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The vector meson form factor analysis in light-front dynamics
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We study the form factors of vector mesons using a covariant fermion field theory model in 311 dimen-
sions. Performing a light-front~LF! calculation in theq150 frame in parallel with a manifestly covariant
calculation, we note the existence of a nonvanishing zero-mode contribution to the light-front currentJ1 and
find a way of avoiding the zero mode in the form factor calculations. Upon choosing the light-front gauge
(eh56

1 50) with circular polarization and with spin projectionh5↑↓56, only the helicity zero-to-zero matrix
element of the plus current receives zero-mode contributions. Therefore, one can obtain the exact light-front
solution of the form factors using only the valence contribution if only the helicity components, (h8h)
5(11),(12), and (10), are used. We also compare our results obtained from the light-front gauge in the
light-front helicity basis~i.e. h56,0) with those obtained from the non-LF gauge in the instant form linear
polarization basis~i.e. h5x,y,z) where the zero-mode contributions to the form factors are unavoidable.

DOI: 10.1103/PhysRevD.65.116001 PACS number~s!: 11.30.Cp, 11.40.2q, 12.38.Lg, 13.40.Gp
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I. INTRODUCTION

One of the great challenges in hadronic physics is to
culate the structure of hadrons starting from QCD alo
Presently this task is very difficult and one relies on spec
models to gain some understanding of hadronic structur
low energies and momentum transfer values. A popu
model is the constituent quark model~CQM! which in its
relativized form has met with quite some success. A first
of this model is the comparison of the mass spectra it p
dicts to the experimental data. Such a test provides s
constraints on the wave functions. A more stringent test
the wave functions is found when one also calculates
form factors of a hadron. It lies in the nature of the CQM th
only valence wave functions are determined easily. Howe
in a fully covariant calculation of the form factors one nee
the full structure of the hadron-quark vertex.

It has been known for some time that there are situati
where the form factors can be expressed correctly as co
lutions of the wave functions. Such is the case for cert
components of the currents. In particular one finds within
formalism of light-front dynamics~LFD! @1# that the so-
called plus component of the currents for a scalar or pseu
scalar meson can be expressed in terms of the wave func
alone for spacelike momentum transfer. The matrix eleme
obtained this way we call thevalence parts. The parts arising
from vertices that cannot be expressed in the wave funct
we call thenonvalence parts. @The plus component of a four
vector is a particular combination of its usual componen
p15(p01p3)/A2 where the factorA2 is conventional.#

In the case of vector mesons the situation is more co
plicated. Till now there have been several recipes@2–4# for
the extraction of the invariant form factors from the mat
elements of the currents. It turns out that even when
limits oneself to the plus component, these different ways
0556-2821/2002/65~11!/116001~25!/$20.00 65 1160
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extracting the form factors do not produce the same res
@5#. One realizes that since the nine complex matrix eleme
of the current (J1), corresponding to the possible combin
tions of the polarizations of the initial and final spin-1 pa
ticles, can be expressed in terms of three real invariants o
it becomes clear that there must be relations between t
matrix elements. This was of course known for a long tim
and many authors have used this knowledge to sort out
invariants from the calculated matrix elements. In referen
frames where the plus component of the momentum trans
q1, vanishes these relations can be reduced to just on
addition to the relations provided by Hermiticity, parity an
rotation about thez axis. The latter relation is known as th
angular condition@2#. In general reference frames the situ
tion was not so clear. In a previous paper@6# we completely
analyzed these conditions for the spin-1 case and found
addition to the angular condition given before, another o
There we gave only the formal expressions for these con
tency conditions. In theq150 frame, however, the addi
tional condition is very simple, involving only two helicity
amplitudes and it does not seem to provide as strong a
straint as the usual condition since most constituent qu
models are expected to satisfy it rather easily. Neverthel
the q150 frame is in principle restricted to the spacelik
region of the form factors and it may be useful to impose t
additional condition in processes involving the timelike r
gion which must be analyzed in theq1Þ0 frame. Thus, it is
important to analyze both angular conditions in differe
frames calculating actually the form factors with existin
theoretical models. In the present paper we demonstrate
usefulness for theoretical/phenomenological models
spin-1 objects. In order that the matrix elements satisfy th
constraints, the current operator must transform properly
the state vectors must be eigenstates of total spin. If
©2002 The American Physical Society01-1
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BAKKER, CHOI, AND JI PHYSICAL REVIEW D 65 116001
models do not have these properties, the angular condit
will not be met.

In this work, we use a simple but exactly solvable mod
for the spin-1~e.g.,r) mesons and separate the valence a
nonvalence contributions to the three physical form fact
to investigate the degree of violation in the two angular c
ditions for each contribution in different frames. Althoug
the quantitative results that we find in this model may dif
in other models, depending on the details of the dynamic
each model, the basic structure of model calculations is c
mon and we expect the essential findings from this mo
calculation may apply to realistic models.

In particular, we compared two different types of pola
ization vectors, the one obtained from the light-front~LF!
gauge (eh56

1 50), which is usually used in the LF CQM
analysis, and the other obtained from the instant form~IF!
polarization, which is not associated with the LF gauge,
ex

1Þ0, but used in some recent papers@7–9#. In both cases,
there is a zero-mode contribution, i.e. a contribution from
nonvalence part that remains finite forq1→0, even if the
plus component of the currents is used. Specifically, ther
a zero-mode contribution in the LF helicity case (h51,
2,0) to the (h8,h)5(0,0) amplitude, whereh andh8 are the
initial and final helicities, respectively, but there is no ze
mode for other helicity combinations such as (1,1),(1,
2) and (1,0). On the other hand, in the instant form ca
only (yy) is immune to the zero mode but others such
(xx),(zz) and (zx) do receive zero-mode contributions. O
course, the two results are exactly the same if one prop
includes the zero-mode contribution.

Now turning to the angular conditions, there are seve
different prescriptions@2–4# in choosing the matrix element
to extract the three physical form factors. We compare th
different types of helicity combinations, Grach-Kondraty
~GK! @2#, Chung-Coester-Keister-Polyzou~CCKP! @3#, and
Brodsky-Hiller ~BH! @4#, using both LF and instant form
helicity bases in a reference frame whereq150. One of our
very interesting findings of the analysis in the LF helic
basis is that the prescription using the plus component of
current, but not involving the (h8,h)5(0,0) helicity ampli-
tude in the LF gauge, is preferred for model calculatio
Especially, the GK prescription uses only (h8,h)5(1,
1),(1,2) and (1,0) but not the pure (0,0) component an
thus achieves the goal of not involving the zero modes.
the other hand, the longitudinal~0,0! component is the mos
dominant contribution in the high momentum transfer reg
and thus it may be better to use the BH prescription, invo
ing the (0,0),(1,0), and (1,2) amplitudes only, in the high
momentum perturbative QCD analysis. The CCKP presc
tion, however, involves all helicity states, i.e. (1,
1),(0,0),(1,0) and (1,2) and one needs a quantitativ
analysis of the angular conditions to pin down the mom
tum transfer region for the validity of this prescription. O
quantitative analyses indeed verify that the GK prescript
is remarkably free from the zero-mode contribution but o
ers are not. In the recent work by Melikhov and Simula@9#,
we see that the result using the GK prescription is not
complete agreement with their covariant model calculati
which is due to the dependence on a light-like four-vec
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called v(v250) in their formulation that necessarily in
volves unphysical form factors. The covariant formulati
presented in our work should be intrinsically distinguish
from theirs@9#, since our formulation involves neitherv nor
any unphysical form factor.

If we use the instant form basis, however, all three p
scriptions receive the zero-mode contribution. Since the
stant form helicity is not obtained from the LF gauge, i
ex

1Þ0, even the GK prescription gets the zero-mode con
bution, especially for the magnetic form factor as we sh
show in this work. Thus, the instant form basis used in
LF formulation seems quite dangerous because it can lea
a wrong interpretation of the physics involved in LF dynam
cal models. Our solvable model calculation clearly indica
that one can avoid the zero-mode contribution of the
basis when the LF gauge is used without using the long
dinal to longitudinal helicity amplitude.

This paper is organized as follows. In Sec. II we summ
rize the angular conditions for spin-1 systems using the
helicity basis and the kinematics for the reference fram
Drell-Yan-West~DWY!, Breit ~BRT!, and target-rest frame
~TRF! used in this work. The three prescriptions~GK, CCKP,
BH! used in extracting the physical form factors are a
briefly discussed in that section. In Sec. III we present
covariant model calculations of physical quantities such
the three electromagnetic form factors and the decay cons
of the spin-1 meson system using both the manifestly co
riant Feynman method and the LF technique. In theq150
frame, we separate the full amplitudes into the valence c
tribution and the zero-mode contribution to show explici
that only the helicity zero to zero amplitude is contamina
by the zero mode. In Sec. IV we present the numerical
sults for the form factors and the angular conditions a
analyze the dependences on the prescriptions, refer
frames, and helicity bases. The taxonomical decomposit
of the full results into valence and non-valence contributio
are used wherever possible to make a quantitative comp
son of these dependences. Conclusions follow in Sec. V.
details of the instant form analysis and a derivation of
zero mode are summarized in Appendixes A and B, resp
tively.

II. SPIN-1 FORM FACTORS IN LIGHT-FRONT HELICITY
BASIS

The Lorentz-invariant electromagnetic form factorsF1 ,
F2, andF3 for a spin-1 particle of massm are defined@10#
by the matrix elements of the currentsJm between the initial
up,h& and the finalup8,h8& eigenstates of the momentump
and the helicityh as follows:

Gh8h
m

5^p8,h8uJmup,h&

52eh8
* •eh~p1p8!mF1~Q2!

1~eh
m q•eh8

* 2eh8
* m q•eh!F2~Q2!

1
~eh8

* •q!~eh•q!

2m2
~p1p8!mF3~Q2!, ~1!
1-2
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whereQ252q2, q5p82p and eh(eh8) is the polarization
vector of the initial~final! meson.

The physical form factors, charge, magnetic, and quad
pole, are related in a well-known way to the form factorsFi ,
viz.

GC5S 11
2

3
h DF11

2

3
hF21

2

3
h~11h!F3

GM52F2

GQ5F11F21~11h!F3 , ~2!

whereh5Q2/(4m2).
Using the convention«m5(«1,«2,«1,«2), the general
he

h

11600
u-

form of the LF polarization vectors is given by

«LF~p1,p1,p2;1 !

«LF~p1,p1,p2;0!

«LF~p1,p1,p2;2 !

6 55
S 0,

pr

p1
,
21

A2
,
2 i

A2
,D

S p1

m
,
pW' 22m2

2mp1
,
p1

m
,
p2

m D
S 0,

pl

p1
,

1

A2
,
2 i

A2
D

. ~3!

Here pr(pl)57(px6 ipy)/A2. Using Eqs.~1! and ~3!, we
obtain the matrix elements
Gh8h
1

5S G11
1 G10

1 G12
1

G01
1 G00

1 G02
1

G21
1 G20

1 G22
1
D

5S a1F11a3F3 c1F11c2F21c3F3 e3* F3

b1F11b2F21b3F3 d1F11d2F21d3F3 2~b1F11b2F21b3F3!*

e3F3 2~c1F11c2F21c3F3!* a1F11a3F3

D . ~4!
ors
y

e

o
ta-

con-
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the
t
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ur
Since we are working only with the plus component of t
current, we shall use the following short-hand notations:

Ga5G11
1 5G22

1* , Gb5G01
1 52G02

1* ,

Gc5G10
1 52G20

1* , Gd5G00
1 , Ge5G21

1 5G12
1* .

~5!

The invariant form factors can be extracted in a straig
forward way. The simplest procedure is to solve first forF3
from Ge . Next F1 is obtained fromGa andF3. Then there
are three options for obtainingF2 from Gb , Gc , and Gd .
These solutions are denoted byF2

b , F2
c , and F2

d , respec-
tively. The full solutions are then

F15
1

a1
Ga2

a3

a1e3
Ge ,

F35
1

e3
Ge ,

F2
b5

1

b2
F2

b1

a1
Ga1Gb1

a3b12a1b3

a1e3
GeG ,

F2
c5

1

c2
F2

c1

a1
Ga1Gc1

a3c12a1c3

a1e3
GeG ,
t-

F2
d5

1

d2
F2

d1

a1
Ga1Gd1

a3d12a1d3

a1e3
GeG . ~6!

This procedure makes it clear that the covariant form fact
of a spin-1 hadron in Eq.~1! can be determined using onl
the plus component of the currents,Gh8h

1 (0)
[^P8,h8uJ1uP,h&, in any chosen Lorentz frame. The nin
elements of the current operatorGh8h

1 (0) must be con-
strained by the invariance under~i! time-reversal,~ii ! rota-
tion aboutẑ and~iii ! reflection in the plane perpendicular t
ẑ, and rotational covariance, i.e. invariance under the ro
tions about an axis perpendicular toẑ. So two additional
constraints on the current operator are required. These
sistency conditions are the angular conditions, which we
fine as@6#

Dbc5F2
b2F2

c , Dbd5F2
b2F2

d . ~7!

We know that the form of these conditions depends on
reference frame@6#. In this work we consider three differen
frames, which we define in the following Sec. II A. Esp
cially, in the frames whereq150, our angular conditionDbd
is equivalent to the usual angular condition relating the fo
helicity amplitudes discussed in the literature@2# modulo an
overall factor as we discuss in the Sec. II B.
1-3
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A. Kinematics

Our conventions for the momenta of the initial and fin
state mesons in the three different reference frames, D
BRT, and TRF, are given below. We use the notationpm

5(p1,p2,px ,py)5(p1,p2,pW') and the metric convention
p•q5p1q21p2q12pW'•qW' . In the DYW frame,

p5„p1,m2/~2p1!,0,0…,
ite

f

g
ou

re

11600
l
,

p85„p1,~Q21m2!/~2p1!,Q cosf,Q sinf…. ~8!

In the BRT frame,

b5A11S Q

2mD 2

, ~9!
p5S 2mb2Q cosu

2A2
,
2mb1Q cosu

2A2
,2

Q sinu cosf

2
,2

Q sinu sinf

2 D ,

p85S 2mb1Q cosu

2A2
,
2mb2Q cosu

2A2
,
Q sinu cosf

2
,
Q sinu sinf

2 D . ~10!

In the TRF frame

k5
Q2

2m
, ~11!

p5S m

A2
,

m

A2
,0,0D .

p85S m1k1bQ cosu

A2
,
m1k2bQ cosu

A2
,bQ sinu cosf,bQ sinu sinf D . ~12!
a-
g.

di-
ese

li-
ion

-

In the literature usually the reference frames used are lim
to ones whereq150(q252q1q22qW'

2 ,0). One such ref-
erence frame is the special Breit frame used in Re
@2–5,11,12#, whereq150,qy50,qx5Q, andpW'52p8W' i.e.
u5p/2,f50 in Eq. ~10!. In the special Breit frame,

qm5~0,0,Q,0!,

pm5~mA11h/A2,mA11h/A2,2Q/2,0!,

p8m5~mA11h/A2,mA11h/A2,Q/2,0!, ~13!

whereh5Q2/4m2 is a kinematic factor. The correspondin
polarization vectors are obtained by substituting these f
vectors in Eq.~3! and the transverse (h56) and longitudi-
nal (h50) polarization vectors in this special Breit frame a
given by

em~p,6 !5
71

A2
S 0,

2Q

2p1
,1,6 i D ,

em~p,0!5
1

m S p1,
2m21Q2/4

2p1
,
2Q

2
,0D ,
d

s.

r

em~p8,6 !5
71

A2
S 0,

Q

2p1
,1,6 i D ,

em~p8,0!5
1

m S p1,
2m21Q2/4

2p1
,
Q

2
,0D . ~14!

B. Angular condition in the q¿Ä0 frame and prescriptions
of choosing helicity amplitudes

In the q150 frame, one can reduce the independent m
trix elements of the current down to four, e.
G11

1 ,G12
1 ,G10

1 andG00
1 using the front-form helicity basis

@2–5,12# and the rotational covariance requires one ad
tional constraint on the current operator. This is what th
authors call the angular conditionD(Q2) and can be ob-
tained from the explicit representations of the helicity amp
tudes in terms of the physical form factors. Using the relat
between the covariant form factorsFi and the current matrix
elements given by Eq.~1!, one can obtain the following he
licity amplitudes in theq150 frame

G11
1 52p1~F11hF3!, G10

1 5p1A2h~2F11F212hF3!,

G12
1 522p1hF3 ,

G00
1 52p1$~122h!F122hF222h2F3%. ~15!
1-4
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FIG. 1. The covariant triangle diagram~a! is represented as the sum of a LF valence diagram~b! defined in the region 0,k1,p1 and
the nonvalence diagram~c! defined inp1,k1,p81. d5q1/p15p81/p121. The white and black blobs at the meson-quark vertices in~b!
and~c! represent the LF wave-function and non-wave-function vertices, respectively. The small circles in~b! and~c! represent the~on-shell!
mass pole of the quark propagator determined from thek2 integration.
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Thus, the usual angular condition relating the four helic
amplitudes is given by@2#

D~Q2!5~112h!G11
1 1G12

1 2A8hG10
1 2G00

1 50,
~16!

where we note an overall factor difference betweenD(Q2)
andDbd(Q

2), i.e. D5d2Dbd ~see Sec. IV B 5 for the discus
sion of the factord2!.

In a practical computation, instead of calculating t
Lorentz-invariant form factorsFi(Q

2), the physical charge
(GC), magnetic (GM), and quadrupole (GQ) form factors
are often used.1 However, the relations between the physic
invariant form factors and the matrix elementsGh8h

1 @5# are
not unique. Only if the matrix elements fulfill the angul
condition Eq.~16!, the extracted form factors would not de
pend on the choice made. So one may choose which m
elements to use to extract the form factors. Perhaps the m
popular choices are@2–4#

GC
GK5

1

2p1 F ~322h!

3
G11

1 1
4h

3

G10
1

A2h
1

1

3
G12

1 G ,

GM
GK5

2

2p1 FG11
1 2

1

A2h
G10

1 G ,

GQ
GK5

1

2p1 F2G11
1 12

G10
1

A2h
2

G12
1

h G , ~17!

GC
CCKP5

1

2p1~11h!
F322h

6
~G11

1 1G00
1 !1

10h

3

G10
1

A2h

1
4h21

6
G12

1 G ,

1In Refs.@5,8#, the form factorsG0 , G1, andG2 are used and the
two definitions are related byGC5G0/2p1, GM5G1/2p1, and
(hA8/3)GQ5G2/2p1.
11600
l

rix
ost

GM
CCKP5

1

2p1~11h!
FG11

1 1G00
1 2G12

1 2
2~12h!

A2h
G10

1 G ,

GQ
CCKP5

1

2p1~11h!
F2

1

2
~G11

1 1G00
1 !12

G10
1

A2h

2
~h12!

2h
G12

1 G , ~18!

and

GC
BH5

1

2p1~112h!
F ~322h!

3
G00

1 1
16h

3

G10
1

A2h

1
2~2h21!

3
G12

1 G ,

GM
BH5

2

2p1~112h!
FG00

1 2G12
1 1

~2h21!

A2h
G10

1 G ,

GQ
BH5

1

2p1~112h!
F2

G10
1

A2h
2G00

1 2
~11h!

h
G12

1 G .

~19!

The relation betweenF8s andG8s given by Eq.~2! holds for
any prescription given above.

It is interesting to note that while Grach and Kondraty
in @2# regardedG00

1 as the ‘‘worst’’ element and took care no
to use it writing the relations Eq.~17!, Brodsky and Hiller@4#
includedG00

1 instead ofG11
1 expecting the helicity zero-to

zero component of the current matrix element to be
dominant one in the perturbative QCD regime. Chunget al.
@3# used all four independent helicity components of the c
rent matrix elements. On the other hand, in the instant fo
basis used by some authors@7,8,13#, the independent matrix
elements of the current operator areGxx

1 ,Gyy
1 ,Gzz

1 and Gzx
1

and the angular condition becomesD(Q2)5Gyy
1 2Gzz

1 . In
Appendix A we show the relevant expressions for the fo
factors in the instant form spin basis@7,8,13#. Although the
authors in Refs.@7,8,13# argued that this basis is complete
equivalent to the LF helicity basis, the relation betwe
them, which will be discussed later, is not trivial.
1-5
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III. CALCULATION IN A SOLVABLE COVARIANT
MODEL

The solvable model, based on the covariant Bet
Salpeter~BS! model of (311)-dimensional fermion field
theory, enables us to derive the form factors of a spin-1 p
ticle exactly. The covariant diagram shown in Fig. 1~a! is in
ed
o
-
in

n

it
o

11600
-

r-

general equivalent to the sum of the LF valence diagram
~b! and the nonvalence diagram 1~c!, where d5q1/p1

5p81/p121. The matrix elementGh8h
m (0) of the electro-

magnetic~EM! current of a spin-1 particle with equal mas
constituents (mq5mq̄) obtained from the covariant diagram
of Fig. 1~a! is given by
Gh8h
m

~0!5 iNcg
2E d4k

~2p!4

SL~k2p!Sh8h
m SL~k2p8!

@~k2p!22mq
21 i«#@k22mq

21 i«#@~k2p8!22mq
21 i«#

, ~20!
-
h
ted
d

cu-
me
whereNc is the number of colors andg, modulo the charge
factor eq , is the normalization constant, which can be fix
by requiring the charge form factor to be unity at zero m
mentum transfer.Sh8h

m is the trace term of the quark propa
gators. To regularize the covariant fermion triangle loop
(311) dimensions, we replace the point photon-vertexgm

by a nonlocal ~smeared! photon-vertexSL(p)gmSL(p8),
whereSL(p)5L2/(p22L21 i«) andL plays the role of a
momentum cutoff similar to the Pauli-Villars regularizatio
@1#.

When we do the Cauchy integration overk2 to obtain the
LF time-ordered diagrams, we want to avoid the complex
of treating doublek2 poles, so we decompose the product
five energy denominators in Eq.~20! into a sum of terms
with three energy denominators only:

1

DLD0DkD08DL8
5

1

~L22mq
2!2

1

Dk
S 1

DL
2

1

D0
D

3S 1

DL8
2

1

D08
D , ~21!
-

y
f

where

DL5~k2p!22L21 i e, D05~k2p!22mq
21 i e,

~22!
Dk5k22mq

21 i e,

andD0[L]8 5D0[L] (p→p8).
Our treatment ofSL as the non-local smearing photon

vertex remedies@1# the conceptual difficulty associated wit
the asymmetry appearing if the fermion loop were regula
by smearing theqq̄ bound-state vertex. As will be discusse
later, the two methods lead to different results for the cal
lation of the decay constant even though they give the sa
result for the form factors.

The vector meson decay constantf V in this covariant
model with the nonlocal gauge boson vertexSL(k)gmSL(k
2p) is defined by

Am5^0uq̄gmqup;1J3&5 iA2 f Vmem~J3!, ~23!

where
h
ctical

tors,

ssing
Am5NcgL4E d4k

~2p!4

Tr@e” ~k”2p”1mq!gm~k”1mq!#

@k22mq
21 i«#@~k2p!22mq

21 i«#@k22L21 i«#@~k2p!22L21 i«#
. ~24!

A. Manifestly covariant calculation

In the manifestly covariant calculation, we obtain the form factorsFi( i 51,2,3) using dimensional regularization. Althoug
the splitting procedure Eq.~21! may not be neccessary in the covariant calculation, it seems more effective in pra
computation. Here we describe some essential steps for the derivation of the covariant form factors: We~i! reduce the five
propagators into the sum of three propagators using Eq.~21!, ~ii ! use the Feynman parametrization for the three propaga
e.g.,

1

DkD0D08
52E

0

1

dxE
0

12x

dy
1

@Dk1~D02Dk!x1~D082Dk!y#3
, ~25!

and ~iii ! make a Wick rotation of Eq.~20! in D dimension to regularize the integral, since otherwise one encounters mi
the logarithmic divergent terms in Eq.~20!. Following the above procedures~i!–~iii ! we finally obtain the covariant form
factors as follows:
1-6
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F1~Q2!5
Ncg

2L4

8p2~L22mq
2!2E0

1

dxE
0

12x

dyH ~22x2y!lnS CkL0
2 Ck0L

2

CkLL
2 Ck00

2 D 1@2~x1y!~x1y21!2m2

1~22x2y!xyQ22~22x2y!mq
2#C2J ,

F2~Q2!52
Ncg

2L4

8p2~L22mq
2!2E0

1

dxE
0

12x

dyH ~21x1y!lnS CkL0
2 Ck0L

2

CkLL
2 Ck00

2 D
1$~x1y!@~x1y!221#m21~x1y!xyQ22~21x1y!mq

2%C2J , ~26!

F3~Q2!5
Ncg

2L4

8p2~L22mq
2!2E0

1

dxE
0

12x

dy8xy~x1y21!m2C2,

where

CkLL
2 5~x1y!~12x2y!m22xy Q22~x1y!L22~12x2y!mq

2 ,

CkL0
2 5~x1y!~12x2y!m22xy Q22~xL21ymq

2!2~12x2y!mq
2 ,

~27!
Ck0L

2 5CkL0
2 ~x↔y!,

Ck00
2 5~x1y!~12x2y!m22xy Q22mq

2 ,

and C25(1/CkLL
2 21/CkL0

2 21/Ck0L
2 11/Ck00

2 ). Note that the logarithmic terms inF1 and F2 are obtained from the dimen
sional regularization.

Following a similar procedure for the form factor calculation, the covariant result for the decay constant is obtaine

f V
COV5

NcgL4

4A2p2m~L22mq
2!2E0

1

dxH @mq
21M̃2# ln

@M̃22xmq
22~12x!L2#@M̃22xL22~12x!mq

2#

@M̃22L2#@M̃22mq
2#

2@M̃22L2# ln@2M̃21L2#

2@M̃22mq
2# ln@2M̃21mq

2#1@M̃22xmq
22~12x!L2# ln@2M̃21xmq

21~12x!L2#1@M̃22xL22~12x!mq
2#

3 ln@2M̃21xL21~12x!mq
2#J , ~28!

whereM̃25x(12x)m2.

B. Light-front calculation

We shall use only the plus component of the current matrix elementGh8h
1 in the calculation of the form factors. In principle

one can directly calculate the trace termSh8h
1 with k25kpole

2 , which depends on the integration region ofk1. However, for the
purpose of a clear understanding of the physics implied in LF dynamics, we instead separateSh8h

1 into the on-mass shel
propagating part and the~off-mass shell! instantaneous one using the following identity:

p”1mq5~p” on1mq!1g1~p22pon
2 !, ~29!

where the subscript ‘‘on’’ denotes the on-mass shell (p25mq
2) quark propagator, i.e.p25pon

2 5(mq
21pW'

2 )/2p1. Then the trace
term Sh8h

1 of the quark propagators in Eq.~20! is given by

Sh8h
1

~P5k2p,P85k2p8,k!5~Sh8h
1

!on1~Sh8h
1

! inst., ~30!

where
116001-7
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~Sh8h
1

!on5Tr@e” h8
* ~P” on8 1mq!g1~P” on1mq!e” h~k” on1mq!#

54P1@~kon•eh8
* !~Pon8 •eh!1~Pon8 •eh8

* !~kon•eh!1~eh8
* •eh!~mq

22kon•Pon8 !#

14P81@~kon•eh8
* !~Pon•eh!1~Pon•eh8

* !~kon•eh!1~eh8
* •eh!~mq

22kon•Pon!#

14k1@~Pon8 •eh8
* !~Pon•eh!2~Pon•eh8

* !~Pon8 •eh!2~eh8
* •eh!~mq

22Pon•Pon8 !#

54P1@~kon•eh8
* !~Pon8 •eh!1~Pon8 •eh8

* !~kon•eh!1~eh8
* •eh!~mq

22kon•Pon8 !#14P81@~kon•eh8
* !~Pon•eh!1~Pon•eh8

* !

3~kon•eh!1~eh8
* •eh!~mq

22kon•Pon!#14k1@~Pon8 •eh8
* !~Pon•eh!2~Pon•eh8

* !~Pon8 •eh!2~eh8
* •eh!~mq

22Pon•Pon8 !#

24eh8
* 1

@~Pon•eh!~kon•Pon8 2mq
2!2~Pon8 •eh!~kon•Pon2mq

2!1~kon•eh!~pon•Pon8 2mq
2!#

24eh
1@~Pon8 •eh8

* !~kon•Pon2mq
2!2~Pon•eh8

* !~kon•P81on2mq
2!1~kon•eh8

* !~Pon•Pon8 2mq
2!#, ~31!
.

ns

e

n

and

~Sh8h
1

! inst.5~k22kon
2 !Tr@e” h8

* ~P” on8 1mq!g1

3~P” on1mq!e” hg1#

58~k22kon
2 !@eh8

* 1Pon
1 ~eh•Pon8 !1eh

1Pon8

1~eh8
* •Pon!2Pon8

1Pon
1 ~eh8

* •eh!

1eh8
* 1eh

1~mq
22Pon8 •Pon!#. ~32!

As we shall show below, the LFvalencecontribution comes
exclusively from theon-massshell propagating part, Eq
~31!, and thezero-mode~if it exists! from the instantaneous
part, Eq.~32!.

Using the special Breit frame@see Eq.~13!# with the LF
gauge, we obtain for the trace terms (Sh8h

1 )on and (Sh8h
1 ) inst.

given by Eqs.~31! and ~32! the expressions

~S11
1 !on5

4p1

x Fmq
21~2x222x11!

3S kW'
2 2

x2

4
Q21 ix~kW'3qW'!• ẑD G ,

~S12
1 !on58~12x!p1F ~kx2 iky!22

x2

4
Q2G ,

~S10
1 !on5

A8h

Q
p1@2~kx2 iky!2xQ#~2x21!

3F ~12x!~m21M0
2!1

x

4
Q21kW'•qW'G ,

~S00
1 !on5

4p1

m2 FxS ~12x!~m21M0
2!1

x

4
Q2D 2

2x~kW'•qW'!2G , ~33!
11600
and

~S11
1 ! inst.5~S12

1 ! inst.50,

~S10
1 ! inst.5

8~p1!2

mA2
~k22kon

2 !~x21!

3Fkx2 iky1S 12
x

2DQG ,
~S00

1 ! inst.5
8~p1!2

m2
~k22kon

2 !F2
x2

4
Q21mq

21kW'
2 G ,

~34!

where x5k1/p1 and M0
25(mq

21kW'
2 )/@x(12x)#. We note

that the terms proportional to an odd power ofkW' do not
contribute to the integral.

By doing the integration overk2 in Eq. ~20!, one finds the
two LF time-ordered contributions to the residue calculatio
corresponding to two poles ink2, the one coming from the
interval ~I! 0,k1,p1 @see Fig. 1~b!#, the ‘‘valence dia-
gram,’’ and the other from~II ! p1,k1,p81 @see Fig. 1~c!#,
the ‘‘nonvalence diagram’’ or ‘‘Z’’ graph. These diagrams ar
expressed in terms of energy denominators.

1. Valence contribution

In the region 0,k1,p1, the polek25kon
2 5(mq

21kW'
2

2 i«)/2k1 ~i.e. the spectator quark!, is located in the lower
half of the complexk2 plane. Thus, the Cauchy integratio
formula for thek2 integral in Eq.~20! gives in this region
for the plus current,Gh8h

1 (0),

Gh8h
1val

5
Nc

2~2p!3E0

1 dx

x~12x!4

3E d2kW'

gL2

~m22M 0
2!~m22M L

2 !
Sh8h

1val

3
gL2

~m22M80
2!~m22M8L

2 !
, ~35!
1-8
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where the invariant masses of the initial meson state
given by

M 0
25

mq
21~kW'2xpW'!2

x
1

mq
21~kW'2xpW'!2

12x
,

~36!

M L
2 5

mq
21~kW'2xpW'!2

x
1

L21~kW'2xpW'!2

12x
.

The invariant masses of the final state, i.e.M08
2 andML8

2 in

Eq. ~35!, can be obtained by replacingpW'→2pW' in Eq. ~36!.
As one can easily see from Eqs.~33! and ~34!, only the
on-mass shell quark propagator part contributes to the
lence diagram, i.e.Sh8h

1val
5(Sh8h

1 )on. Note, however, that this
relation does not hold in general for other components of
currents, e.g.Sh8h

2valÞ(Sh8h
2 )on. One of the distinguished fea

tures of the LF plus current matrix element given by Eq.~35!
is that the physical interpretation is manifest in terms of
LF wave function, i.e. a convolution of the initial and th
final state LF wave functions, which is not possible for t
covariant calculation.

2. Zero-mode contribution

In the regionp1,k1,p81, the poles are atk25p82

1@mq
21(kW'2p8W')22 i«#/2(k12p81) ~from the struck

quark propagator! and k25p821@L21(kW'2pW'8 )2

2 i«#/2(k12p81) @from the smeared quark-photon verte
SL(k2p8)#, and are located in the upper half of the compl
k2 plane.

Since the integration range of the nonvalence region,p1

,k1,p81(5p11q1), shrinks to zero in theq1→0 limit,
the nonvalence contribution is sometimes mistakenly thou
to be always vanishing forq1→0. However, in reality it
may not vanish but give a finite contribution,
11600
re

a-

e

e

ht

lim
q1→0

E
p1

p11q1

dk1~••• ![ lim
d→0

E
1

11d
dx~••• !Þ0. ~37!

Then it is called the ‘‘zero mode’’@14–19# in the q150
frame. The nonvanishing zero-mode contribution occurs o
if the integrand (•••) in Eq. ~37! behaves;k2@ i.e.(1
2x)21#. Note that there is no zero-mode contribution eith
in the case the integrand behaves likek2(k12p1)n(n>1)
or is k2 independent.

For the plus current, the zero-mode contribution com
from the spin structure of the fermion propagator, spec
cally only from the instantaneous part given by Eq.~34! and
neither from the on-mass shell propagating part nor the
ergy denomimator. Thus, without detailed knowledge of
energy denominator, it is easy to find from Eqs.~34! and~37!
that only the helicity zero-to-zero component gives a non
nishing zero-mode contribution:

lim
x→1

~S00
1 ! inst.5

8~p1!2

m2
k2~mq

21kW'
2 2Q2/4!, ~38!

wherek2;1/(12x)→` asx→1. In other words, while the
integration region shrinks to zero, the integrand for the
licity zero-to-zero component goes to infinity leading to
finite zero-mode contribution.

As we said before, we avoided the complexity of t
Cauchy integration over doublek2 poles by decomposing
the product of five energy denominators in Eq.~20! into a
sum of terms with three energy denominators. In this w
we perform the Cauchy integration ofG00

1 over the singlek2

pole, eitherDL8 or D08 , instead of doublek2 poles.
For example, the 1/(DkDLDL8 ) term in Eq.~21! combined

with the pole positionk25p821@L21(kW'2pW'8 )2#/2(k1

2p81) appearing in (S00
1 ) inst. gives ~see Appendix B for the

detailed derivation!
q.
i E d4k

~2p!4

k2

DkDLDL8
5

1

2~2p!3p1E d2kW'

lnF ~kW'2pW'8 !21L2

~kW'2pW'!21L2G
@~kW'2pW'!21L2#2@~kW'2pW'8 !21L2#

. ~39!

Similarly, one can obtain nonvanishing zero-mode contributions for the other energy denominator terms given by E~21!.
Explicitly, the zero-mode contribution fromS00

1 in this special Breit frame is given by

G00
1z.m.5

Ncg
2L4

2p1~2p!3~L22mq
2!2E d2kW'

8~p1!2

m2
~mq

21kW'
2 2Q2/4!H lnF ~kW'2pW'8 !21L2

~kW'2pW'!21L2G
@~kW'2pW'!21L2#2@~kW'2pW'8 !21L2#

2

lnF ~kW'2pW'8 !21mq
2

~kW'2pW'!21L2G
@~kW'2pW'!21L2#2@~kW'2pW'8 !21mq

2#
1~mq↔L!J . ~40!

The angular conditionD(Q2) given by Eq.~16! is satisfied only if the zero-mode contribution forG00
1z.m. in Eq. ~40! is

included, i.e.G00
1 5G00

1val1G00
1z.m..
1-9
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FIG. 2. The charge form factoruGC(Q2)u obtained from the light-front~left! and the instant-form~right! spin bases: The thick solid line
represents the full~i.e. valence1zero mode in LF5covariant! solution. The dotted, long-dashed, and dot-dashed lines represent the va
contributions only, where we use the same normalization as for the full solutionGC(0)51. The small squares represent the angular condi
in Eq. ~16! without including the zero-mode contribution.
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A similar analysis has been made by de Meloet al. @7#,
where the authors found the zero-mode contribution us
the instant form basis@7,8,13# instead of the LF helicity basis
@2–5,10,12# for the polarization vectors of a spin-1 particl
In principle, the LF helicity basis can be related to the inst
form spin basis by some transformation. Interestingly, ho
ever, we find that since the authors in Ref.@7# used the
non-LF gauge~i.e., ex

1Þ0) polarization vectors, the thre
polarization components, i.e.Gxx

1 ,Gzz
1 andGzx

1 , receive zero-
mode contributions as we explicitly show in Appendix A.
other words, using the instant form basis with a non-
11600
g

t
-

gauge used in@7#, one cannot avoid the zero-mode contrib
tion to the form factors of a spin-1 particle no matter wh
prescription is used.

We use the results of our numerical calculations to co
pare the form factors obtained in the LF helicity basis~in LF
gauge! with those obtained in the instant form linear pola
ization basis~in non-LF gauge! as well as the covariant ones

In the LF calculation of the vector meson decay consta
the plus current with the longitudinal (h50) polarization
vector is usually used. In the special Breit frame@see Eqs.
~13! and ~14!#, we thus obtain
re
FIG. 3. The magnetic form factorGM(Q2) obtained from the light-front~left! and the instant form~right! spin bases. The same lines a
used as in Fig 2.
1-10
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f V
LF5

NcgL4

4A2p3m
E

0

1 dx

x3~12x!3E d2kW'@x~12x!~p1!21mq
21kW'

2 2kW'•pW'#

3
2x~12x!m22mq

22L222~kW'2xpW'!2

@m22M0m
2 #@m22M0L

2 #@m22M0m
2 ~mq↔L!#@m22M0L

2 ~mq↔L!#
. ~41!

FIG. 4. The quadrupole form factorGQ(Q2) obtained from the light-front~left! and the instant form~right! spin bases. The same line
are used as in Fig 2.
ac
t in
al-
Our LF calculation of the decay constant in Eq.~41! is ex-
actly the same as the covariant result in Eq.~28!. We also
note that there is no zero-mode contribution tof V

LF in our
model calculation. This can be easily seen from the tr
11600
e

calculation. Because Tr@e” (k”2p”1mq)g1(k”1mq)#
54$(e•k)(2k12p1)1e1(mq

22k21k•p)% and the k2

terms cancel each other, only the good component is lef
the numerator. It is interesting to note that while our c
FIG. 5. Invariant form factorsF1 , F2
b , F2

c , F2
d , andF3 ~left! and physical form factorsGC , GM , andGQ from F2

b ~right! calculated in
the Drell-Yan-West frame. Valence parts only.
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FIG. 6. Physical form factorsGC , GM , andGQ from F2
c ~left! and F2

d ~right! calculated in the Drell-Yan-West frame. Valence pa
only.
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ntial
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culation of the decay constant with a non-local~but symmet-
ric! gauge boson vertex is immune to the zero mode,
same calculation by Jaus@20# is not, where the author used
local gauge boson vertex and an asymmetric smearing m
vertex.

IV. NUMERICAL RESULTS

In this section we present the numerical results for
form factors and angular conditions and analyze the dep
dences on prescriptions, helicity bases and reference fra
11600
e

on

e
n-
es.

However, we do not aim at finding the best-fit parameters
describe the experimental data of ther meson properties
Rather, we simply take the parameters used by others@8#
with which we were able to reproduce the results in th
particular work. Nevertheless, as we mentioned earlier,
model calculations have a generic structure and the esse
findings from our calculations may apply to the more rea
tic models, although the quantitative results would differ
other models depending on the details of the dynamics
each model.

In our numerical calculations, we thus usem
e
FIG. 7. Invariant form factorsF1 , F2
b , F2

c , F2
d , andF3 for u5p/20 ~left! andu59p/20 ~right! calculated in the Breit frame. Valenc

parts only.
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FIG. 8. Physical form factorsGC , GM , andGQ from F2
b calculated in the Breit frame. Leftu5p/20, right u59p/20. Valence parts

only.
nt
a
t

n
t
ba

ive
ould
of
50.77 GeV, mq50.43 GeV, andL51.8 GeV @8# and
make the taxonomical decompositions of the full results i
the valence and nonvalence contributions to facilitate a qu
titative comparison of the various dependences such as
prescriptions~GK,CCKP,BH!, the helicity bases~LF,IF! and
the reference frames~DYW,BRT,TRF!. We first present the
dependences on the prescriptions and the helicity bases i
q150 frame~see Sec. IV A!. Then, in Sec. IV B, we presen
the frame dependences using exclusively the LF helicity
sis.
11600
o
n-
he

the

-

A. Dependences on the helicity bases and the prescriptions

In Fig. 2 we show the charge form factoruGC(Q2)u ob-
tained from the light-front~left! and the instant-form~right!
spin bases. The full solutions~thick solid line! are obtained
from three different prescriptions@2–4# given by Eqs.~17!–
~19! for the light-front basis and Eqs.~A1!–~A3! for the
instant-form basis, respectively, and they all turn out to g
exactly the same result as the covariant one as they sh
be. The slope of the full solution gives the charge radius
the bound state as defined in Eq.~44! and we obtained
FIG. 9. Physical form factorsGC , GM , andGQ from F2
c calculated in the Breit frame. Leftu5p/20, right u59p/20. Valence parts

only.
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FIG. 10. Physical form factorsGC , GM , andGQ from F2
d calculated in the Breit frame. Leftu5p/20, rightu59p/20. Valence parts

only.
re
p

ibu
nc

re

b-
tly

on
ity
op of
ive

the
^r C
2 &57.63 GeV22 with the parameter set we used. Mo

detailed discussions on the charge, magnetic and quadru
radii can be found in Sec. IV B 6. In theq150 frame, the
full solutions can be decomposed into the valence contr
tion and the zero-mode contribution since the nonvale
diagram reduces in the limitq1→0 to the zero mode. To
estimate it, we plot the valence contribution for each p
scription, i.e. the dotted line for GK@2#, the long-dashed line
for CCKP @3#, and the dot-dashed line for BH@4#, respec-
tively. The normalization constantg is fixed by requiring the
full solution to be normalized toGC(0)51. As one can see
11600
ole

-
e

-

in Fig. 2, the two results for the valence contributions o
tained from the light-front and the instant-form bases exac
coincide with each other. However, only the GK prescripti
is immune to the zero-mode contribution for both helic
bases. The dotted curve cannot be seen because it is on t
the solid curve. Other prescriptions, CCKP and BH, rece
large amounts of zero-mode contributions~i.e. the difference
between the full solution and the valence one!. As we dis-
cussed earlier, the GK prescription does not involve theG00

1

component which is the only source of the zero mode for
light-front helicity basis and the zero modes from theGxx

1

.
FIG. 11. Invariant form factorsF1 , F2
b , F2

c , F2
d , andF3 for u5p/20 ~left! andu59p/20 ~right! calculated in the target-rest frame

Valence parts only.
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FIG. 12. Physical form factorsGC , GM , and GQ from F2
b calculated in the target-rest frame. Versionb. Left u5p/20, right u

59p/20. Valence parts only.
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de,
andhGzz
1 terms in Eq.~A1! for the instant-form basis cance

each other@see Eq.~A6!#. We also show the angular cond
tion ~small squares! given by Eq.~16! without including the
zero-mode contributions. If we include the zero-mode c
tributions, then it is of course exactly zero.

The situation is rather different for the calculation of t
magnetic form factorGM as shown in Fig. 3. For the ful
solution, the two~LF and IF helicity bases! results are again
exactly the same as they should be. The magnetic mom
~in units of e/2m) and its radius given by Eq.~44! are ob-
tained asm152.1 and ^r M

2 &59.73 GeV22 ~see also Sec
11600
-

nt

IV B 6!, respectively. However, the valence~or for that mat-
ter the zero-mode! contributions to the full solution are quit
different depending on the helicity bases. For the light-fro
helicity basis, the GK prescription is again immune to t
zero mode and the dotted curve is exactly on top of the s
curve. Also, the other prescriptions, CCKP and BH, rece
large amounts of the zero-mode contributions as in the c
of the GC calculation. However, for the instant form sp
basis used in@8#, not only the CCKP and BH prescription
but also the GK prescription are affected by the zero mo
because the zero-mode terms2Gzz

1 andGzx
1 /Ah in Eq. ~A1!

do not cancel each other@see Eq.~A6!# but rather add up.
FIG. 13. Physical form factorsGC , GM , andGQ from F2
c calculated in the target-rest frame. Leftu5p/20, right u59p/20. Valence

parts only.
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FIG. 14. Physical form factorsGC , GM , andGQ from F2
d calculated in the target-rest frame. Leftu5p/20, right u59p/20. Valence

parts only.
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We show in Fig. 4 the quadrupole form factorGQ(Q2)
obtained from the light-front~left! and the instant-form
~right! helicity bases. The quadrupole moments~in units of
e/m2) and the corresponding radius given by Eq.~44! are
obtained asQ150.91 and̂ r Q

2 &512.6 GeV22 ~see also Sec
IV B 6!, respectively. As in the case ofGC(Q2), the two~LF
and IF helicity bases! results coincide and the dotted curv
are exactly on top of the solid curves because of the abs
of the zero mode in the GK prescription.

The decay constant@see Eqs.~28! and ~41!# using the
same parameters yields the resultf v5133.7 MeV, while the
experimental dataf r05152.863.6 MeV and f r65147.3
60.7 MeV are obtained from the widthG(r→e1e2) and
the branching ratio Br(t→rnt)5(25.0260.16)% @21#, re-
spectively.

FIG. 15. Angular conditionsDbc andDbd in the Drell-Yan-West
frame.
11600
ce

B. Light-front valence parts

We checked that in all reference frames the sum of
valence and nonvalence contributions to the form factor
equal to the covariant result. Therefore henceforth we p
the valence contributions only. The valence parts will in ge
eral depend on the polar angleu in BRT and TRF, but are
independent of the azimuthal anglef in all three reference
frames~DYW,BRT,TRF!. We used the latter property as
check of the accuracy of our codes.

Using Eq.~1! for the matrix elements and the kinemati
specified in Eqs.~10! and ~12! for BRT and TRF, respec-
tively, one finds that the coefficientsbi and ci , i 51,2,3,
vanish foru50. Therefore we illustrate the angular depe
dence of the valence parts in BRT and TRF by giving th
for the small but nonvanishing valueu5p/20. On the other
hand,u5p/2 is singled out for the BRT frame, so we cho
for a larger value ofu the value 9p/20. There is a symmetry
aboutu5p/2, so the amplitudes forp/2<u<p do not con-
tain any additional information.

Eventually we plot the momentum dependence of the
lence parts of the form factors and of the violation of t
angular conditions for two values of the polar angleu. We
see that in all reference frames and for all angles the ang
conditionDbd diverges forQ2→0. This is due to the fact tha
the coefficientd2 of F2 in the matrix elementGd @see Eq.
~4!# vanishes forQ250. For that reason there is a finit
contribution of the nonvalence part or zero mode to
charge form factor even in the limitQ2→0, which shows up
in all d variants of the physical form factors. For finite valu
of Q2 an accidental singularity inDbd may occur. To follow
that up we plot the angular variation of the angular con
tions for two values of the momentum transferQ2. We can
also explain the occurrence of these singularities as du
1-16
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the vanishing of the coefficientd2 of F2 in the matrix ele-
mentGd .

1. Drell-Yan-West kinematics

In the DYW reference frame there is no dependence ou.
The dependence onf amounts to simple phase factors,e6 if

for Gb andGc , ande2if for Ge . In Figs. 5 and 6, the result
for the valence parts of the invariant form factorsF1 , F2,
and F3 and the physical onesGC , GM and GQ are shown.
F1(0) is normalized to 1, which is not affected by the ze
mode. For the same reasonGC

b (0)5GC
c (0)51. However,

GC
d (0)Þ1 and for positiveQ2 GC

d deviates from the correc
one by the zero-mode contribution toF2

d . It is clear that the
zero mode is very important if one does choose theF2

d pre-
11600
scription. Neither of theF2
b or F2

c prescription contains the
zero mode. As mentioned before, they correspond to the
prescription in the DYW frame forf50.

2. Breit frame kinematics

Our convention for the BRT frame entails bothu and f
dependences of the matrix elements. The latter being triv
we fixed f50 in all our calculations, after checking tha
indeed the form factors are independent of this angle.
u5p/2 the BRT frame and the DYW frame can be co
nected by a kinematical transformation, so the results for
form factors become identical.~See the discussion in@6#.!
We chose two values for the angleu, slightly different from
0 andp/2 to illustrate the angular dependence of the vale
FIG. 16. Dependence of the
angular conditionsDbc andDbd in
the Breit frame onQ2 for four dif-
ferent anglesu.
1-17
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FIG. 17. Dependence of the
angular conditionsDbc andDbd in
the target-rest frame onQ2 for
four different anglesu. Note the
changed scale in the caseu
53p/8. The singlularity is clearly
visible there.
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parts of the form factors. The results shown in Figs. 7–10
for u5p/20 andu59p/20. As shown in Fig. 7, it is imme-
diately clear that onlyF1 andF3 are rather insensitive to th
choice of the polar angle, but the three prescriptions forF2
are dramatically changing withu going from a small value to
one nearp/2. This strong angle dependence is found also
the physical form factors shown in Figs. 8–10, although
b andc variants are much less changed than thed variant. In
all cases the charge form factor shows the least ang
variation.

3. Target-rest-frame kinematics

The results shown in Figs. 11–14 are again foru5p/20
andu59p/20. Everything we said for the results obtained
11600
re

n
e

ar

the Breit frame can be repeated for the target-rest frame
Figs. 12–14, we see for theb andc variants similar angular
dependences, but for thed variant the variation withu is
even more dramatic than in the Breit frame. The results
Fig. 14 for u59p/20 hint at a singular behavior of thed
variant that is explained by the fact that for some combi
tions of Q2 and u the coefficientd2 vanishes. We discus
more details of the situation below in Sec. IV B 5.

4. Angular condition

In the next plots of Figs. 15–17 we show the two angu
conditions for a somewhat longerQ2 interval, up till
10 GeV2. In the case of the Breit~Fig. 16! and target-rest
~Fig. 17! frames we plot the differencesDbc5F2

b2F2
c and
1-18
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Dbd5F2
b2F2

d for four anglesu5p/8,p/4, 3p/8,p/2. For
the DYW frame~Fig. 15! Dbc50, so in the plotDbc coin-
cides with theQ2 axis.

In the Breit frame the angular conditions do depend ou
and we show their behavior for the same angles as in S
IV B 2. The angular condition that was trivially fulfilled in
the DYW frame turns out to be only weakly violated in th
Breit frame. The other one, however,Dbd is strongly violated
for small values ofQ2. It demonstrates clearly the impo
tance of including the nonvalence parts in a calculation
the matrix elements of the current. For large values ofQ2 it
tends very quickly to zero, corroborating the expectation t
in perturbative QCD one may ignore largely the nonvalen
parts for sufficiently high momentum tranfers.

Again, the discussion of the behavior of the angular c
ditions in the target-rest frame can be very similar to the o

FIG. 18. Angular conditionsDbc andDbd in the Breit frame for
Q251.0 GeV2 andQ2510.0 GeV2 for different anglesu.

FIG. 19. Angular conditionsDbc andDbd in the target-rest frame
for Q251.0 GeV2 andQ2510.0 GeV2 for different anglesu.
11600
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for the Breit frame, so we shall not repeat it. We only me
tion that the overall behavior is similar in these two cas
but the details differ. In particular, in the following, Se
IV B 5, we consider twoQ2 values (Q251.0 GeV2 and
10.0 GeV2) and find that the singularity inDbd occurs in the
Breit frame foru close top/4 while in the target-rest frame
it shows up foru close to 3p/8.

5. Singular behavior

Figure 14 shows thatGC
d starts to drop significantly when

Q2 is near to 4 GeV2. Such a behavior can be understo

FIG. 20. Valence contributions to physical form factors f
small values ofQ2 in the DYW frame. Whileb andd variants are
shown here, thed-variant magnetic (GM

d ) and quadrupole (GQ
d )

form factors are out of scale because they diverge asQ2→0.

FIG. 21. Physical form factors for small values ofQ2. BRT
frame, variantb.
1-19
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from the dependence of the coefficientd2 occurring in Eqs.
~4! and ~6! on the momentum transferQ and the angleu. It
appears that both in the BRT frame and the TRF this coe
cient may vanish for a particular combination ofQ2 andu.

The singularity ofDbd in the Breit frame is illustrated in
Fig. 18. We see that it occurs forQ251.0 GeV2 close tou
5p/4. The other angular condition remains flat inu and the
same is true for both conditions forQ2510.0 GeV2. A simi-
lar picture is found in Fig. 19 for the target-rest frame, on
the position of the singularity being different.

FIG. 22. Physical form factors for small values ofQ2. BRT
frame, variantc.

FIG. 23. Physical form factors for small values ofQ2. BRT
frame, variantd.
11600
-

We can understand this behavior very easily if we co
sider the expressions ford2, which can be derived in a
straightforward way from the kinematics and the expressi
for the polarization vectors inserted in Eq.~1!. We find

d2
BRT5

A2bmQ2@12b21~11b2!cos 2u#

4b2m22Q2 cos2u
~42!

for the Breit frame and

FIG. 24. Physical form factors for small values ofQ2. TRF,
variantb.

FIG. 25. Physical form factors for small values ofQ2. TRF,
variantc.
1-20
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d2
TRF5

~2m1k1bQ cosu!~k212bkQ cosu1b2Q2cos 2u!

2A2m~m1k1bQ cosu!
~43!
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for the target-rest frame.
Solving the equationd250 for Q251.0 GeV2, we find

for BRT u50.69850.222p and for TRF u51.181
50.376p. These angles coincide with the positions of sing
larities shown in Figs. 18 and 19. Also, we note that foru
5p/8 in the BRT frame there exists a singularity atQ2

58m2/(A221)'11.45 GeV2 which is not shown in Fig.
18 due to the restricted interval ofQ2 only up to 10 GeV2.
However, except the tiny region near this singularity po
tion, the angular condition is very well satisfied at the larg
Q2 region.

6. Charge, magnetic and quadrupole radii

From the slope of physical form factors forQ2→0, the
corresponding radii (̂r C

2 &,^r M
2 &,^r Q

2 &) can be defined2 as

GC~Q2!;GC~0!F12
1

6
^r C

2 &Q2G ,
GM~Q2!;GM~0!F12

1

10
^r M

2 &Q2G ,
GQ~Q2!;GQ~0!F12

1

14
^r Q

2 &Q2G . ~44!

When one considers only the valence parts of charge, m
netic and quadrupole form factors, one should be carefu
obtaining the corresponding radii given by Eq.~44! because
some of them exhibit singular behaviors asQ2→0. In order
to determine the radii, one may in general try to take
limit @G(Q2)2G(0)#/Q2 as Q2→0. In practice, however
this gives a rather unreliable value as for very small value
Q2 the calculations may have numerical noise that is am
fied by taking the difference of two almost equal numb
and dividing the result by the small numberQ2. A more
stable procedure is to make a linear fit to the form factors
a domain close toQ250. We have chosen the interval 0.0
<Q2<0.1 and took ten equidistant values forQ2. In order to
check whether it makes sense to fit the form factors t
linear function ofQ2 in this domain, we plotted the form
factors as shown in Figs. 20–26 and also checked the qu
of the fit.

It turned out that onlyGM andGQ in thed variants could
not be fitted with a straight line. The reason is that in the
variants the influence of the zero mode is very big and o
including the zero mode or the nonvalence part can cor

2These relations are associated with the interpretation of the F
rier transform of the form factors for spacelike momentum trans
as densities and the behavior of the spherical Bessel function
small argumentj l(x);@xl /(2l 11)!! #$12@x2/2(2l 13)#1•••%.
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the nonlinear behavior. Because of this reason, we do
show thed-variant valence results forGM andGQ which are
anyway out of scale in Figs. 20, 23 and 26. However, in
case that includes the nonvalence part as shown in F
21–23 ~total in BRT! and Figs. 24–26~total in TRF!, all
values obtained for the radii do agree. The same is true
the case where the zero mode does not occur as show
Fig. 20 (b and c variants in DYW!. An indication of the
accuracy of the results is obtained if one includes the val
at Q250 in the fit. Then the radii do not change by mo
than 1.5%. If one would try do determine these quantities
fitting the form factors in a much smaller interval, say .0
<Q2<0.01 in order to improve the linear approximatio
mathematically, then the numerical noise will have a stron
influence. So there is a trade off between truncation erro
the series expansion of the Bessel function and numer
noise. We are satisfied with an overall numerical error of
order of 1%. In Table I we summarize the numerical resu
for the radii. For thed variants, bothGM andGQ diverge for
Q2→0 as discussed above and an entry ‘‘div.’’ is given f
those cases in this table. The numerical estimates for
radii in these divergent cases, which do not includeQ250,
give indeed values of the order of a hundred GeV22.

V. CONCLUSION

In this work we made a taxonomical analysis of spin
form factors with respect to several different prescriptio
~GK,CCKP,BH!, polarization vector choices~LF,IF!, and ref-

u-
r

for FIG. 26. Physical form factors for small values ofQ2. TRF,
variantd.
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BAKKER, CHOI, AND JI PHYSICAL REVIEW D 65 116001
erence frames~DYW,BRT,TRF!. We used theJ1 current for
all of our analysis.

In the q150 frame, we looked at both LF and IF pola
ization vectors and made a comparative analysis on the t
prescriptions~GK,CCKP,BH! in relating the matrix element
to the physical form factors. In the light-front gauge,A1

50, the light-front helicity basis is the set of eigenvectors
the light-front helicity operator. However, the instant-for
polarization vectors have been also used in the literature.
find that the zero-mode contamination occurs minimally
the light-front gauge because only the helicity zero-to-z
amplitude, i.e.G00

1 , gets a zero-mode contribution, but a
others (G11

1 , G10
1 , G12

1 ) are immune from the zero mod
in the light-front basis. Thus, one can find a prescript
which does not involve the zero-mode contribution at a
Indeed, the GK prescription which does not useG00

1 has
precisely this property. Consequently, the computation
only the valence contributions to the form factors using
GK prescription yields results which coincide exactly wi
the full results of the form factors as we have shown in Fi
2–4. These full results can be obtained by the other presc
tions, CCKP and BH, only if the zero-mode contributions a
added to the valence contributions. We have also comp
the form factors using a manifestly covariant Feynm
method and explicitly shown that the full results of the ligh
front calculations are fully in agreement with the covaria
one no matter what prescriptions we use. Although the
results are also independent of the choice of the polariza
vectors, we find that the nice feature of the GK prescript
described above is lost in the instant-form basis. As show

TABLE I. Squared radii in GeV22 for the different reference
frames and variants.

Reference frame, variant GC GM GQ

DYW, Gb andGc 7.63 9.73 12.6
DYW, Gd 9.56 div. div.

u5p/20
BRT, tot 7.63 9.73 12.6
BRT, Gb, val 14.3 27.6 50.4
BRT, Gc, val 14.7 18.3 19.4
BRT, Gd, val 13.9 div. div.

u59p/20
BRT, tot 7.63 9.73 12.6
BRT, Gb, val 8.42 12.0 17.7
BRT, Gc, val 8.48 10.7 13.6
BRT, Gd, val 10.0 div. div.

u5p/20
TRF, tot 7.63 9.73 12.6
TRF, Gb, val 14.3 27.7 50.6
TRF, Gc, val 14.8 18.3 19.5
TRF, Gd, val 14.1 div. div.

u59p/20
TRF, tot 7.63 9.73 12.6
TRF, Gb, val 9.84 15.9 26.2
TRF, Gc, val 9.98 12.5 15.2
TRF, Gd, val 15.5 div. div.
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Fig. 3, the valence contribution to the magnetic form fac
@GM(Q2)# computed in the instant-form basis substantia
differs from the full result even if the GK prescription i
used. This is due to the fact that a larger number of ma
elements are contaminated by the zero mode in the inst
form basis, and in the particular case ofGM(Q2) the terms
affected by the zero mode such as2Gzz

1 andGzx
1 /Ah in Eq.

~A1! do not cancel each other@see Eq.~A6!# but rather add
up. We thus conclude that the GK prescription in the lig
front basis is certainly advantageous for model calculat
involving only the valence contributions to the spin-1 for
factors.

We have also analyzed the frame dependence of the
lence contribution to the physical form factors and the an
lar conditions using the light-front polarization vector
Since the three presciptions discussed above are defined
in the q150 frame, we use the prescriptionsb, c, and d
defined in Sec. II to work in a general frame. In the DY
frame, ourc prescription corresponds to the GK prescripti
and the results on the form factors from ourb prescription
coincide with those from thec or GK prescription. Also,
some combinations of thec andd prescriptions correspond t
the CCKP and BH prescriptions, depending on the coe
cients of the combinations. Again, only thed prescription
involves the zero mode and the valence result from thd
prescription differs from the results of theb andc prescrip-
tions that coincide with each other exactly as shown in Fi
5 and 6. The results in the Breit frame reproduce the DY
results if u5p/2, since they can be transformed into ea
other by purely kinematic operators in LFD. IfuÞp/2, how-
ever, the results are quite different from the DYW results.
shown in Figs. 7–10 more drastic differences in the res
among theb, c, and d prescriptions are found atu5p/20
than atu59p/20. Similar observations can be made also
the TRF. However, the kinematic equivalence to DWY o
tains only at a special angleu5u0 ~see Ref.@19#! which
depends onQ2. Thus, it is rather difficult to see the similarit
of the results of TRF and DYW. Although the angular co
dition Dbc is rather well satisfied, the usual angular conditi
Dbd is severely broken in the smallQ2 region. Singularities
associated with those violations are visible in our figu
~see, e.g. Figs. 18 and 19!.

Nevertheless, both angular conditionsDbc and Dbd are
well satisfied in the regionQ2 above a few GeV2 except the
tiny region near the singularity position discussed in S
IV B 5 and thus the results from all the prescriptions beco
consistent with each other. Thus, one may conclude that
zero-mode contributions are highly suppressed in the h
Q2 region and the results are consistent with the perturba
QCD predictions. This may justify the use of the BH pr
scription in the analysis of highQ2 form factors. For the low
and intermediateQ2 regions, however, the zero-mode cont
butions are very important and the GK prescription with t
light-front polarization vectors in the DYW frame is ce
tainly desirable for the form factor analyses. An applicati
of this observation to a more realistic model calculation
under consideration.
1-22
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APPENDIX A: FORM FACTORS IN THE INSTANT-FORM
BASIS

Using the instant-form linear polarization vectors (h,h8
5x,y,z), the form factors corresponding to Eqs.~17!–~19!
in the light-front polarization vectors are given by@8#

GC
GK5

1

2p1 F1

3
Gxx

1 1
~22h!

3
Gyy

1 1
h

3
Gzz

1G ,
GM

GK52
1

2p1 FGyy
1 2Gzz

11
Gzx

1

Ah
G , ~A1!

GQ
GK5

1

2p1 F 1

2h
Gxx

1 2
~11h!

2h
Gyy

1 1
1

2
Gzz

1G ,
GC

CCKP5
1

2p1 F1

3
Gxx

1 1
1

6
Gyy

1 1
1

2
Gzz

1G ,
~A2!

GM
CCKP52

1

2p1

Gzx
1

Ah
,GQ

CCKP5
1

2p1

~Gxx
1 2Gyy

1 !

2h
,

and

GC
BH5

1

2p1~112h!
F ~112h!

3
Gxx

1 1
~2h21!

3
Gyy

1

1
~312h!

3
Gzz

1G ,
GM

BH5
21

2p1~112h!
F ~112h!

Ah
Gzx

1 2Gyy
1 1Gzz

1G , ~A3!

GQ
BH5

1

2p1~112h!
F ~112h!

2h
Gxx

1 2
~11h!

2h
Gyy

1 2
1

2
Gzz

1G ,
where we redefine the definition of the form factorsG0 ,G1,
andG2 in Ref. @8# in terms ofGC ,GM , andGQ according to
the footnote 1. In order to calculate the form factors o
spin-1 particle in this instant-form bases, the authors of R
@7,8# used the reference frame specified in our Eq.~13!.
11600
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However, they use different~i.e. non-LF gauge! polarization
vectors in the initial (e) and final (e8) states that are given
by

ex
m5~2Ah,A11h,0,0!, ey

m5~0,0,1,0!, ez
m5~0,0,0,1!,

~A4!

and

ex8
m5~Ah,A11h,0,0!, ey8

m5ey
m , ez8

m5ez
m . ~A5!

@Here we use the component conventionpm

5(p0,p1,p2,p3), etc.# Even though these polarization ve
tors satisfy the correct orthonormality and closure relatio
as well as the conditionse•p5e8•p850, they cannot be
obtained in the LF gauge.

Proceeding to calculate the trace termsSxx
1 ,Syy

1 ,Szz
1 and

Szx
1 using Eqs.~A4! and ~A5!, we obtain

Sxx
1 524k2h@mq

21kW'
2 2hm2#

14k2p1~p12k1!~12x2h2hx!14p1

3@4~x1hx21!kx
22h~11h!x3m2

2~x13hx22!~mq
21kW'

2 !#,

Syy
1 54k2~k12p1!224p1@4~12x!ky

21hxm2

2~22x!~mq
21kW'

2 !#,
~A6!

Szz
154k2@mq

21kW'
2 2hm2#

14~12x!p1@x~12x!~11h!m212~mq
21kW'

2 !#,

Szx
1 524k2Ah@mq

21kW'
2 2hm2#

14Ahk2p1~k12p1!

14Ahp1@2kx
22x2~12x!~11h!m222~mq

2

1kW'
2 !#,

whereA2p15p05mA11h and we omit the terms of odd
power inkW' since they do not contribute to the integral. No
also that we do not separate the on-shell propagating
from the instantaneous one in this instant-form calculati
As we discussed, only the underlined terms inSxx

1 ,Szz
1 and

Szx
1 contribute to the zero-mode part and theSyy

1 component
is immune to the zero-mode contributions.

APPENDIX B: DERIVATION OF THE ZERO MODE

In this appendix we derive Eq.~39! in detail. Performing
the k2 integration in Eq.~39!, the residue at the polek2

5p811@(kW'2pW'8 )21L2#/2(k12p81) gives
1-23
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Gh8h
1z.m.

5 i E d4k

~2p!4

k2

DkDLDL8

5
i

~2p!4E dk1dk2d2kW'
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2 1mq
22 i«
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G ,

52
1

~2p!3Ep1

p81 dk1d2kW'
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3
k2

F p821
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2
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2 1mq

2

2k1 GF p822p21
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2
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2~k12p1!
G . ~B1!

Writing q15dp1 andp815(11d)p1, d→0 at the end, we obtain

Gh8h
1z.m.

52
1

2~2p!3
limd→0E

1

11d
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2
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1

~kW'2pW'8 !21L2

~x212d!p1 G
3

1
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2 !1~11d!x@~kW'2pW'8 !21L2#2~11d!~x212d!~kW'

2 1mq
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3
1
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2 !1~11d!~x21!@~kW'2pW'8 !21L2# 2~11d!~x212d!@~kW'2pW'!21L2#

.

~B2!

If we write x511d y anddx5d dy, then the integral overy runs from 0 to 1 asx runs from 1 to 11d. Therefore, we get

Gh8h
1z.m.

52
1

2p1~2p!3E0

1

dyd2kW'

1
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5
1
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. ~B3!
ys

S

@1# B.L.G. Bakker, H.-M. Choi, and C.-R. Ji, Phys. Rev. D63,
074014~2001!.

@2# I.L. Grach and L.A. Kondratyuk, Sov. J. Nucl. Phys.39, 198
~1984! @Yad. Fiz.39, 316 ~1984!#.

@3# P.L. Chung, F. Coester, B.D. Keister, and W.N. Polyzou, Ph
Rev. C37, 2000~1988!.

@4# S.J. Brodsky and J.R. Hiller, Phys. Rev. D46, 2141~1992!.
@5# F. Cardarelli, I.L. Grach, I.M. Narodetskii, G. Salme, and

Simula, Phys. Lett. B349, 393 ~1995!.
11600
.

.

@6# B.L.G. Bakker and C.-R. Ji, Phys. Rev. D65, 073002~2002!.
@7# J.P.B.C. de Meloet al., Nucl. Phys.A631, 574c~1998!; A660,

219 ~1999!.
@8# J.P.B.C. de Melo and T. Frederico, Phys. Rev. C55, 2043

~1997!.
@9# D. Melikhov and S. Simula, hep-ph/0112044.

@10# R.G. Arnold, C.E. Carlson, and F. Gross, Phys. Rev. C21,
1426 ~1980!.

@11# B.D. Keister, Phys. Rev. D49, 1500~1994!.
1-24



C

THE VECTOR MESON FORM FACTOR ANALYSIS IN . . . PHYSICAL REVIEW D65 116001
@12# H.-M. Choi and C.-R. Ji, Nucl. Phys.A618, 291 ~1997!.
@13# L.L. Frankfurt, T. Frederico, and M. Strikman, Phys. Rev.

48, 2182~1993!.
@14# S.-J. Chang and T.-M. Yan, Phys. Rev. D7, 1147 ~1973!; 7,

1780 ~1973!.
@15# M. Burkardt, Nucl. Phys.A504, 762 ~1989!.
@16# S.J. Brodsky and D.S. Hwang, Nucl. Phys.B543, 239 ~1998!.
11600
@17# N.C.J. Schoonderwoerd and B.L.G. Bakker, Phys. Rev. D57,
4965 ~1998!; 58, 025013~1998!.

@18# H.-M. Choi and C.-R. Ji, Phys. Rev. D58, 071901~1998!.
@19# B.L.G. Bakker and C.-R. Ji, Phys. Rev. D62, 074014~2000!.
@20# W. Jaus, Phys. Rev. D60, 054026~1999!.
@21# Particle Data Group, C. Casoet al., Eur. Phys. J. C3, 1 ~1998!.
1-25


