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The static three-quark3Q) potential is studied in detail using $8) lattice QCD with 13X 24 at3=5.7
and 16x 32 at3=5.8,6.0 at the quenched level. For more than 300 different patterns of the 3Q systems, we
perform the accurate measurement of the 3Q Wilson loop with the smearing method, which reduces excited-
state contaminations, and present the lattice QCD data of the 3Q ground-state pdtgntidle perform the
detailed fit analysis oW3q in terms of theY Ansatzoth with the continuum Coulomb potential and with the
lattice Coulomb potential, and find that the lattice QCD data of the 3Q pot&hgigdre well reproduced within
a few percent deviation by the sum of a constant, the two-body Coulomb term and the three-body linear
confinement ternarggl min, With Ly, the minimal value of the total length of color flux tubes linking the three
quarks. From the comparison with the 6@tential, we find a universality of the string tension ag,
=0qg and the one-gluon-exchange result for the Coulomb coefficiemggs %AQg. We investigate also the
several fit analyses with the varioAssaze the Y Ansatawith the Yukawa potential, thA Ansatzand a more
generalAnsatzincluding theY and theA Ansazein some limits. All these fit analyses support thé\nsaton
the confinement part in the 3Q potenti&l,, althoughVsg seems to be approximated by theAnsatzwith

0,~0.5%.
DOI: 10.1103/PhysRevD.65.114509 PACS nunt§er12.38.Gc
I. INTRODUCTION However, there is almost no reliable formula to describe

the three-quark3Q) potential V3, directly based on QCD,
The strong interaction in hadrons or nuclei is fundamen-other than strong-coupling QC[Y,10], althoughVsq, is di-
tally ruled by quantum chromodynami@@CD). In the spirit  rectly responsible for the baryon propertjd®,20,2] and is
of the elementary particle physics, it would be desirable tca primary quantity in hadron physics. In fact, the 3Q poten-
understand hadron physics and nuclear physics at the quarifal has been treated phenomenologically or hypothetically
gluon level based on QCD. However, it still remains a diffi- for more than 20 years. In contrast with a number of studies

cult problem to derive even the interquark potential fromgp the Qfgpotential using lattice QCI)22,23, there were
QCD in the analytic manner, because of the strong-couplingnly a few lattice QCD studies for the 3Q potential done
nature of QCD in the infrared region. mainly more than 14 years ag@a4—27.

In this decade, the lattice QCD calculation has been gyen at present, the arguments on the 3Q potential seem
adopted as a useful and reliable method for the nonperturbgy pe rather controversial. In Ref24,26-29, the 3Q po-
tive_analysis of QCO1,2]. In particular, the quark-antiquark tential seemed to be expressed by a sum of two-body poten-
(Q-Q) potential, which is responsible for the meson proper-ials, which supports thé-type flux tube picturg30]. On
ties, has been well studied using lattice QCD. The @& the other hand, Refd.3,25,31-33 seemed to support the
tential in lattice QCD is well reproduced by a sum of the Y-type flux-tube picturg 10,20 rather than the\-type one.
Coulomb term due to the perturbative one-gluon-exchang&hese controversial results may be due to the difficulty of the
(OGE) process, and the linear confinement term, in additiomaccurate measurement of the 3Q ground-state potential in
to an irrelevant constaif8—5]. The linear potential at long |attice QCD. For instance, in Refi24,26, the authors did
distances can be physically interpreted with the flux-tubgot use the smearing for ground-state enhancement, and
picture or the string picture for hadroi§—13 with the  therefore their results may include serious contamination
string tensionr=0.89 GeV/fm, which represents the magni- from the excited-state component. In RR7-29, the au-
tude of the confinement force. In this picture, the quark andhor showed a preliminary result only on the equilateral-
the antiquark are linked with a one—dimerEionaI flux tUbetriangIe case without the fit analysis.
with the string tensiorrgg, and hence the Q-Qotential is In this paper, for more than 300 different patterns of the
proportional to the distance between the quark and anti- 3Q system, we perform the accurate measurement of the
quark at the long distance. This flux-tube pictla the static 3Q potential in S(3) lattice QCD at3=5.7, 5.8, and
string picture in the infrared region is supported by the 6.0, using the smearing method to remove the excited-state
Regge trajectory of hadrorid4,15, the phenomenological contaminations and to obtain the true ground-state potential.
analysis of heavy quarkonia dat&6], the strong-coupling The contents are organized as follows. In Sec. Il we make a
expansion of QCO7], and recent lattice QCD simulations brief theoretical consideration on the form of the interquark
[17-19. potential based on QCD. In Sec. lll we explain the method of
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the lattice QCD measurement of the 3Q potential, referring
to the importance of the smearing technique and its physical
meaning. In Sec. IV we present the lattice QCD data of the
3Q potential, which are accurately measured from the
smeared 3Q Wilson loop in a model-independent manner. In
Sec. V we perform the fit analysis of the lattice data with the
Y Ansatzin Sec. VI we examine the various fit analyses with
the A Ansatzand a more gener&insatz including theY and
the A Ansdzein some limits. Section VIl is devoted to the
summary and the concluding remarks.

FIG. 1. The flux-tube configuration of the 3Q system with the
minimal value of the total flux-tube length. There appears a physical
junction linking the three flux tubes at the Fermat pdmt

ll. THEORETICAL CONSIDERATION ON THE 3Q o i L
POTENTIAL Fermat point is defined so as to minimize the sum of the
distances to the three vertices of the triangle.

The lattice QCD data themselves are measured in a For the convenient description in the argument of the
model-independent way; however, it is useful to makeg theground-state 3Q potential, we denote by;, the minimal
oretical consideration on the potential form in the static Q-Qvalue of the total length of color flux tubes linking the three
and 3Q systems with respect to QCD. Although QCD is onequarks. When all angles of the 3Q triangle do not exceed
of the most difficult theories in theoretical particle physics,2@/3, Ly, is expressed as
there are two analytical methods based on QCD: one is the
perturbative QCD, which is rather established to describe the 1, 5, \/§
short-distance behavior, and the other is the Stl‘Oﬂg-COupliné-min: E(a +b+c)+ >
expansion, which is expected to reflect the long-distance be-

havior of QCD. At the short distance, perturbative QCD 12
would work well according to the asymptotic freedom, and X\(a+b+c)(—a+b+c)(a—b+c)(at+tb—c)| ,
the static interquark potential can be described with the

Coulomb-type potential as the one-gluon-exchatQ&E) 2

result. On the other hand, at the long distance at the ) ]
quenched level, the flux-tube picture with the string tensionVherea, b, andc denote the three sides of the 3Q triangle as

o is expected to be applicable from the argument of theShown in Fig. 1. In this case, the physical junction appears
strong-coupling expansion of QC[¥,10,2d, which indi- and connects the three flux tubes originating from the three
cates a linear-type confinement potential proportional to théluarks, and the shape of the 3Q system is expressed as a
total flux-tube length. Of course, it is nontrivial that these Y-type flux tube[7,10], where the angle between two flux
simple arguments on ultraviolet and infrared limits of QCD tubes is found to be 2/3 [10,20. When an angle of the 3Q
hold for the intermediate region as 0.24m<1 fm. Never-  triangle exceeds /3, one finds

theless, for instance, the lattice QCD data of the_QFQJnd-

state potential are well fitted by Lmin=a+b+c—maxa,b,c). )

In the picture of the short-distance OGE result plus the

Aqq long-dist flux-tub It, the 3 d-state potential
_ Aaqa _ ong-distance flux-tube result, the 3Q ground-state potentia
Vodn)= r oot Cao @ V3q is expected to take a form of
at the quenched levéb]. Also in the phenomenological as- Vao= _ASQE ;JroaQmeJr Cso, (4)

pect of QCD, such a Q-Qotential is known to be successful =i [ri—rl

to reproduce the empirical data of the mass spectra and the

) —  which is referred to as th¥ AnsatZ3,33,20. In the follow-
ggf:rﬂigt\e;sgfi\s/au%lljls gs:ggb%%arg;[ia]él?nfagft ’ ttr?ee S;Srt ing sections we will extract first the lattice QCD data of the
QQ 3

. . 3Q potential without any model assumption, and later we
distance OGE result and the long-distance qux-tubg reSUIt'wiII try the fit analysis of the lattice data with thé Ansator
Also for the 3Q ground-state potentidb,, we basically

adopt this picture as a theoretical frame of reference. In thgther possiblAnsaze

3Q system in the color-flux-tube picture, reflecting the char-

acter of SUN.=3) in QCD, there can appear the physical !ll. THE LATTICE QCD MEASUREMENT FOR THE 3Q
junction linking to the three flux tubes stemming from the POTENTIAL

valence quarks. Since th_e co_nfin_ement part is p_ropo_rtion_al 0 A The 30 Wilson loop and the 3Q potential in QCD

the total flux-tube length in this picture, the physical junction N

is expected to appear at the Fermat point of the 3Q triangle, Similar to the derivation of the Q-@otential from the
as shown in Fig. 1, as long as the ground-state 3Q systeWilson loop, the 3Q static potentidl;g is obtained with the
with spatially fixed valence quarks is concerned. Here, th&8Q Wilson loop as
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o In this paper we perform the accurate measurement of the
3Q ground-state potentidfs, using the ground-state en-
hancement by the gauge-covariant smearing method for the
I Ts link-variable in SU(3) lattice QCD at the quenched level

T [32].

T2

B. The smearing method for the ground-state enhancement

Let us consider here the physical states of the 3Q system
with the spatially fixed quarks. In this 3Q system, of course,
there is no valence-quark motion, and the central issue is the
gluonic configuration under the boundary condition of the

FIG. 2. The 3Q Wilson looWsq. The 3Q state is generated at Spatially fixed three quarks, which play the role of the color
t=0 and is annihilated &t="T. The three quarks are spatially fixed source of the gluonic color-electric flux.
in R® for 0<t<T. Like the Q-Qflux-tube system, the ground state of the 3Q

system is expected to be composed by flux tubes rather than
1 the string43,12], and there are many excited states of the 3Q
Vaq= _T“m ?|”<W3Q>- (5 system corresponding to the flux-tube vibrational mddas

o We here express the 3Q Wilson loop with the normalized
The 3Q Wilson loopWag is defined in a gauge-invariant Physical states, the 3Q ground stages.t), and thekth ex-
manner as cited 3Q statgkth e.st) att. In the 3Q Wilson loop, the
normalized gauge-invariant 3Q std&Q;0) created at=0
and|3Q;T) annihilated at=T can be expressed as

B

1 ’ ! !
VVSQE ysabc‘ga’b’c’uia Ugb Ugc (6)
' |3Q;0)=co|g.s.;0 +c4|1ste.s.;p+c,2nd e.s.;0+ - - -,
with the path-ordered product
|3Q;T)=cy|g.s.T)+c4|Lste.sT)+cy2nd e.sT)+ - - -,
8

with the coefficientsc; obeying the normalization condition
along the path denoted Hy, in Fig. 2. As shown in Fig. 2, ={~¢|ci|?=1. Then, the expectation value ¥, can be
the 3Q Wilson loop physically expresses the 3Q gaugeexpressed as

invariant state which is generatedtat0 and is annihilated

UkEPeXP{igL dXMA“(X)] (k=1,23), (@)

att=T with the three quarks spatially fixed iR® for 0<t (Wso(T))=(3Q;T|3Q;0)=]|col*g.s.T|g.s.;0
<T. ) _

The initial (or the fina) 3Q state is introduced as the ey (1ste.sT|iste.s P+ - -
stringlike object in the naive 3Q Wilson loop. However, the =|co|? exp(—VgsT)+ |c1|2 exp(— VigtedT)
physical ground state of the 3Q system, which is of interest h h
here, is expected to be expressed by the flux tubes instead of +e- 9

the strings, and then the 3Q state which is expressed by the
strings generally includes excited-state components such asgth the ground-state potentiaf,  and thekth excited-state
flux-tube vibrational modes. Of course, if the largdimit potential V.4, « s, Which correspond to the energy eigenval-
can be taken, the ground-state potential would be obtainedies of the 3Q systenjNote that the normalization here is
However, the practical measurement(¥¥;0) is rather se- consistent with the definition 0z in Eq. (6), which leads
vere for largeT in lattice QCD calculations becaug#/zo)  t0 (W3o(T=0))=1.]
decreases exponentially with As increasingr, the excited-state components drop faster
Therefore, for the accurate measurement of the 3Qhan the ground-state component (W;q); however, the
ground-state potential;q, it is practically indispensable to ground-state componedto|2exp(—vg_sfl') also decreases
reduce the excited-state components in the 3Q system intr@xponentially. Hence, we face a practical difficulty in ex-
duced att=0 andt=T in the 3Q Wilson loop. The gauge- tracting the numerical signal. To avoid this difficulty, we
covariant smearing method is one of the most useful techadopt the smearing techniqyid,5,34 which enhances the
niques for ground-state enhancemdr®2,34,9 without ground-state overlap g8,/ and removes the excited-state
breaking the gauge covariance, and is adopted to measure tbentamination efficiently.

Q-Q potential and the glueball mag35] in the recent lattice The smearing method is one of the most popular and use-
QCD calculation(This smearing method was not applied to ful techniques to extract the ground-state potential in lattice
a few pioneering lattice studies on the 3Q poterftet,26,  QCD. The standard smearing for link variables is expressed
since the smearing technique was mainly developed aftes the iterative replacement of the spatial Iink_variable
their works. As will be discussed later, their numerical resultsJ;(s) (i=1,2,3) by the obscured link variabléJ;(s)
seem to include fatal large excited-state contaminations. e SU(3), [5,34] which maximizes

114509-3



TAKAHASHI, SUGANUMA, NEMOTO, AND MATSUFURU PHYSICAL REVIEW D65 114509

— - < . o(r)
N = N| o ~ + | + + | + T
| — | —de—
FIG. 3. The schematic explanation of the smearing for the link T
variables. 0 r

(a) (b) (c) (d)

. T

Re TRUi(s)Vi ()} (10 FIG. 4. The schematic explanation of the physical meaning of
with the smeared line. Theth smeared line depicted &a) physically
corresponds to the spatially-distributed flux tube(lasin terms of

~ ~ the original field variable. The single smearing procedure for the

Vi(S)Ean(S)-i-E {Uj(s)Ui(S-i—j)UjT(S-i— i) line is illustrated with(c) on the lattice. The flux perpendicular to

1# the line is expected to be canceled. The spatial distribution of the

nth smeared line is expressed by the Gaussian préfitg with r

+U[(s—DUi(s—DU;(s+i -]}, (1D Z(x2+y?)™ as shown ind).
which is schematically illustrated in Fig. 3. HereeR is a 1
referred to as the smearing parameter. Titie smeared link =1 =1 (13
variablesU(’(s) (n=1,2, ... Nynea) are iteratively defined
starting fromU(Y(s)=U ,(s) as which satisfyp+4q=1. Let us consider the smearing of the
o linelike object, which is idealized to be infinitely long. As
Ui(”)(s)EUi(”‘l)(s) (i=1,2,3), Ug“)(s)zu4(s), mentioned above, the smeared line corresponds to the spa-

(12)  tially extended flux tube in terms of the original link vari-
able. Here, we locate theth smeared line on the axis in
For arbitrary operatoF[U ,(-)], thenth smeared opera- R3, and then, due to the translational invariance alongzthe
tor F[UE{‘)(-)] is defined with thenth smeared link variable ~direction, the argument is essentially two-dimensional and
U{"(s) instead of the original link variable. The interquark depends only ox andy, and the flux direction is to be in the
potential can be accurately measured from the properlg direction. We denote by(x,y:n)(x,y € R) the spatial flux
smeared3Q) Wilson loop. Here, the smearing parameter dlstnpunon in thenth sme_ared linelOn the lattice ywth the
and the iteration numban play the role of the variational SPacinga ¢(x,y;n) is defined on the discrete points,y)

parameters and are properly chosen so as to maximize the(M@&n,@) with ny,nyeZ.] . .
ground-state component. From the iterative definition of the smearing, the spatial

We note that the smearing is just a method to choose thgux distribution cp(x,y;n+1). of the (1+1)th smeareq line
flux-tube-like operator, and hence it never changes the phy§§ expected to relate tp(x,y;n) of thenth smeared line as
ics itself such as the gauge configuration. As an importanty(x,y;n+1)=pe(x,y;n)+q{e(x+a,y;n)+e(x—a,y;n)
feature, this smearing procedure keeps the gauge covariance
of the “fat” link variable U{’(s) properly. In fact, the te(xytan)+e(xy-an. (14)
gauge-transformation property bf’(s) is just the same as Here, as shown in Fig.(d), we assume the cancellation of
that of the original link variableJ ,(s), and therefore the nonz components of the flux, which exactly holds for the
gauge invariance oIF(UﬁL”)(s)) is ensured for the arbitrary Abelian flux. Using the difference operator, we obtain
gauge-invariant operatdf (U ,(s)). For instance, thenth

smeared3Q) Wilson loop is gauge invariant. Ane(xyin)=e(y:n+1)=e(xyn)
While no temporal extension appears in the smearing, the =q{Ae(X,y;n)—Ayp(x—a,y;n)
fat link variabIeUEL”)(s) includes a spatial extension in terms _ _
of the original link variableU ,(s), and then the smeared HAye(X,yin) —Aye(x,y—a;n);
‘line” expressed with U (s) physically corresponds to a = q{ABA @(x,y;n) + ABA o (x,yin)},
flux tube” with the spatial extension. Therefore, if a suit-
able smearing is done, the smeared line is expected to be (15

close to the ground-state flux tube. This smearing method iﬁ/hereAk andA® (k=x,y) denote the forward and the back-
actgally successful for the extraction of the QpQtential in  \\5rq difference operators  satisfying\ . f (F)Ef(F+ K)
lattice QCD[S]. —£(F) and ABF(F)=F(F)— f(F—K), respectively.
. . ) When the lattice spacing is small enough, the spatial
C. The physical meaning of the smearing method differenceA can be approximated by the spatial derivative
We consider here the physical meaning of the smearin@sAx=ady . Also for the iteration numben of the smearing,
method with the smearing parametein terms of the size or We formally introduce a small “spacingd, in the “n direc-
the spatial extension of theth smeared line. For the conve- tion,” and we define the semicontinuum parameter
nience of the description, we define =na,, although the final result does not depend on the ar-
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TABLE I. The simulation condition and the related information. For egctihe corresponding lattice
spacinga, the lattice size, the numbetsq of the different patterns of the 3Q system analyzed, the number
Ncont Of the gauge configuration used for the measurement, the nuhher, of sweeps for the thermaliza-
tion, the numbeN,.,0f sweeps for the separation, the smearing paranagttire iteration numbeX, of the
suitable smearing for the 3Q potential, and the used supercomputer are listed.

B a (fm) Lattice size  Nzg  Ngops Niherm Ngep a Nsmr Supercomputer
5.7 0.19 18x 24 16 210 5,000 500 2.3 12 NEC SX-4
5.8 0.14 18x32 139 200 10,000 500 2.3 22 HITACHI SR8000
6.0 0.10 18x32 155 150 10,000 500 2.3 42 NEC SX-5

tificial spacinga,,. Then, the differencé,, can be approxi- etersn anda which achieve a large ground-state overlap, the
mated by the derivative as,=a,d;. In this way, we obtain  physical size of the flux tube is roughly estimated with Eq.

the differential equation as (20).
J
—o(x,y;n)=D(F+ ;) @(X,y;n), (16) IV. THE LATTICE QCD RESULTS OF THE 3Q
Jn POTENTIAL
which corresponds to the “diffusion equation” at the “time”  We measure the 3Q potential from the properly smeared
T with the diffusion parameter 3Q W|Ison. loop in SU(3) lattice QCD. at the quenched
level. In this section we present the lattice QCD data of the
qa? 1 a2 3Q ground-state potential;o for more than 300 different
D= (17 patterns of the 3Q systems in total. These lattice QCD data

an at4a are, of course, the model-independent data based on QCD,

and we think that the data themselves are useful for the study

The initial condition” at n=0 is given as of the 3Q system, particularly for the phenomenological ap-

o(x,y:n=0)=8(x)8(y) (18) proach as the quark model for baryons.
which means the simple line before applying the smearing. A. The simulation conditions of lattice QCD
Then, the flux distributionp(x,y;n) in the nth smeared line . . .
can be expressed as The gauge configurations are generated using the SU(3)

lattice QCD Monte Carlo simulation with the standard action
2 with 12X 24 at B=5.7 and 18x32 at 3=5.8,6.0 at the
1 Xty . .
e(X,y;n)= _ ex;{ - 2 (199  quenched level. The pseudo-heat-bath algorithm is adopted
(47Dn) 4Dn for an update of the gauge configuration. After a thermaliza-
tion of more than 5000 sweeps, we sample the gauge con-
Thus, thenth smeared line physically corresponds to thefiguration every 500 sweeps, and we use at least 150 gauge
Gaussian spatially distributed flux tube in terms of the origi-configurations at eacf for the study of the 3Q potential. We
nal link variable as shown in Fig.(d). summarize in Table | the lattice parameters and the related
As a result, the flux-tube size can be roughly estimated amformation on the simulation as well as the lattice spa@ng
" determined so as to Eproduce the string tensionoas

f dxdye(x,y;n)(x2+y?) =0.89 GeV/fm in the Q-QootentialVqg at eachs. As for

2

e s el the smearing, we set the smearing parametera.3,
R=(x*+y?)= which is one of the most suitable smearing parameters for
J dxdye(x,y;n) the calculation of the 3Q ground-state potential. The iteration
numberNg, of the smearing which maximizes the ground-
B \/—~_ [ n state overlap is also listed at eaghin Table I. (From the
=2VDn=2a ata (20 humerical test with various smearing parameter sets, we have

observed that the smearing with=2.3 and a suitable itera-
We note that the square root appears as a character of tHien numberNgq, listed in Table | provides a large ground-
Brownian motion, and hence thedependence of the flux- State overlap in the smeared 3Q Wilson loop for 5.7, 5.8,
tube radiusR is not so strong. This formula also explains theand 6.0. This is reflected in the large value @fclose to
physical roles of the two parameters,andn. The smearing unity in Tables [I-X) On the statistical error of the lattice
parametera controls the speed of the smearing, and thedata, we adopt the jackknife error estim@dé]. The Monte
speed of smearing is slower for larger For each fixed Carlo simulations ai3=5.7, 6.0, and 5.8 have been per-
a, n plays the role of extending the size of the smearedormed on NEC-SX4, NEC-SX5 at Osaka University and
operator. Hence, once we find the suitable smearing parandITACHI-SR8000 at KEK, respectively.

114509-5



TAKAHASHI, SUGANUMA, NEMOTO, AND MATSUFURU PHYSICAL REVIEW D65 114509

TABLE II. Lattice QCD results for the 3Q potential'ﬁg‘ in the lattice unit for 16 patterns of the 3Q
system at3=5.7. (i,j,k) denotes the 3Q system where the three quarks are put,@®), (0j,0), and
(0,0k) in R® in the lattice unit. For each 3Q configur('altic):'l';‘ét is measured from the single-exponential fit
as(Wsq)=Ce™ V3 in the range ofT listed at the fourth column. The statistical errors listed are estimated
with the jackknife method, ang?/Npg is listed at the fifth column. The best-fit functi(\M‘ﬁ(;‘Q in theY Ansatz

is added.

(i,i.k) VES c Fit range of T x?/Npg Vi, VES— Vi

(0,1,1) 0.8457398) 0.9338173 5-10 0.062 0.8524 —0.0067

(0,1,2) 1.097&3) 0.9295161) 4-8 0.163 1.1025 —0.0052

(0,1,3) 1.292¢41) 0.89871110 3-7 0.255 1.2929 0.0000

(0,2,2) 1.315844) 0.9151120 3-6 0.053 1.3270 —0.0112

(0,2,3) 1.504063) 0.9041170 3-6 0.123 1.5076 —0.0036

(0,3,3) 1.675¢43) 0.871873) 2-5 0.572 1.6815 —0.0059

(1,1,1) 1.023840) 0.9345149 4-8 0.369 1.0092 0.0146

(1,1,2) 1.218862) 0.9067228 4-8 0.352 1.2151 0.0034

(1,1,3) 1.416149) 0.9297135 3-7 0.842 1.3964 0.0197

(1,2,2) 1.386648) 0.9012127) 3-7 0.215 1.3895 —0.0029

(1,2,3) 1.559463) 0.888@165 3-6 0.068 1.5588 0.0006

(1,3,3) 1.71443) 0.855376) 2—-6 0.412 1.7202 —0.0057

(2,2,2) 1.523437) 0.8925%65) 2-5 0.689 1.5238 —0.0004

(2,2,3) 1.6750118 0.86271299 3-6 0.115 1.6763 —0.0013

(2,3,3) 1.823%66) 0.844390) 2-5 0.132 1.8175 0.0064

(3,3,3) 1.96073) 0.8197154) 2-5 0.000 1.9442 0.0165

B. The Q-Q potential po'Etca:ntiaI,LC an(EC list the bestfit parameter set
As a frame of reference, we measure the_@@ential (AQ5’ Tqq: CQG) at eachg together withy*/Npr in Table

I, where the label as “off-axis” means the fit analysis for
both on-axis and off-axis data. We then find that the fit with
the lattice Coulomb plus linear potential for both on-axis and
off-axis data is fairly good, although the fit parameters such
as the string tension are almost unchanged.

Vaq from the properly smeared Wilson loop in the presen
lattice QCD. As is consistent with the previous lattice works

[5], the lattice QCD data of the (S—Qround-state potential
Vqqo at the quenched level are well reproduced by
r C. The ground-state enhancement through the smearing
Before presenting the lattice data of the 3Q potential, we
briefly demonstrate the utility of the smearing method by
estimating the magnitude of the ground-state component in
the 3Q state at=0,T in the smeared 3Q Wilson |00y,

with the best-fit parameter sef§g, oqg, Cqo) listed in
Table XI at each3. As a visual illustration, we show in Fig.
5 the lattice QCD data oVqg(r) as the function of the
interquark distance n the Iattlce_umt. One.fmds a g_ood which is composed with thenth smeared link variable
agreement of the lattice data ¥fg and the fit curve with U(s)

Eq. (22). m NS o ) _

In spite of the visual agreement, the statistical analysis is From the similar argument in the Q-&stem[5], the
also necessary for the argument on the fit. This is rathePverlap of the 3Q-state operator with the ground state is es-
difficult because the lattice QCD data include not only thetimated with
statistical error but also the systematic errors from the dis- (Wag(T))T+2
cretization, which cannot be estimated straightforwardly. We Co= 3Q—,
here examine the on-axis and the off-axis data at gadrhe (Wa(T+1))7
on-axis data oV g are well fitted with Eq.(21) at eachg.

However, when we include the off-axis data, the fit\afg

with Eq. (21) becomes rather worse a&/Npe~10. This is  which is referred to as the ground-state overlap. For instance,
due to the breaking of the rotational invariance on the latticein the ideal case where the 3Q state is the perfect ground
and such breaking is significant for the short-distance datastate in the smeared 3Q Wilson loop, one g@té;o(T))

As will be discussed in Sec. VE, to be strict the lattice =e~ V3" and thenC,=1. [Here, Wo(T) is normalized as
Coulomb potential would be preferable instead of the Cou{W3o(T=0))=1, as shown in Eq(6).] In accordance with
lomb potential, at least for the short-distance lattice data. Wehe excited-state contaminatio@y is reduced to be a small
examine also the fit with the lattice Coulomb plus linearvalue less than unity.

(22
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TABLE IlIl. A part of lattice QCD results for the 3Q potential TABLE IV. A part of lattice QCD results for the 3Q potential
V'?f‘cgt at B=5.8. (i,j,k) denotes the 3Q system where the threeV'é'"ét at 3=5.8. The notations are the same in Table III.
quarks are put oni(0,0), (0j,0), and (0,&) in R® in the lattice

unit. For each 3Q COﬂfigUE\tiOMlg?g is measured from the single- (i, j,k) V's‘f‘(‘gt Cc V'sf‘(g—vfgifQ
exponential fit as{Wsq)=Ce™V3e". The prefactorC physically
means the magnitude of the ground-state component. The differenéé. 2.6 1.635657) 0.8587145 —0.0031
from the best-fit function/fl,‘Q in the Y Ansatzs added. The listed (1,2,7) 1.749036) 0.859159) 0.0035
values are measured in the lattice unit. (1,2,8 1.854%44) 0.840770) 0.0032
_ (1,33 1.417533) 0.902086) —0.0024
(i,1.k) Vig c Vg~ Vig (1,3.4 1.5301109 0.9083391) —0.0005
0,1, 0.769712) 0.955458) ~0.0041 (135 1.627250) 0.853§129 —0.0116
0,1,2 0.963928) 0.9269128) ~0.0039 (136 1.730172) 0.8283178 —0.0154
0,1,3 1.1117260) 0.9274274) 0.0053 (13,7 1.8300105 0.7978249 —0.0213
0,1,4 1.2337119 0.9106538) 0.0064 (1338 1.950350) 0.819878) —0.0057
0,1,5 1.3219235) 0.7957927) ~0.0195 (144 1.628460) 0.8652154) —0.0099
(0,16 14518132 0.8583442 00000 (149 1.719873 08133179 —0.0251
0,1, 1571972 0.8798182) oo119 (148 1.821390 0.788%212 —0.0286
0,18 16621105  0818426)  —0.0048 (A7 1.946947) 0.821672) —0.0075
02,2 1.137016) 0.934246) ~00018 (148 2.054359) 0.807891) ~0.0043
023 1.265921) 0.914552) — 0.0027 (1,55 1.8114119 0.7692271) —0.0378
024 13584239  0.7975946) ~00279 (157 2.049659 0.804885) —0.0071
(02,9 14834129 0.844843)) ~00152 (158 2.153867) 0.7863100 —0.0063
02,6 1.608228) 0.881050) 0.0004 (1,6,9 2.164771) 0.8056112) 0.0055
0,28 18251132  0.8548332 0.0036 (168 2.263274) 0.7794113 0.0020
0323 1.392591) 0.9168330 ~0.0003 (17,9 2.280892) 0.808Q147) 0.0203
0,34 1.500541) 0.8862109) —0.0066 (17.8 2.368296) 0.7642141) 0.0059
0,35 1.613025) 0.881Q41) ~0.0042 (1,88 2.4512156 0.7146217) —0.0123
(0,36 1.717132) 0.858154) ~0.0080 2,22 1277173 0.900G258) —0.0041
(0,44 1.607772) 0.8655185) ~0.0112 223 1.378380) 0.8753277) —0.0107
(0,45 1.716332) 0.858152) ~0.0109 (2.2, 1.489942) 0.8768107) —0.0074
(0,4,6 1.826240) 0.848267) —0.0075 (2,2,5 1.593354) 0.8513133 —-0.0113
(0,4,7 1.932151) 0.831782) —0.0070 (2,2,8 1.918849) 0.821@79) —0.0024
(04,9 2.041365) 0.8202101) —0.0025 (233 1.4739120 0.8636410 —0.0142
(0,5,9 1.819344) 0.837272) —0.0147 (2,3,9 1.583122) 0.871836) —0.0081
(0,5,6 1.928247) 0.826576) —-0.0111 (239 1.682057) 0.838140 —-0.0133
(0,59 2.1464793 0.8047113) —0.0017 (239 1.791834) 0.836158) —0.0080
(0,6,6 2.032262) 0.8083102 —-0.0113 (2,39 1.898243 0.822@68) —0.0053
0,6, 2.140%71) 0.7964112) —0.0070 (2,3,8 2.000253 0.798985) —0.0071
(0,6,8 2.238485) 0.7698123 -0.0118 (2,49 1.680877) 0.8506189 —0.0102
0,7, 2.2461101) 0.7813153 —0.0037 (2,49 1.767871) 0.7952166) —0.0246
0,7,8 2.339(114) 0.7462166) —-0.0134 (24,9 1.986349) 0.793373) —0.0107
0,8,8 2.4191177) 0.6949244) —0.0351 (2,48 2.098260) 0.787394) —0.0015
(1,1, 0.914G32) 0.9424147) 0.0149 (2,58 2.200472) 0.7756106) 0.0051
(1,1,2 1.064742) 0.9290194) 0.0096 (2,6,9 2.093265) 0.790794) 0.0016
11,3 1.191486) 0.8917384) 0.0053 (2,6,7 2.192871) 0.7665105 0.0010
(1,1, 1.2879172) 0.78871674) —0.0169 (2,6,8 2.288984) 0.7378120 —0.0038
(1,15 1.420139) 0.8662104) 0.0024 (2,7, 2.4014106) 0.7347147) 0.0103
1,16 1.533554) 0.8600136) 0.0061 (3,33 1.556672) 0.8434180 —0.0197
11,7 1.649736) 0.868659) 0.0146 (3,34 1.647466) 0.8125160) —0.0253
(1,18 1.755746) 0.850976) 0.0140 (3,35 1.764137) 0.835360) —0.0084
(1,22 1.186533) 0.9186120) 0.0020 (3,3.6 1.868544) 0.819672) —0.0053
1,23 1.3126124) 0.9411576) 0.0072 (33,7 1.969652) 0.796582) —0.0062
(1,24 1.415528) 0.884572) —0.0043 (33,8 2.075365) 0.781298) —0.0029
1,25 1.524841) 0.8678106) —0.0056 (3,45 1.8357106) 0.7694240) —0.0249
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TABLE V. A part of lattice QCD results for the 3Q potentl‘waif‘(t;,t TABLE VI. A part of lattice QCD results for the 3Q potential

at 3=5.8. The notations are the same in Table III. v';g at 8=5.8. (I,m,n) denotes the 3Q system where the three
quarks are put onl (0,0), (—m,0,0), and (®,0) in R® in the lattice

(i,j,k) VES c VES— Vi, unit. The other notations are the same in Table Il
(3,4, 1.944@157) 0.7686358 —0.0153 (I,m,n) V';‘S C V':ﬁg— Vth
(34,7 2.056460) 0.775696) —0.0025
(34,8 2.166669) 0.7679100 0.0063 1,29 1.118522) 0.932180) 0.0199
(3,59 1.9321179 0.7527394) —0.0220 (1.5.2 1.572155) 0.8586140) —0.0052
(3,56 2.050456) 0.775683) —0.0004 (1,6,2 1.680476) 0.8446190 —0.0030
(3,58 2.262777) 0.7491110 0.0138 (1,7,2 1.794940) 0.851464) 0.0063
(3,6,6 2.158(69) 0.7683101) 0.0123 (2,3,2 1.465319) 0.902833) 0.0068
(3,79 2.3578110 0.7261155 0.0190 (2,42 1.5757421) 0.889632) 0.0125
(3,7.8 2.4496125 0.6934169 0.0133 (2,52 1.682@30) 0.870851) 0.0152
(3,88 25416178 0.6613229 0.0088 (3,32 1.573227) 0.887945) 0.0144
(4,4,4 1.837749) 0.804474) -0.0119 (3.4,2 1.679333) 0.868952) 0.0203
(4,4, 1.937155) 0.790a82) —0.0044 (3,43 1.766Q36) 0.859254) —0.0035
(4,4, 2.036761) 0.770391) —0.0004 (3,53 1.867743 0.837767) —0.0002
(45,9 2.027869) 0.763896) —0.0022 (44,3 1.8692498) 0.844977) 0.0056
(4,5,6 2.130169) 0.750399) 0.0073
Ejgg ;jgégi)?) gzggﬁég 88;;; D. The lattice QCD data of the 3Q potential
4,7,9 2.4304130 0.6947177) 0.0306 Now, we perform the accurate measurement of the 3Q
4,79 2.5347150 0.6808201) 0.0402 ground-state potentid¥ 3 using the smearing technique in
4,88 2.6412245) 0.6696329 0.0531 SU(3) lattice QCD. We investigate more than 300 different
(5,55 2.119287) 0.7417123 0.0050 patterns of the 3Q systems in total. In the practical calcula-
(5,5.6 2.224790) 0.7334125) 0.0208 tion, we consider the following two type 3Q system on the
(5,5, 2.3298104) 0.7208147) 0.0328 lattice: (1) The 3Q_ system whe_re the three quarks are put on
(5,5.8 2.4280131) 0.6980182) 0.0357 the three spatial axes asi,0),(0j,0),(0,0k) (i,j,k

=0,1,2...) in R® in the lattice unit;(Il) the 3Q system

(566 23159114 07064155 0.0252 where the three quarks are put on thkey plane as
(5,6,7 2.4124125) 0.6818170 0.0307 . .
(568 5.5255151) 0.6802200 0.0503 I(I ,0,0), (—m,0,0),(0n,0) (I,m,n=0,1,2...) inR%in the

e ' ' ' attice unit.
2222 ;Zigéggg 8'232;132; 8'8222 In both cases, the junction point O in the 3Q Wilson loop
6'6' 2'509 190 0.664 252 0'0468 is set at the origin (0,0,0) iR3, although the final result of
66,7 ‘5096190 6648259 ' the ground-state potenti&;o should not depend on the ar-
(6,6.8 26408230 0.6864319 0.0866 tificial selection of O[As will be shown in the fit analysis in
Eg';g ;-?22;223 8'2213222 g'ggzi Sec. V, there is no discontinuity betweén and (1) on the

3Q potentiaV 34, in spite of the fairly different setting of the
(6,88 2.8742456) 0.6939633 0.1479 artificial junction O. This suggests thu,, is independent of
0.] For each pattern of the 3Q system, we calculate the 3Q

We note that the ground-state potentl, can be mea- Wilson loop of all equivalent 3Q systems by changing O and
sured accurately i€, is large enough and is close to unity. the direction ofx,y,z, using the translational, the rotational,
Then, we check the ground-state overl& in the nth  and the reflection symmetries on lattices.
smeared 3Q Wilson loogW,o(U{(s),T)) using lattice Owing to the smearing, the ground-state component is
QCD simulations, and we search reasonable values of thiargely enhanced, and therefore the 3Q Wilson I¢W0)
smearing parameter and the iteration numbeX,y,, of the  composed with the smeared link variable exhibits a single-
smearing so as to makg, large. For instance, the ground- exponential behavior as
state overla, is largely enhanced as G8,<1 even for
T<3 by the smearing withv=2.3 andNg,,= 12 for all of (Wagy=e"VaaT (23
the 3Q configurations g8=5.7 as shown in Fig. 6. Thus, the
ground-state component is largely enhanced by the suitabkven for a small value of.
smearing. For each 3Q configuration, we measu/@ét from the

We list in Table | one of the best parameter setsNsy)  least-squares fit with the single-exponential form
at eachB. We note that, as will be shown in the next section,
the magnitude of the ground-state overlap can be also esti- (Wsoy=Ce™Vaal, (24)

mated withC in Tables II-X. One finds a large value of

close to unity asC=0.7 for each lattice data on the 3Q Here, we choose the fit range Gfsuch that the stability of
system. the “effective mass”
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TABLE VII. A part of lattice QCD results for the 3Q potential TABLE VIII. A part of lattice QCD results for the 3Q potential
V'?f‘(gt at B=6.0. (i,j,k) denotes the 3Q system where the threev's‘j‘ét at 3=6.0. The notations are the same in Table VII.
quarks are put oni(0,0), (0j,0), and (0,&) in R® in the lattice

unit. For each 3Q COﬂfigUE\tiOMlg?g is measured from the single- (i,j,k) VES c ViS— Vi,
exponential fit as{Wsq)=Ce™V3e". The prefactorC physically
means the magnitude of the ground-state component. The differenéé 2.4 1.11833)) 0.9689119) 0.0043
from the best-fit function/%, in the Y Ansatas added. The listed (1,25 1.172@39) 0.9458142 0.0013
values are measured in the lattice unit. (1,2,6 1.228349) 0.9467182 0.0043
: (1,2, 1.271260) 0.9015208) —0.0042
(i.j.k) VES c V36— Vio (1,2,8 1.331466) 0.9262243 0.0058
0,1, 0.67786) 0.978424) —0.0012 (1,3.3 1.116634) 0.9582132 —0.0013
01,2 0.823411)  0.971245) ~0.0042 (1,34 1.178335  0.9653137) 0.0018
0,1,3 0.918317) 0.976965) 0.0045 (1,3,9 1.229945) 0.9453174) —0.0011
0,1, 0.985924) 0.958992) 0.0050 (1,3.6 1.287732) 0.951387) 0.0045
0,15 1.046330) 0.9495112) 0.0064 (1,39 1.329358) 0.9093210 —0.0047
0,1,6 1.106940) 0.9595152) 0.0122 (138 1.386340) 0.9214103 0.0027
01,9 1.157250) 0.9374192) 0.0102 (144 1.229629) 0.944275) —0.0030
0,2,2 0.943a21) 0.958678) ~0.0095 (145 1.286329) 0.948478) 0.0006
0,2,3 1.025924) 0.960791) ~0.0045 (1,4.8 1.332639 0.923§90) —0.0043
0,2,4 1.094632) 0.9657120) 0.0003 (1,4, 1.386440) 0.9249102) —0.0004
0,2,5 1.145441) 0.9287149 —0.0064 (1,4.8 1.440144) 0.9249117) 0.0042
0,2,6 1.207528) 0.946476) 0.0018 (1,55 1.336337) 0.937099) —0.0013
0,27 1.256333) 0.926290) ~0.0012 (158 1.387937) 0.931699) 0.0001
0,3,3 1.099923) 0.956662) ~0.0031 (1,5,9 1.431844) 0.9039116) —0.0053
0,34 1159825  0.945467) ~00044 (158 1483747 0.9001127) —0.0020
035 1217625  0.942665) -00026 (1,66 1.434452)  0.9115139 —0.0029
0,36 1.269932) 0.932790) —0.0027 (167 1.487G55) 0.9115150) 0.0009
03,7 1.321640) 0.9231110 ~0.0021 (16,8 1.587G53  0.9037142 0.0030
038 1.376437) 0.924192) 0.0029 (1,7.9 1.525865  0.8724169 —0.0084
(04,4 1.217732) 0.939487) ~0.0050 (1,7.8 1.574%69  0.862416§ —0.0075
045 1.272334) 0.933696) ~0.0047 (188 1.637044) 0.888869) 0.0080
04,6 1.330240) 0.941§110) 0.0013 (222 1.040934) 0.9669132 0.0004
0,4, 1.374442) 0.9128108) ~0.0048 22,3 1.096331) 0.9462119 —0.0045
0,4,8 1.423351) 0.8982139) ~0.0054 (2.2,4 1.157937) 0.957a144 —0.0002
(0,59 1.325140) 0.9265112) ~0.0050 229 1.210849) 0.9396181) —0.0016
(0,56 1.376239) 0.9187108) ~0.0049 (2,28 1.267632) 0.944690) 0.0031
(05,9 1.427349) 0.911a131) —0.0035 (22,9 1.303369) 0.8803246) —0.0117
05,8 1.479951) 0.9079140 0.0002 (22,8 1.361342) 0.9000112) —0.0035
(0,6,6 1.424852) 0.9047136) —0.0066 (233 1.146139) 0.9322147) —0.0087
(0,6, 1.478851) 0.9062130) ~0.0020 (234 1.199440) 0.9247149 —0.0089
0,6,8 1.530G56) 0.9020146) 0.0011 (2,39 1.2525852) 0.920Q188) —0.0079
0,7,9 1.531435) 0.905859) 0.0023 (2,38 1.311432) 0.936885) 0.0002
0,7,8 1.581141) 0.897166) 0.0039 (2,37 1.349971) 0.8852256) —0.0110
0,8,8 1.632547) 0.892476) 0.0078 2,3,8 1.400Q79) 0.8775280 —0.0099
(1,1,9 0.790G21) 0.958899) 0.0073 (24,9 1.256528) 0.944380) —0.0027
(1,1,2 0.899225) 0.9707118) 0.0044 (2,49 1.304134) 0.927489) —0.0053
(1,1,3 0.980G39) 0.9578182) 0.0052 (2,4,9 1.354936) 0.9207100 —0.0041
11,4 1.051525) 0.967799) 0.0115 (2,47 1.400637) 0.899G98) —0.0072
(1,1,5 1.110%36) 0.9578135 0.0123 (24,8 1.453%49) 0.8980133 —0.0026
(1,1,6 1.164547) 0.9449175 0.0120 (259 1.350842) 0.9129111) —0.0077
(1,1,9 1.214G59) 0.9227209) 0.0095 (25,9 1.407442) 0.9272116) 0.0007
(1,1,8 1.266272) 0.9146260) 0.0111 (2,57 1.452Q48) 0.904Q126) —0.0028
1,2,2 0.979619) 0.960168) —0.0019 (2,6,9 1.451849) 0.9058130 —0.0029
12,3 1.055523) 0.974389) 0.0029 (2,6, 1.492G53) 0.8727135) —0.0098
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TABLE IX. A part of lattice QCD results for the 3Q potential

V'?f‘(tgt at $=6.0. The notations are the same in Table VII.

(i.J.0) Vi c Vio— Vi
(2,6,8 1.552855) 0.895@q133 0.0039
2,7,9 1.544261) 0.87271163 —0.0044
2,7, 1.591@71) 0.858%177) —0.0042
(2,88 1.641184) 0.8518213 —0.0004
(333 1.195131) 0.942486) —0.0060
(3,39 1.242128) 0.930877) —0.0080
(3,39 1.293634) 0.928@93) —0.0059
(3,36 1.340442) 0.9075111) —0.0082
(33,8 1.443452) 0.8992141) —0.0020
(34,9 1.289432) 0.929279) —0.0066
(3,45 1.335@34) 0.914288) —0.0081
(3,46 1.382540) 0.9014103 —0.0082
(3.4, 1.435349) 0.9033131) —0.0029
(34,8 1.486756) 0.8987145 0.0011
(356 1.427342) 0.8929114) —0.0075
(3,57 1.479153 0.89311398) —0.0023
(3,58 1.526@50) 0.877q129 —0.0020
(3.6,6 1.473761) 0.8812162 —0.0064
(3,6,7 1.523451) 0.8769124) —0.0024
(36,3 1.573461) 0.8709147) 0.0015
(3,7,9 1.565%77) 0.853%203 —0.0054
(3,7,8 1.617777) 0.855(q189 0.0013
(38,8 1.666692) 0.8458222) 0.0054
(4,4,9 1.325%46) 0.9047119 —0.0126
(4,45 1.376%41) 0.9114111 —0.0061
(4,4,6 1.426249) 0.9088129 —0.0021
(4,47 1.474560) 0.8985155) 0.0000
(44,8 1.524369) 0.8925174) 0.0034
(455 1.416%49) 0.8903132 —0.0086
(45,6 1.462851) 0.8808124) —0.0065
(4,57 1.515859) 0.8868155 0.0012
(4,58 1.565163) 0.8786162 0.0053
(4,6, 1.519865) 0.9031175 0.0076
(4,6,7 1.554966) 0.8608163) —0.0013
(4,6, 1.604%75) 0.85521898) 0.0036
(5,595 1.465375) 0.8984203 0.0000
(5,56 1.507463) 0.8814158) —0.0003
(5,5, 1.545280) 0.8475%199 —0.0061
(55,8 1.600883) 0.8574208) 0.0050
(5,6,6 1.551172) 0.8689181) 0.0026
(5,6, 1.638581) 0.834319H 0.0040
(5,7,7 1.635489) 0.8288216) 0.0029
(5,7, 1.687893) 0.8325219 0.0127
(6,6,6 1.5953108 0.860%272) 0.0076
(6,6,7 1.632891) 0.828%222) 0.0040
(6,6, 1.695646) 0.859567) 0.0244
(6,88 1.77011398 0.7972325 0.0193
(7,7,8 1.7666139 0.7915326) 0.0188
(7,8,8 1.8114166) 0.779%376) 0.0243
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TABLE X. A part of lattice QCD results for the 3Q potential
v';g at 8=6.0. (,m,n) denotes the 3Q system where the three
quarks are put onl (0,0), (—m,0,0), and (®,0) in R® in the lattice
unit. The other notations are the same in Table VII.

(I.m.n) Vg c Vio—Vaq
1,2, 0.933416) 0.972664) 0.0098
(1,5,2 1.200126) 0.952974) 0.0061
(1,6,2 1.2467158) 0.9211214) 0.0009
(2,3,2 1.143622) 0.960Q61) 0.0053
(2,4,2 1.201726) 0.955572) 0.0094
(2,5,2 1.254331) 0.941884) 0.0106
(2,6,2 1.303337) 0.9218105 0.0097
(2,6,3 1.349@44) 0.9202120 —0.0007
(3,3,2 1.202227) 0.953777) 0.0101
(3,4,2 1.256332) 0.940590) 0.0130
(3,4,3) 1.297131) 0.93386) —0.0011
(3,53 1.346740) 0.9215108 0.0006
(4,4,3 1.344@44) 0.9147117) —0.0008
o (W5y(T))
V=M W T+ 1)) 9

is observed to avoid the effect of the excited-state contami-
nation remaining at the small region. In fact, we use a
relatively large value ol as the fit range for the accurate
measurement.

In Table Il we list the lattice QCD dat¥’5y of the 3Q
ground-state potential g8=5.7, together with the prefactor
C in Eq. (24), the fit range ofT [ Trin, Tmaxd and x%/Npe.

In Tables IlI-X, we list up the lattice QCD data?(g of the

3Q ground-state potential @##=5.8,6.0, together with the

prefactorC in Eq. (24). The statistical error o¥/5g is esti-

mated with the jackknife method. We stress again that these
lattice QCD data are the model-independent data based on
QCD, and we think that the data themselves are useful for

the study of the 3Q system, particularly for the phenomeno-

logical approach as the quark model for baryons.

We note that the prefactd? physically means the mag-
nitude of the ground-state overlap in the smeared 3Q Wilson

loop. In fact, the pure ground-state 3Q system lead€ to

=1, and 1-C corresponds to the contribution of the
excited-state contamination. We find a large ground-state

overlap asC=0.7 for all 3Q configurations.

From the best smearing parameters; 2.3 andNg,,;, the
flux-tube radiusk can be roughly estimated with E(RO) at
eachpB. We then get a rough estimate of the flux-tube radius
asR=0.52 fm both at3=5.7, 5.8, and 6.0. This flux-tube
radiusR seems consistent with the typical hadron size, and it
cannot be negligible in comparison with the flux-tube length
between the junction and the quark in the 3Q systems in
consideration. In fact, the 3Q systems listed in Tables [I-X
are to be regarded as a flux-tube rather than the stringlike
object, and hence it is nontrivial whether the strong-coupling
QCD can be applicable or not in such 3Q systems. Never-
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TABLE XI. The main result on the fit analysis of the lattice QCD data with YhAnsatzat eachB. We
list the best-fit parameter setr(A,C) in the function form asVio= —A3Q2i<,«(1/|ri—rj|)+03Qme
+ Csq, WhereL i, denotes the minimal value of thétype flux-tube length. The label ¢fatt. Coul) means

PHYSICAL REVIEW D65 114509

the fit with the lattice Coulomb potential instead of the continuum Coulomb potential. The similar fit on the

Q-apotential is also listed: “on-axis” and “off-axis” mean the fit analysis only for on-axis data and for both

on-axis and off-axis data, respectively. The universality of the string tension and the OGE result on the

Coulomb coefficient are found agq=o0qq andAzo=Aqq, respectively. The listed values are measured in

the lattice unit.

8.0

(o A C XZ/NDF
(@) B=5.7 (16 quark configurations
3Qy 0.1524(28) 0.1331(66) 0.9182(213) 3.76
3Qy (Latt. Coul) 0.1556(24) 0.1185(53) 0.8876(179) 1.81
QQ (on-axi9 0.1629(47) 0.2793(116) 0.6203(161) 0.59
QQ (on-axis, Latt. Coul. 0.1603(48) 0.2627(109) 0.6271(165) 0.51
(b) B=5.8 (139 quark configurations
3Qy 0.1027(6) 0.1230(20) 0.9085(55) 5.03
3Qy (Latt. Coul) 0.1031(6) 0.1141(18) 0.8999(54) 4.29
QQ (on-axi9 0.1079(28) 0.2607(174) 0.6115(197) 0.92
QQ (on-axis, Latt. Coul. 0.1080(28) 0.2377(159) 0.6074(194) 0.76
QQ (off-axis, Latt. Coul) 0.1018(11) 0.2795(51) 0.6596(53) 1.28
(c) B=6.0(155 quark configurations
3Qy 0.0460(4) 0.136@L1) 0.9599(35) 2.81
3Qy (Latt. Coul) 0.0467(4) 0.1256(10) 0.9467(34) 2.22
QQ (on-axi9 0.0506(7) 0.2768(24) 0.6374(30) 3.56
Qa (on-axis, Latt. Cou). 0.0500(7) 0.2557(22) 0.6373(30) 1.22
QQ (off-axis, Latt. Coul) 0.0497(5) 0.2572(15) 0.6389(20) 1.59
1.0 e Py T T
- e
=0 ol g
T &
= OT=2 (12 smeared)
k3 T OT=3 (12 smeared) |
1.2 x . = 0.6 gg & T=2 (no smearing)
- R4 AT=3 (no smearing)
1.0 L o i ;A 04 22 -
¥ 4 = 2
-~ 502 f % -
# =0 z
08 | .
ol Y B* 3
g > 0.0 : - -
& © "o0 2.0 4.0 6.0
06 | & J L
- 'min
04 L= L L FIG. 6. The ground-state overlap of the 3Q syste@y,
0.0 5.0 10.0 15.0

FIG. 5. The QQstatic potentiaMqog(r) as the function of the
interquark distance in the lattice unit in SW3) lattice QCD with

r [lattice unit]

B=6.0 at the quenched level.

=(W3o(T)) T H(W3o(T+1))", with the smeared link-variable
(upper dataand with the unsmeared link variab{lower data at
B=5.7. To distinguish the 3Q system, we have taken the horizontal

axis asL ,in, Which denotes the minimal value of the total length of
the flux tubes linking the three quarks. For each 3Q configuration,

C, is largely enhanced as G&y<1 by the smearing.
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(B=5.7) (B=6.0)
2.0 T T T T T T Te 2-0 T T T T T T T
L * N 5 ="
‘=.=
15 } " - 15 .
&
- * - - -
L ]
L 4
1.0 | - = 1.0 - 7
- _.0
i 7 L 4
0 5 ' 1 N 1 f 1 N 0.5 1 [ 1 [l 1 1 1
~0.0 20 4.0 6.0 8.0 0.0 5.0 10.0 15.0 20.0
L., [lattice unit] L. [lattice unit]

FIG. 7. The lattice QCD data for the 3Q potentidfy at 3 FIG. 9. The lattice QCD data for the 3Q potentifg at B
=5.7 as the function of ;,, the minimum value of the total length = 6.0 as the function of y;,, the minimum value of the total length
of the flux tubes, in the lattice unit. of the flux tubes, in the lattice unit.
theless, ther Ansatrom the simple string picture is found A. The long-distance behavior of the 3Q potential
to work well for the lattice QCD data of the three-quark
potential. To begin with, we examine the potential form g, at

the semiquantitative level. As the Q4dptential, the 3Q po-
tential is also expected to be reproduced by the simple sum
of the Coulomb term, the linear confinement term, and a
constant. In Figs. 7-9 we plot the 3Q ground-state potential
For the study of the 3Q potentisl,, we are interested in  Vaq as the function of the minimal total flux-tube length
its large-distance behavior relating to the confinement forcé min, the minimal value of the total length of color flux tubes
rather than the short-distance one. The short-distance behalnking the three quarks, as discussed in Sec. Il. Apart from a
ior of V34 is expected to be described by the two-body Cou-constant,Vsq is almost proportional td., in the infrared
lomb potential as the one-gluon-exchan@GE) result in  region.
perturbative QCD, although it is nontrivial whether perturba-  To single out the large-distance behavior\of, by sub-

tive QCD works well at the intermediate distance ms tracting perturbative Coulomb contribution, we examine
Coul Coul

V. THE FIT ANALYSIS OF THE 3Q POTENTIAL
WITH THE Y ANSATZ

~0.5 fm. The OGE result indicates also a simple relation orVso— Vg . Here, V3o is defined as
the Coulomb coefficients in the Q-hd the 3Q potentials as
3-0 T T T T T T TS
(B=5.8)
3-0 T T T T T T I! B T
- - 20 .
20 1 - .
S ] 10 ° .
10| o . - .
>
| _ 0.0 1 1 1 1 1 1 1
0.0 5.0 10.0 15.0 20.0
0.0 S L.... [lattice unit]
0.0 5.0 10.0 15.0 20.0
L_ [lattice unit] FIG. 10. The semiquantitative test on the confinement part in the
min

3Q potential V35 at 8=5.8. The Coulomb-subtracted potential
FIG. 8. The lattice QCD data for the 3Q potenti4fy at 3 Vio—V5d'is plotted as the function df,, the minimal value of
=5.8 as the function df .;,, the minimum value of the total length  the total flux-tube length. Here, the Coulomb pafE" is evaluated
of the flux tubes, in the lattice unit. from the Q-Qpotential.
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(B=6.0) Vialii.k)
2.0 T T T T T I '
'I 20 T T T

15 | -

5 | 15
10f * -

[ | 1.0 f
0.5 1 1 1 1 1 1 1

0.0 5.0 10.0 15.0 20.0 ' . . .

0.0 1.0 2.0 3.0
i
FIG. 11. The semiquantitative test on the confinement partinthe gz 12. The comparison between the lattice QCD ddféat
3Q potential Vg, at f=6.0. The Coulomb-subtracted potential s_5 7 and the fitted curve of™, as the function of for each (k)

latt Coul ; : .
V3o~ Vaq is plotted as the function dfp,, the mlrle:r.nal value of  fixed, when the three quarks are locatedizd,0),(0j,0),(0,0k) in
the total flux-tube length. Here, the Coulomb paf§" is evaluated e |atiice unit. The lattice datds are expressed as the points, and

L.... [lattice unit]

from the Q-Qpotential. Vi, is expressed as the solid curve for eagfk).
cou Ao 1 stant, the typical scale &f5q is to be understood as its typi-
Vo =7 =i [ri—rl” (26)  cal variation among the different 3Q systems rather than the

value itself) Thus, the three-quark ground-state potential

which is the potential form expected from the OGE processV3Q is well described by Eq4) of the'Y Ansatavithin a few

in perturbative QCD. Reflecting the color factor, the percent d_eviation. . .
P 9 g &) As a visual demonstration on the agreement of this fit, we

ey Col - :
goeﬁ|C|ent inVzq " between tvyo qL_Jarks, of which combina- compare in Fig. 12 the lattice QCD da@g at f=5.7 and
tion pglong the 3repre§entat|02, Is set to be a half of thethe best-fit curve of\/gtQ as the function of for each {,k)
coefficient in the color-singlet Q-Qstem. We note th#qq  fixed, when the three quarks are located at
is already extracted from the lattice QCD data of the Q-QXi,0,0),(0j,0),(0,0k) in the lattice unit. While the lattice
potential, as shown in Table XI. datav'g‘f‘ét are restricted on the integer bfind are expressed
In Figs. 10 and 11, we plotso— V53" as a function of  as the pointsy/5, in Eq. (4) can be calculated for an arbitrary
Lmin, Using the lattice data 8f3q andAqq in Table XI from  real number of and is expressed as a curve for eagfk).
the Q-Qpotential. In the whole region, the linearity an,, In Fig. 12 at3=5.7, one finds a good agreement of the
is observed, which means that the 3Q potendg) can be lattice QCD datat\/'?f‘(gt and the fit curve\/gtQ for each (k).
well described by a sum of the perturbative Coulomb term as In spite of the good agreement 3&‘3 with VQ‘Q, to be
V58" and the nonperturbative linear confinement term prostrict, x%/Npr listed in Table XI seems relatively large,
portional toL i, s shown in Eq4). Thus, the lattice data  which means the relatively large deviativfy— V4, in com-
seem to support thé AnsatzNote here that this simple fitis parison with the error. In addition to physical reasons, this
not the best fit in terms of thé Ansatavith (Azg,030,C30),  may be due to the underestimate of the error. In fact, the
and theY Ansatzseems to work well even in this nonbest fit. statistical error itself seems very small, but the error should

In the next section, we perform the fit analysis of the 3Qbe inevitably enlarged by the systematic error such as the

potential with theY Ansatzat the quantitative level. discretization error in lattice calculations. In particular, the
statistical error for the short-distance data is rather small, and
B. The fit analysis with the Y Ansatz such a smallness of the short-distance error seems to provide

the large value ofy?/Npg, which may indicate an impor-
ance to control the finite lattice-spacing effect. Of course,
this point would be clarified if the lattice QCD study with the
finer and larger lattice is performed. Besides the direct check
on the 8 dependence, the similar fit analysis with the lattice
- ) i i _ -~ Coulomb potential is expected to be meaningful. On the lat-
fitting function V3 in Eq. (4) with the best-fit parameters in tjce, to be strict, the Coulomb potential is to be modified into
Table XI. We observe a good agreement betw&§f and  the lattice Coulomb potential, which contains the finite
V5. In fact, the deviationVs5— VG is only within a few lattice-spacing effect more directly. Hence, the fit with the
percent of the typical scale &f;q for every lattice data in  lattice Coulomb potential is expected to reduce the discreti-
Tables 11-X.(Since the potential includes an irrelevant con-zation error from the finite lattice spacing, especially for the

We perform the best-fit analysis for the lattice QCD dat
of V3 in terms of theY Ansatawith (Azq,030,C3q) at each
B. We show in Table XI the best-fit parameter set
(A3q,030,C3q) in theY Ansatdor V3, at eachB. In Tables
[1I-X, we compare the lattice dat‘s('gf"ét with the Y Ansatz
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short-distance data. In Sec. VE, we will perform the fit D. The Y Ansatzwith the Yukawa potential

analysis using the lattice Coulomb potential. In the previous section we adopt the Coulomb potential as
Finally, we compare the bestfit parameter setno short-distance ingredient, because the OGE process is

(730,430, C20) n the 3Q_potent|§IV3Q n Eq. (4) with expected to be dominant at the short distance and the Q-Q
(0qq:Aqq:Cqq) In the Q-Qpotential Voqg in Eq. (21) as  otential seems to be reproduced with the Coulomb plus lin-
listed in Table XI. As a remarkable fact, we find a universalg,r potential in the lattice QCD. The first reason is, however,
feature of the string tension, nontrivial in the intermediate and the infrared regions, where
the perturbative QCD would not work. In fact, due to some
nonperturbative effects besides the confinement potential, the
Coulomb potential caused by the OGE process may be modi-
fied in the infrared region.
For instance, the dual superconductor theory for the quark
(28) confinement12,13,37,38 supports the Yukawa plus linear
potential rather than the Coulomb plus linear potential, al-
though the dual gluon massg appearing in the exponent in
the Yukawa potential may not be so large, e.gis
~0.5 GeV both in the model framewofi2,13 and in the
As a model-independent check, we consider the diquarkattice study{39,40].
limit, where two quark locations coincide in the 3Q system. From a theoretical viewpoint, such a possibility on the
In the diquark limit, the static 3Q system becomes equivaleninfrared screening of the Coulomb potential seems rather at-
to the Q-Qsystem, which leads to a physical requirement ontractive in terms of the empirical absence of the color van der
the relation betweeV;5 andVgog. Our results,ozg=0qg Waals force in the infrared lim[1]. In fact, if the two-body

and ABQZ%AQal are consistent with the physical require- Coulomb potential is not screened in the infrared limit, the
ment in the diquark limit. color van der Waals force inevitably appears as a long-

Next, we consider the constant teri@is, in the diquark distance force between hadrons, which is not observed ex-
limit, although such a constant term is a lattice artifact and igPerimentally.
physically irrelevant. As a caution in the continuum diquark  Then, we also investigate the fit analysisvaf, with the Y
limit, there appears a singularity or a divergence from theAnsatzwith the Yukawa potential as
Coulomb term inV;q as

T30~ 0QQ: (27)

as well as the OGE result for the Coulomb coefficient,
1 P

C. The model-independent check in the diquark limit

V\g/quawaE _ Aqukawa; VYukawa( | M=, |)
Iimf=—00. (29) =
J + U\s(gkawq—min"' C\g(tékawa' (33)

In the lattice regularization, this ultraviolet divergence iswhereV®qr) denotes the normalized Yukawa potential
regularized to be a finite constant with the lattice spa@ng
as 1

\/Yukawa(r)E Fe_ mgr (34)
ri—r;l ~ T pa (30 Here, mg corresponds to the dual gluon mass in the dual
superconductor picturgs,12,13.

We find that the best-fit analysis of the lattice QCD data
VES with VY§@*indicatesmg=0. Of course, in this special
case ofmg=0, the Yukawa potential reduces the Coulomb

_ potential, and the result almost coincides with that in the
Caot —3Q=CQ61 (31  previous fit. Thus, through the fit analysis with the Yukawa
wa potential based on th€ Ansatzwe have observed no defi-
nite evidence to replace the Coulomb-potential part by the
or equivalently, Yukawa potential in the present calculation.

wherew is a dimensionless constant satisfying ®<<1 and
w~1. Then, we find

Az E. The Y Ansatzwith the lattice Coulomb potential

wa So far, we have investigated the fit analysis of the 3Q

potential V3o mainly with the continuum Coulomb and the

in the diquark limit. This is the requirement for the constantconfinement potential. However, in comparing with the lat-
term in the diquark limit on the lattice. Our lattice QCD tice data, the careful treatment considering the lattice dis-
results forCsq, Cqqg, andAgq are thus consistent with this cretization effect may be desired. The main effect of the
requirement, and one findsv=0.41-0.45. w(B=5.7) lattice discretization appears only at the short distance, and
=0.447, w(B=5.8)=0.414, w(B=6.0)=0.424. hence no modification would be necessary for the confine-
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LC_ _ ALCy,c/ 2 Lc, 2 LC
Voo=~AgeV (N +0a55 n|+CQQ, (37)
using the lattice Coulomb potentikﬂ-c(ﬁ). We refer to this
fit as the LC fit. We list in Table XI the best-fit parameter set

. (Ag%,ag%,cg%) at eachB. In Table Xl the label “on-axis”
* on-axis means the fit analysis for the on-axis data only, and the label
o off-axis ’ “off-axis” means the fit analysis for both on-axis and off-
-25 | i axis data. In the LC fit, a significant reduction pf/Npg is
observed, in comparison with the fit with ther IZoulomb
- 1 potential in Eq.(21), as shown in Table Xl, in spite of the

3 T similar values of the fit parameters. We find a further good

'50_0 10 20 30 40 50 60 7.0 agreement between the lattice QCD data and the fitted values
r [lattice unit] of V(L?% on the Q-Qpotential. In particular, the LC fit shows

) ) ) an acceptable value of?/Npg even for the fit on both on-

FIE;. 13. The comparison of the lattice CoulorfitC) potential axis and off-axis data, while the fit with ther1Coulomb

Vti(n) with 1/r in the lattice unit. We plot the on-axis data potential shows the extremely largé/Npg about 10 when
VLc(k’O'O) (0<k<7) by the closed circle, the off-axis data {hq off-axis data are included. Thus, the discretization effect,
V(kk,0) (1=k=4) by the open circle, and /by the solid \hich may not be negligible for short-distance data, seems to
curve. be taken into account neatly by the use of the LC potential to

. . - some extent. Accordingly, the fit analysis with the lattice
ment potential, which becomes significant only at the largeCoqumb potential/'C seems to provide a more precise in-

distance. On the other hand, it is nontrivial to use the con; ; . : ,
tinuum Coulomb potential for the fit of the lattice data, eS_formatlon also for the linear confinement potential, although

. ; . . . the string tension obtained from the fit analysis is almost
pecially at the short distance, according to the lattice discreti- 9 LC = y
nchanged a8 = 0QQ-

zation. For instance, the short-distance singularity of thé! _ _ _
Coulomb potential becomes rather smeared on the lattice, as NOW. we perform the LC fit analysis of the lattice data on

will be shown later. the 3Q potential/sq with
In this section we perform the fit analysis of the lattice
QCD data ofV3q, in terms of theY Ansatzwith the lattice VEC= _ ALCSY \LC(A V4 LSl . 4 CLC 38
Coulomb potential. The lattice CoulonhC) potential be- Q 3Qi2<j (i) + osgbmnt Csq. (38)
tween two color charges is obtained with the lattice Coulomb
propagator as using the lattice Coulomb potentimLC(ﬁ). In Table XI we
o & expl—if-fia) list the best-fit parameter ieaggc,og§écgg) together with
VLC(ﬁ)ETrj 3 , (35  the best-it parametersAEa,aQaCQa). In this LC fit,
~mla(2m)? S si(pal) x*/Npg is reduced in comparison with the fit with ther 1/
= Pi Coulomb potential at eac3, as shown in Table XI. Then,

this fit seems to be acceptably good even without taking
account of the remaining systematic error. Accordingly, the
3Q potential data are well reproduced with tieAnsatzfit
function vgg in Eqg. (38) with the lattice Coulomb potential
with accuracy better than 1%. Again, the fit analysis with the
lattice Coulomb potentia¥/© is expected to control the dis-
1 cretization effect to some extent, and would provide a more
VLC(ﬁ)_> - (36) precise information also for the linear confinement potential.
r Finally, we focus on the best-fit parameter set
. (055.A55,C5) in the Y Ansatzwith the lattice Coulomb
with r=|nla. potential. The values of the best-fit parameters in the LC fit
In Fig. 13 we pIotVLC(ﬁ) as a function of ﬁ| together are almost the same as those in the previous fit with the 1/
with 1/r as a function of. One finds that the singularity near Coulomb potential as
the origin|n|=0 becomes smeared, aMj takes a finite
value even anh=0, which was mentioned in the context of
the diquark limit in the preceding subsection. This may caus
a significant deviation in the fit analysis with ther IZou-
lomb potential, especially for the short-distance data analy

where ﬁE(nl,nz,n3)eZ3 denotes the relative vector be-
tween the two color charges in the lattice unit. Here, th

lattice Coulomb potential/“C(n) is properly normalized so
as to reduce into the fjpotential in the continuum limit as

(055.A56.C58) = (030,A30,C30).- (39

?n particular, the string tension obtained from the fit analysis
is almost unchanged as;5=o3o. We then find again the

sis. universality of the string tension ag;5~ ag%at eachB. The
To begin with, we examine the fit analysis of the lattice OGE relation on the Coulomb coefficient is found ,&g
QCD data on the Q-@otentialVqg with z%A(L?%. In particular, this OGE relation seems to be ob-
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TABLE XII. The fit analysis of the lattice QCD dataél'e‘f‘(‘?t with the A Ansatzat eachB. We list the best-fit
parameter setc(s ,Ax,C,) in the function form as-A,3;;(1/]r;—r;[) + 05 Zi<|ri—rj|+ C4 . The label
of (Latt. Coul) means the fit with the lattice Coulomb potential instead of the continuum Coulomb potential.
The listed values are measured in the lattice unit.

B TA A Ca x*INpe
3 5.7 0.0858(16) 0.1410(64) 0.9334(210) 10.1
3Q, (Latt. Coul) 0.0868(14) 0.1296(51) 0.9146(173) 5.12
3Qa 5.8 0.0581(4) 0.1197(19) 0.8964(55) 13.7
3Q, (Latt. Coul) 0.0583(3) 0.1110(18) 0.8872(54) 13.6
3Qx 6.0 0.0264(2) 0.1334(11) 0.9490(36) 3.74
3Q, (Latt. Coul) 0.0268(2) 0.1227(10) 0.9361(34) 2.89

served precisely g8=6.0, which is the finest and the most explained as a trivial constant shift of the potential. In fact,
reliable lattice in the present calculatiqit 8=5.7,5.8, the the potential calculated in lattice QCD includes a physically

ratio AES,ALC, is about 0.4, which seems slightly different irrelevant constant, which is not properly scaled in the physi-

from { as t%?a OGE result. Note that. however. the discreti& unit, as shown in Table XI. If such an irrelevant constant

zation error on the QCD action still remains at the sngall IS Properly removed, th¥ Ansatzseems to be better than
even with the lattice Coulomb potential. In addition, At Ansatzla(?tven in Refs[27-29, e.g., the slope of the lattice
=5.7,5.8, the nearest site is relatively far, and hence thgat@Vsq seems closer to th¥ Ansatzrather than thed
Coulomb contribution to the 3Q potential is relatively small, Ansatz In Ref.[29], the authors set the potential origin at the
which may lead to an uncertainty of the Coulomb coeffi-N€arest Iattl_ce point and used_ the continuum Coulomb poten-
cient) tial for the fit function, but this seems dangerous because a
To summarize this section, we conclude that the latticeonstant deviation may appear as a mismatch between the
QCD data of the 3Q potentials, can be fairly described lattice Coulomb potential which is preferable to the lattice
with the Y Ansatawithin a few percent deviation, and there- data and the continuum Coulomb potential for the fit func-
fore the nonperturbative linear confinement potential is profion, as shown in Fig. 13. In any case, the quantitative fit
portional toL ,;,, the minimal value of the total length of the analysis is essential for the study of the functional form of

Y-type flux tube linking the three quarks, which supports thethe 3Q potential. . o

Y Ansatz In this section we perform the fit analysis with tide
Ansatz To begin with, we try to fit\/'ef}‘?t with the A Ansatzin

Eq. (40), which was suggested in Ref&4,26,30. We list in
Table XlI the best-fit parameter sef(,0,,C,) in the A
Ansatzat eachB. In comparison with ther Ansatz this fit

A. Comparison with the A Ansatz with the A Ansatzseems rather worse because of the larger
value of x?/Npg. In fact, y2/Npg is unacceptably large as
X?INpe=10.1 atB=5.7, x°/Npg=13.7 at3=5.8 even for

the best fit(Of course, wherr, is fixed to be the half value

of the string tension in the Q-Qotential as in Ref§26-29,
this fit with theA Ansatzbecomes further worse with a larger
XZ/NDF-)

As an approximation, howevev,; seems described by a
which consists of the two-body linear potential betweensimple sum of the effective two-body Q-Q potential with a
quarks. ThisA Ansatzhas been adopted in a simple nonrel- reduced string tension as
ativistic quark potential mod¢k2] because of its simplicity
for the calculation. In addition, several lattice QCD studies 053=0.5%qq. (41)
for the 3Q potential supported th& Ansatz[24,26-29. _ _
However, Refs[24,26 seem rather old, done 14 years ago,Th|s.reduct|on factor can be naturally underst_ood as a geo-
and were done without smearing, so that the excited-stat@et“cal factor rather thgn the color factor, smce'the ratio
potential may largely contribute in their measureme(@ee  Petweenl i, and the perimeter lengthy of the 3Q triangle
Fig. 6) In a recent paper, Refi29], in spite of the use of the Satisfies
smearing, the authors simply compared the 3Q pote¥itgl
with the Y and theA Ansaze with a fixed string tension
estimated from the Q-Qpotential, only for several
equilateral-triangle 3Q configurations without the quantita-
tive fit analysis. Furthermore, in Reff27,29, the “devia-  which leads td_ ;0 = Lpogq With 05o=(0.5~0.58)0. The
tion” between the lattice data and the Ansatzseems to be OGE relation is also found a%A:%AQa.

VI. COMPARISON WITH THE DELTA ANSATZ
AND THE GENERALIZED Y ANSATZ

For the 3Q potential, thd Ansatzis also an interesting
candidate[30] as well as theY Ansatz The A Ansatzis
expressed as

1
V3Q=_AA_ 'T‘f‘O'AE |ri_r]‘|+CA, (40)
=i rJ| i<]

=— (42
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Q1 there. Furthermore, the Coulomb potential form itself is no
longer trivial in the intermediate region as 0.24m;
< 0.8 fm, where the perturbative QCD would not be valid.
In this section we investigate the lattice QCD data for the
P3 P2 3Q potential using a more generAhsatzwhich includes
both theY and theA Ansdzein some limits. On the adoption
p of the generalAnsatz we consider the possibility of the flux-
1 ; .
tube core effect. For instance, in the dual superconductor
P picture[12,13,37,38 the hadron flux tube has an intrinsic
a2 Qs structure of the core region inside. In fact, if there exists the
flux-tube core with the cylindrical radiuB.,e, the Y-type
FIG. 14. The visual illustration of the generalizédAnsatzThe  flux tube may be almost identical to tAetype configuration
three quarks are spatially fixed &;, Q,, and Q;. The circle  at the short distance as;~Rye, and thus the flux-tube
around the Fermat poirt corresponds to the flux-tube core around length becomes obscured there.
the physical junction. The poiiR; is taken inside the circle so as to So far, we have defined the minimal flux-tube length,

minimize P,Q,+ P,Qs, andP, and P5 are similarly defined. which is proportional to the linear potential, as

For the fair comparison, we also examine the fit analysis
by the A Ansatzwith the lattice Coulomb potential, as was Lmin=PQ1+PQ>+PQs (44)
done for theY Ansatzn Sec. V E. The 3Q data are fitted by

with the Fermat poinP in Fig. 14. In this section, consider-
ing a possible flux-tube core effect, we introduce the modi-

fied minimal flux-tube lengtt. ,,,, defined as

the form of

VEEQ:—A;C;j VLC(ﬁij)+a;°;j Iri—r;|+C5°. (43

We add the results in Table Xll. Again, a reduction in
X?INpg is observed. The values of the best-fit parameters are
almost unchanged, and hence E4l) and the OGE relation
also hold. However, in comparison with the Ansatzwith
the lattice Coulomb potentia?/Npg in this fit with the A
Ansatzs still larger, and therefore the Ansatzs difficult to
be accepted.

N| =

(Q1P2Q3+Q,P3Q:1+Q3P1Qy), (45)

I—min

with ABC=AB+BC, as shown in Fig. 14. Here, the points
Py (k=1,2,3) are taken inside the circle centered at the Fer-
mat pointP with the radiusR.,., andP; is chosen so as to
minimize

B. A more general Ansatz—the generalizedY Ansatz Q3P;Q,=P;Q,+P;Q; (46)

From the theoretical reason of the short-distance pertur- . I . .
bative QCD and the large-distance strong-coupling QCD, thgnd S0 on. .In this definition, when the CII’C|e. crosses or in-
Y Ansatzseems reasonable in the both limits. The overaIICIUdeS the.I|nQ2Q3, P, can be taken on the [in@,Q; and
lattice QCD data for the 3Q potential also support the then one finds
Ansatzrather than thel Ansatz However, it is not trivial =5 A _
whether theY Ansatzholds in the intermediate region as QsP1Q2=Q2Qs. “7)

0.2 fm<r;;<0.8 fm. In fact, as was conjectured by Cornwall |t js worth mentioning that there are two special cases corre-
[30], there is a possibility of th& Ansatzcontamination in  sponding to they and theA Ansize

this region, where strong-coupling QCD is not applicable. In

addition, a few recent lattice works seem to support she L min=L min (48)
Ansatzfor the 3Q potential in the intermediate region, al-

though their studies were performed only for the equilateraln the case oR; =0 0r Ryoe<rjj, and

triangle 3Q configuration. Of course, it is rather difficult to
analyze the short distance behavior of the non-Coulomb part
of the 3Q potential because the Coulomb part is dominant

1
L min= E(Q1Q2+ Q2Q3+Q3Q1) (49)

TABLE XIIl. The fit analysis of the lattice QCD daM'Saé‘ with the generalizetY Ansatat eachd. We list
the best-fit parameter setr§y ,Acy,Coy,Reard IN the lattice unit at3=5.8 and 6.0. The flux-tube core
radiusR. in the physical unit is added.

B oGy Acy Coy Reore[@] Reore (fm) XZ/NDF
5.8 0.1054(6) 0.1354(18) 0.9569(53) 0.57 0.08 2.63
6.0 0.0480(4) 0.1451(11) 0.9837(33) 0.79 0.08 1.23
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in the limit of Ryoe= % OF Reore>Tj - L V3o, and have found that the lattice QCD data of the 3Q
Using this modified minimal flux-tube lengthy,,, we  potentialV;q are well reproduced within a few percent de-
define the generalized Ansatzas viation by the sum of a constant, the two-body Coulomb

term, and the three-body linear confinement tergal min,
1 with L, the minimal value of the total length of color flux
_ F— tubes linking the three quarks. We have investigated also the
= in— — . . S ; L
Vae= eyl min AGY;,— ri—rj] Cev (50 fit analysis with the lattice Coulomb potential instead of the
Coulomb potential, and have found a better fit with keeping

) ) i the similar result. From the comparison with the Qs@ten-
This generalizedY Ansatzincludes both theY and theA  {jg we have found a universality of the string tension as

Ansdze in the special cases dRe=0 andRepe=*, 1€~ ;. ~ 5= and the one-gluon-exchange result for the Cou-
spectively. In fact, the generalizétiAnsatzeproduces th¥  |omb coefficients ad\yo= L Ago-

Ansatzat the large distance, which is theoretically supported e have also performed the various fit analyses. Through
by strong-coupling QCD, with including tha Ansatzbe-  the fit with the Yukawa potential based on tieAnsatz we
havior at the short distance. _ . have observed no definite evidence that the short-distance

Then, we investigate the fit analysis for the lattice QCDpotential becomes the Yukawa potential. The fit with the
data of the 3Q potential using the generalizédnsatavith  aApsatzis worse than that with th¥ Ansatzon the confine-
varying Reoe. We show in Table XIlI the result of the fit ant part in the 3Q potentialsq, althoughVs, seems to be
analysis at3=5.8 and 6.0. We observe the best fitting alapproximated by the\ Ansatzwith oy,=0.53. We have
Reore=0.08 fm both at3=5.8 and 6.0. The values of the ¢onsidered a more generhsatzincluding theY and theA
best-fit parameterso(y ,Acy,Cey) are almost the same as Ansizein some limits, and have found a possibility that the
those in theY AnsatzThis result also seems to support the Y-type flux tube has a flux-tube core about 0.08 fm, which
Ansatzrather than thel Ansatzat the hadronic scale as may appear as a small mixing of tde Ansatzat the short
>0.1fm. (As an interesting speculatiorRe,=0.08 fm,  gistance, although such a smaMtype contamination is neg-
which is almost the same both At=5.8 and 6.0, may physi- |igiple in the intermediate and the infrared regions. To con-
cally correspond to the flux-tube core radius in the dual sugjyde, all of these detailed fit analyses for the lattice QCD
perconductor picturg. data of the 3Q potential support tiyeAnsatz

VIl. SUMMARY AND CONCLUDING REMARKS
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