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Fourth order approximation of the 0 ¿¿ glueball mass of„2¿1…-dimensional SU„3…
lattice gauge theory
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The random-phase approximation is applied to coupled cluster expansions for (211)-dimensional SU~3!
lattice gauge theory. The 011 glueball mass is calculated up to the fourth order. The result agrees with the
recent Monte Carlo result.
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I. INTRODUCTION

In an earlier paper@1#, we proposed a new scheme
proceed coupled cluster expansions in lattice gauge th
~LGT!, that is, to apply the random-phase approximation@2#
to coupled cluster expansions. In coupled cluster expansi
the linked clusters used to expand the wave functions con
of Wilson loops at fixed relative orientation and separat
@4–6#. When the gauge group is non-Abelian, the bases
linked clusters are overcomplete, related to each other by
unimodular condition of SU(N) gauge group. It is trivial to
identify the independent clusters from this overcomplete
when the order of expansions is high, because the lin
clusters contain many and complicated Wilson loops as
order of expansions increases@1,3#. We observe that cluster
gain at most one Wilson loop when the expansive order
creases by 1. If we replace some loop in those clusters wh
loops have increased by 1 with its vacuum average va
then all clusters have the same number of loops, i.e.,
loop. It is difficult to identify the independent clusters fro
those consisting of only one Wilson loop. Therefore, hig
order expansions are able to do. Using this method, we s
ied the vacuum state of the (211)-dimensional SU~3! LGT.
The long-wavelength expansion coefficients of the vacu
state show nice scaling behavior and convergence@1#. If this
approximation is reasonable, it should also be possible to
this method to study the low-energy exciting states. In t
paper, we use this method to calculate the 011 glueball mass
of (211)-dimensional SU~3! LGT.

II. THE APPROXIMATED CLUSTER EXPANSIONS AND
THE GLUEBALL MASS

We use the Kogut-Susskind Hamiltonian@7#

H5
g2

2a F(
l

El
22

2

g4 (
p

Tr~Up1Up
†!G , ~1!

whereg is the coupling constant,El
a is the ‘‘chromoelectric’’

field on the link l, anda is the lattice spacing. The dimen
sionless coupling constantg is related to the invariant cou
pling constant e by g25e2a in the case of
(211)-dimensional SU~3! LGT. According to Greensite@8#,
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the ground state of SU(N) lattice gauge fields has the form
eR(U)u0&, where u0& is the nude vacuum, defined byEl

au0&
50, andR(U) is a functional of lattice gauge fieldsU, which
may be determined by the eigenvalue equationHeR(U)u0&
5eVeR(U)u0&, i.e.,

(
l

$@El
a ,@El

a ,R~U !##1@El
a ,R~U !#@El

a ,R~U !#%

2
2

g4 (
p

Tr~Up1Up
†!5

2a

g2 eV , ~2!

with eV being the vacuum energy. Equation~2! is difficult to
solve exactly. Since the ground state has the form exp(S) @9#,
the coupled cluster method~CCM! may be used to find its
approximate solution.

In the CCM, the linked clusters which are used to expa
the R(U) are products of Wilson loops@5,6,10,11#. As we
pointed out in Sec. I, the linked clusters are not complet
independent because the elements of the SU(N) gauge group
are unimodular. For example, the unimodular condition
the SU~3! group is

Uil U jmUkne lmn5e i jk , ~3!

whereU is any gauge link variable defined on a link. Fro
this, we may deduce some more convenient relations, suc

TrU1V5TrU2V2~TrU !TrUV1TrU1TrV,
~4!

TrUVUQ5TrU TrVUQ1TrU12
VUQ

2TrU1TrU1VUQ,

where U,V,Q are any Wilson loop. Those relations sho
that the products of Wilson loops are related to each ot
and the linked clusters are not completely independe
When the order of expansions is high, the linked clust
may be products of many Wilson loops, so that it is impo
sible to identify a set of independent clusters from tho
linked clusters. That was the reason why we calculated
cluster expansions only up to the third order in Refs.@10#,
@11#.
©2002 The American Physical Society05-1
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In Ref. @1#, the random-phase approximation is used
circumvent the above problem. In the following, we pres
a description of it. Suppose we want to expandR(U) to
orderM,

R~U !5(
i 51

M

Ri~U !, ~5!

whereRi is a linear combination of thei th-order linked clus-
ters with the coefficients to be determined. Substituting
into Eq. ~2! and adopting the truncation scheme of Ref.@5#,
we get the truncated equation

(
l

H FEl ,FEl ,(
i 51

M

Ri~U !G G
1 (

i 1 j <M
@El ,Ri~U !#@El ,Rj~U !#J

2
2

g4 (
p

Tr~Up1Up
†!5

2a

g2 eV . ~6!

Generally, the term@El ,Ri #@El ,Rj # will produce some new
clusters which are different from the clusters with order fro
1 to (i 1 j 21). These new clusters are defined as thei
1 j )th-order clusters@4,5,10#. Therefore, Choosing theR1 to
be

~7!

with c1,1 being a coefficients to be determined, then hig
order clusters may be produced by@El ,Ri #@El ,Rj # automati-
cally. In the usual CCM, these clusters may contain at m
( i 1 j ) Wilson loops. However, if we use the RPA, the
clusters will contain only one loop. IfRi and Rj are linear
combinations of clusters which contain only one Wils
loop, then the new clusters produced by@El ,Ri #@El ,Rj # will
contain at most two loops. Applying the RPA to all tho
clusters which contain two loops, that is, replacing one of
two Wilson loops with its vacuum average value, we get
new clusters composed of only one Wilson loop, soRi 1 j is
also a linear combination of clusters with only one Wils
loop. Now, the independent bases are obtained directly. A
byproduct, the number of independent bases of high-o
expansions is much smaller than that without using
random-phase approximation, hence the calculation is s
plified very much.

In the above random-phase approximation, when the
of two Wilson loops is different, we replace the smaller o
with its vacuum average and let the larger one remain
changed. For example,

~8!

There are two reasons to do so. One is that this is the ea
and simplest way to apply the RPA. If we replace the lar
loop with its vacuum average, we need to determine m
more average values of Wilson loops. Another reason is
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to a physical consideration. A glueball has some finite s
Only when the space occupied by the glueball is cove
with the Wilson loops used in the expansions is the calcu
tion efficient. So, we replace the smaller loop with
vacuum average value in Eq.~8!.

We use the Feynman-Hellman theorem to determine
vacuum average value of a Wilson loop. LetG be some
Wilson loop and^G& be its vacuum average. DefiningW
5(2a/g2)H, we make the following change@4#:

W→W1jG~G1G†!. ~9!

Using ^G&5^G†&, we have

2^G&5
]w0

]jG
U

jG50

, ~10!

wherew05(2a/g2)eV .
Introducing the average value of a Wilson loop in coupl

cluster expansions has been proposed in Ref.@4#. However,
in their shifted coupled cluster method, clusters contain
many Wilson loops still exist, hence their method still suffe
from the problem of identifying a set of independent cluste

Let us turn to the calculation of glueball mass. In t
CCM, an excited state may be assumed to be@3,11,6#

uF&5F~U !exp„R~U !…u0&, ~11!

whereF(U) is a functional of a lattice gauge field with ap
propriate symmetries. The 011 glueball state has the sam
symmetries as the ground state. Let us denote the state
uFs&, thenFs(U) can be expanded by the same clusters
those used in the ground state. The truncated eigenv
equation withFs(U) being expanded to orderM is

(
l

H FEl ,FEl ,(
i 51

M

Fi~U !G G
12 (

i 1 j <M
@El ,Ri~U !#@El ,F j~U !#J

5
2a

g2 Des(
i 51

M

Fi~U !, ~12!

where Des5es2eV is the mass gap andes is defined by
HuFs&5esuFs&. Let the 011 glueball mass bem, then m
5Des . Applying the RPA to the above calculation will b
similar to that of the ground state. However, the situat
seems not so simple. The result is not as good as we ex
~see the third-order result without overlapping graphs in F
1!. When applying the RPA, there are two possible ways
deal with an overlapping Wilson loop. One is using the re
tion ~4! to turn it into unoverlapping loop clusters. For e
ample,

~13!

After the overlapping loop cluster on the left-hand side
Eq. ~13! is replaced with the clusters of the right-hand side
Eq. ~13!, then the RPA is applied. Another way is preservi
5-2
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the clusters with one overlapping Wilson loop. In the expa
sion of the ground state, we use the former, because
simpler than the latter one. However, it is probably t
simple for the glueball state. A glueball is a localized obje
We expect the detailed structure of clusters to play a m
important role in a glueball state than in the vacuum sta
Therefore, we take the latter one in the expansion of
glueball wave function.

III. THE RESULTS AND DISCUSSIONS

In Fig. 1, we present the results ofm/e2 against 1/g2 from
the second order to the fourth order. For comparison, we
plot the third order result without using the random-pha
approximation, taken from Ref.@11#, and the third order re-
sult using the random-phase approximation but not pres

FIG. 1. m/e2 as a function of 1/g2. The curves denoted by
‘‘order 2, 3, and 4’’ are the results obtained by using the RPA a
preserving overlapping Wilson loop clusters. The curve denoted
‘‘the 3rd order result without overlapping graphs’’ is the third ord
result obtained by using the RPA but not preserving overlapp
Wilson loop clusters.
ys
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ing the overlapping loop clusters. From the figure, we s
that the results obtained by using the RPA and preserving
overlapping loop clusters show better scaling behavior. T
the third order and fourth order results are close to each o
shows that the result of our method converges rapidly.

From the fourth order result, we obtain the 011 glueball
mass

m

e2 52.1360.10, ~14!

where the error is the standard error in taking the averag
the fourth order data in the scaling region 1.2<1/g2<1.7.
The value 1/g2;1.2 at which the scaling begins is close
that in (211)-dimensional U~1! @12# and SU~2! @6# LGT,
and almost the same as that in Ref.@1#. Having finished the
paper, we found recent Monte Carlo research about the m
spectrum of SU(N) LGT in (211) dimensions@13#. For
011 of SU~3!, Teper gave

m

As
54.329~41! and

As

e2 50.5530~20!, ~15!

where s is the string tension. Equation~15! gives m/e2

52.39. Our approximation result is reasonable.
Since this method is simple and the number of cluster

much smaller than that in using the usual CCM, it is able
extrapolate this method to the more realistic cases, e
SU~3! LGT in (311) dimensions.
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