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Family unification in five and six dimensions
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In family unification models, all three families of quarks and leptons are grouped together into an irreducible
representation of a simple gauge group, thus unifying the standard model gauge symmetries and a gauged
family symmetry. Large orthogonal groups, and the exceptional groupsE7 andE8, have been much studied for
family unification. The main theoretical difficulty of family unification is the existence of mirror families at the
weak scale. It is shown here that family unification without mirror families can be realized in simple five-
dimensional and six-dimensional orbifold models similar to those recently proposed forSU(5) andSO(10)
grand unification. It is noted that a family unification group that survived to near the weak scale and whose
coupling extrapolated to high scales unified with those of the standard model would be evidence, accessible in
principle at low energy, of the existence of small~Planckian or GUT-scale! extra dimensions.
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I. INTRODUCTION

A. Family unification

It has long been known that theories with extra dime
sions afford ways of breaking gauge symmetries unavaila
in 4D theories@1#. Recently, such mechanisms have be
applied to the problem of constructing realistic grand unifi
models@2,3#. In particular, it has been shown that orbifo
compactification of one or two extra dimensions allows sy
metries to be broken in such a way as to resolve in an
parently simple fashion two of the thorniest problems of
grand unification, namely, the doublet-triplet splitting pro
lem and the problem of dimension-5 proton decay operat
In this paper we show that the same ideas can be applie
a problem almost equally old, that of ‘‘family unification
@4–11#.

The idea of family unification is an extension of the id
of grand unification. Grand unification has two aspec
gauge unification and quark-lepton unification. Gauge un
cation is the unification of all the standard model gau
groups within a simple group, such asSU(5), SO(10), or
E6. Quark-lepton unification is the idea that quarks and l
tons are put together into irreducible multiplets of that sim
group. There is complete quark-lepton unification if all t
fermions of one family are contained in a single irreducib
representation. This is possible inSO(10), E6, and larger
groups. The idea of family unification has the same two
pects. It involves, first, the existence of a family gauge gro
that is unified with the standard model gauge group int
simple group@4#, and, second, the existence of a single ir
ducible representation of that group that contains the qu
and leptons ofall threeknown families. For example, if ther
is a family groupSU(3), it can beunified with the standard
model group within E8, since E8.E63SU(3).SU(3)
3SU(2)3U(1)3SU(3). At the same time, inE8 all three
families can be unified into one irreducible representati
the 248. The groups that have been most studied from
point of view of family unification areO(14) @7#, SO(16)
@8#, SO(18) @9#, E7 @10#, andE8 @11#.
0556-2821/2002/65~11!/115008~6!/$20.00 65 1150
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B. The problem of mirror families

The central problem of family unification is that the ord
nary V2A families must be accompanied by an equal nu
ber of V1A or ‘‘mirror’’ families. For example, the248 of
E8 decomposes underE63SU(3) into

248→~78,1!1~1,8!1~27,3!1~27,3̄!. ~1!

Together with three ordinary families, (27,3), one finds three
mirror families, (27,3̄). Similarly, for the orthogonal groups
a spinor of SO(1012n) decomposes under theSO(10)
3SO(2n) subgroup as

2(41n)→~16,2(n21)!1~16,2(n21)8!. ~2!

~For n odd the 2(n21) and 2(n21)8 are conjugate to each
other, whereas forn even they are each self-conjugate. Fo
review of spinor representations of orthogonal groups
@5#.! One sees that for every16 there is a16.

The fact that family unification generally gives equ
numbers of families and mirror families presents the probl
of explaining why no mirror families have been observe
The obvious solution would be to give large mass in so
way to the mirror families. However, this turns out to be n
so easy. While mirror families could have largeSU(2)L
3U(1)Y-invariant mass terms that couple them to ordina
families, such terms give mass to equal numbers of fami
and mirror families and so do not resolve the problem. T
only way to give the mirror families large masses witho
giving large mass to the ordinary families is withSU(2)L
3U(1)Y-breaking mass terms. Such masses would hav
be at or below the weak-interaction scale, meaning that
mirror families should be observable through radiative
fects in precision tests of the electroweak theory. Rec
analyses@12,13# conclude that some additional families o
mirror families are allowed, with Ref.@12# finding a chi-
squared minimum for the number of extra families to
somewhere between one and two. Adler argues that e
©2002 The American Physical Society08-1
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three mirror families may not be completely excluded
present data@14#. However, even if mirror families with
masses in the hundred GeV range are consistent with d
explaining in a natural way why their masses are much lar
than the observed quarks and leptons will be a theore
challenge. No simple and plausible mechanism which
tempts this is known.

Given that it is quite difficult to hide mirror families at th
weak scale the question arises whether in a model with f
ily unification the mirror families might be banished alt
gether from the low-energy spectrum. One interesting po
bility is that the mirror families are confined at a high sca
@6,5,15#. Suppose, for example, that the family unificatio
group isSO(18) and breaks down toSO(10)3SO(8) at a
scaleMG . The quarks and leptons are then in the repres
tations (16,8)1(16,88). @See Eq.~2!.# If at a scaleM f am

@MW the family groupSO(8) breaks to some confinin
group H under which the88 decomposes into only non
singlets, then all of the mirror families are confined. If, o
the other hand,8 contains some singlets in its decompositi
underH, then some ordinary families will be unconfined a
appear in the low-energy spectrum. For instance, there i

SO(5) subgroup ofSO(8) under which88→414̄ but 8
→5111111, so that if SO(5) confined three families
would remain light@6,5#. Unfortunately, it is doubtful that
there exist models of family unification in four-dimensions
which the gauge coupling ofH is asymptotically free and
thus able to confine the mirror families at some dynamica
generated high scale.@The beta function for theSO(5)
gauge coupling in the example given above isdg5 /d ln m5

1$(62/3)/(16p2)%g5
3 in the non-supersymmetric case, with

larger positive value if there is supersymmetry.#
It would seem, therefore, that in four-dimensional theor

mirror families cannot be banished from the low-ener
theory. However, it can happen in theories with extra dim
sions@16,17,19#. For example, as was shown in Ref.@16#, in
Calabi-Yau compactification of heterotic string theory, theE8

of the observable sector can be broken down toE6 below the
compactification scale with a chiral low-energy spectrum
quarks and leptons. In Ref.@17# it was shown that orbifold
compactification from ten to four dimensions can leave
E63SU(3) subgroup ofE8 unbroken, with a chiral low en-
ergy spectrum which contains some families in multiplets
the SU(3). „In the particular example of that paper the
were thirty-six families@in 33(27,3)1273(27,1)# and no
mirror families. For early string theory models with thre
families, see Ref.@18#.… Such string theory models have fam
ily unification in the sense that all the families of quarks a
leptons originate from oneE8 multiplet of the ten-
dimensional theory.

In this paper we show that family unification can b
achieved in simple 5D and 6D orbifold models quite simi
in spirit to those of@2,3#. These are ‘‘bottom up’’ models
like those of@2,3#, and no attempt is made to derive the
from superstring theory. In the next section, we pres
simple illustrative models based on both orthogonal gro
and E8. Before we turn to higher dimensions, however,
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may be helpful to briefly review some facts about the fam
unification groups that have been studied in the literature

C. Family unification groups

First let us look at the smallest group that has been u
for family unification, O(14). We see from Eq.~1! that a
spinor of SO(14) decomposes underSO(10)3SO(4) as
64→(16,2)1(16,28). The conjugate spinor decomposes
64→(16,28)1(16,2). Thus, a single spinor ofSO(14) can
only accomodate two families and their mirrors. However
one takes the group to beO(14) @that is SO(14) together
with the parity that transforms the64 and64 into each other#
then the irreducible spinor is128(564164), which can ac-
commodate four families. Models of family unification bas
on O(14) have been constructed@7#.

The groupSO(16) is large enough for family unification
since 128→(16,4)1(16,4̄) @and 1288→(16,4̄)1(16,4)#.
However, its spinors are real, i.e. self-conjugate, so tha
the absence of any other symmetry there would be nothin
prevent a mass term of the form1283128, which would
naturally make all the quarks and leptons superheavy.@The
same objection applies toO(14).# For this reason most au
thors have concentrated on the groupSO(18) @9#, which is
the smallest orthogonal group whose spinors are comp
and large enough to contain at least three families. Howe
it is possible to avoid the self-mass problem inSO(16) by
assuming that the128of quarks and leptons is charged und
some other group, say aU(1). InterestingSO(16) models
using this idea have been constructed@8#.

The group E7 has an adjoint that under theSU(5)
3SU(3) subgroup decomposes as133→(24,1)1(1,8)
1(5,1)1(5̄,1)1(1,1)1(10,3̄)1(5̄,3)1(10,3)1(5,3̄). As
with the other groups we have discussed, this has an e
number of families and mirror families. But it also has th
interesting peculiarity that some of the fermions in a fam
transform as3 of the SU(3) family group, while others
transform as3̄. It should be noted also that the self-ma
problem exists for bothE7 andE8 @as it does forO(14) and
SO(16)# since both the133of E7 and the248of E8 are real
representations.

II. FAMILY UNIFICATION WITHOUT THE MIRROR
FAMILIES

We start with a simpleSO(16) model of family unifica-
tion in five dimensions in which the low-energy fou
dimensional theory has three light families in a triplet
SU(3) and no mirror families.

Following in the footsteps of@2#, we consider a five-
dimensional theory with the fifth dimension~y! compactified
on an S1/(Z23Z28) orbifold. The circumference ofS1 is
2pR. Z2 reflectsy→2y, andZ28 reflectsy8→2y8, where
y85y1pR/2. ~See Fig. 1.! The orbifoldS1/(Z23Z28) can be
taken to be the interval2pR/2<y<0. The point y50,
which we will call O, is a fixed point ofZ2, while the point
y52pR/2 ~or y850), which we will call O8, is a fixed
point of Z28 . There are branes at the pointsO and O8. It is
8-2
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FAMILY UNIFICATION IN FIVE AND SIX DIMENSIONS PHYSICAL REVIEW D 65 115008
assumed that in the five-dimensional bulk there is anN51
supersymmetric theory with gauge groupSO(16) and fields
consisting of a vector multiplet in the adjoint (120) and a
hypermultiplet in the spinor (128).

The N51 supersymmetry in five dimensions would giv
N52 supersymmetry in four dimensions, but the orbifo
compactification will break this down toN51. The vector
multiplet of the bulk theory splits into a vector multipletVa

and a chiral multipletSa of the unbroken 4DN51 super-
symmetry. Under theZ2 symmetryVa is taken to have parity
1 and Sa to have parity2. Similarly, the hypermultiplet
splits into two chiral multipletsF and Fc having opposite
Z2 parity. TheZ28 parities are assigned in the following wa
The SO(16) adjoint when decomposed underSO(10)
3SO(6) gives120→(45,1)1(1,15)1(10,6). We assignZ28
parity 1 to the components of the 5D vector multiplet in th
(45,1)1(1,15), andZ28 parity 2 to those in the (10,6). This
assignment is consistent with the group algebra ofSO(16).
The spinor of SO(16) decomposes as128→(16,4)
1(16,4̄). UnderZ28 we take the components of the 5D h
permuliplet that are in (16,4) to have parity1 while those in
(16,4̄) have parity2. The completeZ23Z28 assignments are
shown in Table I.

As explained in many papers@2#, only those fields that
have Z23Z28 parity (1,1) can have among their Kaluza
Klein modes one that is constant in the fifth dimension, i.e
zero mode corresponding to a light field in the fou
dimensional effective theory. Fields that have (1,2),
(2,1), or (2,2) parities must vanish at the fixed pointsO,
O8, or both, and therefore have only higher Kaluza-Kle
modes, which are superheavy from the 4D point of view.
this model the four-dimensional effective theory will ha
N51 supersymmetry, gauge groupSO(10)3SO(6), and
light fields coming from the bulk matter consisting of vect
multiplets in (45,1) and (1,15) and a chiral multiplet in
(16,4). This cannot be the complete effective low-ener
theory since it has anSO(6)3 gauge anomaly. One must tak

FIG. 1. The fifth dimension compactified on anS1/(Z23Z28)
orbifold.
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into account also fields that ‘‘live’’ on the branes atO and
O8.

On the brane atO there is the fullSO(16) gauge symme-
try, but on the brane atO8 there is only anSO(10)
3SO(6). It is not that SO(16) is spontaneously broken o
the O8 brane, but rather that there never was any gau
symmetry onO8 exceptSO(10)3SO(6). „At O8 quantities
that are odd underZ28 have to vanish, including the gaug
parametersja(xm,y) for those generatorsla in the coset
SO(16)/@SO(10)3SO(6)#. … Consequently, in the 4D
theory on the brane atO8 only complete multiplets of
SO(10)3SO(6) but notSO(16) need appear. Let us sup
pose then that on theO8 brane one has quark and lepto
chiral multiplets in (16,1)123(1,10) and Higgs chiral mul-
tiplets in (1,4)1(1,4̄). ~We will denote the Higgs multiplets
henceforth with subscript ‘‘H.’’ ! The low-energy theory then
has altogether the following chiral multiplets: (16,4)
1(16,1)123(1,10)1(1,4)1(1,4̄). This set has no gauge
anomalies.@TheSO(6)3 anomaly of a10 is 28 times that of
a 4, so the totalSO(6)3 anomaly of the above set is 16(1
12(28)50.#

We assume that the (1,4)H1(1,4̄)H obtain vacuum expec-
tation values at some scaleM f amily@MW that breaksSO(6)
@5SU(4)# down to SU(3). Then a term of the form
(16,4)(16,1)(1,4̄)H on theO8 brane will give mass to the
(16,1) V1A family and one of the fourV2A families to
leave three light families in a (16,3) of SO(10)3SU(3).
Note that the scaleM f amily can be anything from the weak
scale up to the compactification scale.

There still remain the questions of howSO(10) breaks
down to the standard model group in a satisfactory way, h
the electroweak symmetry is broken, how realistic mas
arise for the quarks and leptons, and how theSU(3) family
symmetry breaks. These breakings can all be accomplis
through the ordinary Higgs mechanism by Higgs multiple
living on the O8 brane in suitable representations
SO(10)3SO(6). We know, for example, that breaking o
SO(10) down to the standard model can be achieved in
sypersymmetric~SUSY! ground unified theories~GUTs! in
such a way as to have natural doublet-triplet splitting@20#
and also suppression of dimension-5 proton decay opera
~i.e. those coming from colored Higgsino exchange! @21#. It
would be interesting to attempt to use orbifold compactific
tion to breakSO(10) down to the standard model as well,
in @3#. However, we do not pursue that more ambitious g
in this paper.

What we have shown in this simple example is that mo
els can be constructed in which the three light families co
from a single irreducible representation of a simple group
here a hypermultiplet in the bulkSO(16) theory, and in
TABLE I. ( Z2 ,Z28) parity assignments for the vector and hypermultiplets inSO(16).

V(45,1) V(1,15) V(10,6) S (45,1) S (1,15) S (10,6) F (16,4) F (16,4̄) F (16,4)
c

F (16,4̄)
c

Z2 1 1 1 2 2 2 1 1 2 2

Z28 1 1 2 1 1 2 1 2 2 1
8-3
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which that simple group comprises both the standard mo
gauge symmetries and a family gauge symmetry that
vives in the four-dimensional theory, perhaps even down
low energy. It is clear that one may constructSO(18) models
in a similar way. However, the analogous orbifold breaki
to SO(10)3SO(8) would giveeight families coming from
the hypermultiplet in the bulk. One would therefore have
introducefive mirror families on theO8 brane, and a corre
spondingly large number of Higgs bosons on the brane
mate the mirror families with the ordinary ones. It would
interesting to know if a more economical and compelli
way to obtain three light families fromSO(18) using orbi-
fold compactifications could be found.

We see, then, that the orthogonal groups can accomo
three light families, but they do not naturally prefer thr
light families. If we wish to explain the fact that there a
three light families, the groupE8 seems more promising
given thatE63SU(3) is a maximal subgroup and that th
fundamental representation ofE8 contains a (27,3) under
that subgroup, as shown in Eq.~1!.

It is easy to see that orbifolds withZ2 symmetries as we
have been considering up to now are not adequate to spli

(27,3̄) mirror families from the (27,3) families in the248.
For a Z2 parity to accomplish this, the (27,3̄) and (27,3)
would have to have opposite parity. Suppose, then, we im
ine the parity of (27,3) to be 1 and that of (27,3̄) to be
2. This would be inconsistent with the group algebra ofE8.
The 248 generators ofE8 fall into (78,1)1(1,8)1(27,3)
1(27,3̄). The commutator of two (27,3) generators gives a
(27,3̄) generator. Similarly, the commutator of two (27,3̄)
generators gives a (27,3) generator. Consequently the gau
fields in (27,3) and (27,3̄) must both have1 parity. That
implies that the families and mirror families have the sa
parity.

In order to eliminate the mirror families from the 4
theory in E8 there must be an orbifold with at least aZ3
symmetry. The point is that under aZ3 the generators ofE8
can transform as follows consistently with the group algeb

FIG. 2. The two extradimensionsx5 andx6 compactified on an
S1/Z3 orbifold. The regions with the same numbers are identifi
with each other.a, b, andc are fixed points ofZ3, and the paral-
lelogramaba8c is the fundamental region.
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l (78,1)→l (78,1)

l (1,8)→l (1,8)

~3!
l (27,3)→vl (27,3)

l (27,3̄)→v2l (27,3̄) ,

wherev5e2p i /3. Such aZ3 can be used to split the familie
from the mirror families in a248, as will be seen.

Consider a six-dimensional theory in which the extra tw
dimensions (x5 andx6) are compactified on an orbifold with
a Z3 symmetry. The construction of such an orbifold
shown in Fig. 2. One starts with a torusT2 defined by iden-
tifying the points z[x51 ix6 with the pointsz11 and z
1v. This torus is shown as the large parallelogram in Fig
Under a rotation by 2p/3 ~i.e. z→vz) one sees that the
regions labeled 1 get mapped into other regions labele
and that similarly 2 gets mapped into 2, 3 into 3, and 4 in
4. TheT2/Z3 orbifold obtained fromT2 by identifyingz with
vz thus has as its fundamental region the smaller parall
gramaba8c. This orbifold has aZ3 symmetry, under which
a, b, and c are inequivalent fixed points.~The point a8 is
identified with a). ~The orbifold used in@17# is the six-
dimensional generalization of this simple two-dimension
orbifold and has 27 fixed points.!

Instead of using one discrete symmetry to break sup
symmetry down toN51 and another discrete symmetry
break the gauge group as before, we will use the sameZ3 to
break both. In the six-dimensional bulk we take the theory
haveN51 supersymmetry and gauge groupE8. ~One need
not worry about cancellation of gauge anomalies since
E8 box anomaly in six dimensions vanishes up to ‘‘redu
ible’’ pieces that can be canceled by the Green-Schw
mechanism@22#.! We take the matter in the bulk to consist
a vector multiplet in the248. A 6D vector multiplet decom-
poses, under the 4DN51 supersymmetry, into a vector mu
tiplet Va and a chiral multipletSa. The indexa labels the
248 generators ofE8, which may be classified under th
E63SU(3) subgroup as shown in Eq.~1!. The fields inVa

are assumed to transform underZ3 in the same way as the
corresponding generators, which is shown in Eq.~3!. The
fields in Sa transform in the same way except with an ad
tional factor ofv2. The Z3 transformation properties of th
fields are given in Table II.

Only those component fields that transform trivially und
Z3 will have zero modes. Thus, the bulk matter contribu
the following fields to the 4D low energy theory: vector mu
tiplets in (78,1) and (1,8) containing the gauge fields an
gaugino fields ofE6 and SU(3), and achiral multiplet in
(27,3) containing three families of quarks and leptons. Th
cannot be the whole story as the 4DSU(3)3 gauge anomaly

d

TABLE II. Z3 transformation properties of the vector and chiral multiplets inE8.

V(78,1) V(1,8) V(27,3) V(27,3)̄ S (78,1) S (1,8) S (27,3) S (27,3̄)

Z3 1 1 v v2 v2 v2 1 v
8-4
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FAMILY UNIFICATION IN FIVE AND SIX DIMENSIONS PHYSICAL REVIEW D 65 115008
must be canceled. This can be done by chiral multiplets
ing on one or more of the branes at the fixed pointsa, b, and
c. For example, theSU(3)3 anomaly would be canceled b
twenty-seven (1,3̄) or by a single (1,10) of E63SU(3) on
one of the branes. It should be noted that on the branes t
is only anE63SU(3) symmetry to start with, so that it i
only necessary to have complete multiplets of that gro
rather than of the bulk gauge groupE8. Again, as in the
previous example, we can introduce various~vectorlike!
Higgs representations on the branes to break the symm
down to that of the standard model. Such model-build
details are beyond the scope of this paper. But we see
obstacle to constructing a fully realistic model in this way

III. FAMILY UNIFICATION AS AN INDICATOR
OF EXTRA DIMENSIONS

As we have seen, family unification involves the idea th
all three known families reside within one irreducible rep
sentation of some simple group. This group contains not o
the standard model gauge groups, but generally a fam
gauge group. In many cases this family gauge group cont
an SU(3) subgroup@or is anSU(3)# under which the three
families form a triplet. The family gauge group could b
broken at very high scales, either by an ordinary 4D Hig
field or by the orbifold compactification. But it is also qui
possible that a local family symmetry, perhaps an en
SU(3), survives down to ‘‘low scale,’’ by which we mea
here something in the hundred TeV range.

If family unification is realized in nature and the fami
group survives down to low energy the interesting possibi
would exist, at least in principle even if quite difficult i
practice, to infer the existence of near-Planckian extra
mensions from experiments done at ‘‘low energy.’’

Let us call the set of representations ofGSM5SU(3)c
3SU(2)L3U(1)Y that make up one family of left-hande
fermionsF, and suppose for specificity that the low ener
family symmetry isSU(3) @though most of what we will say
applies as well to other groups, such asSO(3)#. Typically, in
models with family unification the known quarks and lepto
are in (F,3) of GSM3SU(3) f am . @It is also possible tha
some of the left-handed fermions of a family are in3 and
some in 3̄ of SU(3) f am , as we saw in the case of famil
unification in the adjoint ofE7. What we say below applie
to such cases as well.#

If SU(3) f am is broken at a scaleM f am near enough to the
weak scale to be accessible to experiment, then one migh
able eventually to do two things: first, to find out what re
resentations of the family group the quarks and leptons
in; and, second, to measure theSU(3) f am gauge coupling
gf am and extrapolate it to high energies to see whethe
unifies with the standard model couplings. Suppose that
is done and it is found that the quarks and leptons of
standard model are indeed in (F,3), with no light mirror
families, and that the four gauge couplings do indeed un
What would one be able reasonably to infer from this?

First, the evidence for the unification of the four gau
groups ~into one simple group or a product of identic
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simple groups related by a discrete symmetry! would then be
compelling. The unification that we now see of the thr
standard model gauge couplings might be an accident, s
it really involves only one non-trivial condition being sati
fied. However, the accidental unification offour couplings at
one point could hardly be dismissed as accidental.

One would therefore conclude that at a high scale so
unified groupG broke down toGSM3SU(3) f am , and that
some anomaly free set of representations ofG broke into
(F,3) plus some additional multiplets that were vectorli
underGSM . ~They would have to be vectorlike underGSM in
order not to have been seen at the weak scale.! The question
that would then confront theorists is whether such a break
could take place in the context of a theory with only fo
spacetime dimensions. The answer seems to be no.

We have seen that groups such asSO(16), SO(18), and
E8 have representations that contain (F,3) of GSM3SU(3),
but these are always accompanied by mirror families, an
four dimensions there does not seem to be any way to p
these mirror families to very large scales. The unitary grou
in particular SU(N) with N>8, also can break down to
GSM3SU(3) giving standard model multiplets that are
triplets of SU(3), but onenever gets simply three familie
plus pieces that are vectorlike underGSM . For example con-
sider SU(8) with quarks and leptons inc [abg]1c [ab]
1ca . Under theSU(5)3SU(3) subgroup these do giv
(10,3)1(5̄,3̄), but these come together with 2(10,1)
1(5,3̄)1(5̄,1)1(1,3)1(1,3̄)1(1,1), which are chiral un-
der GSM .

The closest that one seems to be able to come is with
groupSU(5)3SU(5), with the two gauge couplings force
to be equal by a discrete symmetry that interchanges the
SU(5)’s. Consider the following anomaly-free set of ferm
ons: (10,5̄)1(5̄,10)12(10,1)12(1,10)17(5,1)17(1,5).
Under the SU(5)3SU(3) subgroup this gives (10,3̄)
1(5̄,3̄) together with 2(5̄,3)16(5,1) and other pieces tha
are vectorlike underSU(5)3SU(3). This indeed gives
(F,3̄) plus pieces that are vectorlike underGSM . However,
as one can see, those pieces includesix 5̄15 of SU(5) that
cannot get mass aboveM f am because they are chiral unde
SU(3) f am . In a supersymmetric theory this would make t
couplings blow up below the unification scale.

On the other hand, we have seen that in theories w
extra dimensions one can end up with three families in tr
lets of anSU(3) family gauge symmetry whose couplin
unifies at high scales with the standard model gauge c
plings, without there being any light mirror families. Such
situation, if it is found, would be a telltale sign at low energ
of a theory with extra dimensions at very high scales
directly accessible to experiment.
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