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Gauge and scheme dependence of mixing matrix renormalization

Apostolos Pilaftsis
Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom

~Received 28 March 2002; published 21 June 2002!

We reexamine the issue of mixing matrix renormalization in theories that include Dirac or Majorana fermi-
ons. We show how a gauge-variant on-shell renormalized mixing matrix can be related to a manifestly gauge-
independent one within a generalizedMS scheme of renormalization. This scheme-dependent relation is a
consequence of the fact that in any scheme of renormalization, the gauge-dependent part of the mixing-matrix
counterterm is ultraviolet safe and has a pure dispersive form. Employing the unitarity properties of the theory,
we can successfully utilize the aforementioned scheme-dependent relation to preserve basic global or local
symmetries of the bare Lagrangian through the entire process of renormalization. As an immediate application
of our study, we derive the gauge-independent renormalization-group equations of mixing matrices in a mini-
mal extension of the standard model with isosinglet neutrinos.
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I. INTRODUCTION

One of the most fundamental properties of the we
established standard model~SM! @1# is its renormalizability
@2#. Renormalizability endows the SM with enhanced pred
tive power that emanates from the fact that ultraviolet~UV!
divergences due to high order quantum effects can alway
successfully eliminated by a redefinition of a finite numb
of independent kinematic parameters of the theory, such
masses and couplings. The predictions of the SM have b
tested and vindicated with a satisfactory accuracy at h
energy colliders, such as the Large Electron Positron~LEP!
collider at CERN and the Tevatron collider at Fermilab,
well as in low-energy experiments, e.g. in the recent E8
experiment at BNL where the muon anomalous magn
moment is measured@3#.

In addition to masses and couplings of the SM particl
however, the quark-mixing matrix, the so-called Cabibb
Kobayashi-Maskawa~CKM! matrix @4# V, needs be renor
malized as well@5,6#. In this context, one of the renorma
ization schemes, most frequently adopted in the literature
the on-shell~OS! scheme of renormalization@7–9#, where
the particle masses are renormalized so as to represen
physical masses at the poles of the propagators. It was sh
in @6# that the complete UV structure of the counterter
~CTs! for the CKM matrix V can be entirely expressed i
terms of quark wave-function renormalizations. Within th
framework, a simple approach to renormalizingV in the OS
scheme was also presented, consistent with the unita
properties of the theory@10#.

Even though radiative effects due to the renormalizat
of an off-diagonal CKM matrix were found to be undetec
ably small in the SM@6,11–13#, this need not be the case fo
its minimal renormalizable extensions. In particular, in@14#
the above formalism of mixing-matrix renormalization w
extended to theories that include isosinglet neutrinos an
admit the presence of lepton-number-violating Majora
masses@15#. A minimal realization of such a theory is th
SM with right-handed neutrinos@16,17#. As we will further
discuss in Sec. II C, in this minimal model the charged a
neutral current interactions of theW andZ bosons to leptons
0556-2821/2002/65~11!/115013~16!/$20.00 65 1150
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and neutrinos are described by two nonunitary mixing ma
cesB andC @17#, respectively. Most importantly, the radia
tive effects on the light-heavy neutrino mixing angles co
tained in theB andC matrices were computed to be as lar
as 15%@14#, close to present experimental sensitivities. T
SM with right-handed neutrinos is an appealing scena
which may explain the smallness of the observed neutr
masses and adequately address the solar energy deficit
lem @18# through neutrino oscillations@19#. Furthermore, this
minimal extension of the SM may give rise to a number
observable phenomena, such as lepton-flavor and/or lep
number violation inm, t @20–22# andZ-boson decays@23#,
or to possible lepton-number violating signals at high-ene
colliders, e.g. at the CERN Large Hadron Collider~LHC!
@24,25#.

It has been noticed recently@26# that in the OS renormal-
ization prescription presented in@6#, the derived CTs for the
CKM matrix naively depend on the choice of the gaug
fixing parameterj in the class ofRj gauges. This fact is no
very desirable, as physical matrix elements will be gau
dependent after renormalization. To circumvent this probl
of j dependence of the OS renormalized CKM matrix, se
eral alternative schemes of renormalization have been
gested in the very recent literature@26,12,13,27,28#. As is
expected, in all the proposed renormalization schemes,
UV-divergent parts of the CTs of the CKM matrix are ide
tical to those derived in the modified minimal subtracti
MS scheme@6#. Nevertheless, the UV-safe parts of the C
differ from approach to approach by finite dispersive co
stants. Most interestingly, one may observe that even in
originally suggested OS scheme of@6#, the gauge-dependen
part of the CKM-matrix CTs is UV finite and also has a pu
dispersive form, thus indicating the existence of a profou
relation between gauge dependence and scheme depen
in mixing-matrix renormalization.

In this paper, we revisit the topic of mixing-matrix reno
malization of the CKM matrixV and of theB andC matri-
ces. In particular, we develop a generalized and manife
gauge-invariantMS approach to mixing-matrix renormaliza
tion. The developed generalizedMS approach provides a
©2002 The American Physical Society13-1
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very convenient framework to address the problem of ga
and scheme dependences in the existing plethora of di
ently renormalized mixing matrices. Moreover, we sho
how our generalizedMS scheme can be successfully em
ployed to maintain global or local symmetries of the ba
Lagrangian after renormalization. Finally, with the help
our generalizedMS approach, we can derive the gaug
independent renormalization-group~RG! equations for mix-
ing matrices. We explicitly demonstrate the theoretical
vantages of this method by calculating the one-loop
runnings of theB andC matrices in the SM with isosingle
neutrinos.

The paper is organized as follows: after briefly reviewi
the basic formalism of mixing matrix renormalization in th
OS scheme in Sec. II A, we present in Sec. II B our gau
invariant generalizedMS approach to the renormalization o
the CKM matrix V, and extend it in Sec. II C to the reno
malization of the correspondingB andC mixing matrices in
the SM with isosinglet neutrinos. In Sec. III, we show ho
our generalizedMS approach preserves additional global a
local symmetries of the theory, which are manifested the
selves as sum rules involving neutrino masses and theB and
C matrices. As an immediate application of our consid
ations, we derive in Sec. IV the gauge-independent renorm
ization group equations RGEs of theB andC mixing matri-
ces. Finally, our conclusions are summarized in Sec. V.

II. MIXING MATRIX RENORMALIZATION

In this section, we will first recall the basic analytic fo
mulas for the wave-function and mass CTs in the OS ren
malization scheme within the context of general fermio
theories, such as the SM and its natural extension with is
inglet neutrinos. Then, we will revisit the problem of gau
dependence of the OS-renormalized CKM matrix in the S
and discuss its connection to scheme dependence with
generalized gauge-invariantMS scheme of renormalization
Finally, our discussion will be extended to the renormaliz
tion of the mixing matricesB and C that parametrize the
neutral- and charged-current interactions in the SM with s
glet neutrinos.

A. OS renormalization scheme

In a theory with a numberNf of Dirac fermions, the bare
kinetic Lagrangian has the following generic form:

Lkin5 i f̄ L
0]” f L

01 i f̄ R
0]” f R

02 f̄ L
0M0f R

02 f̄ R
0M0f L

0

5 i f̄ LZL
1/2†ZL

1/2]” f L1 i f̄ RZR
1/2†ZR

1/2]” f R

2 f̄ LZL
1/2†~M1dM !ZR

1/2f R

2 f̄ RZR
1/2†~M1dM !ZL

1/2f L . ~2.1!

In the above, we have employed a matrix notation in
space spanned by theNf fermionic fields, i.e. f T

5( f 1 , f 2 , . . . ,f Nf
). As usual, we adhere the superscript ‘‘0

to unrenormalized quantities. In Eq.~2.1!, the Nf3Nf di-
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mensional matricesZL
1/2 and ZR

1/2 are the wave-function
renormalizations for the left- and right-handed fermions,
spectively. In addition,M0, M and dM are diagonal
Nf3Nf dimensional matrices that contain the bare mass
the renormalized masses and their respective counterte
~CTs!.

The most general form of an unrenormalizedf j→ f i tran-
sition amplitude allowed by Hermiticity@8# reads

S i j ~p” !5p”PLS i j
L ~p2!1p”PRS i j

R~p2!1PLS i j
D~p2!

1PRS j i
D* ~p2!, ~2.2!

supplemented by the constraints

S i j
L ~p2!5S j i

L* ~p2!, S i j
R~p2!5S j i

R* ~p2!. ~2.3!

In the OS scheme of renormalization, the wave-function a
mass CTs are given by@14#1

dZi j
L 5

2

mi
22mj

2
„mj

2S i j
L ~mj

2!1mimjS i j
R~mj

2!1miS i j
D~mj

2!

1mjS j i
D* ~mj

2!…, ~2.4!

dZi j
R5

2

mi
22mj

2
„mimjS i j

L ~mj
2!1mj

2S i j
R~mj

2!1mjS i j
D~mj

2!

1miS j i
D* ~mj

2!…, ~2.5!

dZii
L 52S i i

L ~mi
2!1

1

2mi
„S i i

D~mi
2!2S i i

D* ~mi
2!…

2mi
2
„S i i

L8~mi
2!1S i i

R8~mi
2!…

2mi„S i i
D8~mi

2!1S i i
D* 8~mi

2!…, ~2.6!

dZii
R52S i i

R~mi
2!2

1

2mi
„S i i

D~mi
2!2S i i

D* ~mi
2!…

2mi
2
„S i i

L8~mi
2!1S i i

R8~mi
2!…

2mi„S i i
D8~mi

2!1S i i
D* 8~mi

2!…, ~2.7!

dmi5
1

2
mi„S i i

L ~mi
2!1S i i

R~mi
2!…

1
1

2
„S i i

D~mi
2!1S i i

D* ~mi
2!…, ~2.8!

whereS8(p2)5dS(p2)/dp2 anddZL,R are the loop-induced
wave-function renormalizations defined through the relat
ZL,R

1/2 511 1
2 dZL,R. We should bear in mind that only the dis

1Here, we have used the symmetry property of the Lagrang
~2.1! under the rephasings,ZLi j

1/2→eiu iZLi j
1/2 and ZRi j

1/2→eiu iZRi j
1/2 , in

order to castdZii
L and dZii

R into a symmetric but fully equivalen
form than the one presented in@14#.
3-2
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persive parts of the unrenormalized self-energies enter
renormalization such that the Hermiticity property of the
cal Lagrangian is maintained. In the SM, it isS i j

D(p2)
5miS i j

S(p2) and S i j
S(p2)5S j i

S* (p2), and the formulas
~2.4!–~2.8! reduce to those given in@6,9#. However, we
should stress again that these relations are very specific t
SM and no longer apply to extended theories.

One well-motivated extension of the SM is the one
which the SM field content is augmented by right-hand
~isosinglet! neutrinos, thereby admitting the presence of M
jorana masses in the Lagrangian@15–17#. In this case, the
fermionic fields satisfy the Majorana constraints:f L

05( f R
0)C

and f L5( f R)C, where the superscriptC indicates charge con
jugation. As a consequence of the Majorana constraints
obtain the equalities:

ZL
1/25ZR

1/2* , S i j
L ~p2!5S i j

R* ~p2!,

S i j
M~p2!5S j i

M~p2!, ~2.9!

where we made the identificationS i j
D(p2)[S i j

M(p2). Substi-
tuting Eq. ~2.9! into Eqs.~2.4!–~2.8! yields the correspond
ing wave-function and mass CTs for Majorana fields@14#.

The issue of mixing-matrix renormalization arises whe
ever one has to deal with the renormalization of a nontriv
rotation matrix that occurs in interactions relating flavor
mass eigenstates. To study this problem, we shall ado
perturbative framework in which the classical tree-lev
Ward identities~WIs! are maintained after quantization. A
such, one may consider the background field method~BFM!
@29,30# or the pinch technique~PT! @31–34# or even possible
diagrammatic generalizations of the latter, i.e. the gene
ized pinch technique~GPT! @35#.

B. Renormalization of the CKM matrix in the SM

As a prototype example, let us consider the charg
current interaction in the quark sector of the SM. Spec
cally, we will revisit the renormalization of the CKM matri
elementsVud that enter the vertex transitionW1(p)d(pd)
→u(pu). Later on, we will generalize our results to th
aforementioned SU~2! L ^ U~1! Y model with Majorana neu-
trinos. Within the perturbative approaches mentioned abo
the following tree like WI is satisfied@33,11,26#:

pmGm
W1ūd,0~p,pu ,pd!1MW

0 GG1ūd,0~p,pu ,pd!

52
gw

0

A2
„Vu8d

0 Suu8
21,0

~pu!PL2Vud8
0 PRSd8d

21,0
~pd!…,

~2.10!

where the summation convention over repeated quark-fam
indices is implied. In addition, in Eq.~2.10! we have defined

Gm
W1ūd,0~p,pu ,pd!5G0m

W1ūd,01G1m
W1ūd~p,pu ,pd!,

~2.11!

GG1ūd,0~p,pu ,pd!5G0
G1ūd,01G1

G1ūd~p,pu ,pd!,
~2.12!
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Suu8
21,0

~pu!5p” u2mu
01Suu8~p” u!,

Sd8d
21,0

~pd!5p” d2md
01Sd8d~p” d!, ~2.13!

whereG0m
W1ūd,0 and G0

G1ūd,0 are the bareW1ūd and G1ūd

couplings at the tree level, andG1m
W1ūd(q,pu ,pd) and

G1
G1ūd(q,pu ,pd) are the corresponding higher-order u

renormalized one-particle irreducible vertices evalua
within e.g. the PT or the BFM. Similar identifications als
apply for the unrenormalized two-point correlation functio
Suu8

0 (pu) andSd8d
0 (pd).

Following the procedure outlined in@34#, we require that
the same tree-level WI~2.10!, which involves unrenormal-
ized quantities only, holds exactly true after renormalizati
This condition can be successfully enforced within t
gauge-independentMS scheme of renormalization. Neve
theless, in any other favorable scheme of renormalizat
the renormalized parameters of the theory will differ fro
those in theMS scheme by UV-finite constants. The reno
malized quantities may be determined in terms of the
renormalized ones through the relations

gw
0 5Zgw

gw ,

MW
025MW

2 1dMW
2 ,

V05V1dV, ~2.14!

Gm
W1ūd~p,pu ,pd!5ZW

1/2ZLuu8
1/2† ZLd8d

1/2 Gm
W1ū8d8,0

3~p,pu ,pd!,

GG1ūd~p,pu ,pd!5ZG1
1/2 Zuu8

1/2†Zd8d
1/2 GG1ū8d8,0

3~p,pu ,pd!, ~2.15!

Sqiqj

21 ~pq!5Zqiqk

1/2†Sqkql

21,0~pq!Zqlqj

1/2

~with q5u,d!, ~2.16!

where Zqiqj

1/2 5ZLqiqj

1/2 PL1ZRqiqj

1/2 PR and dV stands for the

mixing-matrix renormalization of the CKM matrixV. In Eq.
~2.15!, we required thatW1ūd andG1ūd couplings be UV
finite after the external wave-function CTs for theW boson,
the would-be Goldstone bosonG1, and theu- and d-type
quarks have been properly taken into account.

Since our main interest is to compute the UV diverge
part of theW1ūd vertex in the presence of flavor mixing an
so determine the UV-divergent structure of the mixin
matrix CTdV, we shall therefore focus our attention only o
the chirally-projected WI~2.10! related to the expressio

PRGm
W1ūd,0PL . In particular, we have
3-3
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ZW
1/2ZL

u,1/2†PR~pmGm
W1ūd,0

1MW
02GG1ūd,0!PLZL

d,1/2

52ZW
1/2Zgw

gw

A2
ZL

u,1/2†PR„S
21,0~pu!V0

2V0S21,0~pd!…PLZL
d,1/2 . ~2.17!

To simplify notation in Eq.~2.17!, we have employed the
matrix representation for the quark wave-functions and th
inverse propagators, i.e.ZL

q,1/25ZLqiqj

1/2 and S21,0(pq)

5Sqiqj

21,0(pq), with q5u,d. Substituting Eqs.~2.15! and

~2.16! into Eq. ~2.17! gives

PR~pmGm
W1ūd1ZW

1/2ZG1
21/2MW

02GG1ūd!PL

52ZW
1/2Zgw

gw

A2
3PR„S

21~pu!ZL
u,21/2V0ZL

d,1/2

2ZL
u,1/2†V0ZL

d,21/2†S21~pd!…PL . ~2.18!

The requirement now that the WI~2.18! retains its original
form ~2.10! where all quantities are replaced by their ren
malized ones gives rise to the following consistency con
tions:

ZW
1/25Zgw

21 , ZG15ZWS 11
dMW

2

MW
2 D , ~2.19!

V5ZL
u,21/2V0ZL

d,1/25ZL
u,1/2†V0ZL

d,21/2†.
~2.20!

The two equalities in Eq.~2.19! are exactly satisfied within
the PT and BFM frameworks@30,34,26#. The double equality
in Eq. ~2.20! assures the unitarity property of the renorm
ized mixing matrixV, i.e. V215V1. Most importantly, Eq.
~2.20! determines the analytic structure of the CTdV. Em-
ploying the usual decomposition for the wave-functi
renormalizations, i.e. ZL

u,1/2511 1
2 dZu,L and ZL

d,1/251
1 1

2 dZd,L, we arrive at the perturbative and more famili
form for dV @6#:2

dV5
1

4
~dZu,L2dZu,L†!V

2
1

4
V~dZd,L2dZd,L†!, ~2.21!

2Here, we should remark that the analytic results for the wa
function CTs anddV obtained within the~G!PT or BFM are iden-
tical to those derived within the conventional framework ofRj

gauges@13,12#, with the additional restriction that the gauge-fixin
parameters related to the photon and theZ boson are equal, i.e.jg

5jZ .
11501
ir
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where theu- andd-quark wave functions have to satisfy th
constraining relation@11,26#

1

2
~dZu,L1dZu,L†!V5

1

2
V~dZd,L1dZd,L†!. ~2.22!

In the absence of flavor mixing, i.e. forV51, this last rela-
tion simplifies to the known oneZu,L5Zd,L @30,34#.

Several important remarks and observations regard
mixing-matrix renormalization are now in order:

~i! The UV poles ofdV are entirely specified by the wave
function CTs of the left-handedu andd quarks to all orders
in perturbation theory. Moreover, with the definition ofdV in
Eq. ~2.21!, V is automatically unitary through the order co
sidered.

~ii ! The left-hand side~LHS! of the WI ~2.18! is gauge-
independent, when the chirally-projected amplitud

PRGm
W1ūd(p,pu ,pd)PL and PRGG1ūd(p,pu ,pd)PL are

evaluated by setting the external particles on their m
shells. Consequently, the RHS of Eq.~2.18! must be gauge-
independent as well. This can only happen, ifV and hence
dV are gauge-independent@11,26#. For example, unlike in
the MS scheme@6#, dV is j dependent@12,13,27,28# in the
OS scheme of renormalization. As we will see below in~iii !,
however, because the gauge-dependent part ofdV is UV
finite and has a pure dispersive form, thej-dependent terms
of an OS renormalized CKM matrixV can always be related
to finite gauge-independent constants in a generalized
manifestly gauge-invariantMS scheme of renormalization.

~iii ! There exists an underlying symmetry in the renorm
ization of V0, reflecting the presence of a general intrins
freedom in redefining mixing matrices at higher orders.3 The
presence of this higher-order scheme arbitrariness in
renormalization ofV0 may be described as follows. W
know that the CKM matrix is the product of two unitar
matricesUL

u,0 andUL
d,0 relating the weak to mass eigenstat

of the left-handedu- and d-type quark fields, respectively
i.e. V05UL

u,0UL
d,0† . If we now perform the following pertur-

bative shifts in the left-handed quark wave functions a
their mixing-matrix CTs:

dZu,L→dZu,L1cu,
~2.23!

dZd,L→dZd,L1cd,

dUL
u→dUL

u2
1

2
cuUL

u ,

~2.24!

dUL
d†→dUL

d†1
1

2
UL

d†cd,

wherecu andcd are anti-Hermitian, gauge-independent U
finite constant matrices, i.e.cu,d52cu,d† and cu,d

5O(dZu,L,dZd,L), then none of the important key equalitie
-

3The existence of such a scheme dependence in the renorma
tion of V0 was first pointed out in@14#.
3-4
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~2.20!, ~2.21! and ~2.22! will change through the order con
sidered. On the basis of the above unitarity symmetry,
may generally define the manifestly gauge-independ
CKM matrix CT:

dV5dVMS2
1

2
cuV1

1

2
Vcd, ~2.25!

wheredVMS is the corresponding CT in the gauge-invaria
MS scheme evaluated in Eq.~2.21!. Evidently,dV does not
give rise to gauge dependences in the computation of ph
cal transition amplitudes, e.g. in the top-decay amplitudt
→W1b. However, the UV-finite constantscu andcd intro-
duce a scheme dependence into the renormalization of
CKM matrix V0. Thus, all the various schemes of renorm
ization proposed in the literature@6,14,26,12,13,27,28#, in-
cluding the OS scheme@6,14#, may be represented by th
gauge-invariant expression~2.25! with appropriate choices
for the UV-finite matricescu andcd.

Finally, it is interesting to notice that the number of ind
pendent parameters contained in the anti-Hermitian matr
cu and cd is exactly equal to the number of group para
eters, the so-called mixing angles, that generate the un
rotations in the left-handedu- and d-quark flavor space. To
elucidate the above point, let us consider the renormali
unitary matrix in the left-handedu-quark flavor space,UL

u .
In particular,UL

u can be written as

UL
u~uu

a!5exp~ iuu
aTa!, ~2.26!

whereuu
a are the group parameters andTa are the associate

generators of the U(n) flavor group, satisfying the usual Lie
algebra relations:@Ta,Tb#5 i f abcTc, with Ta5Ta†, T051n

and f 0ab50. If we now shift uu
a by a finite higher-order

amountduu
a , then the unitary matrix~2.26! exhibits the fol-

lowing variation:

UL
u~uu

a1duu
a!5F1n1 i S dbc2

1

2
f bcduu

d2
1

6
f bdx

3 f cexuu
duu

e1••• D duu
bTcG

3UL
u~uu

a!1O~duu
a2!. ~2.27!

In writing the RHS of Eq.~2.27!, we have employed the
Baker-Hausdorff formula for infinitesimal non-Abelian rot
tions. Comparing Eq.~2.27! with Eq. ~2.24!, we immediately
recognize that the anti-Hermitian matrixcu is given by

cu522i S dab2
1

2
f abcuu

c2
1

6
f acx

3 f bdxuu
cuu

d1••• D duu
aTb, ~2.28!

where theduu
a’s parametrize the scheme-dependent shifts

the mixing anglesuu
a . Notice that the anti-Hermitian matrix

cu in Eq. ~2.28!, determined by means of Eq.~2.27!, pre-
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serves the unitarity properties ofUL
u by construction. Analo-

gous determinations may also be found forcd and hence for
the scheme-dependent part ofV in Eq. ~2.25!.

C. Mixing renormalization in the SM with singlet neutrinos

We will now discuss the problem of mixing-matrix reno
malization in an SU(2)̂ U(1)Y theory with a numberNG of
fermionic doublets and a numberNR of right-handed~iso-
singlet! neutrinos. The interaction Lagrangians of this mod
which describe the couplings of theW6, Z, and Higgs (H)
bosons to theNG charged leptons,l i , and (NG1NR) Majo-
rana neutrinos,ni , are given by

LW52
gw

A2
Wm

2 l̄ iBi j g
mPLnj1H.c., ~2.29!

LZ52
gw

4cw
Zmn̄ig

m~Ci j PL2Ci j* PR!nj ~2.30!

LH52
gw

4MW
Hn̄i@~miCi j 1mjCi j* !PL

1~miCi j* 1mjCi j !PR#nj . ~2.31!

Here, we follow the conventions of@17,20#. In Eqs.~2.29!–
~2.31!, B and C are NG3(NG1NR) and (NG1NR)3(NG
1NR)-dimensional mixing matrices, defined as

Bl j 5 (
k51

NG

Vlk
l Uk j

n* , ~2.32!

Ci j 5 (
k51

NG

Uki
n Uk j

n* . ~2.33!

In Eq. ~2.32!, the NG3NG unitary matrixVl occurs in the
diagonalization of the charged-lepton mass matrix and
lates the weak to the mass eigenstates of the left-han
charged leptons. Correspondingly, the (NG1NR)3(NG
1NR) unitary matrixUn in Eq. ~2.33! diagonalizes the sym
metric neutrino-mass matrix

Mn5S 0 mD

mD
T mM

D , ~2.34!

through the unitary transformation

UnTMnUn5M̂n

5diag~m1 ,m2 , . . . ,mNG1NR
!. ~2.35!

At this point, we should recall again@17# that the mixing
matricesB and C obey a number of basic identities whic
ensure the renormalizability of the theory:

(
k51

NG1NR

BlkBl 8k
* 5d l l 8 , ~2.36!
3-5
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(
k51

NG1NR

CikCk j5Ci j , ~2.37!

(
k51

NG1NR

BlkCki5Bli , ~2.38!

(
l 51

NG

Bli* Bl j 5Ci j , ~2.39!

(
k51

NG1NR

mkBlkBl 8k50, ~2.40!

(
k51

NG1NR

mkBlkCik50, ~2.41!

(
k51

NG1NR

mkCikCjk50. ~2.42!

The last three relations~2.40!–~2.42! are manifestations o
the presence of lepton-number violation in the neutrino s
tor. Instead, if theory conserves lepton number, these th
identities are not necessary. In this case, Majorana neutr
are either degenerate in pairs forming massive Dirac ne
nos or unpaired giving rise to massless Majorana-Weyl tw
component spinors. As a consequence of lepton-number
servation, the mixing matrix elementsCi j* are absent from
the Zninj andHninj couplings in Eqs.~2.30! and ~2.31!, so
theZninj coupling becomes purely chiral, proportional to t
operatorn̄igmPLnj .

The renormalization of the mixing matricesB andC can
be carried out in a way very similar to the SM case. Follo
ing analogous steps for the one-particle irreducible ver
functionsGW2 l̄ nj andGZn̄inj in the BFM or PT, we find

B5ZL
l ,21/2B0ZL

n,1/25ZL
l ,1/2†B0ZL

n,21/2†, ~2.43!

C5ZL
n,21/2C0ZL

n,1/25ZL
n,1/2†C0ZL

n,21/2†,
~2.44!

where ZL
l ,1/2 and ZL

n,1/2 are wave-function renormalizatio
matrices for the left-handed charged leptons and Major
neutrinos, respectively. Equations~2.43! and~2.44! lead per-
turbatively to the mixing-matrix CTs@14#

dB5
1

4
~dZl ,L2dZl ,L†!B

2
1

4
B~dZn,L2dZn,L†!, ~2.45!

dC5
1

4
~dZn,L2dZn,L†!C

2
1

4
C~dZn,L2dZn,L†!. ~2.46!
11501
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In addition, the following constraining relations are satisfie

1

2
~dZl ,L1dZl ,L†!B5

1

2
B~dZn,L1dZn,L†!, ~2.47!

1

2
~dZn,L1dZn,L†!C5

1

2
C~dZn,L1dZn,L†!. ~2.48!

It is important to observe that the renormalized mixing m
tricesB andC given in Eqs.~2.43! and~2.44! as well as the
perturbative definitions of the mixing-matrix CTsdB anddC
by means of Eqs.~2.45! and~2.46! fully satisfy the identities
~2.36!–~2.39!. However, the compatibility ofdB and dC
with the remaining identities~2.40!–~2.42! proves more
subtle and will be discussed in Sec. III.

In the MS scheme, the mixing-matrix CTsdB and dC
become gauge independent, only after the correspon
gauge-dependent part of the tadpole graphs are inclu
@31,32,30,27#. To further illuminate our procedure, we calcu
late the Higgs-boson tadpole graphGH induced by theW1

boson, and the associate would-be Goldstone bosonG1 and
ghost fieldsc1,c̄1, i.e.

G (W)
H ~0!5

gw

32p2

MH
2

MW
@jWMW

2
„11B0~0,jWMW

2 ,jWMW
2 !…#

1
gw

16p2
~D21!MW@MW

2
„11B0~0,MW

2 ,MW
2 !…#,

~2.49!

where the one-loop functionB0(p2,m1
2 ,m2

2) is defined in the
Appendix A. From Eq.~2.49! it is easy to see that only th
MH

2 -dependent part of the tadpole depends onjW and should
be included in the scalar part of the self-energy transitio
S i j

D @cf. Eq. ~2.2!#. More precisely, theMH
2 -dependent part of

the tadpole graph effectively induces a gauge-dependent
to theH-boson VEVv:

S dv
v D jW

5
gw

2MW

~GH!jW

MH
2

5
aw

16p
jW„11B0~0,jWMW

2 ,jWMW
2 !…. ~2.50!

Similarly, the Z-boson loop causes an analogous gau
dependent shift tov, i.e.

S dv
v D jZ

5
gw

2MW

~GH!jZ

MH
2

5
aw

32pcw
2

jZ„11B0~0,jZMZ
2 ,jWMZ

2!…. ~2.51!

Then, thej-dependent VEV shifts~2.50! and~2.51! contrib-
ute the following term to the scalar part of the Majoran
neutrino self-energy transitions:
3-6
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S i j
M ,tadPL52S dv

v D jW,Z

~miCi j 1mjCi j* !PL . ~2.52!

Note that if neutrinos are Dirac particles, one has just to d
the term proportional toCi j* on the RHS of Eq.~2.52!. As we
will see more explicitly in the next sections, the tadpole co
tribution ~2.52! plays an instrumental role in rendering th
mixing-matrix CTsdB anddC gauge independent.

III. NEUTRINO MASS-MIXING SUM RULES

As was already mentioned in Sec. II, the neutrino ma
mixing sum rules~2.40!–~2.42! are very essential to ensur
the renormalizability of the theory. These sum rules are
tained by projecting out the zero texture in the Majoran
neutrino mass matrix~2.34! as follows:

(
k51

NG1NR

mkUlk
n Ul 8k

n
5~UnM̂nUnT! l l 85Mll 8

n* 50, ~3.1!

for l ,l 851,2, . . . ,NG . The zero texture is protected by th
gauge symmetry of the theory, since the contribut
5-dimensional gauge-invariant operatorL̄TFTFLC is absent
from the local renormalizable Lagrangian, whereL and F
are the lepton and Higgs doublets, respectively. This oper
is radiatively generated at the one-@36,17# and two- @37#
loop levels and is UV finite. The neutrino mass-mixing su
rule ~3.1! is no longer valid, if the theory is extended by on
Higgs triplet DL , since the aforementioned lepton-numb
violating operator can now appear in the tree level Lagra
ian through the termL̄TDLLC.

In the following, we will show that renormalization ofUn

does not spoil the basic identity~3.1! in the MS scheme.
Within the scheme of renormalization outlined in Sec. II, t
CT matrix dUn of Un is given by

dUn5
1

4
Un~dZn,LT2dZn,L* !. ~3.2!

Observe that Eq.~3.2! may also be derived by settingVl

51 in Eq. ~2.45!. In order that the bare and renormalize
mixing matricesUn,0 andUn obey Eq.~3.1!, one has to show
that

~dUnM̂nUnT1UnM̂ndUnT1UndM̂nUnT! l l 8

50, ~3.3!

namely the corresponding mixing and mass CTs obey
Eq. ~3.1! up to higher orders of perturbation proportional
(dUn)2.

Before offering a proof of Eq.~3.3! for the most genera
case, let us first gain some insight from considering a o
generation model with one right-handed neutrino only. T
mass spectrum of this simple model, which essentially
sembles the known seesaw scenario@15#, consists of two
Majorana neutrinos: a light neutrinon observed in experi-
ment and a yet-undetected superheavy oneN. Most interest-
ingly, in this model the elements of the bare mixing mat
11501
p

-

-

-
-

g

or

-
-

o

e-
e
-

Un,0 are entirely determined by the two bare mass eigen
ues,mn

0 andmN
0 , of Mn,0 in Eq. ~2.34!:

Unn
0 5A mN

0

mn
01mN

0
, UnN

0 5 iAmn
0

mN
0
Unn

0 ,

UNn
0 5UnN

0 , UNN
0 5Unn

0 , ~3.4!

where we have dropped the superscript ‘‘n’’ from Un and
have chosen the phase convention in which the elementsUnn

0

and UNN
0 are positive. In theMS scheme, the mass, wave

function and mixing CTs are found to be

dmn52
aw

16p

mnmN

mn1mN
S 3ml

2

MW
2

2
mn

2

MW
2

2
mnmN

MW
2 D CUV ,

dmN52
aw

16p

mnmN

mn1mN
S 3ml

2

MW
2

2
mN

2

MW
2

2
mnmN

MW
2 D CUV ,

~3.5!

dZnn
L 52

aw

16p
CnnS 2jW1

jZ

cw
2

1
ml

2

MW
2

1
mn

2

MW
2

1
mnmN

MW
2 D CUV ,

dZnN
L 52

aw

8p
CnNS jW1

jZ

2cw
2

2
ml

2

MW
2

1
3ml

2

MW
2

mn

mn1mN
D CUV ,

dZNn
L 52

aw

8p
CNnS jW1

jZ

2cw
2

2
ml

2

MW
2

1
3ml

2

MW
2

mN

mn1mN
D CUV ,

dZNN
L 52

aw

16p
CNNS 2jW1

jZ

cw
2

1
ml

2

MW
2

1
mN

2

MW
2

1
mnmN

MW
2 D CUV ,

~3.6!
dUnn5dUNN

5Unn

3aw

32p

mn~mN2mn!

~mn1mN!2

ml
2

MW
2

CUV ,

dUnN5dUNn

52UnN

3aw

32p

mN~mN2mn!

~mn1mN!2

ml
2

MW
2

CUV . ~3.7!

In the above,Ci j 5Un iUn j* according to Eq.~2.33! ~with i , j
5n,N), ml is the charged-lepton mass, andCUV is an UV
constant defined in the Appendix. As was discussed in S
II, we find that the mass CTsdmn and dmN , and the CT
matrix dUn computed by Eq.~3.2! are gauge independen
only after the tadpole contributions are included. Moreov
these CTs satisfy the basic identity~3.3!, i.e.
3-7



til
th
er

ion

io
at

c

. I
ia

fo

la-

to

ins

, and

ral
nts

s

eo-
er-

o
re
ino
sic
the
ti-
e
-
g
q.

APOSTOLOS PILAFTSIS PHYSICAL REVIEW D65 115013
dmnUnn
2 1dmNUnN

2 12mnUnndUnn12mNUnNdUnN50.
~3.8!

In the above simple Majorana-neutrino model, it is s
possible to follow an alternative approach. Specifically,
same results would have been obtained if we had consid
the elements ofUn,0 as functions ofmn

0 and mN
0 , i.e. Un,0

5Un,0(mn
0 ,mN

0 ). In this case, the mixing-matrix CTdUn is
calculated as@28#

dUn5dmn

]Un~mn ,mN!

]mn
1dmN

]Un~mn ,mN!

]mN
, ~3.9!

and the basic relation~3.8! of the CTs will be satisfied by
construction, even within the OS scheme of renormalizat
In addition,dUn defined in terms ofdmn anddmN is gauge-
independent@28#. Instead, if we had employed Eq.~3.2! to
computedUn in the OS scheme, the resulting express
would have naively been gauge-dependent and have viol
the CT relation~3.8! by UV finite terms.4 Nevertheless, even
if the mass CTs are evaluated in the OS scheme, we
always restore the validity of the sum rule~3.1!, along with
the constraining relation~3.3!, by redefiningdUn in a gauge-
invariant manner. To be specific, exactly as we did in Sec
we add a gauge-independent and UV-finite anti-Hermit
matrix cn to theMS CTs ofUn:

dUn5dUn,MS1
1

2
cnUn, ~3.10!

with cn52cn†. In agreement with our phase conventions
the matrix elements ofUn in Eq. ~3.4!, it is sufficient to
assume that the matrixcn takes on the form
11501
l
e
ed

.

n
ed

an

I,
n

r

cn5S 0 c

2c 0D , ~3.11!

where c is a real constant. Then, the parameterc can be
uniquely determined by requiring that the constraining re
tion ~3.8!, with the mass CTsdmn anddmN computed in the
OS scheme, holds exactly true. In this way, we were able
verify that the so-derived mixing-matrix CTsdUnn and
dUnN are identical with those obtained by virtue of Eq.~3.9!.

For the more realistic case, for which the SM conta
more than one right-handed neutrino, the unitary matrixUn

cannot be entirely expressed in terms of neutrino masses
the alternative approach based on Eq.~3.9! turns out to be
not very practical. Instead, one may utilize the more gene
approach described above, in which anti-Hermitian consta
cn are added to theMS CT dUn. Within this generalized
framework of theMS scheme, the constraining relation
~3.3! reduce the number of independent constantscn. The
remaining freedom should be fixed by comparing the th
retical predictions for observables involving the undet
mined matrix elements ofUn with experiment. Here, we
should stress again that the anti-Hermitian constantscn are
only required if the neutrino-mass renormalizationsdmi are
computed by Eq.~2.8! in the OS scheme.

Unlike in the OS scheme, in theMS scheme one has t
pay the price that theMS-renormalized neutrino masses a
not the physical ones, namely the poles of the neutr
propagators. However, as we will now show, all the ba
symmetries of the theory, including the one reflected in
sum rule ~3.1!, are preserved and the addition of an
Hermitian constantscn is no longer needed. In particular, w
will provide a general proof of the validity of the constrain
ing relation ~3.3! governing the neutrino mass and mixin
CTs in theMS scheme. To this end, we first substitute E
~3.2! into Eq. ~3.3!
dUnM̂nUnT1UnM̂ndUnT1UndM̂nUnTU
l l 8

5UnF1

4
~dZn,LT2dZn,L* !M̂n1

1

4
M̂n~dZn,L2dZn,L†!1dM̂nGUnTU

l l 8

5UnS 1

2
dZn,LTM̂n1

1

2
M̂ndZn,L1dM̂nDUnTU

l l 8

2
1

4
Un@~dZn,LT1dZn,L* !M̂n1M̂n~dZn,L1dZn,L†!#UnTU

l l 8

5UnSM* ,UVUnTU
l l 8

1
1

2
Un~SLT,UVM̂n1M̂nSL,UV!UnTU

l l 8

,

~3.12!

4This last result was earlier observed in@14#.
3-8
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where the superscript UV onSM andSL indicates their UV
divergent parts, andl ,l 851,2, . . . ,NG . In deriving the last
step of Eq.~3.12!, we have used the relations

SM ,UV5dM̂n1
1

2
M̂ndZn,L* 1

1

2
dZn,L†M̂n, ~3.13!

SL,UV52
1

2
~dZn,L1dZn,L†!. ~3.14!

These relations may be straightforwardly obtained with
aid of Eq. ~2.4! and ~2.8! @see also~4.8! and ~4.9! in @14##.
The first term (UnSM* ,UVUnT) l l 8 on the RHS of the las
equality in Eq.~3.12! vanishes by itself, as a consequence
the absence of the operatorsn̄ lLn l 8L

C from the local Lagrang-
ian. The second term vanishes, only if

UnM̂nSL,UVUnTu l l 850, ~3.15!

or equivalently if

Un* SL,UVUnTua l 850, ~3.16!

with a5NG11,NG12, . . . ,NG1NR . Equation~3.16! is de-
rived by inserting the unity,UnTUn* 51NG1NR

, betweenM̂n

and SL,UV in Eq. ~3.15!, and noticing that (UnM̂nUnT) l i

5Mli
n* 5mDla* . Employing the analytic expressions for th

neutrino self-energies in the Appendix@see also Eq.~4.9!
below#, it is not difficult to show that Eq.~3.16! is indeed
valid. In fact, the vanishing of (Un* SL,UVUnT)a l 8 results
from the absence of the lepton-number-violating kine
termsn̄ lL i ]”naR

C of dimension 4 from the original Lagrangia
in the flavor space. In the SM with right-handed neutrin
the violation of lepton number occurs softly through the M
jorana operatorsn̄aRnbR

C of dimension 3, which is reflected
in the neutrino mass-mixing sum rule~3.1!. This completes
our proof of Eq.~3.3!.

We end our discussion by remarking that our general
proach to the mixing-matrix renormalization may be appl
to supersymmetric theories as well, e.g. to the unitary ma
@38# that diagonalizes the neutralino mass matrix in the m
mal supersymmetric standard model~MSSM!. In this case, a
convenient framework for renormalization that respects
persymmetry is the so-called modified dimensional reduc
(DR) scheme@39#. Alternatively, one may work in theMS
scheme and translate the results into theDR scheme. As in
the Majorana-neutrino case, the particular zero texture in
neutralino mass matrix is protected in theDR scheme, but
needs be reinforced by adding appropriate anti-Hermi
constants to theDR-renormalized neutralino mixing matrix
if the neutralino masses are renormalized in the OS sche

IV. RENORMALIZATION-GROUP EQUATIONS

As an immediate application of our study in Secs. II a
III, we derive the gauge-independent RGEs of the mix
11501
e

f

,
-

-

ix
i-

-
n

e

n

e.

g

matricesB and C in the SM with right-handed neutrinos
With this aim, we first compute their respective CTsdB and
dC by means of Eqs.~2.45! and ~2.46! in the MS scheme
@40#:

dBli
MS5 (

l 8Þ l

NG Bl 8 i

2~ml
22ml 8

2
!
@~ml

21ml 8
2

!S l l 8
l ,L

12mlml 8S l l 8
l ,R

12~mlS l l 8
l ,D

1ml 8S l 8 l
l ,D* !#UV

2 (
kÞ i

NG1NR Blk

2~mk
22mi

2!
@~mk

21mi
2!Ski

n,L12mkmiSki
n,R

12~mkSki
n,D1miS ik

n,D* !#UV, ~4.1!

dCi j
MS5 (

kÞ i

NG1NR Ck j

2~mi
22mk

2!
@~mi

21mk
2!S ik

n,L12mimkS ik
n,R

12~miS ik
n,D1mkSki

n,D* !#UV

2 (
kÞ j

NG1NR Cik

2~mk
22mj

2!
@~mk

21mj
2!Sk j

n,L12mkmjSk j
n,R

12~mkSk j
n,D1mjS jk

n,D* !#UV. ~4.2!

Note that the expressions~4.1! and ~4.2! pertain to Dirac
neutrinos. In the case of Majorana neutrinos, these exp
sions are supplemented by the constraints stated in Eq.~2.9!,
with S i j

D replaced byS i j
M .

From the analytic results presented in the Appendix, i
straightforward to deduce the UV-divergent parts of the s
energy functions occurring in Eqs.~4.1! and ~4.2! in the Rj

gauge. We start listing the UV-divergent parts of the in
vidual self-energy functions for the charged leptons

~S l l 8
l ,L

!UV5
aw

16p F d l l 8S 4sw
2 jg12jW

1
~122sw

2 !2

cw
2

jZ1
ml

2

MW
2 D 1Bli Bl 8 i

*
mi

2

MW
2 GCUV ,

~4.3!

~S l l 8
l ,R

!UV5
aw

16p
d l l 8S 4sw

2 jg1
4sw

4

cw
2

jZ1
2ml

2

MW
2 D CUV ,

~4.4!
3-9
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~S l l 8
l ,D

!UV52
aw

16p
mlF d l l 8S 4sw

2 ~31jg!

2
2sw

2 ~122sw
2 !

cw
2

3~31jZ!1jW1
jZ

2cw
2 D 12Bli Bl 8 i

*
mi

2

MW
2 GCUV .

~4.5!

Here and in the following, we consider the summation co
vention over repeated indices in their whole allowed ran
unless explicitly stated otherwise. Specifically, charged l
ton indices, such asl andl 8, are summed from 1 toNG , and
neutrino indices, e.g.i , j ,k,n, from 1 toNG1NR . The diver-
gent pieces of the self-energy functions for Dirac neutrin
are given by

~S i j
n,L!UV5

aw

16p FCi j S 2jW1
jZ

cw
2 D

1Bli* Bl j

ml
2

MW
2

1CikCk j

mk
2

MW
2 GCUV , ~4.6!

~S i j
n,R!UV5

aw

16p
Ci j

mimj

MW
2

CUV , ~4.7!

~S i j
n,D!UV52

aw

16p
miFCi j S jW1

jZ

2cw
2 D 12Bli* Bl j

ml
2

MW
2 GCUV .

~4.8!

If the neutrinos are Majorana particles, the UV parts of
self-energy functions then read

~S i j
n,L!UV5

aw

16p FCi j S 2jW1
jZ

cw
2 D 1Bli* Bl j

ml
2

MW
2

1Ci j*
mimj

MW
2

1CikCk j

mk
2

MW
2 GCUV , ~4.9!

~S i j
n,M !UV52

aw

16p F ~miCi j 1mjCi j* !S jW1
jZ

2cw
2 D

12~miBli* Bl j 1mjBli Bl j* !
ml

2

MW
2 GCUV .

~4.10!
11501
-
,
-
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e

The above analytic results of the UV pole structure of t
neutrino self-energies reveal that the RG running of the m
ing matricesB and C depends on the nature of neutrino
namely on whether they are Dirac or Majorana particles.
the MS scheme, them dependence ofB andC may be com-
puted by the beta functionsbB andbC as

bB5m
dB

dm
5 lim

«→0
«gw

]

]gw
dBMS,

bC5m
dC

dm
5 lim

«→0
«gw

]

]gw
dCMS, ~4.11!

where we have employed the fact thatmdgw /dm52«gw

1O(gw
3 ). With the help of Eq.~4.11! and of Eq.~4.1! and

~4.2!, we obtain the following one-loop beta functions for th
Dirac neutrinos:

bBli
5

aw

16p H (
l 8Þ l

NG ml
21ml 8

2

ml 8
2

2ml
2

BlkBl 8k
* Bl 8 i

3mk
2

MW
2

2 (
kÞ i

NG1NR Blk

mk
22mi

2

3F ~mk
21mi

2!S CknCni

mn
2

MW
2

2Blk* Bli

3ml
2

MW
2 D

12Cki

mk
2mi

2

MW
2 G J , ~4.12!

bCi j
5

aw

16p H (
kÞ i

NG1NR Ck j

mi
22mk

2

3F ~mi
21mk

2!S CinCnk

mn
2

MW
2

2Bli* Blk

3ml
2

MW
2 D

12Cik
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2

MW
2 G2 (

kÞ j

NG1NR Cik

mk
22mj

2

3F ~mk
21mj

2!S CknCn j

mn
2

MW
2

2Blk* Bl j

3ml
2

MW
2 D

12Ck j

mk
2mj

2

MW
2 G J . ~4.13!

Correspondingly, the one-loop beta functions for the Ma
rana neutrinos are given by
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kÞ i

NG1NR Blk
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22mi
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2
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2 D
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2
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2

2BlkBli*
3ml

2

MW
2 D G J , ~4.14!

bCi j
5

aw

16p H (
kÞ i

NG1NR Ck j
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22mk

2 F ~mi
21mk

2!S Cik*
mimk

MW
2
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2

2Bli* Blk
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2

MW
2 D

12mimkS Cik

mimk

MW
2

1Cin* Cnk*
mn

2

MW
2

2Bli Blk*
3ml

2

MW
2 D G2 (

kÞ j

NG1NR Cik

mk
22mj

2

3F ~mk
21mj

2!S Ck j*
mkmj

MW
2

1CknCn j

mn
2

MW
2

2Blk* Bl j

3ml
2

MW
2 D 12mkmjS Ck j
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2
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~4.15!
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It is worth commenting again on the fact that the be
functions bB and bC in Eqs. ~4.12!–~4.15! become gauge
independent in theMS scheme, only after the gauge
dependent tadpole terms proportional toMH

2 have been
added to the self-energy functionsSD ~or SM). To the best of
our knowledge, the beta functionsbB and bC represent the
most general results pertaining to the one-loop RG runn
of the mixing matricesB andC in the existing literature of
the SM with isosinglet neutrinos. However, we should
mark that the derived RGEs forbB andbC are only valid for
energies larger than the heaviest neutrino mass. We hav
considered the threshold effects due to the decoupling@41# of
the heavy neutrinos, as these effects highly depend on
particular low-energy structure of the model@42–45,41# and
will therefore be studied elsewhere.

V. CONCLUSIONS

We have revisited the problem of gauge dependence
occurs in the renormalization of mixing matrices, within t
context of two generic frameworks:~i! the quark sector of
the SM and~ii ! the leptonic sector of the SM with isosingle
neutrinos. Although we confirmed the earlier observatio
@26,12,13# that an on-shell renormalized mixing matrix co
tains gauge-dependent terms, we have observed, how
that these terms are UV finite and have a pure disper
form. Because of this last fact, we have found that th
naive gauge-dependent terms can always be absorbed
the definition of a manifestly gauge-invariant, but physica
equivalent, mixing matrix, where the latter is evaluat
within a generalizedMS scheme of renormalization. Thi
generalized scheme of renormalization is obtained by add
gauge-independent anti-Hermitian constants to a gau
invariant, MS-renormalized mixing matrix@cf. Eqs. ~2.25!
11501
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and ~3.10!#. In this way, the different renormalizatio
schemes proposed in the literature@6,14,26,12,13,27,28#, in-
cluding the OS scheme@6,14#, may be described for appro
priate choices of the anti-Hermitian constants.

Our generalizedMS approach to the renormalization o
mixing matrices may also be conveniently applied to ma
tain fundamental global or local symmetries of the unren
malized Lagrangian. For instance, our approach may be
lized to protect the texture-zero structure of the Majora
neutrino mass matrix~2.34! or similar constrained structure
of predictive neutrino-mass models. Even though such a
tional symmetries are automatically preserved in theMS
scheme, they become distorted by UV-finite terms and
need to be reinforced, if the renormalized masses are ev
ated within other renormalization schemes, such as the
quently adopted OS scheme. Most importantly, our appro
of mixing-matrix renormalization may be applied to supe
symmetric theories as well. In this case, the correspond
generalizedDR approach may be used to renormalize t
mixing matrices that occur in the chargino and neutral
sectors@38#, as well as in the squark and Higgs scalar sect
@46,47,27# of the MSSM.

As a byproduct of our study, we have derived in Sec.
the gauge-independent RGEs for theMS-renormalized mix-
ing matrices in the SM with isosinglet neutrinos. The s
derived RGEs are valid for energies that are higher than
mass of the heaviest of the heavy neutrinos. We have
taken into account the decoupling effects due to heavy n
trino thresholds, since they crucially depend on the lo
energy structure of the model. However, they prove imp
tant to properly describe the RG running of the observ
neutrino masses and the neutrino-oscillation angles at lo
energies. We plan to return to this phenomenologically in
esting topic in the near future.
3-11
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FIG. 1. Feynman graphs contributing to~a!–
~d! neutral and ~e!–~g! charged lepton self-
energies in the unitary gauge. If neutrinos a
Dirac particles, the graph~b! is absent.
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APPENDIX: NEUTRAL AND CHARGED LEPTON
SELF-ENERGIES

Here, we present analytic expressions for the neutrino
charged-lepton self-energies in the renormalizableRj gauge.
The Feynman diagrams that contribute to the neutrino s
energies are shown in Figs. 1~a!–1~d!, while the correspond-
ing graphs giving rise to charged-lepton self-energies are
played in Figs. 1~e!–1~g!. Our analytic results are expresse
in terms of the usual Pasarino-Veltman one-loop functio
@48#:

$B0 ;Bm%~p2,m1
2 ,m2

2!5~2pm!42DE dDk

ip2

3
$1;km%

~k22m1
2!@~k1p!22m2

2#
,

~A1!

where the Minkowski space is extended toD5422« di-
mensions andm is the so-called ’t Hooft mass scale. Als
we adopt the frequently-used 4-dimensional convention
the Minkowskian metricgmn: gmn5diag(1,21,21,21).
The one-loop functionsB0 andBm , defined in Eq.~A1!, are
given by

B0~p2,m1
2 ,m2

2!5CUV2 lnS m1m2

m2 D 12

1
1

p2 F ~m2
22m1

2!lnS m1

m2
D1l1/2~p2,m1

2 ,m2
2!

3cosh21S m1
21m2

22p2

2m1m2
D G , ~A2!

Bm~p2,m1
2 ,m2

2!5pmB1~p2,m1
2 ,m2

2!, ~A3!
11501
d

lf-

is-

s

r

with CUV51/«2gE1 ln 4p, l(x,y,z)5(x2y2z)224yz
and

B1~p2,m1
2 ,m2

2!5
m2

22m1
2

2p2
„B0~p2,m1

2 ,m2
2!

2B0~0,m1
2 ,m2

2!…

2
1

2
B0~p2,m1

2 ,m2
2!. ~A4!

The one-loop functionB0(p2,m1
2 ,m2

2) evaluated atp250
simplifies to

B0~0,m1
2 ,m2

2!5CUV2 lnS m1m2

m2 D 11

1
m1

21m2
2

m1
22m2

2
lnS m2

m1
D . ~A5!

From this last expression, a useful identity relating the ar
ments of theB0-function atp250 may easily be derived

B0~0,m1
2 ,m2

2!5
m1

2

m1
22m2

2
B0~0,m1

2 ,m1
2!

2
m2

2

m1
22m2

2
B0~0,m2

2 ,m2
2!11. ~A6!

Equation~A6! may be successfully employed to check t
gauge independence of physical quantities.

We first derive analytic expressions for the case of Di
singlet neutrinos. In theRj gauge, these are given by
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S i j
n,L~p2!52

aw

8p H Bli* Bl j F2B1~p2,ml
2 ,MW

2 !1B0~p2,ml
2 ,MW

2 !112jWB0~p2,ml
2 ,jWMW

2 !1
p22ml

2

MW
2

„B1~p2,MW
2 ,ml

2!

2B1~p2,jWMW
2 ,ml

2!…1
ml

2

MW
2

B1~p2,ml
2 ,jWMW

2 !G1
1

2cw
2

Cki* Ck jF2B1~p2,mk
2 ,MZ

2!1B0~p2,mk
2 ,MZ

2!11

2jZB0~p2,mk
2 ,jZMZ

2!1
p22mk

2

MZ
2

„B1~p2,MZ
2 ,mk

2!2B1~p2,jZMZ
2 ,mk

2!…1
mk

2

MZ
2
„B1~p2,mk

2 ,jZMZ
2!

1B1~p2,mk
2 ,MH

2 !…G J , ~A7!

S i j
n,R~p2!52

aw

8p FBli* Bl j

mimj

MW
2

B1~p2,ml
2 ,jWMW

2 !1
1

2cw
2

Cki* Ck j

mimj

MZ
2
„B1~p2,mk

2 ,jZMZ
2!1B1~p2,mk

2 ,MH
2 !…G ,

~A8!

S i j
n,D~p2!52

aw

8p
miH Bli* Bl j

ml
2

MW
2

B0~p2,ml
2 ,jWMW

2 !1
1

2cw
2

Cki* Ck j

mk
2

MZ
2
„B0~p2,mk

2 ,jZMZ
2!2B0~p2,mk

2 ,MH
2 !…

1
1

2
Ci j F jW„11B0~0,jWMW

2 ,jWMW
2 !…1

1

2cw
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jZ„11B0~0,jZMZ
2 ,jZMZ

2!…G J . ~A9!

Note that in Eq.~A9! thep2-independent terms represent thej-dependent part of the tadpole contributions. These contribut
are crucial, as they restore the gauge independence in the RG running of neutrino masses and mixing angles.

Next, we present analytic expressions for Majorana-neutrino self-energies in theRj gauge:

S i j
n,L~p2!52

aw

8p H Bli* Bl j F2B1~p2,ml
2 ,MW

2 !1B0~p2,ml
2 ,MW

2 !112jWB0~p2,ml
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2 !1
p22ml
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2 ,ml
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2 ,jWMW
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1
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2!112jZB0~p2,mk
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2!1
p22mk
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2
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2 ,mk
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2B1~p2,jZMZ
2 ,mk
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2cw
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2 ,jZMZ
2!1B1~p2,mk

2 ,MH
2 !…J ,

~A10!

S i j
n,M~p2!52

aw

8p H ml
2
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2 ~miBli* Bl j 1mjBli Bl j* !B0~p2,ml
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1

2
~miCi j 1mjCi j* !F jW„11B0~0,jWMW

2 ,jWMW
2 !…1

1

2cw
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2 ,jZMZ

2!…G J . ~A11!

Likewise, we included in Eq.~A11! the j-dependent part of the tadpole contributions.
Finally, for completeness, we give the charged-lepton transition amplitudes forl 8→ l :
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Apart from thej-dependent part of the Higgs tadpoles included in Eqs.~A14!, Eqs. ~A12!–~A14! agree well with those
presented in@12#.
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