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We reexamine the issue of mixing matrix renormalization in theories that include Dirac or Majorana fermi-
ons. We show how a gauge-variant on-shell renormalized mixing matrix can be related to a manifestly gauge-
independent one within a generaliz®t5 scheme of renormalization. This scheme-dependent relation is a
consequence of the fact that in any scheme of renormalization, the gauge-dependent part of the mixing-matrix
counterterm is ultraviolet safe and has a pure dispersive form. Employing the unitarity properties of the theory,
we can successfully utilize the aforementioned scheme-dependent relation to preserve basic global or local
symmetries of the bare Lagrangian through the entire process of renormalization. As an immediate application
of our study, we derive the gauge-independent renormalization-group equations of mixing matrices in a mini-
mal extension of the standard model with isosinglet neutrinos.
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[. INTRODUCTION and neutrinos are described by two nonunitary mixing matri-
cesB andC [17], respectively. Most importantly, the radia-
One of the most fundamental properties of the well-tive effects on the light-heavy neutrino mixing angles con-
established standard mod@&M) [1] is its renormalizability  tained in theB andC matrices were computed to be as large
[2]. Renormalizability endows the SM with enhanced predic-as 15% 14|, close to present experimental sensitivities. The
tive power that emanates from the fact that ultravigldV)  SM with right-handed neutrinos is an appealing scenario
divergences due to high order quantum effects can always bghich may explain the smallness of the observed neutrino
successfully eliminated by a redefinition of a finite numbermasses and adequately address the solar energy deficit prob-
of independent kinematic parameters of the theory, such g8m[18] through neutrino oscillationfd9]. Furthermore, this
masses and couplings. The predictions of the SM have begfjinimal extension of the SM may give rise to a number of
tested and vindicated with a satisfactory accuracy at highgpservaple phenomena, such as lepton-flavor and/or lepton-

energy colliders, such as the Large Electron PosittdfP) number violation inw, = [20—24 andZ-boson decayf23],

collider at CERN and the Tevatron collider at Fermilab, asyr to possible lepton-number violating signals at high-energy

well as in low-energy experiments, e.g. in the recent E82]C0IIiderS e.g. at the CERN Large Hadron Collid&HC)
experiment at BNL where the muon anomalous magnetitf24 25 ’

moment is measure@].

In addition to masses and couplings of the SM patrticles
however, the quark-mixing matrix, the so-called Cabibbo- . . .
Kobayashi-MaskawdCKM) matrix [4] V, needs be renor- CKM matrix nawgly depend on the choice 9f the gauge-
malized as wel[5,6]. In this context, one of the renormal- fXiNg parametex in the class oR, gauges. This fact is not

ization schemes, most frequently adopted in the literature, i¥€rY desirable, as physical matrix elements will be gauge
the on-shell(OS) scheme of renormalizatiof7—9], where dependent after renormalization. To circumvent this problem
the particle masses are renormalized so as to represent tAb¢ dependence of the OS renormalized CKM matrix, sev-

physical masses at the poles of the propagators. It was shovﬁ‘ial altgrnative schemes of. renormalization have beep sug-
in [6] that the complete UV structure of the counterterms9€Sted in the very recent literatuf6,12,13,27,2B As is

(CT9 for the CKM matrix V can be entirely expressed in expected, in all the proposed renormalization schemes, the

terms of quark wave-function renormalizations. Within this YV-divergent parts of the CTs of the CKM matrix are iden-

framework, a simple approach to renormalizign the OS @I to those derived in the modified minimal subtraction

scheme was also presented, consistent with the unitariy!S schemd6]. Nevertheless, the UV-safe parts of the CTs
properties of the theorj0]. differ from approach. to approach by finite dispersive con-
Even though radiative effects due to the renormalizatiorStants. Most interestingly, one may observe that even in the
of an off-diagonal CKM matrix were found to be undetect- Originally suggested OS scheme([6f, the gauge-dependent
ably small in the SM6,11—13, this need not be the case for Part of the CKM-matrix CTs is UV finite and also has a pure
its minimal renormalizable extensions. In particular[14]  dispersive form, thus indicating the existence of a profound
the above formalism of mixing-matrix renormalization was relation between gauge dependence and scheme dependence
extended to theories that include isosinglet neutrinos and si§ Mixing-matrix renormalization. o _
admit the presence of lepton-number-violating Majorana N this paper, we revisit the topic of mixing-matrix renor-
masseg15]. A minimal realization of such a theory is the Malization of the CKM matrixv/ and of theB and C matri-
SM with right-handed neutrinol6,17. As we will further ~ Ces. In particular, we develop a generalized and manifestly
discuss in Sec. II1C, in this minimal model the charged andyauge-invarianMS approach to mixing-matrix renormaliza-
neutral current interactions of th& andZ bosons to leptons tion. The developed generalizédS approach provides a

It has been noticed recent[26] that in the OS renormal-
ization prescription presented 6], the derived CTs for the
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very convenient framework to address the problem of gaugenensional matriceZ”> and z¥? are the wave-function
and scheme dependences in the existing plethora of differenormalizations for the left- and right-handed fermions, re-
ently renormalized mixing matrices. Moreover, we showspectively. In addition, M® M and 6M are diagonal
how our generalizedMS scheme can be successfully em-N¢XN; dimensional matrices that contain the bare masses,
ployed to maintain global or local symmetries of the barethe renormalized masses and their respective counterterms
Lagrangian after renormalization. Finally, with the help of (CTs).
our generalizedMS approach, we can derive the gauge- The most general form of an unrenormalizge- f; tran-
independent renormalization-grogRG) equations for mix- ~ sition amplitude allowed by Hermiticit{8] reads
ing matrices. We explicitly demonstrate the theoretical ad- Lo R, 2 b, >
vantages of this method by calculating the one-loop RG 2 (p)=pPL2i(p%) + PP (P%) + P 2 (p?)
Luer:th]:inngoSSOf theB and C matrices in the SM with isosinglet n PRER*(pZ), 2.2

The paper is prganizegl as foIIovx_/s: after brie_:ﬂy _rEVi_eWingsuppIemented by the constraints
the basic formalism of mixing matrix renormalization in the
QS ;cheme in S_ec.M, we present in Sec. |IB (_)ur_gauge— gh(pZ)zgjLi*(pZ), zﬁ(pZ)zngf*(pZ)_ (2.3
invariant generalizetS approach to the renormalization of
the CKM matrixV, and extend it in Sec. Il C to the renor- In the OS scheme of renormalization, the wave-function and
malization of the correspondir andC mixing matrices in  mass CTs are given HyL4]*
the SM with isosinglet neutrinos. In Sec. Ill, we show how
our generalizedS approach preserves additional global and L2
local symmetries of the theory, which are manifested them- 0Zij= 2_
selves as sum rules involving neutrino masses and@thed '
C matrices. As an immediate application of our consider- +mj2}3i*(mjz)), (2.9
ations, we derive in Sec. IV the gauge-independent renormal-
ization group equations RGEs of tlBeand C mixing matri-

2
ces. Finally, our conclusions are summarized in Sec. V. 6Z =———— (mm; S5 (M%) +mEF(m?) + m 2P (m?)
m. "

= (MZS5(m?) +mm S (mf) +mE P (mf)
]

[ j
Il. MIXING MATRIX RENORMALIZATION +mi2}3i*(mj2)) (2.5

In this section, we will first recall the basic analytic for- 1
mulas for the wave-function and mass CTs in the OS renor- L L2 D/ a2 Dk (2
- L S c==2:(mH)+ —— 5 (mY) =27 (m
malization scheme within the context of general fermionic . i (md) 2m; (3 (M) =% (M)
theories, such as the SM and its natural extension with isos-

inglet neutrinos. Then, we will revisit the problem of gauge -m?EE (m)+3F (md)
dependence of the OS-renormalized CKM matrix in the SM, N 5’0 2
and discuss its connection to scheme dependence within a —m i (M) +ZET(m), (2.6

generalized gauge-invariaMS scheme of renormalization.

Finally, our discussion will be extended to the renormaliza- R_ _SRm2)_ i D/ 2\ _ 5 D¥ (2
tion of the mixing matricesB and C that parametrize the 0Zij=~Xii(my) 2m, G (mi) — 2" (M)
neutral- and charged-current interactions in the SM with sin- Ll o I
glet neutrinos. —m7 (&5 (M) +27 (M)

A. OS renormalization scheme _mi(zi? (miz)+2iDi* (miz))’ 27

In a theory with a numbeN; of Dirac fermions, the bare 1
kinetic Lagrangian has the following generic form: 5mi=§mi(2h(mi2)+2i’?(mi2))
Lygn=1FLO0 +iTRATE— FIMOFR— FRMOF 1
+ 5 @R (M) + 37 (m?)), 2.9

=i, Z{?1Z1208 +if RZR* 21 R
S 0 where3.’ (p?)=d3 (p?)/dp? and 5Z-R are the loop-induced
—fLZ07(M+oM)Zg R wave-function renormalizations defined through the relation

_ zY2, =141 57%R We should bear in mind that only the dis-
—TRZY? (M + M) ZV%, . n UR T2 Y

In the above, we have employed a matrix notation in the lHere, we have used the symmetry property of the Lagrangian
1/2 1/2_> 1/2

space spanned by thé\; fermionic fields, i.e. f' (2.1) under the rephasingZ ?—ei%z¥2 and z¥2_eit7%2 "in
=(fy,f fn.). As usual, we adhere the superscript “0” L R e bt ol

10820 === INg/ J P p order to castsZ;; and 6Z;; into a symmetric but fully equivalent
to unrenormalized quantities. In EQ.1), the N;XN; di-  form than the one presented [ih4].
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persive parts of the unrenormalized self-energies enter the _lr’o(pu)Zléu—mOJFEuur(lb

renormalization such that the Hermiticity property of the lo- uu !

cal Lagrangian is maintained. In the SM, it ED(pZ) 10 o

=m33(p?) and 23 (p?)=33*(p?). and the formulas Serd (Pa)=ba— Mg+ 2 q/q(Pa), (2.13

(2.4— (2 8 reduce to those given ifi6,9]. However, we

should stress again that these relations are very specific to ﬂWhereFW ud0 4 FG ud0 5re the baréV+ud and G- ud

SM and no longer apply to extended theories. w u
One well-motivated extension of the SM is the one mcoaglmgs at the tree level, and;, (q,p,,pq) and

which the SM field content is augmented by right-handedl“f Ud(q,pu,pd) are the Correspondlng higher-order un-

(isosingle} neutrinos, thereby admitting the presence of Ma-renormalized one-particle irreducible vertices evaluated

jorana masses in the Lagrangigktb—17. In this case, the within e.g. the PT or the BFM. Similar identifications also

fermionic fields satisfy the Majorana constraintg.: (fg)C apply for the unrenormalized two-point correlation functions

andf, =(fg)¢, where the superscrig indicates charge con- Sgu,(pu) and Sg,d(pd).

jugation. As a consequence of the Majorana constraints, we Following the procedure outlined {184], we require that

obtain the equalities: the same tree-level W(2.10, which involves unrenormal-
s Lo Re ) 2 ized quantities only, holds exactly true after renormalization.
Zi=2Zg™,  Zi(p) =% (p9), This condition can be successfully enforced within the

E?f'(pz):E}\i"(pz), 2.9 gauge-independer!S scheme of renormalization. Never-

theless, in any other favorable scheme of renormalization,
where we made the identificati&f-’(pz)EE-"-"(pZ) Substi- the renormalized parameters of the theory will differ from
j i . . — ..
tuting Eq (2.9 into Eqs. (2.9—(2.9 yields the correspond- those in theMS scheme by UV-finite constants. The renor-
The issue of mixing-matrix renormalization arises when-renormalized ones through the relations
ever one has to deal with the renormalization of a nontrivial

rotation matrix that occurs in interactions relating flavor to gf,’v=Zg Ow >
mass eigenstates. To study this problem, we shall adopt a "
perturbative framework in which the classical tree-level 02 )
Ward identities(WIs) are maintained after quantization. As Mw=Mi+ oMy,
such, one may consider the background field metB¥ M)
[29,30 or the pinch techniquéPT) [31-34 or even possible VO=V+ 68V, (2.14
diagrammatic generalizations of the latter, i.e. the general-
ized pinch techniquéGPT) [35]. —
2t 51/ +y
l—*l\{\L/ Ud(p pu;pd) Zl/ZZiuZu/ idZ,dFW u d O

B. Renormalization of the CKM matrix in the SM
. X (pv pu 1 pd);
As a prototype example, let us consider the charged-

current interaction in the quark sector of the SM. Specifi- G+ ud 12 510215172 G u'd’ 0
cally, we will revisit the renormalization of the CKM matrix I'= %00, Py ) =2+ 2y Zgigl ™ ™
elementsV,4 that enter the vertex transitiow/* (p)d(pg)

) ) X .
—u(p,). Later on, we will generalize our results to the (P.Pu.Pd) (219
aforementioned S(2) @ U(1)y model with Majorana neu- ) )
trinos. Within the perturbative approaches mentioned above, S;iéj(pq) Zgar sy o Pq)Zélﬁj
the following tree like WI is satisfie@33,11,26:

p“T %, Py, pg) + M S “*p,py o) (with g=u.d), (2.1

0

where ZY2 =712 P +Zg> Pg and 6V stands for the
\/—(Vu dSuu’ (pu) VudfPRSdrd (pd)) |

Lqqu' quqj‘
mixing-matrix renormalization of the CKM matri¥. In Eq.
2.10 (_2._15), we required thaw* ud andG_*Ud couplings be UV
finite after the external wave-function CTs for tiiéboson,
where the summation convention over repeated quark-familjhe would-be Goldstone bosdd*, and theu- and d-type

indices is implied. In addition, in Eq2.10 we have defined quarks have been properly taken into account.
Since our main interest is to compute the UV divergent

FW wd0(p, py s Pa) = FW ud 0 N Ud(p Pu.Pa): part of thew* ud vertex in the presence of flavor mixing and

(2.1)  so determine the UV-divergent structure of the mixing-

B B B matrix CT 6V, we shall therefore focus our attention only on
FG+“dv°(p,pu,pd)=F§+“d*°+Ff+”d(p,pu,pd), the chirally-projected WI(2.10 related to the expression

(2.12 PRF)’LV+“d'°PL. In particular, we have
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7127u,1/2tp (pMFw+Ud,o where theu- andd-quark wave functions have to satisfy the
WL R r constraining relatiof11,26

—
+ M \OA%I‘G Ud,O) PLzﬁ,l/Z

%(5z“¢+ azuyL*)v:%V( SZ%L+ 574y, (2.22
=~ 2z, 2L 2P (s 1 (p, VO
V2 In the absence of flavor mixing, i.e. f&f=1, this last rela-

—\OS~19p,))P Z8V2, (.17 tion simplifies to the known on&*"=Z%" [30,34.

Several important remarks and observations regarding
mixing-matrix renormalization are now in order:

(i) The UV poles ofsV are entirely specified by the wave-
unction CTs of the left-handed andd quarks to all orders

To simplify notation in Eq.(2.17), we have employed the
matrix representation for the quark wave-functions and thei;

. Fa7012_ 5172 ~1,0
Inverse  propagators, 1.eZ ZLqqu and S (pg) in perturbation theory. Moreover, with the definition®¥ in

=Sq_iéjf0(pq), with g=u,d. Substituting Egs.(2.19 and  Egq,(2.21), Vis automatically unitary through the order con-

(2.16 into Eq.(2.17 gives sidered.
B B (i) The left-hand sidéLHS) of the WI (2.18 is gauge-
PR(pMFILVL\/Jrud_i_Z\:b\//ZZ(—;/ZM %FG*ud)PL independent, when the chirally-projected amplitudes

Pel'W UY(p,p,,p)PL and PRI'® “(p,p,.po)P.  are

Ow B B evaluated by setting the external particles on their mass
_ / 1/ iKY,
= _Z\%vzzgwﬁx Pr(S M (p,)Z}" A0z shells. Consequently, the RHS of Hg.18 must be gauge-
independent as well. This can only happenYiand hence
—ZE*”ZTVOZE"”ZTS*(pd))PL. (2.18 oV are gauge-independefitl,26. For example, unlike in

the MS schemd®6], 6V is ¢ dependenf12,13,27,28in the
The requirement now that the W2.18) retains its original ~OS scheme of renormalization. As we will see belowiin,
form (2.10 where all quantities are replaced by their renor-however, because the gauge-dependent paé\ofis UV

malized ones gives rise to the following consistency condifinite and has a pure dispersive form, ifielependent terms
tions: of an OS renormalized CKM matrix can always be related

to finite gauge-independent constants in a generalized and
manifestly gauge-invariaitlS scheme of renormalization.

) , (2.19 (iii) There exists an underlying symmetry in the renormal-
ization of VO, reflecting the presence of a general intrinsic
freedom in redefining mixing matrices at higher ordefhe

V= ZU 1207412 Zu,1/21 0d,~ 172t presence of this higher-order scheme arbitrariness in the

- - - - (2.20 renormalization ofV® may be described as follows. We
' know that the CKM matrix is the product of two unitary

The two equalities in Eq(2.19 are exactly satisfied within MatricesU 1* andU* relating the weak to mass eigenstates
the PT and BFM frameworKs$0,34,26. The double equality f)f the |eft-rc1)ar;%$d1— and d-type quark fields, rgspectlvely,
in Eq. (2.20 assures the unitarity property of the renormal-i-€- Vo=U"UL?". If we now perform the following pertur-
ized mixing matrixV, i.e. V-1=V*. Most importantly, Eq.  Pative shifts in the left-handed quark wave functions and
(2.20 determines the analytic structure of the GV. Em-  their mixing-matrix CTs:

ploying the usual decomposition for the wave-function
renormalizations, i.e.Zz""?=1+36z"" and z}/?=1

2
w

5
Zaf=24", zG+=zW( 1+—
W

5zu,L_) ZU'L+CU,

+157%L, we arrive at the perturbative and more familiar oL oL (2.23
form for 5V [6]:2 6Z°"— L7+,
1 SUY— U — 2 oy
5V=Z(5Z”"-—5Z“"-T)V L L= 2™ P
(2.249
1 1
— V(87— 5704, (2.21 U= U+ s ulTe?,

wherec' andc? are anti-Hermitian, gauge-independent UV-
2Here, we should remark that the analytic results for the wavefinite constant matrices, '-e-cu'cf: —c*" and Cu'é.
function CTs andsV obtained within thgG)PT or BFM are iden- = O( 67"+, 52%%), then none of the important key equalities
tical to those derived within the conventional framework Rf
gauged 13,12, with the additional restriction that the gauge-fixing
parameters related to the photon and Zhigoson are equal, i.€&., 3The existence of such a scheme dependence in the renormaliza-
=&, tion of V° was first pointed out ifi14].
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(2.20, (2.21) and(2.22 will change through the order con- serves the unitarity properties bff' by construction. Analo-
sidered. On the basis of the above unitarity symmetry, wejous determinations may also be found é8rand hence for
may generally define the manifestly gauge-independenthe scheme-dependent part\6in Eq. (2.25.

CKM matrix CT:

C. Mixing renormalization in the SM with singlet neutrinos

1 1
SV=8VMS— —civ+ —vcd,

5 5 (2.29

We will now discuss the problem of mixing-matrix renor-
malization in an SU(2p U(1)y theory with a numbeNg of
where 8V¥S is the corresponding CT in the gauge-invariant férmionic doublets and a numbélr of right-handed(iso-
MS scheme evaluated in E€@.21). Evidently, 5V does not smgleb neutrlnos. The mtgractlon Lagrang|ans of this model
give rise to gauge dependences in the computation of phys vhich describe the couplings of thw™, Z, and Higgs (._”
cal transition amplitudes, e.g. in the top-decay amplittde osons to .theNG charge_d leptond;, and (N +Ng) Majo-
—W-+b. However, the UV-finite constants' andc? intro- rana neutrinosp;, are given by
duce a scheme dependence into the renormalization of the

CKM matrix V°. Thus, all the various schemes of renormal- 9

Lw=— =W, ;B y*P.nj+H.c., (2.29
ization proposed in the literatué,14,26,12,13,27,28in- W N iYL
cluding the OS schemgs,14], may be represented by the
gauge-invariant expressiof2.25 with appropriate choices Ow _ —
for the UV-finite matricex" andc®. Lz== 7 Zuiv"(Cyj P —C{iPr)n; (2.30
Finally, it is interesting to notice that the number of inde- v
pendent parameters contained in the anti-Hermitian matrices 9 o
c! andcY is exactly equal to the number of group param- Ly=— ﬁHni[(miCij +mC)PL
eters, the so-called mixing angles, that generate the unitary w
rotations in the left-handed- andd-quark flavor space. To +(mC +m;Cyj)PrIn; . (2.31)

elucidate the above point, let us consider the renormalized

unitary matrix in the left-handed-quark flavor spacel’.  Here, we follow the conventions 17,20 In Egs. (2.29-

In particular,U}' can be written as (2.31, B and C are NgX(Ng+Ng) and (Ng+Ng) X (Ng
+Ng)-dimensional mixing matrices, defined as

UL (62)=expli 02T), (2.26

Ng
I
Blj :kzl VlkUET )

where ¢ are the group parameters afd are the associate (2.32
generators of the W() flavor group, satisfying the usual Lie-

algebra relationsf T, TP]=if2P°T¢ with T2=T2T T0=1, \

and f°2°=0. If we now shift 65 by a finite higher-order C.— i un U 2.3
amountsé?, then the unitary matrix2.26 exhibits the fol- & KRk 33

lowing variation:
In Eq. (2.32, the NgX Ng unitary matrixV' occurs in the

U603+ 56%) = diagonalization of the charged-lepton mass matrix and re-

1 1
: d
1n+|( 5bc_§fb6d0u_gfbdx

charged leptons. Correspondingly, théNg+ Ng) X (Ng
s feexgdpe . .. 5¢9ch} +Ng) unitary matrixU" in Eg. (2.33 diagonalizes the sym-
uru 8 metric neutrino-mass matrix
XU+ O(56%%). (2.27) 0 mp
an( T ) (2.39
In writing the RHS of Eq.(2.27), we have employed the Mp My
Baker-Hausdorff formula for infinitesimal non-Abelian rota- } .
tions. Comparing E¢(2.27) with Eq. (2.24, we immediately ~ through the unitary transformation
recognize that the anti-Hermitian matiiX is given by N
0] nTM nUn: M n
. 1 1 .
cU= —2.(5ab—§fab°0g—gfacx =diagm;,m,, ... My (239

At this point, we should recall agaifl7] that the mixing
matricesB and C obey a number of basic identities which
ensure the renormalizability of the theory:

where thesd's parametrize the scheme-dependent shifts in

X fPIxpCplt . .. ) S6°TP, (2.29

Ng+Ngr

lates the weak to the mass eigenstates of the left-handed

the mixing angles;. Notice that the anti-Hermitian matrix
c' in Eq. (2.28, determined by means of E¢R.27), pre-

E B|kB|*,k= o, (2.36
k=1
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NG+Ng In addition, the following constraining relations are satisfied:
>, CuCy=Cj, (2.37
k=1 1 1
— (62" + 672" NB==B(8Z"+ 62",  (2.47)
Ng+N 2 2
G R
>, ByCyi=By, (2.39
k=1 1 1
5(62”'L+ sZ™thCc= EC((SZ”'LJr sZ™T).  (2.48
Ng
;1 BiiB;=Cjj, (2.39 It is important to observe that the renormalized mixing ma-
tricesB andC given in Eqgs.(2.43 and(2.44) as well as the
Ng+Ng perturbative definitions of the mixing-matrix CB8 and 5C
> mB B, =0, (2.40 by means of Eqg2.45 and(2.46 fuIIy_ s_a_tlsfy the identities
k=1 (2.36—(2.39. However, the compatibility oféB and 5C
with the remaining identitieg2.40—(2.42 proves more
N Nr subtle and will be discussed in Sec. Ill.
21 mBCik=0, (2.4 In the MS scheme, the mixing-matrix CT8B and 5C
become gauge independent, only after the corresponding
Ng+Ng gauge-dependent part of the tadpole graphs are included
S mCiCi=0 (2.42 [31,32,30,27. To further illuminate our procedure, we calcu-
G ke ' late the Higgs-boson tadpole graph' induced by thew™*

boson, and the associate would-be Goldstone b&brand
The last three relationéz.4@—(2.4_2) are manifestations of ghost fieldsc™ c*, i.e.
the presence of lepton-number violation in the neutrino sec-

tor. Instead, if theory conserves lepton number, these three g M2

identities are not necessary. In this case, Majorana neutrino:fHM(o)z 2w _H[§W|\/| \2/v(1+ Bo(oéwM\ZN,&wM\zN))]
are either degenerate in pairs forming massive Dirac neutri- 3272 Mw

nos or unpaired giving rise to massless Majorana-Wey! two-

component spinors. As a consequence of lepton-number con- i 9w D—1)Mul M2A1+Ba(OM2, M2
servation, the mixing matrix elemen@;; are absent from 16772( IMul M o(OMi, M1,
the Znin; andHn;n; couplings in Egs(2.30 and(2.31), so (2.49
theZz ninj_coupling becomes purely chiral, proportional to the :
operatom; y,P.n;. where the one-loop functioBy(p2,m?2,m3) is defined in the

The renormalization of the mixing matric&and C can Appendix A. From Eq(2.49 it is easy to see that only the
be carried out in a way very similar to Fhe SM case. FOHOW'Mﬁ-dependent part of the tadpole dependstgrand should
ing analogous steps for the one-particle irreducible vertexysincjyded in the scalar part of the self-energy transitions
functionsT™ '™ andI'*"" in the BFM or PT, we find 3P [cf. Eq.(2.2)]. More precisely, thévi3-dependent part of

_ _ the tadpole graph effectively induces a gauge-dependent shift
_ 71,—1120050,1/2_ 5I,1/2tR05n,— 1/2t
B=2y B2 =2,7"B°Z] ' (243 o theH-boson VEVuv:

C:ZrL‘I,—l/ZCOZE,I/ZZ ZE’UZTCOZE‘_MT, » ( 5U)§W_ Ow (1‘*H)§W
(2.44 v 2Mw M2
where Z|'*? and z"**? are wave-function renormalization N
matrices for the left-handed charged leptons and Majorana = ﬁgw(m- Bo(0.6WM3,,EWM3)). (2.50

neutrinos, respectively. Equatiof®&43 and(2.44) lead per-

turbatively to the mixing-matrix CT§14 -
y g s14] Similarly, the Z-boson loop causes an analogous gauge-

dependent shift to, i.e.

1
5B:Z(5Z"L—5Z"”)B
(&»)fz g (I

1 v, 2M 2
- 3Bzt sz, (2.45 W Mi

- 320:::2 £2(1+Bo(0£,M7 . £wM?)). (25D

1
5C= Z(&Z”'L—éz”'”)c

Then, the¢-dependent VEV shift$2.50 and(2.51) contrib-
_ EC(éZ"'L— 57T (2.46 ute the following term to the scalar part of the Majorana-
4 ' ' neutrino self-energy transitions:
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5U éw,z U0 are entirely determined by the two bare mass eigenval-
M tatb * 0 0 .
2] - | (MGi+mCHPL. (252 yes,md andmf, of M"?in Eq. (2.34:

Note that if neutrinos are Dirac particles, one has just to drop md m°
the term proportional t@i’} on the RHS of Eq(2.52. As we O , U (')' vy
will see more explicitly in the next sections, the tadpole con- MY

tribution (2.52 plays an instrumental role in rendering the

mixing-matrix CTssB and §C gauge independent. ud,=u%, Uul=U° (3.9

vy
ll. NEUTRINO MASS-MIXING SUM RULES where we have dropped the superscript’ from U" and

have chosen the phase convention in which the elené}ts
As was already mentioned in Sec. Il, the neutrino mass- q . heVS sch h
mixing sum rules(2.40—(2.42 are very essential to ensure an U nn are positive. In theMS scheme, the mass, wave-

the renormalizability of the theory. These sum rules are obfunction and mixing CTs are found to be
tained by projecting out the zero texture in the Majorana-

neutrino mass matrix2.34 as follows: @, mmy [3mF m> m,my
Ng-+Ng OM=" 16m mAmy\ M2, M2 M2 Y
> mUJUL,=UMUMT) =M =0, (3.0
k=1
. ay MMy 3rn|2 mﬁ m, My
for I,I'=1,2,... Ng. The zero texture is protected by the dMy=— 7= ——| —F5 ——— UV »
. A 160 m,+my\ M2, M2 M2
gauge symmetry of the theory, since the contributing W W w 35

5-dimensional gauge-invariant operatordT®LC is absent
from the local renormalizable Lagrangian, wheéreand ®
are the lepton and Higgs doublets, respectively. This operator

is radiatively generated at the ong86,17] and two- [37] 8Z5,=~ KC 28wt c_2+ —t NTIEEYE Cuv,
loop levels and is UV finite. The neutrino mass-mixing sum w W W w
rule (3.1) is no longer valid, if the theory is extended by one
Higgs tripletA, , since the aforementioned lepton-number- " & m,2 3m|2 m,
violating operator can now appear in the tree level Lagrang-6Z5 EC”N Ewt 22wzt mz mam Cuv,
ian through the tern.TA, LC. wo Tw Hw
In the following, we will show that renormalization &f"
does not spoil the basic identi.1) in the MS scheme. ” & m3m my
Within the scheme of renormalization outlined in Sec. I, the Zx,= 8, Nl Swt 3 > > Cuv,
2 M M mv+mN
CT matrix SU" of U" is given by w w w
5u“—1 Un(SZMLT— sZL%). (3.2 ay & Mmoo omy m,my
' SZyn=— 16 Can| 26wt S+ —5+— VZ Cuv,
m Cw w w o My
Observe that Eq(3.2) may also be derived by setting' (3.6)
=1 in Eq.(2.49. In order that the bare and renormalized sy, = sU,,
mixing matricedJ™®andU" obey Eq.(3.1), one has to show
that 3, m,(my—m,) m?
vy S5 “UuVs
( sun MnunT+U M nsunNT+yn 5MnUnT)“r 32m (mv+mN)2 M\%V
=0, (3.3 sU,N=06Uy,
namely the corresponding mixing and mass CTs obey also 3a, My(My—m,) m,2
Eq. (3.1 up to higher orders of perturbation proportional to =—Ungs > —Cuyv. (3.7
(5Un)2. T (mV+mN) MW

Before offering a proof of Eq(3.3) for the most general
case, let us first gain some insight from considering a oneh the aboveC;;=U,;U}; according to Eq(2.33 (with i, ]
generation model with one right-handed neutrino only. The=»,N), m, is the charged-lepton mass, a@g,, is an UV
mass spectrum of this simple model, which essentially reconstant defined in the Appendix. As was discussed in Sec.
sembles the known seesaw scendtid], consists of two II, we find that the mass CTém, and émy, and the CT
Majorana neutrinos: a light neutrine observed in experi- matrix SU" computed by Eq(3.2 are gauge independent
ment and a yet-undetected superheavy An#lost interest-  only after the tadpole contributions are included. Moreover,
ingly, in this model the elements of the bare mixing matrixthese CTs satisfy the basic identi.3), i.e.
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0 c
-c O

om, U2, + smyU?%y+2m,U,,8U,,+2myU,n8U,n=0.

(3.9 c"= , (3.11)

In_the above simple Major_ana-neutrmo model_,_lt is still wherec is a real constant. Then, the parametecan be
possible to follow an alternative approach. Specifically, the

same results would have been obtained if we had consider(%J Inqéeg cisiiir?]g?r?ats“s/ (r:equrl]:lngnt 2 ?;T;[hi ;s]gittr:én;: gt;h;ela-
the elements ofJ™° as functions ofm? andmy,, i.e. U™° o v N

Y i o _ o OS scheme, holds exactly true. In this way, we were able to
=U™(m, ,my). In this case, the mixing-matrix C8U" IS \grify that the so-derived mixing-matrix CT$U,, and
calculated a$28] 8U ,y are identical with those obtained by virtue of £8.9).
For the more realistic case, for which the SM contains
more than one right-handed neutrino, the unitary maltrix
aUu"(m, ,my) aUu"(m,,my) cannot be entirely expressed in terms of neutrino masses, and
am +omy My » 39 the alternative approach based on E39) turns out to be

14

SU"=om,
not very practical. Instead, one may utilize the more general
and the basic relatio3.8) of the CTs will be satisfied by approach described above, in which anti-Hermitian constants
construction, even within the OS scheme of renormalizationc” are added to thé1S CT SU". Within this generalized

In addition, sU" defined in terms obm, and dmy is gauge-  framework of theMS scheme, the constraining relations
independen{28]. Instead, if we had employed E(B.2) to (3.3 reduce the number of independent constarftsThe
compute sU" in the OS scheme, the resulting expressionremaining freedom should be fixed by comparing the theo-
would have naively been gauge-dependent and have violate@tical predictions for observables involving the undeter-
the CT relatior‘(3.8) by UV finite terms‘.‘ Nevertheless, even mined matrix elements oBJ™ with experiment. Here, we

if the mass CTs are evaluated in the OS scheme, we Caghould stress again that the anti-Hermitian constahtare
always restore the validity of the sum ruf@.1), along with  only required if the neutrino-mass renormalizatiofrs; are

the constraining relatio(8.3), by redefiningsU" in a gauge- computed by Eq(2.8) in the OS scheme.

invariant manner. To be specific, exactly as we did in Sec. Il, plike in the OS scheme, in thdS scheme one has to

we a}ddna gauge_—lndependenr?t and UV-finite antl"_|e"n't""“bay the price that th&S-renormalized neutrino masses are
matrix ¢" to theMS CTs of U™ not the physical ones, namely the poles of the neutrino

propagators. However, as we will now show, all the basic
symmetries of the theory, including the one reflected in the

. oo sum rule (3.1), are preserved and the addition of anti-

oUT= U+ §C U’ (3.10 Hermitian constants” is no longer needed. In particular, we

will provide a general proof of the validity of the constrain-

with c"=—c"". In agreement with our phase conventions foring relation (3.3 governing the neutrino mass and mixing
the matrix elements oU" in Eq. (3.4), it is sufficient to  CTs in theMS scheme. To this end, we first substitute Eq.

assume that the matriX" takes on the form (3.2 into Eq.(3.3

SUMUNT+ UM SU T+ UM U Mn(sZMt— sZMT) + 5|\7|“}U"T

I

1 .
=u”[z(5z””— SZ™ )M+
I’

I’

2

1 1. .
= Un(—5zn’LTMn+§Mn5Zn’L+ 5M”) unt
I’

1 N .
_ ZU“[(&Z”’LT'F 5Zn'L*)Mn+ M“(&Z”'L+ 5Zn,LT)]UnT

I’

— UnEM*,UVUnT

1 . .
+§Un(2LT,UVMn+ MHEL,UV)UHT
I

I’

(3.12

“This last result was earlier observed[iv].
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where the superscript UV oB™ and3' indicates their UV matricesB and C in the SM with right-handed neutrinos.
divergent parts, antll'=1,2, ... Ng. In deriving the last  With this aim, we first compute their respective CJB and
step of Eq.(3.12, we have used the relations 5C by means of Eqs(2.45 and (2.46) in the MS scheme
[40]:

~ 1. 1 .

SMV= oMN+SMNSZM 5 570, (3.13

LUV_ E n,L n,Lt __Ng .
W= S (9zM+ 6. (3.19 sBIS= S I23| [(mm)s
=1 2(mf—mp,)
These relations may be straightforwardly obtained with the R . | Dx
aid of Eq.(2.4) and (2.8) [see alsd4.8) and (4.9) in [14]]. +2mm X T+ 2(mE )+ mp ) 1YY
The first term U"SM*.WynT),, on the RHS of the last NN
equality in Eq.(3.12 vanishes by itself, as a consequence of B GZ : Bik [(M2+m2)Sht + 2mm S nR
the absence of the operatarg V,C,L from the local Lagrang- Zi 2(mi-md) kT K=
ian. The second term vanishes, only if

+2(mk2n3D+mi2n'D*) UV, (41)
ki ik

UnMnEL’UVUnThV:O, (315
or equivalently if  Neth |

oclfS= 3 ——[(mP+md)Iit+2mm 3 iR
UM sLUVYnT| =0 (3.16 k=i 2(mf—my)
sn.D n,Dx | 1UV

with @=Ng+1Ng+2, . .. Ng+Ng. Equation(3.16) is de- F2(mZi M)
rived by inserting the unity)"TU™ =1y ., betweerM" —NGiNR Cic 2 2snl s $nR
and Y in Eq. (3.19, and noticing that Y"M"U"T),, &, 2(m§—m?)[(mk Mi) 2"+ 2mm; 2
=M[*=mf,,. Employing the analytic expressions for the .
neutrino self-energies in the Appendigee also Eq(4.9) +2(m S0+ m S P ) 1Y (4.2)

below], it is not difficult to show that Eq(3.16 is indeed
valid. In fact, the vanishing of ™ =%YUT) . results
from the absence of the lepton-number-violating kineticNote that the expression@.1) and (4.2) pertain to Dirac

termswy i 1S of dimension 4 from the original Lagrangian neutrinos. In the case of Majorana neutrinos, these expres-

in the flavor space. In the SM with right-handed neutrinos Sions are supplemented by the constraints stated 29,

the violation of lepton number occurs softly through the Ma-With 3 replaced byE.“,/I : _ o

jorana operators,,gvg of dimension 3, which is reflected From the analytic results presented in the Appendix, it is

in the neutrino mass-mixing sum ruid.1). This completes Straightforward to deduce the UV-divergent parts of the self-

our proof of Eq.(3.3). energy functions occurring in Eq§4.1) and (4.2 in the R
We end our discussion by remarking that our general apd&uge- We start Ilstlng_the UV-divergent parts of the indi-

proach to the mixing-matrix renormalization may be applied'dua self-energy functions for the charged leptons

to supersymmetric theories as well, e.g. to the unitary matrix

[38] that diagonalizes the neutralino mass matrix in the mini-

mal supersymmetric standard modeISSM). In this case, a

convenient framework for renormalization that respects su- ay
i ified dimensi on SinW=—t| 6| 4s2é,+2¢
persymmetry is the so-called modified dimensional reduction G 167 M WSy w
(DR) scheme¢ 39]. Alternatively, one may work in thS
scheme and translate the results into D scheme. As in (1—2s2)? m? m?
. . . . W | * |
the Majorana-neutrino case, the particular zero texture in the + C—2§z+ IVES +BiBy; M2, Cuv.
neutralino mass matrix is protected in tb&k scheme, but w w w
needs be reinforced by adding appropriate anti-Hermitian 4.3
constants to th®R-renormalized neutralino mixing matrix,
if the neutralino masses are renormalized in the OS scheme.
IV. RENORMALIZATION-GROUP EQUATIONS a 433'\, 2m?
LRyuv_ =W 2 I
. . - . () == 00| dspé,t—5 €2+ — | Cuv,
As an immediate application of our study in Secs. Il and 167 Cyy My
[ll, we derive the gauge-independent RGEs of the mixing (4.4
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APOSTOLOS PILAFTSIS PHYSICAL REVIEW [®5 115013

o The above analytic results of the UV pole structure of the
(2,,, )V =— %m, 5”,( 4s2(3+ &) neutrino self-energies reveal that the RG running of the mix-
& ing matricesB and C depends on the nature of neutrinos,
) 5 namely on whether they are Dirac or Majorana particles. In
_ M the MS scheme, the. dependence dB andC may be com-
c2 puted by the beta function8z and 8¢ as
&z m?
X(3+ &)+ éwt —5 | +2ByB),, — > | Cuv -
ZcW My dB P
= = lim eg,,— SBMS,
(4.5 Be=p du Y i
Here and in the following, we consider the summation con-
vention over repeated indices in their whole allowed range,
unless explicitly stated otherwise. Specifically, charged lep- dc P o
ton mdmgs, 'such alsgndl’, are summed from 1 thlg, 'and Be= '“d = limeg,,— oCVS, (4.10)
neutrino indices, e.d,j,k,n, from 1 toNg+ Ng. The diver- £—0 99w
gent pieces of the self-energy functions for Dirac neutrinos
are given by

where we have employed the fact thatlg, /du=—¢g,
+0(g3). With the help of Eq(4.11) and of Eq.(4.1) and

nLoy_ Qw & (4.2), we obtain the following one-loop beta functions for the
(i) =16 Cii 2§WJ“C_2 Dirac neutrinos:
w
m2 m2
+B} BIl Jr(:kckJ Cuv, (4.6)
Ile ay, Ne m|+m|, SmE N(%NR Blk
>B B\ Bi— —
Pe, = 16 2 ml' m? k=1 MZ,  kFi mi—m?
nRyuv_ %w mJ m2 3m?
(i) 167 Cij—7 Cuv. 4.7 x| (Mg+m?)| CyaCri 2 KBi —5
M W My
+2C M (4.12
2 ki= > | [ :
nD\UV_ _ aW fz * m| MW
= +—|+2B{B;j— .
(2,1 ) 16'77' CI] fW 2 ZBllBIJM\ZN CUV
(4.9
If the neutrinos are Majorana patrticles, the UV parts of the ay Ne*Ng Cyj
self-energy functions then read BC”_E & mm
2 (m?+m?)| C;,C m B*B—3m|2
@ &z m, X (mP+mi)| CinCrk— —BjiBik
(EEYL)UVZﬁ G 2§W+C_2 +BﬁB|jM_2 M Miy
! ! memg| MG Cy
my T2C0k—5 |7 & S 5
+C|’\j M ka] M CUV! (49) MW k#] mk_mj
W
. my . 3mf
X | (Mig+my) Ckncan_z_ IkBIj_M2
W W
(2{}"\")“\’: 6| (MiCij+m iCH) §W+§—Zz) mgm?
2¢cy, +2C—>5 |- (4.13
5 w
|
+2(m;B}i Bj+ m;B;iBj})— |Cuv -
M

Correspondingly, the one-loop beta functions for the Majo-
(4.10 rana neutrinos are given by
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Ng 2 2 2 NgtNg 2 2
ay, my+my, N 3mi, Bk 5 5 mm; n 3mj
Be, = i > —5——BuBhBii— — — | (M2+m?)| C—5~+ CynCri—o — BfiBii —5
i 161 2 m|2'_m|2 17k IM\ZN “ mﬁ_mlz i i M\ZN n nIM\ZN i \ZN
2 2
mim; My m
+2mam;| Cyi—5—+CiChi— —BuBji —| [ 1, (4.14
M2, M2, M2,
Ng+Ng 2 2
Qyy ij 2 2 *mimk my 3m|
= m2+m2)| C ——~ +CinCrk— — Bl Bl —5-
B, 1677[ = miz_mi( | k| “ik M2, in nkM\zN l IkM\ZN
2 2 Ne+N
rommy| c MMk L cr o Mg g 2 5" C
iMk| Cik—= T ChCpk— —Biibik
1 1 M\ZN mn=n M\ZN 1 \ZN ey mﬁ_mjz
x| (m2+m?) AL BCRe m *B m +omam| Co <y o o m BB 3my
KT Mm; kKi——7 T Cknlnj—5 —BiBij—5 kMj| Cxj—5 T Cinbonj— — Bikbjj —5
i j M2, n n]M\%v JM\zN j j M2, n nJM\zN JM\zN
(4.15

It is worth commenting again on the fact that the betaand (3.10]. In this way, the different renormalization
functions Bg and B¢ _in Egs. (4.12—(4.15 become gauge schemes proposed in the literat(i6s14,26,12,13,27,28in-
independent in theMS scheme, only after the gauge- cluding the OS schemi,14], may be described for appro-
dependent tadpole terms proportional k7 have been priate choices of the anti-Hermitian constants.
added to the self-energy functioB® (or =™). To the best of Our generalized\/I_S approach to the renormalization of
our knowledge, the beta functios and B¢ represent the mixing matrices may also be conveniently applied to main-
most general results pertaining to the one-loop RG runningain fundamental global or local symmetries of the unrenor-
of the mixing matrice8 and C in the existing literature of malized Lagrangian. For instance, our approach may be uti-
the SM with isosinglet neutrinos. However, we should re-jized to protect the texture-zero structure of the Majorana-
mark that the derived RGEs fgtz and B¢ are only valid for  neytrino mass matrix2.34 or similar constrained structures
energies larger than the heaviest neutrino mass. We have W?Itpredictive neutrino-mass models. Even though such addi-

considered the threshold effects due to the decoupliijof tional symmetries are automatically preserved in M8

the heavy neutrinos, as these effects highly depend on the : e
particular low-energy structure of the moddP—45.41 and scheme, they become distorted by UV-finite terms and so

will therefore be studied elsewhere. need t(_) pe reinforced, if th_e re_normalized masses are evalu-
ated within other renormalization schemes, such as the fre-
quently adopted OS scheme. Most importantly, our approach
of mixing-matrix renormalization may be applied to super-

V. CONCLUSIONS symmetric theories as well. In this case, the corresponding

We have revisited the problem of gauge dependence th@ieneralizedDR approach may be used to renormalize the
occurs in the renormalization of mixing matrices, within the mixing matrices that occur in the chargino and neutralino
context of two generic frameworksi) the quark sector of sectord38], as well as in the squark and Higgs scalar sectors
the SM and(ii) the leptonic sector of the SM with isosinglet [46,47,27 of the MSSM.
neutrinos. Although we confirmed the earlier observations As a byproduct of our study, we have derived in Sec. IV
[26,12,13 that an On-She" renormalized mixing matl‘iX con- the gauge_independent RGEs for ﬁ%_renorma"zed mix-
tains gauge-dependent terms, we have observed, howevgig matrices in the SM with isosinglet neutrinos. The so-
that these terms are UV finite and have a pure dispersivgerived RGEs are valid for energies that are higher than the
form. Because of this last fact, we have found that thesgnass of the heaviest of the heavy neutrinos. We have not
naive gauge-dependent terms can always be absorbed infgken into account the decoupling effects due to heavy neu-
the definition of a manifestly gauge-invariant, but physicallytring thresholds, since they crucially depend on the low-
equivalent, mixing matrix, where the latter is evaluatedenergy structure of the model. However, they prove impor-
within a generalizedMS scheme of renormalization. This tant to properly describe the RG running of the observed
generalized scheme of renormalization is obtained by addingeutrino masses and the neutrino-oscillation angles at lower
gauge-independent anti-Hermitian constants to a gaugemnergies. We plan to return to this phenomenologically inter-
invariant, MS-renormalized mixing matricf. Eqgs. (2.25  esting topic in the near future.
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FIG. 1. Feynman graphs contributing (@—
(d) neutral and (e)—(g) charged lepton self-
energies in the unitary gauge. If neutrinos are
Dirac particles, the graptb) is absent.
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APPENDIX: NEUTRAL AND CHARGED LEPTON
SELF-ENERGIES

with
and

Cov=1le—ye+Indm \(xy.2)=(x—y—2)2—4yz

Here, we present analytic expressions for the neutrino and

charged-lepton self-energies in the renormalizédl@auge.

The Feynman diagrams that contribute to the neutrino self-

energies are shown in Figstal-1(d), while the correspond-

2
ma;—my

2p?

By(p?,m?,m3)= (Bo(p?,mi, m3)

ing graphs giving rise to charged-lepton self-energies are dis-

played in Figs. le)—1(g). Our analytic results are expressed

- Bo(O,mi,mﬁ))

in terms of the usual Pasarino-Veltman one-loop functions

[48]:

dPk
i 2

{1k}
(K2=m?)[(k+p)2—m3]’
(A1)

{Bo;B,}(p?%mZ,ms)=(2mu)* P

where the Minkowski space is extended Do=4—2¢ di-
mensions andk is the so-called 't Hooft mass scale. Also,
we adopt the frequently-used 4-dimensional convention fo
the Minkowskian metricg””: g*’=diag(1-1,—1,—1).
The one-loop function8, andB,,, defined in Eq(Al), are
given by

m;m
Bo(p2,m2,m3)=Cuy—In 122)+2
o
1 2 2 my 12/ 12 2 2
+E (mz—mj3)In m_2 +\4(p,mg,m3)
2, 2 2
mZ+m3—
x cosh't 1—”” (A2)
2mym,
B,(p%mi,m3)=p,B;(p?mi,mj), (A3)

2 BO( p27m%=m§)'

(A4)

The one-loop functiorBy(p?,m?,m3) evaluated ap?=0
simplifies to

mim
Bo(o,mi,mg):CUV_In(l—z +1

)

From this last expression, a useful identity relating the argu-
ments of theB,-function atp?=0 may easily be derived

2 2
ml+ ms; my

my

(A5)
r -3

2

m

2 2\ 1 2 2

BO(Olmlva) - ﬁ BO(O!mliml)

m;—m;
m3

mi—m

Bo(0O,m3,m2)+1. (A6)

2
2

Equation(A6) may be successfully employed to check the
gauge independence of physical quantities.

We first derive analytic expressions for the case of Dirac
singlet neutrinos. In th&, gauge, these are given by
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2_ 2
(82
zﬂ'L<p2)=—ﬁ| 1 Bij| 2B1(p% M, M§) + Bo(p?,mf , M) + 1= £nBo(p% M}, EwM ) +———— V2 - (B14(p% M, m7)
2 2 2 m,2 2 2 2 * 2 2 g2 2 2 \42
—B1(p%, éwMyy, M)+ M_zBl(p M EwMyy) |+ kiCkj| 2B1(p,mic,M2) +Bo(p*,mi ,M7)+1
w w
22 2
2 2 2 My 2 N2 2 2 2 .2 My 2 2 2
—&7Bo(p ,mk,gzMz)+v(51(p MZ,mp) —B1(p%, Mz, mp))+ W(Bl(p M, §,M2)
z z
+By(p%mg M7)) ] (A7)

m;m, 1 2.2 \12
¥ Bij — Bi(p? M EWMY) + — Ck] (Bl(P \MZ,E;,M3)+By(p2,mi ,M3)) |,
W 2Cw IV'z
(A8)

n.R 2__0‘
2i7(p9) .

2 2
02 m| 1 mk
SR =- —Sqﬁmi{ 1B1y 2 Bo(PAmF &wMin) + 5 CiCiy o (Bo(P%,mic, £2M2) ~ Bo(p®.mic M)
w

w z

1
Ew(l+Bo(0EWM G, EWME)) + Sz b2+ Bo(0.£,M2,£,M2)) ] : (A9)

w

1
+§Cij

Note that in Eq(A9) the p?-independent terms represent thdependent part of the tadpole contributions. These contributions
are crucial, as they restore the gauge independence in the RG running of neutrino masses and mixing angles.
Next, we present analytic expressions for Majorana-neutrino self-energies iy teuge:

2_ 2

2B1(p%mf ,M3) +Bo(p%m? ,MG) +1— &wBo(p%,m?, WM §) +——— M2 (Bl(p MG, mP)
w

Spt(pt) = - “W| By

2
m; m;m;
—Bl(pz,gWMSV,mbHM—281<p2,m%,§WM$v> +By; ﬁ#el(pz,mﬁ.gwMSw

w w

I 2 2 a2 2 2 np2 2 2 2 p?—my 202 2

+?Ckickj 2B1(p%,mi,MZ) +Bo(p,mi,MZ7) +1—&,Bo(p ,mkyszz)"'v(Bl(p Mz, mp)
w z

1
—B1(p%.£MZ.m7)) |+ — —5 (M Cyi+ M) (M Cyj+m :j>><(81(p2,mﬁ,§ZM§>+Bl(p2,mﬁ.Mﬁ))],

W VA
(A10)
M, 2 ay | m * * 2. 2 2 1 2.2 a2
(p ):__77 —(m;Bji Bjj +m;By;Bjj ) Bo(p~, m ,§WMW)—F M, CyiCyj(3Bo(p~, M ,M%) —2
W
+&;Bo(p%mg £, M%) — (mc i+ MCii) (M Cy+ M CF) X (Bo(p?, Mg ,£,M2) — Bo(p?,mg ,M7))
Z
1 * 2 2 1 2 2
+§(micij+mjcij) Ew(l+Bo(06M ,fwa))+Egz(l‘FBo(szszszz)) . (A11)
w

Likewise, we included in Eq(A1l) the é-dependent part of the tadpole contributions.
Finally, for completeness, we give the charged-lepton transition amplitudés-fdr.
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2_ ml2
(B1(p? 1%,mP)

pT—
2B(p%,m{ , u )+Bo(p .m? Ny ) +1- £,Bo(p? m? fy,U« )+

E:il/_(p ) __{25\,\,5”/

(1-2s%)?
2

w

—B4(p% &,u3,m)) |+ 87| 2B1(p?,mf ,M2)+Bo(p?,mf ,M2) + 1~ &,Bo(p?,m ,£,M3)

2_ 2 2
p— 1 m
5= (By(p? M2, M)~ By(p%,&M2, M) | + 8 5 —= (By(p%. M7, £M2) + By(p%,mf M)
z 2 W MZ
pZ—m;
+ByiByY;| 2B(p?,m? M)+ Bo(p?,mf ,M§) + 1= &uBo(p?, M7, EwMy) +——5—
W
2 2 2 2 2 2 m'z 2 2 2
X (B1(p%, My, m{) —B1(p%, éwMiy,mi)) + M_ZBl(p M, EwM) (A12)
w
LR 2 Aw ) 52 2.2 2 2.2 2 2 2 2p2—m,2
2||Yl(p ):_g ZSW5||' ZBl(p 1m| 1M7)+Bo(p 1m| 1/“Ly)+1_§yBO(p vml 15)//“’7)4_ “
Y
2s,,
X (B1(p? p5,mP) = By(p? £yu M) | + —5 8ip/| 2B1(p% M7 ,M2)+Bo(p?,m, M%)
w
2 2 2 p*—m; 2012 2 2 2 2
+1-§zBo(p”,mi,§zM7) + >— (B1(p5,MZ,m{) —By(p*,ézM7,m())
z
1 2 2 \2 « MMy 2 2 2
o (Bl(p mi,E,M2)+By(p?,m; JME))+ BBl —5—B1(p5,mf, éwMy) ( (A13)
ZCWM My
$h(1-25)
S12(p7)= — £ my{ 2556,/ (3Bo(P2, M u2) — 2+ &, Bo(p?,mi FEma) = =5 a1 (BBo(p%.m? M) 2
w
+EBo(PEY EMD+ B o5 RVE (Bo(p M7 .£,M%) = Bo(p%,m?,M7))
z
2 1
i
+ BBl 7 Bo(P%.M7 EwM Q) + 5 87| éw(L+Bo(0£wMiy. £wMiy)
W
1 2 2
+ g%z(lJr Bo(0,£,M7,£,M7)) (A14)
w

Apart from the ¢é-dependent part of the Higgs tadpoles included in E444), Egs. (A12)—(A14) agree well with those
presented if12].
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