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We test dimensional deconstruction on a model of Arkani-Hamed, Cohen, and Georgi that is predicted to
have a naturally light composite Higgs boson, i.e., one whose Massmuch less than its binding scalg
and whose quartic coupling is large, so that its vacuum expectation vaiueM/ A <A also. We consider
two different underlying dynamics—UV completions—at the sc&léor this model. We find that the expec-
tation from dimensional deconstruction is not realized and that low-energy details depend crucially on the UV
completion. In one cas&] <A and\<1; hencep~A. In the other\ can be large or small, but then so is
M, andv is still O(A).
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[. INTRODUCTION massesM? = —M? <A? and quartic couplings large com-
pared toM2/A2?—are what is required for a light composite
There has been considerable interest lately in a new afHiggs boson whose vacuum expectation valueM without

proach to model building called “dimensional deconstruc-fine-tuning. These PGBs are prototypes for electroweak
tion.” There are two views of dimensional deconstruction.Higgs bosons whose mass and vacuum expectation value
One, taken by Arkani-Hamed, Cohen, and Ged®yCG) (VEV) are naturally stabilized far below their binding-
[1,2], is that certain four-dimensional theories look, for aenergy scale. This is important because it is the first natural
range of energies, like higher-dimensional theories in whictscheme for electroweak symmetry breaking since the inven-
the compactified extra dimensions are discretized on a pertions of technicolor and supersymmetry over 20 years ago.
odic lattice. ACG used this resemblance—particularly the to- The simplest implementation of ACGs dimensional de-
pological similarity between thd>4 components of gauge construction for light composite Higgs bosons would be the

fields and certain four-dimensional Goldstone bosons, anfaive one, which we dub the “principal of strict deconstruc-

the absence of divergent counterterms for gauge-invariarfon’: For four-dimensional theories which admit a higher-
imensional interpretation, the form and strength of opera-

operators of dimension greater then-to deduce the form, tors involving Goldst b be deduced f o
strength, and sensitivity to high-scale physics of phenomeno-OrS Involving ©>oldstone bosons may be deduced from those

logically important operators, such as mass terms and seIFpr the correspond|ngj>4 components of gauge fields.
: . Lo . . ACG certainly do not adopt such a strict formulation, for, as
interactions. The other view is that of Hill and his collabo-

rators[3—5], who assume the extra dimensions are real TheWe will quickly see, it is incorrect. A more liberal formula-
i o . ) ' Yion is needed. In this paper, we explore how much we must
discretize the extra dimensions, too—to regulate the theor

. ) i - Yiberalize it in order to achieve the goal of a naturally light
This “transverse lattice” theory is expected to be in the SaM&omposite Higgs boson.
universality class as the continuum theory._ In the view of 14 that end, this paper is frankly pedagogical, containing
Hill etal, the connection between gauge field component$nany details of the calculation of PGB masses and cou-
and light Higgs scalars is also there—because they are thgings. we hope that some will find the pedagogy useful. For
same thing—and so the allowed operators and their sensitithem, and for the experts, our bottom line is this: Sometimes
ity to high-scale physics are unambiguous. The consequencéfmensional deconstruction works and sometimes it does
of both of these views of dimensional deconstruction arenot. It often depends critically on the ultraviol¢tV)
similar, but they are not identical. completion of the low-energy theory to which deconstruction
In this paper, we study ACG’s view as they apply it to is applied.
building a model of electroweak symmetry breaking with  To make this more concrete, let us review the simplest
light composite Higgs boson]. In Ref. [2], ACG used example presented by ACG. In R¢l], they introduced a
dimensional deconstruction to deduce that certain pseudgmodel containindN strong gauge groups Shi, andN weak

Goldstone bosonéPGBs acquire masses! much less than  ones SUf),. The matter fields of this model are the mass-
the energy scale at which they are formadsz4«f, wheref  |ess chiral fermions,

is the PGB decay constant. They argued further that the
PGBs have negative mass-squared teifs~—M?2, and ke (nm,1),  ggree(n,1,m)
that their quartic interaction is strong yet does not contribute
; . o . of (SU(n),,SU(m),,SUm
to M2. These ingredients—positive and negative squared (SUN)i, SUM), SUM)ic; 1)

(k=1,2,...N). (1)

*Email address: lane@physics.bu.edu The indexk is periodically identified wittk+ N, making this
"Permanent address. the “moose ring” model depicted in Fig. 1. For simplicity,
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all SU(n) couplingsg are taken equal. They become strong2, with the link variablesJ, connecting sitek andk+1. In

at the high-energy scale. All SU(m) couplingsg are taken  this case, though not in all others, the moose describing the
equal and assumed to be much less thaat A. This setup  high-energy and low-energy theories look the same.

is the model's UV completion. Let us see how it evolves as  Now, N—1 of the gauge boson multiplets absdyb- 1

we descend to lower energies. sets of Goldstone bosons and acquire the massés
At A, the strong SUt) interactions cause the fermions to =2gfsinka/N) for k=1,..N. The massless gauge field

condense as A2 = (A3, +--+A%,)/N couples with strengtlg/\/— N and

- —0l7 __ the unabsorbed Goldstone  boson isr®=(7{+-
(il 0 =( Qb ) Sk, @ +7T,"’\“)/\/N. In the unitary gauge, then, the four-dimensional
where SU() indices are not summed over ang=47f3. In  theory belowA is described by uniform link variable
the limit g— 0, these fermions’ interactions have a large chi-=exp(7®,/\/Nf) plus the massless and massive gauge
ral symmetry,[ SU(m), @ SUmM)]N. The symmetry of the fields.
ground state|Q) is the diagonal vectorial subgroup,  Alternatively, at energies well belogf, this looks exactly
[SU(m)y]". Therefore, there arld sets ofm?—1 Goldstone [ike a five-dimensional gauge theory. The fifth dimension is
bosons. They are the pseudoscalaﬁsthat couple to the compactified on a discretized circle, represented exactly by
axial vector current$s,, = ¢ri¥tatfri— YLk Yutathc With  the condensednoose, and there appears to (ber k<N) a
strength 2f. Here,t, (a=1,2,..m?>—1) are generators in Kaluza-Klein tower of excitations of the massless gauge bo-
the fundamental representation of $k)( normalized to son[1]. The circumference of the circle B=Na, where the
Tr(taty) =3 Sap- lattice spacinga=1/gf and the five-dimensional gauge cou-
Below A, this theory is described by nonlinear sigma pling is g2=g?a. The fifth component of the gauge boson
model fieldsU = exp(mita/f )=exp(m/f) interacting with  A2=g72/\/N. The geometrical connection is clear? is the
the weakly coupled SU(), gauge fieldsA,,=A,t,. The  zero mode associated with rotation about the circle ofrBJJ(
matter fields transform under the weak gauge groups,as groups in four dimensions and it corresponds to the fifth-
—W U W[, . The effective Lagrangian is dimensional gauge freedom associated with
But 72 is a pseudo Goldstone boson; the symmetry cor-

responding to it is explicitly broken by the weak Sty

interactions. What does dimensional deconstruction tell us
(3) about its mass? As ACG state, the higher-dimensional gauge

invariance forbids contributions to the massAyf from en-
where D, U,=4d,U—iA, U +iUA,,. This low- ergy scales greater thanRl/the inverse size of the fifth
energy theory is described by the “condensed moose” in Figdimension. However, gauge invariance does allow a mass

N N
1
L==355 2 2, TrF,FE 122 TI(D,LUY D U,
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infrared singularities from the gauge boson masseg-a0
overrule this power counting. ACG show this using the
Coleman-Weinberg potential fotr®. Contributions to the
mass forN=2 come from the infrared to the ultraviolet re-
gions, so thatM?xg*f? log(A%M3) ~g*f? log(4mN?g?),
where M3~ g?f?/N? is a typical SU(n) gauge boson mass;
for N=3, the IR region dominates ard?og*f?.

The same dependence of tgé power onN is readily
seen by calculating? from Dashen’s formul&7]:

4F2M28,,=i2(Q|[Q2 [ Q2 HNT1I Q). 4

The 72 chiral symmetry breaking Hamiltoniafy is de-
picted in Fig. 3 and is given by

d4q 1 N m?-1 N
Hy=iN*1 (_) f d4x,eld *kgrkrk
g™ (2m)*\g? {c,%l k[[l ™ g
XLk, (K0T Re! (0T, (5)

FIG. 2. The condensed moose for the ring model of IREF, Wherejf\k# IYutethk. The infrared divergence in this
characterizing its low-energy structure with nonlinear sigma fieldsHamiltonian may be cut off by replacing the massless gauge
U, =exp(m/f) linking the weak groups Suf), and SUM),. ;. propagators b)Hk 1 (92 - M? W L. This “round-the-world”

Hamiltonian corresponds to the effective Wilson-loop inter-
term for Ag from [W|?, where W=P exp(/dxAs) is the  action
nontrivial Wilson loop around the fifth dimension. Since

2
[W|? is a nonlocal operator, it cannot be generated with a CWg4 le H Ul
UV-divergent coefficient. On the discretized circl@y 1672 (i Tr(te, Ute, , Uk

=Tr{II}_, exp(@Ag)]. In the four-dimensional theory, this
is just the gauge-invariant Td(;U,---Uy), and so this is 5
what provides the mass for?. Standard power counting 2N 16 2|Tr(U1U2 Unl%, ©®)
indicates that the strength of Tr(U U, --Uy)|? is

A?f?(g?/167%)N. This is correct only foN=1. ForN=2,  whereC,y,=O0O[log(47%/g?)] for N=2 andO(1) for N=3.

If g?/4w~10"2 in this moose ring model, the PGB is
much lighter than its underlying compositeness scalé&n-
fortunately, it cannot be used as a light composite Higgs
boson withv ~M because its quartic self-interactions are all
too weak, either derivatively coupled and of ordat/f*
~g® for typical momentump~M, or induced directly by
the weak gauge interactions as?fy, and of orderg®. This
is in accord with what would be expected from dimensional
deconstruction with it#\5 interpretation ofr. To overcome
this, ACG went to a six-dimensional model with nonderiva-
tive PGB interactions. We consider this model in the rest of
this paper.

In Sec. Il, we describe ACGs model in which the con-
densed moose diagram is the discretization of a torus with
SU(m) gauge groupsweak couplingg) at NX N sites con-
nected by nonlinear sigma model links. This corresponds to a
six-dimensional gauge model with the fifth and sixth dimen-
sions compactified on the torus. In the four-dimensional view

T of the model, the Higgs mechanism gives mass to all but one

FIG. 3. Graphical depiction of the Hamiltonidiy in Eq. (5.  Of the SUf) gauge multiplets, and several PGBs remain to
Fermions transform as indicated in Ed) under the weak gauge 9et mass and mutually interact. Two of these correspond to
groups SUM),, whose bosons are identified in the figure. An the fifth and sixth components of the gauge field; the others
indicates a dynamical mass insertion. Strong I§Ugauge boson do not have such simple topological interpretations. We dis-
interactions within each fermion loop are not indicated. There arecuss the expectations from strict dimensional deconstruction
no strong gauge interactions between loops. for the PGB masses and interactions and show, in particular,

4
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that the quartic interaction of the PGBs correspondingdg VN
should beO(g?/N?). This is not strong, but it may be large
enough compared tel%/A2 to givev ~M <A. We present a
UV completion of this model consisting of a QCD-like dy- P~
namics of fermions with strong gauge interactions, just as
ACG did for the five-dimensional moose ring model. Then,
for simplicity and for its phenomenological relevarj&¢, we
restrict this model taN=2. It has five composite PGB mul-
tiplets. In Sec. lll, we estimate the PGB masses, identifying
the structure of the leadingf log(1/g%) andg* contributions

to M2. Theg*log(1/g?) terms are the same as in the moose
ring model and their form is predicted by dimensional de-
construction. At that order, one of the PGBat correspond-

ing to As  remains massless. Whé(g*) terms are added,

all five PGBs have comparable mass. In Sec. IV, we considet
the nonderivative interactions of the PGBs. The interactions
produced by the QCD-like UV completion have neither the
form nor the strength of those predicted by dimensional de-
construction. In particular, the interactions @g?), too
weak to give a Higgs VEV comparable to its mass. In Sec. V,
we study a UV completion that adds elementary scalars in- FIG. 4. The condensed moose for the toroidal model of R8f.
teracting strongly with themselves and the fermions. Thes&he weak SUfn),, group is denoted by a circle at the sikgl). The
induce the PGB strong self-interactions expected from disite (k 1) is identified with the sites+N,I) and ,I+N). Non-
mensional deconstruction. However, fN=2 these scalar linear sigma model link fie'dym and Vkl transform aCCOfding to
interactions also give large massesalbthe PGBs. At the EG: (@).

least, this changes the low-energy phenomenology of the

model; at worst, it eliminates the candidates for a light com- D#V= "V = 1A Vig T iIViiA 1

posite Higgs boson. This difficulty of constructing light com- ) ]

posite Higgs bosons seems to be general: The desired quartids easy to determine that the mass eigenstate vector bosons
interactions explicitly break the symmetries keeping the@nd their masses are

PGBs light. If the interactions are strong, the PGBs are not

Unw

PGBs at all, and conversely. In any case, what happens de- Bﬁmzz (&) oAl
pends critically on the condensed-moose theory’s UV k.l
completion. 1
E—E g~ 2i(km+In)m/Np 1
N & ki
Il. THE d=6 TOROIDAL MOOSE MODEL ' (10

In Ref. [2], ACG considered a model in which the con- , oo (MmN
densed moose is the discretization of a torus whth N MG mn=4g°f?| sir? N +sin? N
sites; see Fig. 4. The sites are labeled by inte¢er with
k identified withk+N and| with [ +N. The weakly coupled (mn=1,...N).

gauge groups Suif),, (all with coupling g) are located at

the sites. The sites are linked by, andVy,. They connect The massless gauge bosorBig,= N‘12K,|A’k‘| and its cou-
the sites(k, ) to (k,| +1) and to k+1]), respectively, ac- pling is g/N.

cording to the SUf), transformations, Among theN?+1 leftover PGBs, two that are especially

. . interesting are
Uki—=WigUiiWy 111, Ve WiiVigWie ) - (7

1 1
In the four-dimensional theory, the link variables are nonlin- Wu:N; TTu,kl s Tfﬁﬁ% Ty ki - (13)
ear sigma model fields involvingN® SU(m) adjoints of ’ '

compoasite Goldstone bosonss,=Zamta @nd 7, These are the analogs ofin the moose ring model, the zero
=2,y kila: modes associated with going around the torus intfandV

) ] directions. ACG used these two PGBs as light composite
Ug=explimy/f), Vi=explim, w/f). (8  Higgs multiplets:

The SUM),, gauge bosons abso’—1 sets of GBs.

From the covariant derivatives, ln Ref.[2], the weak groups are all $8) except at thél,1) site,

. " o u where it is only the S(2)®@U(1) subgroup of S(B). This stratagem
DU = d*Uy —i1AGUKAL 11 9 gets the putative Higgs bosons out of the adjoint and intg25U
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FIG. 5. The complete moose
R L R 3. L R [ L N\ R for the toroidal model of Ref.2]
22 1’9 ‘|%’2 \2’2/ §,2| {3’5 with a QCD-like UV completion.
The weak SUfn),, gauge groups
L L L are as in Fig. 4, and the strong
SUK-3,1) and SUkI-3)
2,2 3%' gauge groups are indicated by
squares. Fermions transform as in
Eq. (17).
R(2,2) 6, ) %17
1),—‘ En L ad ) 1G0  RG
3 6’1\ 2’ 51 fhl\ 2’
2 o 2] >
1 1
L(2,§) L(3,§)
24 [
1 1
R(2, 5) RG.3)

What do we expect for the masses and couplingsrpf equality in Eq.(12) assumes thatr, , are the only light
and 7, from dimensional deconstruction? Viewing the con- PGBs, so thaU,,=exp(m,/Nf) and V =exp(m,/Nf) at
densed moose as the compactified fifth and sixth dimensiorsw energies. We shall see in the next section that this is not
of a six-dimensional gauge theory, the toroidal circumferencalways true; the PGB masses depend on the nature of the
once again iR=Na with a=1/gf, the gauge coupling is theory’s UV completion.
O6= ga and the extra-dimensional gauge fields @@ The quartic self-interactions of the PGBs of the moose
=g ,/N. As in the moose ring model, dimensional decon-fing model are weak, at mo&(g?). In the six-dimensional
struction tells us that the leading contributions to theirgauge model, dimensional deconstruction implies the exis-
masses come from the Wilson |oops around the fifth andence of a stronger nonderivative interaction correspondlng
sixth dimensions, e.g., to

2 TrF2=Tr([As,Ag]?)+"

sz‘P p( dxsA
[Wel™= P ex 'f %6 =N Tr([ g, m, ]2+ (13

2
This interaction comes from the plaquette operafais

N
= Tr’IHl expliaAsy)

_ 4 Tyt
= | Tr{[exqti m INF) M2 HD—kZl Maf Tr(U Vi 141Uy Vig) tH.c. - (14)

=|Tr(U U |*  (k=1,..N). (120 Note thatH does not contribute to the,, masses. The
strength of the Ti(m,,,]?) term isA =323, /N The
Thus, as in the five-dimensional model, we expk/ti Ay are fixed by dimensional deconstruction as folldiEhe
«g*f?log(4m? N?/g?) for N=2 andg*f? for N>3. The last  six-dimensional action including the nonderivative term in
Eq.(13) is

doublets where they belong. We shall not need to complicate our
exposition by inserting a weak gauge defect at one site. 2| thank Bill Bardeen for this argument.
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1 1 so that this symmetry breaks spontaneously to the diagonal
2 .
f d*x 32? ) Fot g% Tr(UVi 41Ul Vi) [SU(mM)y 12V subgroup with the appearance of thg, .
6 ’ From now on, we restrict ourselves to the cd$e 2,
partly for the phenomenological reason noted earlier and
+ mixed terms. (15 partly because of its simplicities and peculiarities. The full
and condensetll=2 moose are shown in Fig. 6. Note that
every pair of adjacent lattice sites in the condensed moose

>

wv=

This giveshy=(f*g5a?) ~*=g? and are connected by two link variablels,, and U, ., or V,
and Vi, q,;. The gauge boson masses akdi,=8g>f?,
9 18 Mi,= M,=4g*f2, and M5,=0.

2N2* From Eg.(10) and the fermion SuUf),, current,

) . . jtk=Ik (kl+1/2)+jﬁ (k|—1/2)+jge (k+1/2))
This may or may not be large enough to give a Higgs MEV ’ i s K ’
comparable tM ;. depending on th&l dependence of the il uk—120) » (19

Higgs masses.
The question of whether we can realize Etf) is a ma- We read off the Goldstone bosefy absorbed byBf,:
jor focus of this paper. We pose the question as follows: Can 2
we construct a UV completion of the condensed moose that
generates Tf(r, ,,]%) with strengthO(g?/N?)? Below we
present a QCD-like UV completion. We find that this pro- a
duces\ =0(g*), and a VEV ofO(A). In Sec. V we study a — Ty k-14]- (20
completion involving strongly interacting elementary scalars.A
It also fails to produce the desired hierarchyMfv, andA.
While we have not proved that no UV completion exists

W?m”)zikz'l (Cmm) k[ Tk — Tok—1F 7ok

convenient basis for the five physical GBs, whose masses
and couplings we will estimate in the next two sections, is

which realizes the expectation of deconstruction, we expect Y= %[Wu,lﬁ Ty 12F Tu21F Ty 22,
this is so. In any event, the outcome of the low-energy Higgs
theory depends crucially on its UV completion. Ty =3[y 127 Ty 21+ Ty 10+ T, 23],
The simplest UV completion of this model, and the one
we shall adopt in the next two sections, follows the strategy =3[ Ty 11 Ty 10— Ty 21— Tu 22l (21
of the moose ring model and is based on QCD-like dynamics
at the scaleA =4« f. Since the link variables involve N 7y =3[ Ty 11t Ty 21— Ty 10— Ty 2],
Goldstone bosons, ,; and, i, we assume there aréN3 .
strongly coupled SW{) gauge groups. These are located at Ty =20 Ty 11t Ty 22— T 12~ Ty 21

sites ,I+3) and k+3,1) for k, I=1,... N. The strongly B _ _
interacting massless fermions of this model are (T 117+ Ty 20— Ty 12— Ty 20) ]

The inverse transformations, which are useful when expand-
Uriki+12 € (ML), +172 € (N, 1,mM) ing plaquette interactions, are

of (SUMN)y,i+172, SUM)y, SUM)y ;4 1), ) , 1,
(17) Ty11= 3| Tyt Tt Tyt E(Wuﬁ”ﬂ(m)

Urik+12 € (LML), P (k4 172)) € (N,1M)

of (SUN) k1725, SUM)y;, SUM)yyq)).

1
My10= 3| Tyt TY— T2~ 5(77(111—’_ (11))

The UV-completed toroidal moose is shown in Fig. 5.
These fermion interactions are invariant under an ) , 1 ,

[SU(mM),®SUM)]2NY chiral symmetry. Strong SW) dy- Tu21= 2| T~ Tyt Tyt 5(Wuv+ Ty)

namics cause the condensates - .

— _1 o - ’ .
QL k1 +12 ¥Rmn+ 12| Q) = — SmdinA Tu227 2| Tu™ My 77(21)+‘/§(7T“”+7T(11))

(22
—4mf2Uy Semdin»

(18) Y11= 3 7Tv+771’1+77(12)_5(77|_’m_77(11))
<Q|EL(k+ 120 Yrm+ 1720 | Q) = — SkmOinA

_ 1
Ty 1= 3| Tyt T, — W19+ — (), — T(11))

V2

<—>417f3Vk|5km5|n y
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o &
R(1,3) R(LY) R(2,3) R(2,) Ui U1 1 U12 Usa
R(},1)
T G| 3\ BGD [yl M| o
21 N 201 2
Vit
. 1 1) (2.1
1) L) ) )
1,3 2,3 Va1
(a) (b)

FIG. 6. The full(a) and condensetb) moose for theN=2 toroidal model of Ref[2] with a QCD-like UV completion. Notation is as
in Figs. 4 and 5.

I1l. PSEUDO GOLDSTONE BOSON MASSES

1
Ty12= 3 770_7713+7T(12)+E(7TL',U—7T(11))
] As in the moose ring model foN=2, the leading
g*log(1/g?) contribution to the PGB masses comes from
four distinct round-the-world graphs of the type shown in

7TU,22:% Ty = Ty = (12~ ‘E(Wﬁu_mll)) : Fig. 7. The Hamiltonian, analogous @, in Eq. (5), is

m2-1 2

4
Ho=ig f @) (?) J dx d4y e|q~<x+y>gwg>\pCd2:1 kgl [T(] %M(k’m}(x)jE)\(k’m}(o))

XT( %k 32V S o320+ (K, 12) = (172)0) . (23)

This corresponds to the effective interaction

C2f4g 477 m _1 2
Ho= =5zl 7| 2 2 [TH(teUitaUi) TtV ataUicrs 1)+ (U= Vi)
C,f4g* A7?
T 1282 |09( ) E [ Tr(UiUi+ 0>+ (U= Vi1, (24
|
where we will see tha€,=6. gives

We can estimate the IR-singular contributions to the PGB 212 (2012 5
masses by the classic method of current algebra combined Ayp= vMy _ AMAZ ﬂ
with Weinberg's spectral function sum rul¢8,10]. As in 9*-My g*-Mz ¢

QCD, we assume the vector-axial vector spectral function

AVE
Ay can be saturated with a massless pseudoscalar and a _ fuMy 1 1
single vector and axial vector meson of masség,=A a9° \g°~M: g>—Mi)
and dimensionless couplindgs A to the(V, A) currents. This (25

115001-7
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Tr(1,3) U (1,2) + 3 Tr(UiVig 11Uk 1+ 1Vier 1)1
+ 3T (UnVir 12Uk i 2Vin) 12 (29

Note that these terms are invariant under the interchanges
U< V. The first four terms inH, are the sum of the
(1,2) (1,1) squaresof the plaquette interactioft{; in Eq. (14). The
other terms are allowed by gauge invariance ot 2 and
have exactly the same strengtkiVe will discuss in Sec. IV
why the linear plaquette interaction does not appear.
The PGB masses fro{, are easily evaluated. There is

3 3 no mixing in the sum of the terms and we find
vi(1,3) 7 UR(L D) ?
mC, g*f?
FIG. 7. Graphical depiction of a typical term in the Hamiltonian MZ ) a=(M2 ).u= 4—9
( T )g ( T )g 2 2 1
H, in Eq. (23). Fermions transform as indicated in Figagunder ! ! ™
the weak gauge groups Sidj,, , whose bosons are identified in the 4e2
figure. An X indicates a dynamical mass insertion. As in Fig. 3, (M2 ) =(M2 )gs= 3mC, g°f (30)
strong SUQ) gauge boson interactions within each fermion loop ., g* ) g 472 !
are not indicated and there are no strong gauge interactions between
loops. 2mC, g*f2
2 4
(M ’ )g4: - .

The second equality follows from the spectral function sum

rules, We estimateC, by replacing the four massless gauge propa-
gators in Fig. 8 by the mass eigenstate prodHc;'g(q2

2012 £28 12 _ f52
FUMy— FaMa =417, —/\/lﬁ,)‘1 and using the spectral functions,  :

2n14 2n 14 (26)
f2MY—faM2=0. Cs=3(1-log2). (31)
We obtain It is easy to see from EQ.(29 where the ratio
\2 o2 (Miu,v)g":(Mi;,v)g“:(Mi(w)g“:&lz;?’z comes from. Just
(M%, )a*10gg2= ( w;,v)g“ log g2 set all PGB fields but the one in question to zero and expand
to O((m)?).
2 2
~ 33”‘2;94:( 9<A%) , (27 Let us estimate the ratio of the two contributionsMg .
T g y

We take g*/4m=1/30. Then M3 )geioqq/(M3)p=15

where we put log{iZ/M3)=log(47*/g?) for a typical 22(M§ruy)g4/(M727u)g4; i.e., all the PGBs have roughly the
SU(m) gauge mass of @f? and used foMZ(M%Z  same mass. With this QCD-like UV completion of the toroi-

—M?2)/4f?=1 from Eq.(26). We read off dal moose model, then, there diee sets of light PGBs and
a very rich phenomenology. This does not change if there is
C,=6. (28)  agauge defect with SU(Z)U(1) at site(1, 1). Nor does the

situation change qualitatively fdd>2. In sum, the particle
All mixing terms vanish and l‘(/li )g4109g2=0- In other  spectrum of the six-dimensional gauge theory is not a very
uv rg[;ood representation of the four-dimensional one at energies

words, dimensional deconstruction again predicts the onigin 1l below A.

but not the magnitude of the leading contribution to thg,
masses. It fails to mention the/, , and the fact that they are
degenerate withr, , . It completely misses ther,, and its
masslessness at ordgtlog(1/g?). Deconstructing the six-dimensional toroidal moose led us
All the PGBs, includingm, ,, get masses from 16 one- to expect the nonderivative interaction Tr(, ,m,1)? with

loop graphs of the type shown in Fig. 8. Because of infraredstrengthg?/N2. It was to come from the lattice version of
singularities, these are actua®(g*). They are represented 195 2TrF2,, namely,gZEkJTr(Uk,VkJHUKHJVL). Instead,

by the SU)-invariant effective Hamiltonian our QCD-style UV completion of the model produced the

squared, not the linear, plaquette interactigp. Its O(g*)

C,g*t4 coupling is too weak to produce a light composite Higgs
Ha=— 1677 kzl ﬂTr(Uk'Vk:'+1UI+1JVL)|2 VEV much less tham.

IV. PSEUDO GOLDSTONE SELF-INTERACTIONS

+[Tr(UiVir+ Uk 1p41Vip) 12
T 2 3This N=2 case is special. In adx N toroidal lattice with peri-
+ |Tr(UkIVk,I+1U k1) Vit 1,|)| odic boundaries, there al? plaquettes foN=3.
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Ur(3,2) \, ¥1(3,2) completion of the toroidal moose modélVe introduce eight
complex scalar field multipletsg, , and ¢, ,, for kI
=1,2, all of which are strong SW{ singlets:

m2—1

1
by K= \/ﬁ bojt agl d4xtac (mM,m)

of SU(M)@SUM)y -1,
(33

m2-1

1
by = \/ﬁ ¢S,kl+ azl &3 tae (m,m)

of SU(M)®SU(M)y 1y,

i.e., the ¢,y transform likeU,, and the¢, y like V,,. To
maintain equality of the weak Sdy),, couplingg, we re-
quire all scalar interactions to be site-symmetric. We also
impose symmetry under the interchangigs, < ¢, k. This

FIG. 8. Typical graph contributing to the Hamiltoniaty in Eq.  preserves thelJ, <V, symmetry ACG needed to avoid
(29). The notation is as in Fig. 7. large tree-level Higgs boson masses in their model with an

SU(2)®U(1) gauge defect at sitel,1) [2]. These symme-

The linear interaction does not appear &y Nbecause tries simplify our discussion, e.ghy i and ¢,  have equal
this theory is invariant under reflection of any and all fer-masses and Yukawa couplings. We assume the scalars are
mion fields#, r and, hence, under the reflection of ady, heavy, with mas#1 ,~ A, the strong interaction scale of the
and any,, . This by itself does not preclude the existence offermions.
Tr([ 7y ,7,])% which indeed appears in the expansion of The Yykawa interactions consistent with gauge and other
|Tr(UVU'VT)|2. However, for the phenomenologically in- Symmetries are
teresting case dfl=2, even this interaction and many others )
like it are absent, at least 1©(g*). This follows from the Lo E T (o +
invariance oft, under the replacement of any singlg, by A = [T oV vz bujadrici+120)
UJ 1 0rVy by Vi, 1. Thus, interactions arising fror, _
are invariant under angnereplacement of the type + ’/’L(k+1/2,l)d’z,k|¢R(k+1/2,|))+ H.c.]. (34

Ye(3,1) 7N w3 1)

We assumel“(,;:Ff;:O(l). In the neglect of the weak
Tyl = () =l SU(m) gauge interactzions, this theory is still invariant under
V2 V2 [SU(M), ® SUM)]?N" with the symmetry extended to in-
(32 clude the scalars.
When the strong SWY) interactions generate fermion
mEm s —(m )l condensates, the Yukawa interactions induce a vacuum ex-
V2 V2 pectation value for the scalars:

_ 0 \\_ 0
Eight Tr((m,,7,])? terms in H, are canceled by eight V204 =(Rel by ) = (RE( &, 1))

Tr([my,m, ][ £ 7y, + m,]) terms. r, —
This is not to say that all quartic PGB interactionsHf = wz kv ¥R+ )~ - (35
vanish; they do not. But for our UV completion of th¢ ¢

=2 toroidal moose, the term expected from dimensional deThe chiral symmetry is again spontaneously broken to the

construction just is not there. This is an artifact /o 2; . IN2
Tr([, ,,])2 does appear for high¥. But its coupling and  9120nallSU(m)y]”™, and the Goldstone bosons are

that of all other nonderivative quartic interactions are still
O(g*). In the next section, we change the UV completion of

4 . .
the model to obtain stronger quartic interactions. Cohen and Georgi separately mentioned to me that scalars can

induce large plaquette interactions. The implementation used here
was suggested to me by Chivukula. It is similar in spirit to Sim-
V. STRONGER INTERACTIONS FROM ELEMENTARY mons’ model in which the gauge bosons of extended technicolor are
SCALARS replaced by scalargl1]. Elementary scalars by themselves make
the model unnatural, so the original motivation of a naturally light
Linear plaquette interactions of any strength can be obcomposite Higgs boson is lost. | assume this can be fixed by super-
tained by adding strongly interacting scalar fields to the UVsymmetry.
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a2 tueIm(2, ) Dimen_sional (_jecon_struction dc_)es not fix the strengths of
a U, u,v,
0okl = — . (36)  these interactions either, but without a symmetry to prevent
Vf toy them there is no reason for them to be much smaller than
However, if all these¢* and plaquette interactions are
resent, they give larg®(p;F?) squared masses to all the
GBs. What symmetries can we invoke to prevent them?
ﬁ\ny new symmetry must respect th@, < ¢,  inter-
change. The discrete phase transformations

Now, U, =exp(ll,y/F) and V=exp(ll, /F), where F
=\/f2+vz¢. The absorbed and physical Goldstone boson
are the same combinations as in EG¥) and (21). If the
¢, , have strong self-interactions, then so do the PGBs, bot
directly through thep?* terms and through the plaquette in-
teractions they induce. The price for this will be large PGB
masses.

To generate TIY, V41U, 1, VL) and the squared com- Puo k1= Muo K Puw ki
mutator expected from dimensional deconstruction, we sup- (40)
pose there exists the Shij,; gauge-invariant Hamiltonian

M= Mot | Muoil =1,

H¢1=P1; Tr(bu k1o 1 +1 B0 ks 1) B ki) +H-C. (37)
' can forbid all theg” interactions, includingH 4,, except

This produces quartic PGB interactions and, because thef s, and 5. Still, these two and the effective interactions
now need be no reflection symmetry to forbid it, it producesthey induce are sufficient to generate latgé terms for all
Ho in Eg. (14) with equal strengths~ p,. Deconstruction the PGBs. This illustrates what seems to be a general rule: If
does not fix the magnitude gf;, so we can take it to be the PGBs have strong self-interactions, then there is large
anything we want. In particular, we can chogse=0(g?  explicit symmetry breaking and large PGB masses. If the
to make deconstruction’s prediction come true. If that gives anasses are kept small, then the self-interactions are weak. In
Higgs VEV too much larger than its mass, we can just asither case, the Higgs VEV is always larg2(A).
well choosep; =0(1). Finally, we might well ask why we needed the fermions

In the N=2 model, however, there is more. There can belﬂl_'R in this UV completion. Their only useful purpose was
interactions that induce the other plaquettesdip, but lin- {0 induce the VEW , for the scalars. Presumably this could
earized, have been accomplished by a negalmé.

Hpo=p22, [T dusidoi+1Puks11+1P0 k1)
kil VI. CONCLUSIONS

+TH( by bo ki + 100 ks 1) Po s 1) ]+ H-C., We conclude that, for th&l=2 toroidal moose model at
least, dimensional deconstruction is not a reliable guide to
building a model of naturally light composite Higgs bosons.

-1
Hys= 2’)3,;, T busadboir1Buicriivado ieran) Deconstruction says the model has two light Higgs multip-
lets, 7, and, , one of which can be given a negative mass-
+H.c., (38) squared and VEV much less than the compositeness Acale

by putting an SU(2%U(1) gauge defect at one site. We
studied whether a small mass and VEV can be obtained with
two straightforward UV completions of the model. For the
QCD-like completion, we ended up with a model containing
+H.c. five light PGB multiplets and weak self-interactions so that
) . ) . any VEV is of orderA. For the model which adds strongly
There can also be “Wilson-loop” interactions that induce theinteracting scalars, the five PGBs have masses and quartic

Hpa= %P4; Tr(¢u,kl¢l,k+l,l +1Puk+1) +1¢I,kl)

terms in?¢, and more; couplings ofO(g) to O(1), but any VEV isstill O(A). We
could choosep, large and all other scalar couplings small,
H¢5:p52 [|Tr(¢u,kl¢u,k,l+l)|2+|Tr(¢u,kl¢v,k+1,l)|z]i put this is arbitrary,.having_ nothing to do with decoqstruc—
k.l tion. Furthermore, since this model presumably requires su-

(39 persymmetry to stabilize it, it does not seem much of an
advance beyond earlier supersymmetric or technicolor mod-
Hpe= k;ﬂ ] LpeTr( by KiPuk,i+1) els. y persy
o L Finally, what about models witN=3? With a QCD-like
XTr( by, mn®o,m+10) T "1+ H.C. UV completion, all the PGBs have roughly the saivié
=0(g*A?) and O(g*) quartic couplings. Adding scalars
with a strong interactiori{,; can induceH,, raising the
SQuadratic Wilson-loop interactions can be forbidden by discretenass of all PGBs except, andx, and giving a rather large
symmetries of the type discussed below. Tr([ 7y ,,])? coupling. The phase-invariant interactidf),s
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