C(j)mc],

FFS

+V& +v@ (6.10

FFV " Vgauge

(6.2 where now
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1 Feev(X,y,2)=61(X,y,2), 6.2
V(ss)s:_z( NIK)2E o gm? m? ), 6.1 Frv(X,Y,2)=61(X,y,2) (6.29
1
1 Fgaugd X,Y,2) = {( x*—8x3y—8x3z+32x?%yz
V&= Nl fsgm? m), (6.12 9289 4xyz
+18y°z%)1(x,y,2) +(y—2)*(y*+ 10y z
1
v :§|yIJk|2fFFS(m|2’m§,m§)’ (6.13 +22)1(0y,2) +x3(2yz—x?)1(0,0%) + (x?
—9y?— 972+ 9xy+ 9xz+ 14y 2)xJ(Y,z)
V& = 4y”kyI VkM*E MY fers(m?,m3,m?) +(22y+222— AI3)xyzIX)} + (X=Y)
+(X<2Z). 6.2
+c.c., (6.14 ( ) €.29

1 Despite the appearance afy,z in the denominators,
v, = Zf(gau)zfss\{mf,mjz,m;), (6.15  these functions again all have smooth limits foy,z—0.
The nontrivial ones are

1
V{2= 2 g2 Fyg(m;,m?) (6.16 3z 3z 9
4 a i)y A ve 9
Fuvdx,02)= +2 ax (002 +| == 7]1(0x,2)
1
V{Rs= 7(9%°)ZFyvemg, mg, mp), (6.17) n i‘](x 7) (6.26
:E|gaJ|2FFFv(m2 m3,m3) (6.18 3 z
2 S Fwd0,02)=-31(0,02)+ 53(2) - 7, (6.27
(2>_ aJ ad nall/ % 2 2 2
Verv= 2970 MMy Fervmi, g ma), Frrv(0y.0)= — (x+y)2+ 200 +2ydy),  (6.28
(6.19

1
nga)uge: %Z(Qabc)zlzgaugémi,mﬁ,mg)- (6.2@ Fgaugéxyy-o): m{(43x2y+ 43(y2_7xs_7y3)|(olxly)

+(2y+ 7x)x%1(0,0x) + (2x
Here fSS§X1y=Z)1 fSS{ny)r fFFS(X1y12)1 fﬁs(xayvz)y 2 5
andfss\(X,y,z) are given by exactly the same functions as +7y)y“1(0,0y) +(34xy—7x

in MS, Egs.(4.12—-(4.16. The new functions are given by 11
—7y?)J(x,y)}+3x2+3y?+ > Xy

Fyvs(x,y)=3J(x,y), (6.21)
25
Fvvs(X.y,Z)—4Xy{( x?—y?— 72— 10xy+ 2xz ~ 3 [xIX)+yIy) ]+ 5[y I) +xI(y)],
+2y2)1(x,y,2)+(x—2)?1(0X,2) 6.29

+(y—2)21(0y,2)—7%1(0,02)

71 19,
F gaugd 0,0%) = 13x1(0,0x) — EXJ(X)-F ZX . (6.30
+(z=x=y)I(x,y) +yJ(x,2)
1 1 Also, it may be of interest to see the contributions from

Xy, 2} 2‘]()(%L 2J(y), 6.22 individual graphs toFg,.4{X,y,2). Those are listed in Ap-
pendix A.

This completes the result for the two-loop effective poten-
tial in the DR’ scheme. These are appropriate for use in any
softly broken supersymmetric model, including the MSSM.

1
Frrv(X,Y,2) :E{(X2+y2_ 272 2xy+xz+y2z)l(X,y,2)

—(x=y)A(OXY) + (x—y—22)3(x,2) Partial results for the MSSM corresponding to the leading

T (y—X—22)(y,2)+ 22%,y) b+ 2(— X contributions proportional tasy?, agy?, andyf, yé have
been given in Refs[30] and[15]. Several illustrative ex-

—y+2/3)J(z), (6.23 amples and consistency checks are done in Sec. VIII.
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VIl. RENORMALIZATION GROUP INVARIANCE OF THE This can be obtained starting from the general results in the
TWO-LOOP EFFECTIVE POTENTIAL IN SOFTLY MS scheme in Ref[24], and then applying the coupling
BROKEN SUPERSYMMETRY constant redefinitions needed to transform from 8 to
In general, the condition for RG invariance of the effec-the DR or DR" schemg25]. The eigenvalues of this matrix
tive potential is constrained to the subspace of the classical scalar back-
ground fields give the anomalous dimensions appearing in
Q—+2 ——E 4 " |v=0 Egs. (7.2 and (7.3). It should be noted that because of
Flo i By, N, 5 v i g gauge-fixing, the Landau gauge scalar field anomalous di-
(7.1) ~ mension matrixy® relevant for the effective potential is
not the same as the more widely known, gauge-invariant,
Here,\, are all of the running parameters of the model withanomalous dimension matrix of the chiral superfields. For
beta functlons;'a’AI andy(s) are the anomalous dimensions of comparison, the latter 6]

the scalar fieldsp; . At one- and two-loop order, this means

QE:

J
Qg VI+ | 2 B 2 i VO=0, 1 1
iQ > AN axl . ¢ j_ (Wi 1 @i 7
7.2 Yi= 167 27 (16 )27| (7.7
d
() 1_- (S1) 4. |\y(1)
Qg V| 3 A2 gV )
; ; N=5Yia Y= 26]g%C(i), (7.8
(2)_~ _ (S2) 4~ |\/(0)—
[Z B a2 APz V=0
(7.3 1
In softly broken supersymmetry, | find that the anomalous Y= EYimnYnlekermrj

dimension matrix for scalar fields in the Landau gauge and in
eitherDR or DR’ is

+Yi Y g2 2C (k) - C(i)]

(9 — (SDi ¢ (S.2)j
Yi 1677 2%i (16 )2 Yi ’ (74)
+68lg*C(i)[2S(R) +4C(i)—6Cg].
(S1)j 1 Kl _ sin2c(i (7.9
Yi _2YikIYl —69°C(i), (7.9
1 _ In order for the effective potential to satisfy E@.1) in a
Y S = — EYimnY“k'Yk,er” model with explicit supersymmetry breaking, it is necessary
to include a running vacuum energy terfm as in Eq«(2.33.
+Y, Y g 2C(k) - C(i)] Now using the results of Sec. VI, one can derive D’

9 beta function forA up to two loops in a general softly-

; . . broken supersymmetric model as specified in Sec. Il D, by
g _Z

+4g°C(1)) S(R)+2C(1) Ce|- (76 looking at theg;-independent piece of Eq&7.2),(7.3). | find

,8 — 1 18(1)_’_ 1 B(z) (7 1@
A= 1672PN (22 PA '
B =(m?)](m?)j+2(m?)] ™+ 0oy — dg M|, (719

)= gd6|M[*[4S(R) —8Cg] +8g?IM|* ' ;; C(i) +8g%(m?)] i C(i) +4g?(m?)! (M) C(i)
+492b”b iC(i)— 492Mﬂllbuc(|) 4gZM*MIJ IJC(') YleYI]|[ 2)k Z)Im+(m2)km:“mnﬂm
+ it ™(M?) [+ (M) Mn|+bkmbml]_a”kaijl[(mz)k+Mkmﬂml]_2Y|jkYiIm(m2)}/~LmnMnk

= Y'*ay ™ = Yia! kMo, (7.12
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wheredg is the dimension of the adjoint representation of V(l):h(mé)Jrh(le)_Zh(mi). (8.6)
the group. If the gauge group contains more than one simple

or U(1) component, then terms involving the gaugino massthe nonzero scalar quartic and cubic couplings are
M or g? should be summed over subgroups in Egs.

(7.5,(7.6), (7.9),(7.9), and (7.11),(7.12), with the exception ARRRR= )\ =3y2/p. (8.7)

noted in Eq.(6.4). Special cases of these general results will

be used in the next section. o ARRI=y2/p. 8.9
| have checked explicitly that thBR’ two-loop effective

potential for a general softly-broken supersymmetric theory \RRR= 3Y(M+Y¢)/\/§, (8.9

satisfies RG invariance, using the results given above and in
Appendix B and in Refd.21,10.
i ARU=y(uty )2, (810

VIIl. EXAMPLES AND CONSISTENCY CHECKS and the Yukawa interactions are

In this section, | study some examples chosen as consis-

tency checks and useful points of reference for the results YWR:W\/E, (8.11
given above. The examples are all based on supersymmetry
with or without soft breaking, so thBR’ scheme is used. yrh=iy/\2. (8.12

One type of consistency check follows from the requirement

that the two-loop effective potential satisfies RG invariancet follows that the contributions to the two-loop effective
in conjunction with the known two-loop beta functions potential are
[21,22,9,10, and the scalar anomalous dimensions gnd )
found in the previous sectionSince the result foiB, is y

itself a consequence of the calculation, that part is not really V(szs)szg(ﬂ+y¢)2[3fssém§e ,m&,m3)
an independent chegKkThe derivatives of the loop functions

are listed in Appendix B. Another type of check relies on the +

fact that the effective potential for a supersymmetric theory

fssémi,m’,mf)], (8.13

in a supersymmetric vacuum must vanish. These consistency @) y? y _—
checks rely on nontrivial cancellations between different Vss=1g[3fsdMr.mz) +3fsdmy,my)
two-loop functions, which are made manifest by writing
them in terms of the basis functiohéx,y,z), J(x,y), and +2fss(m§,m|2)], (8.19
J(x), using Egs(4.12—(4.16 and(6.21)—(6.30.
2
2 2 2 2
A. The Wess-Zumino model Vf:F)S:Z[fFFS(mwamwimR)
Consider the Wess-Zumino mod&7] with a single chi- 2 o o
ral supermultiplet® containing a Weyl fermiony and a Trrs(my, my. mp)], (8.19
complex scalarg+(R+il)/\2, where ¢ is the classical v
background, andk,| are real scalar quantum fluctuations. VR = L 2l fee(m2 . m2  m2
The superpotential is given by Fs= 4 Myl TFRs(My MMy, m3)
— fers(mg,,m3,,mp)]. (8.16
W= §¢2+ %@3, 8.1) v

Now one may check RG invariance of the effective po-

whereu andy are mass and coupling parameters, taken to b&ential. At one-loop order, one finds from E@®.6) that
real without loss of generality. The fields,l,¢ are mass

: i a
eigenstates, with EV(l): —v2uld?—yiudd—yieta.  (8.17)
m&=u?+3yud+3y*¢?2, (82
The one-loop scalar anomalous dimension and beta functions
m?=ul+yud+y> 22, (8.3 are
m,=u+yé. (8.4 yoP=y212, (8.18
The tree-level scalar potential is ﬂ;l):yz’ud, 8.19
VO = w292+ ypp+y2pta, (8.5
BM=3y312. (8.20
and the one-loop contribution to the effective potential is
given in terms of the functioh(x) in Eq. (3.13 by Therefore, from Eq(8.5),
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— 242
E Bg\];)%v(O):ZyZMZd)Z_l_ 5y3u¢3/2+ 3y4¢4/4’ X 49 ¢ . (83@
| I (8.2  Together with a masslesén Landau gauge real scalar

Nambu-Goldstone boson, these form a massive vector super-

(s1) ©) 0 2.0 s 3 4 d multiplet. In addition, there are two massless real scalars and

~Yé ¢%V ==Yy utdT=3y nd 22—y 412, one massless Weyl fermion forming a chiral supermultiplet.

(8.22 The DR’ one-loop effective potential vanishes because of

these mass degeneracies. The two-loop effective potential

where\, runs overy, u, so that Eq(7.2) is indeed satisfied. contributions in theDR’ scheme are

At two-loop order, one finds from Eq$8.13—(8.16 and
(B6)—(B9) that 1
V&&= 07X 5 fss40.00) +fss40xx) |, (8.3D

Q%v(2>+ S gL (51)¢) v
d [

MOan, d
4,2 4245 3B V&= 0 fres(0X,0) + fres(0X,X)
= + + 4. 8.2
YOy hdTEYS ®23 +2frs(X,%,0)], (8.32
From the two-loop RG scalar anomalous dimension and beta
functions: )
2 4 V&~ 2[fssv(0 0x)+fssf0XX)], (833
Yo ==Y 2, (8.24
D= —y4pu, 8.2 9
ﬂl’« y a ( 5) VS/S) ?FVS(X!X)v (834)
BE=—3y%12, (8.26
one also finds V{R) = g?XFyyx,x,0), (8.39
V), =g%F ey (0X,X), 8.3
z B(z)—V(O)——2y4,u2¢2—5y5,u¢3/2—3y6¢4/4, Frv=0"Frrv(0.X,X) (8.36

NOaN,

(8.27 with the other contributions vanishing. One can now check
by plugging in the results of Sec. VI that the sum of Egs.
(8.3)—(8.36 yields 0, as required for a supersymmetric
vacuum. This constitutes a nontrivial identity involving can-

(8.28 cellations between different two-loop functions which be-
come apparent after writing them in terms of the functions

The results of Eqs(8.23, (8.27 and (8.28 combine to |(x,y,z), J(x,y) andJ(x).

verify Eq. (7.3. Another check which relies on a different set of cancella-

In the special case @p=0, supersymmetry is not broken, tions is obtained if we takeb=0 in the above model, but
and the effective potential should vanish. At one-loop Ordernow include a Superpotentia| mass tepmin that case, the

J
_ 7&3,2) b—

% VO=y42¢2+ 3yS udp32+ye 2.

Eq. (8.6) then vanishes trivially. At two-loop order, vector gauge boson and the gaugino are massless, and the
2 real scalar fields and the chiral fermions all have squared
\/(2):y_[szsséludz,ILLZHMZ)Jr fod w2 u?) massu?. Then one obtains for the contributions to the two-
2 loop effective potential in th®R’ scheme:
+fees(u? u? u?)], (8.29
VL= g*fsdu? p?), (8.3
which equals 0 by virtue of Eq$4.12—(4.14).
VEs=4g%ters(0u% 12), (8.39
B. Supersymmetric QED in supersymmetric vacua
Let us now consider a supersymmetti¢1) gauge theory V2 = g%f ssf 12, 12,0), (8.39
with coupling constang and a pair of chiral superfields with
charges* 1. VA, = 9%Fery(1? 12,0), (8.40

First take the case that the chiral superfields do not have a
mass term before symmetry breaking, and the two scalar 2 - by
fields have the same classical background valu@hen the VEeV= =g uFrrv(p,n50), (841
gauge symmetry is broken, but supersymmetry remains un-
broken sincep parametrizes a flat direction. The vector bo- with all other contributions vanishing. Again one finds from
son, two Weyl fermions, and a real scalar field each obtain ¢he results of Sec. VI that the sum of Eq8.37)—(8.4))
mass yields 0, as required for a supersymmetric vacuum.
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C. Supersymmetric SU(N.) gauge theory with one flavor in TABLE I. Multiplicities of mass eigenstates in the model of Sec.
supersymmetric vacua Vil C.
Aricher set of checks is found in non-Abelian supersym-,_ ..\ type m2=0 m2=x =y
metric models. As an example, consider supersymmetric
SU(N.) gauge theory with one flavor of chiral superfie@s  Real scalars R.+1 2N.—2 1
and Q' in the fundamental and antifundamental representaveyl fermions NZ—2N,+1 4N.—4 2
tions, respectively. Here=1, ... N, is a color index. Con- Vectors NZ—2N, 2N;—2 1
sider evaluation of the effective potential for the classical
background:
242
_ X= , (8.43
(Q)=(Q)=6.16. (8.42 ¢
These VEVs break the gauge symmetry according to
SU(N.)—SU(N;,—1), but ¢ parametrizes a flat direction y= 2(N.—1) 922 (8.44)
and supersymmetry is unbroken. Therefore the effective po- N, ' '

tential must vanish at each order in perturbation theory for
any value of¢. My aim is to show this explicitly.

The particle content for nonzeré consists of AN,—1 and the multiplicities of the mass eigenstates are shown in
massive vector supermultiplets with their associated massFable |. Because of the mass degeneracies indicated in Table
Iess(in Landau gaugereal scalar Nambu-Goldstone modes, |, the one-loop contribution to the effective potential van-
NZ—2N, massless vector multiplets associated with the unishes as required.
broken gauge symmetry, and one massless singlet chiral su- At two-loop order, | find the contributions in thBR’
permultiplet. The nonzero squared-mass eigenvalues are scheme to be

(2) _ ot g2 (N.—1)? N.— (Ng—1)?
Vgésg ¢ fsséo OX)+—fss§0 Oy)+ fsséox X)+—fsss§0,y,y)
2N2 N2
(N —2)%(N, —1)f OXY) (8.45
1X1 b .
4N2 ss y
V&=o, (8.46

o 2N2—3N.—1 3(Ng—1) Ne—
VEEs=9 f{fFFS(nyro)‘l'fFFS(vaaX)}+ TfFFS(X X0+ {fFFS(an 0)

2

N.—1 Ng—N.+2
+fees(0y,y)}+ N—fFFS(yiy-O) + T{fFFS(Xay:O) +fers(X,Y,X)}
C C

No—1
+ TfFFS(Xany) ,

(8.47

1 2(Ne—1)
{fﬁS(vaay) - fﬁS(nyvo)}—i_ N—C{fﬁS(Xiyix) - fﬁS(vayo)} ’ (848

N —
@ _ a2 Ne
Vies=0"¢ [ 5

@ g2 Nt Ne— Ne— No(Ne—2)
Vssv=97 —5 fssd0,0x)+ 4 fssv(o O+ N fssv(oy y)+—— fSS\IOX X)+ Tfss\ﬁX,X.O)
1 Ne.—
4N T Tssux X y) + — — fSS\iX Y X) |, (8.49
v@-g? N te et = fRete 8.5
g VS(XlX) 4 VS(X!y) ZNC VS(yix) 4Nc VS(yiy) ’ ( . @
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No(Ne—2) N.—1 (N.—2)? (N.—1)2
VRs=0"¢2 —5——Fuvd 0X,0)+ —5—Fyyd .0+ N, PwEx Y0t w0
) (850
2 o 2Ne=3Nc—1 Ne— NZ+
VERv=0 > Frev(0X,X) +Nc(Ne—=2)Fepy(X,X,0) + —=— 2N, FFFV(Ony y)+ 2N, — Frev(XX,Y)
3N.—1
+ TFFFV(nyyX) , (8.52
V%\/Z—94¢2[Nc(Nc—2)Fﬁv(X,X.0)+Fﬁv(X,X,YHZ(Nc—1)Fﬁv(X,y,X)], (8.53
No(N.—2) N
Véza)uge_ 2[%Fgaugéovxix)+ZCFgauge(XyXay) . (8.59
|
After some algebra, using Eq$.12—(4.16 and (6.21)— ) G
(6.30, one finds that the sum of these contributions indeed VO=A+m? ¢+ 7(1?4- (8.61)

vanishes, as required by unbroken supersymmetry in the flat
direction parametrized b.

From Eq.(3.13, the DR’ one-loop effective potential con-

D. Softly-broken supersymmetric QED

Consider the case of supersymmetric QED with a cou-
pling g and two chiral superfields with chargesl, as in
Sec. VIII B. However, now we introduce supersymmetry-
breaking effects in the form of a gaugino madsand non-

tribution is

VD =2h(x;)+h(x,)+h(x3)—2h(y;) — 2h(y,) + 3h(2).

(8.62

holomorphic soft supersymmetry-breaking scalar squareth that scheme, by following the procedures described in
massesn® andm? for the scalar fields of charge 1,—1  Secs. Il A and VI, | find the following contributions to the

respectively. Instead of equal VEVs, the scalar fields oftwo-loop effective potential:

charge+1,—1 are taken to have classical background values
¢,0 respectively. Then the four real scalar mass eigenstates
obtain squared masse&s,X; ,X,,X3 where

x;=m> —g2¢?, (8.59
Xo=m: + g2, (8.56
X3=m> +3g2¢2, (8.57

and the three fermion mass eigenstates obtain squared
masses §,,Y», with

y1=[M?+4g°¢*~MM?+8g°¢*]/2,  (8.59
Y>=[M?+4g°¢*+ MM?+8g%¢?]/2,
(8.59
while the vector boson obtains a mass
72=20%¢°. (8.60

Because supersymmetry is explicitly broken, RG invariance
requires that a vacuum-energyis included among the soft
supersymmetry breaking terms. The tree-level potential is
then

116003-15

VR g* ¢ fssdxq Xq,X3) + EfSS§X21X21X3)
+ Efsséxs,xsyxs) , (8.63
@)_ 2 1
Vgs=0°| fsdX1,X1) — Efséxbxz)_ Efs§X1,X3)
3 1
+ gfssfxzaXzH' Zfss(xz,xs)
3
+ gfss(xs,xs) ; (8.64

2
g
VEs= 73 ggzg 20t D fers0y1.x0) +2(y;
+2)fres(0y2,X1) + 22{fres(Y1,Y1,X2)
+ fers(Y1,Y1.X3) + Trrs(Y2,Y2.X2)
+Fers(Y2,Y2,X3) } M feeg(Y1,Y2, %))

+fres(Y1,Y2.%3)} ], (8.69
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2
@ _ 29 ‘¢
Vigs m[z)/l{fws(h Y1,X3)

—fEEs(Y1,Y1.%2) } + 2y  frEs(Y2,Y2.X3)
—fEEs(Y2, Y2, %)} MP{fEEs(Y1, Y2, %0)

—fers(Y1.Y2.X3)} ], (8.66
g2
V(SS) [fSS\ixlIXl! )+fSS\£X2!X31Z)]1
(8.67)
2)— 42 1 1
VWs=9% Fus(zxy) + 5Fvs(z.X0) + 5 Fys(zX3) |,
(8.68
V) s=9%zFyvz.2.X3), (8.69

2

g
(2) _ 2 242
VERy 2(MZ+ 89742 )[(M +89°¢°)Frrv(0,02)

+YoFerv(Y1.Y1,2) +Y1Ferv(Y2.Y2,2)

+2zFp(Y1,Y2,2)], (8.70

29°¢"
V%v: W[FFFV(yl Y1,2) +Ferv(Y2,Y2,2)
—2Fgrv(Y1.Y2,2)], (8.71
Ve 0. (8.72

We can now test the RG invariance of the effective poten-
tial. The one-loop scalar anomalous dimension and beta

functions in theDR’ scheme are

yPh=—¢?, (8.73
1) _ 3

BSY=2¢° (8.74

Bi'=4g"M, (8.79

B = —8g2M2+2g2(m2 —m?), (8.76
2

B = —sgPM?+2g(m? —m2), (8.7
W=(m?)?+(m?)2—M*, (8.78

From Eq.(8.62 one therefore finds that
a
QEV(”: M4—(mi)2—(m2_)2+892¢>2M 2+292¢2m2

—4g?¢*m; — 4g*¢*, (8.79

and, from Eqs(8.73—(8.78),
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2 ﬁ“ﬂﬁv(")— M+ (m?)?+(m?)°—8g°¢°M?
—202¢*m’ +2g%¢*m? +2g*¢*,
(8.80
—Y$Vg a¢v(0)—29 $*mi +2g%¢*, (8.81)
so that Eq(7.2) is satisfied. At two loop order, one has
y{$9=4g*, (8.82
2)_
BY=8g°, (8.83
Bﬁ):32g4|v| (8.89
,8(2) 96g*M 2+ 16g*m? | (8.8
B(Z) 969*M2+ 16g*m2 (8.86
B=4g3(m?)?+4g3(m* )2+ 8g>M*?, (8.87)

so that
(2)(9(0) 2pn g 4 20212 2/ "2\ 2
2 B G VO =8gPM  4g?(m? )+ 4gE(m?)

+96g*$?M?+ 169 ¢?m? +8g°4*,
(8.89

d
_ ygbs,z)d)%v(o): —8g*¢’m? —8g°e*. (8.89

One also finds from Eq98.63—-(8.72 and the results of
Sec. VI

s 1)¢ 7 v

=—8g°M*—4g*(m?)?—4g*(m?)?
_ 9694,\/' 2¢2_ 894¢2mﬁ )
Together, Eqs(8.889—(8.90 verify Eq. (7.3).

Q—Qv<2>+ Y Y~ oy

(8.90

IX. OUTLOOK

In this paper, | have presented the results for the two-loop
effective potential of a general renormalizable field theory in
the Landau gauge, in each of tMS, DR, andDR’ renor-
malization schemes. These results should be useful in con-
necting specific models of electroweak symmetry breaking to
future data in a precise way.

It is not unlikely that the correct model for physics near
the TeV scale is based on some version of softly-broken
supersymmetry, either the MSSM or some moderate exten-
sion of it. Previous calculations of the effective potential in
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the MSSM have used the one-loop res[lﬂ8] and partial APPENDIX A: INDIVIDUAL DIAGRAM CONTRIBUTIONS
two-loop approximations with leading corrections propor- TO THE FUNCTIONS f5,0e AND F gayge

tional to asy; andy; [29-33. However, there is still some The three Feynman diagrams labelstV, VVV, and
RG scale dependence in these results, compared to estima F— ; vy ' ! 2be
of our eventual ability to measure properties of the Higgs{f&\/ in Fig. 2 all involve the field-dependent coupling™,

i ield/@ indi-
sector at future colliders. Use of the full two-lo@R’ ef- and combine {0 yieldgsge In the MS scheme, the indi

fective potential should further reduce the scale dependencg'.dual ld|agram c.:ontrlbuuo.ns to the functidga g{x.y.z) are
iven in an obvious notation by

RG improvement method47-20,34—-38should enable an 9
accurate determination of the vacuum of the MSSM and its
extensions. | plan to report on the application of the results fg,,.(x,y,z)=fyy(X,y,2) + fyu(X,y) + fyv(X,2)
of the present paper to the MSSM sd@&9].

+fVV(va)+fggV(X)+fggv(y)+fggv(z)-
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|
fup(X,Y,2) = Ixyz (—x*—8x3y—8x3z+ 32y z+ 18y?Z?)1 (X,y,2) + (y— 2)%(y?+ 10y z+ z%)1 (0,y,z) — x*1 (0,0 %) + (X2
) 129 2y z
—9y?— 972+ 9xy+ 9xz— 13y2)xJ(y,z) + 4x3y z+ Txyzzz— = T3t 5|xyzdx) | F(xey)
+ (X 2), (A2)
f 27 asc A%y 6y s
WX, y) = I Y) + = d(y) + = I+ — &= (A3)
X X
fagv(X)=51(0,00) + ZI(x). (A4)
Similarly, in theDR’ scheme,
FgaugdX,¥,2) = Fuw(X,Y,2) + Fuu(X,Y) + Fyv(X,2) + Fyu(Y,2) + fggl X) + F gl y) + fgqu(2), (A5)
where
I:VVV(X!yYZ) = fVVV(X’y!Z) + feeV(Xfy!Z) + feeV(ZYX!y) + feeV(y!Z!X)’ (A6)
Fuv(X,Y) = fuu(X,y) + (X, y) + Fou(y, X) + fee(X,Y) (A7)

with fyq\(X) given as before. Explicitly,

1
Fuw(X,Y,2)= ——1 (—x*—8x3y—8x3z+ 322y z+ 18y?Z?) 1 (X,Y,2) + (y — 2)?(y?>+ 10y z+ 22) 1 (0,y,z) — x*1 (0,0 ) + (x?

4xyz
xy?z? 44x 4Ty ATz
—9y2— 972+ 9xy+9xz— 13y2)xJ(y,z) + 7 + _T+T+7 XyzJX) { + (X=Yy)+(X<=2),
(A8)
27 3x 3y Xy
Fuv(x.y)=73(xy) = 5 I(y) = 5 I(X)— 76 (A9)
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The results for vanishing arguments are easily obtained from 4

Egs.(2.29-(2.31). Q@fssdx,y.ZF12xh’(><)+12yh’(y)+(12><+ 12y
APPENDIX B: RENORMALIZATION-GROUP-SCALE —42z)h’(z) - 2x*—2y*— 12xy— 6x2
DERIVATIVES 10
_ -2
It is often useful to have expressions for the derivatives of Gyz+ 3 z (B10)

the two-loop effective potential functions with respect to the
renormalization scal®, for example to check RG invari- g
ance. The derivative of the one-loop effective potential func-  Q—=fyg(X,y)=—12yh’(x) —12xh’(y)—4xy,

tion h(x) defined in Eq(3.13 is 9Q (10
Q i h(x) 212 (B1) J 9
—h(x)=—x°/2. X
JQ QEfvvs(X,y,Z):_9h’(x)—9h’(Y)_121’(2)+7
For checking the RG invariance of the effective potential, it 9y
is convenient to write the derivatives of two-loop functions + 7—2, (B12)

with respect toQ in terms of the derivative of the one-loop
function with respect to its squared-mass argument:

J
X Qﬁfppv(x,y,z)=(12x+ 12y—8z)h'(z) +6xz+6yz
h'(x)= z(Inx—1). (B2)
2 2
8z
- . +—= (B13)
The derivatives of the two-loop functions can all be found 3

from those of the basis functions:

J
Q—=Tfrrv(X,y,2)=24h"(X)+h'(y)+h'(2)] - 4x—4y

iJ(x)= - 2x, (B3) 9Q

122, (B14)

Jd
Q—=J(x,y)=—4yh'(x)—4xh'(y),

JQ 7 _ , ,
(B4) Qangaugéx’yvz) 9[(x+y)h'(2)+(x+2)h'(y)+(y

P +2)h’(x)]+ 5 xh"(x)+yh'(y)
Q-=1(xy,z2)=4[h'(x)+h'(y)+h'(2)]
9Q 19
+zh’(z)]—§(x2+y2+22)—63(xy

—2(x+y+2z). (B5)
_ +yz+x2). (B15)
For the derivatives of th&S two-loop functions, one finds
For the functions used with epsilon scalars in tB®

Q%fsséx-y,2)=—4[h’(X)+h’(y)+h’(2)]+2(X+y scheme, one has

d
+2), (B6) Qﬁfés(x,y):4xy, (B16)
J
Q@fss(x,YF—4yh’(X)—4xh’(y), (B7) P
Q_feeS(X-yaz) :421 (817)
aQ
J
Q%fFFS(vaaZ):4Xh,(x)+4yh’(y)+(8X+ 8y P
Q&_fFFE(X!y!Z):_4X2_4y2! (818)
—472)h'(2) — 2x%—2y?+27°— 4xy, Q
(B8) d
J Qﬁfﬁe(xlyiz) =—8x—-8y, (Blg)
Q%fﬁs(X.y,ZFS[h’(XHh’(y)+h’(2)]—4(X+y 5
+ Z), (Bg) Q%fGV(le) = 12Xy' (BZO)
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fe(xy)=0, (B21)

J
RFTe}

foev(X,Y,2)=—12xz— 12y z+47°.
(B22)

J
RFTe)

Finally, the functions used in thBR’ schemebesides those
found in MS) satisfy

1%
Q—

70 Fyvs(x,y)=—12yh"(x) = 12xh'(y),

(B23)

d 9
Qs Fuvdxy.2)= =9 ()~ 9h'(y) - 12" (2)+

9
+—y+32,

5 (B24)

PHYSICAL REVIEW D 65 116003

Q% Ferv(X,Y,2)=(12+ 12y —82)h’(z) — 4x?— 4y?
2
+6xz+6yz+ —-, (B25)
9
QE Ferv(X,y,2)=24h"(x)+h'(y)+h'(2)]
—-12(x+y+2z), (B26)
9
Q@ FgaugéX,y,2) =9[(x+y)h'(2)+ (x+2)h'(y)
+(y+2z)h'(x)]+52Z xh’(x)
7
YW (y) +zh' (2)] = 5 (x*+y?
+27%)—63(Xy+Yyz+Xx2). (B27)
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