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Case study in dimensional deconstruction
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We test dimensional deconstruction on a model of Arkani-Hamed, Cohen, and Georgi that is predicted to
have a naturally light composite Higgs boson, i.e., one whose massM is much less than its binding scaleL,
and whose quartic couplingl is large, so that its vacuum expectation valuev;M /Al!L also. We consider
two different underlying dynamics—UV completions—at the scaleL for this model. We find that the expec-
tation from dimensional deconstruction is not realized and that low-energy details depend crucially on the UV
completion. In one case,M!L andl!1; hence,v;L. In the other,l can be large or small, but then so is
M, andv is still O(L).
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I. INTRODUCTION

There has been considerable interest lately in a new
proach to model building called ‘‘dimensional deconstru
tion.’’ There are two views of dimensional deconstructio
One, taken by Arkani-Hamed, Cohen, and Georgi~ACG!
@1,2#, is that certain four-dimensional theories look, for
range of energies, like higher-dimensional theories in wh
the compactified extra dimensions are discretized on a p
odic lattice. ACG used this resemblance—particularly the
pological similarity between thed.4 components of gaug
fields and certain four-dimensional Goldstone bosons,
the absence of divergent counterterms for gauge-invar
operators of dimension greater thand—to deduce the form,
strength, and sensitivity to high-scale physics of phenome
logically important operators, such as mass terms and s
interactions. The other view is that of Hill and his collab
rators@3–5#, who assume the extra dimensions are real. T
discretize the extra dimensions, too—to regulate the the
This ‘‘transverse lattice’’ theory is expected to be in the sa
universality class as the continuum theory. In the view
Hill et al., the connection between gauge field compone
and light Higgs scalars is also there—because they are
same thing—and so the allowed operators and their sens
ity to high-scale physics are unambiguous. The conseque
of both of these views of dimensional deconstruction
similar, but they are not identical.

In this paper, we study ACG’s view as they apply it
building a model of electroweak symmetry breaking w
light composite Higgs bosons@6#. In Ref. @2#, ACG used
dimensional deconstruction to deduce that certain pse
Goldstone bosons~PGBs! acquire massesM much less than
the energy scale at which they are formed,L.4p f , wheref
is the PGB decay constant. They argued further that
PGBs have negative mass-squared termsM 2

2 ;2M2, and
that their quartic interaction is strong yet does not contrib
to M2. These ingredients—positive and negative squa
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massesM 1
2 .2M 2

2 !L2 and quartic couplings large com
pared toM 6

2 /L2—are what is required for a light composit
Higgs boson whose vacuum expectation valuev;M without
fine-tuning. These PGBs are prototypes for electrowe
Higgs bosons whose mass and vacuum expectation v
~VEV! are naturally stabilized far below their binding-
energy scale. This is important because it is the first nat
scheme for electroweak symmetry breaking since the inv
tions of technicolor and supersymmetry over 20 years ag

The simplest implementation of ACGs dimensional d
construction for light composite Higgs bosons would be
naive one, which we dub the ‘‘principal of strict deconstru
tion’’: For four-dimensional theories which admit a highe
dimensional interpretation, the form and strength of ope
tors involving Goldstone bosons may be deduced from th
for the correspondingd.4 components of gauge fields
ACG certainly do not adopt such a strict formulation, for,
we will quickly see, it is incorrect. A more liberal formula
tion is needed. In this paper, we explore how much we m
liberalize it in order to achieve the goal of a naturally lig
composite Higgs boson.

To that end, this paper is frankly pedagogical, contain
many details of the calculation of PGB masses and c
plings. We hope that some will find the pedagogy useful. F
them, and for the experts, our bottom line is this: Sometim
dimensional deconstruction works and sometimes it d
not. It often depends critically on the ultraviolet~UV!
completion of the low-energy theory to which deconstructi
is applied.

To make this more concrete, let us review the simpl
example presented by ACG. In Ref.@1#, they introduced a
model containingN strong gauge groups SU(n)k andN weak
ones SU(m)k . The matter fields of this model are the mas
less chiral fermions,

cLkP~n,m,1!, cRkP~n,1,m!

of „SU~n!k ,SU~m!k ,SU~m!k11…

~k51,2,...,N!. ~1!

The indexk is periodically identified withk1N, making this
the ‘‘moose ring’’ model depicted in Fig. 1. For simplicity
©2002 The American Physical Society01-1
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FIG. 1. The full moose for the ring model o
Ref. @1#, showing its UV completion. Strong
gauge groups are labeled byn1 , n2 ,..., nN and
weak gauge groups bym1 , m2 ,..., mN . Fermi-
ons cLk and cRk transform as (n,m,1) and
(n,1,m) of „SU(n)k^ SU(m)k^ SU(m)k11….
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all SU(n) couplingsgs are taken equal. They become stro
at the high-energy scaleL. All SU(m) couplingsg are taken
equal and assumed to be much less thangs at L. This setup
is the model’s UV completion. Let us see how it evolves
we descend to lower energies.

At L, the strong SU(n) interactions cause the fermions
condense as

^Vuc̄LkcRluV&5^Vuc̄RkcLl uV&52dklD, ~2!

where SU(m) indices are not summed over andD.4p f 3. In
the limit g→0, these fermions’ interactions have a large c
ral symmetry,@SU(m)L ^ SU(m)R#N. The symmetry of the
ground state uV& is the diagonal vectorial subgroup
@SU(m)V#N. Therefore, there areN sets ofm221 Goldstone
bosons. They are the pseudoscalarspk

a that couple to the

axial vector currentsj 5m,k
a 5c̄RkgmtacRk2c̄LkgmtacLk with

strength 2f . Here, ta (a51,2,...,m221) are generators in
the fundamental representation of SU(m) normalized to
Tr(tatb)5 1

2 dab .
Below L, this theory is described by nonlinear sigm

model fieldsUk5exp(ipk
ata /f )[exp(ipk /f ) interacting with

the weakly coupled SU(m)k gauge fieldsAkm5Akm
a ta . The

matter fields transform under the weak gauge groups asUk

→WkUkWk11
† . The effective Lagrangian is

L52
1

2g2 (
k51

N

Tr FkmnFk
mn1 f 2(

k51

N

Tr@~DmUk!
†DmUk#,

~3!

where DmUk5]mUk2 iAkmUk1 iU kAk11,m . This low-
energy theory is described by the ‘‘condensed moose’’ in F
11500
s

-

.

2, with the link variablesUk connecting sitesk andk11. In
this case, though not in all others, the moose describing
high-energy and low-energy theories look the same.

Now, N21 of the gauge boson multiplets absorbN21
sets of Goldstone bosons and acquire the massesMk

52g f sin(kp/N) for k51,...,N. The massless gauge fiel
Am

a 5(A1m
a 1¯1ANm

a )/AN couples with strengthg/AN and
the unabsorbed Goldstone boson ispa5(p1

a1¯

1pN
a )/AN. In the unitary gauge, then, the four-dimension

theory belowL is described by uniform link variablesUk

5exp(ipata /AN f ) plus the massless and massive gau
fields.

Alternatively, at energies well belowgf, this looks exactly
like a five-dimensional gauge theory. The fifth dimension
compactified on a discretized circle, represented exactly
the condensedmoose, and there appears to be~for k!N! a
Kaluza-Klein tower of excitations of the massless gauge
son@1#. The circumference of the circle isR5Na, where the
lattice spacinga51/g f and the five-dimensional gauge co
pling is g5

25g2a. The fifth component of the gauge boso
A5

a5gpa/AN. The geometrical connection is clear:pa is the
zero mode associated with rotation about the circle of SU(m)
groups in four dimensions and it corresponds to the fif
dimensional gauge freedom associated withA5

a .
But pa is a pseudo Goldstone boson; the symmetry c

responding to it is explicitly broken by the weak SU(m)k
interactions. What does dimensional deconstruction tell
about its mass? As ACG state, the higher-dimensional ga
invariance forbids contributions to the mass ofA5 from en-
ergy scales greater than 1/R, the inverse size of the fifth
dimension. However, gauge invariance does allow a m
1-2
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CASE STUDY IN DIMENSIONAL DECONSTRUCTION PHYSICAL REVIEW D65 115001
term for A5 from uWu2, where W5P exp(i*dx5A5) is the
nontrivial Wilson loop around the fifth dimension. Sinc
uWu2 is a nonlocal operator, it cannot be generated wit
UV-divergent coefficient. On the discretized circle,W
5Tr@Pk51

N exp(iaA5k)#. In the four-dimensional theory, thi
is just the gauge-invariant Tr(U1U2¯UN), and so this is
what provides the mass forpa. Standard power counting
indicates that the strength ofuTr(U1U2¯UN)u2 is
L2f 2(g2/16p2)N. This is correct only forN51. For N>2,

FIG. 2. The condensed moose for the ring model of Ref.@1#,
characterizing its low-energy structure with nonlinear sigma fie
Uk5exp(ipk /f ) linking the weak groups SU(m)k and SU(m)k11 .

FIG. 3. Graphical depiction of the HamiltonianHN in Eq. ~5!.
Fermions transform as indicated in Eq.~1! under the weak gauge
groups SU(m)k , whose bosons are identified in the figure. An3
indicates a dynamical mass insertion. Strong SU(n) gauge boson
interactions within each fermion loop are not indicated. There
no strong gauge interactions between loops.
11500
a

infrared singularities from the gauge boson masses atg→0
overrule this power counting. ACG show this using t
Coleman-Weinberg potential forpa. Contributions to the
mass forN52 come from the infrared to the ultraviolet re
gions, so thatM2}g4f 2 log(L2/MB

2);g4f 2 log(4p2N2/g2),
whereMB

2;g2f 2/N2 is a typical SU(m) gauge boson mass
for N>3, the IR region dominates andM2}g4f 2.

The same dependence of theg2 power onN is readily
seen by calculatingM2 from Dashen’s formula@7#:

4 f 2M2dab5 i 2^Vu†Qp
a ,@Qp

b ,HN#‡uV&. ~4!

The pa chiral symmetry breaking HamiltonianHN is de-
picted in Fig. 3 and is given by

HN. i N11g2NE d4q

~2p!4 S 1

q2D NE (
$cl %51

m221

)
k51

N

$d4xke
iq•xkgmknk

3T@ j Lkmk

ck ~xk! j Rknk11

ck11 ~0!#%, ~5!

where j lkm
c 5c̄lkgmtcclk . The infrared divergence in this

Hamiltonian may be cut off by replacing the massless ga
propagators byPk51

N (q22Mk
2)21. This ‘‘round-the-world’’

Hamiltonian corresponds to the effective Wilson-loop inte
action

HW5
CWg4

16p2 (
$cl %51

m221

)
k51

N

Tr~ tck
Uktck11

Uk
†!

5
CWg4

2N16p2 uTr~U1U2¯UN!u2, ~6!

whereCW5O@ log(4p2/g2)# for N52 andO(1) for N>3.
If g2/4p;1022 in this moose ring model, the PGB i

much lighter than its underlying compositeness scaleL. Un-
fortunately, it cannot be used as a light composite Hig
boson withv;M because its quartic self-interactions are
too weak, either derivatively coupled and of orderp4/ f 4

;g8 for typical momentump;M , or induced directly by
the weak gauge interactions as inHW and of orderg4. This
is in accord with what would be expected from dimension
deconstruction with itsA5 interpretation ofp. To overcome
this, ACG went to a six-dimensional model with nonderiv
tive PGB interactions. We consider this model in the rest
this paper.

In Sec. II, we describe ACGs model in which the co
densed moose diagram is the discretization of a torus w
SU(m) gauge groups~weak couplingg! at N3N sites con-
nected by nonlinear sigma model links. This corresponds
six-dimensional gauge model with the fifth and sixth dime
sions compactified on the torus. In the four-dimensional vi
of the model, the Higgs mechanism gives mass to all but
of the SU(m) gauge multiplets, and several PGBs remain
get mass and mutually interact. Two of these correspon
the fifth and sixth components of the gauge field; the oth
do not have such simple topological interpretations. We d
cuss the expectations from strict dimensional deconstruc
for the PGB masses and interactions and show, in particu

s

e

1-3
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KENNETH LANE PHYSICAL REVIEW D 65 115001
that the quartic interaction of the PGBs corresponding toA5,6
should beO(g2/N2). This is not strong, but it may be larg
enough compared toM2/L2 to givev;M!L. We present a
UV completion of this model consisting of a QCD-like dy
namics of fermions with strong gauge interactions, just
ACG did for the five-dimensional moose ring model. The
for simplicity and for its phenomenological relevance@8#, we
restrict this model toN52. It has five composite PGB mul
tiplets. In Sec. III, we estimate the PGB masses, identify
the structure of the leadingg4 log(1/g2) andg4 contributions
to M2. Theg4 log(1/g2) terms are the same as in the moo
ring model and their form is predicted by dimensional d
construction. At that order, one of the PGBsnot correspond-
ing to A5,6 remains massless. WhenO(g4) terms are added
all five PGBs have comparable mass. In Sec. IV, we cons
the nonderivative interactions of the PGBs. The interacti
produced by the QCD-like UV completion have neither t
form nor the strength of those predicted by dimensional
construction. In particular, the interactions areO(g4), too
weak to give a Higgs VEV comparable to its mass. In Sec
we study a UV completion that adds elementary scalars
teracting strongly with themselves and the fermions. Th
induce the PGB strong self-interactions expected from
mensional deconstruction. However, forN52 these scalar
interactions also give large masses toall the PGBs. At the
least, this changes the low-energy phenomenology of
model; at worst, it eliminates the candidates for a light co
posite Higgs boson. This difficulty of constructing light com
posite Higgs bosons seems to be general: The desired qu
interactions explicitly break the symmetries keeping
PGBs light. If the interactions are strong, the PGBs are
PGBs at all, and conversely. In any case, what happens
pends critically on the condensed-moose theory’s
completion.

II. THE dÄ6 TOROIDAL MOOSE MODEL

In Ref. @2#, ACG considered a model in which the co
densed moose is the discretization of a torus withN3N
sites; see Fig. 4. The sites are labeled by integers~k, l! with
k identified withk1N and l with l 1N. The weakly coupled
gauge groups SU(m)kl ~all with coupling g! are located at
the sites. The sites are linked byUkl andVkl . They connect
the sites~k, l! to (k,l 11) and to (k11,l ), respectively, ac-
cording to the SU(m)kl transformations,

Ukl→WklUklWk,l 11
† , Vkl→WklVklWk11,l

† . ~7!

In the four-dimensional theory, the link variables are nonl
ear sigma model fields involving 2N2 SU(m) adjoints of
composite Goldstone bosons,pu,kl5(apu,kl

a ta and pv,kl

5(apv,kl
a ta :

Ukl5exp~ ipu,kl / f !, Vkl5exp~ ipv,kl / f !. ~8!

The SU(m)kl gauge bosons absorbN221 sets of GBs.
From the covariant derivatives,

DmUkl5]mUkl2 iAkl
m UklAk,l 11

m , ~9!
11500
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DmVkl5]mVkl2 iAkl
m Vkl1 iVklAk11,l

m ,

it is easy to determine that the mass eigenstate vector bo
and their masses are

Bmn
m 5(

k,l
~zmn* !~kl !Akl

m

[
1

N (
k,l

e22i ~km1 ln !p/NAkl
m ,

~10!

MB,mn
2 54g2f 2Fsin2S mp

N D1sin2S np

N D G
~m,n51,... ,N!.

The massless gauge boson isBNN
m 5N21(k,lAkl

m and its cou-
pling is g/N.

Among theN211 leftover PGBs, two that are especial
interesting are

pu5
1

N (
k,l

pu,kl , pv5
1

N (
k,l

pv,kl . ~11!

These are the analogs ofp in the moose ring model, the zer
modes associated with going around the torus in theU andV
directions. ACG used these two PGBs as light compo
Higgs multiplets.1

1In Ref. @2#, the weak groups are all SU~3! except at the~1,1! site,
where it is only the SU~2!^U~1! subgroup of SU~3!. This stratagem
gets the putative Higgs bosons out of the adjoint and into SU~2!

FIG. 4. The condensed moose for the toroidal model of Ref.@2#.
The weak SU(m)kl group is denoted by a circle at the site~k, l!. The
site ~k, l! is identified with the sites (k1N,l ) and (k,l 1N). Non-
linear sigma model link fieldsUkl and Vkl transform according to
Eq. ~7!.
1-4
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FIG. 5. The complete moose
for the toroidal model of Ref.@2#
with a QCD-like UV completion.
The weak SU(m)kl gauge groups
are as in Fig. 4, and the stron
SU(k2

1
2 ,l ) and SU(k,l 2 1

2 )
gauge groups are indicated b
squares. Fermions transform as
Eq. ~17!.
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What do we expect for the masses and couplings ofpu
andpv from dimensional deconstruction? Viewing the co
densed moose as the compactified fifth and sixth dimens
of a six-dimensional gauge theory, the toroidal circumfere
once again isR5Na with a51/g f , the gauge coupling is
g65ga, and the extra-dimensional gauge fields areA5,6

a

5gpu,v
a /N. As in the moose ring model, dimensional deco

struction tells us that the leading contributions to th
masses come from the Wilson loops around the fifth a
sixth dimensions, e.g.,

uW5u25UP expS i E dx5A5DU2

5UTrH)
l 51

N

exp~ iaA5kl!J U2

5uTr$@exp~ ipu /N f !#N%u2

5uTr~Ukl¯UkN!u2 ~k51,...,N!. ~12!

Thus, as in the five-dimensional model, we expectMpu,v

2

}g4f 2 log(4p2 N2/g2) for N52 andg4f 2 for N>3. The last

doublets where they belong. We shall not need to complicate
exposition by inserting a weak gauge defect at one site.
11500
ns
e

-
r
d

equality in Eq. ~12! assumes thatpu,v are the only light
PGBs, so thatUkl>exp(ipu /Nf ) and Vkl>exp(ipv /Nf ) at
low energies. We shall see in the next section that this is
always true; the PGB masses depend on the nature of
theory’s UV completion.

The quartic self-interactions of the PGBs of the moo
ring model are weak, at mostO(g4). In the six-dimensional
gauge model, dimensional deconstruction implies the e
tence of a stronger nonderivative interaction correspond
to

Tr F56
2 5Tr~@A5 ,A6#2!1¯

5l Tr~@pu ,pv#2!1¯ . ~13!

This interaction comes from the plaquette operators@2#

Hh5(
k,l

lkl f
4Tr~UklVk,l 11Uk11,l

† Vkl
† !1H.c. ~14!

Note thatHh does not contribute to thepu,v masses. The
strength of the Tr(@pu ,pv#2) term is l5 1

2 (k,llkl /N
4. The

lkl are fixed by dimensional deconstruction as follows:2 The
six-dimensional action including the nonderivative term
Eq. ~13! is

ur
2I thank Bill Bardeen for this argument.
1-5
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E d4x a2
1

g6
2 F (

m,n51

4

Fmn
2 1

1

a4 (
k,l

Tr~UklVk,l 11Uk11,l
† Vkl

† !

1mixed termsG . ~15!

This giveslkl5( f 4g6
2a2)215g2 and

l5
g2

2N2 . ~16!

This may or may not be large enough to give a Higgs VEVv
comparable toMpu,v

, depending on theN dependence of the
Higgs masses.

The question of whether we can realize Eq.~16! is a ma-
jor focus of this paper. We pose the question as follows: C
we construct a UV completion of the condensed moose
generates Tr(@pu ,pv#2) with strengthO(g2/N2)? Below we
present a QCD-like UV completion. We find that this pr
ducesl5O(g4), and a VEV ofO(L). In Sec. V we study a
completion involving strongly interacting elementary scala
It also fails to produce the desired hierarchy ofM, v, andL.
While we have not proved that no UV completion exis
which realizes the expectation of deconstruction, we exp
this is so. In any event, the outcome of the low-energy Hig
theory depends crucially on its UV completion.

The simplest UV completion of this model, and the o
we shall adopt in the next two sections, follows the strate
of the moose ring model and is based on QCD-like dynam
at the scaleL.4p f . Since the link variables involve 2N2

Goldstone bosonspu,kl andpv,kl , we assume there are 2N2

strongly coupled SU(n) gauge groups. These are located
sites (k,l 1 1

2 ) and (k1 1
2 ,l ) for k, l 51,... ,N. The strongly

interacting massless fermions of this model are

cR~k,l 11/2!P~n,m,1!, cL~k,l 11/2!P~n,1,m!

of „SU~n!k,l 11/2,SU~m!kl ,SU~m!k,l 11…,
~17!

cR~k11/2!P~n,m,1!, cL~k11/2,l !P~n,1,m!

of „SU~n!k11/2,l ,SU~m!kl ,SU~m!k11,l….

The UV-completed toroidal moose is shown in Fig. 5.
These fermion interactions are invariant under

@SU(m)L ^ SU(m)R#2N2
chiral symmetry. Strong SU(n) dy-

namics cause the condensates

^Vuc̄L~k,l 11/2!cR~m,n11/2!uV&52dkmd lnD

↔4p f 2Ukldkmd ln ,
~18!

^Vuc̄L~k11/2,l !cR~m11/2,n!uV&52dkmd lnD

↔4p f 3Vkldkmd ln ,
11500
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so that this symmetry breaks spontaneously to the diag

@SU(m)V#2N2
subgroup with the appearance of thepu,v kl .

From now on, we restrict ourselves to the caseN52,
partly for the phenomenological reason noted earlier a
partly because of its simplicities and peculiarities. The f
and condensedN52 moose are shown in Fig. 6. Note th
every pair of adjacent lattice sites in the condensed mo
are connected by two link variables,Ukl and Uk,l 11 or Vkl

and Vk11,l . The gauge boson masses areM11
2 58g2f 2,

M12
2 5M21

2 54g2f 2, andM22
2 50.

From Eq.~10! and the fermion SU(m)kl current,

j u,kl
a 5 j Rm~k,l 11/2!

a 1 j Lm~k,l 21/2!
a 1 j Rm~k11/2,l !

a

1 j Lm~k21/2,l !
a , ~19!

we read off the Goldstone bosonp (mn) absorbed byBmn
m :

p~mn!
a 5

1

2 (
k,l 51

2

~z~mn!!~kl !@pu,kl
a 2pu,k,l 21

a 1pv,kl
a

2pv,k21,l
a #. ~20!

A convenient basis for the five physical GBs, whose mas
and couplings we will estimate in the next two sections,

pu5 1
2 @pu,111pu,121pu,211pu,22#,

pv5 1
2 @pv,111pv,211pv,121pv,22#,

pu85 1
2 @pu,111pu,122pu,212pu,22#, ~21!

pv85 1
2 @pv,111pv,212pv,122pv,22#,

puv8 5 1
2 @pu,111pu,222pu,122pu,21

2~pv,111pv,222pv,122pv,21!#.

The inverse transformations, which are useful when expa
ing plaquette interactions, are

pu,115
1
2 Fpu1pu81p~21!1

1

&
~puv8 1p~11!!G ,

pu,125
1
2 Fpu1pu82p~21!2

1

&
~puv8 1p~11!!G ,

pu,215
1
2 Fpu2pu81p~21!1

1

&
~puv8 1p~11!!G ,

pu,225
1
2 Fpu2pu82p~21!1

1

&
~puv8 1p~11!!G ;

~22!

pv,115
1
2 Fpv1pv81p~12!2

1

&
~puv8 2p~11!!G ,

pv,215
1
2 Fpv1pv82p~12!1

1

&
~puv8 2p~11!!G ,
1-6
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FIG. 6. The full ~a! and condensed~b! moose for theN52 toroidal model of Ref.@2# with a QCD-like UV completion. Notation is as
in Figs. 4 and 5.
m
in
pv,125
1
2 Fpv2pv81p~12!1

1

&
~puv8 2p~11!!G ,

pv,225
1
2 Fpv2pv82p~12!2

1

&
~puv8 2p~11!!G .
G
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III. PSEUDO GOLDSTONE BOSON MASSES

As in the moose ring model forN52, the leading
g4 log(1/g2) contribution to the PGB masses comes fro
four distinct round-the-world graphs of the type shown
Fig. 7. The Hamiltonian, analogous toHN in Eq. ~5!, is
H2. ig4E d4q

~2p!4 S 1

q2D 4E d4x d4y eiq•~x1y!gmnglr (
c,d51

m221

(
k51

2

@T„j Rm~k,1/2!
c ~x! j Ll~k,1/2!

d ~0!…

3T„j Rr~k,3/2!
d ~y! j Ln~k,3/2!

c ~0!…1~k,l /2!↔~ l /2,k!#. ~23!

This corresponds to the effective interaction

H252
C2f 4g4

32p2 logS 4p2

g2 D (
c,d51

m221

(
k,l 51

2

@Tr~ tcUkltdUkl
† !Tr~ tcUk,l 11

† tdUk,l 11!1~Ukl→Vlk!#

52
C2f 4g4

128p2 logS 4p2

g2 D (
k,l 51

2

@ uTr~UklUk,l 11!u21~Ukl→Vlk!#, ~24!
where we will see thatC2.6.
We can estimate the IR-singular contributions to the P

masses by the classic method of current algebra comb
with Weinberg’s spectral function sum rules@9,10#. As in
QCD, we assume the vector-axial vector spectral funct
DVA can be saturated with a massless pseudoscalar a
single vector and axial vector meson of massesMV,A.L
and dimensionless couplingsf V,A to the~V, A! currents. This
B
ed

n
a

gives

DVA5
f V

2MV
2

q22MV
22

f A
2MA

2

q22MA
22

4 f 2

q2

5
f V

2MV
4

q2 S 1

q22MV
22

1

q22MA
2 D .

~25!
1-7
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The second equality follows from the spectral function s
rules,

f V
2MV

22 f A
2MA

254 f 2,
~26!

f V
2MV

42 f A
2MA

450.

We obtain

~Mpu,v

2 !g4 log g25~Mp
u,v8

2
!g4 log g2

.
3mg4f 2

32p2 logS 4p2

g2 D , ~27!

where we put log(MV
2/MB

2)5 log(4p2 /g2) for a typical
SU(m) gauge mass of 4g2f 2 and used f V

2MV
2(MA

2

2MV
2)/4f 251 from Eq.~26!. We read off

C2.6. ~28!

All mixing terms vanish and (Mp
uv8

2
)g4 log g250. In other

words, dimensional deconstruction again predicts the or
but not the magnitude of the leading contribution to thepu,v
masses. It fails to mention thepu,v8 and the fact that they ar
degenerate withpu,v . It completely misses thepuv8 and its
masslessness at orderg4 log(1/g2).

All the PGBs, includingpu,v8 , get masses from 16 one
loop graphs of the type shown in Fig. 8. Because of infra
singularities, these are actuallyO(g4). They are represente
by the SU(m)-invariant effective Hamiltonian

H452
C4g4f 4

16p2 (
k,l 51

2

$uTr~UklVk,l 11Uk11,l
† Vkl

† !u2

1uTr~UklVk,l 11Uk11,l 11Vkl
† !u2

1uTr~UklVk,l 11Uk11,l
† Vk11,l !u2

FIG. 7. Graphical depiction of a typical term in the Hamiltonia
H2 in Eq. ~23!. Fermions transform as indicated in Fig. 6~a! under
the weak gauge groups SU(m)kl , whose bosons are identified in th
figure. An 3 indicates a dynamical mass insertion. As in Fig.
strong SU(n) gauge boson interactions within each fermion lo
are not indicated and there are no strong gauge interactions bet
loops.
11500
in

d

1 1
2 uTr~UklVk,l 11Uk11,l 11Vk11,l !u2

1 1
2 uTr~UklVk11,l 11

† Uk11,l 11Vkl
† !u2%. ~29!

Note that these terms are invariant under the interchan
Ukl↔Vlk . The first four terms inH4 are the sum of the
squaresof the plaquette interactionHh in Eq. ~14!. The
other terms are allowed by gauge invariance forN52 and
have exactly the same strength.3 We will discuss in Sec. IV
why the linear plaquette interaction does not appear.

The PGB masses fromH4 are easily evaluated. There
no mixing in the sum of the terms and we find

~Mpu

2 !g45~Mpv

2 !g45
mC4 g4f 2

2p2 ,

~Mp
u8

2
!g45~Mpv8

2
!g45

3mC4 g4f 2

4p2 , ~30!

~Mp
uv8

2
!g45

2mC4 g4f 2

p2 .

We estimateC4 by replacing the four massless gauge prop
gators in Fig. 8 by the mass eigenstate productPk,l(q

2

2Mkl
2 )21 and using the spectral functionsDVA :

C4. 3
16 ~12 log 2!. ~31!

It is easy to see from Eq.~29! where the ratio
(Mpu,v

2 )g4:(Mp
u,v8

2
)g4:(Mp

uv8
2

)g458:12:32 comes from. Jus

set all PGB fields but the one in question to zero and exp
to O„(p)2

….
Let us estimate the ratio of the two contributions toMpu

2 .

We take g2/4p51/30. Then (Mpu

2 )g4 log g2 /(Mpu

2 )g4.15

.2(Mpuv

2 )g4 /(Mpu

2 )g4; i.e., all the PGBs have roughly th

same mass. With this QCD-like UV completion of the toro
dal moose model, then, there arefive sets of light PGBs and
a very rich phenomenology. This does not change if ther
a gauge defect with SU(2)̂U(1) at site~1, 1!. Nor does the
situation change qualitatively forN.2. In sum, the particle
spectrum of the six-dimensional gauge theory is not a v
good representation of the four-dimensional one at ener
well below L.

IV. PSEUDO GOLDSTONE SELF-INTERACTIONS

Deconstructing the six-dimensional toroidal moose led
to expect the nonderivative interaction Tr(@pu ,pv#)2 with
strengthg2/N2. It was to come from the lattice version o
*g6

22TrF56
2 , namely,g2(k,lTr(UklVk,l 11Uk11,lVkl

† ). Instead,
our QCD-style UV completion of the model produced t
squared, not the linear, plaquette interactionH4 . Its O(g4)
coupling is too weak to produce a light composite Hig
VEV much less thanL.

3This N52 case is special. In anN3N toroidal lattice with peri-
odic boundaries, there areN2 plaquettes forN>3.

,

en
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The linear interaction does not appear forany Nbecause
this theory is invariant under reflection of any and all fe
mion fieldscL,R and, hence, under the reflection of anyUkl
and anyVkl . This by itself does not preclude the existence
Tr(@pu ,pv#)2, which indeed appears in the expansion
uTr(UVU†V†)u2. However, for the phenomenologically in
teresting case ofN52, even this interaction and many othe
like it are absent, at least toO(g4). This follows from the
invariance ofH4 under the replacement of any singleUkl by
Uk,l 11

† or Vkl by Vk11,l
† . Thus, interactions arising fromH4

are invariant under anyone replacement of the type

pu6pu86
1

&
puv8 →2~pu6pu8!6

1

&
puv8 ,

~32!

pv6pv86
1

&
puv8 →2~pv6pv8!6

1

&
puv8 .

Eight Tr(@pu ,pv#)2 terms in H4 are canceled by eigh
Tr(@pu ,pv#@6pu ,7pv#) terms.

This is not to say that all quartic PGB interactions inH4
vanish; they do not. But for our UV completion of theN
52 toroidal moose, the term expected from dimensional
construction just is not there. This is an artifact ofN52;
Tr(@pu ,pv#)2 does appear for higherN. But its coupling and
that of all other nonderivative quartic interactions are s
O(g4). In the next section, we change the UV completion
the model to obtain stronger quartic interactions.

V. STRONGER INTERACTIONS FROM ELEMENTARY
SCALARS

Linear plaquette interactions of any strength can be
tained by adding strongly interacting scalar fields to the U

FIG. 8. Typical graph contributing to the HamiltonianH4 in Eq.
~29!. The notation is as in Fig. 7.
11500
f
f

-

l
f

-

completion of the toroidal moose model.4 We introduce eight
complex scalar field multiplets,fu,kl and fv,kl for k,l
51,2, all of which are strong SU(n) singlets:

fu,kl[
1

A2m
fu,kl

0 1 (
a51

m221

fu,kl
a taP~m,m̄!

of SU~m!kl ^ SU~m!k,l 11 ,
~33!

fv,kl[
1

A2m
fv,kl

0 1 (
a51

m221

fv,kl
a taP~m,m̄!

of SU~m!kl ^ SU~m!k11,l ,

i.e., thefu,kl transform likeUkl and thefv,kl like Vkl . To
maintain equality of the weak SU(m)kl coupling g, we re-
quire all scalar interactions to be site-symmetric. We a
impose symmetry under the interchangesfu,kl↔fv,kl . This
preserves theUkl↔Vlk symmetry ACG needed to avoi
large tree-level Higgs boson masses in their model with
SU(2)^ U(1) gauge defect at site~1,1! @2#. These symme-
tries simplify our discussion, e.g.,fu,kl andfv,kl have equal
masses and Yukawa couplings. We assume the scalars
heavy, with massMf;L, the strong interaction scale of th
fermions.

The Yukawa interactions consistent with gauge and ot
symmetries are

LY5 (
k,l 51

2

@Gf~c̄L~k,l 11/2!fu,kl
† cR~k,l 11/2,l !

1c̄L~k11/2,l !fv,kl
† cR~k11/2,l !!1H.c.#. ~34!

We assumeGf5Gf* 5O(1). In the neglect of the weak
SU(m) gauge interactions, this theory is still invariant und

@SU(m)L ^ SU(m)R#2N2
with the symmetry extended to in

clude the scalars.
When the strong SU(n) interactions generate fermio

condensates, the Yukawa interactions induce a vacuum
pectation value for the scalars:

&vf[^Re~fu,kl
0 !&5^Re~fv,kl

0 !&

5
Gf

Mf
2 ^c̄L~k,l 11/2!cR~k,l 11/2!&; f . ~35!

The chiral symmetry is again spontaneously broken to
diagonal@SU(m)V#2N2

, and the Goldstone bosons are

4Cohen and Georgi separately mentioned to me that scalars
induce large plaquette interactions. The implementation used
was suggested to me by Chivukula. It is similar in spirit to Sim
mons’ model in which the gauge bosons of extended technicolor
replaced by scalars@11#. Elementary scalars by themselves ma
the model unnatural, so the original motivation of a naturally lig
composite Higgs boson is lost. I assume this can be fixed by su
symmetry.
1-9
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Pu,v,kl
a 5

f pu,v,kl
a 1vf Im~fu,v,kl

a !

Af 21vf
2

. ~36!

Now, Ukl5exp(iPu,kl /F) and Vkl5exp(iPv,kl /F), where F
5Af 21vf

2 . The absorbed and physical Goldstone bos
are the same combinations as in Eqs.~20! and ~21!. If the
fu,v have strong self-interactions, then so do the PGBs, b
directly through thef4 terms and through the plaquette i
teractions they induce. The price for this will be large PG
masses.

To generate Tr(UklVk,l 11Uk11,l
† Vkl

† ) and the squared com
mutator expected from dimensional deconstruction, we s
pose there exists the SU(m)kl gauge-invariant Hamiltonian

Hf15r1(
k,l

Tr~fu,klfv,k,l 11fu,k11,l
† fv,kl

† !1H.c. ~37!

This produces quartic PGB interactions and, because t
now need be no reflection symmetry to forbid it, it produc
Hh in Eq. ~14! with equal strengthslkl;r1 . Deconstruction
does not fix the magnitude ofr1 , so we can take it to be
anything we want. In particular, we can chooser15O(g2)
to make deconstruction’s prediction come true. If that give
Higgs VEV too much larger than its mass, we can just
well chooser15O(1).

In the N52 model, however, there is more. There can
interactions that induce the other plaquettes inH4 , but lin-
earized,

Hf25r2(
k,l

@Tr~fu,klfv,k,l 11fu,k11,l 11fv,kl
† !

1Tr~fu,klfv,k,l 11fu,k11,l
† fv,k11,l !#1H.c.,

Hf35 1
2 r3(

k,l
Tr~fu,klfv,k,l 11fu,k11,l 11fv,k11,l !

1H.c., ~38!

Hf45 1
2 r4(

k,l
Tr~fu,klfv,k11,l 11

† fu,k11,l 11fv,kl
† !

1H.c.

There can also be ‘‘Wilson-loop’’ interactions that induce t
terms inH2 and more,5

Hf55r5(
k,l

@ uTr~fu,klfu,k,l 11!u21uTr~fv,klfv,k11,l !u2#,

~39!

Hf65 (
k,l ,m,n

@r6Tr~fu,klfu,k,l 11!

3Tr~fv,mn
† fv,m11,n

† !1¯#1H.c.

5Quadratic Wilson-loop interactions can be forbidden by discr
symmetries of the type discussed below.
11500
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Dimensional deconstruction does not fix the strengths
these interactions either, but without a symmetry to prev
them there is no reason for them to be much smaller thanr1 .

However, if all thesef4 and plaquette interactions ar
present, they give largeO(r iF

2) squared masses to all th
PGBs. What symmetries can we invoke to prevent the
Any new symmetry must respect thefu,kl↔fv,lk inter-
change. The discrete phase transformations

fu,v,kl→hu,v,klfu,v,kl ,
~40!

hu,kl5hv,kl , uhu,vklu51,

can forbid all thef4 interactions, includingHf1 , except
Hf4 andHf5 . Still, these two and the effective interaction
they induce are sufficient to generate largeM2 terms for all
the PGBs. This illustrates what seems to be a general rul
the PGBs have strong self-interactions, then there is la
explicit symmetry breaking and large PGB masses. If
masses are kept small, then the self-interactions are wea
either case, the Higgs VEV is always large,O(L).

Finally, we might well ask why we needed the fermio
cL,R in this UV completion. Their only useful purpose wa
to induce the VEVvf for the scalars. Presumably this cou
have been accomplished by a negativeMf

2 .

VI. CONCLUSIONS

We conclude that, for theN52 toroidal moose model a
least, dimensional deconstruction is not a reliable guide
building a model of naturally light composite Higgs boson
Deconstruction says the model has two light Higgs mult
lets,pu andpv , one of which can be given a negative mas
squared and VEV much less than the compositeness scaL
by putting an SU(2)̂ U(1) gauge defect at one site. W
studied whether a small mass and VEV can be obtained w
two straightforward UV completions of the model. For th
QCD-like completion, we ended up with a model containi
five light PGB multiplets and weak self-interactions so th
any VEV is of orderL. For the model which adds strongl
interacting scalars, the five PGBs have masses and qu
couplings ofO(g) to O(1), but any VEV isstill O(L). We
could chooser1 large and all other scalar couplings sma
but this is arbitrary, having nothing to do with deconstru
tion. Furthermore, since this model presumably requires
persymmetry to stabilize it, it does not seem much of
advance beyond earlier supersymmetric or technicolor m
els.

Finally, what about models withN>3? With a QCD-like
UV completion, all the PGBs have roughly the sameM2

5O(g4L2) and O(g4) quartic couplings. Adding scalar
with a strong interactionHf1 can induceHh , raising the
mass of all PGBs exceptpu andpv and giving a rather large
Tr(@pu ,pv#)2 coupling. The phase-invariant interactionHf5

e

1-10
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has dimension 2N. If we include it, its strength is naturally
r5 /L2N24 with r5;1. It induces the squared Wilson-loo
interaction Sk@ uTr(Uk1¯UkN)u21uTr(V1k¯VNk)u2# with
strength r5F4(F/L)2N24 and Mpu,v

2 ;r5F2(F/L)2N24.

Again, any Higgs VEV isv;L. If we excludeHf5 , the
squared Wilson-loop terms are generated with stren
O(g4) by the weak SU(m) interactions. This, finally, gives a
Higgs spectrum and couplings in accord with deconstruct
Supersymmetry at the scaleL is still needed to keep every
thing stabilized.
ev

B

ev

11500
th
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