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Gluon propagator without lattice Gribov copies on a finer lattice
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We extend our study of the gluon propagator in quenched lattice QCD using the Laplacian gauge to a finer
lattice. We verify the existence of a pole mass as we take the continuum limit and deduce a value of
~600"35° MeV for this pole mass. We find a finite value p#54(5) MeV]~? for the renormalized zero-
momentum propagator, in agreement with results on coarser lattices.
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[. INTRODUCTION minima, called “Gribov copies”. Since the global minimum
itself cannot be reached, the effect of trading it for a local
The gluon propagator, although not an observable quamiinimum is largely unknown. This uniqueness of the gauge
tity, plays an important role in phenomenological nonpertur-condition puts us in a good position to obtain physical results
bative studies. A framework for such studies is provided, foron quantities, such as the pole mass which one may expect to
instance, by the Dyson-Schwinger equatidBsSE) which  be gauge invariant, and compare to the corresponding values
recently have been applied, among other topics, to the studysed in phenomenology. The issue of gauge invariance of the
of the quark gluon plasmd.]. This application is particularly gluon pole mass was addressed in Réf. For a certain
important because it complements experimental activity atlass of covariant gauges, the Ward identities that determine
the BNL Relativistic Heavy lon CollidefRHIC) and also the gauge dependence of QCD dispersion relations were de-
because of the difficulties of applying lattice QCD to therived. Using these relations one can examine the gauge in-
case of a nonzero chemical potential, although some progresiependence of the poles of the gluon propagator. It was ar-
is being achieved in this directiofi2]. However in the gued that if the loop expansion holds, then a nonzero pole of
Dyson-Schwinger approach the study of the gluon propagathe transverse gluon propagator is gauge invariant.
tor is still inconclusive because of the various truncations In Ref. [8], we showed that a good description of the
needed to solve the coupled set of equatiphls For in-  gluon propagator was provided by an ansatz which admits a
stance, in the ghost-free axial gauge, many studies whicynamically generated gluon md49]| and thus points to an
used a simplified version of the three-gluon vertex supporteihfrared regularized gluon propagator. By analytic continua-
an infrared-enhanced gluon propagator of the form*1/ tion to negative values aj?> we obtained an estimate of the
Such behavior, driven by the vacuum polarization diagrampole mass. The existence of a gluon mass has important phe-
was disputed by other DSE studieq as being due to a flaw nomenological implicationd11]. Total cross sections in
in setting to zero the second scalar function that enters in theadron-hadron collisions, proton-proton elastic scattering
definition of the gluon propagator. Similar disputes also oc-and diffractive phenomena can be well understood if there is
cur in the case of the Landau gauge where some studiesg, finite correlation length for the gluon field2]. For in-
which assume dominance of the gluon-vacuum polarizationstance in the Pomeron exchange model of Landshoff and
find infrared enhancemef] whereas otherfs], which use  Nachtmann 13] a gluon propagator which is infrared finite is
a rational polynomial ansatz for the self-energies and vertishown to eliminate the troublesome singularity in the
ces, find an infrared vanishing propagator. After includingPomeron calculation of hadron-hadron scattering. Whereas a
the ghost propagator, recent studies in the Landau gauge faare gluon mass would lead to problems with unitarity, a
vor an infrared-vanishing gluon propagaféi. dynamically generated mass vanishing in the ultraviolet re-
Lattice QCD provides a well defined theoretical frame-produces the correct perturbative result for the gluon propa-
work for nonperturbative physics and it is well suited for the gator and is consistent with unitarity.
study of the gluon propagator. A series of papéfks which It is the purpose of the present work to check the robust-
have appeared over the past couple of years, provide a daess of our earlier results on the gluon propagator as we take
tailed study of the behavior of the gluon propagator inthe continuum limit. We thus extend our previous calculation
guenched lattice QCD in the Landau gauge. However, fixingn coarser latticeg8] to a finer lattice a3=6.2. In Ref.[8]
to Landau gauge on the lattice is an iterative procedureve included a comparison of results in different physical
which stops upon reaching any of a large number of localolumes demonstrating that, for the quantities of interest
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=5.8, 6.0, and 6.2 in physical units. The fits to three models are

FIG. 1. Data at3=6.0 (16x32 lattice; crossesand at 3 shown: Marenzonidashed-dotted ling17], Cornwall (solid line)
=6.2 (24x 48 lattice; trianglesfall on a universal curve. [10], and model A(dashed ling of Ref. [7].

here, such as the pole mass and the zero momentum limit dthis ratio of lattice spacings is consistent with that obtained
the gluon propagator, a lattice size of about 1.5 fm sufficesfrom measurements of the string tensfds], and very close
Therefore for this study we use a lattice of spatial sizeto the value 0.729 obtained from the interpolation formula of
~1.7 fm. Our observable is the transverse pBxtg?), of  the ALPHA Collaboration[16] for ry/a. Therefore, we use
the propagator. The excellent scaling behavior which we obfor the lattice spacing the valug }(8=6.2)=2.718 GeV
serve forD(qg?) enables us to extract accurately the changeof Ref. [15], corresponding to a string tensioRo
with B of the lattice spacing. In the infrared, it allows us to =440 MeV.
control the cutoff effects on the pole mass and to study its The renormalized zero momentum propagator also exhib-
continuum limit. Our notation is the same as that of R8f.  its good scaling. We obtain a value p£54(5) MeV] 2 in
and we refer the reader [8] for the details of our approach. agreement with our previous value ©f(445 MeV) 2, both

for a renormalization point of 1.943 GeV.

Il. SCALING Our new transverse propagator datgBat6.2 are shown
. in Fig. 2 together with our previous results. Since tBe
Reasonable scaling was already observe@jwhere we  _g o'anqd 6.2 data agree so well over the whole momentum
compared data g6=5.8 and 6.0 on a lattice of size 16 range, we can compare them to a variety of continuum mod-
X32. Here we comparg=6.0 andg=6.2. els. We find that infrared enhancement suchcg3 (2 [4], as

_ The results a3=6.2 were obtained from 220 configura- we|| as the Gribov-type infrared suppression of the form
tions generated by the UKQCD Collaboration on a lattice OfD(qZ):ZqZ/(q“Jr MHL(g2,M2) [17] or Z?(q*+2aq?
size 24x48. At =6.0 we used 200 configurations of size M4)L (g% M?) [5] are both excluded by our data. Here, the

3 . .
16°x 32 from the NERSC archivil4]. Our Laplacian gauge  fnction L(g?,M2) enforces the perturbative ultraviolet be-
condition consists of aligning along a fixed orientation thepavior of the propagator:

local 3-color frame built from the two lowest-lying eigenvec-
tors of the covariant Laplacian. For implementation details,
see[8]. Being now closer to the continuum limit, we find L(g2M2)={ In[(?+MD)(q 2+ M~ )32 (2
very good scaling behavior fab(q?) as demonstrated in
Fig. 1, where the two data sets fall on the same curve afteFhe ansatz of Marenzowit al. [18],
applying the linear transformation
2a

— 2\ —
IN[Dg-6dINgag=60]=IN[Dg-gAINqag-c,—b)]+c. D(q )_Z(qz)”“—i—(Mz)”“’ 3
The two fitted parameters take values 0.277+0.022 and ) ) . o
c=—0.574+0.053, which yields the scaling ratios with a nonperturbative anomalous dimensiengives a bet-
ter description of the lattice data

7 [ x?/degrees of freedom (DOF)18] but clearly underesti-
Zh82_ 1 02+0.14, 86=62_ 75810017, (1)  Mates the peak in Fig. 2. A much better description is pro-
Zp-60 ag=6.0 vided by model A of Ref[7]:
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FIG. 3. Infrared inverse gluon propagator @t 6.0 (squarep
and 6.2(triangles. The various extrapolations to negatigé are
linear (dot-dashel] quadratic(dasheg, and cubic(dotted polyno-
mials, and Cornwall’s modedkolid line).

FIG. 4. The pole mass #=5.8, 6.0, and 6.2 extracted from
fitting to a quadratic polynomidbata shifted to the right for clarity
and to Cornwall’s ansatz, as a function of the lattice spaafinghe
continuum values are obtained by linear extrapolatioa4n

2a extrapolation procedure is ambiguous. It is essential to test

the robustness of a possible pole by comparing a variety of
plausible extrapolations. Fortunately, the deviation of

with L(g2,M?2) defined in Eq(2). Although this model gives D %(g?) from a linear function ofj? in the infrared is small
the best fit to our datax2/DOF~2), it requires one more (Mmuch smaller than in Landau gauf]), which increases
parameter, and lacks a theoretical motivation. Worse for u§onfidence in the extrapolation. V\2/e consider here linear, qua-
here, it cannot be analytically continued. dratic, and cubic polynomials ig“, as well as Cornwall’s
Taking a different approach, CornwdlL0] allows for a ansatz(5). _AII fou_r ch0|ce_s |nd_|cate the presence of a pole.
dynamically generated gluon mass which vanishes at larg&n€ variation in its location gives us crude systematic error

momentum in accord with perturbation theory: estimates. , _ _
Given the curvature of the data, a linear fit provides a

lower bound for the pole mass, with a value of 505 MeV.
This mass increases to 628) MeV with a quadratic fit, and
reaches 800 MeV for a cubic fit. Note that the fitted coeffi-
cients of the higher powers aj? keep decreasing, which
indicates the soundness of an extrapolation based on a Taylor
expansion. However our data are not sufficient to reliably fit
higher-degree polynomials: in particular, the results depend
5) on the fitted momentum interval and on the presence or ab-
sence of data removed by the “cylindrical cut” of R¢¥],
whose purpose is to eliminate momenta most affected by
As we already observed on coarser lattices, we find that alslattice artifacts. In comparison with these simple polynomial
at B=6.2 Cornwall’'s ansatz provides a reasonable fit to thdits, Cornwall’s ansatz gives a pole mass of @9MeV,
data over the whole momentum range?ADOF=7). We  consistent with that of the quadratic polynomial. The various
will thus keep it as one possible way to extrapolate to negaextrapolations are shown together in Fig. 3.
tive values ofg? for the determination of the pole mass. By performing the same analysis at the three values of the
lattice spacinga(B),8=>5.8, 6.0, and 6.2 we have studied,
we can extrapolate the pole mass to the continuum limit. In
Fig. 4 we compare such an extrapolation @A for pole
As explained in the Introduction, a phenomenologicallymasses obtained by fitting a quadratic polynomial or Corn-
important question is whether the gluon propagator has &all's ansatz. It can be seen that both give consistent results,
pole mass. The pole is a zero of the inverse propagatadt fixed lattice spacing as well as in the continuum. The
D %(g?). We show this quantity in physical units on Fig. 3, continuum values are 6828) MeV and 59214) MeV using
combining our data g8=6.2 and3=6.0. To determine the the quadratic polynomial and Cornwall’'s ansatz, respectively.
pole mass fromD (g% =0, an analytic continuation to The reasonable robustness of our analysis, with respect to
negativeq? is needed. Given our finite amount of data, thisa change in the lattice spacing as well as in the analytic

D(g3)=2Z + L(g3,M? 4
(a°) PEMDE T e @ M9 4

D(g®)=2Z|[g*+M?(g?)]In

q?+4amM2(g?)| !
A2
with

In[(q2+4M?2)/A2]|

IN[4M?/A?]

M(q2)=M{

lll. POLE MASS
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10" : : , l the gluon propagator reasonably well over the whole mo-
mentum range, namely Cornwall's model, directly Ggt)
instead ofD~%(q?) as before. The dashed line in Fig. 5
shows the original fit of Cornwall's ansatz t© ~(qg?),
which already provides a fair description of the data. The
solid line represents a direct fit of the same 3-parameter an-
satz toC(t), excluding the first few time slices which are
contaminated by contributions from excited states. A simul-
taneous fit of the time-slice correlator datgBat 6.2 and 6.0
yields a pole mass of 739(81) MeV, in agreement with the
value 669(6) MeV extracted fro® ~(g?), but with much
larger statistical errors.
If one attempts a model-independent determination of the
10 pole mass from the effective mas®is(t)=—Ln[C(t
00 B2 O Ot'6 (?Cﬁq) 8 =2 14 +1)/C(t)], one obtains a value of 702(163) MeV, poorly
determined but consistent with the direct fit. Therefore, our
FIG. 5. Time-slice gluon correlator g8=6.0 and 6.2. The differgnt analyses give' pole masses ranging from _592 MeV
dashed line shows Cornwall’s model fitted B *(q?) after the (continuum extrapolation  of pF"e O_f propagator fitted by
cylindrical momentum cut; the solid line is a direct fit of the same COrnwall’'s ansatgto 739 MeV (fit of time-slice correlatox
model to the time-slice correlators, excluding the first few time Taking into account the asymmetry of potential systematic
slices. errors, we estimate the gluon pole mass to be
~60033° MeV.
continuation procedure, leads us to conclude that there is
strong evidence that a pole exists in the gluon propagator,
with a mass of about 600 MeV. Because of the curvature of IV. CONCLUSIONS
the inverse propagator, the systematic error in the extrapola-
tion to negativeq? is asymmetric. From the variation ob- ~ We have extended a previous lattice study of the gluon
served above with the choice of analytic continuation, wepropagator in the Laplacian gauge to a finer lattice and found
estimate it at~—30,+150 MeV. Based on our study of good scaling behavior. We confirm the existence of a pole as
finite volume effects[8], and given our present lattice we approach the continuum limit. Applying a variety of dif-
size, we expect negligible finite size corrections to thisferent fits we extract a pole mass in the range of-680
pole mass. Comparing it to the glueball mass of+150 MeV in accord with the value found in phenomeno-
1.73(0.05)(0.08) GeV19], it appears close to one-third of |ogical studies for the description of hadron-hadron scatter-
the glueball mass¢rather than one-half as sometimes specuiqng.
lated. A pole mass of 500—800 MeV is also within the range |t would be very interesting to substantiate the gauge in-
needed to fit experimental data in various phenomenologicajariance of the gluon propagator pole mass by similar studies
studies[11,12,. in other gauges. Referenf20] proposes a nonlocal, gauge-
As a further, model-independent check on the value of thenvariant gluon propagator based on t{@oulomb-like La-
pole mass, we measured the correlator of the gluon fielglacian gauge in three dimensions. It is argued there that the

D(t) (GeV—1)

-2

averaged over a time slice: nam¢Bj, pole mass of this propagator determines the vector-
pseudoscalar-mass splittind,,— Mg in heavy quarkonia.
11 13 L3 L2 This relation is consistent with th®@U(2) numerical results
Clt)=—= S-S AZ()Z,O)) s Ai(it))- prgsgntgd. For QCD, using the exp-enm.entgl vglues for the
Lg 8a=13 71\ % x splitting in cc and bb systems, the implication is that the

(6) pole mass is~420 MeV. This is somewhat low compared
. . ) to our estimate. In Landau gauge, our first atteri®f
The exponential decay, if at all, of this correlator at largeshowed no indication for a gluon propagator pole. However,
time is governed by the pole mass. Therefore, one can ifytice Gribov copies might play a crucial role there. More-
principle measure the pole mass in a model-independejyer, Landau gauge appears more sensitive than Laplacian

way. However, statistical noise limits the usefulness of thisyayge to finite-size effects. Thus this question requires larger
approach. We display the correlator in Fig. 5. The data are ohtices as studied ifi7].

insufficient quality to measure an exponential fall off, and a
fitting procedure is needed. Although this correlator is mea-
sured on the same configurations&)?), the various mo-
menta are given a different weight, so that a fitQ¢t) will

give different results than a fit tB ~1(q?), especially after The 16x 32 lattice configurations came from the Gauge
the cylindrical momentum cut in the latter. Since all mo- Connection archiv§14], and the 23x 48 were provided by
menta enter irC(t), we fit the only ansatz which describes the UKQCD Collaboration.
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