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Two-loop effective potential for a general renormalizable theory and softly broken supersymmetry
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I compute the two-loop effective potential in the Landau gauge for a general renormalizable field theory in
four dimensions. Results are presented for theMS renormalization scheme based on dimensional regulariza-
tion, and for theDR andDR8 schemes based on regularization by dimensional reduction. The last of these is
appropriate for models with softly broken supersymmetry, such as the minimal supersymmetric standard
model. I find the parameter redefinition which relates theDR and DR8 schemes at two-loop order. I also
discuss the renormalization group invariance of the two-loop effective potential, and compute the anomalous
dimensions for scalars and the beta function for the vacuum energy at two-loop order in softly broken super-
symmetry. Several illustrative examples and consistency checks are included.
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I. INTRODUCTION

The Fermilab Tevatron collider and the CERN Large Ha
ron Collider ~LHC! hold the promise of exposing the natu
of spontaneous electroweak symmetry breaking. In the s
dard model, this mechanism relies on a nonzero vacuum
pectation value~VEV! for a fundamental Higgs scalar field
There are good theoretical and experimental reasons to
pect that this picture is correct, but incomplete, and mus
embedded in a larger theory such as supersymmetry@1,2#.
When new experimental discoveries are made, the task
telling the difference between different candidate models
electroweak symmetry breaking and constraining the un
lying parameters of the successful theory will require hig
precision calculational tools at the two-loop level or bette

The effective potential@3–5# allows the calculation of the
VEVs in the true vacuum state of a theory with spontane
symmetry breaking. In this formalism, the scalar fields of
theory are each separated into a constant classical b
groundf plus quantum fluctuations. The effective potent
V(f) is equal to the tree-level potential in the classical ba
ground, plus the sum of one-particle-irreducible connec
vacuum graphs. These are calculated using the Feyn
rules withf-dependent masses and couplings. Thus one
write

V5V(0)1
1

16p2 V(1)1
1

~16p2!2 V(2)1•••, ~1.1!

whereV(n) represents then-loop correction.1 In this paper, I
will be concerned with the effective potential in Landa
gauge. Although the effective potential itself is gaug
dependent, physical properties following from it, such as
value at stationary points, and the question of whether or
spontaneous symmetry breaking occurs, are gauge inva
@6#. The one-loop contributionV(1) is well known for a gen-

1To save ink, a factor of 1/(16p2)n is always factored out of the
n-loop contribution to the loop expansion of the effective potent
b functions, and anomalous dimensions in this paper.
0556-2821/2002/65~11!/116003~20!/$20.00 65 1160
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eral field theory, and is reviewed in Sec. III. In Ref.@7#, Ford,
Jack and Jones have calculatedV(2) in the special case of the
standard model using dimensional regularization~DREG!
with minimal subtraction or modified minimal subtractio
(MS). Their calculations can be generalized to obtain
corresponding result for any renormalizable field theory, a
will do explicitly in Sec. IV.

However, it is well known that the DREG regularizatio
method is not convenient for theories based on supersym
try. This is because in DREG, the vector field only has
22e components, introducing a spurious nonsupersymm
ric mismatch with the number of degrees of freedom of
gaugino. Therefore, in DREG the relationships between c
plings which should hold in a softly broken supersymmet
theory are violated even at one-loop order. Instead, one
use the dimensional reduction~DRED! method@8#, in which
loop integrals are still regularized by taking momenta in
22e dimensions, but all 4 components of each vector fi
are kept. The extra 2e components of the gauge field i
DRED transform like scalars in the adjoint representation
the gauge group, and are known as epsilon scalars.
renormalization scheme based on DRED with modified m
mal subtraction is known asDR. It has the virtue of main-
taining manifest supersymmetry in theories where supers
metry is not explicitly broken.

Realistic models of the physics at the TeV scale do
volve explicit soft violations of supersymmetry, however.
such models, theDR renormalized dimensionless coupling
of the theory obey the relations prescribed by unbroken
persymmetry. However, the epsilon scalars in general do
have the same masses or dimensionful couplings as do
ordinary 422e vector field. In fact, computation of the
renormalization group~RG! equations shows that the run
ning squared masses of the epsilon scalars cannot be co
tently set equal to those of the corresponding vector ga
bosons@9#. This makes theDR scheme also inconvenien
since the epsilon-scalar masses are unphysical. A be
scheme is theDR8 scheme@10#, which differs fromDR by a
parameter redefinition. TheDR8 scheme offers the advan
tages that the epsilon-scalar masses completely deco

,
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from all RG equations, and also from the equations that
late running renormalized parameters to pole masses
other physical observables.

In this paper, I will present results for the two-loop effe
tive potential in the Landau gauge and in each of
MS, DR, and DR8 renormalization schemes. For mode
with exact supersymmetry, the last two schemes are
same, while for models with softly broken supersymme
the DR8 scheme is by far the most convenient.

The topologies of the one-particle-irreducible connec
vacuum graphs at one- and two-loop orders are shown in
1. Because the one-loop graph topology does not invo
interaction vertices,V(1) clearly depends only on the field
dependent squared massesmn

2 , where the indexn runs over
all of the real scalars, two-component fermions, and vec
degrees of freedom in the theory. Note that any comp
scalar can be written in terms of two real scalars, while fo
component Dirac and Majorana fermions can always be w
ten in terms of two-component left-handed Weyl fermions
a way thoroughly familiar to disciples of supersymmetry~see
Refs. @1,2# for a discussion!. In any dimensional-
continuation regularization scheme, quadratic divergen
are automatically discarded, and one finds for the renorm
ized effective potential at one-loop order:

V(1)5
1

4 (
n

~21!2sn~2sn11!~mn
2!2~ ln mn

22kn!.

~1.2!

Here I have adopted the notation

ln~x!5 ln~x/Q2!, ~1.3!

where Q is the renormalization scale, andsn50,1/2,1 for
real scalars, two-component fermion, and vector degree
freedom respectively,2 andkn are constants depending on th
details of the renormalization scheme.

From Fig. 1, it is clear that at two-loop order the res
must be of the form

V(2)5(
n,p

gnnppf np~mn
2 ,mp

2!

1 (
n,p,q

ugnpqu2f npq~mn
2 ,mp

2 ,mq
2!, ~1.4!

where gnpqr and gnpq are field-dependent four- and thre
particle couplings, and f np(x,y) and f npq(x,y,z) are

2The contribution of epsilon scalars is discussed in Sec. III.

FIG. 1. Topologies of one-particle-irreducible connect
vacuum Feynman diagrams for the one-loop and two-loop con
butions to the effective potential.
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Q-dependent functions obtained by performing the appro
ate two-loop integrations. So the task is to identify the
objects for each combination of particle types that can c
tribute.

The rest of this paper is organized as follows. Section
describes the field-dependent masses and couplings, list
relevant Feynman diagrams, and presents necessary con
tions. Section III reviews the one-loop effective potenti
distinguishing between theMS, DR, and DR8 schemes.
Sections IV–VI present the results for the two-loop effecti
potential contribution in each of those schemes. Section
also explicitly gives the redefinitions necessary to go fro
DR to DR8. Section VII discusses the RG invariance of t
effective potential in theDR8 scheme, and derives some ne
essary results for the scalar anomalous dimension
vacuum energy beta function in softly broken supersymm
try. Section VIII contains some illustrative examples a
consistency checks.

II. CONVENTIONS AND SETUP

A. Field-dependent masses and couplings

Let us write the quantum fields of a general renorma
able field theory as a set of real scalarsRi8 , two-component
Weyl fermionsc I8 , and vector fieldsAa8

m . Scalar flavor in-
dices arei , j ,k, . . . ; fermion flavor indices areI ,J,K, . . . ;
and a,b,c, . . . run over the adjoint representation of th
gauge group. Space-time vector indices are written as G
letters m,n,r, . . . . I use a metric with signature (211
1), and the notations for fermions follow@1,2#. The primes
are used to indicate that these fields are not squared-m
eigenstates. The kinetic part of the Lagrangian includes

2L5
1

2
mi j

2 Ri8Rj81
1

2
~mIJc I8cJ81c.c.!1

1

2
mab

2 Aa8
mAmb8 .

~2.1!

The symmetric fermion mass matrixmIJ yields a fermion
squared-mass matrix

mIJ
2 5mIK* mKJ. ~2.2!

Thenmi j
2 andmab

2 are real symmetric matrices, andmIJ
2 is a

Hermitian matrix, and in general they all depend on the cl
sical background scalar fields. In order to calculate the eff
tive potential, the first step is to rotate to squared-mass eig
state basesRi , c I , Aa

m . This can be done by using
orthogonal matricesN(S), N(V) for the scalar and vector de
grees of freedom, and a unitary matrixN(F) for the fermion
degrees of freedom. So, the rotations

Ri85Nji
(S)Rj , ~2.3!

c I85NJI
(F)* cJ , ~2.4!

Aa
m85Nba

(V)Ab
m , ~2.5!

are chosen such that

i-
3-2
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TWO-LOOP EFFECTIVE POTENTIAL FOR A GENERAL . . . PHYSICAL REVIEW D 65 116003
Nik
(S)mkl

2 Njl
(S)5d i j mi

2 , ~2.6!

NIK
(F)mKL

2 NJL
(F)* 5d IJmI

2 , ~2.7!

Nac
(V)mcd

2 Nbd
(V)5dabma

2 . ~2.8!

Heremi
2 , mI

2 , andma
2 are respectively the scalar, fermio

and vector squared-mass eigenvalues which will appea
the effective potential. It should be noted that in generalN(F)

diagonalizes the fermion squared-mass matrixmIJ
2 , but need

not diagonalize the fermion mass matrixmIJ. All that is re-
quired is that

MIJ5NIK
(F)* mKLNJL

(F)* ~2.9!

has a block diagonal form, with nonzero entries only b
tween states with the same squared-mass eigenvalue. In
it is quite often not particularly desirable forN(F) to diago-
nalize the fermion mass matrix, for example in the case
charged Dirac fermions, with doubly-degenerate eigenva
for mI

2 , whereMIJ is best left off-diagonal in 232 blocks.
The matrixMIJ and its complex conjugateMIJ* will appear
as mass insertions. In practical applications, the diagona
tions just described are easily performed numerically usin
computer, and under favorable circumstances~such as those
studied in Sec. VIII! they can be done analytically. In eithe
case, the problem amounts to finding the orthonormal eig
vectors ofmi j

2 , mIJ
2 , andmab

2 .
Now the interaction terms in a general renormaliza

theory can be written in terms of the squared-mass eigen
fields as

LS52
1

6
l i jkRiRjRk2

1

24
l i jkl RiRjRkRl , ~2.10!

LSF52
1

2
yIJkc IcJRk1c.c., ~2.11!

LSV52
1

2
gabiAm

a AmbRi2
1

4
gabi jAm

a AmbRiRj

2gai jAm
a Ri]

mRj , ~2.12!

LFV5gI
aJAm

a c†I s̄mcJ , ~2.13!

Lgauge5gabcAm
a An

b]mAnc2
1

4
gabegcdeAmaAnbAm

c An
d

1gabcAm
a vb]mv̄c, ~2.14!

where va and v̄a are massless~in Landau gauge! ghost
fields. This defines the field-dependent couplings to be u
in the two-loop effective potential calculation. The scalar
teraction couplingsl i jk and l i jkl are each completely sym
metric under interchange of indices, and real. The Yuka
couplingsyIJk are symmetric under interchange of the fe
mion flavor indicesI ,J. The remaining couplings all hav
their origins in gauge interactions. The vector-scalar-sc
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couplinggai j is antisymmetric under interchange ofi , j . The
pure gauge interactiongabc is completely antisymmetric; it is
determined by the original gauge couplingg, the antisym-
metric structure constantsf abc of the gauge group, andN(V),
according to

gabc5g fe f gNae
(V)Nb f

(V)Ncg
(V) . ~2.15!

Similarly, if the fermionsc I8 transform under the gaug
group with representation matrices (Ta) I

J , then the vector-
fermion-fermion couplings are

gI
aJ5g~Tb!L

KNJK
(F)* NIL

(F)Nab
(V) . ~2.16!

Note that even the dimensionless couplings generically
pend on the classical scalar background fieldsf, through
their dependence on the rotation matricesN(S), N(F), and
N(V).

B. The Feynman diagrams

The two-loop effective potential is to be evaluated
computing the one-particle-irreducible connected vacu
Feynman diagrams appearing in Fig. 2. The masses and
plings of fields appearing in these diagrams are as indica
on the right sides of Eqs.~2.6!–~2.14!. Dashed lines denote
scalar propagators. Solid lines denote fermion propaga
with helicity along the direction of the arrow, and large do
between opposing arrows denote insertions of the ferm
mass matrixMIJ or its complex conjugateMIJ* , depending
on whether the arrows are incoming or outgoing. Vec
propagators are indicated by wavy lines, and ghost propa
tors by dotted lines. Each graph is also labeled by the typ
propagators it contains, withS,F,V,g standing respectively
for scalar, fermion, vector and ghost. Also, the presence

FIG. 2. The one-particle-irreducible connected Feynman d
grams contributing to the two-loop effective potential. Dashed lin
denote real scalars, solid lines denote Weyl fermions carrying
licity along the arrow direction, wavy lines are for vector boson
and dotted lines are for ghosts. The large dots between oppo
arrows on the fermion lines in theFFS andFFV diagrams denote
mass insertions. TheFFS diagram is accompanied by its comple
conjugate~the same diagram with all arrows reversed!.
3-3
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STEPHEN P. MARTIN PHYSICAL REVIEW D 65 116003
mass insertions in fermion lines is indicated by the overlin
in the labelsFFS andFFV. The results for these Feynma
diagrams~plus counterterms! are reported in Secs. IV, V, an
VI.

C. Two-loop integral functions needed for vacuum graphs

All of the effective potential two-loop integrals can b
expressed in terms of linear combinations of functions int
duced and studied by Ford, Jack and Jones in@7#. I will
follow a notation similar but not identical to theirs: the fun
tions I (x,y,z), J(x,y), andJ(x) used here are equal to th
e-independent parts of the functionsÎ (x,y,z), Ĵ(x,y), and
J(x) used in Ref.@7#, up to obvious factors of 1/16p2. Ex-
plicitly I choose to express results in terms of

J~x!5x~ ln x21!, ~2.17!

J~x,y!5xy~ ln x21!~ ln y21!, ~2.18!

I ~x,y,z!5
1

2
~x2y2z!ln y ln z1

1

2
~y2x2z!ln x ln z

1
1

2
~z2x2y!ln x ln y12x ln x12y ln y

12z ln z2
5

2
~x1y1z!2

1

2
j~x,y,z!. ~2.19!

Here j(x,y,z) was originally found in terms of Lobachev
skiy’s function or related integrals in Ref.@7# using methods
developed in@11,12#, but it can also be expressed@13–15# in
terms of dilogarithms according to~for x,y<z):

j~x,y,z!5R$2 ln@~z1x2y2R!/2z#

3 ln@~z1y2x2R!/2z#

2 ln~x/z!ln~y/z!22Li2@~z1x2y2R!/2z#

22Li2@~z1y2x2R!/2z#1p2/3% ~2.20!

with

R5@x21y21z222xy22xz22yz#1/2. ~2.21!

The dilogarithm function is defined in the standard@16# way
for any complexz:

Li 2~z!52E
0

zln~12t !

t
dt. ~2.22!

To resolve branch cut ambiguities which could arise, con
tently choose Arg(R)50 or p/2 along with

2p,Im@ ln~z!#<p ~2.23!

for all logarithms of negative or complexz, including the
logarithm appearing in the integral definition of the dilog
rithm. So, for example, whenx is real and greater than 1,

Im@Li2~x!#52 ip ln~x!, ~2.24!
11600
s

-

s-

Im@Li2~x6 id!#56 ip ln~x!, ~2.25!

for d real and infinitesimal, while Im@Li2(x)#50 if x is real
and less than 1. The functionsj(x,y,z) and therefore
I (x,y,z) are invariant under interchange of any two ofx,y,z.

It is useful to have expressions for these functions in
special cases of vanishing arguments. In addition to
trivial identities J(0)50, J(x,0)5J(0,x)50 and I (0,0,0)
50, one finds@15#

I ~0,x,y!5~x2y!FLi2~y/x!2 ln ~x/y!ln~x2y!1
1

2
~ ln x!2

2
p2

6 G2
5

2
~x1y!12x ln x12y ln y2x ln x ln y,

~2.26!

I ~0,x,x!52J~x!22x2
1

x
J~x,x!

52x~ ln x!214x ln x25x, ~2.27!

I ~0,0,x!52
1

2
x~ ln x!212x ln x2

5

2
x2

p2

6
x.

~2.28!

It is also sometimes useful to expand these functions
infinitesimal arguments:

I ~d,x,y!5I ~0,x,y!1d$2~x1y!I ~0,x,y!22J~x,y!

13xJ~x!13yJ~y!2yJ~x!2xJ~y!2~x1y!2

1~x2y!@J~y!2J~x!# ln d%/~x2y!21•••,

~2.29!

I ~d,x,x!52J~x!22x2
1

x
J~x,x!1dH 41

1

2x2 J~x,x!

1
3

x
J~x!2F11

J~x!

x G ln dJ 1•••, ~2.30!

I ~d1 ,d2 ,x!5I ~0,0,x!1
d1

x
@2x2I ~0,0,x!13J~x!

2J~x!ln d1#1
d2

x
@2x2I ~0,0,x!13J~x!

2J~x!ln d2#1
d1d2

x2 $22I ~0,0,x!14J~x!22x

2@x1J~x!#~ ln d11 ln d2!1x ln d1 ln d2%

1•••, ~2.31!

where the ellipses stand for terms with more than one po
of d or eitherd1 or d2.
3-4



r i
th

uc
th

ia

he
ns
a
e

o
l

-

nt

re

n

e-
-

i-

s

the
ilon

er-
the
ed
ere-
ave

icit
or-

-

al-

s are
ec-

TWO-LOOP EFFECTIVE POTENTIAL FOR A GENERAL . . . PHYSICAL REVIEW D 65 116003
D. Conventions for softly-broken supersymmetric models

One of the main applications of the results of this pape
to models with softly broken supersymmetry, such as
minimal supersymmetric standard model~MSSM!. Therefore
I now list the relevant conventions to be used here for s
models. In general, the superpotential is given in terms of
chiral superfieldsF i by

W5
1

6
Yi jkF iF jFk1

1

2
m i j F iF j , ~2.32!

and the soft supersymmetry-breaking part of the Lagrang
is

2Lsoft5S 1

6
ai jkf if jfk1

1

2
bi j f if j1cif i1

1

2
Mlala

1c.c.D1~m2! i
jf* if j1L, ~2.33!

where thef i are the complex scalar field components of t
F i , and thela are the two-component gaugino fermio
with massM. The parameterci can only appear if there is
gauge-singlet chiral superfield in the theory. Note the pr
ence of a vacuum energy termL. This is required in order
for the full effective potential to be RG invariant@17–20#.
The two-loop beta function forL is obtained in Sec. VII, and
the beta functions for each of the other couplings at two-lo
order are given in@21,22,9,10#. Flipping the heights on al
indices of a coupling implies complex conjugation, soYi jk
5(Yi jk)* , m i j 5(m i j )* , ai jk5(ai jk)* , etc. The representa
tion matrices for the chiral superfields are denoted by (Ta) i

j .
They satisfy

@Ta,Tb#5 i f abcTc, ~2.34!

where f abc are the totally antisymmetric structure consta
of the gauge groupG. Then

~TaTa! i
j5C~ i !d i

j , ~2.35!

Tr@TaTb#5S~R!dab, ~2.36!

f acdf bcd5CGdab ~2.37!

define the quadratic Casimir invariantC( i ) for each repre-
sentation, the total Dynkin indexS(R) summed over all rep-
resentations, and the Casimir invariant of the adjoint rep
sentation. The dimension of the adjoint representation is

dG5Tr@C~ i !#/S~R!. ~2.38!

I use a normalization such that each fundamental represe
tion of SU(N) hasC( i )5(N221)/2N and contributes 1/2 to
S(R).
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III. ONE-LOOP EFFECTIVE POTENTIAL IN THE
MS, DR, AND DR8 SCHEMES

In this section, I review the known answers for the on
loop effective potential. This will allow us to carefully dis
tinguish the results in theMS, DR, andDR8 schemes.

In the MS scheme and Landau gauge, one has

VMS
(1)

5VS
(1)1VF

(1)1VV
(1) ~3.1!

where the different contributions arise from scalars, ferm
ons, and vectors going around the loop in Fig. 1:

VS
(1)5

1

4 (
i

~mi
2!2~ ln mi

223/2!, ~3.2!

VF
(1)52

1

2 (
I

~mI
2!2~ ln mI

223/2!,

~3.3!

VV
(1)5

3

4 (
a

~ma
2!2~ ln ma

225/6!. ~3.4!

The appearance of 5/6 rather than 3/2 inVV
(1) is due to the

fact that there are only 422e, rather than 4, vector degree
of freedom inMS.

In theDR scheme, one must include also the effects of
epsilon scalars. Now, it is tempting to assume that the eps
scalars have the same field-dependent mass as their 422e
vector counterparts. However, as pointed out in Ref.@9#, this
is actually inconsistent except in models with exact sup
symmetry, unless one sticks to only one fixed value of
renormalization scaleQ, because the epsilon-scalar squar
mass has a beta function which is not homogeneous. Th
fore, in general one must allow the epsilon scalars to h
squared-mass eigenvaluesm̂a

2 which are distinct from thema
2

for the ordinary vectors. To be specific, consider the expl
form of the field-dependent squared-mass matrix for the
dinary 422e vector fields:

mab
2 5gagbf* i$Ta,Tb% i

jf j . ~3.5!

This has eigenvaluesma
2 . For the epsilon-scalar squared

mass matrix, one has instead

m̂ab
2 5mab

2 1dabme
2 , ~3.6!

where me
2 is an ‘‘evanescent’’@23# parameter. This matrix

requires an orthogonal diagonalization matrixN(e) which dif-
fers fromN(V):

Nac
(e)m̂cd

2 Nbd
(e)5dabm̂a

2 . ~3.7!

Unless supersymmetry is not explicitly broken, the eigenv
uesm̂a

2 will in general differ fromma
2 , and the corresponding

couplings of the squared-mass eigenstate epsilon scalar
different from the couplings of squared-mass eigenstate v
tors, becauseN(e) differs from N(V).
3-5
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In theDR scheme, with epsilon scalars included, one n
finds

VDR
~1!

5VS
(1)1VF

(1)1VV
(1)1Ve

(1) ~3.8!

whereVS
(1) , VF

(1) , VV
(1) are as before, and

Ve
(1)52

1

2 (
a

~m̂a
2!2. ~3.9!

However,me
2 is an additional parameter with no phys

cally observable counterpart, and so its appearance in
effective potential is quite inconvenient. The functional for
of the effective potential is also not directly physically o
servable, so there is no contradiction;me

2 must cancel only
from observable quantities. However, clearly one would l
to avoid having to include a distinct epsilon-scalar mass
calculations in the first place. This problem was solved in
context of softly broken supersymmetric models in Ref.@10#
with the introduction of theDR8 scheme. The point is tha
one can remove the dependence of the full one-loop effec
potential onme

2 by redefining the ordinary scalar squar
masses and the vacuum energy term appearing in the
level part Eq.~2.33!:

~mDR8
2

! i
j5~mDR

2
! i

j2
1

16p2 @d i
j2g2C~ i !me

2#, ~3.10!

LDR85LDR2
1

16p2

dG~me
2!2

2
. ~3.11!

@These hold for a simple orU(1) gauge group. If there is
more than one simple orU(1) gauge group, then the corre
tion terms should be summed over subgroups, with a dist
me

2 for each subgroup.# The result is theDR8 scheme, and
the effective potential in this scheme is the one usua
quoted in the literature~and often slightly incorrectly re-
ferred to as theDR one!:

VDR8
~1!

5(
n

~21!2sn~2sn11!h~mn
2!5STr@h~mn

2!#,

~3.12!

where

h~x!5
x2

4
@ ln~x!23/2#, ~3.13!

and n runs over all real scalar, Weyl fermion, and vect
degrees of freedom. The scalar squared masses occurri
Eq. ~3.12! are the ones following from the redefinition in E
~3.10!, and the vector squared masses are the eigenvalu
Eq. ~3.5!. TheDR8 effective potential is both manifestly su
persymmetric when the soft terms vanish, and independ
of the unphysical evanescent parameterme

2 when the soft
terms do not vanish. It is not hard to see thatme

2 is simulta-
neously banished from the equations which relate the ph
cal pole masses to theQ-dependent running masses in t
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theory, so it has been successfully decoupled from all pr
tical calculations. It would be quite clumsy to use the orig
nal DR scheme in studies of realistic models like the MSS
since in RG running and evaluation of the effective poten
one would have to keep extra contributions from epsilo
scalar masses in order to avoid inconsistencies. Therefore
DR8 scheme is the preferred one.

After making this painful distinction, it must be admitte
that theDR8 final result for the effective potential has ex
actly the same form that one would have obtained if one
naively setme

2 equal to zero in the first place in theDR
scheme calculation. However, this naive procedure is tec
cally inconsistent whenever RG running is involved@9# and
does not work for other calculations involving epsilon sc
lars, so one should really distinguish between the t
schemes as a matter of principle. The parameters appea
in the DR8 effective potential obeyDR8 renormalization
group equations, which differ from theDR ones withme

2 set
equal to 0.

The procedure of going from theDR scheme to theDR8
scheme is similar at two loops, and is described explicitly
Sec. VI.

IV. TWO-LOOP EFFECTIVE POTENTIAL IN THE MS
SCHEME

The two-loop effective potential in theMS scheme for the
general theory with masses and couplings described by
~2.6!–~2.14! can be computed by the methods described
@7#. In fact, all of the hard work of evaluating the releva
Feynman loop integrals has already been accomplis
there; no new types of integrals arise. Momentum integr
and vector indices each run over 422e dimensions. For each
two-loop diagram, one must include counterterms for
various one-loop divergent subdiagrams. The result still
cludes single and double poles ine, which are then simply
removed by two-loop counterterms in modified minimal su
traction. The final result can be divided into parts cor
sponding to the various graphs of Fig. 2. Because
VV, VVV, and ggV graphs all involve the same field
dependent couplinggabc, it is natural to combine their con
tributions into a pure gauge pieceVgauge

(2) .
For the result, I find

V(2)5VSSS
(2) 1VSS

(2)1VFFS
(2) 1VFFS

~2!
1VSSV

(2) 1VVS
(2)1VVVS

(2) 1VFFV
(2)

1VFFV
~2!

1Vgauge
(2) , ~4.1!

where, in terms of the masses and couplings as specifie
Eqs.~2.6!–~2.14!,

VSSS
(2) 5

1

12
~l i jk !2f SSS~mi

2 ,mj
2 ,mk

2!, ~4.2!

VSS
(2)5

1

8
l i i j j f SS~mi

2 ,mj
2!, ~4.3!
3-6
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VFFS
(2) 5

1

2
uyIJku2f FFS~mI

2 ,mJ
2 ,mk

2!, ~4.4!

VFFS
~2!

5
1

4
yIJkyI 8J8kMII 8

* MJJ8
* f FFS~mI

2 ,mJ
2 ,mk

2!

1c.c., ~4.5!

VSSV
(2) 5

1

4
~gai j !2f SSV~mi

2 ,mj
2 ,ma

2!, ~4.6!

VVS
(2)5

1

4
gaaii f VS~ma

2 ,mi
2!, ~4.7!

VVVS
(2) 5

1

4
~gabi!2f VVS~ma

2 ,mb
2 ,mi

2!, ~4.8!

VFFV
(2) 5

1

2
ugI

aJu2f FFV~mI
2 ,mJ

2 ,ma
2!, ~4.9!

VFFV
~2!

5
1

2
gI

aJgI 8
aJ8MII 8MJJ8

* f FFV~mI
2 ,mJ

2 ,ma
2!,

~4.10!

Vgauge
(2) 5

1

12
~gabc!2f gauge~ma

2 ,mb
2 ,mc

2!, ~4.11!

in which all indices on the right side are summed over. T
loop-integral functions appearing here are given by

f SSS~x,y,z!52I ~x,y,z!, ~4.12!

f SS~x,y!5J~x,y!, ~4.13!

f FFS~x,y,z!5J~x,y!2J~x,z!2J~y,z!1~x1y

2z!I ~x,y,z!, ~4.14!

f FFS~x,y,z!52I ~x,y,z!, ~4.15!

f SSV~x,y,z!5
1

z
$~2x22y22z212xy12xz

12yz!I ~x,y,z!1~x2y!2I ~0,x,y!

1~y2x2z!J~x,z!1~x2y2z!J~y,z!

1zJ~x,y!%12~x1y2z/3!J~z!, ~4.16!

f VS~x,y!53J~x,y!12xJ~y!, ~4.17!

f VVS~x,y,z!5
1

4xy
$~2x22y22z2210xy12xz

12yz!I ~x,y,z!

1~x2z!2I ~0,x,z!1~y2z!2I ~0,y,z!

2z2I ~0,0,z!

1~z2x2y!J~x,y!1yJ~x,z!1xJ~y,z!%
11600
e

1
1

2
J~x!

1
1

2
J~y!12J~z!2x2y2z, ~4.18!

f FFV~x,y,z!5
1

z
$~x21y222z222xy1xz1yz!I ~x,y,z!

2~x2y!2I ~0,x,y!

1~x2y22z!J~x,z!1~y2x22z!J~y,z!

12zJ~x,y!%

12~2x2y1z/3!J~z!22xJ~x!22yJ~y!

1~x1y!22z2, ~4.19!

f FFV~x,y,z!56I ~x,y,z!12~x1y1z!24J~x!24J~y!,
~4.20!

f gauge~x,y,z!

5
1

4xyz
$~2x428x3y28x3z132x2yz118y2z2!I ~x,y,z!

1~y2z!2~y2110yz1z2!I ~0,y,z!1x2~2yz

2x2!I ~0,0,x!

1~x229y229z219xy19xz114yz!xJ~y,z!

14x3yz148xy2z21~22y122z216x/3!xyzJ~x!%

1~x↔y!1~x↔z!. ~4.21!

Symmetry factors have been explicitly factored out of E
~4.2!–~4.11!, but fermion-loop minus signs and other facto
associated with the evaluation of the Feynman diagrams
contained in the definitions of the functions. The functio
obey obvious symmetries:f SSS(x,y,z) and f gauge(x,y,z) are
invariant under interchange of any two ofx,y,z,
while f SS(x,y), f FFS(x,y,z), f FFS(x,y,z), f SSV(x,y,z),
f VVS(x,y,z), f FFV(x,y,z), and f FFV(x,y,z) are each invari-
ant under interchange ofx,y.

The functions involving vector fields contain facto
1/x, 1/y, and 1/z which appear to be singular in the massle
vector limit. This is due to the appearance in the Land
gauge of vector propagators

1

i S hmn2pmpn/p2

p21m22 i e
D , ~4.22!

which give rise to factors

1

p2~p21m2!
5

1

m2 S 1

p2 2
1

p21m2D ~4.23!

in the loop integrals. The massless limits are actua
smooth, and arise often in practice. It is therefore usefu
3-7
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have explicit expressions for those massless limits that
not immediately obvious. Using Eqs.~2.29!–~2.31!, they are
found to be

f SSV~x,y,0!5~x1y!213~x1y!I ~x,y,0!13J~x,y!

22xJ~x!22yJ~y!, ~4.24!

f VVS~x,0,z!52
3x

4
2

z

2
2

3z

4x
I ~0,0,z!1S 3z

4x

2
9

4D I ~0,x,z!1
3

4x
J~x,z!12J~z!,

~4.25!

f VVS~0,0,z!523I ~0,0,z!1
7

2
J~z!2

5z

4
, ~4.26!

f FFV~x,y,0!50, ~4.27!

f gauge~x,y,0!5
1

4xy
$~43x2y143xy227x3

27y3!I ~0,x,y!1~2y17x!x2I ~0,0,x!

1~2x17y!y2I ~0,0,y!1~34xy27x2

27y2!J~x,y!%14x214y21
35

2
xy

2
19

3
@xJ~x!1yJ~y!#15@yJ~x!

1xJ~y!#, ~4.28!

f gauge~x,0,0!513xI~0,0,x!2
59

6
xJ~x!1

23

4
x2.

~4.29!

All of the functions vanish~by dimensional analysis! when-
ever all arguments vanish.

It may also be of interest to see the individual contrib
tions of the Feynman diagrams labeledVV, VVV, andggV
in Fig. 2, even though these can always be combined
Vgauge

(2) . These contributions are listed in Appendix A.
The classic results of Ford, Jack and Jones for the s

dard model@7# are a particularly useful special case of tho
found in this section, with which I have checked agreeme
In fact, each type of term that can occur in a general mode
MS does in fact arise in the standard model case; no
types of integrals arise, so that the results of Eqs.~4.12!–
~4.21! could be inferred from@7# by some forensic combina
torics. Their functions A(x,y,z), B(x,y,z), C(x,y),
D(x,y,z), E(x,y), S(x,y), and D(x,y,z) are respectively
equal to the functions f SSV(x,y,z), 2 f VVS(x,y,z),
f VS(x,y), 2 f FFV(x,y,z), Axy fFFV(x,y,z), f VV(x,y), and
2 f VVV(x,y,z) given in this section and in Appendix A
@Note that after the published erratum of Ref.@7#, a few
further minor typographical errors have been recently c
rected in the eprint archive version.#
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V. TWO-LOOP EFFECTIVE POTENTIAL IN THE DR
SCHEME

In this section, I report the results for the effective pote
tial in the DR scheme. These are obtained by keeping a
components of each vector field, but performing moment
integrations in 422e dimensions. The difference, compare
to the results forMS, can be organized in terms of the ext
epsilon scalars with multiplicity 2e. Of course, the
SSS, SS, FFS, andFFS diagrams in Fig. 2 are unaffecte
by this procedure. Also, theSSVandggV diagrams are un-
changed in going fromMS to DR, because in those cases a
the vector indices are contracted with a loop momentum. T
VS, FFV and FFV diagrams yield new contributions
which we can calleS, FFe andFFe, when the vector line
in each case is turned into an epsilon-scalar line. In theVVS
diagram, a nonvanishing additional contribution arises o
when both vectors are turned into epsilon scalars; call
contribution eeS. In the VV diagram, one or both of the
vector lines can become an epsilon scalar, yielding contri
tions to be calledeV and ee, respectively. Finally, in the
VVV diagram, any two of the vector lines can be turned in
epsilon-scalar lines, resulting in a contributioneeV.

As discussed in Sec. III, the couplings of epsilon scal
have exactly the form indicated for vectors in Eqs.~2.12!–
~2.14!, except that when an epsilon scalar is involved,
rotation to the squared-mass eigenstate basis requiresN(e)

rather thanN(V). This distinction is indicated by replacin
the vector indexa,b,c, . . . by an epsilon-scalar inde
â,b̂,ĉ, . . . on the couplings. For example@compare to Eqs.
~2.15!,~2.16!#, the epsilon scalar-epsilon scalar-vector, ep
lon scalar-vector-vector, and fermion-fermion-epsilon sca
couplings are

gâbc5g fe f gNae
(e)Nb f

(V)Ncg
(V) , ~5.1!

gâb̂c5g fe f gNae
(e)Nb f

(e)Ncg
(V) , ~5.2!

gI
âJ5g~Tb!L

KNJK
(F)* NIL

(F)Nab
(e) . ~5.3!

Then the result in theDR scheme can be written

VDR
~2!

5VMS
~2!

1VeS
(2)1VeeS

(2) 1VFFe
(2) 1VFFe

~2!
1VeV

(2)1Vee
(2)1VeeV

(2) ,
~5.4!

where

VeS
(2)5

1

4
gââii f eS~m̂a

2 ,mi
2!, ~5.5!

VeeS
(2) 5

1

4
~gâb̂i !2f eeS~m̂a

2 ,m̂b
2 ,mi

2!, ~5.6!

VFFe
(2) 5

1

2
ugI

âJu2f FFe~mI
2 ,mJ

2 ,m̂a
2!, ~5.7!

VFFe
~2!

5
1

2
gI

âJgI 8
âJ8MII 8MJJ8

* f FFe~mI
2 ,mJ

2 ,m̂a
2!, ~5.8!
3-8
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VeV
(2)5

1

2
~gâbc!2f eV~m̂a

2 ,mb
2!, ~5.9!

Vee
(2)5

1

4
~gâb̂c!2f ee~m̂a

2 ,m̂b
2!, ~5.10!

VeeV
(2) 5

1

4
~gâb̂c!2f eeV~m̂a

2 ,m̂b
2 ,mc

2!, ~5.11!

with the loop functions given by

f eS~x,y!522xJ~y!, ~5.12!

f eeS~x,y,z!522J~z!1x1y1z, ~5.13!

f FFe~x,y,z!52xJ~x!12yJ~y!2~x1y!21z2,
~5.14!

f FFe~x,y,z!54J~x!14J~y!22x22y22z,
~5.15!

f eV~x,y!524xy26xJ~y!, ~5.16!

f ee~x,y!54xy, ~5.17!

f eeV~x,y,z!52x22y21z226xy2xz2yz1~6x

16y22z!J~z!. ~5.18!

This completes the result for the two-loop effective poten
in the DR scheme.

VI. TWO-LOOP EFFECTIVE POTENTIAL IN THE DR8
SCHEME

As explained in the Introduction and in Sec. III, it is co
venient in models of softly broken supersymmetry to go
the DR8 scheme. This scheme is defined so thatme

2 ~the
difference between the squared masses of epsilon scalar
their vector counterparts! does not appear in the beta fun
tions of other couplings, or in the effective potential, or
the equations relating pole masses to running masses. S
ing from theDR results of the previous section, I find th
this is done at two-loop order by the following parame
redefinition of soft terms appearing in Eq.~2.33!:

~mDR8
2

! i
j5~mDR

2
! i

j2
1

16p2 @d i
j2g2C~ i !me

2#

1
1

~16p2!2 H YiklYjklg
2FC~k!2

1

2
C~ i !Gme

2

1d i
jg4C~ i !@2S~R!14C~ i !26CG#me

2J ,

~6.1!

cDR8
i

5cDR
i

1
1

~16p2!2@Yi jkm jkg2C~ j !me
2#,

~6.2!
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LDR85LDR2
1

16p2

dG~me
2!2

2

1
1

~16p2!2 H g2

2
dG@S~R!2CG#~me

2!2

1g2dGCGuM u2me
21g2m i j m i j C~ i !me

2J . ~6.3!

If there is more than one simple orU(1) group, then each o
the correction terms should be summed over subgroups,
a differentme

2 for each subgroup. The exception is that t
term

g4C~ i !2→(
a

(
b

ga
2gb

2Ca~ i !Cb~ i !, ~6.4!

involves a double sum over subgroups labeleda,b. Follow-
ing these redefinitions, the result for the full two-loop effe
tive potential turns out to have the same functional form a
one naively took theDR result and setme

2 to 0, removing the
distinction betweenN(e) andN(V), between hatted and unha
ted vector squared-mass eigenstate indices on the coupl
and betweenm̂a

2 andma
2 . It is therefore convenient to defin

functions which combine the effects of the 422e vectors
and the epsilon scalars:

FVS~x,y!5 f VS~x,y!1 f eS~x,y!, ~6.5!

FVVS~x,y,z!5 f VVS~x,y,z!1 f eeS~x,y,z!,
~6.6!

FFFV~x,y,z!5 f FFV~x,y,z!1 f FFe~x,y,z!,
~6.7!

FFFV~x,y,z!5 f FFV~x,y,z!1 f FFe~x,y,z!,
~6.8!

Fgauge~x,y,z!5 f gauge~x,y,z!1 f eeV~x,y,z!

1 f eeV~z,x,y!1 f eeV~y,z,x!

1 f eV~x,y!1 f eV~y,x!1 f eV~x,z!

1 f eV~z,x!1 f eV~y,z!1 f eV~z,y!

1 f ee~x,y!1 f ee~x,z!1 f ee~y,z!.
~6.9!

Note that I useF ’s rather thanf ’s to distinguish theDR8
functions from the correspondingMS functions.

Therefore, theDR8 two-loop effective potential is given
by

V(2)5VSSS
(2) 1VSS

(2)1VFFS
(2) 1VFFS

~2!
1VSSV

(2) 1VVS
(2)1VVVS

(2) 1VFFV
(2)

1VFFV
~2!

1Vgauge
(2) , ~6.10!

where now
3-9
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VSSS
(2) 5

1

12
~l i jk !2f SSS~mi

2 ,mj
2 ,mk

2!, ~6.11!

VSS
(2)5

1

8
l i i j j f SS~mi

2 ,mj
2!, ~6.12!

VFFS
(2) 5

1

2
uyIJku2f FFS~mI

2 ,mJ
2 ,mk

2!, ~6.13!

VFFS
~2!

5
1

4
yIJkyI 8J8kMII 8

* MJJ8
* f FFS~mI

2 ,mJ
2 ,mk

2!

1c.c., ~6.14!

VSSV
(2) 5

1

4
~gai j !2f SSV~mi

2 ,mj
2 ,ma

2!, ~6.15!

VVS
(2)5

1

4
gaaiiFVS~ma

2 ,mi
2!, ~6.16!

VVVS
(2) 5

1

4
~gabi!2FVVS~ma

2 ,mb
2 ,mi

2!, ~6.17!

VFFV
(2) 5

1

2
ugI

aJu2FFFV~mI
2 ,mJ

2 ,ma
2!, ~6.18!

VFFV
~2!

5
1

2
gI

aJgI 8
aJ8MII 8MJJ8

* FFFV~mI
2 ,mJ

2 ,ma
2!,

~6.19!

Vgauge
(2) 5

1

12
~gabc!2Fgauge~ma

2 ,mb
2 ,mc

2!. ~6.20!

Here f SSS(x,y,z), f SS(x,y), f FFS(x,y,z), f FFS(x,y,z),
and f SSV(x,y,z) are given by exactly the same functions
in MS, Eqs.~4.12!–~4.16!. The new functions are given by

FVS~x,y!53J~x,y!, ~6.21!

FVVS~x,y,z!5
1

4xy
$~2x22y22z2210xy12xz

12yz!I ~x,y,z!1~x2z!2I ~0,x,z!

1~y2z!2I ~0,y,z!2z2I ~0,0,z!

1~z2x2y!J~x,y!1yJ~x,z!

1xJ~y,z!%1
1

2
J~x!1

1

2
J~y!, ~6.22!

FFFV~x,y,z!5
1

z
$~x21y222z222xy1xz1yz!I ~x,y,z!

2~x2y!2I ~0,x,y!1~x2y22z!J~x,z!

1~y2x22z!J~y,z!12zJ~x,y!%12~2x

2y1z/3!J~z!, ~6.23!
11600
FFFV~x,y,z!56I ~x,y,z!, ~6.24!

Fgauge~x,y,z!5
1

4xyz
$~2x428x3y28x3z132x2yz

118y2z2!I ~x,y,z!1~y2z!2~y2110yz

1z2!I ~0,y,z!1x2~2yz2x2!I ~0,0,x!1~x2

29y229z219xy19xz114yz!xJ~y,z!

1~22y122z240x/3!xyzJ~x!%1~x↔y!

1~x↔z!. ~6.25!

Despite the appearance ofx,y,z in the denominators,
these functions again all have smooth limits forx,y,z→0.
The nontrivial ones are

FVVS~x,0,z!5
x

4
1

z

2
2

3z

4x
I ~0,0,z!1S 3z

4x
2

9

4D I ~0,x,z!

1
3

4x
J~x,z!, ~6.26!

FVVS~0,0,z!523I ~0,0,z!1
3

2
J~z!2

z

4
, ~6.27!

FFFV~x,y,0!52~x1y!212xJ~x!12yJ~y!, ~6.28!

Fgauge~x,y,0!5
1

4xy
$~43x2y143xy227x327y3!I ~0,x,y!

1~2y17x!x2I ~0,0,x!1~2x

17y!y2I ~0,0,y!1~34xy27x2

27y2!J~x,y!%13x213y21
11

2
xy

2
25

3
@xJ~x!1yJ~y!#15@yJ~x!1xJ~y!#,

~6.29!

Fgauge~0,0,x!513xI~0,0,x!2
71

6
xJ~x!1

19

4
x2. ~6.30!

Also, it may be of interest to see the contributions fro
individual graphs toFgauge(x,y,z). Those are listed in Ap-
pendix A.

This completes the result for the two-loop effective pote
tial in the DR8 scheme. These are appropriate for use in a
softly broken supersymmetric model, including the MSS
Partial results for the MSSM corresponding to the lead
contributions proportional toaSyt

2 , aSyb
2 , andyt

4 , yb
4 have

been given in Refs.@30# and @15#. Several illustrative ex-
amples and consistency checks are done in Sec. VIII.
3-10
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VII. RENORMALIZATION GROUP INVARIANCE OF THE
TWO-LOOP EFFECTIVE POTENTIAL IN SOFTLY

BROKEN SUPERSYMMETRY

In general, the condition for RG invariance of the effe
tive potential is

Q
dV

dQ
5S Q

]

]Q
1(

I
bl I

]

]l I
2(

i
g i

(S)f i

]

]f i
DV50.

~7.1!

Here,l I are all of the running parameters of the model w
beta functionsbl I

, andg i
(S) are the anomalous dimensions

the scalar fieldsf i . At one- and two-loop order, this mean

Q
]

]Q
V(1)1F(

I
bl I

(1) ]

]l I
2(

i
g i

(S,1)f i

]

]f i
GV(0)50,

~7.2!

Q
]

]Q
V(2)1F(

I
bl I

(1) ]

]l I
2(

i
g i

(S,1)f i

]

]f i
GV(1)

1F(
I

bl I

(2) ]

]l I
2(

i
g i

(S,2)f i

]

]f i
GV(0)50.

~7.3!

In softly broken supersymmetry, I find that the anomalo
dimension matrix for scalar fields in the Landau gauge an
eitherDR or DR8 is

g i
(S) j5

1

16p2 g i
(S,1)j1

1

~16p2!2 g i
(S,2)j , ~7.4!

g i
(S,1)j5

1

2
YiklY

jkl2d i
jg2C~ i !, ~7.5!

g i
(S,2)j52

1

2
YimnY

nklYklrY
mr j

1YiklY
jklg2@2C~k!2C~ i !#

1d i
jg4C~ i !FS~R!12C~ i !2

9

4
CGG . ~7.6!
11600
-

s
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This can be obtained starting from the general results in
MS scheme in Ref.@24#, and then applying the coupling
constant redefinitions needed to transform from theMS to
the DR or DR8 scheme@25#. The eigenvalues of this matrix
constrained to the subspace of the classical scalar b
ground fields give the anomalous dimensions appearing
Eqs. ~7.2! and ~7.3!. It should be noted that because
gauge-fixing, the Landau gauge scalar field anomalous
mension matrixg i

(S) j relevant for the effective potential i
not the same as the more widely known, gauge-invaria
anomalous dimension matrix of the chiral superfields. F
comparison, the latter is@26#

g i
j5

1

16p2 g i
(1) j1

1

~16p2!2 g i
(2) j , ~7.7!

g i
(1) j5

1

2
YiklY

jkl22d i
jg2C~ i !, ~7.8!

g i
(2) j52

1

2
YimnY

nklYklrY
mr j

1YiklY
jklg2@2C~k!2C~ i !#

1d i
jg4C~ i !@2S~R!14C~ i !26CG#.

~7.9!

In order for the effective potential to satisfy Eq.~7.1! in a
model with explicit supersymmetry breaking, it is necess
to include a running vacuum energy termL, as in Eq.~2.33!.
Now using the results of Sec. VI, one can derive theDR8
beta function forL up to two loops in a general softly
broken supersymmetric model as specified in Sec. II D,
looking at thef i-independent piece of Eqs.~7.2!,~7.3!. I find
bL5
1

16p2 bL
(1)1

1

~16p2!2 bL
(2) , ~7.10!

bL
(1)5~m2! i

j~m2! j
i 12~m2! i

jm ikmk j1bi j bi j 2dGuM u4, ~7.11!

bL
(2)5g2dGuM u4@4S~R!28CG#18g2uM u2m i j m i j C~ i !18g2~m2! i

jm ikmk jC~ i !14g2~m2! i
j~m2! j

i C~ i !

14g2bi j bi j C~ i !24g2Mm i j bi j C~ i !24g2M* m i j b
i j C~ i !2Yi jkYi j l @~m2!k

m~m2!m
l 1~m2!k

mmmnm
nl

1mkmmmn~m2!n
l 1mkm~m2!n

mmnl1bkmbml#2ai jkai j l @~m2!k
l 1mkmmml#22Yi jkYilm~m2! j

l mmnmnk

2Yi jkai j l mkmbml2Yi jkai j l mkmbml , ~7.12!
3-11
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wheredG is the dimension of the adjoint representation
the group. If the gauge group contains more than one sim
or U(1) component, then terms involving the gaugino ma
M or g2 should be summed over subgroups in E
~7.5!,~7.6!, ~7.8!,~7.9!, and ~7.11!,~7.12!, with the exception
noted in Eq.~6.4!. Special cases of these general results w
be used in the next section.

I have checked explicitly that theDR8 two-loop effective
potential for a general softly-broken supersymmetric the
satisfies RG invariance, using the results given above an
Appendix B and in Refs.@21,10#.

VIII. EXAMPLES AND CONSISTENCY CHECKS

In this section, I study some examples chosen as con
tency checks and useful points of reference for the res
given above. The examples are all based on supersymm
with or without soft breaking, so theDR8 scheme is used
One type of consistency check follows from the requirem
that the two-loop effective potential satisfies RG invarian
in conjunction with the known two-loop beta function
@21,22,9,10#, and the scalar anomalous dimensions andbL

found in the previous section.~Since the result forbL is
itself a consequence of the calculation, that part is not re
an independent check.! The derivatives of the loop function
are listed in Appendix B. Another type of check relies on t
fact that the effective potential for a supersymmetric the
in a supersymmetric vacuum must vanish. These consiste
checks rely on nontrivial cancellations between differe
two-loop functions, which are made manifest by writin
them in terms of the basis functionsI (x,y,z), J(x,y), and
J(x), using Eqs.~4.12!–~4.16! and ~6.21!–~6.30!.

A. The Wess-Zumino model

Consider the Wess-Zumino model@27# with a single chi-
ral supermultipletF containing a Weyl fermionc and a
complex scalarf1(R1 i I )/A2, where f is the classical
background, andR,I are real scalar quantum fluctuation
The superpotential is given by

W5
m

2
F21

y

6
F3, ~8.1!

wherem andy are mass and coupling parameters, taken to
real without loss of generality. The fieldsR,I ,c are mass
eigenstates, with

mR
25m213ymf13y2f2/2, ~8.2!

mI
25m21ymf1y2f2/2, ~8.3!

mc5m1yf. ~8.4!

The tree-level scalar potential is

V(0)5m2f21ymf31y2f4/4, ~8.5!

and the one-loop contribution to the effective potential
given in terms of the functionh(x) in Eq. ~3.13! by
11600
f
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s
.
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V(1)5h~mR
2 !1h~mI

2!22h~mc
2 !. ~8.6!

The nonzero scalar quartic and cubic couplings are

lRRRR5l IIII 53y2/2, ~8.7!

lRRII5y2/2, ~8.8!

lRRR53y~m1yf!/A2, ~8.9!

lRII5y~m1yf!/A2, ~8.10!

and the Yukawa interactions are

yccR5y/A2, ~8.11!

yccI5 iy /A2. ~8.12!

It follows that the contributions to the two-loop effectiv
potential are

VSSS
(2) 5

y2

8
~m1yf!2@3 f SSS~mR

2 ,mR
2 ,mR

2 !

1 f SSS~mR
2 ,mI

2 ,mI
2!#, ~8.13!

VSS
(2)5

y2

16
@3 f SS~mR

2 ,mR
2 !13 f SS~mI

2 ,mI
2!

12 f SS~mR
2 ,mI

2!#, ~8.14!

VFFS
(2) 5

y2

4
@ f FFS~mc

2 ,mc
2 ,mR

2 !

1 f FFS~mc
2 ,mc

2 ,mI
2!#, ~8.15!

VFFS
(2)

5
y2

4
mc

2@ f FFS~mc
2 ,mc

2 ,mR
2 !

2 f FFS~mc
2 ,mc

2 ,mI
2!#. ~8.16!

Now one may check RG invariance of the effective p
tential. At one-loop order, one finds from Eq.~8.6! that

Q
]

]Q
V(1)52y2m2f22y3mf32y4f4/4. ~8.17!

The one-loop scalar anomalous dimension and beta funct
are

gf
(S,1)5y2/2, ~8.18!

bm
(1)5y2m, ~8.19!

by
(1)53y3/2. ~8.20!

Therefore, from Eq.~8.5!,
3-12
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(
I

bl I

(1) ]

]l I
V(0)52y2m2f215y3mf3/213y4f4/4,

~8.21!

2gf
(S,1)f

]

]f
V(0)52y2m2f223y3mf3/22y4f4/2,

~8.22!

wherel I runs overy,m, so that Eq.~7.2! is indeed satisfied
At two-loop order, one finds from Eqs.~8.13!–~8.16! and
~B6!–~B9! that

Q
]

]Q
V(2)1F(

I
bl I

(1) ]

]l I
2gf

(S,1)f
]

]fGV(1)

5y4m2f21y5mf31y6f4/4. ~8.23!

From the two-loop RG scalar anomalous dimension and b
functions:

gf
(S,2)52y4/2, ~8.24!

bm
(2)52y4m, ~8.25!

by
(2)523y5/2, ~8.26!

one also finds

(
I

bl I

(2) ]

]l I
V(0)522y4m2f225y5mf3/223y6f4/4,

~8.27!

2gf
(S,2)f

]

]f
V(0)5y4m2f213y5mf3/21y6f4/2.

~8.28!

The results of Eqs.~8.23!, ~8.27! and ~8.28! combine to
verify Eq. ~7.3!.

In the special case off50, supersymmetry is not broken
and the effective potential should vanish. At one-loop ord
Eq. ~8.6! then vanishes trivially. At two-loop order,

V(2)5
y2

2
@m2f SSS~m2,m2,m2!1 f SS~m2,m2!

1 f FFS~m2,m2,m2!#, ~8.29!

which equals 0 by virtue of Eqs.~4.12!–~4.14!.

B. Supersymmetric QED in supersymmetric vacua

Let us now consider a supersymmetricU(1) gauge theory
with coupling constantg and a pair of chiral superfields wit
charges61.

First take the case that the chiral superfields do not ha
mass term before symmetry breaking, and the two sc
fields have the same classical background valuef. Then the
gauge symmetry is broken, but supersymmetry remains
broken sincef parametrizes a flat direction. The vector b
son, two Weyl fermions, and a real scalar field each obta
mass
11600
ta

r,

a
ar

n-

a

x54g2f2. ~8.30!

Together with a massless~in Landau gauge! real scalar
Nambu-Goldstone boson, these form a massive vector su
multiplet. In addition, there are two massless real scalars
one massless Weyl fermion forming a chiral supermultip
The DR8 one-loop effective potential vanishes because
these mass degeneracies. The two-loop effective pote
contributions in theDR8 scheme are

VSSS
(2) 5g2xF1

2
f SSS~0,0,x!1 f SSS~0,x,x!G , ~8.31!

VFFS
(2) 5g2@ f FFS~0,x,0!1 f FFS~0,x,x!

12 f FFS~x,x,0!#, ~8.32!

VSSV
(2) 5

g2

2
@ f SSV~0,0,x!1 f SSV~0,x,x!#, ~8.33!

VVS
(2)5

g2

2
FVS~x,x!, ~8.34!

VVVS
(2) 5g2xFVVS~x,x,0!, ~8.35!

VFFV
(2) 5g2FFFV~0,x,x!, ~8.36!

with the other contributions vanishing. One can now che
by plugging in the results of Sec. VI that the sum of Eq
~8.31!–~8.36! yields 0, as required for a supersymmetr
vacuum. This constitutes a nontrivial identity involving ca
cellations between different two-loop functions which b
come apparent after writing them in terms of the functio
I (x,y,z), J(x,y) andJ(x).

Another check which relies on a different set of cancel
tions is obtained if we takef50 in the above model, bu
now include a superpotential mass termm. In that case, the
vector gauge boson and the gaugino are massless, an
real scalar fields and the chiral fermions all have squa
massm2. Then one obtains for the contributions to the tw
loop effective potential in theDR8 scheme:

VSS
(2)5g2f SS~m2,m2!, ~8.37!

VFFS
(2) 54g2f FFS~0,m2,m2!, ~8.38!

VSSV
(2) 5g2f SSV~m2,m2,0!, ~8.39!

VFFV
(2) 5g2FFFV~m2,m2,0!, ~8.40!

VFF
~2!V52g2m2FFFV~m2,m2,0!, ~8.41!

with all other contributions vanishing. Again one finds fro
the results of Sec. VI that the sum of Eqs.~8.37!–~8.41!
yields 0, as required for a supersymmetric vacuum.
3-13
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C. SupersymmetricSU„Nc… gauge theory with one flavor in
supersymmetric vacua

A richer set of checks is found in non-Abelian supersy
metric models. As an example, consider supersymme
SU(Nc) gauge theory with one flavor of chiral superfieldsQi

and Q̄i in the fundamental and antifundamental represen
tions, respectively. Herei 51, . . . ,Nc is a color index. Con-
sider evaluation of the effective potential for the classi
background:

^Qi&5^Q̄i&5d i1f. ~8.42!

These VEVs break the gauge symmetry according
SU(Nc)→SU(Nc21), but f parametrizes a flat directio
and supersymmetry is unbroken. Therefore the effective
tential must vanish at each order in perturbation theory
any value off. My aim is to show this explicitly.

The particle content for nonzerof consists of 2Nc21
massive vector supermultiplets with their associated m
less~in Landau gauge! real scalar Nambu-Goldstone mode
Nc

222Nc massless vector multiplets associated with the
broken gauge symmetry, and one massless singlet chira
permultiplet. The nonzero squared-mass eigenvalues are
11600
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x5g2f2, ~8.43!

y5
2~Nc21!

Nc
g2f2, ~8.44!

and the multiplicities of the mass eigenstates are show
Table I. Because of the mass degeneracies indicated in T
I, the one-loop contribution to the effective potential va
ishes as required.

At two-loop order, I find the contributions in theDR8
scheme to be

TABLE I. Multiplicities of mass eigenstates in the model of Se
VIII C.

Particle type m250 m25x m25y

Real scalars 2Nc11 2Nc22 1
Weyl fermions Nc

222Nc11 4Nc24 2
Vectors Nc

222Nc 2Nc22 1
VSSS
(2) 5g4f2FNc21

4
f SSS~0,0,x!1

~Nc21!2

2Nc
2

f SSS~0,0,y!1
Nc21

2
f SSS~0,x,x!1

~Nc21!2

Nc
2

f SSS~0,y,y!

1
~Nc22!2~Nc21!

4Nc
2

f SSS~0,x,y!G , ~8.45!

VSS
(2)50, ~8.46!

VFFS
(2) 5g2F2Nc

223Nc21

2
$ f FFS~0,x,0!1 f FFS~0,x,x!%1

3~Nc21!

2
f FFS~x,x,0!1

Nc21

2Nc
$ f FFS~0,y,0!

1 f FFS~0,y,y!%1
Nc21

Nc
f FFS~y,y,0!1

Nc
22Nc12

2Nc
$ f FFS~x,y,0!1 f FFS~x,y,x!%

1
Nc21

2
f FFS~x,x,y!G , ~8.47!

VFFS
~2!

5g4f2FNc21

2
$ f FFS~x,x,y!2 f FFS~x,x,0!%1

2~Nc21!

Nc
$ f FFS~x,y,x!2 f FFS~x,y,0!%G , ~8.48!

VSSV
(2) 5g2FNc21

2
f SSV~0,0,x!1

1

4
f SSV~0,0,y!1

Nc21

4Nc
f SSV~0,y,y!1

Nc21

4
f SSV~0,x,x!1

Nc~Nc22!

4
f SSV~x,x,0!

1
1

4Nc
f SSV~x,x,y!1

Nc21

4
f SSV~x,y,x!G , ~8.49!

VVS
(2)5g2FNc21

2
FVS~x,x!1

Nc21

4
FVS~x,y!1

1

2Nc
FVS~y,x!1

Nc21

4Nc
FVS~y,y!G , ~8.50!
3-14
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VVVS
(2) 5g4f2FNc~Nc22!

2
FVVS~0,x,0!1

Nc21

2
FVVS~x,x,0!1

~Nc22!2

2Nc
FVVS~x,y,0!1

~Nc21!2

Nc
2

FVVS~y,y,0!G ,

~8.51!

VFFV
(2) 5g2F2Nc

223Nc21

2
FFFV~0,x,x!1Nc~Nc22!FFFV~x,x,0!1

Nc21

2Nc
FFFV~0,y,y!1

Nc
211

2Nc
FFFV~x,x,y!

1
3Nc21

2
FFFV~x,y,x!G , ~8.52!

VFFV
~2!

52g4f2@Nc~Nc22!FFFV~x,x,0!1FFFV~x,x,y!12~Nc21!FFFV~x,y,x!#, ~8.53!

Vgauge
(2) 5g2FNc~Nc22!

4
Fgauge~0,x,x!1

Nc

4
Fgauge~x,x,y!G . ~8.54!
e
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After some algebra, using Eqs.~4.12!–~4.16! and ~6.21!–
~6.30!, one finds that the sum of these contributions inde
vanishes, as required by unbroken supersymmetry in the
direction parametrized byf.

D. Softly-broken supersymmetric QED

Consider the case of supersymmetric QED with a c
pling g and two chiral superfields with charges61, as in
Sec. VIII B. However, now we introduce supersymmetr
breaking effects in the form of a gaugino massM, and non-
holomorphic soft supersymmetry-breaking scalar squa
massesm1

2 and m2
2 for the scalar fields of charge11,21

respectively. Instead of equal VEVs, the scalar fields
charge11,21 are taken to have classical background val
f,0 respectively. Then the four real scalar mass eigenst
obtain squared massesx1 ,x1 ,x2 ,x3 where

x15m2
2 2g2f2, ~8.55!

x25m1
2 1g2f2, ~8.56!

x35m1
2 13g2f2, ~8.57!

and the three fermion mass eigenstates obtain squ
masses 0,y1 ,y2, with

y15@M214g2f22MAM218g2f2#/2, ~8.58!

y25@M214g2f21MAM218g2f2#/2,
~8.59!

while the vector boson obtains a mass

z52g2f2. ~8.60!

Because supersymmetry is explicitly broken, RG invarian
requires that a vacuum-energyL is included among the sof
supersymmetry breaking terms. The tree-level potentia
then
11600
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V(0)5L1m1
2 f21

g2

2
f4. ~8.61!

From Eq.~3.13!, the DR8 one-loop effective potential con
tribution is

V(1)52h~x1!1h~x2!1h~x3!22h~y1!22h~y2!13h~z!.
~8.62!

In that scheme, by following the procedures described
Secs. II A and VI, I find the following contributions to th
two-loop effective potential:

VSSS
(2) 5g4f2F f SSS~x1 ,x1 ,x3!1

1

2
f SSS~x2 ,x2 ,x3!

1
3

2
f SSS~x3 ,x3 ,x3!G , ~8.63!

VSS
(2)5g2F f SS~x1 ,x1!2

1

2
f SS~x1 ,x2!2

1

2
f SS~x1 ,x3!

1
3

8
f SS~x2 ,x2!1

1

4
f SS~x2 ,x3!

1
3

8
f SS~x3 ,x3!G , ~8.64!

VFFS
(2) 5

g2

M218g2f2@2~y11z! f FFS~0,y1 ,x1!12~y2

1z! f FFS~0,y2 ,x1!12z$ f FFS~y1 ,y1 ,x2!

1 f FFS~y1 ,y1 ,x3!1 f FFS~y2 ,y2 ,x2!

1 f FFS~y2 ,y2 ,x3!%1M2$ f FFS~y1 ,y2 ,x2!

1 f FFS~y1 ,y2 ,x3!%#, ~8.65!
3-15
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VFFS
(2)

5
2g4f2

M218g2f2@2y1$ f FFS~y1 ,y1 ,x3!

2 f FFS~y1 ,y1 ,x2!%12y2$ f FFS~y2 ,y2 ,x3!

2 f FFS~y2 ,y2 ,x2!%1M2$ f FFS~y1 ,y2 ,x2!

2 f FFS~y1 ,y2 ,x3!%#, ~8.66!

VSSV
(2) 5

g2

2
@ f SSV~x1 ,x1 ,z!1 f SSV~x2 ,x3 ,z!#,

~8.67!

VVS
(2)5g2FFVS~z,x1!1

1

2
FVS~z,x2!1

1

2
FVS~z,x3!G ,

~8.68!

VVVS
(2) 5g2zFVVS~z,z,x3!, ~8.69!

VFFV
(2) 5

g2

2~M218g2f2!
@~M218g2f2!FFFV~0,0,z!

1y2FFFV~y1 ,y1 ,z!1y1FFFV~y2 ,y2 ,z!

12zFFFV~y1 ,y2 ,z!#, ~8.70!

VFFV
(2)

5
2g6f4

M218g2f2@FFFV~y1 ,y1 ,z!1FFFV~y2 ,y2 ,z!

22FFFV~y1 ,y2 ,z!#, ~8.71!

Vgauge
(2) 50. ~8.72!

We can now test the RG invariance of the effective pot
tial. The one-loop scalar anomalous dimension and b
functions in theDR8 scheme are

gf
(S,1)52g2, ~8.73!

bg
(1)52g3, ~8.74!

bM
(1)54g2M , ~8.75!

bm
1
2

(1)
528g2M212g2~m1

2 2m2
2 !, ~8.76!

bm
2
2

(1)
528g2M212g2~m2

2 2m1
2 !, ~8.77!

bL
(1)5~m1

2 !21~m2
2 !22M4. ~8.78!

From Eq.~8.62! one therefore finds that

Q
]

]Q
V(1)5M42~m1

2 !22~m2
2 !218g2f2M212g2f2m2

2

24g2f2m1
2 24g4f4, ~8.79!

and, from Eqs.~8.73!–~8.78!,
11600
-
ta

(
I

bl I

(1) ]

]l I
V(0)52M41~m1

2 !21~m2
2 !228g2f2M2

22g2f2m2
2 12g2f2m1

2 12g4f4,

~8.80!

2gf
(S,1)f

]

]f
V(0)52g2f2m1

2 12g4f4, ~8.81!

so that Eq.~7.2! is satisfied. At two loop order, one has

gf
(S,2)54g4, ~8.82!

bg
(2)58g5, ~8.83!

bM
(2)532g4M , ~8.84!

bm
1
2

(2)
596g4M2116g4m1

2 , ~8.85!

bm
2
2

(2)
596g4M2116g4m2

2 , ~8.86!

bL
(2)54g2~m1

2 !214g2~m2
2 !218g2M4, ~8.87!

so that

(
I

bl I

(2) ]

]l I
V(0)58g2M414g2~m1

2 !214g2~m2
2 !2

196g4f2M2116g4f2m1
2 18g6f4,

~8.88!

2gf
(S,2)f

]

]f
V(0)528g4f2m1

2 28g6f4. ~8.89!

One also finds from Eqs.~8.63!–~8.72! and the results of
Sec. VI

Q
]

]Q
V(2)1F(

I
bl I

(1) ]

]l I
2gf

(S,1)f
]

]fGV(1)

528g2M424g2~m1
2 !224g2~m2

2 !2

296g4M2f228g4f2m1
2 . ~8.90!

Together, Eqs.~8.88!–~8.90! verify Eq. ~7.3!.

IX. OUTLOOK

In this paper, I have presented the results for the two-lo
effective potential of a general renormalizable field theory
the Landau gauge, in each of theMS, DR, andDR8 renor-
malization schemes. These results should be useful in c
necting specific models of electroweak symmetry breaking
future data in a precise way.

It is not unlikely that the correct model for physics ne
the TeV scale is based on some version of softly-brok
supersymmetry, either the MSSM or some moderate ex
sion of it. Previous calculations of the effective potential
3-16
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the MSSM have used the one-loop result@28# and partial
two-loop approximations with leading corrections propo
tional to aSyt

4 andyt
4 @29–33#. However, there is still some

RG scale dependence in these results, compared to estim
of our eventual ability to measure properties of the Hig
sector at future colliders. Use of the full two-loopDR8 ef-
fective potential should further reduce the scale depende
RG improvement methods@17–20,34–38# should enable an
accurate determination of the vacuum of the MSSM and
extensions. I plan to report on the application of the res
of the present paper to the MSSM soon@39#.
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APPENDIX A: INDIVIDUAL DIAGRAM CONTRIBUTIONS
TO THE FUNCTIONS f gaugeAND F gauge

The three Feynman diagrams labeledVV, VVV, and
ggV in Fig. 2 all involve the field-dependent couplinggabc,
and combine to yieldVgauge

(2) . In the MS scheme, the indi-
vidual diagram contributions to the functionf gauge(x,y,z) are
given in an obvious notation by

f gauge~x,y,z!5 f VVV~x,y,z!1 f VV~x,y!1 f VV~x,z!

1 f VV~y,z!1 f ggV~x!1 f ggV~y!1 f ggV~z!,

~A1!

where
f VVV~x,y,z!5
1

4xyzH ~2x428x3y28x3z132x2yz118y2z2!I ~x,y,z!1~y2z!2~y2110yz1z2!I ~0,y,z!2x4I ~0,0,x!1~x2

29y229z219xy19xz213yz!xJ~y,z!14x3yz1
129

4
xy2z22S 20x

3
1

y

2
1

z

2D xyzJ~x!J 1~x↔y!

1~x↔z!, ~A2!

f VV~x,y!5
27

4
J~x,y!1

45x

8
J~y!1

45y

8
J~x!1

63xy

16
, ~A3!

f ggV~x!5
x

2
I ~0,0,x!1

x

3
J~x!. ~A4!

Similarly, in theDR8 scheme,

Fgauge~x,y,z!5FVVV~x,y,z!1FVV~x,y!1FVV~x,z!1FVV~y,z!1 f ggV~x!1 f ggV~y!1 f ggV~z!, ~A5!

where

FVVV~x,y,z!5 f VVV~x,y,z!1 f eeV~x,y,z!1 f eeV~z,x,y!1 f eeV~y,z,x!, ~A6!

FVV~x,y!5 f VV~x,y!1 f eV~x,y!1 f eV~y,x!1 f ee~x,y! ~A7!

with f ggV(x) given as before. Explicitly,

FVVV~x,y,z!5
1

4xyzH ~2x428x3y28x3z132x2yz118y2z2!I ~x,y,z!1~y2z!2~y2110yz1z2!I ~0,y,z!2x4I ~0,0,x!1~x2

29y229z219xy19xz213yz!xJ~y,z!1
xy2z2

4
1S 2

44x

3
1

47y

2
1

47z

2 D xyzJ~x!J 1~x↔y!1~x↔z!,

~A8!

FVV~x,y!5
27

4
J~x,y!2

3x

8
J~y!2

3y

8
J~x!2

xy

16
. ~A9!
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The results for vanishing arguments are easily obtained f
Eqs.~2.29!–~2.31!.

APPENDIX B: RENORMALIZATION-GROUP-SCALE
DERIVATIVES

It is often useful to have expressions for the derivatives
the two-loop effective potential functions with respect to t
renormalization scaleQ, for example to check RG invari
ance. The derivative of the one-loop effective potential fu
tion h(x) defined in Eq.~3.13! is

Q
]

]Q
h~x!52x2/2. ~B1!

For checking the RG invariance of the effective potential
is convenient to write the derivatives of two-loop functio
with respect toQ in terms of the derivative of the one-loo
function with respect to its squared-mass argument:

h8~x!5
x

2
~ ln x21!. ~B2!

The derivatives of the two-loop functions can all be fou
from those of the basis functions:

Q
]

]Q
J~x!522x, ~B3!

Q
]

]Q
J~x,y!524yh8~x!24xh8~y!,

~B4!

Q
]

]Q
I ~x,y,z!54@h8~x!1h8~y!1h8~z!#

22~x1y1z!. ~B5!

For the derivatives of theMS two-loop functions, one finds

Q
]

]Q
f SSS~x,y,z!524@h8~x!1h8~y!1h8~z!#12~x1y

1z!, ~B6!

Q
]

]Q
f SS~x,y!524yh8~x!24xh8~y!, ~B7!

Q
]

]Q
f FFS~x,y,z!54xh8~x!14yh8~y!1~8x18y

24z!h8~z!22x222y212z224xy,

~B8!

Q
]

]Q
f FFS~x,y,z!58@h8~x!1h8~y!1h8~z!#24~x1y

1z!, ~B9!
11600
m

f

-

t

Q
]

]Q
f SSV~x,y,z!512xh8~x!112yh8~y!1~12x112y

24z!h8~z!22x222y2212xy26xz

26yz1
10

3
z2, ~B10!

Q
]

]Q
f VS~x,y!5212yh8~x!212xh8~y!24xy,

~B11!

Q
]

]Q
f VVS~x,y,z!529h8~x!29h8~y!212h8~z!1

9x

2

1
9y

2
2z, ~B12!

Q
]

]Q
f FFV~x,y,z!5~12x112y28z!h8~z!16xz16yz

1
8z2

3
, ~B13!

Q
]

]Q
f FFV~x,y,z!524@h8~x!1h8~y!1h8~z!#24x24y

212z, ~B14!

Q
]

]Q
f gauge~x,y,z!59@~x1y!h8~z!1~x1z!h8~y!1~y

1z!h8~x!#152@xh8~x!1yh8~y!

1zh8~z!#2
19

3
~x21y21z2!263~xy

1yz1xz!. ~B15!

For the functions used with epsilon scalars in theDR
scheme, one has

Q
]

]Q
f eS~x,y!54xy, ~B16!

Q
]

]Q
f eeS~x,y,z!54z, ~B17!

Q
]

]Q
f FFe~x,y,z!524x224y2, ~B18!

Q
]

]Q
f FFe~x,y,z!528x28y, ~B19!

Q
]

]Q
f eV~x,y!512xy, ~B20!
3-18
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Q
]

]Q
f ee~x,y!50, ~B21!

Q
]

]Q
f eeV~x,y,z!5212xz212yz14z2.

~B22!

Finally, the functions used in theDR8 scheme~besides those
found in MS) satisfy

Q
]

]Q
FVS~x,y!5212yh8~x!212xh8~y!, ~B23!

Q
]

]Q
FVVS~x,y,z!529h8~x!29h8~y!212h8~z!1

9x

2

1
9y

2
13z, ~B24!
ty

Y

i-

tt

11600
Q
]

]Q
FFFV~x,y,z!5~12x112y28z!h8~z!24x224y2

16xz16yz1
8z2

3
, ~B25!

Q
]

]Q
FFFV~x,y,z!524@h8~x!1h8~y!1h8~z!#

212~x1y1z!, ~B26!

Q
]

]Q
Fgauge~x,y,z!59@~x1y!h8~z!1~x1z!h8~y!

1~y1z!h8~x!#152@xh8~x!

1yh8~y!1zh8~z!#2
7

3
~x21y2

1z2!263~xy1yz1xz!. ~B27!
rn,

t,

.
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