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Detailed analysis of the three-quark potential in SU„3… lattice QCD
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The static three-quark~3Q! potential is studied in detail using SU~3! lattice QCD with 123324 atb55.7
and 163332 atb55.8,6.0 at the quenched level. For more than 300 different patterns of the 3Q systems, we
perform the accurate measurement of the 3Q Wilson loop with the smearing method, which reduces excited-
state contaminations, and present the lattice QCD data of the 3Q ground-state potentialV3Q. We perform the
detailed fit analysis onV3Q in terms of theY Ansatzboth with the continuum Coulomb potential and with the
lattice Coulomb potential, and find that the lattice QCD data of the 3Q potentialV3Q are well reproduced within
a few percent deviation by the sum of a constant, the two-body Coulomb term and the three-body linear
confinement terms3QLmin , with Lmin the minimal value of the total length of color flux tubes linking the three

quarks. From the comparison with the Q-Q¯ potential, we find a universality of the string tension ass3Q

.sQQ̄ and the one-gluon-exchange result for the Coulomb coefficients asA3Q. 1
2 AQQ̄. We investigate also the

several fit analyses with the variousAnsätze: theY Ansatzwith the Yukawa potential, theD Ansatzand a more
generalAnsatzincluding theY and theD Ansätzein some limits. All these fit analyses support theY Ansatzon
the confinement part in the 3Q potentialV3Q, althoughV3Q seems to be approximated by theD Ansatzwith
sD.0.53s.

DOI: 10.1103/PhysRevD.65.114509 PACS number~s!: 12.38.Gc
en

t
a
fi-
m
lin

e
rb
k
er

he
ng
io

b

i-
n
be

i-

e
l

s

ibe

n-
ally
ies

ne

eem

ten-

e

the
l in

and
ion

al-

he
the

tate
tial.
e a
rk
of
I. INTRODUCTION

The strong interaction in hadrons or nuclei is fundam
tally ruled by quantum chromodynamics~QCD!. In the spirit
of the elementary particle physics, it would be desirable
understand hadron physics and nuclear physics at the qu
gluon level based on QCD. However, it still remains a dif
cult problem to derive even the interquark potential fro
QCD in the analytic manner, because of the strong-coup
nature of QCD in the infrared region.

In this decade, the lattice QCD calculation has be
adopted as a useful and reliable method for the nonpertu
tive analysis of QCD@1,2#. In particular, the quark-antiquar
(Q-Q̄) potential, which is responsible for the meson prop
ties, has been well studied using lattice QCD. The Q-Q¯ po-
tential in lattice QCD is well reproduced by a sum of t
Coulomb term due to the perturbative one-gluon-excha
~OGE! process, and the linear confinement term, in addit
to an irrelevant constant@3–5#. The linear potential at long
distances can be physically interpreted with the flux-tu
picture or the string picture for hadrons@6–13# with the
string tensions.0.89 GeV/fm, which represents the magn
tude of the confinement force. In this picture, the quark a
the antiquark are linked with a one-dimensional flux tu
with the string tensionsQQ̄, and hence the Q-Q¯potential is
proportional to the distancer between the quark and ant
quark at the long distance. This flux-tube picture~or the
string picture! in the infrared region is supported by th
Regge trajectory of hadrons@14,15#, the phenomenologica
analysis of heavy quarkonia data@16#, the strong-coupling
expansion of QCD@7#, and recent lattice QCD simulation
@17–19#.
0556-2821/2002/65~11!/114509~19!/$20.00 65 1145
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However, there is almost no reliable formula to descr
the three-quark~3Q! potentialV3Q directly based on QCD,
other than strong-coupling QCD@7,10#, althoughV3Q is di-
rectly responsible for the baryon properties@10,20,21# and is
a primary quantity in hadron physics. In fact, the 3Q pote
tial has been treated phenomenologically or hypothetic
for more than 20 years. In contrast with a number of stud

on the Q-Q̄potential using lattice QCD@22,23#, there were
only a few lattice QCD studies for the 3Q potential do
mainly more than 14 years ago@24–27#.

Even at present, the arguments on the 3Q potential s
to be rather controversial. In Refs.@24,26–29#, the 3Q po-
tential seemed to be expressed by a sum of two-body po
tials, which supports theD-type flux tube picture@30#. On
the other hand, Refs.@3,25,31–33# seemed to support th
Y-type flux-tube picture@10,20# rather than theD-type one.
These controversial results may be due to the difficulty of
accurate measurement of the 3Q ground-state potentia
lattice QCD. For instance, in Refs.@24,26#, the authors did
not use the smearing for ground-state enhancement,
therefore their results may include serious contaminat
from the excited-state component. In Refs.@27–29#, the au-
thor showed a preliminary result only on the equilater
triangle case without the fit analysis.

In this paper, for more than 300 different patterns of t
3Q system, we perform the accurate measurement of
static 3Q potential in SU~3! lattice QCD atb55.7, 5.8, and
6.0, using the smearing method to remove the excited-s
contaminations and to obtain the true ground-state poten
The contents are organized as follows. In Sec. II we mak
brief theoretical consideration on the form of the interqua
potential based on QCD. In Sec. III we explain the method
©2002 The American Physical Society09-1



in
ic
th
th
r.
h
ith

e

n
he
-Q
n
s
th
th
lin
b
D

nd
th

th
io
th

th
se
D

-
ul

t

t-
lt

th
ar
a

he
l

on
gl
te
th

the

he

e
ed

as
ars
ree
as a
x

the
tial

he
we

he
ical
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the lattice QCD measurement of the 3Q potential, referr
to the importance of the smearing technique and its phys
meaning. In Sec. IV we present the lattice QCD data of
3Q potential, which are accurately measured from
smeared 3Q Wilson loop in a model-independent manne
Sec. V we perform the fit analysis of the lattice data with t
Y Ansatz. In Sec. VI we examine the various fit analyses w
theD Ansatzand a more generalAnsatz, including theY and
the D Ansätze in some limits. Section VII is devoted to th
summary and the concluding remarks.

II. THEORETICAL CONSIDERATION ON THE 3Q
POTENTIAL

The lattice QCD data themselves are measured i
model-independent way; however, it is useful to make a t
oretical consideration on the potential form in the static Q̄
and 3Q systems with respect to QCD. Although QCD is o
of the most difficult theories in theoretical particle physic
there are two analytical methods based on QCD: one is
perturbative QCD, which is rather established to describe
short-distance behavior, and the other is the strong-coup
expansion, which is expected to reflect the long-distance
havior of QCD. At the short distance, perturbative QC
would work well according to the asymptotic freedom, a
the static interquark potential can be described with
Coulomb-type potential as the one-gluon-exchange~OGE!
result. On the other hand, at the long distance at
quenched level, the flux-tube picture with the string tens
s is expected to be applicable from the argument of
strong-coupling expansion of QCD@7,10,20#, which indi-
cates a linear-type confinement potential proportional to
total flux-tube length. Of course, it is nontrivial that the
simple arguments on ultraviolet and infrared limits of QC
hold for the intermediate region as 0.2 fm,r ,1 fm. Never-
theless, for instance, the lattice QCD data of the Q-Q¯ground-
state potential are well fitted by

VQQ̄~r !52
AQQ̄

r
1sQQ̄r 1CQQ̄ ~1!

at the quenched level@5#. Also in the phenomenological as
pect of QCD, such a Q-Q¯potential is known to be successf
to reproduce the empirical data of the mass spectra and
decay rates of various heavy quarkonia@16#. In fact, the Q-Q̄
potential VQQ̄ is well described by a sum of the shor
distance OGE result and the long-distance flux-tube resu

Also for the 3Q ground-state potentialV3Q, we basically
adopt this picture as a theoretical frame of reference. In
3Q system in the color-flux-tube picture, reflecting the ch
acter of SU(Nc53) in QCD, there can appear the physic
junction linking to the three flux tubes stemming from t
valence quarks. Since the confinement part is proportiona
the total flux-tube length in this picture, the physical juncti
is expected to appear at the Fermat point of the 3Q trian
as shown in Fig. 1, as long as the ground-state 3Q sys
with spatially fixed valence quarks is concerned. Here,
11450
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Fermat point is defined so as to minimize the sum of
distances to the three vertices of the triangle.

For the convenient description in the argument of t
ground-state 3Q potential, we denote byLmin the minimal
value of the total length of color flux tubes linking the thre
quarks. When all angles of the 3Q triangle do not exce
2p/3, Lmin is expressed as

Lmin5F1

2
~a21b21c2!1

A3

2

3A~a1b1c!~2a1b1c!~a2b1c!~a1b2c!G1/2

,

~2!

wherea, b, andc denote the three sides of the 3Q triangle
shown in Fig. 1. In this case, the physical junction appe
and connects the three flux tubes originating from the th
quarks, and the shape of the 3Q system is expressed
Y-type flux tube@7,10#, where the angle between two flu
tubes is found to be 2p/3 @10,20#. When an angle of the 3Q
triangle exceeds 2p/3, one finds

Lmin5a1b1c2max~a,b,c!. ~3!

In the picture of the short-distance OGE result plus
long-distance flux-tube result, the 3Q ground-state poten
V3Q is expected to take a form of

V3Q52A3Q(
i , j

1

ur i2r j u
1s3QLmin1C3Q, ~4!

which is referred to as theY Ansatz@3,33,20#. In the follow-
ing sections we will extract first the lattice QCD data of t
3Q potential without any model assumption, and later
will try the fit analysis of the lattice data with theY Ansatzor
other possibleAnsätze.

III. THE LATTICE QCD MEASUREMENT FOR THE 3Q
POTENTIAL

A. The 3Q Wilson loop and the 3Q potential in QCD

Similar to the derivation of the Q-Q¯ potential from the
Wilson loop, the 3Q static potentialV3Q is obtained with the
3Q Wilson loop as

FIG. 1. The flux-tube configuration of the 3Q system with t
minimal value of the total flux-tube length. There appears a phys
junction linking the three flux tubes at the Fermat pointP.
9-2
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DETAILED ANALYSIS OF THE THREE-QUARK . . . PHYSICAL REVIEW D65 114509
V3Q52 lim
T→`

1

T
ln^W3Q&. ~5!

The 3Q Wilson loopW3Q is defined in a gauge-invarian
manner as

W3Q[
1

3!
«abc«a8b8c8U1

aa8U2
bb8U3

cc8 ~6!

with the path-ordered product

Uk[P expH igE
Gk

dxmAm~x!J ~k51,2,3!, ~7!

along the path denoted byGk in Fig. 2. As shown in Fig. 2,
the 3Q Wilson loop physically expresses the 3Q gau
invariant state which is generated att50 and is annihilated
at t5T with the three quarks spatially fixed inR3 for 0,t
,T.

The initial ~or the final! 3Q state is introduced as th
stringlike object in the naive 3Q Wilson loop. However, t
physical ground state of the 3Q system, which is of inter
here, is expected to be expressed by the flux tubes instea
the strings, and then the 3Q state which is expressed by
strings generally includes excited-state components suc
flux-tube vibrational modes. Of course, if the largeT limit
can be taken, the ground-state potential would be obtai
However, the practical measurement of^W3Q& is rather se-
vere for largeT in lattice QCD calculations because^W3Q&
decreases exponentially withT.

Therefore, for the accurate measurement of the
ground-state potentialV3Q, it is practically indispensable to
reduce the excited-state components in the 3Q system in
duced att50 andt5T in the 3Q Wilson loop. The gauge
covariant smearing method is one of the most useful te
niques for ground-state enhancement@32,34,5# without
breaking the gauge covariance, and is adopted to measur
Q-Q̄ potential and the glueball mass@35# in the recent lattice
QCD calculation.~This smearing method was not applied
a few pioneering lattice studies on the 3Q potential@24,26#,
since the smearing technique was mainly developed a
their works. As will be discussed later, their numerical resu
seem to include fatal large excited-state contaminations.!

FIG. 2. The 3Q Wilson loopW3Q. The 3Q state is generated
t50 and is annihilated att5T. The three quarks are spatially fixe
in R3 for 0,t,T.
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In this paper we perform the accurate measurement of
3Q ground-state potentialV3Q using the ground-state en
hancement by the gauge-covariant smearing method for
link-variable in SU(3)c lattice QCD at the quenched leve
@32#.

B. The smearing method for the ground-state enhancement

Let us consider here the physical states of the 3Q sys
with the spatially fixed quarks. In this 3Q system, of cour
there is no valence-quark motion, and the central issue is
gluonic configuration under the boundary condition of t
spatially fixed three quarks, which play the role of the co
source of the gluonic color-electric flux.

Like the Q-Q̄flux-tube system, the ground state of the 3
system is expected to be composed by flux tubes rather
the strings@3,12#, and there are many excited states of the
system corresponding to the flux-tube vibrational modes@3#.
We here express the 3Q Wilson loop with the normaliz
physical states, the 3Q ground stateug.s.;t&, and thekth ex-
cited 3Q stateukth e.s.;t& at t. In the 3Q Wilson loop, the
normalized gauge-invariant 3Q stateu3Q;0& created att50
and u3Q;T& annihilated att5T can be expressed as

u3Q;0&5c0ug.s.;0&1c1u1st e.s.;0&1c2u2nd e.s.;0&1•••,

u3Q;T&5c0ug.s.;T&1c1u1st e.s.;T&1c2u2nd e.s.;T&1•••,
~8!

with the coefficientsci obeying the normalization condition
( i 50

` uci u251. Then, the expectation value ofW3Q can be
expressed as

^W3Q~T!&5^3Q;Tu3Q;0&5uc0u2^g.s.;Tug.s.;0&

1uc1u2^1st e.s.;Tu1st e.s.;0&1•••

5uc0u2 exp~2Vg.s.T!1uc1u2 exp~2V1st e.s.T!

1•••, ~9!

with the ground-state potentialVg.s. and thekth excited-state
potentialVkth e.s., which correspond to the energy eigenva
ues of the 3Q system.@Note that the normalization here i
consistent with the definition ofW3Q in Eq. ~6!, which leads
to ^W3Q(T50)&51.#

As increasingT, the excited-state components drop fas
than the ground-state component in^W3Q&; however, the
ground-state componentuc0u2 exp(2Vg.s.T) also decreases
exponentially. Hence, we face a practical difficulty in e
tracting the numerical signal. To avoid this difficulty, w
adopt the smearing technique@3,5,34# which enhances the
ground-state overlap asuc0u2 and removes the excited-sta
contamination efficiently.

The smearing method is one of the most popular and u
ful techniques to extract the ground-state potential in latt
QCD. The standard smearing for link variables is expres
as the iterative replacement of the spatial link varia
Ui(s) ( i 51,2,3) by the obscured link variableŪ i(s)
PSU(3)c @5,34# which maximizes
9-3
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TAKAHASHI, SUGANUMA, NEMOTO, AND MATSUFURU PHYSICAL REVIEW D65 114509
Re Tr$Ū i~s!Vi
†~s!% ~10!

with

Vi~s![aUi~s!1(
j Þ i

$U j~s!Ui~s1 ĵ !U j
†~s1 î !

1U j
†~s2 ĵ !Ui~s2 ĵ !U j~s1 î 2 ĵ !%, ~11!

which is schematically illustrated in Fig. 3. Here,aPR is
referred to as the smearing parameter. Thenth smeared link
variablesUm

(n)(s) (n51,2, . . . ,Nsmear) are iteratively defined
starting fromUm

(0)(s)[Um(s) as

Ui
(n)~s![Ū i

(n21)~s! ~ i 51,2,3!, U4
(n)~s![U4~s!.

~12!

For arbitrary operatorF@Um(•)#, the nth smeared opera
tor F@Um

(n)(•)# is defined with thenth smeared link variable
Um

(n)(s) instead of the original link variable. The interqua
potential can be accurately measured from the prop
smeared~3Q! Wilson loop. Here, the smearing parametera
and the iteration numbern play the role of the variationa
parameters and are properly chosen so as to maximize
ground-state component.

We note that the smearing is just a method to choose
flux-tube-like operator, and hence it never changes the p
ics itself such as the gauge configuration. As an import
feature, this smearing procedure keeps the gauge covari
of the ‘‘fat’’ link variable Um

(n)(s) properly. In fact, the
gauge-transformation property ofUm

(n)(s) is just the same as
that of the original link variableUm(s), and therefore the
gauge invariance ofF„Um

(n)(s)… is ensured for the arbitrary
gauge-invariant operatorF„Um(s)…. For instance, thenth
smeared~3Q! Wilson loop is gauge invariant.

While no temporal extension appears in the smearing,
fat link variableUm

(n)(s) includes a spatial extension in term
of the original link variableUm(s), and then the smeare
‘‘line’’ expressed with Um

(n)(s) physically corresponds to
‘‘flux tube’’ with the spatial extension. Therefore, if a sui
able smearing is done, the smeared line is expected to
close to the ground-state flux tube. This smearing metho
actually successful for the extraction of the Q-Q¯potential in
lattice QCD@5#.

C. The physical meaning of the smearing method

We consider here the physical meaning of the smea
method with the smearing parametera in terms of the size or
the spatial extension of thenth smeared line. For the conve
nience of the description, we define

FIG. 3. The schematic explanation of the smearing for the l
variables.
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which satisfyp14q51. Let us consider the smearing of th
linelike object, which is idealized to be infinitely long. A
mentioned above, the smeared line corresponds to the
tially extended flux tube in terms of the original link var
able. Here, we locate thenth smeared line on thez axis in
R3, and then, due to the translational invariance along thz
direction, the argument is essentially two-dimensional a
depends only onx andy, and the flux direction is to be in the
z direction. We denote byw(x,y;n)(x,yPR) the spatial flux
distribution in thenth smeared line.@On the lattice with the
spacinga, w(x,y;n) is defined on the discrete points (x,y)
5(nxa,nya) with nx ,nyPZ.#

From the iterative definition of the smearing, the spat
flux distributionw(x,y;n11) of the (n11)th smeared line
is expected to relate tow(x,y;n) of the nth smeared line as

w~x,y;n11!5pw~x,y;n!1q$w~x1a,y;n!1w~x2a,y;n!

1w~x,y1a;n!1w~x,y2a;n!%. ~14!

Here, as shown in Fig. 4~c!, we assume the cancellation o
non-z components of the flux, which exactly holds for th
Abelian flux. Using the difference operator, we obtain

Dnw~x,y;n![w~x,y;n11!2w~x,y;n!

5q$Dxw~x,y;n!2Dxw~x2a,y;n!

1Dyw~x,y;n!2Dyw~x,y2a;n!%

5q$Dx
BDxw~x,y;n!1Dy

BDyw~x,y;n!%,

~15!

whereDk andDk
B (k5x,y) denote the forward and the back

ward difference operators satisfyingDkf (rW)[ f (rW1 k̂)
2 f (rW) andDk

Bf (rW)[ f (rW)2 f (rW2 k̂), respectively.
When the lattice spacinga is small enough, the spatia

differenceDk can be approximated by the spatial derivati
asDk.a]k . Also for the iteration numbern of the smearing,
we formally introduce a small ‘‘spacing’’an in the ‘‘n direc-
tion,’’ and we define the semicontinuum parameterñ
[nan , although the final result does not depend on the

k

FIG. 4. The schematic explanation of the physical meaning
the smeared line. Thenth smeared line depicted as~a! physically
corresponds to the spatially-distributed flux tube as~b! in terms of
the original field variable. The single smearing procedure for
line is illustrated with~c! on the lattice. The flux perpendicular t
the line is expected to be canceled. The spatial distribution of
nth smeared line is expressed by the Gaussian profilef(r ) with r
5(x21y2)1/2 as shown in~d!.
9-4
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TABLE I. The simulation condition and the related information. For eachb, the corresponding lattice
spacinga, the lattice size, the numberN3Q of the different patterns of the 3Q system analyzed, the num
Nconf of the gauge configuration used for the measurement, the numberNtherm of sweeps for the thermaliza
tion, the numberNsepof sweeps for the separation, the smearing parametera, the iteration numberNsmr of the
suitable smearing for the 3Q potential, and the used supercomputer are listed.

b a (fm) Lattice size N3Q Nconf Ntherm Nsep a Nsmr Supercomputer

5.7 0.19 123324 16 210 5,000 500 2.3 12 NEC SX-4
5.8 0.14 163332 139 200 10,000 500 2.3 22 HITACHI SR8000
6.0 0.10 163332 155 150 10,000 500 2.3 42 NEC SX-5
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tificial spacingan . Then, the differenceDn can be approxi-
mated by the derivative asDn.an] ñ . In this way, we obtain
the differential equation as

]

]ñ
w~x,y;n!5D~]x

21]y
2!w~x,y;n!, ~16!

which corresponds to the ‘‘diffusion equation’’ at the ‘‘time
ñ with the diffusion parameter

D[
qa2

an
5

1

a14

a2

an
. ~17!

The ‘‘initial condition’’ at n50 is given as

w~x,y;n50!5d~x!d~y!, ~18!

which means the simple line before applying the smear
Then, the flux distributionw(x,y;n) in the nth smeared line
can be expressed as

w~x,y;n!5
1

~4pDñ!
expF2

x21y2

4Dñ
G . ~19!

Thus, thenth smeared line physically corresponds to t
Gaussian spatially distributed flux tube in terms of the ori
nal link variable as shown in Fig. 4~d!.

As a result, the flux-tube size can be roughly estimated

R[A^x21y2&[S E dxdyw~x,y;n!~x21y2!

E dxdyw~x,y;n!
D 1/2

52ADñ52aA n

a14
. ~20!

We note that the square root appears as a character o
Brownian motion, and hence then dependence of the flux
tube radiusR is not so strong. This formula also explains t
physical roles of the two parameters,a andn. The smearing
parametera controls the speed of the smearing, and
speed of smearing is slower for largera. For each fixed
a, n plays the role of extending the size of the smea
operator. Hence, once we find the suitable smearing par
11450
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etersn anda which achieve a large ground-state overlap, t
physical size of the flux tube is roughly estimated with E
~20!.

IV. THE LATTICE QCD RESULTS OF THE 3Q
POTENTIAL

We measure the 3Q potential from the properly smea
3Q Wilson loop in SU(3)c lattice QCD at the quenche
level. In this section we present the lattice QCD data of
3Q ground-state potentialV3Q for more than 300 different
patterns of the 3Q systems in total. These lattice QCD d
are, of course, the model-independent data based on Q
and we think that the data themselves are useful for the s
of the 3Q system, particularly for the phenomenological a
proach as the quark model for baryons.

A. The simulation conditions of lattice QCD

The gauge configurations are generated using the SUc
lattice QCD Monte Carlo simulation with the standard acti
with 123324 at b55.7 and 163332 at b55.8,6.0 at the
quenched level. The pseudo-heat-bath algorithm is ado
for an update of the gauge configuration. After a thermali
tion of more than 5000 sweeps, we sample the gauge c
figuration every 500 sweeps, and we use at least 150 ga
configurations at eachb for the study of the 3Q potential. We
summarize in Table I the lattice parameters and the rela
information on the simulation as well as the lattice spacina
determined so as to reproduce the string tension ass

50.89 GeV/fm in the Q-Q̄potentialVQQ̄ at eachb. As for
the smearing, we set the smearing parameter asa52.3,
which is one of the most suitable smearing parameters
the calculation of the 3Q ground-state potential. The iterat
numberNsmr of the smearing which maximizes the groun
state overlap is also listed at eachb in Table I. ~From the
numerical test with various smearing parameter sets, we h
observed that the smearing witha52.3 and a suitable itera
tion numberNsmr listed in Table I provides a large ground
state overlap in the smeared 3Q Wilson loop forb55.7, 5.8,
and 6.0. This is reflected in the large value ofC̄ close to
unity in Tables II–X.! On the statistical error of the lattic
data, we adopt the jackknife error estimate@36#. The Monte
Carlo simulations atb55.7, 6.0, and 5.8 have been pe
formed on NEC-SX4, NEC-SX5 at Osaka University a
HITACHI-SR8000 at KEK, respectively.
9-5
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TABLE II. Lattice QCD results for the 3Q potentialV3Q
latt in the lattice unit for 16 patterns of the 3Q

system atb55.7. (i , j ,k) denotes the 3Q system where the three quarks are put on (i ,0,0), (0,j ,0), and
(0,0,k) in R3 in the lattice unit. For each 3Q configuration,V3Q

latt is measured from the single-exponential

as ^W3Q&5C̄e2V3QT in the range ofT listed at the fourth column. The statistical errors listed are estima
with the jackknife method, andx2/NDF is listed at the fifth column. The best-fit functionV3Q

fit in theY Ansatz
is added.

( i , j ,k) V3Q
latt

C̄ Fit range ofT x2/NDF V3Q
fit V3Q

latt2V3Q
fit

(0,1,1) 0.8457~38! 0.9338~173! 5–10 0.062 0.8524 20.0067
(0,1,2) 1.0973~43! 0.9295~161! 4–8 0.163 1.1025 20.0052
(0,1,3) 1.2929~41! 0.8987~110! 3–7 0.255 1.2929 0.0000
(0,2,2) 1.3158~44! 0.9151~120! 3–6 0.053 1.3270 20.0112
(0,2,3) 1.5040~63! 0.9041~170! 3–6 0.123 1.5076 20.0036
(0,3,3) 1.6756~43! 0.8718~73! 2–5 0.572 1.6815 20.0059
(1,1,1) 1.0238~40! 0.9345~149! 4–8 0.369 1.0092 0.0146
(1,1,2) 1.2185~62! 0.9067~228! 4–8 0.352 1.2151 0.0034
(1,1,3) 1.4161~49! 0.9297~135! 3–7 0.842 1.3964 0.0197
(1,2,2) 1.3866~48! 0.9012~127! 3–7 0.215 1.3895 20.0029
(1,2,3) 1.5594~63! 0.8880~165! 3–6 0.068 1.5588 0.0006
(1,3,3) 1.7145~43! 0.8553~76! 2–6 0.412 1.7202 20.0057
(2,2,2) 1.5234~37! 0.8925~65! 2–5 0.689 1.5238 20.0004
(2,2,3) 1.6750~118! 0.8627~298! 3–6 0.115 1.6763 20.0013
(2,3,3) 1.8239~56! 0.8443~90! 2–5 0.132 1.8175 0.0064
(3,3,3) 1.9607~93! 0.8197~154! 2–5 0.000 1.9442 0.0165
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B. The Q-Q̄ potential

As a frame of reference, we measure the Q-Q¯ potential
VQQ̄ from the properly smeared Wilson loop in the prese
lattice QCD. As is consistent with the previous lattice wor
@5#, the lattice QCD data of the Q-Q¯ ground-state potentia
VQQ̄ at the quenched level are well reproduced by

VQQ̄~r !52
AQQ̄

r
1sQQ̄r 1CQQ̄ ~21!

with the best-fit parameter set (AQQ̄, sQQ̄, CQQ̄) listed in
Table XI at eachb. As a visual illustration, we show in Fig
5 the lattice QCD data ofVQQ̄(r ) as the function of the
interquark distancer in the lattice unit. One finds a goo
agreement of the lattice data ofVQQ̄ and the fit curve with
Eq. ~21!.

In spite of the visual agreement, the statistical analysi
also necessary for the argument on the fit. This is rat
difficult because the lattice QCD data include not only t
statistical error but also the systematic errors from the
cretization, which cannot be estimated straightforwardly.
here examine the on-axis and the off-axis data at eachb. The
on-axis data ofVQQ̄ are well fitted with Eq.~21! at eachb.
However, when we include the off-axis data, the fit ofVQQ̄
with Eq. ~21! becomes rather worse asx2/NDF;10. This is
due to the breaking of the rotational invariance on the latt
and such breaking is significant for the short-distance da

As will be discussed in Sec. V E, to be strict the latti
Coulomb potential would be preferable instead of the C
lomb potential, at least for the short-distance lattice data.
examine also the fit with the lattice Coulomb plus line
11450
t

is
er

-
e

,
.

-
e

r

potential, and list the best-fit parameter s
(AQQ̄

LC , sQQ̄
LC , CQQ̄

LC) at eachb together withx2/NDF in Table
XI, where the label as ‘‘off-axis’’ means the fit analysis fo
both on-axis and off-axis data. We then find that the fit w
the lattice Coulomb plus linear potential for both on-axis a
off-axis data is fairly good, although the fit parameters su
as the string tension are almost unchanged.

C. The ground-state enhancement through the smearing

Before presenting the lattice data of the 3Q potential,
briefly demonstrate the utility of the smearing method
estimating the magnitude of the ground-state componen
the 3Q state att50,T in the smeared 3Q Wilson loopW3Q,
which is composed with thenth smeared link variable
Um

(n)(s).

From the similar argument in the Q-Q¯ system@5#, the
overlap of the 3Q-state operator with the ground state is
timated with

C0[
^W3Q~T!&T11

^W3Q~T11!&T
, ~22!

which is referred to as the ground-state overlap. For insta
in the ideal case where the 3Q state is the perfect gro
state in the smeared 3Q Wilson loop, one gets^W3Q(T)&
5e2V3QT and thenC051. @Here,W3Q(T) is normalized as
^W3Q(T50)&51, as shown in Eq.~6!.# In accordance with
the excited-state contamination,C0 is reduced to be a sma
value less than unity.
9-6
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TABLE III. A part of lattice QCD results for the 3Q potentia
V3Q

latt at b55.8. (i , j ,k) denotes the 3Q system where the thr
quarks are put on (i ,0,0), (0,j ,0), and (0,0,k) in R3 in the lattice
unit. For each 3Q configuration,V3Q

latt is measured from the single

exponential fit aŝ W3Q&5C̄e2V3QT. The prefactorC̄ physically
means the magnitude of the ground-state component. The differ
from the best-fit functionV3Q

fit in the Y Ansatzis added. The listed
values are measured in the lattice unit.

( i , j ,k) V3Q
latt

C̄ V3Q
latt2V3Q

fit

~0,1,1! 0.7697~12! 0.9554~58! 20.0041
~0,1,2! 0.9639~28! 0.9269~128! 20.0039
~0,1,3! 1.1112~60! 0.9274~274! 0.0053
~0,1,4! 1.2337~119! 0.9106~538! 0.0064
~0,1,5! 1.3219~235! 0.7957~927! 20.0195
~0,1,6! 1.4518~132! 0.8583~442! 0.0000
~0,1,7! 1.5719~72! 0.8798~182! 0.0119
~0,1,8! 1.6621~105! 0.8189~261! 20.0048
~0,2,2! 1.1370~16! 0.9342~46! 20.0018
~0,2,3! 1.2659~21! 0.9145~52! 20.0027
~0,2,4! 1.3585~239! 0.7975~946! 20.0279
~0,2,5! 1.4834~128! 0.8448~431! 20.0152
~0,2,6! 1.6082~28! 0.8810~50! 0.0004
~0,2,8! 1.8251~132! 0.8548~332! 0.0036
~0,3,3! 1.3925~91! 0.9168~330! 20.0003
~0,3,4! 1.5005~41! 0.8862~109! 20.0066
~0,3,5! 1.6130~25! 0.8810~41! 20.0042
~0,3,6! 1.7171~32! 0.8581~54! 20.0080
~0,4,4! 1.6077~72! 0.8655~185! 20.0112
~0,4,5! 1.7163~32! 0.8581~52! 20.0109
~0,4,6! 1.8262~40! 0.8482~67! 20.0075
~0,4,7! 1.9321~51! 0.8317~82! 20.0070
~0,4,8! 2.0413~65! 0.8202~101! 20.0025
~0,5,5! 1.8193~44! 0.8372~72! 20.0147
~0,5,6! 1.9282~47! 0.8265~76! 20.0111
~0,5,8! 2.1460~73! 0.8047~113! 20.0017
~0,6,6! 2.0322~62! 0.8083~102! 20.0113
~0,6,7! 2.1401~71! 0.7964~112! 20.0070
~0,6,8! 2.2384~85! 0.7698~123! 20.0118
~0,7,7! 2.2461~101! 0.7813~153! 20.0037
~0,7,8! 2.3390~114! 0.7462~166! 20.0134
~0,8,8! 2.4191~177! 0.6949~244! 20.0351
~1,1,1! 0.9140~32! 0.9424~147! 0.0149
~1,1,2! 1.0647~42! 0.9290~194! 0.0096
~1,1,3! 1.1914~86! 0.8917~384! 0.0053
~1,1,4! 1.2879~172! 0.7887~674! 20.0169
~1,1,5! 1.4201~39! 0.8662~104! 0.0024
~1,1,6! 1.5335~54! 0.8600~136! 0.0061
~1,1,7! 1.6497~36! 0.8686~59! 0.0146
~1,1,8! 1.7557~46! 0.8509~76! 0.0140
~1,2,2! 1.1865~33! 0.9186~120! 0.0020
~1,2,3! 1.3126~124! 0.9411~576! 0.0072
~1,2,4! 1.4155~28! 0.8845~72! 20.0043
~1,2,5! 1.5248~41! 0.8678~106! 20.0056
11450
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TABLE IV. A part of lattice QCD results for the 3Q potentia
V3Q

latt at b55.8. The notations are the same in Table III.

( i , j ,k) V3Q
latt

C̄ V3Q
latt2V3Q

fit

~1,2,6! 1.6356~57! 0.8587~145! 20.0031

~1,2,7! 1.7490~36! 0.8591~59! 0.0035

~1,2,8! 1.8545~44! 0.8407~70! 0.0032

~1,3,3! 1.4175~33! 0.9020~86! 20.0024

~1,3,4! 1.5301~109! 0.9083~391! 20.0005

~1,3,5! 1.6272~50! 0.8538~125! 20.0116

~1,3,6! 1.7301~72! 0.8285~178! 20.0154

~1,3,7! 1.8300~105! 0.7978~249! 20.0213

~1,3,8! 1.9505~50! 0.8196~78! 20.0057

~1,4,4! 1.6284~60! 0.8652~154! 20.0099

~1,4,5! 1.7195~73! 0.8133~173! 20.0251

~1,4,6! 1.8213~90! 0.7883~212! 20.0286

~1,4,7! 1.9469~47! 0.8216~72! 20.0075

~1,4,8! 2.0543~59! 0.8078~91! 20.0043

~1,5,5! 1.8114~119! 0.7692~271! 20.0378

~1,5,7! 2.0496~55! 0.8048~85! 20.0071

~1,5,8! 2.1538~67! 0.7863~100! 20.0063

~1,6,7! 2.1642~71! 0.8056~112! 0.0055

~1,6,8! 2.2632~74! 0.7794~113! 0.0020

~1,7,7! 2.2808~92! 0.8080~147! 0.0203

~1,7,8! 2.3682~96! 0.7642~141! 0.0059

~1,8,8! 2.4512~156! 0.7146~217! 20.0123

~2,2,2! 1.2771~73! 0.9000~258! 20.0041

~2,2,3! 1.3783~80! 0.8755~277! 20.0107

~2,2,4! 1.4899~42! 0.8768~107! 20.0074

~2,2,5! 1.5933~54! 0.8513~133! 20.0113

~2,2,8! 1.9188~49! 0.8210~79! 20.0024

~2,3,3! 1.4739~120! 0.8636~410! 20.0142

~2,3,4! 1.5831~22! 0.8718~36! 20.0081

~2,3,5! 1.6820~57! 0.8380~140! 20.0133

~2,3,6! 1.7915~34! 0.8361~58! 20.0080

~2,3,7! 1.8982~43! 0.8220~68! 20.0053

~2,3,8! 2.0002~53! 0.7989~85! 20.0071

~2,4,4! 1.6805~77! 0.8506~189! 20.0102

~2,4,5! 1.7675~71! 0.7952~166! 20.0246

~2,4,7! 1.9863~48! 0.7933~73! 20.0107

~2,4,8! 2.0982~60! 0.7875~94! 20.0015

~2,5,8! 2.2004~72! 0.7756~106! 0.0051

~2,6,6! 2.0932~65! 0.7907~94! 0.0016

~2,6,7! 2.1928~71! 0.7665~105! 0.0010

~2,6,8! 2.2889~84! 0.7378~120! 20.0038

~2,7,8! 2.4014~106! 0.7347~147! 0.0103

~3,3,3! 1.5566~72! 0.8434~180! 20.0197

~3,3,4! 1.6474~66! 0.8125~160! 20.0253

~3,3,5! 1.7641~37! 0.8353~60! 20.0084

~3,3,6! 1.8685~44! 0.8196~72! 20.0053

~3,3,7! 1.9696~52! 0.7965~82! 20.0062

~3,3,8! 2.0753~65! 0.7812~98! 20.0029

~3,4,5! 1.8357~106! 0.7690~240! 20.0249
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We note that the ground-state potentialV3Q can be mea-
sured accurately ifC0 is large enough and is close to unit
Then, we check the ground-state overlapC0 in the nth
smeared 3Q Wilson loop̂W3Q(Um

(n)(s),T)& using lattice
QCD simulations, and we search reasonable values of
smearing parametera and the iteration numberNsmr of the
smearing so as to makeC0 large. For instance, the ground
state overlapC0 is largely enhanced as 0.8,C0,1 even for
T<3 by the smearing witha52.3 andNsmr512 for all of
the 3Q configurations atb55.7 as shown in Fig. 6. Thus, th
ground-state component is largely enhanced by the suit
smearing.

We list in Table I one of the best parameter sets (a,Nsmr)
at eachb. We note that, as will be shown in the next sectio
the magnitude of the ground-state overlap can be also
mated withC̄ in Tables II–X. One finds a large value ofC̄
close to unity asC̄>0.7 for each lattice data on the 3
system.

TABLE V. A part of lattice QCD results for the 3Q potentialV3Q
latt

at b55.8. The notations are the same in Table III.

( i , j ,k) V3Q
latt

C̄ V3Q
latt2V3Q

fit

~3,4,6! 1.9440~157! 0.7686~358! 20.0153
~3,4,7! 2.0569~60! 0.7756~96! 20.0025
~3,4,8! 2.1666~68! 0.7679~100! 0.0063
~3,5,5! 1.9321~178! 0.7527~394! 20.0220
~3,5,6! 2.0504~56! 0.7756~83! 20.0004
~3,5,8! 2.2627~77! 0.7491~110! 0.0138
~3,6,6! 2.1580~69! 0.7683~101! 0.0123
~3,7,7! 2.3578~110! 0.7261~155! 0.0190
~3,7,8! 2.4496~125! 0.6934~169! 0.0133
~3,8,8! 2.5416~178! 0.6613~229! 0.0088
~4,4,4! 1.8377~49! 0.8044~74! 20.0119
~4,4,5! 1.9371~55! 0.7900~82! 20.0044
~4,4,6! 2.0367~61! 0.7703~91! 20.0004
~4,5,5! 2.0278~68! 0.7638~96! 20.0022
~4,5,6! 2.1301~69! 0.7503~99! 0.0073
~4,6,6! 2.2310~87! 0.7347~123! 0.0174
~4,6,8! 2.4356~117! 0.7003~162! 0.0322
~4,7,7! 2.4304~130! 0.6947~177! 0.0306
~4,7,8! 2.5347~150! 0.6806~201! 0.0402
~4,8,8! 2.6412~245! 0.6696~328! 0.0531
~5,5,5! 2.1192~87! 0.7417~123! 0.0050
~5,5,6! 2.2247~90! 0.7334~125! 0.0208
~5,5,7! 2.3298~104! 0.7208~147! 0.0328
~5,5,8! 2.4280~131! 0.6980~182! 0.0357
~5,6,6! 2.3159~114! 0.7065~155! 0.0252
~5,6,7! 2.4124~125! 0.6818~170! 0.0307
~5,6,8! 2.5255~151! 0.6802~200! 0.0503
~5,8,8! 2.7193~345! 0.6369~438! 0.0660
~6,6,6! 2.4166~223! 0.6943~306! 0.0421
~6,6,7! 2.5096~190! 0.6648~252! 0.0468
~6,6,8! 2.6408~230! 0.6868~315! 0.0866
~6,7,7! 2.5846~264! 0.6148~323! 0.0358
~6,7,8! 2.7365~260! 0.6615~343! 0.0981
~6,8,8! 2.8742~456! 0.6939~633! 0.1479
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D. The lattice QCD data of the 3Q potential

Now, we perform the accurate measurement of the
ground-state potentialV3Q using the smearing technique i
SU~3! lattice QCD. We investigate more than 300 differe
patterns of the 3Q systems in total. In the practical calcu
tion, we consider the following two type 3Q system on t
lattice: ~I! The 3Q system where the three quarks are put
the three spatial axes as (i ,0,0),(0,j ,0),(0,0,k) ( i , j ,k
50,1,2, . . . ) in R3 in the lattice unit;~II ! the 3Q system
where the three quarks are put on thex-y plane as
( l ,0,0), (2m,0,0),(0,n,0) (l ,m,n50,1,2, . . . ) in R3 in the
lattice unit.

In both cases, the junction point O in the 3Q Wilson lo
is set at the origin (0,0,0) inR3, although the final result of
the ground-state potentialV3Q should not depend on the a
tificial selection of O.@As will be shown in the fit analysis in
Sec. V, there is no discontinuity between~I! and ~II ! on the
3Q potentialV3Q, in spite of the fairly different setting of the
artificial junction O. This suggests thatV3Q is independent of
O.# For each pattern of the 3Q system, we calculate the
Wilson loop of all equivalent 3Q systems by changing O a
the direction ofx̂,ŷ,ẑ, using the translational, the rotationa
and the reflection symmetries on lattices.

Owing to the smearing, the ground-state componen
largely enhanced, and therefore the 3Q Wilson loop^W3Q&
composed with the smeared link variable exhibits a sing
exponential behavior as

^W3Q&.e2V3QT ~23!

even for a small value ofT.
For each 3Q configuration, we measureV3Q

latt from the
least-squares fit with the single-exponential form

^W3Q&5C̄e2V3QT. ~24!

Here, we choose the fit range ofT such that the stability of
the ‘‘effective mass’’

TABLE VI. A part of lattice QCD results for the 3Q potentia
V3Q

latt at b55.8. (l ,m,n) denotes the 3Q system where the thr
quarks are put on (l ,0,0), (2m,0,0), and (0,n,0) in R3 in the lattice
unit. The other notations are the same in Table III.

( l ,m,n) V3Q
latt

C̄ V3Q
latt2V3Q

fit

~1,2,1! 1.1185~22! 0.9321~80! 0.0199
~1,5,2! 1.5721~55! 0.8586~140! 20.0052
~1,6,2! 1.6804~76! 0.8446~190! 20.0030
~1,7,2! 1.7949~40! 0.8514~64! 0.0063
~2,3,2! 1.4653~19! 0.9028~33! 0.0068
~2,4,2! 1.5757~21! 0.8896~32! 0.0125
~2,5,2! 1.6820~30! 0.8708~51! 0.0152
~3,3,2! 1.5732~27! 0.8879~45! 0.0144
~3,4,2! 1.6793~33! 0.8689~52! 0.0203
~3,4,3! 1.7660~36! 0.8592~54! 20.0035
~3,5,3! 1.8677~43! 0.8377~67! 20.0002
~4,4,3! 1.8692~48! 0.8449~77! 0.0056
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TABLE VII. A part of lattice QCD results for the 3Q potentia
V3Q

latt at b56.0. (i , j ,k) denotes the 3Q system where the thr
quarks are put on (i ,0,0), (0,j ,0), and (0,0,k) in R3 in the lattice
unit. For each 3Q configuration,V3Q

latt is measured from the single

exponential fit aŝ W3Q&5C̄e2V3QT. The prefactorC̄ physically
means the magnitude of the ground-state component. The differ
from the best-fit functionV3Q

fit in the Y Ansatzis added. The listed
values are measured in the lattice unit.

( i , j ,k) V3Q
latt

C̄ V3Q
latt2V3Q

fit

~0,1,1! 0.6778~6! 0.9784~24! 20.0012
~0,1,2! 0.8234~11! 0.9712~45! 20.0042
~0,1,3! 0.9183~17! 0.9769~65! 0.0045
~0,1,4! 0.9859~24! 0.9589~92! 0.0050
~0,1,5! 1.0463~30! 0.9495~112! 0.0064
~0,1,6! 1.1069~40! 0.9595~152! 0.0122
~0,1,7! 1.1572~50! 0.9374~192! 0.0102
~0,2,2! 0.9430~21! 0.9586~78! 20.0095
~0,2,3! 1.0259~24! 0.9607~91! 20.0045
~0,2,4! 1.0946~32! 0.9657~120! 0.0003
~0,2,5! 1.1454~41! 0.9282~149! 20.0064
~0,2,6! 1.2075~28! 0.9464~76! 0.0018
~0,2,7! 1.2563~33! 0.9262~90! 20.0012
~0,3,3! 1.0999~23! 0.9566~62! 20.0031
~0,3,4! 1.1595~25! 0.9454~67! 20.0044
~0,3,5! 1.2170~25! 0.9426~65! 20.0026
~0,3,6! 1.2699~32! 0.9327~90! 20.0027
~0,3,7! 1.3216~40! 0.9232~110! 20.0021
~0,3,8! 1.3765~37! 0.9241~92! 0.0029
~0,4,4! 1.2177~32! 0.9394~87! 20.0050
~0,4,5! 1.2723~34! 0.9336~96! 20.0047
~0,4,6! 1.3302~40! 0.9418~110! 0.0013
~0,4,7! 1.3744~42! 0.9128~108! 20.0048
~0,4,8! 1.4233~51! 0.8982~138! 20.0054
~0,5,5! 1.3251~40! 0.9265~112! 20.0050
~0,5,6! 1.3762~39! 0.9187~108! 20.0049
~0,5,7! 1.4273~49! 0.9110~131! 20.0035
~0,5,8! 1.4799~51! 0.9079~140! 0.0002
~0,6,6! 1.4248~52! 0.9047~136! 20.0066
~0,6,7! 1.4785~51! 0.9062~130! 20.0020
~0,6,8! 1.5300~56! 0.9020~146! 0.0011
~0,7,7! 1.5314~35! 0.9058~59! 0.0023
~0,7,8! 1.5811~41! 0.8971~66! 0.0039
~0,8,8! 1.6325~47! 0.8924~76! 0.0078
~1,1,1! 0.7900~21! 0.9588~98! 0.0073
~1,1,2! 0.8992~25! 0.9707~118! 0.0044
~1,1,3! 0.9800~38! 0.9578~182! 0.0052
~1,1,4! 1.0515~25! 0.9677~99! 0.0115
~1,1,5! 1.1105~36! 0.9578~135! 0.0123
~1,1,6! 1.1645~47! 0.9449~175! 0.0120
~1,1,7! 1.2140~59! 0.9227~209! 0.0095
~1,1,8! 1.2662~72! 0.9146~260! 0.0111
~1,2,2! 0.9796~18! 0.9600~68! 20.0019
~1,2,3! 1.0555~23! 0.9743~89! 0.0029
11450
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TABLE VIII. A part of lattice QCD results for the 3Q potentia
V3Q

latt at b56.0. The notations are the same in Table VII.

( i , j ,k) V3Q
latt

C̄ V3Q
latt2V3Q

fit

~1,2,4! 1.1185~31! 0.9689~119! 0.0043
~1,2,5! 1.1720~39! 0.9458~142! 0.0013
~1,2,6! 1.2283~49! 0.9467~182! 0.0043
~1,2,7! 1.2712~60! 0.9015~208! 20.0042
~1,2,8! 1.3314~66! 0.9262~243! 0.0058
~1,3,3! 1.1166~34! 0.9582~132! 20.0013
~1,3,4! 1.1783~35! 0.9659~137! 0.0018
~1,3,5! 1.2299~45! 0.9453~174! 20.0011
~1,3,6! 1.2877~32! 0.9513~87! 0.0045
~1,3,7! 1.3293~58! 0.9095~210! 20.0047
~1,3,8! 1.3863~40! 0.9214~103! 0.0027
~1,4,4! 1.2296~29! 0.9442~75! 20.0030
~1,4,5! 1.2863~29! 0.9484~78! 0.0006
~1,4,6! 1.3326~35! 0.9236~90! 20.0043
~1,4,7! 1.3864~40! 0.9249~102! 20.0004
~1,4,8! 1.4401~44! 0.9249~117! 0.0042
~1,5,5! 1.3363~37! 0.9370~99! 20.0013
~1,5,6! 1.3879~37! 0.9316~99! 0.0001
~1,5,7! 1.4318~44! 0.9039~116! 20.0053
~1,5,8! 1.4837~47! 0.9001~127! 20.0020
~1,6,6! 1.4344~52! 0.9115~138! 20.0029
~1,6,7! 1.4870~55! 0.9115~150! 0.0009
~1,6,8! 1.5370~53! 0.9037~142! 0.0030
~1,7,7! 1.5258~65! 0.8729~165! 20.0084
~1,7,8! 1.5743~69! 0.8624~168! 20.0075
~1,8,8! 1.6370~44! 0.8888~69! 0.0080
~2,2,2! 1.0405~34! 0.9669~132! 0.0004
~2,2,3! 1.0963~31! 0.9462~115! 20.0045
~2,2,4! 1.1579~37! 0.9570~144! 20.0002
~2,2,5! 1.2108~49! 0.9396~181! 20.0016
~2,2,6! 1.2676~32! 0.9446~90! 0.0031
~2,2,7! 1.3035~69! 0.8803~246! 20.0117
~2,2,8! 1.3613~42! 0.9000~112! 20.0035
~2,3,3! 1.1461~39! 0.9322~147! 20.0087
~2,3,4! 1.1994~40! 0.9247~149! 20.0089
~2,3,5! 1.2525~52! 0.9200~188! 20.0079
~2,3,6! 1.3114~32! 0.9368~85! 0.0002
~2,3,7! 1.3499~71! 0.8852~256! 20.0110
~2,3,8! 1.4000~79! 0.8775~280! 20.0099
~2,4,4! 1.2565~28! 0.9443~80! 20.0027
~2,4,5! 1.3041~34! 0.9274~89! 20.0053
~2,4,6! 1.3549~36! 0.9207~100! 20.0041
~2,4,7! 1.4006~37! 0.8990~98! 20.0072
~2,4,8! 1.4535~49! 0.8980~133! 20.0026
~2,5,5! 1.3505~42! 0.9129~111! 20.0077
~2,5,6! 1.4074~42! 0.9272~116! 0.0007
~2,5,7! 1.4520~48! 0.9040~126! 20.0028
~2,6,6! 1.4515~49! 0.9055~130! 20.0029

~2,6,7! 1.4920~53! 0.8722~135! 20.0098
9-9
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TABLE IX. A part of lattice QCD results for the 3Q potentia
V3Q

latt at b56.0. The notations are the same in Table VII.

( i , j ,k) V3Q
latt

C̄ V3Q
latt2V3Q

fit

~2,6,8! 1.5528~55! 0.8950~133! 0.0039

~2,7,7! 1.5442~61! 0.8727~163! 20.0044

~2,7,8! 1.5910~71! 0.8585~177! 20.0042

~2,8,8! 1.6411~84! 0.8518~213! 20.0004

~3,3,3! 1.1951~31! 0.9424~86! 20.0060

~3,3,4! 1.2421~28! 0.9308~77! 20.0080

~3,3,5! 1.2936~34! 0.9280~93! 20.0059

~3,3,6! 1.3404~42! 0.9075~111! 20.0082

~3,3,8! 1.4434~52! 0.8992~141! 20.0020

~3,4,4! 1.2894~32! 0.9292~79! 20.0066

~3,4,5! 1.3350~34! 0.9142~88! 20.0081

~3,4,6! 1.3825~40! 0.9014~103! 20.0082

~3,4,7! 1.4353~49! 0.9033~131! 20.0029

~3,4,8! 1.4867~56! 0.8987~145! 0.0011

~3,5,6! 1.4273~42! 0.8929~114! 20.0075

~3,5,7! 1.4791~53! 0.8931~138! 20.0023

~3,5,8! 1.5260~50! 0.8770~129! 20.0020

~3,6,6! 1.4737~61! 0.8812~162! 20.0064

~3,6,7! 1.5234~51! 0.8769~124! 20.0024

~3,6,8! 1.5734~61! 0.8709~147! 0.0015

~3,7,7! 1.5655~77! 0.8535~203! 20.0054

~3,7,8! 1.6177~77! 0.8550~189! 0.0013

~3,8,8! 1.6666~92! 0.8458~222! 0.0054

~4,4,4! 1.3255~46! 0.9047~119! 20.0126

~4,4,5! 1.3765~41! 0.9116~111! 20.0061

~4,4,6! 1.4262~49! 0.9088~129! 20.0021

~4,4,7! 1.4745~60! 0.8985~155! 0.0000

~4,4,8! 1.5243~69! 0.8925~174! 0.0034

~4,5,5! 1.4165~49! 0.8903~132! 20.0086

~4,5,6! 1.4628~51! 0.8808~124! 20.0065

~4,5,7! 1.5155~59! 0.8868~155! 0.0012

~4,5,8! 1.5651~63! 0.8786~162! 0.0053

~4,6,6! 1.5198~65! 0.9031~175! 0.0076

~4,6,7! 1.5549~66! 0.8608~163! 20.0013

~4,6,8! 1.6045~75! 0.8552~188! 0.0036

~5,5,5! 1.4653~75! 0.8984~203! 0.0000

~5,5,6! 1.5074~63! 0.8814~158! 20.0003

~5,5,7! 1.5452~80! 0.8475~199! 20.0061

~5,5,8! 1.6008~83! 0.8574~208! 0.0050

~5,6,6! 1.5511~72! 0.8689~181! 0.0026

~5,6,8! 1.6385~81! 0.8343~195! 0.0040

~5,7,7! 1.6354~89! 0.8288~216! 0.0029

~5,7,8! 1.6878~93! 0.8325~219! 0.0127

~6,6,6! 1.5953~108! 0.8605~272! 0.0076

~6,6,7! 1.6328~91! 0.8285~222! 0.0040

~6,6,8! 1.6956~46! 0.8595~67! 0.0244

~6,8,8! 1.7701~138! 0.7972~325! 0.0193

~7,7,8! 1.7666~139! 0.7915~326! 0.0188

~7,8,8! 1.8114~166! 0.7795~376! 0.0243
11450
V~T![ ln
^W3Q~T!&

^W3Q~T11!&
~25!

is observed to avoid the effect of the excited-state conta
nation remaining at the smallT region. In fact, we use a
relatively large value onT as the fit range for the accurat
measurement.

In Table II we list the lattice QCD dataV3Q
latt of the 3Q

ground-state potential atb55.7, together with the prefacto
C̄ in Eq. ~24!, the fit range ofTP@Tmin ,Tmax# andx2/NDF.
In Tables III–X, we list up the lattice QCD dataV3Q

latt of the
3Q ground-state potential atb55.8,6.0, together with the
prefactorC̄ in Eq. ~24!. The statistical error ofV3Q

latt is esti-
mated with the jackknife method. We stress again that th
lattice QCD data are the model-independent data based
QCD, and we think that the data themselves are useful
the study of the 3Q system, particularly for the phenome
logical approach as the quark model for baryons.

We note that the prefactorC̄ physically means the mag
nitude of the ground-state overlap in the smeared 3Q Wil
loop. In fact, the pure ground-state 3Q system leads toC̄

51, and 12C̄ corresponds to the contribution of th
excited-state contamination. We find a large ground-s
overlap asC̄>0.7 for all 3Q configurations.

From the best smearing parameters,a52.3 andNsmr, the
flux-tube radiusR can be roughly estimated with Eq.~20! at
eachb. We then get a rough estimate of the flux-tube rad
as R.0.52 fm both atb55.7, 5.8, and 6.0. This flux-tube
radiusR seems consistent with the typical hadron size, an
cannot be negligible in comparison with the flux-tube leng
between the junction and the quark in the 3Q systems
consideration. In fact, the 3Q systems listed in Tables II
are to be regarded as a flux-tube rather than the string
object, and hence it is nontrivial whether the strong-coupl
QCD can be applicable or not in such 3Q systems. Nev

TABLE X. A part of lattice QCD results for the 3Q potentia
V3Q

latt at b56.0. (l ,m,n) denotes the 3Q system where the thr
quarks are put on (l ,0,0), (2m,0,0), and (0,n,0) in R3 in the lattice
unit. The other notations are the same in Table VII.

( l ,m,n) V3Q
latt

C̄ V3Q
latt2V3Q

fit

~1,2,1! 0.9334~16! 0.9726~64! 0.0098
~1,5,2! 1.2001~26! 0.9529~74! 0.0061
~1,6,2! 1.2467~58! 0.9211~214! 0.0009
~2,3,2! 1.1436~22! 0.9600~61! 0.0053
~2,4,2! 1.2017~26! 0.9555~72! 0.0094
~2,5,2! 1.2543~31! 0.9418~84! 0.0106
~2,6,2! 1.3033~37! 0.9218~105! 0.0097
~2,6,3! 1.3496~44! 0.9202~120! 20.0007
~3,3,2! 1.2022~27! 0.9537~77! 0.0101
~3,4,2! 1.2563~32! 0.9405~90! 0.0130
~3,4,3 ! 1.2971~31! 0.9330~86! 20.0011
~3,5,3! 1.3467~40! 0.9215~108! 0.0006
~4,4,3! 1.3440~44! 0.9147~117! 20.0008
9-10
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TABLE XI. The main result on the fit analysis of the lattice QCD data with theY Ansatzat eachb. We
list the best-fit parameter set (s,A,C) in the function form asV3Q52A3Q( i , j (1/ur i2r j u)1s3QLmin

1C3Q, whereLmin denotes the minimal value of theY-type flux-tube length. The label of~Latt. Coul.! means
the fit with the lattice Coulomb potential instead of the continuum Coulomb potential. The similar fit o

Q-Q̄ potential is also listed: ‘‘on-axis’’ and ‘‘off-axis’’ mean the fit analysis only for on-axis data and for b
on-axis and off-axis data, respectively. The universality of the string tension and the OGE result
Coulomb coefficient are found ass3Q.sQQ̄ andA3Q.AQQ̄, respectively. The listed values are measured
the lattice unit.

s A C x2/NDF

~a! b55.7 ~16 quark configurations!
3QY 0.1524(28) 0.1331(66) 0.9182(213) 3.76
3QY ~Latt. Coul.! 0.1556(24) 0.1185(53) 0.8876(179) 1.81

QQ̄ ~on-axis! 0.1629(47) 0.2793(116) 0.6203(161) 0.59

QQ̄ ~on-axis, Latt. Coul.! 0.1603(48) 0.2627(109) 0.6271(165) 0.51

QQ̄ ~off-axis, Latt. Coul.! 0.1611(18) 0.2780(44) 0.6430(63) 3.57

~b! b55.8 ~139 quark configurations!
3QY 0.1027(6) 0.1230(20) 0.9085(55) 5.03
3QY ~Latt. Coul.! 0.1031(6) 0.1141(18) 0.8999(54) 4.29

QQ̄ ~on-axis! 0.1079(28) 0.2607(174) 0.6115(197) 0.92

QQ̄ ~on-axis, Latt. Coul.! 0.1080(28) 0.2377(159) 0.6074(194) 0.76

QQ̄ ~off-axis, Latt. Coul.! 0.1018(11) 0.2795(51) 0.6596(53) 1.28

~c! b56.0 ~155 quark configurations!
3QY 0.0460(4) 0.1366(11) 0.9599(35) 2.81
3QY ~Latt. Coul.! 0.0467(4) 0.1256(10) 0.9467(34) 2.22

QQ̄ ~on-axis! 0.0506(7) 0.2768(24) 0.6374(30) 3.56

QQ̄ ~on-axis, Latt. Coul.! 0.0500(7) 0.2557(22) 0.6373(30) 1.22

QQ̄ ~off-axis, Latt. Coul.! 0.0497(5) 0.2572(15) 0.6389(20) 1.59
ntal
of
ion,
FIG. 5. The QQ̄static potentialVQQ̄(r ) as the function of the
interquark distancer in the lattice unit in SU~3! lattice QCD with
b56.0 at the quenched level.
11450
FIG. 6. The ground-state overlap of the 3Q system,C0

[^W3Q(T)&T11/^W3Q(T11)&T, with the smeared link-variable
~upper data! and with the unsmeared link variable~lower data! at
b55.7. To distinguish the 3Q system, we have taken the horizo
axis asLmin , which denotes the minimal value of the total length
the flux tubes linking the three quarks. For each 3Q configurat
C0 is largely enhanced as 0.8,C0,1 by the smearing.
9-11
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theless, theY Ansatzfrom the simple string picture is foun
to work well for the lattice QCD data of the three-qua
potential.

V. THE FIT ANALYSIS OF THE 3Q POTENTIAL
WITH THE Y ANSATZ

For the study of the 3Q potentialV3Q, we are interested in
its large-distance behavior relating to the confinement fo
rather than the short-distance one. The short-distance be
ior of V3Q is expected to be described by the two-body Co
lomb potential as the one-gluon-exchange~OGE! result in
perturbative QCD, although it is nontrivial whether perturb
tive QCD works well at the intermediate distance asr
;0.5 fm. The OGE result indicates also a simple relation
the Coulomb coefficients in the Q-Q¯and the 3Q potentials a
A3Q. 1

2 AQQ̄.

FIG. 7. The lattice QCD data for the 3Q potentialV3Q
latt at b

55.7 as the function ofLmin , the minimum value of the total length
of the flux tubes, in the lattice unit.

FIG. 8. The lattice QCD data for the 3Q potentialV3Q
latt at b

55.8 as the function ofLmin , the minimum value of the total length
of the flux tubes, in the lattice unit.
11450
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A. The long-distance behavior of the 3Q potential

To begin with, we examine the potential form ofV3Q at

the semiquantitative level. As the Q-Q¯potential, the 3Q po-
tential is also expected to be reproduced by the simple s
of the Coulomb term, the linear confinement term, and
constant. In Figs. 7–9 we plot the 3Q ground-state poten
V3Q as the function of the minimal total flux-tube leng
Lmin , the minimal value of the total length of color flux tube
linking the three quarks, as discussed in Sec. II. Apart from
constant,V3Q is almost proportional toLmin in the infrared
region.

To single out the large-distance behavior ofV3Q by sub-
tracting perturbative Coulomb contribution, we exami
V3Q2V3Q

Coul. Here,V3Q
Coul is defined as

FIG. 9. The lattice QCD data for the 3Q potentialV3Q
latt at b

56.0 as the function ofLmin , the minimum value of the total length
of the flux tubes, in the lattice unit.

FIG. 10. The semiquantitative test on the confinement part in
3Q potential V3Q at b55.8. The Coulomb-subtracted potenti
V3Q

latt2V3Q
Coul is plotted as the function ofLmin , the minimal value of

the total flux-tube length. Here, the Coulomb partV3Q
Coul is evaluated

from the Q-Q̄potential.
9-12
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V3Q
Coul[2

AQQ̄

2 (
i , j

1

ur i2r j u
, ~26!

which is the potential form expected from the OGE proc
in perturbative QCD. Reflecting the SU~3! color factor, the
coefficient inV3Q

Coul between two quarks, of which combina

tion belong the 3̄representation, is set to be a half of th
coefficient in the color-singlet Q-Q¯system. We note thatAQQ̄

is already extracted from the lattice QCD data of the Q̄
potential, as shown in Table XI.

In Figs. 10 and 11, we plotV3Q2V3Q
Coul as a function of

Lmin , using the lattice data ofV3Q andAQQ̄ in Table XI from
the Q-Q̄potential. In the whole region, the linearity onLmin
is observed, which means that the 3Q potentialV3Q can be
well described by a sum of the perturbative Coulomb term
V3Q

Coul and the nonperturbative linear confinement term p
portional toLmin , as shown in Eq.~4!. Thus, the lattice data
seem to support theY Ansatz. Note here that this simple fit is
not the best fit in terms of theY Ansatzwith (A3Q,s3Q,C3Q),
and theY Ansatzseems to work well even in this nonbest fi
In the next section, we perform the fit analysis of the 3
potential with theY Ansatzat the quantitative level.

B. The fit analysis with the Y Ansatz

We perform the best-fit analysis for the lattice QCD da
of V3Q in terms of theY Ansatzwith (A3Q,s3Q,C3Q) at each
b. We show in Table XI the best-fit parameter s
(A3Q,s3Q,C3Q) in theY Ansatzfor V3Q at eachb. In Tables
II–X, we compare the lattice dataV3Q

latt with the Y Ansatz
fitting functionV3Q

fit in Eq. ~4! with the best-fit parameters i
Table XI. We observe a good agreement betweenV3Q

latt and
V3Q

fit . In fact, the deviationV3Q
latt2V3Q

fit is only within a few
percent of the typical scale ofV3Q for every lattice data in
Tables II–X.~Since the potential includes an irrelevant co

FIG. 11. The semiquantitative test on the confinement part in
3Q potential V3Q at b56.0. The Coulomb-subtracted potenti
V3Q

latt2V3Q
Coul is plotted as the function ofLmin , the minimal value of

the total flux-tube length. Here, the Coulomb partV3Q
Coul is evaluated

from the Q-Q̄potential.
11450
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stant, the typical scale ofV3Q is to be understood as its typ
cal variation among the different 3Q systems rather than
value itself.! Thus, the three-quark ground-state potent
V3Q is well described by Eq.~4! of theY Ansatzwithin a few
percent deviation.

As a visual demonstration on the agreement of this fit,
compare in Fig. 12 the lattice QCD dataV3Q

latt at b55.7 and
the best-fit curve ofV3Q

fit as the function ofi for each (j ,k)
fixed, when the three quarks are located
( i ,0,0),(0,j ,0),(0,0,k) in the lattice unit. While the lattice
dataV3Q

latt are restricted on the integer ofi and are expresse
as the points,V3Q

fit in Eq. ~4! can be calculated for an arbitrar
real number ofi and is expressed as a curve for each (j ,k).
In Fig. 12 at b55.7, one finds a good agreement of t
lattice QCD dataV3Q

latt and the fit curveV3Q
fit for each (j ,k).

In spite of the good agreement ofV3Q
latt with V3Q

fit , to be
strict, x2/NDF listed in Table XI seems relatively large
which means the relatively large deviationV3Q

latt2V3Q
fit in com-

parison with the error. In addition to physical reasons, t
may be due to the underestimate of the error. In fact,
statistical error itself seems very small, but the error sho
be inevitably enlarged by the systematic error such as
discretization error in lattice calculations. In particular, t
statistical error for the short-distance data is rather small,
such a smallness of the short-distance error seems to pro
the large value ofx2/NDF, which may indicate an impor-
tance to control the finite lattice-spacing effect. Of cour
this point would be clarified if the lattice QCD study with th
finer and larger lattice is performed. Besides the direct ch
on theb dependence, the similar fit analysis with the latti
Coulomb potential is expected to be meaningful. On the
tice, to be strict, the Coulomb potential is to be modified in
the lattice Coulomb potential, which contains the fin
lattice-spacing effect more directly. Hence, the fit with t
lattice Coulomb potential is expected to reduce the discr
zation error from the finite lattice spacing, especially for t

e FIG. 12. The comparison between the lattice QCD dataV3Q
latt at

b55.7 and the fitted curve ofV3Q
fit as the function ofi for each (j ,k)

fixed, when the three quarks are located at (i ,0,0),(0,j ,0),(0,0,k) in
the lattice unit. The lattice dataV3Q

latt are expressed as the points, a
V3Q

fit is expressed as the solid curve for each (j ,k).
9-13
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short-distance data. In Sec. V E, we will perform the
analysis using the lattice Coulomb potential.

Finally, we compare the best-fit parameter s
(s3Q,A3Q,C3Q) in the 3Q potentialV3Q in Eq. ~4! with
(sQQ̄,AQQ̄,CQQ̄) in the Q-Q̄ potential VQQ̄ in Eq. ~21! as
listed in Table XI. As a remarkable fact, we find a univers
feature of the string tension,

s3Q.sQQ̄, ~27!

as well as the OGE result for the Coulomb coefficient,

A3Q.
1

2
AQQ̄. ~28!

C. The model-independent check in the diquark limit

As a model-independent check, we consider the diqu
limit, where two quark locations coincide in the 3Q syste
In the diquark limit, the static 3Q system becomes equiva
to the Q-Q̄system, which leads to a physical requirement
the relation betweenV3Q and VQQ̄. Our results,s3Q.sQQ̄
and A3Q. 1

2 AQQ̄, are consistent with the physical requir
ment in the diquark limit.

Next, we consider the constant termsC3Q in the diquark
limit, although such a constant term is a lattice artifact and
physically irrelevant. As a caution in the continuum diqua
limit, there appears a singularity or a divergence from
Coulomb term inV3Q as

lim
r j→r i

2A3Q

ur i2r j u
52`. ~29!

In the lattice regularization, this ultraviolet divergence
regularized to be a finite constant with the lattice spacina
as

2A3Q

ur i2r j u
→ 2A3Q

va
, ~30!

wherev is a dimensionless constant satisfying 0,v,1 and
v;1. Then, we find

C3Q1
2A3Q

va
5CQQ̄, ~31!

or equivalently,

C3Q2CQQ̄5
A3Q

va
~.0! ~32!

in the diquark limit. This is the requirement for the consta
term in the diquark limit on the lattice. Our lattice QC
results forC3Q, CQQ̄, andA3Q are thus consistent with thi
requirement, and one findsv.0.4120.45: v(b55.7)
.0.447, v(b55.8).0.414, v(b56.0).0.424.
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D. The Y Ansatzwith the Yukawa potential

In the previous section we adopt the Coulomb potentia
the short-distance ingredient, because the OGE proces
expected to be dominant at the short distance and thē
potential seems to be reproduced with the Coulomb plus
ear potential in the lattice QCD. The first reason is, howev
nontrivial in the intermediate and the infrared regions, wh
the perturbative QCD would not work. In fact, due to som
nonperturbative effects besides the confinement potential
Coulomb potential caused by the OGE process may be m
fied in the infrared region.

For instance, the dual superconductor theory for the qu
confinement@12,13,37,38# supports the Yukawa plus linea
potential rather than the Coulomb plus linear potential,
though the dual gluon massmB appearing in the exponent i
the Yukawa potential may not be so large, e.g.,mB
;0.5 GeV both in the model framework@12,13# and in the
lattice study@39,40#.

From a theoretical viewpoint, such a possibility on t
infrared screening of the Coulomb potential seems rather
tractive in terms of the empirical absence of the color van
Waals force in the infrared limit@41#. In fact, if the two-body
Coulomb potential is not screened in the infrared limit, t
color van der Waals force inevitably appears as a lo
distance force between hadrons, which is not observed
perimentally.

Then, we also investigate the fit analysis ofV3Q with theY
Ansatzwith the Yukawa potential as

V3Q
Yukawa[2A3Q

Yukawa(
i , j

VYukawa~ ur i2r j u!

1s3Q
YukawaLmin1C3Q

Yukawa, ~33!

whereVYukawa(r ) denotes the normalized Yukawa potentia

VYukawa~r ![
1

r
e2mBr . ~34!

Here, mB corresponds to the dual gluon mass in the d
superconductor picture@6,12,13#.

We find that the best-fit analysis of the lattice QCD da
V3Q

latt with V3Q
Yukawa indicatesmB.0. Of course, in this specia

case ofmB.0, the Yukawa potential reduces the Coulom
potential, and the result almost coincides with that in t
previous fit. Thus, through the fit analysis with the Yukaw
potential based on theY Ansatz, we have observed no defi
nite evidence to replace the Coulomb-potential part by
Yukawa potential in the present calculation.

E. The Y Ansatzwith the lattice Coulomb potential

So far, we have investigated the fit analysis of the
potentialV3Q mainly with the continuum Coulomb and th
confinement potential. However, in comparing with the l
tice data, the careful treatment considering the lattice d
cretization effect may be desired. The main effect of t
lattice discretization appears only at the short distance,
hence no modification would be necessary for the confi
9-14
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ment potential, which becomes significant only at the la
distance. On the other hand, it is nontrivial to use the c
tinuum Coulomb potential for the fit of the lattice data, e
pecially at the short distance, according to the lattice discr
zation. For instance, the short-distance singularity of
Coulomb potential becomes rather smeared on the lattice
will be shown later.

In this section we perform the fit analysis of the latti
QCD data ofV3Q in terms of theY Ansatzwith the lattice
Coulomb potential. The lattice Coulomb~LC! potential be-
tween two color charges is obtained with the lattice Coulo
propagator as

VLC~nW ![pE
2p/a

p/a d3q

~2p!3

exp~2 ipW •nW a!

(
i 51

3

sin2~pia/2!

, ~35!

where nW [(n1 ,n2 ,n3)PZ3 denotes the relative vector be
tween the two color charges in the lattice unit. Here,
lattice Coulomb potentialVLC(nW ) is properly normalized so
as to reduce into the 1/r potential in the continuum limit as

VLC~nW !→ 1

r
~36!

with r 5unW ua.
In Fig. 13 we plotVLC(nW ) as a function ofunW u together

with 1/r as a function ofr. One finds that the singularity nea
the origin unW u50 becomes smeared, andVLC takes a finite
value even atnW 50W , which was mentioned in the context o
the diquark limit in the preceding subsection. This may ca
a significant deviation in the fit analysis with the 1/r Cou-
lomb potential, especially for the short-distance data an
sis.

To begin with, we examine the fit analysis of the latti
QCD data on the Q-Q̄potentialVQQ̄ with

FIG. 13. The comparison of the lattice Coulomb~LC! potential

VLC(nW ) with 1/r in the lattice unit. We plot the on-axis dat
VLC(k,0,0) (0<k<7) by the closed circle, the off-axis dat
VLC(k,k,0) (1<k<4) by the open circle, and 1/r by the solid
curve.
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VQQ̄
LC

[2AQQ̄
LC

VLC~nW !1sQQ̄
LC unW u1CQQ̄

LC , ~37!

using the lattice Coulomb potentialVLC(nW ). We refer to this
fit as the LC fit. We list in Table XI the best-fit parameter s
(AQQ̄

LC ,sQQ̄
LC ,CQQ̄

LC) at eachb. In Table XI the label ‘‘on-axis’’
means the fit analysis for the on-axis data only, and the la
‘‘off-axis’’ means the fit analysis for both on-axis and of
axis data. In the LC fit, a significant reduction ofx2/NDF is
observed, in comparison with the fit with the 1/r Coulomb
potential in Eq.~21!, as shown in Table XI, in spite of the
similar values of the fit parameters. We find a further go
agreement between the lattice QCD data and the fitted va
of VQQ̄

LC on the Q-Q̄potential. In particular, the LC fit show
an acceptable value ofx2/NDF even for the fit on both on-
axis and off-axis data, while the fit with the 1/r Coulomb
potential shows the extremely largex2/NDF about 10 when
the off-axis data are included. Thus, the discretization effe
which may not be negligible for short-distance data, seem
be taken into account neatly by the use of the LC potentia
some extent. Accordingly, the fit analysis with the latti
Coulomb potentialVLC seems to provide a more precise i
formation also for the linear confinement potential, althou
the string tension obtained from the fit analysis is alm
unchanged assQQ̄

LC .sQQ̄.
Now, we perform the LC fit analysis of the lattice data o

the 3Q potentialV3Q with

V3Q
LC[2A3Q

LC(
i , j

VLC~nW i j !1s3Q
LCLmin1C3Q

LC , ~38!

using the lattice Coulomb potentialVLC(nW ). In Table XI we
list the best-fit parameter set (A3Q

LC ,s3Q
LC ,C3Q

LC) together with
the best-fit parameters (AQQ̄

LC ,sQQ̄
LC ,CQQ̄

LC). In this LC fit,
x2/NDF is reduced in comparison with the fit with the 1r
Coulomb potential at eachb, as shown in Table XI. Then
this fit seems to be acceptably good even without tak
account of the remaining systematic error. Accordingly,
3Q potential data are well reproduced with theY Ansatzfit
function V3Q

LC in Eq. ~38! with the lattice Coulomb potentia
with accuracy better than 1%. Again, the fit analysis with t
lattice Coulomb potentialVLC is expected to control the dis
cretization effect to some extent, and would provide a m
precise information also for the linear confinement potent

Finally, we focus on the best-fit parameter s
(s3Q

LC ,A3Q
LC ,C3Q

LC) in the Y Ansatzwith the lattice Coulomb
potential. The values of the best-fit parameters in the LC
are almost the same as those in the previous fit with ther
Coulomb potential as

~s3Q
LC ,A3Q

LC ,C3Q
LC!.~s3Q,A3Q,C3Q!. ~39!

In particular, the string tension obtained from the fit analy
is almost unchanged ass3Q

LC.s3Q. We then find again the
universality of the string tension ass3Q

LC.sQQ̄
LC at eachb. The

OGE relation on the Coulomb coefficient is found asA3Q
LC

. 1
2 AQQ̄

LC . In particular, this OGE relation seems to be o
9-15
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TABLE XII. The fit analysis of the lattice QCD dataV3Q
latt with theD Ansatzat eachb. We list the best-fit

parameter set (sD ,AD ,CD) in the function form as2AD( i , j (1/ur i2r j u)1sD( i , j ur i2r j u1CD . The label
of ~Latt. Coul.! means the fit with the lattice Coulomb potential instead of the continuum Coulomb pote
The listed values are measured in the lattice unit.

b sD AD CD x2/NDF

3QD 5.7 0.0858(16) 0.1410(64) 0.9334(210) 10.1
3QD ~Latt. Coul.! 0.0868(14) 0.1296(51) 0.9146(173) 5.12
3QD 5.8 0.0581(4) 0.1197(19) 0.8964(55) 13.7
3QD ~Latt. Coul.! 0.0583(3) 0.1110(18) 0.8872(54) 13.6
3QD 6.0 0.0264(2) 0.1334(11) 0.9490(36) 3.74
3QD ~Latt. Coul.! 0.0268(2) 0.1227(10) 0.9361(34) 2.89
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served precisely atb56.0, which is the finest and the mo
reliable lattice in the present calculation.~At b55.7,5.8, the
ratio A3Q

LC/AQQ̄
LC is about 0.4, which seems slightly differe

from 1
2 as the OGE result. Note that, however, the discr

zation error on the QCD action still remains at the smalb
even with the lattice Coulomb potential. In addition, atb
55.7,5.8, the nearest site is relatively far, and hence
Coulomb contribution to the 3Q potential is relatively sma
which may lead to an uncertainty of the Coulomb coe
cient.!

To summarize this section, we conclude that the latt
QCD data of the 3Q potentialV3Q can be fairly described
with the Y Ansatzwithin a few percent deviation, and there
fore the nonperturbative linear confinement potential is p
portional toLmin , the minimal value of the total length of th
Y-type flux tube linking the three quarks, which supports
Y Ansatz.

VI. COMPARISON WITH THE DELTA ANSATZ
AND THE GENERALIZED Y ANSATZ

A. Comparison with the D Ansatz

For the 3Q potential, theD Ansatzis also an interesting
candidate@30# as well as theY Ansatz. The D Ansatz is
expressed as

V3Q52AD(
i , j

1

ur i2r j u
1sD(

i , j
ur i2r j u1CD , ~40!

which consists of the two-body linear potential betwe
quarks. ThisD Ansatzhas been adopted in a simple nonr
ativistic quark potential model@42# because of its simplicity
for the calculation. In addition, several lattice QCD stud
for the 3Q potential supported theD Ansatz @24,26–29#.
However, Refs.@24,26# seem rather old, done 14 years ag
and were done without smearing, so that the excited-s
potential may largely contribute in their measurements.~See
Fig. 6.! In a recent paper, Ref.@29#, in spite of the use of the
smearing, the authors simply compared the 3Q potentialV3Q
with the Y and theD Ansätze with a fixed string tension
estimated from the Q-Q¯ potential, only for severa
equilateral-triangle 3Q configurations without the quanti
tive fit analysis. Furthermore, in Refs.@27,29#, the ‘‘devia-
tion’’ between the lattice data and theY Ansatzseems to be
11450
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explained as a trivial constant shift of the potential. In fa
the potential calculated in lattice QCD includes a physica
irrelevant constant, which is not properly scaled in the phy
cal unit, as shown in Table XI. If such an irrelevant consta
is properly removed, theY Ansatzseems to be better thanD
Ansatzeven in Refs.@27–29#, e.g., the slope of the lattice
data V3Q

latt seems closer to theY Ansatzrather than theD
Ansatz. In Ref.@29#, the authors set the potential origin at th
nearest lattice point and used the continuum Coulomb po
tial for the fit function, but this seems dangerous becaus
constant deviation may appear as a mismatch between
lattice Coulomb potential which is preferable to the latti
data and the continuum Coulomb potential for the fit fun
tion, as shown in Fig. 13. In any case, the quantitative
analysis is essential for the study of the functional form
the 3Q potential.

In this section we perform the fit analysis with theD
Ansatz. To begin with, we try to fitV3Q

latt with theD Ansatzin
Eq. ~40!, which was suggested in Refs.@24,26,30#. We list in
Table XII the best-fit parameter set (AD ,sD ,CD) in the D
Ansatzat eachb. In comparison with theY Ansatz, this fit
with the D Ansatzseems rather worse because of the lar
value of x2/NDF. In fact, x2/NDF is unacceptably large a
x2/NDF510.1 atb55.7, x2/NDF513.7 atb55.8 even for
the best fit.~Of course, whensD is fixed to be the half value
of the string tension in the Q-Q¯potential as in Refs.@26–29#,
this fit with theD Ansatzbecomes further worse with a large
x2/NDF.)

As an approximation, however,V3Q seems described by
simple sum of the effective two-body Q-Q potential with
reduced string tension as

sD.0.53sQQ̄. ~41!

This reduction factor can be naturally understood as a g
metrical factor rather than the color factor, since the ra
betweenLmin and the perimeter lengthLP of the 3Q triangle
satisfies

1

2
<

Lmin

LP
<

1

A3
, ~42!

which leads toLmins5LPsQQ with sQQ5(0.5;0.58)s. The
OGE relation is also found asAD. 1

2 AQQ̄.
9-16
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For the fair comparison, we also examine the fit analy
by the D Ansatzwith the lattice Coulomb potential, as wa
done for theY Ansatzin Sec. V E. The 3Q data are fitted b
the form of

V3Q52AD
LC(

i , j
VLC~nW i j !1sD

LC(
i , j

ur i2r j u1CD
LC . ~43!

We add the results in Table XII. Again, a reduction
x2/NDF is observed. The values of the best-fit parameters
almost unchanged, and hence Eq.~41! and the OGE relation
also hold. However, in comparison with theY Ansatzwith
the lattice Coulomb potential,x2/NDF in this fit with theD
Ansatzis still larger, and therefore theD Ansatzis difficult to
be accepted.

B. A more generalAnsatz—the generalizedY Ansatz

From the theoretical reason of the short-distance per
bative QCD and the large-distance strong-coupling QCD,
Y Ansatzseems reasonable in the both limits. The ove
lattice QCD data for the 3Q potential also support theY
Ansatzrather than theD Ansatz. However, it is not trivial
whether theY Ansatzholds in the intermediate region a
0.2 fm,r i j ,0.8 fm. In fact, as was conjectured by Cornwa
@30#, there is a possibility of theD Ansatzcontamination in
this region, where strong-coupling QCD is not applicable.
addition, a few recent lattice works seem to support theD
Ansatzfor the 3Q potential in the intermediate region, a
though their studies were performed only for the equilate
triangle 3Q configuration. Of course, it is rather difficult
analyze the short distance behavior of the non-Coulomb
of the 3Q potential because the Coulomb part is domin

FIG. 14. The visual illustration of the generalizedY Ansatz. The
three quarks are spatially fixed atQ1 , Q2, and Q3. The circle
around the Fermat pointP corresponds to the flux-tube core arou
the physical junction. The pointP1 is taken inside the circle so as t
minimize P1Q21P1Q3, andP2 andP3 are similarly defined.
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there. Furthermore, the Coulomb potential form itself is
longer trivial in the intermediate region as 0.2 fm,r i j
,0.8 fm, where the perturbative QCD would not be valid

In this section we investigate the lattice QCD data for t
3Q potential using a more generalAnsatzwhich includes
both theY and theD Ansätzein some limits. On the adoption
of the generalAnsatz, we consider the possibility of the flux
tube core effect. For instance, in the dual supercondu
picture @12,13,37,38#, the hadron flux tube has an intrins
structure of the core region inside. In fact, if there exists
flux-tube core with the cylindrical radiusRcore, the Y-type
flux tube may be almost identical to theD-type configuration
at the short distance asr i j ;Rcore, and thus the flux-tube
length becomes obscured there.

So far, we have defined the minimal flux-tube leng
which is proportional to the linear potential, as

Lmin[PQ11PQ21PQ3 ~44!

with the Fermat pointP in Fig. 14. In this section, consider
ing a possible flux-tube core effect, we introduce the mo
fied minimal flux-tube lengthL̄min defined as

Lmin[
1

2
~Q1P2Q31Q2P3Q11Q3P1Q2!, ~45!

with ABC[AB1BC, as shown in Fig. 14. Here, the poin
Pk (k51,2,3) are taken inside the circle centered at the F
mat pointP with the radiusRcore, andP1 is chosen so as to
minimize

Q3P1Q2[P1Q21P1Q3 ~46!

and so on. In this definition, when the circle crosses or
cludes the lineQ2Q3, P1 can be taken on the lineQ2Q3 and
then one finds

Q3P1Q25Q2Q3. ~47!

It is worth mentioning that there are two special cases co
sponding to theY and theD Ansätze:

Lmin5Lmin ~48!

in the case ofRcore50 or Rcore!r i j , and

Lmin5
1

2
~Q1Q21Q2Q31Q3Q1! ~49!
TABLE XIII. The fit analysis of the lattice QCD dataV3Q
latt with the generalizedY Ansatzat eachb. We list

the best-fit parameter set (sGY ,AGY ,CGY ,Rcore) in the lattice unit atb55.8 and 6.0. The flux-tube core
radiusRcore in the physical unit is added.

b sGY AGY CGY Rcore @a# Rcore (fm) x2/NDF

5.8 0.1054(6) 0.1354(18) 0.9569(53) 0.57 0.08 2.63
6.0 0.0480(4) 0.1451(11) 0.9837(33) 0.79 0.08 1.23
9-17
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in the limit of Rcore5` or Rcore@r i j .
Using this modified minimal flux-tube lengthLmin, we

define the generalizedY Ansatzas

V3Q5sGYLmin2AGY(
i , j

1

ur i2r j u
1CGY . ~50!

This generalizedY Ansatzincludes both theY and theD
Ansätze in the special cases ofRcore50 and Rcore5`, re-
spectively. In fact, the generalizedY Ansatzreproduces theY
Ansatzat the large distance, which is theoretically suppor
by strong-coupling QCD, with including theD Ansatzbe-
havior at the short distance.

Then, we investigate the fit analysis for the lattice QC
data of the 3Q potential using the generalizedY Ansatzwith
varying Rcore. We show in Table XIII the result of the fi
analysis atb55.8 and 6.0. We observe the best fitting
Rcore.0.08 fm both atb55.8 and 6.0. The values of th
best-fit parameters (sGY ,AGY ,CGY) are almost the same a
those in theY Ansatz. This result also seems to support theY
Ansatzrather than theD Ansatzat the hadronic scale asr
@0.1 fm. ~As an interesting speculation,Rcore.0.08 fm,
which is almost the same both atb55.8 and 6.0, may physi
cally correspond to the flux-tube core radius in the dual
perconductor picture.!

VII. SUMMARY AND CONCLUDING REMARKS

We have studied the static three-quark~3Q! potential in
detail using SU~3! lattice QCD with 123324 atb55.7 and
163332 atb55.8,6.0 at the quenched level. In the first h
of this paper, we have performed accurate measuremen
the 3Q Wilson loop with the smearing technique, which
duces excited-state contaminations, and have presente
lattice QCD data of the 3Q ground-state potentialV3Q for
more than 300 different patterns of the 3Q systems.

In the latter half, we have investigated the fit analysis
a

n

v.
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V3Q, and have found that the lattice QCD data of the 3
potentialV3Q are well reproduced within a few percent d
viation by the sum of a constant, the two-body Coulom
term, and the three-body linear confinement terms3QLmin ,
with Lmin the minimal value of the total length of color flu
tubes linking the three quarks. We have investigated also
fit analysis with the lattice Coulomb potential instead of t
Coulomb potential, and have found a better fit with keep
the similar result. From the comparison with the Q-Q¯poten-
tial, we have found a universality of the string tension
s3Q.sQQ̄ and the one-gluon-exchange result for the Co
lomb coefficients asA3Q. 1

2 AQQ̄.
We have also performed the various fit analyses. Thro

the fit with the Yukawa potential based on theY Ansatz, we
have observed no definite evidence that the short-dista
potential becomes the Yukawa potential. The fit with theD
Ansatzis worse than that with theY Ansatzon the confine-
ment part in the 3Q potentialV3Q, althoughV3Q seems to be
approximated by theD Ansatzwith sD.0.53s. We have
considered a more generalAnsatzincluding theY and theD
Ansätze in some limits, and have found a possibility that th
Y-type flux tube has a flux-tube core about 0.08 fm, wh
may appear as a small mixing of theD Ansatzat the short
distance, although such a smallD-type contamination is neg
ligible in the intermediate and the infrared regions. To co
clude, all of these detailed fit analyses for the lattice QC
data of the 3Q potential support theY Ansatz.
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