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Gluon propagator without lattice Gribov copies on a finer lattice
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We extend our study of the gluon propagator in quenched lattice QCD using the Laplacian gauge to a finer
lattice. We verify the existence of a pole mass as we take the continuum limit and deduce a value of
;600230

1150 MeV for this pole mass. We find a finite value of@454(5) MeV#22 for the renormalized zero-
momentum propagator, in agreement with results on coarser lattices.
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I. INTRODUCTION

The gluon propagator, although not an observable qu
tity, plays an important role in phenomenological nonpert
bative studies. A framework for such studies is provided,
instance, by the Dyson-Schwinger equations~DSE! which
recently have been applied, among other topics, to the s
of the quark gluon plasma@1#. This application is particularly
important because it complements experimental activity
the BNL Relativistic Heavy Ion Collider~RHIC! and also
because of the difficulties of applying lattice QCD to t
case of a nonzero chemical potential, although some prog
is being achieved in this direction@2#. However in the
Dyson-Schwinger approach the study of the gluon propa
tor is still inconclusive because of the various truncatio
needed to solve the coupled set of equations@1#. For in-
stance, in the ghost-free axial gauge, many studies w
used a simplified version of the three-gluon vertex suppo
an infrared-enhanced gluon propagator of the form 1/q4.
Such behavior, driven by the vacuum polarization diagra
was disputed by other DSE studies@3# as being due to a flaw
in setting to zero the second scalar function that enters in
definition of the gluon propagator. Similar disputes also
cur in the case of the Landau gauge where some stud
which assume dominance of the gluon-vacuum polarizat
find infrared enhancement@4# whereas others@5#, which use
a rational polynomial ansatz for the self-energies and ve
ces, find an infrared vanishing propagator. After includi
the ghost propagator, recent studies in the Landau gaug
vor an infrared-vanishing gluon propagator@6#.

Lattice QCD provides a well defined theoretical fram
work for nonperturbative physics and it is well suited for t
study of the gluon propagator. A series of papers@7#, which
have appeared over the past couple of years, provide a
tailed study of the behavior of the gluon propagator
quenched lattice QCD in the Landau gauge. However, fix
to Landau gauge on the lattice is an iterative proced
which stops upon reaching any of a large number of lo
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minima, called ‘‘Gribov copies’’. Since the global minimum
itself cannot be reached, the effect of trading it for a loc
minimum is largely unknown. This uniqueness of the gau
condition puts us in a good position to obtain physical resu
on quantities, such as the pole mass which one may expe
be gauge invariant, and compare to the corresponding va
used in phenomenology. The issue of gauge invariance o
gluon pole mass was addressed in Ref.@9#. For a certain
class of covariant gauges, the Ward identities that determ
the gauge dependence of QCD dispersion relations were
rived. Using these relations one can examine the gauge
dependence of the poles of the gluon propagator. It was
gued that if the loop expansion holds, then a nonzero pol
the transverse gluon propagator is gauge invariant.

In Ref. @8#, we showed that a good description of th
gluon propagator was provided by an ansatz which admi
dynamically generated gluon mass@10# and thus points to an
infrared regularized gluon propagator. By analytic continu
tion to negative values ofq2 we obtained an estimate of th
pole mass. The existence of a gluon mass has important
nomenological implications@11#. Total cross sections in
hadron-hadron collisions, proton-proton elastic scatter
and diffractive phenomena can be well understood if ther
a finite correlation length for the gluon field@12#. For in-
stance in the Pomeron exchange model of Landshoff
Nachtmann@13# a gluon propagator which is infrared finite
shown to eliminate the troublesome singularity in t
Pomeron calculation of hadron-hadron scattering. Where
bare gluon mass would lead to problems with unitarity
dynamically generated mass vanishing in the ultraviolet
produces the correct perturbative result for the gluon pro
gator and is consistent with unitarity.

It is the purpose of the present work to check the robu
ness of our earlier results on the gluon propagator as we
the continuum limit. We thus extend our previous calculati
on coarser lattices@8# to a finer lattice atb56.2. In Ref.@8#
we included a comparison of results in different physic
volumes demonstrating that, for the quantities of inter
©2002 The American Physical Society08-1
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here, such as the pole mass and the zero momentum lim
the gluon propagator, a lattice size of about 1.5 fm suffic
Therefore for this study we use a lattice of spatial s
;1.7 fm. Our observable is the transverse part,D(q2), of
the propagator. The excellent scaling behavior which we
serve forD(q2) enables us to extract accurately the chan
with b of the lattice spacing. In the infrared, it allows us
control the cutoff effects on the pole mass and to study
continuum limit. Our notation is the same as that of Ref.@8#
and we refer the reader to@8# for the details of our approach

II. SCALING

Reasonable scaling was already observed in@8# where we
compared data atb55.8 and 6.0 on a lattice of size 163

332. Here we compareb56.0 andb56.2.
The results atb56.2 were obtained from 220 configura

tions generated by the UKQCD Collaboration on a lattice
size 243348. At b56.0 we used 200 configurations of siz
163332 from the NERSC archive@14#. Our Laplacian gauge
condition consists of aligning along a fixed orientation t
local 3-color frame built from the two lowest-lying eigenve
tors of the covariant Laplacian. For implementation deta
see@8#. Being now closer to the continuum limit, we fin
very good scaling behavior forD(q2) as demonstrated in
Fig. 1, where the two data sets fall on the same curve a
applying the linear transformation

ln@Db56.0~ ln qab56.0!#5 ln@Db56.2~ ln qab56.22b!#1c.

The two fitted parameters take valuesb50.27760.022 and
c520.57460.053, which yields the scaling ratios

Zb56.2

Zb56.0
51.0260.14,

ab56.2

ab56.0
50.75860.017. ~1!

FIG. 1. Data atb56.0 (163332 lattice; crosses! and at b
56.2 (243348 lattice; triangles! fall on a universal curve.
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This ratio of lattice spacings is consistent with that obtain
from measurements of the string tension@15#, and very close
to the value 0.729 obtained from the interpolation formula
the ALPHA Collaboration@16# for r 0 /a. Therefore, we use
for the lattice spacing the valuea21(b56.2)52.718 GeV
of Ref. @15#, corresponding to a string tensionAs
5440 MeV.

The renormalized zero momentum propagator also ex
its good scaling. We obtain a value of@454(5) MeV#22 in
agreement with our previous value of;(445 MeV)22, both
for a renormalization point of 1.943 GeV.

Our new transverse propagator data atb56.2 are shown
in Fig. 2 together with our previous results. Since theb
56.0 and 6.2 data agree so well over the whole momen
range, we can compare them to a variety of continuum m
els. We find that infrared enhancement such as (q2)22 @4#, as
well as the Gribov-type infrared suppression of the fo
D(q2)5Zq2/(q41M4)L(q2,M2) @17# or Zq2/(q412aq2

1M4)L(q2,M2) @5# are both excluded by our data. Here, t
function L(q2,M2) enforces the perturbative ultraviolet be
havior of the propagator:

L~q2,M2!5$ 1
2 ln@~q21M2!~q221M 22!#%213/22. ~2!

The ansatz of Marenzoniet al. @18#,

D~q2!5Z
M2a

~q2!11a1~M2!11a
, ~3!

with a nonperturbative anomalous dimensiona, gives a bet-
ter description of the lattice dat
@x2/degrees of freedom (DOF)518# but clearly underesti-
mates the peak in Fig. 2. A much better description is p
vided by model A of Ref.@7#:

FIG. 2. The transverse gluon propagator multiplied byq̂2 at b
55.8, 6.0, and 6.2 in physical units. The fits to three models
shown: Marenzoni~dashed-dotted line! @17#, Cornwall ~solid line!
@10#, and model A~dashed line! of Ref. @7#.
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D~q2!5ZF AM2a

~q21M2!11a
1

1

q21M2
L~q2,M2!G ~4!

with L(q2,M2) defined in Eq.~2!. Although this model gives
the best fit to our data (x2/DOF;2), it requires one more
parameter, and lacks a theoretical motivation. Worse for
here, it cannot be analytically continued.

Taking a different approach, Cornwall@10# allows for a
dynamically generated gluon mass which vanishes at la
momentum in accord with perturbation theory:

D~q2!5ZF @q21M2~q2!# ln
q214M2~q2!

L2 G21

with

M ~q2!5M H ln@~q214M2!/L2#

ln@4M2/L2#
J 26/11

. ~5!

As we already observed on coarser lattices, we find that
at b56.2 Cornwall’s ansatz provides a reasonable fit to
data over the whole momentum range (x2/DOF57). We
will thus keep it as one possible way to extrapolate to ne
tive values ofq2 for the determination of the pole mass.

III. POLE MASS

As explained in the Introduction, a phenomenologica
important question is whether the gluon propagator ha
pole mass. The pole is a zero of the inverse propag
D21(q2). We show this quantity in physical units on Fig.
combining our data atb56.2 andb56.0. To determine the
pole mass fromD21(q2)50, an analytic continuation to
negativeq2 is needed. Given our finite amount of data, th

FIG. 3. Infrared inverse gluon propagator atb56.0 ~squares!

and 6.2~triangles!. The various extrapolations to negativeq̂2 are
linear ~dot-dashed!, quadratic~dashed!, and cubic~dotted! polyno-
mials, and Cornwall’s model~solid line!.
11450
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extrapolation procedure is ambiguous. It is essential to
the robustness of a possible pole by comparing a variety
plausible extrapolations. Fortunately, the deviation
D21(q2) from a linear function ofq2 in the infrared is small
~much smaller than in Landau gauge@8#!, which increases
confidence in the extrapolation. We consider here linear, q
dratic, and cubic polynomials inq2, as well as Cornwall’s
ansatz~5!. All four choices indicate the presence of a po
The variation in its location gives us crude systematic er
estimates.

Given the curvature of the data, a linear fit provides
lower bound for the pole mass, with a value of 505 Me
This mass increases to 693~20! MeV with a quadratic fit, and
reaches 800 MeV for a cubic fit. Note that the fitted coe
cients of the higher powers ofq2 keep decreasing, which
indicates the soundness of an extrapolation based on a Ta
expansion. However our data are not sufficient to reliably
higher-degree polynomials: in particular, the results dep
on the fitted momentum interval and on the presence or
sence of data removed by the ‘‘cylindrical cut’’ of Ref.@7#,
whose purpose is to eliminate momenta most affected
lattice artifacts. In comparison with these simple polynom
fits, Cornwall’s ansatz gives a pole mass of 669~6! MeV,
consistent with that of the quadratic polynomial. The vario
extrapolations are shown together in Fig. 3.

By performing the same analysis at the three values of
lattice spacinga(b),b55.8, 6.0, and 6.2 we have studie
we can extrapolate the pole mass to the continuum limit
Fig. 4 we compare such an extrapolation ina2 for pole
masses obtained by fitting a quadratic polynomial or Co
wall’s ansatz. It can be seen that both give consistent res
at fixed lattice spacing as well as in the continuum. T
continuum values are 632~38! MeV and 592~14! MeV using
the quadratic polynomial and Cornwall’s ansatz, respectiv

The reasonable robustness of our analysis, with respe
a change in the lattice spacing as well as in the anal

FIG. 4. The pole mass atb55.8, 6.0, and 6.2 extracted from
fitting to a quadratic polynomial~data shifted to the right for clarity!
and to Cornwall’s ansatz, as a function of the lattice spacinga2. The
continuum values are obtained by linear extrapolation ina2.
8-3
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continuation procedure, leads us to conclude that ther
strong evidence that a pole exists in the gluon propaga
with a mass of about 600 MeV. Because of the curvature
the inverse propagator, the systematic error in the extrap
tion to negativeq2 is asymmetric. From the variation ob
served above with the choice of analytic continuation,
estimate it at;230,1150 MeV. Based on our study o
finite volume effects@8#, and given our present lattic
size, we expect negligible finite size corrections to t
pole mass. Comparing it to the glueball mass
1.73(0.05)(0.08) GeV@19#, it appears close to one-third o
the glueball mass~rather than one-half as sometimes spe
lated!. A pole mass of 500–800 MeV is also within the ran
needed to fit experimental data in various phenomenolog
studies@11,12#.

As a further, model-independent check on the value of
pole mass, we measured the correlator of the gluon fi
averaged over a time slice: namely@8#,

C~ t !5
1

Ls
3

1

8 (
a51

8
1

3 (
m51

3 S (
x

Ls
3

Am
a ~xW ,0!D S (

x

Ls
3

Am
a ~xW ,t !D .

~6!

The exponential decay, if at all, of this correlator at lar
time is governed by the pole mass. Therefore, one ca
principle measure the pole mass in a model-independ
way. However, statistical noise limits the usefulness of t
approach. We display the correlator in Fig. 5. The data ar
insufficient quality to measure an exponential fall off, and
fitting procedure is needed. Although this correlator is m
sured on the same configurations asD(q2), the various mo-
menta are given a different weight, so that a fit toC(t) will
give different results than a fit toD21(q2), especially after
the cylindrical momentum cut in the latter. Since all m
menta enter inC(t), we fit the only ansatz which describe

FIG. 5. Time-slice gluon correlator atb56.0 and 6.2. The

dashed line shows Cornwall’s model fitted toD21(q̂2) after the
cylindrical momentum cut; the solid line is a direct fit of the sam
model to the time-slice correlators, excluding the first few tim
slices.
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the gluon propagator reasonably well over the whole m
mentum range, namely Cornwall’s model, directly toC(t)
instead ofD21(q2) as before. The dashed line in Fig.
shows the original fit of Cornwall’s ansatz toD21(q2),
which already provides a fair description of the data. T
solid line represents a direct fit of the same 3-parameter
satz toC(t), excluding the first few time slices which ar
contaminated by contributions from excited states. A sim
taneous fit of the time-slice correlator data atb56.2 and 6.0
yields a pole mass of 739(81) MeV, in agreement with t
value 669(6) MeV extracted fromD21(q2), but with much
larger statistical errors.

If one attempts a model-independent determination of
pole mass from the effective massmeff(t)52Ln@C(t
11)/C(t)#, one obtains a value of 702(163) MeV, poor
determined but consistent with the direct fit. Therefore, o
different analyses give pole masses ranging from 592 M
~continuum extrapolation of pole of propagator fitted
Cornwall’s ansatz! to 739 MeV~fit of time-slice correlator!.
Taking into account the asymmetry of potential systema
errors, we estimate the gluon pole mass to
;600230

1150 MeV.

IV. CONCLUSIONS

We have extended a previous lattice study of the glu
propagator in the Laplacian gauge to a finer lattice and fo
good scaling behavior. We confirm the existence of a pole
we approach the continuum limit. Applying a variety of di
ferent fits we extract a pole mass in the range of 600230
1150 MeV in accord with the value found in phenomen
logical studies for the description of hadron-hadron scat
ing.

It would be very interesting to substantiate the gauge
variance of the gluon propagator pole mass by similar stud
in other gauges. Reference@20# proposes a nonlocal, gauge
invariant gluon propagator based on the~Coulomb-like! La-
placian gauge in three dimensions. It is argued there that
pole mass of this propagator determines the vec
pseudoscalar-mass splittingMV2MS in heavy quarkonia.
This relation is consistent with theSU(2) numerical results
presented. For QCD, using the experimental values for
splitting in cc̄ and bb̄ systems, the implication is that th
pole mass is;420 MeV. This is somewhat low compare
to our estimate. In Landau gauge, our first attempt@8#
showed no indication for a gluon propagator pole. Howev
lattice Gribov copies might play a crucial role there. Mor
over, Landau gauge appears more sensitive than Lapla
gauge to finite-size effects. Thus this question requires la
lattices as studied in@7#.
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