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The vector meson form factor analysis in light-front dynamics
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We study the form factors of vector mesons using a covariant fermion field theory modelindénen-
sions. Performing a light-frontLF) calculation in theq®=0 frame in parallel with a manifestly covariant
calculation, we note the existence of a nonvanishing zero-mode contribution to the light-front dirramd
find a way of avoiding the zero mode in the form factor calculations. Upon choosing the light-front gauge
(e_. =0) with circular polarization and with spin projectitr=1 | = =, only the helicity zero-to-zero matrix
element of the plus current receives zero-mode contributions. Therefore, one can obtain the exact light-front
solution of the form factors using only the valence contribution if only the helicity componemti) (
=(++),(+-), and (+0), are used. We also compare our results obtained from the light-front gauge in the
light-front helicity basis(i.e. h=+*,0) with those obtained from the non-LF gauge in the instant form linear
polarization basigi.e. h=x,y,z) where the zero-mode contributions to the form factors are unavoidable.
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[. INTRODUCTION extracting the form factors do not produce the same results
[5]. One realizes that since the nine complex matrix elements
One of the great challenges in hadronic physics is to calef the current § ), corresponding to the possible combina-
culate the structure of hadrons starting from QCD alonetions of the polarizations of the initial and final spin-1 par-
Presently this task is very difficult and one relies on specifidicles, can be expressed in terms of three real invariants only,
models to gain some understanding of hadronic structure at becomes clear that there must be relations between these
low energies and momentum transfer values. A populamatrix elements. This was of course known for a long time
model is the constituent quark mod@QM) which in its  and many authors have used this knowledge to sort out the
relativized form has met with quite some success. A first tesinvariants from the calculated matrix elements. In reference
of this model is the comparison of the mass spectra it preframes where the plus component of the momentum transfer,
dicts to the experimental data. Such a test provides somg*  vanishes these relations can be reduced to just one in
constraints on t_he wave functions. A more stringent test fogqdition to the relations provided by Hermiticity, parity and
the wave functions is found when one also calculates thesiation about the axis. The latter relation is known as the
form factors of a hadron. Itlies in the nature of the CQM thatyngyiar condition[2]. In general reference frames the situa-
only valence wave functions are determined easily. However o \was not so clear. In a previous pajpé} we completely

1{2 affullllytcov?rlantfctahlcurl]atéon of thekformtfactors one needsanalyzed these conditions for the spin-1 case and found, in
€ full structure ot the hadron-quark vertex. addition to the angular condition given before, another one.

It has been known for some time that there are Sltuatlonﬁ“here we gave only the formal expressions for these consis-
where the form factors can be expressed correctly as convo-

lutions of the wave functions. Such is the case for certairic <Y condlltllons'. In theq.+20 ffame,.however, the a_d(_d|-
components of the currents. In particular one finds within thaional condition is very simple, involving only two helicity
formalism of light-front dynamicsLFD) [1] that the so- amplltudes and it does no't'seenj to provide as gtrong a con-
called plus component of the currents for a scalar or pseudé—tramt as the usual condltlpn since most c_onstltuent quark
scalar meson can be expressed in terms of the wave functiod0dels are expected to satisfy it rather easily. Nevertheless,
alone for spacelike momentum transfer. The matrix elementte g =0 frame is in principle restricted to the spacelike
obtained this way we call thealence partsThe parts arising region of the form factors and it may be useful to impose this
from vertices that cannot be expressed in the wave functiongdditional condition in processes involving the timelike re-
we call thenonvalence part§ The plus component of a four- gion which must be analyzed in tigg’ # 0 frame. Thus, it is
vector is a particular combination of its usual componentsimportant to analyze both angular conditions in different
p*=(p°+p®/\2 where the factok/2 is conventional. frames calculating actually the form factors with existing
In the case of vector mesons the situation is more comtheoretical models. In the present paper we demonstrate their
plicated. Till now there have been several recifgs4] for  usefulness for theoretical/phenomenological models for
the extraction of the invariant form factors from the matrix spin-1 objects. In order that the matrix elements satisfy these
elements of the currents. It turns out that even when oneonstraints, the current operator must transform properly and
limits oneself to the plus component, these different ways othe state vectors must be eigenstates of total spin. If the
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models do not have these properties, the angular conditiormlled w(w?=0) in their formulation that necessarily in-
will not be met. volves unphysical form factors. The covariant formulation
In this work, we use a simple but exactly solvable modelpresented in our work should be intrinsically distinguished
for the spin-1(e.g.,p) mesons and separate the valence androm theirs[9], since our formulation involves neither nor
nonvalence contributions to the three physical form factorsany unphysical form factor.
to investigate the degree of violation in the two angular con- If we use the instant form basis, however, all three pre-
ditions for each contribution in different frames. Although scriptions receive the zero-mode contribution. Since the in-
the quantitative results that we find in this model may differstant form helicity is not obtained from the LF gauge, i.e.
in other models, depending on the details of the dynamics ir, #0, even the GK prescription gets the zero-mode contri-
each model, the basic structure of model calculations is combution, especially for the magnetic form factor as we shall
mon and we expect the essential findings from this modeshow in this work. Thus, the instant form basis used in the
calculation may apply to realistic models. LF formulation seems quite dangerous because it can lead to
In particular, we compared two different types of polar- a wrong interpretation of the physics involved in LF dynami-
ization vectors, the one obtained from the light-fréhf)  cal models. Our solvable model calculation clearly indicates
gauge €._.=0), which is usually used in the LF CQM that one can avoid the zero-mode contribution of the LF
analysis, and the other obtained from the instant fglR) basis when the LF gauge is used without using the longitu-
polarization, which is not associated with the LF gauge, i.edinal to longitudinal helicity amplitude.
€, #0, but used in some recent papgfs-9]. In both cases, This paper is organized as follows. In Sec. Il we summa-
there is a zero-mode contribution, i.e. a contribution from theize the angular conditions for spin-1 systems using the LF
nonvalence part that remains finite fgi —0, even if the helicity basis and the kinematics for the reference frames
plus component of the currents is used. Specifically, there iBrell-Yan-West(DWY), Breit (BRT), and target-rest frame
a zero-mode contribution in the LF helicity case<(+,  (TRF) used in this work. The three prescriptici@K, CCKP,
—,0) to the f’,h)=(0,0) amplitude, wher andh’ are the BH) used in extracting the physical form factors are also
initial and final helicities, respectively, but there is no zerobriefly discussed in that section. In Sec. Ill we present our
mode for other helicity combinations such as ,(+),(+, covariant model calculations of physical quantities such as
—) and (+,0). On the other hand, in the instant form case,the three electromagnetic form factors and the decay constant
only (yy) is immune to the zero mode but others such af the spin-1 meson system using both the manifestly cova-
(xx),(z2) and @X) do receive zero-mode contributions. Of riant Feynman method and the LF technique. In dfie=0
course, the two results are exactly the same if one properlffame, we separate the full amplitudes into the valence con-
includes the zero-mode contribution. tribution and the zero-mode contribution to show explicitly
Now turning to the angu|ar conditions, there are Severathat only the he'lClty Zero to zero amplitude is contaminated
different prescription§2—4] in choosing the matrix elements by the zero mode. In Sec. IV we present the numerical re-
to extract the three physical form factors. We compare thregults for the form factors and the angular conditions and
different types of helicity combinations, Grach-Kondratyuk analyze the dependences on the prescriptions, reference
(GK) [2], Chung-Coester-Keister-Polyzd@CKP) [3], and  frames, and helicity bases. The taxonomical decompositions
Brodsky-Hiller (BH) [4], using both LF and instant form Of the full results into valence and non-valence contributions
helicity bases in a reference frame where=0. One of our ~ are used wherever possible to make a quantitative compari-
very interesting findings of the analysis in the LF helicity son of these dependences. Conclusions follow in Sec. V. The
basis is that the prescription using the p|u5 Component of thdeta"s of the instant form analysis and a derivation of the
current, but not involving thel(’,h)=(0,0) helicity ampli- ~Zero mode are summarized in Appendixes A and B, respec-
tude in the LF gauge, is preferred for model calculationstively.
Especially, the GK prescription uses onhh'(h)=(+,
+),(+,—) and (+,0) but not the pure (0,0) component and !l SPIN-1 FORM FACTORS IN LIGHT-FRONT HELICITY
thus achieves the goal of not involving the zero modes. On BASIS

the other hand, the longitudin,0) component is the Most 1 | grentz-invariant electromagnetic form factd¥s,
dominant contribution in the high momentum transfer region: " andF, for a spin-1 particle of mass are defined10]
and thus it may be better to use the BH prescription, involvy, e matrix elements of the currerdté between the initial

ing the (0,0),(,0), and (+,—) amplitudes only, in the high h d the finallp’ h') ei tat f th t
momentum perturbative QCD analysis. The CCKP prescrip[:iﬁ),]'d >th1nheligtylhngipfo'noavse:lgens ates or the momentum

tion, however, involves all helicity states, i.e.+(
+),(0,0),(+,0) and (+,—) and one needs a quantitative

analysis of the angular conditions to pin down the momen- Ghp=(p",h"[3*|p,h)
tum transfer region for the validity of this prescription. Our . o 5
guantitative analyses indeed verify that the GK prescription =€y €n(PTP)F1(QY)

is remarkably free from the zero-mode contribution but oth-
ers are not. In the recent work by Melikhov and Simi9§
we see that the result using the GK prescription is not in (e*,-q)(en-q)
complete agreement with their covariant model calculation, 4o v
which is due to the dependence on a light-like four-vector 2m?

+(ef 9-eh—e q-en)Fa(Q%)
(p+p")*F3(Q?), @
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whereQ?=—q?, q=p’'—p and e,(€,) is the polarization

vector of the initial(final) meson.

The physical form factors, charge, magnetic, and quadru-

pole, are related in a well-known way to the form factbrs
viz.

2 2 2
Ge=|1+ 37 |Fit gkt zn(l+ ks
GM= _FZ

where »=Q?/(4m?).

Using the conventiore“=(e",e",e',e?), the general
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form of the LF polarization vectors is given by
ettt [ [of L
e (O’F’E’E’>
iy
m’ 2mp™ 'm'm

~~
——

er(pt,pt,p%0) ) 3

ele(pt,ptp%—) )

(233

Here p'(p')= * (pxxip,)/,2. Using Egs.(1) and (3), we
obtain the matrix elements

Gi, Gip Gi_
G:I—'h_ Gg—i— Ggo Gg—
G, G, GI_
a;F,+asF; c1F1+cyFy+csFg e;F3
e3F3 _(C1F1+ 02F2+C3F3)* alFl+ a3F3
|
Since we are working only with the plus component of the g 1 d, azd;—a;d,
current, we shall use the following short-hand notations: F2= a4, a_lGa+Gd+ TesGe : (6)

Ga=G',=G™*, Gp,=Gi.=—-G¢*,

G.=Giy=—G'§, Gy=Ggp G=G',=Gi*. .
5

This procedure makes it clear that the covariant form factors
of a spin-1 hadron in Eg.1) can be determined using only
the plus component of the currents,G:,h(O)
=(P’,h’|J*|P,h), in any chosen Lorentz frame. The nine

The invariant form factors can be extracted in a straightelements of the current operat@ﬁ,h(O) must be con-

forward way. The simplest procedure is to solve firstFar
from G.. NextF, is obtained fromG, andF. Then there
are three options for obtaining, from G,, G., andGy.
These solutions are denoted By, FS, and FS, respec-
tively. The full solutions are then

Fo o % s
1 a]_ a-]_e3 e
F ! G
3™ eB er
1 b asb;—ajb
2:_[__lGa+Gb+ Sae ot e}y
by & a;€3
1| ¢ a3C,—a;Cs
c_ | _ +
F2 c alGa Ge are, el

strained by the invariance undé) time-reversal(ii) rota-
tion aboutz and (i) reflection in the plane perpendicular to
z, and rotational covariance, i.e. invariance under the rota-

tions about an axis perpendicular o So two additional
constraints on the current operator are required. These con-
sistency conditions are the angular conditions, which we de-
fine as[6]

Ap=F3—F5, Ap=F5—F3. @)

We know that the form of these conditions depends on the
reference framg6]. In this work we consider three different
frames, which we define in the following Sec. Il A. Espe-
cially, in the frames wherg* =0, our angular condition 4

is equivalent to the usual angular condition relating the four
helicity amplitudes discussed in the literat{itd modulo an
overall factor as we discuss in the Sec. Il B.
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A. Kinematics p'=(p",(Q*+m?)/(2p*),Q cose,Qsin¢). ®
Our conventions for the momenta of the initial and final
state mesons in the three different reference frames, DYW,
BRT, and TRF, are given below. We use the notatigh [N the BRT frame,

=(p*,p " ,px.Py)=(p*,p",p.) and the metric convention
p'Q=P+Q‘+p‘q+—|5L-6L. In the DYW frame,

p=(p".m%(2p"),0,0,

Q 2
p=\1+ ﬁ) , ©

0 (Zm,B—Qcose 2mB+ Q cosf _Qsinecosd) _Qsinesinqs)

22 22 7 2 2
. [2mB+Qcosh 2mB—Qcosh Qsinfcosé Qsindsing
p'= : : : - (10)
22 22 2 2
In the TRF frame
Q2
K= 5m (11)
(m m 0.0
p_ \/Ey \/El [l .
m+ k+ BQ cosd m+ k— BQ cosd
= , ,BQsind cose,BQsindsing |. 12
p \/E \/5 BQ $,BQ ¢ (12
|
In the literature usually the reference frames used are limited =1 Q
to ones wherey" =0(gq?=2q*q~—g?<0). One such ref- e(p',x)= E(O’Tlllii)’
erence frame is the special Breit frame used in Refs.
+_ _ _ N S
[2_—5,11,1_2, whereq —O,qy—O,qx—Q, andpl— p', ie. 1 —m?+Q%4 Q
0= m/2,$6=0 in Eq.(10). In the special Breit frame, et(p',00=—|p"H,———,=~,0]. (14
L m 1 2p+ L 2 1
g“=(0,0Q,0),
B. Angular condition in the g*=0 frame and prescriptions
f choosing helicit litud
0= (1T 7/ 2.mVIF 7/\2.— Q12.0), of choosing helicity amplitudes
In theq* =0 frame, one can reduce the independent ma-
trix elements of the current down to four, e.g.
p'#=(my1+7/\2my1+ 7/\2,Q/2,0), 13 G*, ,6'_ ,G',andGg,using the front-form helicity basis

[2-5,13 and the rotational covariance requires one addi-
where »=Q?%/4m? is a kinematic factor. The corresponding tional constraint on the current operator. This is what these
polarization vectors are obtained by substituting these fouauthors call the angular conditiod(Q?) and can be ob-
vectors in Eq.3) and the transversen& +) and longitudi-  tained from the explicit representations of the helicity ampli-
nal (h=0) polarization vectors in this special Breit frame are tudes in terms of the physical form factors. Using the relation

given by between the covariant form factdfs and the current matrix
elements given by Eq1), one can obtain the following he-
- : . P
o) -1 . ~Q . licity amplitudes in theq™ =0 frame
E y— == l_! l—l L
P V2| 2pt Gi,=2p"(Fi+7F3), Glo=p \V27(2F +F,+279F5),
Gi_=-2p*yFs,
1/ ., -m*+Q%4 -Q
“(P.0=plp 750/, Glp=2p"{(1-27)F;— 279F ,— 2772
m 2p 2 00=2p " {( nF1—29F;—27°F3}. (15
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@ a ) 5 ©

p’ P
FIG. 1. The covariant triangle diagraa) is represented as the sum of a LF valence diagi@ndefined in the region €k*<p* and
the nonvalence diagrafue) defined inp* <k*<p’*. 6=q*/p*=p’ */p" — 1. The white and black blobs at the meson-quark verticgs)in

and(c) represent the LF wave-function and non-wave-function vertices, respectively. The small cif&eand(c) represent théon-shel)
mass pole of the quark propagator determined fromkthéntegration.

o)
C
C

Thus, the usual angular condition relating the four helicity

. >Ue 2(1-7)
amplitudes is given b CekP—- ____—____|GT,+G -G ——~Gt
p g V2] Gy 2071 Gl +Gg—GI_ & Gl
AQ)=(1+27)G1, +G1_ ~ VBnGIo—Gg=0, S| 1 .. . .Gl
(16  GE™MP=————| - 5(GI, +Gj)+2—=
2p*(1+m)| 2 V27
where we note an overall factor difference betweg(Q?) (n+2)
andA ,4(Q?), i.e. A=d,A, (see Sec. IV B 5 for the discus- T2, G| (18
sion of the factord,).
In a practical computation, instead of calculating thegng
Lorentz-invariant form factor§;(Q?), the physical charge
(Gc), magnetic Gy), and quadrupole Gp) form factors +
are often used.However, the relations beg/veen the physical GEH: L (3—27) o @ G
invariant form factors and the matrix elemef@g,, [5] are 2p*(1+2p)| 3 3 V2q9
not unique. Only if the matrix elements fulfill the angular
condition Eq.(16), the extracted form factors would not de- I 2(29-1) G*
pend on the choice made. So one may choose which matrix 3 =
elements to use to extract the form factors. Perhaps the most
popular choices ar2—4] N 5 X L @1,
Gv =575 |G Gi-+ Giols
) 2p*(1+27)| V279
+
oo L[B2n .  anClo 1o, ] )
2pt| 3 3 2y 3 BH_ 1 ZG+0_ +_(1+77)G+
° optatep|V2g T m T
L (19
Gy= Gl,-—G1 - ' ‘e i
M op* ++ \/5 +o) The relatlo_n t_)etwe_eﬁ s andG's given by Eq.(2) holds for
any prescription given above.
It is interesting to note that while Grach and Kondratyuk
Gt Gt in [2] regarded3,, as the “worst” element and took care not
GSK_ -G, + A , (17) to use it writing the relations Eq17), Brodsky and Hillef4]
2p*| N includedG, instead ofG7 , expecting the helicity zero-to-
zero component of the current matrix element to be the
dominant one in the perturbative QCD regime. Chenal.
cokp 1 3-29 .. 1op Gio [3] used all four independent helicity components of the cur-
¢ =T 6 (GiitGo)t 3~ N rent matrix elements. On the other hand, in the instant form
2p"(1+7) 27 basis used by some authdi®8,13, the independent matrix
ap—1 elements of the current operator aBéx,G;y,Ci;Z anij Gy
5 GI_|, and the_ angular condition becomA{Qz)=_ny—GZZ. In
Appendix A we show the relevant expressions for the form

YIn Refs.[5,8], the form factorsG,, G;, andG, are used and the
two definitions are related bB.=Gy/2p*, Gy=G,/2p*, and

(7\813)Go=G,/2p*.

factors in the instant form spin badig,8,13. Although the
authors in Refs[7,8,13 argued that this basis is completely
equivalent to the LF helicity basis, the relation between
them, which will be discussed later, is not trivial.
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lll. CALCULATION IN A SOLVABLE COVARIANT general equivalent to the sum of the LF valence diagram 1
MODEL (o) and the nonvalence diagram(cl, where 5=q*/p”*

The solvable model, based on the covariant Bethe=P' /P —1. The matrix elemenG,(0) of the electro-
Salpeter(BS) model of (3+1)-dimensional fermion field magnetic(EM) current of a spin-1 particle with equal mass
theory, enables us to derive the form factors of a spin-1 parconstituents ifi;=mg) obtained from the covariant diagram
ticle exactly. The covariant diagram shown in Figa)lis in ~ of Fig. 1(a) is given by

d*k Sa(k=p)S;,Sa(k—p")
Gﬁ’h(o):iNngf 2 2 - 2 Shzh . 2 2 . ’ (20)
(2m)* [(k=p)>=mg+ig][k*—mg+is][(k—p’)?—mg+ie]
|
whereN. is the number of colors ang, modulo the charge where
factore,, is the normalization constant, which can be fixed
by requiring the charge form factor to be unity at zero mo- Dy=(k—p)2—A?+ie, Dy=(k— p)2—m§+is,
mentum transferS;,, is the trace term of the quark propa- (22)
gators. To regularize the covariant fermion triangle loop in Dk=k2—m§+ie,

(3+1) dimensions, we replace the point photon-verjéx
by a nonlocal (smeare@l photon-vertexS,(p) y*Sa(p’),
whereS, (p)=A?/(p?—A%+ig) and A plays the role of a
momentum cutoff similar to the Pauli-Villars regularization

andDg,;=Dopaj(p—p’)-

Our treatment ofS, as the non-local smearing photon-
vertex remedie$l] the conceptual difficulty associated with
[1]. the asymmetry appearing if the fermion loop were regulated

When we do the Cauchy integration over to obtain the smearing thejq bound-state vertex. As will be discussed
LF time-ordered diagrams, we want to avoid the complexit;})y g theq . '
later, the two methods lead to different results for the calcu-

of treating doublék ™ poles, so we decompose the product OfIation of the decay constant even though they give the same
five energy denominators in E20) into a sum of terms Y 9 Y9
result for the form factors.

with three energy denominators only: The vector meson decay constait in this covariant
1 1 1 ( 1 1 ) model with the nonlocal gauge boson vert®ex(k) y*S, (k

—p) is defined by

DADoDD{D,  (A>—m2)2Dy|Dy Dy
1 1 A*=(0[qy*alp;1ds) =iV2fymer(Js), (23
— = (21)
Dy Do where
|
d*k Tr[ £(k—p+mg) y“(K+m
prmnggnt [ S TP 24
(2m)" [k*=mg+ie][(k=p) —mg+ie][k*=A+ie][(k—p) = A“+ie]

A. Manifestly covariant calculation

In the manifestly covariant calculation, we obtain the form fack($=1,2,3) using dimensional regularization. Although
the splitting procedure Eq21) may not be neccessary in the covariant calculation, it seems more effective in practical
computation. Here we describe some essential steps for the derivation of the covariant form factoysiediece the five
propagators into the sum of three propagators using 2y, (ii) use the Feynman parametrization for the three propagators,
e.g.,

1 1 1-x 1
—,=2f dxf dy ; 3 (25
D\DoDyg 0 0 [Dy+(Do—Dy)x+(Dg—Dyy]

and (iii ) make a Wick rotation of Eq20) in D dimension to regularize the integral, since otherwise one encounters missing
the logarithmic divergent terms in E€R0). Following the above procedurég—(iii) we finally obtain the covariant form
factors as follows:
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+[—(x+y) (x+y—1)’m?

N.g?A* 1 1=x CiroChon
8w (A“—my)“Jo 0 kAA“koO

+(2—x—y)ny2—(2—x—y)m§]Cz],

N.g’A

4 1 1-x CEroChon
F 2=——J de dy| (24 x-+y)ln| —<A0ZKOA
AQ°) 8m2(A2—m?)2Jo " Jo y[( Y)

2 2
kAACk00

H(x+Y)[(x+y)? = 1]m*+ (x+y)xy Q@ — (2+X+y)m§}02] , (26)

C

) N 92/\4 J’l 1-x 22
F Q =5 % dXJ dy8xy(x+y—1)ym-C ,
3( ) 3 2( 2 3)2 0 0 y y( y )

where
Cian=(x+Y)(1=x—y)m’*=xy Q= (x+y)A’= (L-x—y)mg,
Ciro=(x+y)(1=x—y)m?=xy Q= (xAZ+ymi) — (1—-x—y)mj,
) ) (27)
Cioa=Ciao(X=Y),
Cioo= (X+Y)(1—x—y)m?—xy QP—mj,
and C?=(1/CZ, , — 1/CZ,o,— 1/CZ,, + 1/CZ,0). Note that the logarithmic terms iR, and F, are obtained from the dimen-

sional regularization.
Following a similar procedure for the form factor calculation, the covariant result for the decay constant is obtained as

MZ—xmi—(1-x)AZ[M2=xA2—(1-x)m}]

_TM2_A2 _ M2 2
TRy - [M2=AZ]In[ - M2+ A2

FCOV_ Nch4 Jl

o[
= dx{ [mZ+MZ2]In
v 4\2mPm(A2—m§)2Jo [[ q !

—[MZ=mZ]In[ = M2+ mZ]+[M2=xmg— (1= x) A?] In[ = M2+ xmZ+ (1 =x) A2]+[ M2 =xA %= (1—x)m{]
><In[—|\7|2+xA2+(1—x)m§]), (28)

whereM?=x(1—x)m?.

B. Light-front calculation

We shall use only the plus component of the current matrix elemﬁmtin the calculation of the form factors. In principle,
one can directly calculate the trace te&ﬁjh with k™ =Kk, e, Which depends on the integration regiorkdf. However, for the

purpose of a clear understanding of the physics implied in LF dynamics, we instead séﬁq{tho the on-mass shell
propagating part and th@ff-mass shejlinstantaneous one using the following identity:

¢+mq:(pon+mq)+'y+(pi_p;n)! (29

where the subscript “on” denotes the on-mass shefl= mé) quark propagator, .0~ =pg,= (m§+ f)f)/Zp*. Then the trace
term ﬁ,h of the quark propagators in ERO) is given by

S;—rh(P:k_ p,P" =k- p,-k):(shﬁ—rh)on'*'(srtrh)inst.a (30)
where
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(S:/h)on: T é*,( Pc,m+ mq) 7+(Pon+ mq) En(Kont mq)]
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:4P+[(kon' ezr)(P(,)n' €n) +(Pé)n' E:;r)(kon‘ €n) +(5zr : fh)(mg_ Kon' P(I)n)]

+4PI+[(kon‘ ezr)(Pon‘ €n) +(Pop- eﬁr)(kon' éh)"'(é;:r : éh)(mczq_kon' Pon]

+ 4k+[( Pén' 6::')(Pon' €n) — (Pon: 6:,)( P(;n‘ €n) _(Ezr : eh)(mé_ Pon' Pt,)n)]

:4P+[(kon' 5::')(Pcl)n' 6h)+(P¢I)n‘ fzr)(kon’ Eh)+(6::r . fh)(mé_ kon' P(')n)]+4P'+[(k0n~ Ezr)(Pon' éh) +(Pon: 5:;)

X(Kon* €n) + (EE, : fh)(mg_ Kon' Pon) ] +4k+[( P(;n' 6::')( Pon- €n) = (Pon: ez,)(P('m' €n) _(E;r : fh)(ms_ Pon' Pén)]

- 4EE'+[( Pon €n) (Kon' Pon— mcz]) — (Pon €n)(Kon' Pon— mé) + (Kon® €n)(Pon* Pon— mcz])]

- 46;—[( Pon' GEI)(kon' Pon— mg) —(Pon eﬁr)(kon' P'+on— mcz]) + (Kon' Gzr)(Pon' Pon— mé)],

and

(Syr)inst= (K™ =Ko T £/ (Po+mg) "
X (Pont mq) éh')’-'—]
=8(k™ —ko)ler, Pa(€en Pon + € P,
+(€h - Pon) = Pon Por(€ns - €n)
+ E:,Jr fﬁ(mé_ P(;n' Pon) -

(32

As we shall show below, the Lfalencecontribution comes

exclusively from theon-massshell propagating part, Eq.

(31), and thezero-mods€(if it exists) from theinstantaneous
part, Eq.(32).

Using the special Breit framsee Eq.(13)] with the LF
gauge, we obtain for the trace terrrsrm)on and (Stf,h)mst.
given by Eqgs.(31) and(32) the expressions
4p*

(ST )on= ~ ma+(2x%—2x+1)

X

. X2 L.
kf_ZQZ'HX(kLXQL)'Z)

(Sjrr—)on: 8(:|-_X)pJr

. X2
(kx_lky)z_ ZQZ},

8
(STo)on= QW[Z(kx—iky)—XQ](ZX— D

2 X2l 3
X[ (1—=x)(m +|\/|O)+ZQ +k, -q,

)

4p*

2
(S(JJrO)on: F X((l—X)(m2+|\/|g)_|_ 2Q2>

: (33

_X(EL‘(L)Z

(3D
[
and
(SiJr)inst.:(Si—)inst.:O’
L8
(Sio)inst= 2 (k™ =kgn)(x—1)
i X
X kx_lky+ 1_5 Ql,
8 +32 2 .
(Sa—o)inst.:%(k__kgn)[_xz(gz‘l'mg‘*'ki )
(34

where x=k*/p* and M3=(m2+k?)/[x(1-x)]. We note
that the terms proportional to an odd power@f do not
contribute to the integral.

By doing the integration ovek™ in Eq. (20), one finds the
two LF time-ordered contributions to the residue calculations
corresponding to two poles ik, the one coming from the
interval (I) 0<k*<p™* [see Fig. 1b)], the “valence dia-
gram,” and the other fronll) p* <k*<p’* [see Fig. 10)],
the “nonvalence diagram” or Z” graph. These diagrams are
expressed in terms of energy denominators.

1. Valence contribution

In the region G<k*<p*, the polek™ =k,=(mi+k?
—ig)/2k™ (i.e. the spectator quarkis located in the lower
half of the complexk™ plane. Thus, the Cauchy integration
formula for thek™ integral in Eq.(20) gives in this region

for the plus current,,, (0),

+val _

N, Jl dx
h22m)3)ox(1—x)*

+val
Sh'h

g 2
xj d2k
S (mP— M2)(m?— M32)
A2
X 2 r? 2 125!
(M= M'2)(m?—M'2)

(39
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where the invariant masses of the initial meson state are _ pregt L (10
given by lim f+ dk (--~)E|Imf dx(---)#0. (37)
qt—0”P 6071
2 v )2 2 v )2
M2= ma+ (K —xp.) i mg+ (k. —xp,) Then it is called the “zero mode{14—-19 in the g™ =0
0 X 1-x ’ frame. The nonvanishing zero-mode contribution occurs only

(36) if the integrand (--) in Eq. (37) behaves~k™[i.e.(1

) mé+(|2l—x|3l)2 A2+(|ZJ_—X|3J_)2 —x) " 1]. Note that there is no zero-mode contribution either
M= X + 1—x - in the case the integrand behaves IkKe(k*—p™)"(n=1)
or isk™ independent.
The invariant masses of the final state, j\d,* and M2 in For the plus current, the zero-mode contribution comes

Eq.(35), can be obtained by replacimg — — p, in Eq. (36). from the spin structure of the fermion propagator, specifi-

As one can easily see from Eg@3) and (34), only the ca[ly only from the instantaneous part given by E3¢) and

on-mass shell quark propagator part contributes to the vdi€ither from the on-mass shell propagating part nor the en-

lence diagram ieSﬁ”a'=(S; )on. Note, however, that this ergy denomimator. Thus, without detailed knowledge of the
g I h 'h/on* 3 ’

) . energy denominator, it is easy to find from E&}) and(37)
relation does rRLhOId n general for other_cqmpo_nents of th‘;t“hat only the helicity zero-to-zero component gives a nonva-
currents, e.9S,,, #(S,/,)on- One of the distinguished fea- nishing zero-mode contribution:

tures of the LF plus current matrix element given by %)

is that the physical interpretation is manifest in terms of the _ . 8(p")? by o 5

LF wave function, i.e. a convolution of the initial and the lim (Spp)inst=——75—k (Mg+ki —Q%/4), (39
final state LF wave functions, which is not possible for the x—1 m

covariant calculation. wherek ™ ~1/(1—x)— o asx— 1. In other words, while the

integration region shrinks to zero, the integrand for the he-
licity zero-to-zero component goes to infinity leading to a
In the regionp™ <k*<p’", the poles are ak =p’'~ finite zero-mode contribution.

+[m§+(|2i—ﬁl)z—is]/Z(k*—p’*) (from the struck As we said pefore, we avoided the complexity of the
k—=p'~+[A2+ (K, —p’)? Cauchy integration over double™ _poles b_y decomposmg

+ the product of five energy denominators in E0) into a
sum of terms with three energy denominators. In this way,
we perform the Cauchy integration 6f;, over the single~

2. Zero-mode contribution

quark  propagator and
—ie]l2(k*—p’") [from the smeared quark-photon vertex
Sy(k—p")], and are located in the upper half of the complex

k™ plane. . , o _

Since the integration range of the nonvalence regioh, POle: éitherD or Dy, mstead’ of doublé™ poles.
<k*<p'*(=p*+q*), shrinks to zero in the* —0 limit, For example, the 10§D, D}) term in EE].(ZlZ combined
the nonvalence contribution is sometimes mistakenly thoughwith the pole positionk™ =p’~+[A%+(k, —p])2]/2(k*
to be always vanishing fog®—0. However, in reality it —p’") appearing in 8,0 ins:. gives (see Appendix B for the
may not vanish but give a finite contribution, detailed derivation

(k,—pl)2+A2

Inf
f d*k k™ f - (k, —p,)?+A?
| = = = = = .
(2m)*DDAD,Y  22m)%p*) T (K —p )2+ AT -[(K, —p|)?+A2]

(39

Similarly, one can obtain nonvanishing zero-mode contributions for the other energy denominator terms giveri2dy. Eq.
Explicitly, the zero-mode contribution frorSg, in this special Breit frame is given by

(k,—pl)2+A?

|n = =  ~ -

(k, — pL)2+A2
[(K,—p.)2+A%]—[(k,—p])2+A?]

N.g?A* . 8(ph)2 R
G+Z.m.: c fdzk m2+k2_ 2/4
00 2p+(2ﬂ')3(A2—m§)2 L m2 ( q L Q )
n (EL_F;D2+m(24
(kL_pL)2+A2
[(k,—p,)2+A2]—[(k,—p})2+m]

+(mgeA) | (40)

The angular conditiom (Q?) given by Eq.(16) is satisfied only if the zero-mode contribution f@;; ™ in Eq. (40) is

; ; + _ ~+tval +z.m.
included, i.e.Gyp=Ggy "+ Gy -
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2% ot S s S S S S S S S B S S S S S A A S L et B e 0 BB A
| Front forin basis

| LI L B AL Al S M S R B R

4 I Instant form basis J
L — Full i o — Full i
h - Valence(GK) 1 o Valence(GK) 1
i --- Valence(CCKP) ] ' ~-~ Valence(CCKP)
= ---- Valence(BH) 1 H ==~ Valence(BH) b
. ' . .
15 —‘, o |A(QZ)| not including zero-mode L5 B |A(Q2)| not including zero-mode

1G,.@%

05

04-..[....1...""\4%

0 1 2 3 4 5 0 1 2 3 4 5
)

QIGeV’] QUGeV?)

FIG. 2. The charge form factd6(Q?)| obtained from the light-fronfleft) and the instant-fornright) spin bases: The thick solid line
represents the fulli.e. valence-zero mode in LEcovarianj solution. The dotted, long-dashed, and dot-dashed lines represent the valence
contributions only, where we use the same normalization as for the full sol@ti¢d)=1. The small squares represent the angular condition
in Eq. (16) without including the zero-mode contribution.

A similar analysis has been made by de Melaal. [7], gauge used ifi7], one cannot avoid the zero-mode contribu-
where the authors found the zero-mode contribution usingion to the form factors of a spin-1 particle no matter what
the instant form basis’,8,13 instead of the LF helicity basis prescription is used.

[2-5,10,12 for the polarization vectors of a spin-1 particle. ~ We use the results of our numerical calculations to com-
In principle, the LF helicity basis can be related to the instanpare the form factors obtained in the LF helicity bagisLF
form spin basis by some transformation. Interestingly, howgauge with those obtained in the instant form linear polar-
ever, we find that since the authors in RET] used the jzation basigin non-LF gauggas well as the covariant ones.
non-LF gauge(i.e., € #0) polarization vectors, the three  |n the LF calculation of the vector meson decay constant,
polarization components, i.&, ,G,,andG,,, receive zero- the plus current with the longitudinah&0) polarization
mode contributions as we explicitly show in Appendix A. In vector is usually used. In the special Breit frafisee Egs.
other words, using the instant form basis with a non-LF(13) and(14)], we thus obtain

— T T T b
| Front form basis | Instant form basis

I — Full B L — Full B
Voo e Valence(GK) S Valence(GK)

M ~~- Valence(CCKP) T [ --- Valence(CCKP) ]
"‘-‘ ---- Valence(BH) 1 F ---- Valence(BH) k!

2

Gy(Q)

P e U U SO U U B o

PRV TR NS S S [N T SN S NS SO SO0 W Y T SO

0 1 2 3 4 5 0 1 2 3 4 5
Q'1GeV’) Q'Gev’

FIG. 3. The magnetic form factds,,(Q?) obtained from the light-frontleft) and the instant fornfright) spin bases. The same lines are
used as in Fig 2.
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0 T T

| Instant form basis i

0 T T T T

L Front form basis 1

&
=
&)
[/
4 — Full ko — Full R
LS e Valence(GK) 1 | i - Valence(GK) i
’." ——- Valence(CCKP) ’,' -—- Valence(CCKP)
-5 ---- Valence(BH) -3 154 --- Valence(BH) —
L ] 4 p
[0 S T PRSI AR B Y AT R R B R
0 1 2 3 4 5 0 1 2 3 4 5
Q’1GeV) Q1GeV)

FIG. 4. The quadrupole form fact@Q(Qz) obtained from the light-fronfleft) and the instant fornfright) spin bases. The same lines
are used as in Fig 2.

N.gA* fl dx J R .

LF c 2 +32 2 2

= dok, [x(1—x +mi+kT—k, -
VT a2am 0 x3(1—x)° L [x( )(p™) aT KL=k -p.]

2%(1—xX)m2—m2—A2—2(k, —xp, )?

" 2 2 : 2 2 qz (l SL 2 : (41)
[M=Mgnl[m*= Mg, J[m*=Mg,(Mge A) J[m = Mg, (mg—A)]
w

Our LF calculation of the decay constant in E4l) is ex-  calculation. Because T&(k—p+my) v (k+ mg) ]

actly the same as the covariant result in E2g). We also :4{(6-k)(2k*—p*)+e+(m§—k2+ k-p)} and the k-
note that there is no zero-mode contributionf{ in our  terms cancel each other, only the good component is left in
model calculation. This can be easily seen from the tracéhe numerator. It is interesting to note that while our cal-

2 T T T T T T [ . T T T

at o B 1
e a
/‘/‘/ . 7 '
,// . /

./'/ /

; .
ol - 1 1 1 - ! I i I

0 1 2 3 4 5 0 1 2 3 4 5

Q° Q*(GeV))

FIG. 5. Invariant form factor§,, F5, F$, F4, andF; (left) and physical form factor6¢, Gy, , andGg from F5 (right) calculated in
the Drell-Yan-West frame. Valence parts only.
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2k S ]
\ \ d
) R G c
A d
\\ ______ G y
N d
- 6
1¢ 1
0
//,/
- L L L . | - -1 . A= 1 . 1 - L P
0 1 2 3 4 5 0 1 2 3 4 5
Q*(GeV)) Q*(GeV))

FIG. 6. Physical form factor&c, Gy, andGq from F$ (left) and FJ (right) calculated in the Drell-Yan-West frame. Valence parts
only.

culation of the decay constant with a non-lo@alit symmet- However, we do not aim at finding the best-fit parameters to
ric) gauge boson vertex is immune to the zero mode, thelescribe the experimental data of themeson properties.
same calculation by Ja{ig0] is not, where the author used a Rather, we simply take the parameters used by otf&¥s
local gauge boson vertex and an asymmetric smearing mesefith which we were able to reproduce the results in that
vertex. particular work. Nevertheless, as we mentioned earlier, our
model calculations have a generic structure and the essential
IV. NUMERICAL RESULTS f@ndings from our calculations may apply to the more.realils—
tic models, although the quantitative results would differ in
In this section we present the numerical results for theother models depending on the details of the dynamics in
form factors and angular conditions and analyze the depereach model.
dences on prescriptions, helicity bases and reference frames.In our numerical calculations, we thus usen

FIG. 7. Invariant form factor§,, F2, FS, FY, and F 5 for 6= 7/20 (left) and #=97/20 (right) calculated in the Breit frame. Valence
parts only.
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3
Q*(GeV)) Q°(GeV))

FIG. 8. Physical form factor&c, Gy, andGg from Fg calculated in the Breit frame. Lefi= /20, right 6=9/20. Valence parts
only.

=0.77 GeV, mq:0_43 GeV, andA=1.8 GeV [8] and A. Dependences on the helicity bases and the prescriptions
make the taxonomical decompositions of the full results into | Fig. 2 we show the charge form factt®(Q?)| ob-

the valence and nonvalence contributions to facilitate a quanained from the light-frontleft) and the instant-forntright)
titative comparison of the various dependences such as thgjin bases. The full solutiorihick solid line are obtained
prescriptioniGK,CCKP,BHi, the hEI|C|ty basesLF,lF) and from three different prescriptior‘[Q_Lﬂ given by Eqs(l?)_

the reference frame®YW,BRT,TRF). We first present the (19) for the light-front basis and EqgA1)—(A3) for the
dependences on the prescriptions and the helicity bases in thgstant-form basis, respectively, and they all turn out to give
g =0 frame(see Sec. IV A Then, in Sec. IV B, we present exactly the same result as the covariant one as they should
the frame dependences using exclusively the LF helicity babe. The slope of the full solution gives the charge radius of

sis. the bound state as defined in E@4) and we obtained
2t 1
; c
\ GCC
______ GCM
N T T T G O
//’/
/ o
_1 Il ] 1 | - _1 1] 1 1 3
0 1 2 3 4 5 0 1 2 ) 3 4 5
Q*(GeV) 0’ (GeV))

FIG. 9. Physical form factor&c, Gy, andGg from F$ calculated in the Breit frame. Lefi= /20, right =9/20. Valence parts
only.
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Q*(GeVY) Q’(GeV)

FIG. 10. Physical form factor&c, Gy, andGq from Fg calculated in the Breit frame. Left= #/20, right 6=97/20. Valence parts
only.

(r2)=7.63 GeV 2 with the parameter set we used. More in Fig. 2, the two results for the valence contributions ob-
detailed discussions on the charge, magnetic and quadrupdined from the light-front and the instant-form bases exactly
radii can be found in Sec. IV B 6. In thg" =0 frame, the coincide with each other. However, only the GK prescription
full solutions can be decomposed into the valence contribuis immune to the zero-mode contribution for both helicity
tion and the zero-mode contribution since the nonvalenc®ases. The dotted curve cannot be seen because it is on top of
diagram reduces in the limig* —0 to the zero mode. To the solid curve. Other prescriptions, CCKP and BH, receive
estimate it, we plot the valence contribution for each prelarge amounts of zero-mode contributiding. the difference
scription, i.e. the dotted line for GK2], the long-dashed line between the full solution and the valence pn&s we dis-

for CCKP [3], and the dot-dashed line for BR], respec- cussed earlier, the GK prescription does not involveGig
tively. The normalization constagtis fixed by requiring the component which is the only source of the zero mode for the
full solution to be normalized t&(0)=1. As one can see light-front helicity basis and the zero modes from B¢,

2 M T T T T T

2 1 T T T T ¥

: e ~

FIG. 11. Invariant form factor§,, Fg, FS, Fg, andF; for 6= =/20 (left) and 6=9=/20 (right) calculated in the target-rest frame.
Valence parts only.
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-1 i ) 1 1 R T e Lot PR . |

0 1 2 3 4 5 0 1 2 3 4 5
Q*(GeV?) Q*(GeV))

FIG. 12. Physical form factor&c, Gy, and Gg from Fg calculated in the target-rest frame. VersibnLeft = =/20, right 6
=9/20. Valence parts only.

and nG;Z terms in Eq.A1) for the instant-form basis cancel IV'B 6), respectively. However, the valenger for that mat-

- ter the zero-modecontributions to the full solution are quite
e_ach othefsee Eq.(AG)]. We also ShO.W the _angulz_ir condi- different depending on the helicity bases. For the light-front
tion (small squaresgiven by Eq.(16) without including the  pgjicity basis, the GK prescription is again immune to the
zero-mode contributions. If we include the zero-mode con-erg mode and the dotted curve is exactly on top of the solid
tnbuﬂong, then itis of course exactly zero. _ curve. Also, the other prescriptions, CCKP and BH, receive

The situation is rather different for the calculation of the large amounts of the zero-mode contributions as in the case
magnetic form factoiGy as shown in Fig. 3. For the full of the G, calculation. However, for the instant form spin
solution, the twalLF and IF helicity basgsresults are again basis used i8], not only the CCKP and BH prescriptions
exactly the same as they should be. The magnetic momenut also the GK prescription are affected by the zero mode,
(in units of e/2m) and its radius given by Eq44) are ob-  because the zero-mode termsS;, and G,/ in Eq. (A1)
tained asu;=2.1 and(rf,l)=9.73 GeV 2 (see also Sec. do not cancel each othgsee Eq(A6)] but rather add up.

2} 2
\ C v C
\\ - GCC \\ - GCC
\ \
T Gy N T G,
\ C \\ - C
\\ —ca \ G,

Q% (GeVH) Q% (GeVH)

FIG. 13. Physical form factor&¢, Gy, andGq from F$ calculated in the target-rest frame. Léf= /20, right 6=9m/20. Valence
parts only.
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] T T T T T T T T T
3\
2+ ) :
\\ d [
\ - g
‘\ dC '
\\ 777777 G /l
. Mo
R - G Q/
1+ . K
0
t
1]
, /'/ ) \‘\‘
-1 | [ S T | . L) | L N AN
0 1 2 3 4 5 0 1 2 3 4 5
Q%(GeV)) Q*(GeV?)

FIG. 14. Physical form factor&c, Gy, andGq from Fg calculated in the target-rest frame. L&ft 7/20, right =9#/20. Valence
parts only.

We show in Fig. 4 the quadrupole form factGrQ(Qz) B. Light-front valence parts

ok_)tained from the light-front(left) and the ipstaqt—form We checked that in all reference frames the sum of the

(?92‘) hegc![tﬁ/ bases. The dquadrl(ijole mom‘;f‘m UTS of " yalence and nonvalence contributions to the form factors is

ebrtn .) a; e_%ogrlespon Zlng_ ;‘; éungl\vfezn y EMI“) z;re equal to the covariant result. Therefore henceforth we plot

R/ g'ge an_t' ' | aAndgr(%%— ' GIe ) (stehe ?SO LEC' the valence contributions only. The valence parts will in gen-
), respectively. As in the case Gc(Q"), the two( eral depend on the polar angtein BRT and TRF, but are

and IF helicity basesresults coincide and the dotted curves. . .
. independent of the azimuthal angfein all three reference
are exactly on top of the solid curves because of the absence

of the zero mode in the GK prescription. rames(DYW,BRT,TRF). We used the latter property as a
The decay constarfsee Eqs.(28) and (41)] using the ~CNeck of the accuracy of our codes. , _
same parameters yields the redyk=133.7 MeV, while the Using Eq.(1) for the matrix elements and the kinematics

experimental dataf ,0=152.8-3.6 MeV and f,-=147.3 specified in Eqs(10) and (12) for BRT and TRF, respec-
+0.7 MeV are obtained from the widt(p—e*e~) and t|vel_y, one finds that the coefflmentsi andgc;, i=1,2,3,
the branching ratio Br— pv,)=(25.02+0.16)% [21], re- vanish for §=0. Therefore we illustrate the angular depen-
dence of the valence parts in BRT and TRF by giving them

spectively.
for the small but nonvanishing valug= 77/20. On the other
57 : hand, 6= /2 is singled out for the BRT frame, so we chose
for a larger value of) the value 97/20. There is a symmetry
4 T ibc 1 aboutf= /2, so the amplitudes fo#/2< <= do not con-
o tain any additional information.
3L , Eventually we plot the momentum dependence of the va-
lence parts of the form factors and of the violation of the
ol | angular conditions for two values of the polar angleWe
see that in all reference frames and for all angles the angular
conditionA 4 diverges forQ?— 0. This is due to the fact that
tr i the coefficientd, of F, in the matrix elemenG, [see Eq.
(4)] vanishes forQ?=0. For that reason there is a finite
O fmmmmmmmmm e mT T contribution of the nonvalence part or zero mode to the
charge form factor even in the lim@?— 0, which shows up
-1 ‘ ‘ ‘ ' in all d variants of the physical form factors. For finite values
0 2 4 6 8 10 of Q? an accidental singularity ity may occur. To follow

that up we plot the angular variation of the angular condi-

FIG. 15. Angular conditiond,; andA g in the Drell-Yan-West  tions for two values of the momentum transf@f. We can
frame. also explain the occurrence of these singularities as due to
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the vanishing of the coefficierd, of F, in the matrix ele-  scription. Neither of the=} or F$ prescription contains the

mentGy . zero mode. As mentioned before, they correspond to the GK
prescription in the DYW frame fogp=0.
1. Drell-Yan-West kinematics
In the DYW reference frame there is no dependencé.on 2. Breit frame kinematics
The dependence ot amounts to simple phase factoes,' ¢ Our convention for the BRT frame entails bothand ¢

for G, andG,, ande”? for G.. In Figs. 5 and 6, the results  gependences of the matrix elements. The latter being trivial,
for the valence parts of the invariant form factdfs, F2,  we fixed =0 in all our calculations, after checking that
andF3 and the physical one§c, Gy andGq are shown.  jndeed the form factors are independent of this angle. For
F1(0) is normalized to 1, which is not affected by the zero g— /2 the BRT frame and the DYW frame can be con-
mode. For the same reas@g(0)=Gg(0)=1. However, nected by a kinematical transformation, so the results for the
G2(0)#1 and for positiveQ? G deviates from the correct form factors become identicalSee the discussion if6].)

one by the zero-mode contribution g . It is clear that the We chose two values for the angle slightly different from
zero mode is very important if one does chooseRHepre- 0 and/2 to illustrate the angular dependence of the valence

f=n/8
5 —
e by
— Abd
0 Gtalsivbinivilsleielivieiete e L LLL T
5 : ' :
0 9 4 8 10
Q' (GeV)
638
e by
— Abd
5 : ‘ :
0 2 4 8
Q' (e

f=nd

5 | I L i
0 2 4 6 8 10
o' (GeV) FIG. 16. Dependence of the
angular condition®\,; and A4 in
the Breit frame orQ? for four dif-
: Ll ferent angle9.
—a——- Abc
[ Abd
0 lumemememcccneccTow
5 I I I I
0 2 4 6 8 10
Q' (GeV)
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FIG. 17. Dependence of the
angular conditiong\ . and Apg in
the target-rest frame o®? for
four different anglesd. Note the
changed scale in the casé
=3mx/8. The singlularity is clearly
visible there.

parts of the form factors. The results shown in Figs. 7—10 ar¢he Breit frame can be repeated for the target-rest frame. In

for 6= 7/20 andf#=9/20. As shown in Fig. 7, it is imme-

Figs. 12-14, we see for theandc variants similar angular

diately clear that only, andF5 are rather insensitive to the dependences, but for the variant the variation withd is

choice of the polar angle, but the three prescriptionsHgor

even more dramatic than in the Breit frame. The results in

are dramatically changing with going from a small value to  Fig. 14 for 6=94/20 hint at a singular behavior of the
one nearr/2. This strong angle dependence is found also irvariant that is explained by the fact that for some combina-
the physical form factors shown in Figs. 8—10, although theions of Q% and @ the coefficientd, vanishes. We discuss

b andc variants are much less changed thandhariant. In

all cases the charge form factor shows the least angular
variation.

3. Target-rest-frame kinematics

The results shown in Figs. 11-14 are again fe¥ /20

more details of the situation below in Sec. IV B 5.

4. Angular condition

In the next plots of Figs. 15—17 we show the two angular
conditions for a somewhat longe®? interval, up till

10 Ge\2. In the case of the BreitFig. 16 and target-rest

and 6= 97/20. Everything we said for the results obtained in (Fig. 17) frames we plot the differencasbczFS— F5 and
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FIG. 18. Angular conditiona . andAq in the Breit frame for

) 5 ! FIG. 20. Valence contributions to physical form factors for
Q?=1.0 GeV andQ?=10.0 GeVf for different angles.

small values ofQ? in the DYW frame. Whileb andd variants are
shown here, thel-variant magnetic ((‘:ﬂ,') and quadrupole QdQ)
form factors are out of scale because they diverg®%as:0.
Apq=F5—F9 for four angles 6= /8, /4, 3m/8,m/2. For
the DYW frame(Fig. 19 A,.=0, so in the plotA,. coin- ) )
cides with theQ? axis. fpr the Breit frame, so we gha!l nqt rlepe.at it. We only men-
In the Breit frame the angular conditions do dependdon tion that the _over.aII behawor.ls S|m|'lar in these t'wo cases,
and we show their behavior for the same angles as in sebut the details qllffer. In pgtrncular, in 2the following, Sec.
IV B 2. The angular condition that was trivially fulfilled in 'V B5, we consider twoQ® values Q“=1.0 Ge\f-. and
the DYW frame turns out to be only weakly violated in the 10.0 GeV) and find that the singularity ia,q occurs in the
Breit frame. The other one, howevey, 4 is strongly violated Brelt frame for @ close tow/4 while in the target-rest frame
for small values ofQ2. It demonstrates clearly the impor- it shows up foré close to 3r/8.
tance of including the nonvalence parts in a calculation of
the matrix elements of the current. For large value§bfit
tends very quickly to zero, corroborating the expectation that

in perturbative QCD one may ignore largely the nonvalence Figure 14 shows thaBg starts to drop significantly when

5. Singular behavior

parts for sufficiently high momentum tranfers. Q? is near to 4 GeV. Such a behavior can be understood
Again, the discussion of the behavior of the angular con-
ditions in the target-rest frame can be very similar to the one 0=m/20 0 =971/20
total, b total, b
Q’=1GeV* Q° =10 GeV* o f TSl Ll A 1 - gC
10 . 10 . "
—-— Gq
oA, oA, tr 1T .
OA, OA,
0r 10¢f ]
5 5t
e S S -1 Lesmem e st
o 0 0.05 01 0 0.05 0.1
valence, b valence, b
a 2f - J2f el .
® & & 0 0 0 0 0 o amaammsaaasl [ TTTmeeg
0 0O 0D o g o 0 1k 11t i
o —_— ] -_—
a 0r 10¢F 8
-5 L _5 . 1 - I T ettt
0 /4 2 0 /4 w2 0 0.05 01 0 0.05 0.1
6 (Rad) 6 (Rad) ol
FIG. 19. Angular conditiond . andA 4 in the target-rest frame FIG. 21. Physical form factors for small values @f. BRT
for Q?=1.0 GeV andQ?=10.0 Gef for different angles. frame, varianb.
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FIG. 22. Physical form factors for small values . BRT FIG. 24. Physical form factors for small values @f. TRF,
frame, variantc. variantb.

from the dependence of the coefficieht occurring in Egs. We can understand this behavior very easily if we con-
(4) and (6) on the momentum transf& and the angle. It sider the expressions fail,, which can be derived in a
appears that both in the BRT frame and the TRF this coeffistraightforward way from the kinematics and the expressions
cient may vanish for a particular combination@f andg.  for the polarization vectors inserted in Ed). We find

The singularity ofA,4 in the Breit frame is illustrated in

. . 2: —
Fig. 18. We see that it occurs f@>=1.0 Ge\? close tod - V2BmQ1- B2+ (1+ B2)cos 2]

=q/4. The other angular condition remains flatdrand the d? 2= 0% cod (42
same is true for both conditions f@*=10.0 Ge\f. A simi- 4p"m"—Q"cosd
lar picture is found in Fig. 19 for the target-rest frame, only
the position of the singularity being different. for the Breit frame and
0=m/20 0 =97/20 0 =m/20 0 =91r/20
total, d total, d total, ¢ total, ¢
[P s S ] C=—=<--_L_= ] —G R ——— ] C=——=--2I-I_ i —G
2 F Tt 2 TTTTm e o G; 2 TTTTTm e 2 T ——— G;
7T Ya —-— Gy
1r —_— 7 1 F —_—— 7 1+r —_— 1 1+ —_— 1
0r {10t . 0r {10+t .
B B B B I
0 0.05 0.1 0 0.05 0.1 0 0.05 0.1 0 0.05 0.1
valence, d valence, d valence, ¢ valence, ¢
2f ‘ {2Ff ‘ : 2F ~--e {efb ==l L B
1 T TTTT———— J 1} 1 fo—
e —
0r {10t . 0t 10t .
-1 L =1 L 1 ———m—m T " ———— e m—e—-—-
0 0.05 0.1 0 0.05 0.1 0 0.05 0.1 0 0.05 0.1
o o
FIG. 23. Physical form factors for small values @?. BRT FIG. 25. Physical form factors for small values @f. TRF,
frame, variantd. variantc.
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ATRF_ (2m+ k+ BQ cosb) (k>+2BkQ cosf+ B2Q3cos 20)
2 2\2m(m+ «+ BQ cosé)

(43

for the target-rest frame. the nonlinear behavior. Because of this reason, we do not
Solving the equatior,=0 for Q?=1.0 Ge\?, we find  show thed-variant valence results f@®,, andGgq which are
for BRT 6=0.698=0.222r and for TRF #=1.181 anyway out of scale in Figs. 20, 23 and 26. However, in the
=0.376m. These angles coincide with the positions of singu-case that includes the nonvalence part as shown in Figs.
larities shown in Figs. 18 and 19. Also, we note that for 21-23(total in BRT) and Figs. 24—26total in TRB, all
=x/8 in the BRT frame there exists a singularity @2  values obtained for the radii do agree. The same is true for
=8m?/(\2—1)~11.45 GeV which is not shown in Fig. the case where the zero mode does not occur as shown in
18 due to the restricted interval f? only up to 10 GeV.  Fig. 20 (b and c variants in DYW. An indication of the
However, except the tiny region near this singularity posi-accuracy of the results is obtained if one includes the values
tion, the angular condition is very well satisfied at the largerat Q=0 in the fit. Then the radii do not change by more
Q? region. than 1.5%. If one would try do determine these quantities by
fitting the form factors in a much smaller interval, say .001
6. Charge, magnetic and quadrupole radii <Q?<0.01 in order to improve the linear approximation
mathematically, then the numerical noise will have a stronger
influence. So there is a trade off between truncation error in
the series expansion of the Bessel function and numerical
noise. We are satisfied with an overall numerical error of the
order of 1%. In Table | we summarize the numerical results
for the radii. For thed variants, bottG,, andG, diverge for
Q?—0 as discussed above and an entry “div.” is given for
1—i<r2 >Qz} those cases in this table. The numerical estimates for the
0" M ’ radii in these divergent cases, which do not incl@fe=0,
give indeed values of the order of a hundred G8V

From the slope of physical form factors f@?—0, the
corresponding radii(f Z).(ri;).(rs)) can be definedas

1
Gc(Q%)~Ge(0)| 1 5(rd)Q?

Gm(Q*)~Gu(0)

Gqo(Q*)~Gq(0)

- = (3)Q (44
14V Q '
V. CONCLUSION
When one considers only the valence parts of charge, mag-
ggizn?;]g %uea(cjcr)l:rpeoslp?ofr?émJi(z;t(;)izsg’[i\c/)gr? s;?;i)bbeeggaiy Ir?orm factors with respect to several different prescriptions
some of them exhibit singular behaviors@$—0. In order (GK,CCKP,BH, polarization vector choice&F,IF), and ref-

to determine the radii, one may in general try to take the

In this work we made a taxonomical analysis of spin-1

limit [G(Q?) —G(0)]/Q? as Q>—0. In practice, however, 0 =m/20 0 =91/20
this gives a rather unreliable value as for very small values of total, d total, d
Q? the calculations may have numerical noise that is ampli- o [E==T=IIIoio I 1 o [ ETTTe T 5 — G
fied by taking the difference of two almost equal numbers ) 1o 8”
and dividing the result by the small numb&?. A more I 1L | °
stable procedure is to make a linear fit to the form factors in T I—
a domain close t®?=0. We have chosen the interval 0.01 ol 1ol |
<(Q?=0.1 and took ten equidistant values @f. In order to
check whether it makes sense to fit the form factors to a . T
linear function ofQ? in this domain, we plotted the form ~ o 0.05 01 0 0.05 0.1
factors as shown in Figs. 20—26 and also checked the quality valence, d valence, d
of the fit. 2f ‘ 12+ ' 1
It turned out that onlyG), andGg, in thed variants could
not be fitted with a straight line. The reason is that in these 1+~ ————-—d 1 .
variants the influence of the zero mode is very big and only D —
including the zero mode or the nonvalence part can correci o + {0¢ 8
-1 ' -1 '
These relations are associated with the interpretation of the Fou- 0('3025 010 0.05 01

rier transform of the form factors for spacelike momentum transfer
as densities and the behavior of the spherical Bessel functions for FIG. 26. Physical form factors for small values @f. TRF,
small argumenf,(x)~[x'/(21 + 1)1 {1 —[x?/2(21 +3)]+ - - - }. variantd.
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TABLE |. Squared radii in GeV? for the different reference Fig. 3, the valence contribution to the magnetic form factor
frames and variants. [Gw(Q?)] computed in the instant-form basis substantially
differs from the full result even if the GK prescription is

Reference frame, variant Ge Gwm Co used. This is due to the fact that a larger number of matrix
DYW, GP andG°® 7.63 9.73 12.6 elements are contaminated by the zero mode in the instant-
DYW, G¢ 9.56 div. div. form basis, and in the particular case ®f,(Q?) the terms
0= 120 affected by the zero mode such a$;, andG,,/\/7 in Eq.
BRT, tot 7.63 9.73 12.6 (A1) do not cancel each othgsee Eq.(A6)] but rather add
BRT, G, val 14.3 27.6 50.4 up. We thus conclude that the GK prescription in the light-
BRT, G¢, val 14.7 18.3 19.4 front basis is certainly advantageous for model calculation
BRT, GY, val 13.9 div. div. involving only the valence contributions to the spin-1 form
0=97/20 factors.
BRT, tot 7.63 9.73 12.6 We have also analyzed the frame dependence of the va-
BRT, GP, val 8.42 12.0 17.7 lence contribution to the physical form factors and the angu-
BRT, G¢, val 8.48 10.7 13.6 lar conditions using the light-front polarization vectors.
BRT, GY, val 10.0 div. div. Since the three presciptions discussed above are defined only
0= /20 in the g™ =0 frame, we use the prescriptiots ¢, and d
TRF, tot 7.63 9.73 12.6 defined in Sec. Il to work in a general frame. In the DYW
TRF, G, val 14.3 27.7 50.6 frame, ourc prescription corresponds to the GK prescription
TRF, G¢, val 14.8 18.3 19.5 and the results on the form factors from duprescription
TRF, GY, val 14.1 div. div. coincide with those from the or GK prescription. Also,
6=9m/20 some combinations of theandd prescriptions correspond to
TRF, tot 7.63 9.73 12.6 the CCKP and BH prescriptions, depending on the coeffi-
TRF, G, val 9.84 15.9 26.2 cients of the combinations. Again, only tlteprescription
TRF, G, val 9.98 12.5 15.2 involves the zero mode and the valence result from dhe
TRF, GY, val 15.5 div. div. prescription differs from the results of theeand c prescrip-

tions that coincide with each other exactly as shown in Figs.
5 and 6. The results in the Breit frame reproduce the DYW
results if = /2, since they can be transformed into each
other by purely kinematic operators in LFD.A4# /2, how-
ever, the results are quite different from the DYW results. As
“hown in Figs. 7—10 more drastic differences in the results
among theb, ¢, andd prescriptions are found &= 7/20
than atd=97/20. Similar observations can be made also for
the light-front helicity operator. However, the instant-form th? TRF. However, the kinematic equivalence to DWY ob-
polarization vectors have been also used in the literature. WINS only at a special anglé= 6, (see Ref[19]) which
find that the zero-mode contamination occurs minimally independs 0o®<. Thus, itis rather difficult to see the similarity
the light-front gauge because only the helicity zero-to-zerd! the results of TRF and DYW. Although the angular con-
amplitude, i.e.Gy, gets a zero-mode contribution, but all dition A is rather well satisfied, the usual angular condition

others G', ,G1,, Gl ) are immune from the zero mode Apg is_ severe!y broken ir! the_ smal? regiqn. S_ingularit_ies
in the light-front basis. Thus, one can find a prescriptionassoc'ated Wlth those violations are visible in our figures
which does not involve the zero-mode contribution at all.(S€€, €.9. Figs. 18 and 19 N

Indeed, the GK prescription which does not usg, has Nevertheless, both angular conditiong and Apy are
precisely this property. Consequently, the computation ofvell satisfied in the regio®? above a few Ge¥except the
only the valence contributions to the form factors using thetiny region near the singularity position discussed in Sec.
GK prescription yields results which coincide exactly with IV B 5 and thus the results from all the prescriptions become
the full results of the form factors as we have shown in Figsconsistent with each other. Thus, one may conclude that the
2—4. These full results can be obtained by the other prescrigzero-mode contributions are highly suppressed in the high
tions, CCKP and BH, only if the zero-mode contributions areQ? region and the results are consistent with the perturbative
added to the valence contributions. We have also computeQCD predictions. This may justify the use of the BH pre-
the form factors using a manifestly covariant Feynmanscription in the analysis of hig@? form factors. For the low
method and explicitly shown that the full results of the light- and intermediat€? regions, however, the zero-mode contri-
front calculations are fully in agreement with the covariantbutions are very important and the GK prescription with the
one no matter what prescriptions we use. Although the fullight-front polarization vectors in the DYW frame is cer-
results are also independent of the choice of the polarizatiotainly desirable for the form factor analyses. An application
vectors, we find that the nice feature of the GK prescriptionof this observation to a more realistic model calculation is
described above is lost in the instant-form basis. As shown ininder consideration.

erence framefDYW,BRT,TRF). We used thel™ current for
all of our analysis.

In the g* =0 frame, we looked at both LF and IF polar-
ization vectors and made a comparative analysis on the thr
prescriptiong GK,CCKP,BH) in relating the matrix elements
to the physical form factors. In the light-front gaugh;
=0, the light-front helicity basis is the set of eigenvectors of
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[Here we use the component conventiop”
APPENDIX A: FORM FACTORS IN THE INSTANT-FORM =(p°p*,p? p?), etc] Even though these polarization vec-
BASIS tors satisfy the correct orthonormality and closure relations
as well as the conditiong-p=¢'-p’'=0, they cannot be
obtained in the LF gauge.
Proceeding to calculate the trace terjs,S,,.S,, and
S, using Egs(A4) and (A5), we obtain

Using the instant-form linear polarization vectots, i’
=X,Y,z), the form factors corresponding to Eq4.7)—(19)
in the light-front polarization vectors are given (8]

11 2— .
GSK_ + §G:x+ ( 3 & G;’ry_l— gG;Z ! S;rx: —4k” n[m§+ ki B nmz]
+4k pT(pT—kT)(1—x—np—yx)+4p™*
G+
GE=— —| G}, ~ G+ T;X , (A1) X [4(x+ npx—1)kE— p(1+ 7)x3m?
—(x+37x—2)(m3+k3)],
1 (1+mn) 1
GK Tt _ N T A+ Tt
G T opr 127 % T 2q GyyT 3Gz, S, =4k (K" —p")2—4p [4(1—x)K2+ yx?
11 1 1 —(2=x)(mg+kD)],
G F EG;X+ gG;y+ EG;Z ’ + 2, ;2 2 "o
=4k [mg+k?—»m
(A2) S,; [ g TKLT 7 ]
+ + + -
GCCKP_ _ 1 Gux GCCKP_ 1 (Gu=Gyy) +4(1=)p  [X(1=X)(1+ p)m*+2(mg+ k)],
M 2p+ \/7]' Q 2p+ 27 ! )
Si=— 4kl mi+ k2 — pm?]
and
+4\nk p* (kT —p”)
1 (1+27n) (27—1)
BH_ + + + 2_ 209 _ 2_ 2
C opr(1r2m| 3 Gt —3 Gy +4\np*[2kE = x3(1—x)(1+ p)m?—2(m;
2
(3+279) +kO],
+ T zz|»
where \2p"=p°=m\/1+ 5 and we omit the terms of odd
_ power inIZL since they do not contribute to the integral. Note
BH 1 A+27ny) . . + ;
PH= G, — G +G,,l, (A3) also that we do not separate the on-shell propagating part
T yy 2z . . s .
2p(1+2n) | 7 from the instantaneous one in this instant-form calculation.
As we discussed, only the underlined termsSjy,S,, and
BH_ 1 (1+27n) . B (1+7n) ot — EG* S;X contribute to the zero-mode pa_lrt a_nd ﬂs@ component
Q- 2pT(1+27)| 27 XX op VY 27 is immune to the zero-mode contributions.
where we redefine the definition of the form fact@g,G, APPENDIX B: DERIVATION OF THE ZERO MODE

andG, in Ref.[8] in terms ofG¢,Gy , andGq, according to ) ] ) ) ] _
the footnote 1. In order to calculate the form factors of a In this appendix we derive E¢39) in detail. Performing
spin-1 particle in this instant-form bases, the authors of Refdhe k™ integration in Eq.(39), the residue at the polke~
[7,8] used the reference frame specified in our Etg). =p’'*+[(k, —p|)2+A%]2(k" —p'*) gives
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G+Z.m.:i J’ d4k k_
" (2m)* DD ,D}

i f dk*dk=d2k,
(2m)*) 2k*2(k*—p*)2(k*—p'™")
X k_
k__IZermé—is _ o (kep)PFAT—is k__p,__(lzi—ﬁi)erAz—is ’
2k+ 2(k+_p+) 2(k+_pr+)
1 f,w dk*d?k,
(277_)3 p+ 2k+2(k+_p+)2(k+_p/+)
X < (B1)
o (KmpDPHA? kEAmgll (K pDPEA? (K—py)t AR
2(k+_p/+) 2k+ p p 2(k+_p/+) 2(k+_p+)
Writing " =6p™ andp’ *=(1+6)p*, §—0 at the end, we obtain
1 1+48 . m2+p'2 K. —p' )2+ A2
G;,Zh'm':——limgﬁof dxdPKk, (x—1—8)(1+ )2 P +( L)
2(2m)° 1 1+8)p"  (x—1-6)p*
y 1
X(x—1=8)(M?+p?) + (1+ X[ (K, —p/ )2+ A2]— (1+ &) (x—1- 8)(K> +m})
y 1
= 3(x=1)(x=1=8)(m?+p?)+(1+ &) (x=D)[(K, —p] )2+ A%] = (1+ &) (x=1=&[(k, —p,)>+A?]
(B2)

If we write x=1+ 8y anddx= &dy, then the integral ovey runs from 0 to 1 ax runs from 1 to X 8. Therefore, we get

G-%—z.m.__ 1 flddeE 1
’ - | > -, - -
Mh 2ptem3lo yL(K. —p1)2+ A2+ (1—y)[(K, —p,)2+A?]

(K, —p})>+A?

In T2 \2, A2
o0 (kKL =pL)*+A
TL(K = p)2+ A2 - [(K, —p})2+ A2

(B3)
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