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Improved smoothing algorithms for lattice gauge theory
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The relative smoothing rates of various gauge field smoothing algorithms are investigated on
O(a?)-improved SW3) Yang-Mills gauge field configurations. In particular, &{a?)-improved version of
APE smearing is motivated by considerations of smeared link projection and cooling. The extent to which the
established benefits of improved cooling carry over to improved smearing is critically examined. We consider
representative gauge field configurations generated witth@t)-improved gauge field action on 41632
lattices at3=4.38 and 224X 36 lattices at3="5.00 having lattice spacings of 0.1@5 fm and 0.0771) fm,
respectively. While the merits of improved algorithms are clearly displayed for the coarse lattice spacing, the
fine lattice results put the various algorithms on a more equal footing and allow a quantitative calibration of the
smoothing rates for the various algorithms. We find the relative rate of variation in the action may be succinctly
described in terms of simple calibration formulas which accurately describe the relative smoothness of the
gauge field configurations at a microscopic level.

DOI: 10.1103/PhysRevD.65.114510 PACS nuntberll.15.Ha

[. INTRODUCTION APE smearing and examine the extent to which the benefits
of improvement in cooling algorithms carry over to im-
Gauge field smoothing algorithms are now widely used inproved smearing. To carefully examine this new algorithm
lattice gauge theory studies as effective tools for constructingee  create gauge field configurations with an
operators providing enhanced overlap between the vacuui®(a?)-improved gauge action. For this investigation we se-
and the hadronic state under investigation. APE smedlihg lect Symanzik improvement for the gauge actidry]. We
is now widely used in creating improved operators for staticconsider two sets of gauge field configurations; a coarse
quark potential studies, or creating orbitally excited and hy-16°x 32 lattice at3=4.38 witha~0.165(2) fm, and a fine
brid mesons from the vacuum. Studies of perfect action®4%x 36 lattice at3=5.00 providinga~0.077(1) fm.
have lead to the construction of “fat link” fermion actions  These lattices are sufficiently fine that we expect similar
[2—8] in which the links appearing in the fermion action are results for other choices of action improvement schemes
APE smeared. Such actions display better chiral behaviosuch as the Iwasaki actigrd8] or doubling blocked from
and reduced exceptional configuration problems. Wilson action in decoupling spa¢d®BW?2) [19] explored in
Both cooling and smearing algorithms have been useef. [20]. We also define ar®(a?)-improved non-Abelian
extensively in studies of QCD vacuum structure, where thdield strength tensor and construct the corresponding im-
lattice operators of interest suffer from large multiplicative proved topological charge operator.
renormalizationd9,10]. Here the suppression of short dis-  While the merits of improved algorithms are clearly dis-
tance physics is key to removing these perturbative renotplayed for the coarse lattice spacing, the fine lattice results
malizations. put the various algorithms on a more equal footing. More-
Unimproved smoothing algorithms such as standard coolever, on the fine lattice we no longer witness transitions be-
ing [11-14 or standard APE smearirid] introduce signifi-  tween topological charge values as a function of smoothing
cant errors on each sweep through the lattice. These errossveeps.
act to underestimate the actipb5] and spoil instantons as Finally, we calibrate the relative smoothing rates of stan-
the action falls below the one-instanton bound. The problemdard cooling, APE smearing, improved cooling and im-
may be circumvented by adding additional irrelevant operaproved smearing using the action as a measure of the
tors to the action tuned to stabilize instant$ts,16. smoothness. The action is selected as it varies rapidly under
Such improved cooling algorithms are central to studiesooling. The action evolution has only a mild configuration
of topology and instantons in the QCD vacuum. There thoudependencfd] allowing the consideration of only a few con-
sands of sweeps over the lattice are required to evolve figurations in the calibration process. We focus our compu-
typical gauge field configuration to the self-dual limit. It is tational resources on numerous cooling schemes, including
well established that the use of improved algorithms is cenan improved version of APE smearing referred to as im-
tral to achieving the required level of accuracy. proved smearing. In all we consider 14 smoothing algorithms
In this paper we introduce a)(a?)-improved form of  for 200 sweeps on 17 configurations. This is computationally
equivalent to the more standard study of one or two algo-
rithms on the order of a hundred configurations. This calibra-

*Email address: fbonnet@physics.adelaide.edu.au tion analysis is also an extension of an earlier analyz%
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TABLE |. Parameters of the numerical simulations.

Action Volume Ntherm Nsamp B a (fm) Ug Physical volumefm)
Improved 16x32 5000 500 4.38 0.163) 0.8761 2.64x5.28
Improved 24x 36 5000 500 5.00 0.077) 0.9029 1.848x2.772

strength tensor and associated topological charge operator Configurations are generated on a®%@®2 lattice atg

are described in Sec. lll. In motivating improved smearing=4.38 and a 24x 36 lattice at3=5.00. Configurations are
we begin in Sec. IV with a brief review of improved cooling selected after 5000 thermalization sweeps from a cold start,
followed by our improved smearing algorithm. Section V and every 500 sweeps thereafter with a fixed mean-link
presents the results of our numerical simulations. The calivalue. Lattice parameters are summarized in Table I.
bration results are discussed in Sec. VI and a summary of the

findings is given in Sec. VII, where the connection to previ- IIl. TOPOLOGICAL CHARGE OPERATOR

ous studies drawing relations between cooling and physical

properties[9,23,24 is made. The topological charge of a gauge field configuration pro-
vides a particularly sensitive indicator of the performance of
Il. LATTICE GAUGE ACTION various smoothing algorithms. The topological charge is re-
lated to the field strength tensor by
The tree-levelO(a?)-improved action is defined as
2

55 Q=3 000=3 = €1 TIFWOOF (0], (6)

Se=— XE Re T{1-P,,(X)]
vhu whereq(x) is the topological charge density. An expression
B for F,, may be obtained by expanding the definition of the
-— > Re T{1-R,,(x)], (1)  Wilson loop. Consider a loog in the u-v plane
0 X,l>LV
V>

Cw(x)zpexp(ig %A(x)dx)
whereP,, andR,,, are defined as ¢
2

g
ﬁA(x)-dx) o1

2

=P 1+ig

P,,(x)=U,()U,(x+w)Ul(x+»)Ulx), (2

ngA(x)-dx +O(g3)}. (6)

R,u(X)=U, (00U ,(x+ m)U,(x+ v+ ) x
T vt vt
XU+ 20U, (x+2)U,(0) The line integral is easily evaluated using Stokes theorem
+UM(X)UM(X+,ZL)UV(X+2,ZL) and a Taylor expansion af, A, (x) aboutx,

XULOCHEH UL UL @) §AGo-ax= [ ax,ax,
C

F}LV(XO) + (X,U.D,U.J’_ XVDV)F/.LV(XO)

The link productR,,,(x) denotes the rectangular<l2 and 1

2x1 plaquettesuy is the tadpole improvement factor that + E(xiDiJrxﬁDﬁ)FW(xo)Jr(’)(azgz,a“)
largely corrects for the quantum renormalization of the coef-

ficient for the rectangles relative to the plaquette. We employ )
the plaguette measure for the mean link

The integration limits are determined by the size of the Wil-
son loop. Positioning the expansion poxgtat the center of

1 1/4 A )
Uo=(§Re T,(pw(x») , (4) the Wilson loop one finds
4
é; A(X)-dx=aF , (Xo) + a—(D2+D2)F (Xg)+++
where the angular brackets indicate averaging cvand w 1x1 rVAZ0TT 24 v w20
F . (8)
Gauge configurations are generated using the Cabibbo-
Marinari [25] pseudo-heat-bath algorithm with three diago-
nal SU2) subgroups cycled twice. Simulations are per-
formed using a parallel algorithm on a Thinking Machines

Corporation CM-5 with appropriate link partitionin@6]. +... 9

4
a
. = 2 — 2 2
2XlA(x) dx=2aF ,,(Xo) + 12(4DM+ Dy)F Lu(Xo0)
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a4 5 5 O O O ®
fﬁmA(x) -dx=2a%F ,,(Xo) + 1—2(D#+4DV)FW(XO)
(1) O O O l]u(x)o
R (10 Ow{x)= ° xo o
Hence,F,, may be extracted from consideration of the v
1X1 plaquette alone. To isolate the second term of the ex-
pansion in Eq.(6), one takes advantage of the Hermitian el bl ®
nature ofF ,,(x). ConstructingF,,(x) symmetrically about n
x leads to FIG. 1. Graphical representation of the link products summed in

i creating®O ()(x).
9F,., =5 {050 -0 (0]
Unfortunately, this definition has largé&(a®) errors.
3T oN -0 8 01, (11)  These errors are most apparent in the topological charge.
Even after hundreds of sweeps of cooling this simple defini-
whereO Lly)(x) is the sum of X1 Wilson loops illustrated in  tion fails to take on integer values. Errors are typically at the
Fig. 1, 10% level.
N N To improve the topological charge operator, we improve
OP(x)=U,(x)U,(x+p)UL(x+»)UT(x)+U,(x)UT(x the definition of the field strength tensBr,, by removing
A al - - + At O(a?) errors with a linear combination of plaquette and rect-
+r— U, (X= U ,(x—p) + U, (x—p)U, (X angle Wilson loops

— = 1)U, (x— = v)U,(x— )+ UJ(x

— 1)U, (x= 1)U (x+ u—1)UL(X). (12) 0533(x)=c10§}3(x)+%1533(x), (13)
0

This well known definition forF ,,(x) is commonly em-

ployed in the Clover term of the Sheikholeslami-Wohlert

[27] improved quark action. Although, not everyone enforcesvhere the tadpole coefficient, is defined in Eq(4). Here
the traceless nature of the Gell-Man matrices by subtractin@’ﬁfﬁ(X) is the link products of X2 and 2<1 rectangles in
off the trace as in Eq(11). the u-v plane

ZR(X)=U,,(x)U ,(x+ @)U, (x+20) UL (x+ + 0)U L (x+ 2)UTX) +U () U (x+ @)U, (x+ s+ v) UL (x+2v)
XUT(x+ ) UT0) +U, (00U, (x+ »)UT(x— u+ 20) Ul (x— w+ ) U (x= ) U ,(x= ) + U, () U T (x— o+ )
XUL(x=2p+»)UN(x=20)U ,(x=2)U ,(x— ) + U (x— m)UT (x=20)UJ(x— 20— »)U ,(x— 20— V)
XU ,(x= = 1)U (x= 1)+ UL (x= ) Ul (x= = »)U(x= 1= 20)U ,(x— = 20)U ,(x— 27)

XU, (x= 1)+ UN(x=2)U ,(x= 1)U ,(x+ = »)U (x+ 2= »)UT (x+ w)UT (x) + Ul (x— )

XUT(x=21)U ,(x=2p)U (x+ u—2p)U (x+ p— 1)U (), (14)

depicted in Fig. 2. The coefficients andc, are determined by combining E¢®), (9) and(10) to remove®(a?) errors,

5 1
a’F,,(X0) =3 % A(X)-dx|—= § A(X)-dx+ 35 A(x)-dx|, (15)
3| Jixa 6 Jaxa 1x2
indicating the coefficients for thé)(az)-improvedFW of Eq. (13) are
5 1
01=§ and c,=— 5 (16)
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o o)e’ o)
o O O ) o o)
g U”(X)o : I§ U, (x) ) FIG. 2. Graphical representa-
o= o + C2 o 56 ® _tlon of t_he Ilr(i() products summed
in creatingO ,77(x).
v
0 0O o C o)
1)
o ofe o)

IV. COOLING AND SMEARING ALGORITHMS

In this section we motivate and introduce an improved version of APE smearing. The motivation is based on improved
cooling, and therefore we begin with a very brief overview of cooling algorithms. Cooling consists of minimizing the local
action effectively one link at a time. The local action is that contribution to the action associated with a single link.

A. Improved cooling

Standard cooling minimizes the local Wilson action associated with a link at each link update. The local action associated
with the link U ,(x) is proportional to

S(x,u)= 2 Re T{1-U,(X)3 ,,(X)], (17)

vFE @I

where, ,,(x) is the sum of the two staples associated Witf)x) lying in the u-v plane
3,00 =U,(x+ ) UL (x+ 1)U () + Ul (x+ 2= ) UT(x= 1)U (x— ). (18

The local action associated with the likk (x) is minimized in standard cooling by a minimization process, i.e., by replacing
the original link by the linkU ,(x) which optimizes

max Re T( U,(x) 2 zw(x)). (19)
vFE U

Improved cooling proceeds in exactly the same manner, but with the plaquette-based staples replaced with the linear
combination of plaquette-based staples and rectangle-based staples. For improved cooling we use

max Re T( U,(x) > E'W(x)), (20)
V;:M
where
| S 1 R
EW=§EW+ 1—2ugzw,, (22)
and
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SR0=U,(x+ m)U,(x+ v+ @) UL (x+20)UT(x+ 2)U LX) + U, (x+ m)U ,(x+ 2) UL (x+ p+ ») UL (x+ v)

XUT()+ U, (x+ w) UL (x+ ) U T (x+ v— ) Ul (x= 2)U ,(x— ) + U (x+ n— ) UT(x+ = 20) U] (x— 2p)

XU, (x=20)U (x= 1) + U ,(x+ m)U N (x+ 2= 1)UL (x+ = »)UT(x= 1)U ,(x= ») + U T(x+ o= v)

XUL(X= 1)UL (x=v=m)U (x= 1= m)U ,(x— ).

(22

The mean-field factou, is updated following each sweep duced in improving the action are reflected in the fina($U
through the lattice and rapidly goes to 1 as perturbative tadlink. It is easy to imagine that only two or three &) sub-
pole contributions are removed. As we wish to studygroups may not take the $8) link close enough to the
O(a?)-improved cooling, the coefficients are based on thoseptimal link for the effects of improvement to be properly
of the action[17,28. While this action improves contact seen. We find consideration of the three diagonal23Sub-
with QCD, this choice of action does not completely stabi-groups looped over twice to be optimal. In fact we have seen

lize instantons on the lattidd5,29. Removal ofO(a?) er-

round off errors actuallyincreasethe action if too many

rors and stabilization of instantons requires the consideratiolbops are made.

of additional loopg16,30. The preferred algorithm for find-
ing the U ,(x) which maximizes Eq(19) is based on the

The uy factor of Eq.(21) is not held fixed during the
improved cooling iteration. Starting from the value deter-

Cabbibo-Marinari[25] pseudo-heat-bath algorithm for con- mined during the thermalization process, is updated after
structing SU3) color gauge configurations. There, operationsevery sweep through the lattice. After a few sweeps of im-

are performed at the SP) level where the algorithm is
transparent.
An element of SW2) may be parametrized ad=ayl

+ia- o, wherea is real anda?=1. Since sums of products

of SU(2) matrices are proportional to $2) matrices,

2 3, (0=kU,(x), (23
V:z,u
whereU ,(x) e SU(2) and
kzzde< > E'W(x)). (24)
Vl,u

The maximum of the expression

Re Tr( U,(x) > 3},(x) | =Re T{kU,(x)U ,(x)]

v#
’ (25
is achieved when
Re T{U,(x)U,(x)]=Re Tnl), (26)
which requires the link to be updated as
L 300\
uﬂ(x)ﬁu;(x)=uﬂl(x)=u,t(x)=( > -
-
(27)

At the SUS3) level, we successively apply this algorithm to

the three diagonal S2) subgroups of S(B) [25].

proved cooling the value quickly converges to 1 which is a
good indication that short distance tadpole effects are being
removed in the smoothing proceduiL].

Finally it must be understood that cooling proceeds effec-
tively one link at a time. That is, links involved in construct-
ing E'M(x) are not updated simultaneously with,(x). In
fact it is a nontrivial task identifying which links can be
simultaneously updated on a massively parallel computer
[26].

B. Improved smearing

In this section we consider the APE smearirig algo-
rithm. We extend this algorithm to produce an improved ver-
sion, motivated by the success of the improved cooling pro-
gram.

1. Reunitarization of the links

APE smearing is a gauge equivariafiB2] prescription
for smearing a linkJ ,(x) with its nearest neighbord ,(x

+7), wherev is transverse ta.. The APE smearing process
takes the form

Uu0—UL0=(1-a)U, 00 +5 2 31,0, 28

vE M

U, (x)=PU ,(x), (29)

1Gauge equivariance means that if two starting gauge configura-

When considering an improved cooling algorithm it is tions are related by a gauge transformation then the respective
crucial to loop over sufficient S@2) subgroups to ensure that smeared configurations are also related by the same gauge transfor-
the subtle effects of the higher dimension operators intromation.
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where ,,(x) is the sum of the two staples associated withwhereE'M(x) is the improved staple of E¢21).
U,(x) defined in Eq.(18) and P is a projection operator Signatures of improvement include the preservation of
which projects the smeared link back onto (SJ structures in the action density distribution under smearing.
The reunitarization procedure is of central importance®(a?) errors in the standard Wilson action act to underesti-
when smearing is applied to the gauge links because the APfate the local action and destroy topologically nontrivial
smearing operation produces links outside thg3ldauge field configurationg15]. Improved smearing will have re-
group in the intermediate stage of smearing. The link beduced®(a?) errors and hence better preserve topologically
tween smearing and cooling is established via the manner inontrivial field configurations. Hence an associated signature
which smeared links are projected back ontq®UThe pre-  of improvement is the stability of topological charge under
ferred approach is to select the link varialdlg,(x) that  hundreds of smearing sweeps. Of course, one could alter the

maximizes the quantity coefficients of the improvement terms to stabilize instantons
o+ [15] at the expense of introducin@(a?) errors into the
Re T{U,(x)U, (X)]. (300 smoothing action.

. . o ) The extended nature of the staple will alter the stability
In this case a clear connection to cooling is established Whefbnge of @. Where standard APE smearing provides the

a—1 as range 0= a<3/4, we find the upper stability limit lies below
maxRe TfU,,(x)U /7 (x)] «=0.6.
=max Re T( U, (x) >, EMV(X)) ., (3D V. NUMERICAL SIMULATIONS
vFE N

We analyze two sets of gauge field configurations gener-

which is precisely the condition of Eq19) for cooling. In  ated using the Cabibbo-Marind@5] pseudo-heat-bath algo-
other words, projection of the smeared link back onto theithm with three diagonal S(2) subgroups looped over
gauge group via Eq31) selects the link which minimizes twice. Details may be found in Table I. As discussed in the
the local action. Improvement of the staple based on théntroduction, the analysis of a few configurations proves to
action will aid in removing®(a?) errors encountered in the Pe sufficient to resolve the nature of the algorithms under
SU(3) projection. In practice, the same Cabibbo-Marinari-investigation. We consider eleven 632 configurations
based cooling method of operating on @Usubgroups may and six 24x 36 configurations. For each configuration we
be used to obtain the ultimate &) link. separately perform 200 sweeps of cooling and 200 sweeps of

However, there is one very important difference remain-improved cooling. We explore 200 sweeps of APE smearing
ing between APE smearing and cooling. While cooling ef-at seven values of the smearing fraction and 200 sweeps of
fectively updates one link at a time, feeding the smoothedmproved smearing at five values of the smearing fraction.
link immediately into the next link update, APE smearing For APE smearing we consider «a
proceeds uniformly with all links being simultaneously up- =0.10, 0.20, 0.30, 0.40, 0.50, 0.60, and 0.70. Similarly
dated. Smoothed links are not introduced into the algorithnfor improved smearing we consider=0.10 to 0.50 at inter-
until the next iteration of the APE smearing process takeyals of 0.10. The extended nature of the staple alters the
place. stability range ofa to lie below a=0.6.

It is this latter point that provides the form factor inter- ~ For clarity, we define the number of times an algorithm is
pretation of APE smearing in fat-link fermion actiofé].  applied to the entire lattice &g, nic, Napd @) andnid @)
There smearing can be understood to introduce a form factder cooling, improved cooling, APE smearing and improved
suppressing the coupling of gluons to quarks at the edge ¢fmearing, respectively. We monitor both the total action nor-
the Brillouin zone where lattice artifacts are most problem-malized to the single instanton acti®==87?/g and the
atic. The form factor analysis restricts the smearing fractioriopological charge operator®, and Q'me, from which we
to the range & a<3/4. Indeed in practice, smearing frac- observe their evolution as a function of the appropriate
tions beyond 3/4 do not lead to smooth gauge configurationsweep variable and smearing fractian

2. Improving smearing

Having made firm contact with cooling it is clear that A. The influence of the number of subgroups on the gauge

replacing the simple staple of E¢18) with the improved group

staple of Eq(21) may lead to a realization of the benefits of  In this section we describe the influence of including ad-
improved cooling within APE smearing. Hence we defineditional SU2) subgroups in constructing the gauge group
improved smearing to be an APE smearing step in which SU(3) and we explore the impact it has on the smoothing

procedure. The Cabibbo-Marinari algoritHi®5] constructs

, a the SUN) gauge groups using $B) subgroups. It is under-

Uu(x)—=U,0)=(1-a)U,(X)+5& EV: 300, (32 stood that the minimal set required to construc{®Unatri-

vEp ces is two diagonal S@@) subgroups. After having per-
formed cooling on gauge field configurations we noticed that
U, (x)=PU(x), (33)  the resulting cooled gauge field configurations were not
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FIG. 3. The evolution of the topological charge estimated by the . FlG'.S' The evolution curve for th_e topologlgal charge estl_mated
. . . via the improved operator as a function of cooling swegp®r six
improved operator as a function of standard cooling sweeger configurations on the 3436 lattices at 8=5.00 where a
various numbers of S(@2) subgroups. The curves are for a typical —0077(1) fm )
configuration from the 16<32 lattices wherea=0.165(2) fm. = (1) fm.
The parameter cycle describes the number of times the three diag-
onal SU2) subgroups are cycled over. We also monitored the evolution of the topological charge

) with respect to the above number of cycles. On thé 16
smooth even after a large number of smoothing steps. Adds 35 |attice with spacing of=0.165(2) fm, we observe a
'Rg a th'qu Su2) suggroup made a significant difference in gisaqgreement of the trajectories for the topological charge for
t ev\r/esu tlnlg srgo]?t tﬂessb imol formi qditional different numbers of the S@) subgroups cycles. Figure 3
¢ €xplored further by sSimply performing additiona displays results for standard cooling and Fig. 4 displays simi-

%glen?o:?{gfé da:ﬁgngmtggﬂg?nreer;fguos?r?l %gtﬁ uttk)]geroslvtlgrsl.darlﬂar results for improved cooling. A comparison of Figs. 3 and
9 g indicates the trajectories also differ between cooling and

Wilson and the improved action according to the cycle num- d i
ber being set to,,.=1, 2 and 3. Based on the evolution of Improved cooling. , , ) i
the action, we found that the optimum cooling rate on gauge Hence we see subtle_dlfferences |n_the algorithms leading
field configurations is achieved using the three diagonal® dramatic differences in the topological charge. One must
SU(2) subgroups cycled over twic@gyqe=2. Cycling more conclude_ that a lattice spacing _of 0.18bfm is too coarse
than twice provides very little further reduction of the action for & serious study of topology in $8) gauge fields using
and round off errors may actually increase the action on octhe algorithms considered here. The difficulty lies in the fact
casion. Hence two cycles over the three diagonal2s8ub- that the algorithms have a dislocation threshold typically a
groups is sufficient to precisely create the(SUink which little over two lattice spacingkl6,21]. Instantons with a size
minimizes the local action. This determination is crucial tosmaller than the dislocation threshold are removed during the
ensuring the effects of our improved action are fully reflectedorocess of smoothing. While this threshold has the desirable
in the SU3) link.

_6 T T T T T T T T T
6 — —
_5 Fprmrm s m m m s m e m e m e
5 1 ;
— cycle=1 :
Q,A- —— cycle=2 - -4 fmm——
g - cycle=3 g~
g y | 3
=3 e e -
2 —_———— e e
_2 -
1 - i
0 1 1 1 1 1 1 1 1 1 _1 | | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
n n

Ic Ie

FIG. 4. The evolution of the topological charge estimated by the FIG. 6. The evolution curve for the topological charge estimated
improved operator as a function of improved cooling swegp$or via the improved operator as a function of improved cooling sweeps
various numbers of cycles over the three diagonalZpsubgroups.  n for the same six configurations from the32436 lattices at@

The curves are for the same configuration illustrated in Fig. 3.  =5.00 illustrated in Fig. 5.

114510-7



BONNET, LEINWEBER, WILLIAMS, AND ZANOTTI PHYSICAL REVIEW D 65 114510

10° E T T T T T T T T T 3 10° T T T
. ] X —— a=0.10
107 ¥ 3 \ — ey =
] 10t I\ a=020 |
] AN ---a=0.30
’ AN --- a=0.40
. 10 . LN
2 w0 LR ma=050 |
o . >y AN - a=0.60
10 .
2
107 £
10"
10° I I ! I I I L I I 10t
0 20 40 80 BO 100 120 140 160 180 200 0 50 100 150 200
n n.{a)

c ape

FIG. 7. The ratioS/S, as a function of standard cooling sweeps  FIG. 9. The ratioS/S, as a function of APE smearing sweeps
n. for five configurations on the 2436 lattice at3="5.0. The  n_{a) for one configuration on the 34 36 lattice a{3=5.0. Each
single instanton action i§y=8m?/g2. curve has an associated smearing fractiorThe rate of lowering
the action for the maximum stable smearing fractien0(75) is

property of removing lattice artifacts, we note that twice theS€en to be less than that for the other standard or improved cooling.

lattice spacing is 0.33 fm. Minor differences in the disloca-fq; six configurations. In every case, the two algorithms pro-

tion thresholds of the various algorithms will cause somegyce the same topological charge for a given configuration.
(antjinstantons to survive under one algorithm where they

are removed under another.

On the other hand, a lattice spacing the order of Q.D77
fm appears to allow a meaningful study of topology in(SJ
gauge theory. Twice this lattice spacing is 0.15 fm, well be
low the typical size of instantor[24].

B. The action

We begin by considering the action evolution on both
lattices. Here we report the action divided by the single in-
stanton actiorS,=872/g2. It is important to note that al-

We also note here the accuracy with which our improveoﬂ_‘ough the 2#x 36 Iattice_ has almost 1_‘our times more lattice
topological charge operator reproduces integer values. TheSies than the 16<32 lattice, the physical volume is smaller
results should be contrasted with the usual 10% errors of thgY @lmost a factor of three. As such the typical topological
unimproved operator at similar lattice spacings. Such error§harges encountered are smaller in magnitude.

on a topological charge of 5 can lead to the uncomfortable F9ures 7, 8, 9, and 10 report the typical evolution of the
result of Q=4.5 when the unimproved operator is used. ~ action under standard cooling, improved cooling, APE

With the finer 24x 36 lattice at8=5.00, we observe per- smegring, and improveql smearing res_pectively. Inspection_of
fect agreement among trajectories for different numbers o he figures reveals that improved cooling preserves the action

cycles of the three S@) subgroups. Moreover, the topologi- etter than standard cooling over a_couple hyndred sweeps.
cal charge remains stable for hundreds of sweeps followin s expected, standard APE smearing remains slower than

the first three sweeps. Figures 5 and 6 compare the topolog®°ling or improved cooling even at our most efficient
cal charge evolution for cooling versus improved coolingSMe&ring fractiong¢=0.70). Similar results are observed for

8

10
105 T T T T T T T T T
10°
10*
. 10
) 103 Q
2 200
20
10
10!
d f 10! 1 | !
YA S R R R R 0 50 n1o<()a) 150 200
0 20 40 B0 BO 100 120 140 180 180 200 Tepe

Ie

FIG. 10. The ratioS/S, as a function of improved smearing
FIG. 8. The ratidS/S; as a function of improved cooling sweeps sweepsn,,,{ a) for one configuration on the 9% 36 lattice atB

n, for five configurations on the 34 36 lattice at3="5.0. The rate  =5.0. Each curve has an associated smearing fractiowe see
of cooling is seen to be somewhat slower than that for the standarthat this is the slowest of the four algorithms for lowering the action
cooling. as a function of the sweep number.
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FIG. 11. Q™ versusn, for six configurations on the 632 FIG. 13. The evolution o™ using APE smearing as a func-
lattices at=4.38, a=0.165(2) fm. Each line corresponds to a tion of APE smearing sweep,,{ @) on the 18x 32 lattice atg
different configuration. =4.38. Here different line types correspond to different smearing
fractions.
improved smearing at our most efficient smearing fraction of
«=0.50 in Fig. 10. function of the cooling sweep numbar,, for six of our

Based on these observations, one concludes that the fasenfigurations. Similarly in Fig. 12, for the same six configu-
est way to remove the short range quantum fluctuations orations we plot the improved topological charge operator but
anO(a?) gauge field configuration, is through standard cool-this time as a function of improved cooling sweep. The
ing, which lowers the action more rapidly than improved line types in Figs. 11 and 12 correspond to the same under-
cooling as a function of cooling sweep. In turn we see thalying configurations and are to be directly compared. For
improved cooling is faster than the maximum stable standaréxample, the solid curve corresponds to the same gauge field
APE smearing, which is faster than the maximum stable im<configuration in both figures but with a different algorithm
proved smearing. This is illustrated by Figs. 7—10. It is im-applied to it. From these two figures we notice the two cool-
portant to emphasize that the fastest way of removing thesé@g methods lead to completely different values for the topo-
fluctuations is not necessarily the best as far as the topologggical charge.
is concerned. It is already established that ¢h@?) errors Improved cooling brings stability to the evolution of the
of the standard Wilson action act to underestimate the actiotppological charge whereas standard cooling gives rise to
[15]. These errors spoil instantons which might otherwisenumerous fluctuations to the topological charge. For im-

survive under improved cooling. proved cooling, plateaus appear after about 40 sweeps and
persist for hundreds of sweeps. This is a celebrated feature of
C. Topological charge from cooling and smearing improved cooling.

i o . . This algorithmic sensitivity of the topological charge is
We begin by considering the 1832 lattices having a 450 seen in Figs. 13 and 14 for APE and improved smearing

lattice spacing ofa=0.165(2) fm. In Fig. 11 we plot the on 3 single configuratiofthe solid line of Figs. 11 and 12
evolution curve for the improved topological charge as a

13 T T T T T T T T
%g 12
13 11
11 -
10 ] )
9 i E
578 I ] < 8
T TN N
R 7
AV . s |
% r‘/“‘"_———__—_——_—_—_—=—_—_—=—_—_—=L—_—= ———— —_ 5 | H
1k =7 " N
0 4_// - 4 | ] ] ) ) ! ] ] |
:5 v o T 0 20 40 B0 80 100 120 140 160 180 200
0 20 40 B0 80 100 120 140 160 180 200 Thape(X)

n
Ie
FIG. 14. The evolution oR[™ using improved smearing as a
FIG. 12. Q'L”‘p versusn,; for six configurations on the & 32 function of APE smearing sweep.,d @) on the 16X 32 lattice at
lattices. The different line types identifying different configurations 8=4.38. Here different line types correspond to different smearing

match the configurations identified in Fig. 11. fractions.
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0 20 40 60 80 100 120 140 160 180 200 0 2 4 6 8 10 12 14 16 18 20

nﬂpe & nsmear
FIG. 15. The evolution oQ'L”‘p using APE smearing as a func- FIG. 17. The evolution of the improved topological charge,
tion of APE smearing sweep,,{ a) on the 24x 36 lattice atB me’ as a function of standard APE smearing sweepg{ «), for
=5.00. Here different line types correspond to different smearing).1<a<0.7 (solid line is compared to improved smearing
fractions. sweepsn,d @) (dotted-dashed lingsfor the same smearing frac-

tions 0.k @=<0.5 on the 24x 36 lattice at3=5.00. The horizontal
Within APE smearing or improved smearing, the topologicaldotted-dashed line Q™= —4.
charge trajectories follow similar patterns but different rates

for various smearing fractions. However, APE smearing These results are to be compared with Fig. 11 and Fig. 12,
leads to values for the topological charge which are differenfyere transitions are observed even with improved cooling

from that obtained under improved smearing. An importantOn the coarser lattice wita=0.165(2) fm. The results on

point is that improved smearing stabilizes the toDOlog.'Calour fine lattice suggest the characteristic size of instantons is
charge at 95 sweeps far=0.5, whereas standard smearing

. o . ; : much larger than the dislocation threshold, such that the to-
shows no sign of stability until 140 iterations at=0.5. : ) .
Hence we see significant improvement in the topological aspologlcal structure of the gauge fields is smooth at the scale
' : . . f the threshold.
ects of the gauge field configurations under improved® . .
P gaug g P In Fig. 15 for standard APE smearing we observe a slower

smearing. ) . S
On our finer lattice, we find a completely different behav- convergence to integer topological charge than in Fig. 16 for

ior for the topological charge evolution. The topological improved smearing 'when Osl.a§0.5. 'T.hIS feature of im-
charge is established very quickly, after a few sweeps in theroved smearing is illustrated in detail in Fig. 17. However,
case of cooling or improved cooling as illustrated in Figs. 5APE smearing has the advantage to allow values for the
and 6. The topological charge persists without fluctuation fosmearing fraction up ter=0.70 which cannot be accessed
hundreds of sweeps, both for cooling and for smearing aBY improved smearing. Having demonstrated that it is pos-
illustrated in Figs. 15 and 16 for APE and improved smearsible to precisely match the behavior of the algorithms on
ing, respectively. Moreover, the topological charge is indefine lattice spacings, we proceed to calibrate the efficiency of
pendent of the Smearing a|gorithm_ these algorithms in the fOIIOWing section.

T T T | , T VI. SMOOTHING ALGORITHM CALIBRATION

Here we calibrate the relative rate at which quantum fluc-
tuations are removed from typical field configurations by the
various algorithms. The calibration is done using the action
normalized to the single instanton actidiS,, on both the
16°x 32 lattices and 2%x 36 lattices. The action normalized
to the single instantons actio8/S,, is of particular interest
because it provides insight into the lattice content as well as
the rate at which the quantum fluctuations are removed.
= While there is no doubt that the algorithms may be accu-

rately calibrated on the fine 24 36 lattice, the 18x 32 lat-
o * At——t—tt+—tft tice witha=0.165(2) fm presents more of a challenge. As a
0 20 40 60 Bon 100a120 140 160 180 200 result, in most cases we will show the graphs produced from
fepe the 16 x 32 lattice analysis and simply present the numerical
FIG. 16. The evolution o™ using APE smearing as a func- esults for both the 16<32 and 24x 36 lattices. The nu-

tion of APE smearing sweep,,d @) on the 24x 36 lattice atg merical results are summarized in Tables II, 1ll, and VI for
=5.00. Here different line types correspond to different smearinghe 16x 32 lattices and in Tables IV, V, and VII for the
fractions. 243X 36 lattices.
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TABLE II. The averages of the ratio@,,d 0.50) N pd @)) and (Ny,d 0.50),pd @)) for various smearing fractions from the 16
X 32 lattice atB=4.38.

a for APE smearing

0.10 0.20 0.30 0.40 0.50 0.60 0.70
Napd 0.50) 0.19%1) 0.3942) 0.5953) 0.7974) 1.0 1.2031) 1.4071)
Niapd 0.50) 0.2271) 0.4651) 0.7061) 0.9481) 1.1891) 1.4311) 1.6731)

TABLE lll. The averages of the ratig1,,d 0.50)Njapd @) ) @and(ny,pd 0.50)japd @) ) for various smear-
ing fractionsa from the 16x 32 lattice at3=4.38.

«a for improved smearing

0.10 0.20 0.30 0.40 0.50
Napd 0.50) 0.1961) 0.3763) 0.5431) 0.6971) 0.8441)
Niapd 0.50) 0.2281) 0.4421) 0.641(1) 0.8271) 1.0

TABLE IV. The averages of the ratiof,,d0.50)N,pd @)) and (Nja,d 0.50),pd @) for various smearing fractions from the 24
X 36 lattice atB=5.00.

a for APE smearing

0.10 0.20 0.30 0.40 0.50 0.60 0.70
Napd 0.50) 0.195%1) 0.3951) 0.5951) 0.79711) 1.0 1.20%1) 1.41Q1)
Njapd 0.50) 0.2271) 0.4621) 0.6981) 0.9311) 1.1761) 1.4141) 1.6581)

TABLE V. The averages of the ratid®,,d 0.50) Njapd @)) and(n,,d 0.50)/napd @)) for various smear-
ing fractionse from the 24 36 lattice at3=5.00.

a for improved smearing

0.10 0.20 0.30 0.40 0.50
Napd 0.50) 0.1961) 0.3781) 0.5461) 0.7041) 0.8511)
Niapd(0.50) 0.2281) 0.4421) 0.6411) 0.8261) 1.0

TABLE VI. Calibration coefficients for various smoothing algorithms on th&x82 lattice at3=4.38.
Entries describe the relative smoothing rate for the algorithm ratio formed by selecting an entry from the
numerator column and dividing it by the heading of the denominator columns. For examplé37Eq.
corresponds to the first column of the third row.

Denominator

Numerator aNgpd @) a’Nigpd @) Ne Nic
@' Ngpda’) 1.002) 0.81(2) 1.693) 1.302)
o' Niapd ') 1.253) 1.012) 2.135) 1.613)
ne 0.591) 0.471) 1 0.751)
N 0.772) 0.621) 1.332) 1

114510-11



BONNET, LEINWEBER, WILLIAMS, AND ZANOTTI

PHYSICAL REVIEW D 65 114510

TABLE VII. Calibration coefficients for various smoothing algorithms on the’>236 lattice atg
=5.00. Entries describe the relative smoothing rate for the algorithm ratio formed by selecting an entry from
the numerator column and dividing it by the heading of the denominator columns. For examg@6Eq.
corresponds to the second column of the first row.

Denominator

Numerator aNgpd @) a’Nigpd @) Ne Nic
a'Ngpda’) 1.002) 0.81(2) 1.642) 1.372)
o' Mg ') 1.253) 1.012) 2.044) 1.673)
ne 0.6119) 0.491) 1 0.841)
N 0.7348) 0.602) 1.191) 1
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FIG. 18. The ratianpd 0.50) hapd ) versusn,,{ «) for numer-
ous S/S, thresholds on the £&32 lattice at 3=4.38. From
top to bottom the data point bands correspond to
=0.7, 0.6, 0.5,0.4, 0.3, 0.2, and 0.1.
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FIG. 19. The ration,pd 0.50)n,pd @) versusn,d «) for nu-
merousS/ S, thresholds on the £& 32 lattice at3=4.38. From top
to bottom the data point bands correspond te
=0.5, 0.4, 0.3, 0.2, and 0.1.
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FIG. 20. lllustration of the dependence @f,,{0.50)/n,,d @))
for APE smearing on the smearing fractian The solid line is a
linear fit to the data constrained to pass through the origin.
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FIG. 22. lllustration of the dependence  of

FIG. 24. The ration,,d 0.50)n,pd @) versusni,d @) for nu-
merous threshold actions on the3¥632 lattice at3=4.38. From
top to bottom the data point bands correspond to improved smear-
ing fractionsa=0.5, 0.4, 0.3, 0.2, and 0.1.

IN({Nape0.50) jppd @) )) 0N the improved smearing fractian for
improved smearing. The solid line fit indicatés-0.914.

A. APE smearing and improved smearing calibration

To calibrate the rate at which the algorithm reduces the Both standard and improved Smearing a|gorithms have a
action we record the nearest number of sweeps required f@lative smoothing rate which is independent of the amount
reach a given threshold i8/S,. The action thresholds are of smoothing done. By calculating the average value for each
spaced logarithmically to obtain a uniform distribution in the of the bands in Figs. 18 and 19, we can investigate the de-
number of sweeps required to reach a threshold. The relativgendence of the average relative smoothing rate
rates of smoothing are established by comparing the relativg1ape(0_50)/nape(a)> on a.
number of sweeps required to reach a particular threshold.  Figyre 20 illustrates a linear fit to the data constrained to

Here we calibrate the APE smearing algorithm characterpass  through the origin. We findnapd 0.50) Npd @) )
ized by the smearing fractioea and the number of smearing =2 ooy such that
iterationsn,,d ). The different threshold crossings are char-
acterized by the number of sweeps required to reach that Napd @)«
thresholdn,,{ @). In Fig. 18 we show the number of sweeps m ==
required to reach a threshold wher=0.5, n,,{0.50), rela- ap @
tive to that required for othew values,n,,{«). We plot ) )
these relative smoothing rates as a functiomgf(«) such  in agreement with our earlier analygi22]. The extent to
that low S/'S, thresholds are reached after hundreds of iteraWhich this relationship holds can be verifig2P] by plotting
tions of the smoothing algorithm. Figure 19 shows similarthe ratio a'ngpda’)/angda) and comparing the results
results for improved smearing. In these figures and in thd0 1. ) ) .
following analysis, we omit thresholds that result in fewer In plotting the band averages for the improved smearing
than five smoothing iterations as these points produce integéfgorithm of Fig. 19 in Fig. 21, one finds a small deviation of
discretization errors of more than 20%. the points from the ling=2a. This suggests that E(34) is

not sufficiently general for the improved smearing case.

(34)
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FIG. 23. lllustration of the degree to which the relation E2p)
is satisfied for improved smearing. Here the entire data set is plotted FIG. 25. lllustration of the degree to which the relation E2f)
for @« anda’=0.5, 0.4, 0.3, 0.2 and 0.1. Data are fron? X&2 is satisfied for calibration of the action under APE and improved
lattice at3=4.38. smearing. Here the entire data set is plotted.

114510-13



BONNET, LEINWEBER, WILLIAMS, AND ZANOTTI

0.5 T T T T T T T T
&
°°d’ 0087996, 00|
o°°o°°° &
04 [ SR
3,03 ieieten i
& ECE
soo 2 TELESsm0nestene
g NNty vt
o1 L \\\“\%W
T LS 5 Y5 — ———1
0.0 1 1 1 | 1 1 L 1 L

0 20 40 60 80 100 120 140 160 180 200
n _(«a

ape
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FIG. 28. The rationc/ns,da) versus ng{a) for numer-
ous action thresholds on the 22436 lattice at3=5.00. From
the top down the data point bands correspond o
=0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1.

A better approximation to establish thedependence that
is similar to Eq.(34) and contains Eq.34) is

nlap&a”) _( CV)&

nlape( @) o

improved smearing sweeps required to reach a threshold for
various improved smearing fractions relative to APE smeatr-
ing at «=0.5. The lowest band corresponds to an improved
smearing fraction of 0.10. From this, we conclude that for
low « values APE smearing and improved smearing produce
roughly equivalent smeared configurations. However, there
re some evident differences in the rate at which both algo-
ithms perform. For intermediate to largethere is curvature
in the bands. Early in the smearing process, fewer sweeps of
improved smearing are required to reach a threshold. That is,
improved smearing removes action faster than APE smearing
in the early stages of smearing. This behavior is also mani-
fest in the analogous results for the fine’2486 lattice. As

The ratio is one as expected with 5% for large amounts ofMmphasized in the discussion surrounding Fig. 17, improved

smearing where integer discretization errors are minimized?meart'r?g aESEprOV|de§ a t(_)l_pOIOt%:C&ll tcr:]harg::‘ closer to f.m |n-f
Throughout the following analysisj is fixed at 0.9141). teger than smearing. fogether, these two properties o
improved smearing identify a genuine improvement in the

smearing process.
For the coarse &< 32 lattice data, the bands are thick for
In this section we focus on the cross calibration of thelarge smearing fractions indicating improved smearing does
smearing algorithms. In Fig. 24 we compare the number operform significantly different from standard APE smearing.

(35

a!

whereé is equal to one in the case of standard APE smearin
and can deviate away from one for improved smearing.

In Fig. 22 the logarithm of Eq(35) is plotted. The slope
of the data provide$=0.914(1) for both the 1%<32 and
the 24x 36 lattices. We also verified=1.00 for the APE
smearing data. Figure 23 plots the ratio of the left- and right
hand sides of Eq(35) as a function oin,,{ @) for a'>a.

B. APE and improved smearing cross calibration
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FIG. 27. The ration,c/ng,{ @) versusngd«) for numerous FIG. 29. The ration,c/nj,d @) versusnd @) for numerous

action thresholds on the 1832 lattice at 8=4.38. From
the top down the data point bands correspond o
=0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1.

action thresholds on the 1832 lattice at3=4.38. From the top
down the data point bands correspondde-0.5, 0.4, 0.3, 0.2,
and 0.1.
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FIG. 30. The rationg/np,d ) versusny,d ) for numerous FIG. 32. The ratim./n. versusn,, for numerous action thresh-

action thresholds on the 1832 lattice at3=4.38. From the top olds on the 2#x 36 lattice at3="5.00.

down the data point bands correspondde-0.5, 0.4, 0.3, 0.2,

and 0.1. in the calibration reflected in a narrower band. There the
constant is also 0.82). However, it should also be noted

Contributions from individual configurations are clearly vis- that for «<0.5, improved smearing achieves integer topo-

ible as lines within the bands. This structure is due to thdogical charge faster than standard APE smearing.

coarse lattice spacing of 0.1& fm which reveals differ-

ences between the algorithms. Such structure is not seen in

the fine 24 36 lattice results. There a precise calibration is ) .
possible. In this section we apply the ansatz of E(4) and(35) to

In Tables Il and 1ll we report the averages of each band€late the cooling and smearing algorithms. Figure 26 dis-

for APE and improved smearing on the3:632 lattices. In  Plays results comparing cooling and standard APE smearing.
Tables IV and V we report similar results for the32436 ~ Fora as small as 0.1 it takes about 75 sweeps of APE smear-

C. Calibration of cooling and smearing

lattices. ing compared with five sweeps of cooling to arrive at an
Based on Egs(34) and (35) for APE and improved €quivalent action. On the other end of the smearing fraction
smearing, we expect spectrum, we note the bands become very thick.
The calibration of these ratios indicates
a'Ngda’)
—————— =const. (36) Ne
1 _—=
o n,ap&a) anapéa) 05&1), (37)

This ratio is plottgd in Fig. 25 Where_ a rather mild depen-j, agreement with that obtained [22] where the analysis

dence omn,,{ «) is revealed. Averaging these results pro-yas performed on unimproved gauge configurations. The re-

vides 0.812) for the constant of E¢(36). Similar results are  gyction in©(a?) errors in the gauge field action affect both

seen for the finer 24 36 lattice, but with greater precision ajgorithms similarly such that the calibration of the relative
smoothing rates remains unaltered.

1.0 L Further broadening of the bands is observed when com-
09 r, . paring improved cooling with APE smearing as illustrated in
0.8 —x%&@ R Fig. 27. The precision of improved cooling relative to APE
07 LRt smearing leads to very different smoothed configurations at
,0.6 k= ““W = this coarse lattice spacing of 0.1@5fm. This indicates the
3 Xxxx,etx)()k . .. .
£osf X algomhms are suf.f|C|e.ntI.y dlﬁe(ent, that an accurate and
o4 L ) meaningful calibration is impossible.

’ This effect is not observed when we pass to our fine lat-
03 r ) tice spacing as displayed in Fig. 28. We remind the reader
02 I ] that the thickness of the band for small numbers of smooth-
0.1 - 7 ing sweeps is simply due to the ratio of small integers taken
0.0 1 in plotting they-axis values.

0 20 40 60 80 100 120 140 160 180 200

The real test of improved smearing is the extent to which
the algorithm can preserve action associated with topological

FIG. 31. The rati./n,. versusn,. for numerous action thresh- 0bjects and thus maintain better agreement with more precise
olds on the 18x 32 lattice at3=4.38. The significant differences algorithms including cooling and improved cooling. Figure
between the algorithms are revealed by the gauge-configuration d@9 displays results for the calibration of improved cooling
pendence of the trajectories. with improved smearing. Comparing these results for each

nIc
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smearing fractiony with that for improved cooling and stan- <0.5. At = 0.6 the algorithm is unstable whereas standard
dard smearing in Fig. 27 reveals that the improved smearingPE smearing remains stable fa<0.75.
algorithm, which was seen to be better than the standard APE Given the wide variety of smoothing algorithms under
smearing algorithm does not perform as well as the improveéhvestigation in the field of lattice gauge theory, we have
cooling algorithm. cross-calibrated the speed with which the algorithms remove

Similar results are seen in Fig. 30 where standard coolingction from the field configurations. In particular we have
is compared with improved smearing. Hence the annealingross-calibrated the smoothing rates of APE smearing at
of the links in the process of cooling, where cooled links areseven values of the smearing fraction; improved smearing at
immediately passed into the determination of the next cooledive values of the smearing fraction; cooling; and improved
link, is key to the precision with which cooling can preservecooling. We explored smearing fractions in 0.1 intervals
topological structure. starting ata=0.1.

Calibration of the smoothing rates as measured by the The calibration has been investigated over a range of 200
action for the algorithms under investigation are summarizedweeps for each smearing algorithm &Xa?)-improved
in Tables VI and VII. The entries describe the relative gauge field configurations. The results of this analysis allows
smoothing rate for the algorithm ratio formed by selecting anone to make qualitative comparisons between cooling and
entry from the numerator column and dividing it by the smearing algorithms and in fact make quantitative compari-
heading of the denominator columns. The entry comparingons of smearing algorithms with different smearing frac-
APE smearing with itself reports the level to which the an-tions on lattices as coarse as 0.(%m. On our fine lattice
satz of Eq.(34) is satisfied. Similarly the entry comparing where the lattice spacing is 0.0Z7 fm, the calibration is
improved smearing with itself reports the level to which thequantitative in general.

ansatz of Eq(35) is satisfied. We have found the relative smoothing rates are described
via simple relationships as reported in Tables VI and VII for
D. Cooling versus improved cooling our coarse 16x32 and fine 22x 36 lattices, respectively.

hThere the sensitivity of the calibration results on the lattice
improved cooling on 11 configurations from the coarsé 16 spacing may he reviewed. A noteworthy point is that we
discovered a necessary correction to the APE smearing ratio

>.<32 lattice. There the r_atlnc/n|c<1 confirms the expecta- rule [22] when improved smearing is considered. These al-
tion that standard cooling does not preserve action on the

lattice as well as the&)(a?)-improved cooling. Fewer stan- gorithms may be calibrated via

Figure 31 reports a comparison of standard cooling wit

dard cooling sweeps are required to reach the same action Noda')  a Niaod @') o)?
threshold. Calibration of the algorithms appears plausible for e ST gnd e ( _) (38
the first 80 sweeps of improved cooling, after which the two Napd @) @’ Napd @) | o’

algorithms smooth the configurations in very different man- . . . .
ners. Any calibration at this lattice spacing is only very ap-or APE smearing and improved smearing, respectively. We
proximate beyond 80 sweeps of improved cooling where disfind 6=0.914(1) without a significant dependence on the
tinct configuration-dependent trajectories become visiblelattice spacing. _ _ _
This result is contrasted by the analogous analysis on our Having cross-calibrated these smoothing algorithms, we
fine 24x 36 lattice illustrated in Fig. 32. While./n,. re- NOW proceed to make contact with physical phenomena

mains less than one, it is closer to one here than for th&%23,24. In particular, we note that it is possible to build in
coarser lattice as one might expect. a length scale beyond which cooling does not affect the links

[23]. It would be interesting to explore these techniques in
the context of APE and improved smearing. Using a random
walk argument, one can postulate a cooling radius

We have introduced an improved version of the APE
smearing algorithm founded on the connection between cool- I cool™ C\/n—ca, (39
ing Eqg.(19) and the projection of the APE smeared link back
to the SU3) gauge group via Eq31). This connection mo-
tivates the use of additional extended paths combined wit
the standard “staple” as governed by the action to reduce th
introduction of@(a?) errors in the smearing projection pro-
cess.

Clear signs of improvement are observed. For a give
smearing fractiony defined in Eq.(28), improved smearing

VII. CONCLUSIONS

wherea is the lattice spacing antlis a constant independent
I‘?f B [24]. It has been shown that phenomena taken from
gimulation results with invariara/n, scale very well[24].

The effective range for APE smearing has been estimated
using analytic methodg4]. For small smearing fractiony,

fihe effective range is

- - 1
preserves the action better than standard APE smearing at r = Jan—aa. 40
each smearing sweep. At the same time improved smearing w3 aNapd @) (40
brings the improved topological charge to an integer value
faster than standard APE smearing. The product ofe andn,,{ @) definesr ,.in agreement with

The extended nature of the “staple” in improved smear-the results presented here. Equat(@8) indicates that this
ing reduces the stability regime for the smearing fraction. Werelation holds even for large. Results of our analysis con-
found the improved smearing algorithm to be stable dor tained in Tables VI and VII allow one to link Eq&39) and
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FIG. 33. (Colon The topological charge density of a2436 lattice for a fixedk coordinate. The instantortanti-instantonsare colored
red to yellow(blue to green (a) shows the topological charge density after nine cooling swébljasted is visible in this particular viewing
angle) Each of the following figures display the result of a different smoothing algorithm calibrated according to Table VII to reproduce as
closely as possible the results depictedan (b) illustrates the topological charge density after 11 sweeps of improved co@inghows
the topological charge density after 21 APE smearing steps=d1.70.(d) illustrates the topological charge density after 49 APE smearing
steps atv=0.30. In(e) the topological charge density is displayed after 35 sweeps of improved smeanirgla0. Finally,(f) shows the
topological charge density after 55 sweeps of improved smeariag-&30. Apart from(b) for improved cooling, which differs largely due
to round off in the sweep number, all the plots compare very favorably with each other.
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(40) and thus determine the constamtFor sufficiently fine  already sufficiently smooth to unambiguously extract the to-
latticesc is argued to be independent Bf[24] and this is  pology of the gauge fields.
already supported to some extent by the similarity of the As a final comparison of the smoothing algorithms, we
entries in Tables VI and VII. For example, from Table VII, provide a visual representation of a gauge field configuration
ne=0.611(9)pn,,d @) such that after applying various smoothing algorithms. Figure 33 illus-
trates a rendering of the topological charge density for a slice
of one of the fine 2%x 36 lattice configurations. While our
1 Jna=0 7395) Jna calibration has been carried out by considering the total ac-
) e e tion of the gauge fields, the following analysis allows us to
examine the extent to which the calibration is accurate at a

V3(0.6119
microscopic level.

The effective range for other smoothing algorithms may be |, Fig "33 red shading indicates large positive topological
derived from Eq/(40) in a similarly straightforward manner. charge density with decreasing density becoming yellow in
Unfortunately a rigorous analysis of the scaling of thecolor, while blue shading indicates large in magnitude, nega-
results of Tables VI and VIl is not possible. We have Cleartive t0p0|ogica| charge density decreasing in magnitude
evidence that the topology of Yang-Mills gauge fields cannothrough the color green. Here coolifig, improved cooling
be reliably studied using the algorithms presented here o(b), APE smearing ate=0.70 (c), APE smearing ata
lattice spacings as coarse as 0(@5m. Different algo- =0.30(d), improved smearing at=0.50(e), and improved
rithms lead to different topological charges, differing quite smearing ata=0.30 (f) are compared at the number of
widely in some cases as reported in Figs. 11 and 12. Moresmoothing iterations required for each algorithm to produce
over, subtle differences in the cooling algorithms can lead t@n approximately equivalent smoothed gauge field configu-
different topological charge determinations as illustrated inration. While Fig. 38b) for improved cooling differs some-
Figs. 3 and 4. As discussed in Sec. V A, the proximity of thewhat due to round off in the sweep number, the remaining
dislocation thresholds of the algorithms to the typical size ofplots compare very favorably with each other. These visual-
instantons and variations in the threshold from one algorithnizations confirm that the different smoothing algorithms con-
to another causes son@ntjinstantons to survive under one S|d§red_ in this investigation can be accurately re_lateq via the
algorithm, whereas they are removed under another. calibration analysis presented here and summarized in Tables
In contrast, the fine 2436 lattice results, wherea V! and Vil.
=0.077(1) fm, display excellent agreement among every
smoothing algorithm considered. In this case it appears that
the dislocation thresholds are smaller than the characteristic Thanks to Francis Vaughan of the South Australian Center
size of topological fluctuatiosuch that the gauge fields are for Parallel Computing and the Distributed High-
Performance Computing Group for generous allocations of
time on the University of Adelaide’s CM-5. Support for this
research from the Australian Research Council is gratefully
acknowledged.
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