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We present results from a numerical study of bound state wave functions in thk)(@imensional Gross-
Neveu model with staggered lattice fermions at both zero and nonzero temperature. Mesonic channels with
varying quantum numbers are identified and analyzed. In the strongly coupled chirally broken phase at
=0 the wave functions expose effects due to varying the interaction strength more effectively than straight-
forward spectroscopy. In the weakly coupled chirally restored phase information on fermion-antifermion scat-
tering is recovered. In the hot chirally restored phase we find evidence for a screened interacti®os: Orhe
chirally symmetric phase is most readily distinguished from the symmetric phase aTl highthe fermion
dispersion relation.
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[. INTRODUCTION action of color currents in the quark-gluon plasma.
In this paper we present results from a study of mesonic

Since the development of lattice gauge theory, many efwave functions measured in numerical simulations of the
forts have been made to measure the mass spectrum of hdd{N¢)y-invariant three-dimensional Gross-Neveu model
rons. The spatial structure of hadrons, on the other hand, hd&NMj;) with both discreteZ, and continuoug)(1) chiral
not been as well-studied numerically, although experimentalSymmetries at both zero and non-zero temperature. The
ists have measured quantities such as the charge radius of tf@del with U(1) chiral symmetry is described by the fol-
pion [1]. Numerical investigations of hadronic wave func- lowing semi-bosonized Euclidean Lagrangian density:
tions were initiated in 1985 by Velikson and Weingarfeih
and immediately afterwards they were followed by various
other groupd3,4]. Knowing the form factor of the hadrons
would allow one to calculate their radii and higher moments.
Hadronic wave functions are also useful in the calculation o — . .
masses because they can be used as trial wave l‘unctionswe trgat i, i as four-c.omponeljt Dirac spinors and the
the construction of hadronic operators with improved overlag"dex i runs overNy fermion species. In the case ofzy
on the ground state at small Euclidean time separation. Fufhiral symmetry ther fields are set to zero in the Lagrang-

thermore, at high temperature DeTar pointed out the possi@™ At tree Ie_v_el, th_e fields andar have no dyn_amics; the_y
bility of “confinement” at large distance scalgs]. Mesonic are truly auxiliary fields. However, they acquire dynamical

wave functions at non-zero temperature were investigateONtent by dint of quantum effects arising from integrating

recently on an anisotropic lattice in the quenched approxima@Ut the fermions. The model is renormalizable in th&l;1/
tion by the QCD-TARO Collaboratiof6]. Their results sug- €xPansion unlike in the loop expansipto]. Apart from the

gest that abov@, there can be low energy excitations in the o_bvious numerical advantages of working with a relatively

mesonic channels that are metastable bound states, i.e. tAk"Ple model in a reduced dimensionality there are several
quark and anti-quark tend to stay together at least for Euclid®ther motivations for stu.dylnzg suzch a mode).at T=0 for
ean time scales-1/T. These quasiparticles would be char- Sufficiently strong couplingy®>g; it exhibits spontaneous
acterized by a mass scale given by the location of a peak ighiral symmetry breaking, implying dynamical mass genera-
the corresponding spectral function. This picture is consisterifon for the fermion, the pion fieldr being the associated
with mean field calculations in the Nambu—Jona-LasinioGoldstone bosonii) the spectrum of excitations contains
model[7] which predicts that the mesons associated with thd0th baryons and mesons, i.e. the elementary fernfiamsl
chiral order parameter, namely the sigma and the pions, afte compositeff states;(iii) the model has an interacting
“soft modes” just aboveT,, i.e. their fluctuations acquire a continuum limit at the critical value of the coupling, which
large strength with a small width in the spectral density,has a numerical valug?/a~1.0 in the largeN; limit if a
which implies the existence of long-lived quasiparticles. Itlattice regularization is employdd1]; (iv) numerical simu-
has also been shown that the spatial wave functions for variations of the model with chemical potentigd#0 show
ous mesonic channels in the high temperature pf@Sgare  qualitatively correct behavior, unlike QCD simulations
strongly localized because of the nontrivial magnetic inter{12,13.

_ ; Ny 2, .2
L= lﬁi(f)+m0+a'+ly57r)¢i+2—gz(0' + 7). (1)
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Let us briefly review the physical content of the model as The largeN; approach[14] also predicts that forg?
predicted by the largdy approach10,11]. For g>> gg the >g§, chiral symmetry is restored as temperatiiris raised
fermion has a dynamically generated m&és equal, up to  beyond T.=M;/2In2, or for chemical potentialu> u,
corrections of order N¢, to the scalar field expectation =M;. The phase diagram of GNMwith various global

Va|ue<g>292<a¢,>, The inverser’l defines a correlation Symmetries at non-zero temperature and density has been
length which diverges agg—g?) ¥ with the critical index studied extensively iil2—17. More specifically, it has been
»=1+0(1N,). As a result offf_loop corrections the: and shown that.the thermally induced phase _tran5|_t|on of .the
7 fields acquire non-trivial dynamics. In the case of thezzjsymm_etrlc model belongs to the tyvo—dlmensmnal Ising
U(1)-symmetric model, the pseudoscalar couples to a universality class and thd (1)-symmetric model undergoes

Goldstone mode, and its propagator has a massless pole lenBerezinskii-KosterIitz—ThouIess transitiph6,17] in accor-
the chiral limitmg—0. For bothU(1) andZ, chiral symme- ance with the dimensional reduction scenario, which pre-

. : dicts that the long-range behavior at the chiral phase transi-
e i s oot e PO ol s hal of e - 1) Spin moce i the same
o — _ 9 pote, ~'symmetry, because the IR region of the system is dominated
tinuum of ff states extending all the way down to this py the zero Matsubara mode of the bosonic field. An inter-
threshold, implying that if truly bound, its binding energy is esting aspect of GNMis that it manifests both bulk and
O(1/Ny) at best. To our knowledge there have been no anagermally induced chirally symmetric phases, and one of the
lytic calculations of the binding energy in this channel. S'”Cegoals of the present study is to compare and contrast their
all residual interactions are subleading ilN1/ we surmise roperties.
that all other mesons are similarly weakly bound states OP The shape and size of a hadronic stdtean be observed

massive fermions, and hence are effectively described by fyrough the equal time Bethe-Salpeter wave function given
two-dimensional “non-relativistic quark model.” Fog? by

<g§ the model is chirally symmetric, and hence all states

massless asn,—0. A dimensionful scale is still defined, —

however, by the width of a resonancefifi scattering in the \I’(X't):f dy(O[ ¢ (y,t) (y+x,1)|M). @)
scalar channel; this diverges ag2(-g?) " with the same

exponenty. In this case we have no equivalent of the quarkOne can extractV from the correlation functionC(x,t)
model to assist interpretation of the wave functions to bewhich is a convolution of the quark propaga@y, and the
discussed below. anti-quark propagato&g and is given by

C(x,t)=f dydy; dy (0[P (y1) P (y2) Gg(Y:t;y1,0) T Ggly+X,t;y,,0)I'|0). ()

The Dirac matrixI" selects the appropriate spin and parity results of mesonic masses and wave functions on large vol-
guantum numbers for the meson, i.Es 1 for the spin zero  umes in both the scald6) and pseudoscaldPS channels.
scalar(S) and I'= y5 for the spin zero pseudoscalé?s. In our study we only measured the connected parts of the
®(x) is an input trial wave function which is used as a correlators. The noisy disconnected diagrams were neglected
source for the construction of quark and anti-quark propagaand we will discuss the implication of this in the next sec-
tors. At larget the contribution from the ground state domi- tion. We will also discuss the dependence of our results on
nates and the quark propagator source, on the lattice spatial extent
the chiral symmetry groupZ, vs U(1)] of GNM3, the cou-

COG=expl—my ¥ (x), “) pling B=1/g?> and the number of fermion species in the
wheremy, is the hadron mass. As already mentioned4h ~ M0delN;. We will then present results in te=0 andT
these wave functions are minimal Fock space wave functiong 0 Symmetric phases. The sigma and the pion are repre-
because they do not overlap onto states for which the quargented in the semi-bosonized GMyMction by bosonic aux-
antiquark world line has kinks crossing tinie Therefore, iliary fields and hence the correlation functions in these
their use to calculate phenomenological numbers is an urehannels, including disconnected diagrams can be measured
controlled approximation. However, as we shall see, they arwith relatively high statistics. Unfortunately, the same tech-
convenient tools in lattice simulations to study the binding innique cannot be applied to the wave functions which are
the various mesonic channels. Due to its simplicity, thepoint-split quark four-point functions. In another project,
GNM; can be studied at both=0 andT=+ 0 on lattices with  which in a sense is complementary to this one, we are study-
relatively largeL,, which is the main difficulty for QCD ing mesonic spectral functions, including those of the auxil-
simulations. In the next section we will discuss numericaliary fields using the maximum entropy methidd].

114507-2



MESONIC WAVE FUNCTIONS IN THE THREE-. .. PHSICAL REVIEW D 65 114507

II. SIMULATIONS TABLE 1. Spin/flavor assignments of the fermion bilinears
studied in the paper.

The fermionic part of the lattice action we have used for
the semi-bosonized GNMwith U(1) chiral symmetry is ToT)g k. (T&T)ar i
given by[12]

o PS '}/5®1 07 _i’yl’}/z®7'3 1
Sfer:Xi(X)Mijxij(Y) S 1®1 o* i Y0Y3® 73 0"
N
— 1o — . . :
=> > XiOMuxi(y)+ 5 > xi()xi(x) where Wy, (x) is a staggered fermion phase factor which
=1 %y % picks out a channel with particular symmetry properties, i.e.
Wy (X)=€e(x) for the S channel anilvy,(x)=1 for the PS
X E a(§<)+ie(x)2 w(X) ) (5) channel. The functio(x) is either a point sourcé, (o o Or
(xx) (xx) a staggered fermion wall souréﬁiﬁ'f;éﬁxv(mzm [19]. In all

— ~ the simulations we used point sinks. These correlators were
where x; and x; are Grassmann-valued staggered fermiorjtted to a functionCy,(t) given by

fields defined on the lattice sites, the auxiliary fiebdland 7
are defined on the dual lattice sites, and the syn{kot) Cu(t)=Ale"M+e Mt7Y]

denotes the set of 8 dual lattice sitesurrounding the direct K At as Mty oML —t)
lattice sitex. The fermion kinetic operatai is given by TA(-DTe Tre ©l (10

1 The first square bracket represents the “direct” signal with
Mxy=§ E 7,(X)[ 8y x4 73— Oy x— 3]+ Mydyy, (6) massm and the second an “alternating” signal with mamss
v Just as in four dimensions, composite operators made from
staggered fermion fields project onto more than one set of
(—1)0* %1 and the symbok(x) denotes the alternat- continuum quantum numbers. To gain more insight one must
ing phase € 1)0**1*X2, The auxiliary fieldso and 7 are transform to a .baSIS.\.NIth explicit spmlor and flavor indices
weighted in the path integral by an additional factor corre-[20]; the resulting bilineargy(I'® T)q in both S and PS
sponding to channels, wher& acts on a two-component flavor space, are
summarized in Table I. Also shown are the spin/parity quan-
N ~ ~ tum numbers)®. In the direct channels these are the same as
San=== 2 [?(X) +7%(%)]. (7)  their four-dimensional equivalents, but the alternating chan-
207 X nels are very different. In the PS channel the alternating state
is an anti-symmetric tensor, corresponding to spin-1, whereas

The simulations were performed by using the standard hy: " -
brid Monte Carlo algorithm in which complex bosonic in the S channel the bilinear transforms trivially under rota-

pseudofermion fields® are updated using the action tions in.the 12 plane _and. is hence spin-'O. The par?ty states
®T(MTM)~1®. Unless stated otherwise, the bare fermion@'e assgned b_y conS|d_er|ng t_ransformatlon properties under
massm, was set to zero. According to the discussiofli], (2+1)-dimensional lattice parity:

simulation ofN staggered fermions describBs=4N con-
tinuum species; the full symmetry of the lattice model in the
continuum limit, however, iJ(N;/2)y® U(N¢/2)y®U(1)

where 7,(x) are the Kawamoto-Smit phases

X=(Xg,X1,X2) = X'=(Xg,1—X1,X7)

Ny, aNX XL
rather thanU(N;)y®U(1). At non-zero lattice spacing the Xox(X) = (=172 x (x1) 1D
symmetry group is smalletJ (N¢/4)y® U (N¢/4)y®U(1). In ~ ~ e~ -~
the Z,-symmetric model ther fields are switched off ankl o(X)—=>o(X"); m(X)—=>—m(X").

becomes real. In this case, according to the discussion i . . . -
. . . o n continuum notation this corresponds to determining
[11], simulation ofN staggered fermions describbis=2N ; ; .
whetherl" commutes or anti-commutes with, ys. It is im-

gogm;g;ni tss peglr?jr.n?:rfilelsczgolgé tfgir?(;%(l)ﬂr_lt{]én and how W%ortant to note that unlike inB1 dimensions, the alternating
pumi > P e channels do not contain “parity partners” of the direct chan-
Using point sources we calculated the zero momentun] : ; .
) - : nels, or indeed necessarily even decribe states of the same
fermion correlator at different values of the coupliggand

) . spin.
fitted to the function In a similar way the lattice wave functions are given by

Cit)=Aq e Mit—(—1)te Mitt=07, (8)

The mesonic correlators are given by PO0= 2 D00 PO)W()GHEX' x,0

X'\ Xq1,Xo
X GT(X',t;%,,0). 12
Cu01=_ 3 B(x)P(x) Wy ()G 1,0) (% 5%2.0) 12
T In the staggered formulation the easiest way to constuct
X GT(x,1:%,,0), 9) is by computing it for spatial separations that are multiples of

114507-3



S. J. HANDS, J. B. KOGUT, AND C. G. STROUTHOS PHYSICAL REVIEW &5 114507

2a. To facilitate comparison between the various wave func- R .
tions we normalize them to unity at zero separation. g
A. Zero temperature broken phase g . """";-Jv?*i;,,';;Iif '
In this section we discuss the numerical results for the s 5
masses and the wave functions extracted from the S and P. 06 ¢ ° n

channels of GNM at T=0. We generated statistics that vary ‘F(x) . By
from 700 to 2000 configurations, depending on how close to . o = '
e . . . . . 04 - O B

the critical point is the coupling for each simulation. The “a <
average molecular dynamics trajectory lengthl1.2. o e o

First, we measured the meson correlatGgg(t) in the S 02 - - g
and PS channels and the fermion correl&lg(t) at different O ’
values of the couplingB from simulations of the O
Z,-symmetric model. An interesting observation is that the 00 = 5 o0 0

direct amplitudeA in the S correlator is tiny compared to the

alternating signal\, and appears to decrease rapidly as we
decrease the coupling, whereas the PS correlator is domi-
nated by the direct signal. For example, in the case of the
correlator for B=0.75 the fit parameters areA=
—0.0001@5), A=250(10), m=0.341), M;=0.175(1)
and for 8=0.80 they areA=-0.051), 'A=235(5), m which is very close to twice the fermion mass; in this case
=0.1741), M;=0.08935). The bulk critical coupling is M ps=1.085(3) andVi;=0.55(0(1). Because of the superior
B.=0.851). Weinfer that the alternating signal corresponds saturation properties, the various correlators that we will dis-
to a weakly bound state since its mass is slightly less thaguss in the next few paragraphs were constructed from wall
2M; . It appears that the flavor-singlet scalar channgl 8  sources.
completely dominated by disconnected diagrams in this In Fig. 2 we present P$ and $;; wave functions at
phase, and can only be studied using the auxiliarfield  coupling3=0.55 and lattice sizes 3% 96 and 48x 96. The
[11]. Because of the smallness Afin the S correlatorA in ~ wave functions fill the lattice even when,=48 and it is
the PS correlatgrfor 3<B.=0.85, and the statistical fluc- 0bvious that finite size effects are still large at the boundary.
tuations in our data we do not quote values for their massedh Fig. 3 we plot theS,;; and PS,; wave functions in the
they did, however, appear very light, perhaps even consisteroken phase fog=0.45,0.55,0.65 with the horizontal axis
with zero, perhaps suggesting their origin is due to the proxtescaled by the fermion mass; which is an inverse corre-
imity of the chirally symmetric phase #=0.85. lation length. For small distancel$n physical unitsxMy
Even in the case of continuous chiral symmetry, the me=3) the threeP S;;, wave functions coincide, implying that
son extracted from the connected contribution in thg;PS in this regime the wave function shape is that of the con-
channel has a mass almost twice the fermion nja8slg tinuum limit theory. We interpret the deviations at large dis-
because it imotthe physical pion: the Goldstone mechanismtances as strong finite size effects; as implied by Fig. 2, the
in GNM; is fundamentally different from that in QCD. In meson fills the lattice at these couplings. g wave func-
this model the disconnected diagrams are responsible for
making the pion light; numerically this can be accessed by Lo®- - ' '
studying correlators of the auxiliary field [13,18. ML) OO PS L =32
In Fig. 1 we present results for the PS channel wave func- o088 Ls=832
tions of theZ, model withN;=4 on a 32X 96 lattice and oo L i W o - @PSL=48
coupling 8=0.55. The wave functions were extracted from . =88] =48
different time slices {=11,21,31,41) and were constructed B
from quark propagators with both wall and point sources. It ’
is evident that the wave functions extracted from wall F(*¥) o5 | 9
sources stabilize at relatively small Euclidean times. It is .
expected that the wall source projects onto the ground stat
much more effectively than the point source, because the Q
wave function is very broad and it does not go to zero at the 07T
edge of the lattice, i.e. it resembles a wall wave function. The e g @
other advantage of the wall sources wave function is that it is
constructed by convolving quarks with=0, whereas the 0.6 : w :
wave function extracted from point sources has more con- 0
tamination from excited states at small times. As mentioned
in the previous paragraph this weakly bound state has a mass FIG. 2. S and PS wave functions gt 0.55 andL ;= 32,48.

X

FIG. 1. PS wave functions on a 3296 lattice at3=0.55.
illed symbols correspond to a wall source; time slidacreases
rom 11 (top) to 41 (bottom). Empty symbols correspond to a point
sourcep in this case increasing from Ibottom to 41 (top).
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FIG. 3. S and PS wave functions @t 0.45,0.55,0.65; the hori- FIG. 4. S and PS wave functions on a’326 lattice at8
zontal axis is rescaled by the fermion mads. =0.55 for Ny=4 andN;=12; the horizontal axis is rescaled by

M.

tions which are broader than tiS;;, wave functions devi-

ate slightly from each other even near the origin, indicative=0.55 and the wave functions shown in this figure were

of stronger curvature in this region. extracted from thé=40 time slice. In order to compare the
One clear effect is that thef pair is much more closely WO cases and probeN/ effects we rescaled the horizontal

bound in the PS channel than in the S. We can explain this b§Xis by multiplying the distance with the fermion mads.
adapting the well-known argument from the non-relativistic!t is clear from the figure that as we switch on the interaction
quark model that a fermion—anti-fermion system bound in arfi-€. decreas&y) the binding increases and the wave func-
swave is necessarily pseudoscalar due to the product of irfion shrinks. The ratiMps/(2My) is 0.986(5) forNi=4
trinsic parities of theff pair being negative. Some care must 21d 0-999(1) foiN;=12. These results imply that the wave

be taken in 2- 1 dimensions; whereas the=0 spatial wave functions in this model are far more sensitive tdld£ffects
function is axially symmetric and hence positive parity, a”than th_e_ MAsSES or even t_he critical indices. In this model the
higher angular momentum states, which have the fornpUIK C”t'_c‘?l indices for finiteN, are very close 1o thg large-
f(r)e*'-4, wheref(r)er" for smallr and for non-singular N; prediction and ¢ _effects have been very difficult to
potentials, contain both positive and negative parity Compo_measulre even for relatively Sme, [21]. )

In Fig. 5 we present wave functions measured in thg,PS

nents[unlike in 3+1 dimensions where parity is given by C )
(—1)4], implying that higher spin states fall into degenerateand St channels of GNM with either aZ, or aU_(l) ch|ra_l .
symmetry. In both cases the number of fermion species is

parity doublets if parity is a good quantum numbérhe - oo
conclusion remains, however, that the only alloveestave ~ Nf=4 and the coupling ig=0.55. In theU(1) model we

state is the O, which naturally accounts for why the RS

wave function has the smallest extent. The behavior of state: ' '
with L>0 as a function offr|] might possibly explain the o
noticeable kink in the S wave function at the smallest non- e o ey |
zero spatial separation; ideally data nearer the continuun 5 R S S
limit would be needed to explore this more thoroughly. Lo g B
In Fig. 4 we present R$ and §,; wave functions mea- g o
sured in simulations with different numbers of fermion spe- W(x) 8- @ O T T T
cies in the system, i.eN;=4,12. The coupling is set t X O O
“Oig oo
F 3
1Intr?nsic parity_must also be definegl with_ care: recall that in 3 06 rq...opPS u) .. . 7
+1 dimensions it is related to the spinor eigenstateypfSince m--m S U(1) L .
the continuum formulation of staggered fermions ifr 2 dimen- O--0OPS Z, B
sions naturally results in 4-component spinors, we can effectively 0082,
regard the parity transformatiofll) as a spatial inversion in 3 0.40 5 1|0 5 %
1

dimensions followed by a rotation by radians in the 23 plane;

since rotations are continuous thand?spinor eigenstates main-
tain their respective intrinsic parities under this sequence of trans- FIG. 5. S and PS wave functions from tb€1) andZ, GNM,.
formations. The lattice size is 3296 andB=0.55.
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FIG. 7. S and PS wave functions in the zero temperature sym-

FIG. 6. PSg;, wave functions in the broken phas . . .
S phases ( metric phase. The lattice size is®3&nd 8=1.0.

=0.45,55,65,0.75) and in the symmetric phage=(1.0,2.0); 3 in-
creases from the bottom to the top of the figure. The lattice size is )
322X 96 in the broken phase and %3 the symmetric. > ., whereas the correlation length should decrease as we

recede from the critical point. This may indicate that there is
fixed the vacuum by introducing a small fermion bare mas¢10 true bound state in the channel, but merely a positive
mo=0.01 so tha{o)>0. The masses in theé(1) model are  spatial correlation due to interparticle attraction, which
1.133(3) for the S channel, 1.123(3) for the PS channel angrows weaker ag— co. Before taking this interpretation too
0.567(2) for the fermion. In th&, model the masses are Seriously, however, it should be remarked that taken on their
1.085(5) for the S channel, 1.083(5) for the PS channel an@wn the data of Fig. 6 would not enable the critical coupling
0.550(2) for the fermion. These mesons have very broad buf be identified.
quite distinct wave functions, whereas their masses are al- In Fig. 7 we plot data extracted from a simulation on a
most the same and are very close to twice the fermion mas82’ lattice at coupling3=1.0 in the symmetric phase in both
This is further evidence that the wave functions in this modeS and PS channels. We generated 10,000 configurations. A
are more sensitive to binding effects than bound stat&imple analysis of the correlato@, (t) implies that both are
masses. The difference between PS and S is larger in thgassless. Compared with the broken phase, however, the
U(1) model than in theZ, model: the PS is more tightly Saturation is much improved, permitting a more complete
bound due to the additional attractive force resulting fromanalysis, which ultimately permits extraction of both direct
the 7 exchange, which since the is lighter, moreover, also and alternating signals from each channel. It is possible that

results in alonger—rangfa‘_potential. The kink in the S wave N this case th_e wave function Is yiglding information on
function is also more pronounced in this case. Although th@a}rtlcle scattering rat_her than on an |§olateq bound state—
various meson masses measured in our simulations are fH'S may explain the improved saturation, since there is no
accordance with the large; prediction slightly less than °NJer a requirement for the signal from exuted_ states to die
2M;, we believe that an accurate measurement of the bind2V& ast increases before the shape(x) stabilizes. .
ing energy can only be extracted from simulations on lattices We disentangled¥ i (x) and Wa(x) by measuring
which are bigger than the meson sizes, otherwise finite size& (*:t). Which is given by
effects can severely distort the result. W(x,0) =AW g, (X) + (— 1) AW (%), (13)
B. Zero temperature symmetric phase at large even and odd The results presented in Fig. 7 were
We now consider the wave functions in the chirally sym-extracted from the values &f att=14,15. A striking feature
metric phase. As discussed in the Introduction, here there isf the plot is thaj W4+ |V 4 appears independent rf In
no dynamically generated mass scale and no readily identfact, the meson amplitudes are of opposite signs, implying
fiable correlation length, although evidence for a resonancghat the sum of factor®Vps+Ws [see Eq.(12)] is of the
width x scaling approximately linearly ing¢—g?) was re-  form[1— €(x)] and hence projects onto odd sink lattice sites
ported in[11]. In Fig. 6 we show the R wave functions of  only. Now, in a chirally symmetric vacuum, meson states
the Z, model in both broken g<pB.) and symmetric g built from non-interacting fermion8mplying a spatially uni-
> f.) phases. The main observation is that the wave functiofiorm W) have contributions of precisely this for@oeG:;e;
becomes broader, i.e. the size of the meson increasg, asquantum corrections toF o4 +| ¥ | can therefore only arise
increases, but that somid attraction persists beyond the from the exchange of an even number of auxiliary bosons,
critical point 5.=0.851). Counterintuitively, the wave and hence are suppressed (B(/l/Nf) at least. As already
function size in lattice units continues to increase fdr observed the PS wave functions expand as we incrgase
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TABLE Il. Thermal fermion masses in the hot phase. 0.8
B 32x16 96 % 16
0.79 - 0.0481) 0.6 .
0.80 0.0441) 0.0411)
0.82 - 0.0341)
0.85 0.0261) - E(k) 04 |

with PS;;; more tightly bound than Bg. The similarity in
shape may indicate that according to the assignments o 02
Table | both are permitted to scatter in theave. In contrast

to the PS case, theis a qualitative difference in S channel
wave functions between broken and symmetric phases. Th

0. 0_("{'_ 1

wave function in both §, and S, increasesaway from the 000 ol 02 03 04
origin, implying that a close approach of theis disfavored. kim
This is consistent with the_requwement of positive parity FIG. 8. Fermion dispersion relations B0 (3%, f=1.0) and
states to have non-zero orbital angular momentum. T>0 (96°x 16, 8=0.80).

C. Nonzero temperature to increase more slowly tham, implying that for fixedL,

Next we discuss the effects of non-zero temperafulte ~ M{"a should decrease @B, as suggested by the data
have studied lattices with temporal extént= 16, for which ~ of Table Il In this limit the largeN; expansion suggests that
the critical point for the Z symmetric model is estimated to GNM3z becomes an ideal Fermi gg22].
be B1=0.790(5)[15], and the high temperature chirally re- We have also examined fermion correlation functions at
stored phase can thus be studied ffr< s<g2"'K. A par-  non-vanishing momentek=2zn/Ls, n=0,12... and
ticular virtue of GNM, is that, unlike unquenched QCD, it Used the energieS(k) extracted from Eq(14) to map out
permits a study of hot dynamics with current resources witH€ fermion dispersion relation. Results from both hot and
L, sufficiently large to permit the measurement of thermalPUlK chirally symmetric phases are shown in Fig. 8, together

masses from correlators in Euclidean time. We have exWith fits to the lattice form

tracted the thermal fermion masé;" by fits to E(k)= A sinhX( \/m). (16
Cr{t)=A[1—(—1)']sin{M{(t—Ly2)] o . . .
The fits yield masses consistent with those extracted by fit-
+B[1+(—1)‘]cosr[M‘fh(t—Lt/2)]. (14)  ting directly at zero momentum, and in both phases yield
values ofA, related to the renormalized speed of light, very
We performed simulations on 32 16 and 96X 16 lattices  close to 1, implying that the principal physical effect of the
and we generated approximately 20,000 configurations ohot medium is to generate a non-zero thermal mass. A similar
the smaller lattice and 35,000 on the bigger one. Howevembservation has been made in quenched Q@DThe result
our data are consistent with the vanishingp{t) for event, =~ A=1 supports our identification of a non-zero screening
corresponding t@=0 in Eq.(14), signalling a manifest chi- mass, or “pseudogap,” in studies of tHg(1)-symmetric
ral symmetry. The results favl tfh are given in Table Il. We model atT>0 [17], where large volume effects precluded
observe thaiM; is reasonably insensitive to the spatial vol- usingL; sufficiently large to extracE(k). Modifications of
ume of the lattice. The masses, though small, are considethe low momentum part of the dispersion relation which is
ably larger than those extracted from the bulk symmetricexpected to have two branchesTat 0 [23] corresponding to
phase on a 32lattice, where typical values found weké; two kinds of quasiparticle excitations, the fermion and the
=0.006(1) atB=1.0 and 0.0018) at 3=2.0, i.e. virtually ~ hole (known as the plasminpare not visible in our simula-
massless. The fermion mass thus provides a criterion frortions. Much larger lattices are needed to study the structure
distinguishing the two chirally symmetric phases. In thermalof the dispersion relation at the required low momenta.
field theory the typical scale for thermal masses is given by As in the bulk symmetric phase, it is necessary to have
mi"~g(T)T, whereg(T) is the coupling strength associated accurate measurements of meson masses before wave func-
with a vertex in a perturbative calculation. For GNNhe  tions can be extracted. On ¥@2% at 3=0.80 we found a

coupling associated with the UV fixed poinfil] mass 0.07&) in the PS;, channel, which decreased to
0.0383) at 8=0.85, and masses close to if not consistent
4 15 with zero for PG;;. In the S channel stable signals were
9= N;/k? (15 found in both §;; [0.0902)] and S;, [0.04712)] at 3=0.80,

decreasing to 0.0%%) and 0.0375) by 8=0.85. As in the
For asymptotically highT we thus haveg(T)=T~! and  bulk symmetric phase, saturation was found to be quite sat-
hence lim_...M!"— const. For finiteT we still expectM!™/T isfactory, which may again be a sign that there is no bound
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Loe . . group, much more cleanly than permitted by a study of the
' spectrum alone. Our results are reminiscent of the well-
known property of the variational method in quantum me-
chanics that energy eigenvalues are better determined, i.e.
| s g w | less sensitive to small changes in the variational parameter,
095 BB g ;,,_,,_,,_;j_’_’_’_’_é than the wave functions themselves. The physical picture is a
two-dimensional analogue of the quark model, with the
¥(x) O--OPS,, p=0.80 swave nature of the PS state clearly distinguishable. Since
OO PS,, 3=0.80 the states are weakly bound, they have a larger spatial extent
oo | . :::::ﬁgd'rgzg:gg | than the corresponding QCD mesons, and hence are more
e ) prone to finite volume corrections. We have also studied the
Q. S wave functions in two distinct chirally symmetric phases, a
QQ T=(3 Ikphase forp>pL", and a hot phase fop!<p
e R <B""*. Because of the difficulties in reliably extracting a
085 - 5 m s 2 correlation length in either case, our study here has necessar-

x ily been more exploratory. Nonetheless we have seen evi-
dence for a clear channel dependence in the spatial correla-

tion of propagatingff pairs, which may now be due to a
continuum of scattering states rather than isolated bound
) ) . states. Interestingly, the clearest distinction between the two
state pole. The resulting wave functions ingR&nd PRt symmetric phases comes from a study of the fermion disper-
channels are shown in Fig. 9. The general shapes are veg{on relation, which yields a non-vanishing thermal mass for
similar to those seen in both chirally broken and bulk sym-na 1~ study. If we use our expectations from the laige-
metric phases, with the width of the wave function increas-ypnrgach, then the wave functions also provide evidence for
ing monotonically with3. In principle thex axis should be screening in the hot phase.

rescaled with the correlation length given by, *(T=0); The difficulties we have faced with finite volume effects
however, we have not done so singe=0.85 is extremely are intimately related to the details of the spectrum of the
close to the bulk critical pOint where finite volume correc- model. In a related StUdM8] we are ana'yzing the Spectra'
tions are large, making an estimate Mf((T=0) by any functions of the model using maximum entropy techniques.
other means than naively extrapolating from smaflersing  One advantage is that this approach permits analysis of the
v=1 impracticable. Instead, we note that the physical scal@uxiliary fields, corresponding in lattice QCD parlance to the
of the structure in Fig. 9 must shrink to zero As» 82", inclusion of disconnected quark line diagrams as well. It is
implying that the region wheréf interactions are important hoped that this complementary approach will also help to
becomes pointlike a8— . This could perhaps be explained resolve the issue of whether there are bound states in the

in terms of Debye screening of thid interaction due to Cchirally symmetric phases. _ _ o

thermal effects. Once again, we are unable to determine the Finally, another feature of GNMis that it permits simu-
issue of whether the mesons remain bound state3fof,  |ation with a non-zero chemical potential making studies
without a detailed study of the spectral function—the behavOf degenerate “quark matter” possibié4]. We are currently

ior of W(x) for large x is subject to large finite volume €Xtending our wave function studies to# 0, where a sharp
effects in this coupling regime. Fermi surface manifests itself byda(x) which fluctuates in

sign, demonstrating so-called Friedel oscillati¢24].

FIG. 9. PS wave functions in the highsymmetric phase. The
lattice size is 32x 16 and8=0.80,0.85.

. SUMMARY AND OUTLOOK
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