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Improved smoothing algorithms for lattice gauge theory
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The relative smoothing rates of various gauge field smoothing algorithms are investigated on
O(a2)-improved SU~3! Yang-Mills gauge field configurations. In particular, anO(a2)-improved version of
APE smearing is motivated by considerations of smeared link projection and cooling. The extent to which the
established benefits of improved cooling carry over to improved smearing is critically examined. We consider
representative gauge field configurations generated with anO(a2)-improved gauge field action on 163332
lattices atb54.38 and 243336 lattices atb55.00 having lattice spacings of 0.165~2! fm and 0.077~1! fm,
respectively. While the merits of improved algorithms are clearly displayed for the coarse lattice spacing, the
fine lattice results put the various algorithms on a more equal footing and allow a quantitative calibration of the
smoothing rates for the various algorithms. We find the relative rate of variation in the action may be succinctly
described in terms of simple calibration formulas which accurately describe the relative smoothness of the
gauge field configurations at a microscopic level.
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I. INTRODUCTION

Gauge field smoothing algorithms are now widely used
lattice gauge theory studies as effective tools for construc
operators providing enhanced overlap between the vac
and the hadronic state under investigation. APE smearing@1#
is now widely used in creating improved operators for sta
quark potential studies, or creating orbitally excited and
brid mesons from the vacuum. Studies of perfect acti
have lead to the construction of ‘‘fat link’’ fermion action
@2–8# in which the links appearing in the fermion action a
APE smeared. Such actions display better chiral beha
and reduced exceptional configuration problems.

Both cooling and smearing algorithms have been u
extensively in studies of QCD vacuum structure, where
lattice operators of interest suffer from large multiplicati
renormalizations@9,10#. Here the suppression of short di
tance physics is key to removing these perturbative ren
malizations.

Unimproved smoothing algorithms such as standard c
ing @11–14# or standard APE smearing@1# introduce signifi-
cant errors on each sweep through the lattice. These e
act to underestimate the action@15# and spoil instantons a
the action falls below the one-instanton bound. The proble
may be circumvented by adding additional irrelevant ope
tors to the action tuned to stabilize instantons@15,16#.

Such improved cooling algorithms are central to stud
of topology and instantons in the QCD vacuum. There th
sands of sweeps over the lattice are required to evolv
typical gauge field configuration to the self-dual limit. It
well established that the use of improved algorithms is c
tral to achieving the required level of accuracy.

In this paper we introduce anO(a2)-improved form of
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APE smearing and examine the extent to which the bene
of improvement in cooling algorithms carry over to im
proved smearing. To carefully examine this new algorith
we create gauge field configurations with a
O(a2)-improved gauge action. For this investigation we s
lect Symanzik improvement for the gauge action@17#. We
consider two sets of gauge field configurations; a coa
163332 lattice atb54.38 witha;0.165(2) fm, and a fine
243336 lattice atb55.00 providinga;0.077(1) fm.

These lattices are sufficiently fine that we expect sim
results for other choices of action improvement schem
such as the Iwasaki action@18# or doubling blocked from
Wilson action in decoupling space~DBW2! @19# explored in
Ref. @20#. We also define anO(a2)-improved non-Abelian
field strength tensor and construct the corresponding
proved topological charge operator.

While the merits of improved algorithms are clearly di
played for the coarse lattice spacing, the fine lattice res
put the various algorithms on a more equal footing. Mo
over, on the fine lattice we no longer witness transitions
tween topological charge values as a function of smooth
sweeps.

Finally, we calibrate the relative smoothing rates of sta
dard cooling, APE smearing, improved cooling and im
proved smearing using the action as a measure of
smoothness. The action is selected as it varies rapidly un
cooling. The action evolution has only a mild configuratio
dependence@9# allowing the consideration of only a few con
figurations in the calibration process. We focus our com
tational resources on numerous cooling schemes, includ
an improved version of APE smearing referred to as i
proved smearing. In all we consider 14 smoothing algorith
for 200 sweeps on 17 configurations. This is computationa
equivalent to the more standard study of one or two al
rithms on the order of a hundred configurations. This calib
tion analysis is also an extension of an earlier analysis@22#
which focused on unimproved algorithms.

The plan of this paper is as follows. Section II describ
the lattice action used in this simulation. The improved fie
©2002 The American Physical Society10-1
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TABLE I. Parameters of the numerical simulations.

Action Volume NTherm NSamp b a ~fm! u0 Physical volume~fm!

Improved 163332 5000 500 4.38 0.165~2! 0.8761 2.64335.28
Improved 243336 5000 500 5.00 0.077~1! 0.9029 1.848332.772
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strength tensor and associated topological charge ope
are described in Sec. III. In motivating improved smear
we begin in Sec. IV with a brief review of improved coolin
followed by our improved smearing algorithm. Section
presents the results of our numerical simulations. The c
bration results are discussed in Sec. VI and a summary o
findings is given in Sec. VII, where the connection to pre
ous studies drawing relations between cooling and phys
properties@9,23,24# is made.

II. LATTICE GAUGE ACTION

The tree-levelO(a2)-improved action is defined as

SG5
5b

3 (
xmn
n.m

Re Tr@12Pmn~x!#

2
b

12u0
2 (

xmn
n.m

Re Tr@12Rmn~x!#, ~1!

wherePmn andRmn are defined as

Pmn~x!5Um~x!Un~x1m̂ !Um
† ~x1 n̂ !Un

†~x!, ~2!

Rmn~x!5Um~x!Un~x1m̂ !Un~x1 n̂1m̂ !

3Um
† ~x12n̂ !Un

†~x1 n̂ !Un
†~x!

1Um~x!Um~x1m̂ !Un~x12m̂ !

3Um
† ~x1m̂1 n̂ !Um

† ~x1 n̂ !Un
†~x!. ~3!

The link productRmn(x) denotes the rectangular 132 and
231 plaquettes.u0 is the tadpole improvement factor th
largely corrects for the quantum renormalization of the co
ficient for the rectangles relative to the plaquette. We emp
the plaquette measure for the mean link

u05S 1

3
Re Tr̂ Pmn~x!& D 1/4

, ~4!

where the angular brackets indicate averaging overx andm
Þn.

Gauge configurations are generated using the Cabib
Marinari @25# pseudo-heat-bath algorithm with three diag
nal SU~2! subgroups cycled twice. Simulations are p
formed using a parallel algorithm on a Thinking Machin
Corporation CM-5 with appropriate link partitioning@26#.
11451
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Configurations are generated on a 163332 lattice atb
54.38 and a 243336 lattice atb55.00. Configurations are
selected after 5000 thermalization sweeps from a cold s
and every 500 sweeps thereafter with a fixed mean-
value. Lattice parameters are summarized in Table I.

III. TOPOLOGICAL CHARGE OPERATOR

The topological charge of a gauge field configuration p
vides a particularly sensitive indicator of the performance
various smoothing algorithms. The topological charge is
lated to the field strength tensor by

Q5(
x

q~x!5(
x

g2

32p2
emnrs Tr@Fmn~x!Frs~x!#, ~5!

whereq(x) is the topological charge density. An expressi
for Fmn may be obtained by expanding the definition of t
Wilson loop. Consider a loopC in the m-n plane

Cmn~x!5P expS ig R
C
A~x!•dxD

5PF11 igS R
C
A~x!•dxD 2

g2

2!

3S R
C
A~x!•dxD 2

1O~g3!G . ~6!

The line integral is easily evaluated using Stokes theor
and a Taylor expansion of]mAn(x) aboutx0

R
C
A~x!•dx5E dxmdxnFFmn~x0!1~xmDm1xnDn!Fmn~x0!

1
1

2
~xm

2 Dm
2 1xn

2Dn
2!Fmn~x0!1O~a2g2,a4!G .

~7!

The integration limits are determined by the size of the W
son loop. Positioning the expansion pointx0 at the center of
the Wilson loop one finds

R
131

A~x!•dx5a2Fmn~x0!1
a4

24
~Dm

2 1Dn
2!Fmn~x0!1¯

~8!

R
231

A~x!•dx52a2Fmn~x0!1
a4

12
~4Dm

2 1Dn
2!Fmn~x0!

1••• ~9!
0-2
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R
132

A~x!•dx52a2Fmn~x0!1
a4

12
~Dm

2 14Dn
2!Fmn~x0!

1••• . ~10!

Hence,Fmn may be extracted from consideration of th
131 plaquette alone. To isolate the second term of the
pansion in Eq.~6!, one takes advantage of the Hermitia
nature ofFmn(x). ConstructingFmn(x) symmetrically about
x leads to

gFmn5
2 i

8
$@O mn

(1)~x!2O mn
(1)†~x!#

2 1
3 Tr@O mn

(1)~x!2O mn
(1)†~x!#%, ~11!

whereO mn
(1)(x) is the sum of 131 Wilson loops illustrated in

Fig. 1,

O mn
(1)~x!5Um~x!Un~x1m̂ !Um

† ~x1 n̂ !Un
†~x!1Un~x!Um

† ~x

1 n̂2m̂ !Un
†~x2m̂ !Um~x2m̂ !1Um

† ~x2m̂ !Un
†~x

2m̂2 n̂ !Um~x2m̂2 n̂ !Un~x2 n̂ !1Un
†~x

2 n̂ !Um~x2 n̂ !Un~x1m̂2 n̂ !Um
† ~x!. ~12!

This well known definition forFmn(x) is commonly em-
ployed in the Clover term of the Sheikholeslami-Wohle
@27# improved quark action. Although, not everyone enforc
the traceless nature of the Gell-Man matrices by subtrac
off the trace as in Eq.~11!.
11451
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Unfortunately, this definition has largeO(a2) errors.
These errors are most apparent in the topological cha
Even after hundreds of sweeps of cooling this simple defi
tion fails to take on integer values. Errors are typically at t
10% level.

To improve the topological charge operator, we impro
the definition of the field strength tensorFmn by removing
O(a2) errors with a linear combination of plaquette and re
angle Wilson loops

O mn
(2)~x!5c1O mn

(1)~x!1
c2

u0
2
I mn

(2)~x!, ~13!

where the tadpole coefficientu0 is defined in Eq.~4!. Here
I mn

(2)(x) is the link products of 132 and 231 rectangles in
the m-n plane

FIG. 1. Graphical representation of the link products summed
creatingO mn

(1)(x).
I mn
(2)~x!5Um~x!Um~x1m̂ !Un~x12m̂ !Um

† ~x1m̂1 n̂ !Um
† ~x1 n̂ !Un

†~x!1Um~x!Un~x1m̂ !Un~x1m̂1 n̂ !Um
† ~x12n̂ !

3Un
†~x1 n̂ !Un

†~x!1Un~x!Un~x1 n̂ !Um
† ~x2m̂12n̂ !Un

†~x2m̂1 n̂ !Un
†~x2m̂ !Um~x2m̂ !1Un~x!Um

† ~x2m̂1 n̂ !

3Um
† ~x22m̂1 n̂ !Un

†~x22m̂ !Um~x22m̂ !Um~x2m̂ !1Um
† ~x2m̂ !Um

† ~x22m̂ !Un
†~x22m̂2 n̂ !Um~x22m̂2 n̂ !

3Um~x2m̂2 n̂ !Un~x2 n̂ !1Um
† ~x2m̂ !Un

†~x2m̂2 n̂ !Un
†~x2m̂22n̂ !Um~x2m̂22n̂ !Un~x22n̂ !

3Un~x2 n̂ !1Un
†~x2 n̂ !Um~x2 n̂ !Um~x1m̂2 n̂ !Un~x12m̂2 n̂ !Um

† ~x1m̂ !Um
† ~x!1Un

†~x2 n̂ !

3Un
†~x22n̂ !Um~x22n̂ !Un~x1m̂22n̂ !Un~x1m̂2 n̂ !Um

† ~x!, ~14!

depicted in Fig. 2. The coefficientsc1 andc2 are determined by combining Eqs.~8!, ~9! and ~10! to removeO(a2) errors,

a2Fmn~x0!5
5

3 F R
131

A~x!•dxG2
1

6 F R
231

A~x!•dx1 R
132

A~x!•dxG , ~15!

indicating the coefficients for theO(a2)-improvedFmn of Eq. ~13! are

c15
5

3
and c252

1

6
. ~16!
0-3
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IV. COOLING AND SMEARING ALGORITHMS

In this section we motivate and introduce an improved version of APE smearing. The motivation is based on im
cooling, and therefore we begin with a very brief overview of cooling algorithms. Cooling consists of minimizing the
action effectively one link at a time. The local action is that contribution to the action associated with a single link.

A. Improved cooling

Standard cooling minimizes the local Wilson action associated with a link at each link update. The local action as
with the link Um(x) is proportional to

Sl~x,m!5 (
n

nÞm

Re Tr@12Um~x!Smn~x!#, ~17!

whereSmn(x) is the sum of the two staples associated withUm(x) lying in the m-n plane

Smn~x!5Un~x1m̂ !Um
† ~x1 n̂ !Un

†~x!1Un
†~x1m̂2 n̂ !Um

† ~x2 n̂ !Un~x2 n̂ !. ~18!

The local action associated with the linkUm(x) is minimized in standard cooling by a minimization process, i.e., by repla
the original link by the linkUm(x) which optimizes

max Re TrS Um~x! (
n

nÞm

Smn~x!D . ~19!

Improved cooling proceeds in exactly the same manner, but with the plaquette-based staples replaced with t
combination of plaquette-based staples and rectangle-based staples. For improved cooling we use

max Re TrS Um~x! (
n

nÞm

Smn
I ~x!D , ~20!

where

Smn
I 5

5

3
Smn1

1

12uo
2Smn

R , ~21!

and

FIG. 2. Graphical representa
tion of the link products summed
in creatingO mn

(2)(x).
114510-4
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Smn
R ~x!5Un~x1m̂ !Un~x1 n̂1m̂ !Um

† ~x12n̂ !Un
†~x1 n̂ !Un

†~x!1Um~x1m̂ !Un~x12m̂ !Um
† ~x1m̂1 n̂ !Um

† ~x1 n̂ !

3Un
†~x!1Un~x1m̂ !Um

† ~x1 n̂ !Um
† ~x1 n̂2m̂ !Un

†~x2m̂ !Um~x2m̂ !1Un
†~x1m̂2 n̂ !Un

†~x1m̂22n̂ !Um
† ~x22n̂ !

3Un~x22n̂ !Un~x2 n̂ !1Um~x1m̂ !Un
†~x12m̂2 n̂ !Um

† ~x1m̂2 n̂ !Um
† ~x2 n̂ !Un~x2 n̂ !1Un

†~x1m̂2 n̂ !

3Um
† ~x2 n̂ !Um

† ~x2 n̂2m̂ !Un~x2 n̂2m̂ !Um~x2m̂ !. ~22!
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The mean-field factoru0 is updated following each swee
through the lattice and rapidly goes to 1 as perturbative
pole contributions are removed. As we wish to stu
O(a2)-improved cooling, the coefficients are based on th
of the action @17,28#. While this action improves contac
with QCD, this choice of action does not completely sta
lize instantons on the lattice@15,29#. Removal ofO(a2) er-
rors and stabilization of instantons requires the considera
of additional loops@16,30#. The preferred algorithm for find
ing the Um(x) which maximizes Eq.~19! is based on the
Cabbibo-Marinari@25# pseudo-heat-bath algorithm for con
structing SU~3! color gauge configurations. There, operatio
are performed at the SU~2! level where the algorithm is
transparent.

An element of SU~2! may be parametrized asU5a0I

1 iaW •sW , wherea is real anda251. Since sums of product
of SU~2! matrices are proportional to SU~2! matrices,

(
n

nÞm

Smn
I ~x!5kŪm~x!, ~23!

whereŪm(x)PSU~2! and

k2[detS (
n

nÞm

Smn
I ~x!D . ~24!

The maximum of the expression

Re TrS Um~x! (
n

nÞm

Smn
I ~x!D 5Re Tr@kUm~x!Ūm~x!#

~25!

is achieved when

Re Tr@Um~x!Ūm~x!#5Re Tr~ I !, ~26!

which requires the link to be updated as

Um~x!→Um8 ~x!5Ūm
21~x!5Ūm

† ~x!5S (
n

nÞm

Smn
I ~x!

k D †

.

~27!

At the SU~3! level, we successively apply this algorithm
the three diagonal SU~2! subgroups of SU~3! @25#.

When considering an improved cooling algorithm it
crucial to loop over sufficient SU~2! subgroups to ensure tha
the subtle effects of the higher dimension operators in
11451
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duced in improving the action are reflected in the final SU~3!
link. It is easy to imagine that only two or three SU~2! sub-
groups may not take the SU~3! link close enough to the
optimal link for the effects of improvement to be proper
seen. We find consideration of the three diagonal SU~2! sub-
groups looped over twice to be optimal. In fact we have se
round off errors actuallyincrease the action if too many
loops are made.

The u0 factor of Eq. ~21! is not held fixed during the
improved cooling iteration. Starting from the value dete
mined during the thermalization process,u0 is updated after
every sweep through the lattice. After a few sweeps of i
proved cooling the value quickly converges to 1 which is
good indication that short distance tadpole effects are be
removed in the smoothing procedure@31#.

Finally it must be understood that cooling proceeds eff
tively one link at a time. That is, links involved in construc
ing Smn

I (x) are not updated simultaneously withUm(x). In
fact it is a nontrivial task identifying which links can b
simultaneously updated on a massively parallel compu
@26#.

B. Improved smearing

In this section we consider the APE smearing@1# algo-
rithm. We extend this algorithm to produce an improved v
sion, motivated by the success of the improved cooling p
gram.

1. Reunitarization of the links

APE smearing is a gauge equivariant1 @32# prescription
for smearing a linkUm(x) with its nearest neighborsUm(x
1 n̂), wheren̂ is transverse tom̂. The APE smearing proces
takes the form

Um~x!→Um8 ~x!5~12a!Um~x!1
a

6 (
n

nÞm

Smn
† ~x!, ~28!

Um~x!5PUm8 ~x!, ~29!

1Gauge equivariance means that if two starting gauge config
tions are related by a gauge transformation then the respe
smeared configurations are also related by the same gauge tran
mation.
0-5
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whereSmn(x) is the sum of the two staples associated w
Um(x) defined in Eq.~18! and P is a projection operato
which projects the smeared link back onto SU~3!.

The reunitarization procedure is of central importan
when smearing is applied to the gauge links because the
smearing operation produces links outside the SU~3! gauge
group in the intermediate stage of smearing. The link
tween smearing and cooling is established via the manne
which smeared links are projected back onto SU~3!. The pre-
ferred approach is to select the link variableUm(x) that
maximizes the quantity

Re Tr@Um~x!Um8
†~x!#. ~30!

In this case a clear connection to cooling is established w
a→1 as

max Re Tr@Um~x!Um8
†~x!#

5max Re TrS Um~x! (
n

nÞm

Smn~x!D , ~31!

which is precisely the condition of Eq.~19! for cooling. In
other words, projection of the smeared link back onto
gauge group via Eq.~31! selects the link which minimizes
the local action. Improvement of the staple based on
action will aid in removingO(a2) errors encountered in th
SU~3! projection. In practice, the same Cabibbo-Marina
based cooling method of operating on SU~2! subgroups may
be used to obtain the ultimate SU~3! link.

However, there is one very important difference rema
ing between APE smearing and cooling. While cooling
fectively updates one link at a time, feeding the smooth
link immediately into the next link update, APE smearin
proceeds uniformly with all links being simultaneously u
dated. Smoothed links are not introduced into the algorit
until the next iteration of the APE smearing process ta
place.

It is this latter point that provides the form factor inte
pretation of APE smearing in fat-link fermion actions@4#.
There smearing can be understood to introduce a form fa
suppressing the coupling of gluons to quarks at the edg
the Brillouin zone where lattice artifacts are most proble
atic. The form factor analysis restricts the smearing fract
to the range 0<a<3/4. Indeed in practice, smearing fra
tions beyond 3/4 do not lead to smooth gauge configuratio

2. Improving smearing

Having made firm contact with cooling it is clear th
replacing the simple staple of Eq.~18! with the improved
staple of Eq.~21! may lead to a realization of the benefits
improved cooling within APE smearing. Hence we defi
improved smearing to be an APE smearing step in which

Um~x!→Um8 ~x!5~12a!Um~x!1
a

6 (
n

nÞm

Smn
I†(x) , ~32!

Um~x!5PUm8 ~x!, ~33!
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whereSmn
I (x) is the improved staple of Eq.~21!.

Signatures of improvement include the preservation
structures in the action density distribution under smeari
O(a2) errors in the standard Wilson action act to undere
mate the local action and destroy topologically nontriv
field configurations@15#. Improved smearing will have re
ducedO(a2) errors and hence better preserve topologica
nontrivial field configurations. Hence an associated signa
of improvement is the stability of topological charge und
hundreds of smearing sweeps. Of course, one could alte
coefficients of the improvement terms to stabilize instanto
@15# at the expense of introducingO(a2) errors into the
smoothing action.

The extended nature of the staple will alter the stabi
range of a. Where standard APE smearing provides t
range 0<a<3/4, we find the upper stability limit lies below
a50.6.

V. NUMERICAL SIMULATIONS

We analyze two sets of gauge field configurations gen
ated using the Cabibbo-Marinari@25# pseudo-heat-bath algo
rithm with three diagonal SU~2! subgroups looped ove
twice. Details may be found in Table I. As discussed in t
Introduction, the analysis of a few configurations proves
be sufficient to resolve the nature of the algorithms un
investigation. We consider eleven 163332 configurations
and six 243336 configurations. For each configuration w
separately perform 200 sweeps of cooling and 200 sweep
improved cooling. We explore 200 sweeps of APE smear
at seven values of the smearing fraction and 200 sweep
improved smearing at five values of the smearing fracti
For APE smearing we consider a
50.10, 0.20, 0.30, 0.40, 0.50, 0.60, and 0.70. Simila
for improved smearing we considera50.10 to 0.50 at inter-
vals of 0.10. The extended nature of the staple alters
stability range ofa to lie belowa50.6.

For clarity, we define the number of times an algorithm
applied to the entire lattice asnc , nIc , nape(a) andnIape(a)
for cooling, improved cooling, APE smearing and improv
smearing, respectively. We monitor both the total action n
malized to the single instanton actionS058p2/g2 and the
topological charge operators,QL and QL

Imp , from which we
observe their evolution as a function of the appropri
sweep variable and smearing fractiona.

A. The influence of the number of subgroups on the gauge
group

In this section we describe the influence of including a
ditional SU~2! subgroups in constructing the gauge gro
SU~3! and we explore the impact it has on the smooth
procedure. The Cabibbo-Marinari algorithm@25# constructs
the SU~N! gauge groups using SU~2! subgroups. It is under-
stood that the minimal set required to construct SU~3! matri-
ces is two diagonal SU~2! subgroups. After having per
formed cooling on gauge field configurations we noticed t
the resulting cooled gauge field configurations were
0-6
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smooth even after a large number of smoothing steps. A
ing a third SU~2! subgroup made a significant difference
the resulting smoothness.

We explored further by simply performing addition
cycles,ncycle, around the three diagonal SU~2! subgroups.
We monitored the smoothing rate using both the stand
Wilson and the improved action according to the cycle nu
ber being set toncycle51, 2 and 3. Based on the evolution
the action, we found that the optimum cooling rate on gau
field configurations is achieved using the three diago
SU~2! subgroups cycled over twice,ncycle52. Cycling more
than twice provides very little further reduction of the acti
and round off errors may actually increase the action on
casion. Hence two cycles over the three diagonal SU~2! sub-
groups is sufficient to precisely create the SU~3! link which
minimizes the local action. This determination is crucial
ensuring the effects of our improved action are fully reflec
in the SU~3! link.

FIG. 3. The evolution of the topological charge estimated by
improved operator as a function of standard cooling sweepsnc for
various numbers of SU~2! subgroups. The curves are for a typic
configuration from the 163332 lattices wherea50.165(2) fm.
The parameter cycle describes the number of times the three
onal SU~2! subgroups are cycled over.

FIG. 4. The evolution of the topological charge estimated by
improved operator as a function of improved cooling sweepsnIc for
various numbers of cycles over the three diagonal SU~2! subgroups.
The curves are for the same configuration illustrated in Fig. 3.
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We also monitored the evolution of the topological char
with respect to the above number of cycles. On the 13

332 lattice with spacing ofa50.165(2) fm, we observe a
disagreement of the trajectories for the topological charge
different numbers of the SU~2! subgroups cycles. Figure
displays results for standard cooling and Fig. 4 displays si
lar results for improved cooling. A comparison of Figs. 3 a
4 indicates the trajectories also differ between cooling a
improved cooling.

Hence we see subtle differences in the algorithms lead
to dramatic differences in the topological charge. One m
conclude that a lattice spacing of 0.165~2! fm is too coarse
for a serious study of topology in SU~3! gauge fields using
the algorithms considered here. The difficulty lies in the fa
that the algorithms have a dislocation threshold typically
little over two lattice spacings@16,21#. Instantons with a size
smaller than the dislocation threshold are removed during
process of smoothing. While this threshold has the desira

e

g-

e

FIG. 5. The evolution curve for the topological charge estima
via the improved operator as a function of cooling sweepsnc for six
configurations on the 243336 lattices at b55.00 where a
50.077(1) fm.

FIG. 6. The evolution curve for the topological charge estima
via the improved operator as a function of improved cooling swe
nIc for the same six configurations from the 243336 lattices atb
55.00 illustrated in Fig. 5.
0-7
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BONNET, LEINWEBER, WILLIAMS, AND ZANOTTI PHYSICAL REVIEW D 65 114510
property of removing lattice artifacts, we note that twice t
lattice spacing is 0.33 fm. Minor differences in the disloc
tion thresholds of the various algorithms will cause so
~anti!instantons to survive under one algorithm where th
are removed under another.

On the other hand, a lattice spacing the order of 0.077~1!
fm appears to allow a meaningful study of topology in SU~3!
gauge theory. Twice this lattice spacing is 0.15 fm, well b
low the typical size of instantons@24#.

We also note here the accuracy with which our improv
topological charge operator reproduces integer values. T
results should be contrasted with the usual 10% errors of
unimproved operator at similar lattice spacings. Such er
on a topological charge of 5 can lead to the uncomforta
result ofQ.4.5 when the unimproved operator is used.

With the finer 243336 lattice atb55.00, we observe per
fect agreement among trajectories for different numbers
cycles of the three SU~2! subgroups. Moreover, the topolog
cal charge remains stable for hundreds of sweeps follow
the first three sweeps. Figures 5 and 6 compare the topo
cal charge evolution for cooling versus improved cooli

FIG. 7. The ratioS/S0 as a function of standard cooling swee
nc for five configurations on the 243336 lattice atb55.0. The
single instanton action isS058p2/g2.

FIG. 8. The ratioS/S0 as a function of improved cooling sweep
nIc for five configurations on the 243336 lattice atb55.0. The rate
of cooling is seen to be somewhat slower than that for the stan
cooling.
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for six configurations. In every case, the two algorithms p
duce the same topological charge for a given configurati

B. The action

We begin by considering the action evolution on bo
lattices. Here we report the action divided by the single
stanton actionS058p2/g2. It is important to note that al-
though the 243336 lattice has almost four times more lattic
sites than the 163332 lattice, the physical volume is smalle
by almost a factor of three. As such the typical topologic
charges encountered are smaller in magnitude.

Figures 7, 8, 9, and 10 report the typical evolution of t
action under standard cooling, improved cooling, AP
smearing, and improved smearing respectively. Inspectio
the figures reveals that improved cooling preserves the ac
better than standard cooling over a couple hundred swe
As expected, standard APE smearing remains slower t
cooling or improved cooling even at our most efficie
smearing fraction (a50.70). Similar results are observed fo

rd

FIG. 9. The ratioS/S0 as a function of APE smearing sweep
nape(a) for one configuration on the 243336 lattice atb55.0. Each
curve has an associated smearing fractiona. The rate of lowering
the action for the maximum stable smearing fraction ('0.75) is
seen to be less than that for the other standard or improved coo

FIG. 10. The ratioS/S0 as a function of improved smearin
sweepsnIape(a) for one configuration on the 243336 lattice atb
55.0. Each curve has an associated smearing fractiona. We see
that this is the slowest of the four algorithms for lowering the act
as a function of the sweep number.
0-8
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improved smearing at our most efficient smearing fraction
a50.50 in Fig. 10.

Based on these observations, one concludes that the
est way to remove the short range quantum fluctuations
anO(a2) gauge field configuration, is through standard co
ing, which lowers the action more rapidly than improv
cooling as a function of cooling sweep. In turn we see t
improved cooling is faster than the maximum stable stand
APE smearing, which is faster than the maximum stable
proved smearing. This is illustrated by Figs. 7–10. It is i
portant to emphasize that the fastest way of removing th
fluctuations is not necessarily the best as far as the topo
is concerned. It is already established that theO(a2) errors
of the standard Wilson action act to underestimate the ac
@15#. These errors spoil instantons which might otherw
survive under improved cooling.

C. Topological charge from cooling and smearing

We begin by considering the 163332 lattices having a
lattice spacing ofa50.165(2) fm. In Fig. 11 we plot the
evolution curve for the improved topological charge as

FIG. 11. QL
Imp versusnc for six configurations on the 163332

lattices atb54.38, a50.165(2) fm. Each line corresponds to
different configuration.

FIG. 12. QL
Imp versusnIc for six configurations on the 163332

lattices. The different line types identifying different configuratio
match the configurations identified in Fig. 11.
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function of the cooling sweep number,nc , for six of our
configurations. Similarly in Fig. 12, for the same six config
rations we plot the improved topological charge operator
this time as a function of improved cooling sweepnIc . The
line types in Figs. 11 and 12 correspond to the same un
lying configurations and are to be directly compared. F
example, the solid curve corresponds to the same gauge
configuration in both figures but with a different algorith
applied to it. From these two figures we notice the two co
ing methods lead to completely different values for the top
logical charge.

Improved cooling brings stability to the evolution of th
topological charge whereas standard cooling gives rise
numerous fluctuations to the topological charge. For i
proved cooling, plateaus appear after about 40 sweeps
persist for hundreds of sweeps. This is a celebrated featu
improved cooling.

This algorithmic sensitivity of the topological charge
also seen in Figs. 13 and 14 for APE and improved smea
on a single configuration~the solid line of Figs. 11 and 12!.

FIG. 13. The evolution ofQL
Imp using APE smearing as a func

tion of APE smearing sweepnape(a) on the 163332 lattice atb
54.38. Here different line types correspond to different smear
fractions.

FIG. 14. The evolution ofQL
Imp using improved smearing as

function of APE smearing sweepnIape(a) on the 163332 lattice at
b54.38. Here different line types correspond to different smear
fractions.
0-9
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BONNET, LEINWEBER, WILLIAMS, AND ZANOTTI PHYSICAL REVIEW D 65 114510
Within APE smearing or improved smearing, the topologi
charge trajectories follow similar patterns but different ra
for various smearing fractions. However, APE smear
leads to values for the topological charge which are differ
from that obtained under improved smearing. An import
point is that improved smearing stabilizes the topologi
charge at 95 sweeps fora50.5, whereas standard smeari
shows no sign of stability until 140 iterations ata50.5.
Hence we see significant improvement in the topological
pects of the gauge field configurations under improv
smearing.

On our finer lattice, we find a completely different beha
ior for the topological charge evolution. The topologic
charge is established very quickly, after a few sweeps in
case of cooling or improved cooling as illustrated in Figs
and 6. The topological charge persists without fluctuation
hundreds of sweeps, both for cooling and for smearing
illustrated in Figs. 15 and 16 for APE and improved sme
ing, respectively. Moreover, the topological charge is ind
pendent of the smearing algorithm.

FIG. 15. The evolution ofQL
Imp using APE smearing as a func

tion of APE smearing sweepnape(a) on the 243336 lattice atb
55.00. Here different line types correspond to different smear
fractions.

FIG. 16. The evolution ofQL
Imp using APE smearing as a func

tion of APE smearing sweepnIape(a) on the 243336 lattice atb
55.00. Here different line types correspond to different smear
fractions.
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These results are to be compared with Fig. 11 and Fig.
where transitions are observed even with improved coo
on the coarser lattice witha50.165(2) fm. The results on
our fine lattice suggest the characteristic size of instanton
much larger than the dislocation threshold, such that the
pological structure of the gauge fields is smooth at the sc
of the threshold.

In Fig. 15 for standard APE smearing we observe a slow
convergence to integer topological charge than in Fig. 16
improved smearing when 0.1<a<0.5. This feature of im-
proved smearing is illustrated in detail in Fig. 17. Howev
APE smearing has the advantage to allow values for
smearing fraction up toa50.70 which cannot be accesse
by improved smearing. Having demonstrated that it is p
sible to precisely match the behavior of the algorithms
fine lattice spacings, we proceed to calibrate the efficienc
these algorithms in the following section.

VI. SMOOTHING ALGORITHM CALIBRATION

Here we calibrate the relative rate at which quantum fl
tuations are removed from typical field configurations by t
various algorithms. The calibration is done using the act
normalized to the single instanton action,S/S0, on both the
163332 lattices and 243336 lattices. The action normalize
to the single instantons action,S/S0, is of particular interest
because it provides insight into the lattice content as wel
the rate at which the quantum fluctuations are removed.

While there is no doubt that the algorithms may be ac
rately calibrated on the fine 243336 lattice, the 163332 lat-
tice with a50.165(2) fm presents more of a challenge. As
result, in most cases we will show the graphs produced fr
the 163332 lattice analysis and simply present the numeri
results for both the 163332 and 243336 lattices. The nu-
merical results are summarized in Tables II, III, and VI f
the 163332 lattices and in Tables IV, V, and VII for the
243336 lattices.

g

g

FIG. 17. The evolution of the improved topological charg
QL

Imp , as a function of standard APE smearing sweeps,nape(a), for
0.1<a<0.7 ~solid lines! is compared to improved smearin
sweeps,nIape(a) ~dotted-dashed lines!, for the same smearing frac
tions 0.1<a<0.5 on the 243336 lattice atb55.00. The horizontal
dotted-dashed line isQL

Imp524.
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TABLE II. The averages of the ratioŝnape(0.50)/nape(a)& and ^nIape(0.50)/nape(a)& for various smearing fractionsa from the 163

332 lattice atb54.38.

a for APE smearing
0.10 0.20 0.30 0.40 0.50 0.60 0.70

nape(0.50) 0.195~1! 0.394~2! 0.595~3! 0.797~4! 1.0 1.203~1! 1.407~1!

nIape(0.50) 0.227~1! 0.465~1! 0.706~1! 0.948~1! 1.189~1! 1.431~1! 1.673~1!

TABLE III. The averages of the ratioŝnape(0.50)/nIape(a)& and^nIape(0.50)/nIape(a)& for various smear-
ing fractionsa from the 163332 lattice atb54.38.

a for improved smearing
0.10 0.20 0.30 0.40 0.50

nape(0.50) 0.196~1! 0.376~3! 0.543~1! 0.697~1! 0.842~1!

nIape(0.50) 0.228~1! 0.442~1! 0.641~1! 0.827~1! 1.0

TABLE IV. The averages of the ratioŝnape(0.50)/nape(a)& and ^nIape(0.50)/nape(a)& for various smearing fractionsa from the 243

336 lattice atb55.00.

a for APE smearing
0.10 0.20 0.30 0.40 0.50 0.60 0.70

nape(0.50) 0.195~1! 0.395~1! 0.595~1! 0.797~1! 1.0 1.205~1! 1.410~1!

nIape(0.50) 0.227~1! 0.462~1! 0.698~1! 0.937~1! 1.176~1! 1.416~1! 1.658~1!

TABLE V. The averages of the ratios^nape(0.50)/nIape(a)& and^nIape(0.50)/nIape(a)& for various smear-
ing fractionsa from the 243336 lattice atb55.00.

a for improved smearing
0.10 0.20 0.30 0.40 0.50

nape(0.50) 0.196~1! 0.378~1! 0.546~1! 0.704~1! 0.851~1!

nIape(0.50) 0.228~1! 0.442~1! 0.641~1! 0.826~1! 1.0

TABLE VI. Calibration coefficients for various smoothing algorithms on the 163332 lattice atb54.38.
Entries describe the relative smoothing rate for the algorithm ratio formed by selecting an entry from the
numerator column and dividing it by the heading of the denominator columns. For example, Eq.~37!
corresponds to the first column of the third row.

Denominator
Numerator anape(a) adnIape(a) nc nIc

a8nape(a8) 1.00~2! 0.81~2! 1.69~3! 1.30~2!

a8dnIape(a8) 1.25~3! 1.01~2! 2.13~5! 1.61~3!

nc 0.59~1! 0.47~1! 1 0.75~1!

nIc 0.77~1! 0.62~1! 1.33~2! 1
114510-11
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TABLE VII. Calibration coefficients for various smoothing algorithms on the 243336 lattice atb
55.00. Entries describe the relative smoothing rate for the algorithm ratio formed by selecting an entr
the numerator column and dividing it by the heading of the denominator columns. For example Eq~36!
corresponds to the second column of the first row.

Denominator
Numerator anape(a) adnIape(a) nc nIc

a8nape(a8) 1.00~2! 0.81~2! 1.64~2! 1.37~1!

a8dnIape(a8) 1.25~3! 1.01~2! 2.04~4! 1.67~3!

nc 0.611~9! 0.49~1! 1 0.84~1!

nIc 0.734~8! 0.60~1! 1.19~1! 1
FIG. 18. The rationape(0.50)/nape(a) versusnape(a) for numer-
ous S/S0 thresholds on the 163332 lattice at b54.38. From
top to bottom the data point bands correspond toa
50.7, 0.6, 0.5,0.4, 0.3, 0.2, and 0.1.

FIG. 19. The rationIape(0.50)/nIape(a) versusnIape(a) for nu-
merousS/S0 thresholds on the 163332 lattice atb54.38. From top
to bottom the data point bands correspond toa
50.5, 0.4, 0.3, 0.2, and 0.1.
11451
FIG. 20. Illustration of the dependence of^nape(0.50)/nape(a)&
for APE smearing on the smearing fractiona. The solid line is a
linear fit to the data constrained to pass through the origin.

FIG. 21. Illustration of the dependence of^nIape(0.50)/nIape(a)&
for APE smearing on the improved smearing fractiona. The solid
line fit is constrained to pass through the origin.
0-12
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IMPROVED SMOOTHING ALGORITHMS FOR LATTICE . . . PHYSICAL REVIEW D 65 114510
A. APE smearing and improved smearing calibration

To calibrate the rate at which the algorithm reduces
action we record the nearest number of sweeps require
reach a given threshold inS/S0. The action thresholds ar
spaced logarithmically to obtain a uniform distribution in t
number of sweeps required to reach a threshold. The rela
rates of smoothing are established by comparing the rela
number of sweeps required to reach a particular thresho

Here we calibrate the APE smearing algorithm charac
ized by the smearing fractiona and the number of smearin
iterationsnape(a). The different threshold crossings are ch
acterized by the number of sweeps required to reach
threshold,nape(a). In Fig. 18 we show the number of swee
required to reach a threshold whena50.5, nape(0.50), rela-
tive to that required for othera values,nape(a). We plot
these relative smoothing rates as a function ofnape(a) such
that low S/S0 thresholds are reached after hundreds of ite
tions of the smoothing algorithm. Figure 19 shows simi
results for improved smearing. In these figures and in
following analysis, we omit thresholds that result in few
than five smoothing iterations as these points produce int
discretization errors of more than 20%.

FIG. 22. Illustration of the dependence o
ln(^nIape(0.50)/nIape(a)&) on the improved smearing fractiona for
improved smearing. The solid line fit indicatesd50.914.

FIG. 23. Illustration of the degree to which the relation Eq.~35!
is satisfied for improved smearing. Here the entire data set is plo
for a anda850.5, 0.4, 0.3, 0.2 and 0.1. Data are from 163332
lattice atb54.38.
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Both standard and improved smearing algorithms hav
relative smoothing rate which is independent of the amo
of smoothing done. By calculating the average value for e
of the bands in Figs. 18 and 19, we can investigate the
pendence of the average relative smoothing r
^nape(0.50)/nape(a)& on a.

Figure 20 illustrates a linear fit to the data constrained
pass through the origin. We find̂nape(0.50)/nape(a)&
52.00a such that

nape~a8!

nape~a!
5

a

a8
~34!

in agreement with our earlier analysis@22#. The extent to
which this relationship holds can be verified@22# by plotting
the ratio a8nape(a8)/anape(a) and comparing the result
to 1.

In plotting the band averages for the improved smear
algorithm of Fig. 19 in Fig. 21, one finds a small deviation
the points from the liney52a. This suggests that Eq.~34! is
not sufficiently general for the improved smearing case.

ed

FIG. 24. The rationape(0.50)/nIape(a) versusnIape(a) for nu-
merous threshold actions on the 163332 lattice atb54.38. From
top to bottom the data point bands correspond to improved sm
ing fractionsa50.5, 0.4, 0.3, 0.2, and 0.1.

FIG. 25. Illustration of the degree to which the relation Eq.~36!
is satisfied for calibration of the action under APE and improv
smearing. Here the entire data set is plotted.
0-13
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BONNET, LEINWEBER, WILLIAMS, AND ZANOTTI PHYSICAL REVIEW D 65 114510
A better approximation to establish thea dependence tha
is similar to Eq.~34! and contains Eq.~34! is

nIape~a8!

nIape~a!
5S a

a8
D d

, ~35!

whered is equal to one in the case of standard APE smea
and can deviate away from one for improved smearing.

In Fig. 22 the logarithm of Eq.~35! is plotted. The slope
of the data providesd50.914(1) for both the 163332 and
the 243336 lattices. We also verifiedd51.00 for the APE
smearing data. Figure 23 plots the ratio of the left- and rig
hand sides of Eq.~35! as a function ofnIape(a) for a8.a.
The ratio is one as expected with 5% for large amounts
smearing where integer discretization errors are minimiz
Throughout the following analysis,d is fixed at 0.914~1!.

B. APE and improved smearing cross calibration

In this section we focus on the cross calibration of t
smearing algorithms. In Fig. 24 we compare the numbe

FIG. 26. The rationc /nape(a) versusnape(a) for numerous
action thresholds for the 163332 lattice at b54.38. From
the top down the data point bands correspond toa
50.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1.

FIG. 27. The rationIc /nape(a) versusnape(a) for numerous
action thresholds on the 163332 lattice at b54.38. From
the top down the data point bands correspond toa
50.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1.
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improved smearing sweeps required to reach a threshold
various improved smearing fractions relative to APE sme
ing at a50.5. The lowest band corresponds to an improv
smearing fraction of 0.10. From this, we conclude that
low a values APE smearing and improved smearing prod
roughly equivalent smeared configurations. However, th
are some evident differences in the rate at which both a
rithms perform. For intermediate to largea there is curvature
in the bands. Early in the smearing process, fewer sweep
improved smearing are required to reach a threshold. Tha
improved smearing removes action faster than APE smea
in the early stages of smearing. This behavior is also ma
fest in the analogous results for the fine 243336 lattice. As
emphasized in the discussion surrounding Fig. 17, impro
smearing also provides a topological charge closer to an
teger than APE smearing. Together, these two propertie
improved smearing identify a genuine improvement in t
smearing process.

For the coarse 163332 lattice data, the bands are thick fo
large smearing fractions indicating improved smearing d
perform significantly different from standard APE smearin

FIG. 28. The rationIc /nape(a) versus nape(a) for numer-
ous action thresholds on the 243336 lattice at b55.00. From
the top down the data point bands correspond toa
50.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1.

FIG. 29. The rationIc /nIape(a) versusnIape(a) for numerous
action thresholds on the 163332 lattice atb54.38. From the top
down the data point bands correspond toa50.5, 0.4, 0.3, 0.2,
and 0.1.
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IMPROVED SMOOTHING ALGORITHMS FOR LATTICE . . . PHYSICAL REVIEW D 65 114510
Contributions from individual configurations are clearly vi
ible as lines within the bands. This structure is due to
coarse lattice spacing of 0.165~2! fm which reveals differ-
ences between the algorithms. Such structure is not see
the fine 243336 lattice results. There a precise calibration
possible.

In Tables II and III we report the averages of each ba
for APE and improved smearing on the 163332 lattices. In
Tables IV and V we report similar results for the 243336
lattices.

Based on Eqs.~34! and ~35! for APE and improved
smearing, we expect

a8nape~a8!

adnIape~a!
5const. ~36!

This ratio is plotted in Fig. 25 where a rather mild depe
dence onnIape(a) is revealed. Averaging these results pr
vides 0.81~2! for the constant of Eq.~36!. Similar results are
seen for the finer 243336 lattice, but with greater precisio

FIG. 30. The rationc /nIape(a) versusnIape(a) for numerous
action thresholds on the 163332 lattice atb54.38. From the top
down the data point bands correspond toa50.5, 0.4, 0.3, 0.2,
and 0.1.

FIG. 31. The rationc /nIc versusnIc for numerous action thresh
olds on the 163332 lattice atb54.38. The significant difference
between the algorithms are revealed by the gauge-configuration
pendence of the trajectories.
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in the calibration reflected in a narrower band. There
constant is also 0.81~2!. However, it should also be note
that for a<0.5, improved smearing achieves integer top
logical charge faster than standard APE smearing.

C. Calibration of cooling and smearing

In this section we apply the ansatz of Eqs.~34! and~35! to
relate the cooling and smearing algorithms. Figure 26 d
plays results comparing cooling and standard APE smear
For a as small as 0.1 it takes about 75 sweeps of APE sm
ing compared with five sweeps of cooling to arrive at
equivalent action. On the other end of the smearing fract
spectrum, we note the bands become very thick.

The calibration of these ratios indicates

nc

anape~a!
50.59~1!, ~37!

in agreement with that obtained in@22# where the analysis
was performed on unimproved gauge configurations. The
duction inO(a2) errors in the gauge field action affect bo
algorithms similarly such that the calibration of the relati
smoothing rates remains unaltered.

Further broadening of the bands is observed when c
paring improved cooling with APE smearing as illustrated
Fig. 27. The precision of improved cooling relative to AP
smearing leads to very different smoothed configurations
this coarse lattice spacing of 0.165~2! fm. This indicates the
algorithms are sufficiently different, that an accurate a
meaningful calibration is impossible.

This effect is not observed when we pass to our fine
tice spacing as displayed in Fig. 28. We remind the rea
that the thickness of the band for small numbers of smoo
ing sweeps is simply due to the ratio of small integers tak
in plotting they-axis values.

The real test of improved smearing is the extent to wh
the algorithm can preserve action associated with topolog
objects and thus maintain better agreement with more pre
algorithms including cooling and improved cooling. Figu
29 displays results for the calibration of improved cooli
with improved smearing. Comparing these results for e
e-

FIG. 32. The rationc /nIc versusnIc for numerous action thresh
olds on the 243336 lattice atb55.00.
0-15
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BONNET, LEINWEBER, WILLIAMS, AND ZANOTTI PHYSICAL REVIEW D 65 114510
smearing fractiona with that for improved cooling and stan
dard smearing in Fig. 27 reveals that the improved smea
algorithm, which was seen to be better than the standard A
smearing algorithm does not perform as well as the impro
cooling algorithm.

Similar results are seen in Fig. 30 where standard coo
is compared with improved smearing. Hence the annea
of the links in the process of cooling, where cooled links a
immediately passed into the determination of the next coo
link, is key to the precision with which cooling can preser
topological structure.

Calibration of the smoothing rates as measured by
action for the algorithms under investigation are summari
in Tables VI and VII. The entries describe the relati
smoothing rate for the algorithm ratio formed by selecting
entry from the numerator column and dividing it by th
heading of the denominator columns. The entry compar
APE smearing with itself reports the level to which the a
satz of Eq.~34! is satisfied. Similarly the entry comparin
improved smearing with itself reports the level to which t
ansatz of Eq.~35! is satisfied.

D. Cooling versus improved cooling

Figure 31 reports a comparison of standard cooling w
improved cooling on 11 configurations from the coarse 13

332 lattice. There the rationc /nIc,1 confirms the expecta
tion that standard cooling does not preserve action on
lattice as well as theO(a2)-improved cooling. Fewer stan
dard cooling sweeps are required to reach the same a
threshold. Calibration of the algorithms appears plausible
the first 80 sweeps of improved cooling, after which the t
algorithms smooth the configurations in very different ma
ners. Any calibration at this lattice spacing is only very a
proximate beyond 80 sweeps of improved cooling where
tinct configuration-dependent trajectories become visib
This result is contrasted by the analogous analysis on
fine 243336 lattice illustrated in Fig. 32. Whilenc /nIc re-
mains less than one, it is closer to one here than for
coarser lattice as one might expect.

VII. CONCLUSIONS

We have introduced an improved version of the AP
smearing algorithm founded on the connection between c
ing Eq.~19! and the projection of the APE smeared link ba
to the SU~3! gauge group via Eq.~31!. This connection mo-
tivates the use of additional extended paths combined w
the standard ‘‘staple’’ as governed by the action to reduce
introduction ofO(a2) errors in the smearing projection pro
cess.

Clear signs of improvement are observed. For a giv
smearing fractiona defined in Eq.~28!, improved smearing
preserves the action better than standard APE smearin
each smearing sweep. At the same time improved smea
brings the improved topological charge to an integer va
faster than standard APE smearing.

The extended nature of the ‘‘staple’’ in improved sme
ing reduces the stability regime for the smearing fraction.
found the improved smearing algorithm to be stable fora
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<0.5. At a50.6 the algorithm is unstable whereas stand
APE smearing remains stable fora<0.75.

Given the wide variety of smoothing algorithms und
investigation in the field of lattice gauge theory, we ha
cross-calibrated the speed with which the algorithms rem
action from the field configurations. In particular we ha
cross-calibrated the smoothing rates of APE smearing
seven values of the smearing fraction; improved smearin
five values of the smearing fraction; cooling; and improv
cooling. We explored smearing fractions in 0.1 interva
starting ata50.1.

The calibration has been investigated over a range of
sweeps for each smearing algorithm onO(a2)-improved
gauge field configurations. The results of this analysis allo
one to make qualitative comparisons between cooling
smearing algorithms and in fact make quantitative comp
sons of smearing algorithms with different smearing fra
tions on lattices as coarse as 0.165~2! fm. On our fine lattice
where the lattice spacing is 0.077~1! fm, the calibration is
quantitative in general.

We have found the relative smoothing rates are descri
via simple relationships as reported in Tables VI and VII f
our coarse 163332 and fine 243336 lattices, respectively
There the sensitivity of the calibration results on the latt
spacing may be reviewed. A noteworthy point is that w
discovered a necessary correction to the APE smearing
rule @22# when improved smearing is considered. These
gorithms may be calibrated via

nape~a8!

nape~a!
5

a

a8
and

nIape~a8!

nIape~a!
5S a

a8
D d

~38!

for APE smearing and improved smearing, respectively.
find d50.914(1) without a significant dependence on t
lattice spacing.

Having cross-calibrated these smoothing algorithms,
now proceed to make contact with physical phenome
@4,23,24#. In particular, we note that it is possible to build
a length scale beyond which cooling does not affect the li
@23#. It would be interesting to explore these techniques
the context of APE and improved smearing. Using a rand
walk argument, one can postulate a cooling radius

r cool5cAnca, ~39!

wherea is the lattice spacing andc is a constant independen
of b @24#. It has been shown that phenomena taken fr
simulation results with invariantaAnc scale very well@24#.
The effective range for APE smearing has been estima
using analytic methods@4#. For small smearing fraction,a,
the effective range is

r ape5
1

A3
Aanape~a!a. ~40!

The product ofa andnape(a) definesr ape in agreement with
the results presented here. Equation~38! indicates that this
relation holds even for largea. Results of our analysis con
tained in Tables VI and VII allow one to link Eqs.~39! and
0-16
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FIG. 33. ~Color! The topological charge density of a 243336 lattice for a fixedx coordinate. The instantons~anti-instantons! are colored
red to yellow~blue to green!. ~a! shows the topological charge density after nine cooling sweeps.~No red is visible in this particular viewing
angle.! Each of the following figures display the result of a different smoothing algorithm calibrated according to Table VII to reprod
closely as possible the results depicted in~a!. ~b! illustrates the topological charge density after 11 sweeps of improved cooling.~c! shows
the topological charge density after 21 APE smearing steps ata50.70.~d! illustrates the topological charge density after 49 APE smea
steps ata50.30. In~e! the topological charge density is displayed after 35 sweeps of improved smearing ata50.50. Finally,~f! shows the
topological charge density after 55 sweeps of improved smearing ata50.30. Apart from~b! for improved cooling, which differs largely due
to round off in the sweep number, all the plots compare very favorably with each other.
114510-17
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BONNET, LEINWEBER, WILLIAMS, AND ZANOTTI PHYSICAL REVIEW D 65 114510
~40! and thus determine the constantc. For sufficiently fine
latticesc is argued to be independent ofb @24# and this is
already supported to some extent by the similarity of
entries in Tables VI and VII. For example, from Table VI
nc50.611(9)anape(a) such that

r cool5
1

A3~0.611~9!!
Anca50.739~5!Anca.

The effective range for other smoothing algorithms may
derived from Eq.~40! in a similarly straightforward manner

Unfortunately a rigorous analysis of the scaling of t
results of Tables VI and VII is not possible. We have cle
evidence that the topology of Yang-Mills gauge fields can
be reliably studied using the algorithms presented here
lattice spacings as coarse as 0.165~2! fm. Different algo-
rithms lead to different topological charges, differing qu
widely in some cases as reported in Figs. 11 and 12. M
over, subtle differences in the cooling algorithms can lead
different topological charge determinations as illustrated
Figs. 3 and 4. As discussed in Sec. V A, the proximity of t
dislocation thresholds of the algorithms to the typical size
instantons and variations in the threshold from one algorit
to another causes some~anti!instantons to survive under on
algorithm, whereas they are removed under another.

In contrast, the fine 243336 lattice results, wherea
50.077(1) fm, display excellent agreement among ev
smoothing algorithm considered. In this case it appears
the dislocation thresholds are smaller than the character
size of topological fluctuations2 such that the gauge fields a

2We define a ‘‘topological fluctuation’’ to refer to objects withQ
561 but S/S0.1.
l.
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already sufficiently smooth to unambiguously extract the
pology of the gauge fields.

As a final comparison of the smoothing algorithms, w
provide a visual representation of a gauge field configura
after applying various smoothing algorithms. Figure 33 illu
trates a rendering of the topological charge density for a s
of one of the fine 243336 lattice configurations. While ou
calibration has been carried out by considering the total
tion of the gauge fields, the following analysis allows us
examine the extent to which the calibration is accurate a
microscopic level.

In Fig. 33 red shading indicates large positive topologi
charge density with decreasing density becoming yellow
color, while blue shading indicates large in magnitude, ne
tive topological charge density decreasing in magnitu
through the color green. Here cooling~a!, improved cooling
~b!, APE smearing ata50.70 ~c!, APE smearing ata
50.30~d!, improved smearing ata50.50~e!, and improved
smearing ata50.30 ~f! are compared at the number o
smoothing iterations required for each algorithm to produ
an approximately equivalent smoothed gauge field confi
ration. While Fig. 33~b! for improved cooling differs some
what due to round off in the sweep number, the remain
plots compare very favorably with each other. These visu
izations confirm that the different smoothing algorithms co
sidered in this investigation can be accurately related via
calibration analysis presented here and summarized in Ta
VI and VII.
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