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The random-phase approximation is applied to coupled cluster expansions-+fdr) {&mensional S(B)
lattice gauge theory. The'0 glueball mass is calculated up to the fourth order. The result agrees with the
recent Monte Carlo result.
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. INTRODUCTION the ground state of SW) lattice gauge fields has the form
eR)|0), where|0) is the nude vacuum, defined IBf|0)

In an earlier papefl], we proposed a new scheme to =0, andR(U) is a functional of lattice gauge fields which
proceed coupled cluster expansions in lattice gauge theormay be determined by the eigenvalue equatiteR(V)|0)
(LGT), that is, to apply the random-phase approximai@®n _— ene®V)0), ie.,
to coupled cluster expansions. In coupled cluster expansions,
the linked clusters used to expand the wave functions consist A a . A
of Wilson loops at fixed relative orientation and separation Z {[EFLEF RV ITHET, RV ILE!, R(U) I}

[4—6]. When the gauge group is non-Abelian, the bases of

linked clusters are overcomplete, related to each other by the 2 £ 2a

unimodular condition of SU{) gauge group. It is trivial to - EE Tr(Up+Up)= o2 o 2
identify the independent clusters from this overcomplete set P
when the order of expansions is high, because the linkeg;p, €0

clusters contain_ many and complicated Wilson loops as the e exactly. Since the ground state has the form@xs{,
order of expansions increasls3]. We observe that clusters the coupled cluster methoCM) may be used to find its

gain at most one Wilson loop when the expansive order ing, proximate solution.

creases by 1. If we replace some loop in those clusters whose |, {he CCM, the linked clusters which are used to expand

loops have increased by 1 with its vacuum average valuqhe R(U) are products of Wilson loopk5,6,10,11. As we
then all clusters have the same number of loops, i.e., ONfointeqd out in Sec. I, the linked clusters are not completely

loop. It is difficult to identify the independent clusters from inde

I . ) pendent because the elements of theNgUWfauge group
those consisting of only one Wilson loop. Therefore, high- re unimodular. For example, the unimodular condition for
order expansions are able to do. Using this method, we stu he SU3) group is '

ied the vacuum state of the {21)-dimensional S(B) LGT.

The long-wavelength expansion coefficients of the vacuum Uit U iU kn€imn= €iik » 3
state show nice scaling behavior and convergéttdf this ' J

approximation is reasonable, it should also be possible to usghereU is any gauge link variable defined on a link. From

this method to study the low-energy exciting states. In thighjs, we may deduce some more convenient relations, such as
paper, we use this method to calculate the Qylueball mass

of (2+1)-dimensional S(B) LGT. TrUtV=TrU?vV—(TrU) TrUV+TrUu * TrV,

being the vacuum energy. Equati@®) is difficult to

4
Il. THE APPROXIMATED CLUSTER EXPANSIONS AND TrUVUQ=TrU TrVUQ+ TrU+2VUQ
THE GLUEBALL MASS
—-Tru*Tru*VvuQ,
We use the Kogut-Susskind Hamiltoniff|
. ) where U,V,Q are any Wilson loop. Those relations show

_2 2_ & + that the products of Wilson loops are related to each other
H=2%a E| Ei 94% TrUp+Up) |, @ and the linked clusters are not completely independent.
When the order of expansions is high, the linked clusters
whereg is the coupling constanE} is the “chromoelectric”  may be products of many Wilson loops, so that it is impos-
field on the linkl, anda is the lattice spacing. The dimen- sible to identify a set of independent clusters from those
sionless coupling constaugtis related to the invariant cou- linked clusters. That was the reason why we calculated the

pling constant e by g?=e?a in the case of cluster expansions only up to the third order in R¢f€],

(2+1)-dimensional S(B) LGT. According to Greensitg8],  [11].
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In Ref. [1], the random-phase approximation is used toto a physical consideration. A glueball has some finite size.
circumvent the above problem. In the following, we presentOnly when the space occupied by the glueball is covered
a description of it. Suppose we want to expaR(U) to  with the Wilson loops used in the expansions is the calcula-
orderM, tion efficient. So, we replace the smaller loop with its

vacuum average value in E(B).

M .
We use the Feynman-Hellman theorem to determine the
R(U):El Ri(U), ) vacuum average value of a Wilson loop. L&tbe some
Wilson loop and(G) be its vacuum average. Definingy
whereR,; is a linear combination of thigh-order linked clus- =(2a/g?)H, we make the following chande]:

ters with the coefficients to be determined. Substituting it t
into Eqg. (2) and adopting the truncation scheme of H&f, W=WHE6(G+G). ©

we get the truncated equation Using(G)=(G"), we have

M
ow
2 1| EL[EL2 Ri(U) 2AG)=—r . (10
I i=1 déal, _
£5=0
' ' wherew,=(2a/g?) e, .

+i+jE€M [Ei,Ri(U)][E, 'RJ(U)]J Introducing the average value of a Wilson loop in coupled

cluster expansions has been proposed in Rdf.However,
_ EE Tr(U,+UT)= @6 ©6) in their shifted coupled cluster method, clusters containing
g* %5 N many Wilson loops still exist, hence their method still suffers

from the problem of identifying a set of independent clusters.
Generally, the termiE, ,R/][E; ,R;] will produce some new Let us turn to the calculation of glueball mass. In the
clusters which are different from the clusters with order fromCCM, an excited state may be assumed tq3)&1,q
1to (i+j—1). These new clusters are defined as the (
+ j)th-order cluster$4,5,10. Therefore, Choosing the, to [F)=F(U)expR(U))[0), 1)

be whereF(U) is a functional of a lattice gauge field with ap-

i ies. "0 glueball state has the same

_ _ 7 propriate symmetries. The'0' g .
By = c11Gia = v D +hee.), @ symmetries as the ground state. Let us denote the state with
|Fs), thenF4(U) can be expanded by the same clusters as

with ¢, , being a coefficients to be determined, then high-those used in the ground state. The truncated eigenvalue
order clusters may be produced [ ,R][E;,R;] automati- ~ €quation withFs(U) being expanded to ordéd is
cally. In the usual CCM, these clusters may contain at most M
(i+)) Wilson loops. However, if we use the RPA, these Z HEI:[EMZ Fi(U)H
clusters will contain only one loop. IR; andR; are linear i=1
combinations of clusters which contain only one Wilson
loop, then the new clusters produced[ii ,R; ][ E;,R;] will 42 E
contain at most two loops. Applying the RPA to all those i+=
clusters which contain two loops, that is, replacing one of the "
two Wilson loops with its vacuum average value, we get all a
new clusters composed of only one Wilson loop,R;; is - ?Aeszl Fi(U),
also a linear combination of clusters with only one Wilson
loop. Now, the independent bases are obtained directly. As where Ae;=e,— €q is the mass gap ane; is defined by
byproduct, the number of independent bases of high-ordetl|Fs)=e€¢Fs). Let the 0°F glueball mass ben, thenm
expansions is much smaller than that without using the=Aes. Applying the RPA to the above calculation will be
random-phase approximation, hence the calculation is sinsimilar to that of the ground state. However, the situation
plified very much. seems not so simple. The result is not as good as we expect
In the above random-phase approximation, when the sizésee the third-order result without overlapping graphs in Fig.
of two Wilson loops is different, we replace the smaller onel). When applying the RPA, there are two possible ways to
with its vacuum average and let the larger one remain undeal with an overlapping Wilson loop. One is using the rela-
changed. For example, tion (4) to turn it into unoverlapping loop clusters. For ex-

ample,
T 1= ] -2 (13
There are two reasons to do so. One is that this is the easiest
and simplest way to apply the RPA. If we replace the largerafter the overlapping loop cluster on the left-hand side of
loop with its vacuum average, we need to determine man¥q. (13) is replaced with the clusters of the right-hand side of
more average values of Wilson loops. Another reason is dugq. (13), then the RPA is applied. Another way is preserving

" [E|,Ri(U)][E ij(U)]J

(12

~(] ®
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4 rdor? o ing the overlapping loop clusters. From the figure, we see
35 F orgeri ------- that the results obtained by using the RPA and preserving the
sk the 3rdorder result without overla pin%grael;]s overlapping loop clusters show better scaling behavior. That
N S the 3rd order result of Ref. [11] -~~~ the third order and fourth order results are close to each other
o B T shows that the result of our method converges rapidly.
g 2F T T — From the fourth order result, we obtain thé 0 glueball
1.5 F mass
N
m
05 | —=2.13+0.10, (14)
0 n n n n 1 n n n n 1 n n n n 1 n n n n e
0 0.5 1 15 2 . . .
112 where the error is the standard error in taking the average of

the fourth order data in the scaling region £.2/g°<1.7.

FIG. 1. m/e? as a function of 2. The curves denoted by The value 1g>~1.2 at which the scaling begins is close to
“order 2, 3, and 4" are the results obtained by using the RPA andthat in (2+1)-dimensional (1) [12] and SU2) [6] LGT,
preserving overlapping Wilson loop clusters. The curve denoted bynd almost the same as that in Ridf]. Having finished the
“the 3rd order result without overlapping graphs” is the third order paper, we found recent Monte Carlo research about the mass
result obtained by using the RPA but not preserving overlappin%pectrum of SU{) LGT in (2+1) dimensiong[13]. For

Wilson loop clusters. 0" * of SU(3), Teper gave

the clusters with one overlapping Wilson loop. In the expan- m P

sion of the ground state, we use the former, because it is \/——24-32941) and - =0.553020, (19
o

simpler than the latter one. However, it is probably too

simple for the glueball state. A glueball is a localized object.\here o is the string tension. Equatiofl5) gives m/e?
We expect the detailed structure of clusters to play a more_ 5 39 oyr approximation result is reasonable.
important role in a glueball state than in the vacuum state. gjnce this method is simple and the number of clusters is
Therefore, we take the latter one in the expansion of the, ch smaller than that in using the usual CCM, it is able to
glueball wave function. extrapolate this method to the more realistic cases, e.g.,
SU3) LGT in (3+1) dimensions.
Ill. THE RESULTS AND DISCUSSIONS

. . ACKNOWLEDGMENTS
In Fig. 1, we present the results wf e? against 1g? from

the second order to the fourth order. For comparison, we also The Project was supported by the Doctoral Program
plot the third order result without using the random-phase~oundation of the Institute of Higher Education of China,

approximation, taken from Ref11], and the third order re- and Guangdong Provincial Natural Science Foundation of
sult using the random-phase approximation but not presernchina.

[1] P. Hui, X. Y. Fang, and Q. Z. Chen, Phys. Rev6R 034505 [7] J. Kogut and L. Susskind, Phys. Rev.1D, 395 (1975.

(2000. [8] J. P. Greensite, Nucl. PhyB166, 113(1980.

[2] P. A. Wolff, Phys. Rev120 814(1960; T. Izuyama, D. Kim, [9] H. Kimmel, K. H. Lthrmann, and J. G. Zabolitzky, Phys. Rep.
and R. Kubo, J. Phys. Soc. Jd8, 1025(1963. 36, 1 (1978; J. Arponen, Ann. PhygN.Y.) 151, 311(1983.

[3] D. Schiite, W. H. Zheng, and C. J. Hamer, Phys. Revo® [10] Q. Z. Chen, X. Q. Luo, and S. H. Guo, Phys. Lett381, 349
2974(1997. (1995.

[4] C. H. Llewellyn Smith and N. J. Watson, Phys. Lett.3B2, [11] Q. Z. Chen, X. Q. Luo, S. H. Guo, and X. Y. Fang, Phys. Lett.
463 (1993. B 348 560 (1995.

[5] S. H. Guo, Q. Z. Chen, and L. Li, Phys. Rev4b, 507(1994). [12] X. Y. Fang, J. M. Liu, and S. H. Guo, Phys. Rev.93, 1523
[6] Q. Z. Chen, S. H. Guo, W. H. Zheng, and X. Y. Fang, Phys. (1996.
Rev. D50, 3564 (1994. [13] M. J. Teper, Phys. Rev. B9, 014512(1999.

114505-3



