
PHYSICAL REVIEW D, VOLUME 65, 114504
Perturbative study of a general class of lattice Dirac operators
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A perturbative study of a general class of lattice Dirac operators is reported, which is based on an algebraic
realization of the Ginsparg-Wilson relation in the formg5(g5D)1(g5D)g552a2k11(g5D)2k12 where k
stands for a non-negative integer. The choicek50 corresponds to the commonly discussed Ginsparg-Wilson
relation and thus to the overlap operator. We study one-loop fermion contributions to the self-energy of the
gauge field, which are related to the fermion contributions to the one-loopb function and to the Weyl anomaly.
We first explicitly demonstrate that the Ward identity is satisfied by the self-energy tensor. By performing
careful analyses, we then obtain the correct self-energy tensor free of infrared divergences, as a general
consideration of the Weyl anomaly indicates. This demonstrates that our general operators give correct chiral
and Weyl anomalies. In general, however, the Wilsonian effective action, which is supposed to be free of
infrared complications, is expected to be essential in the analyses of our general class of Dirac operators for the
dynamical gauge field.

DOI: 10.1103/PhysRevD.65.114504 PACS number~s!: 11.15.Ha
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I. INTRODUCTION

Recent developments in the treatment of fermions in
tice gauge theory are based on a Hermitian lattice Dirac
eratorg5D which satisfies the Ginsparg-Wilson relation@1#

g5D1Dg552aDg5D, ~1.1!

where the lattice spacinga is utilized to make a dimensiona
consideration transparent, andg5 is a Hermitian chiral Dirac
matrix. An explicit example of the operator satisfying E
~1.1! and free of species doubling has been given by N
berger@2#. The relation~1.1! led to an interesting analysis o
the notion of index in lattice gauge theory@3#. This index
theorem in turn led to a new form of chiral symmetry, a
the chiral anomaly is obtained as a non-trivial Jacobian f
tor under this modified chiral transformation@4#. This chiral
Jacobian is regarded as a lattice realization of that in
continuum path integral@5#. See Refs.@6# for reviews of
these developments.

We have recently studied a specific generalization of
algebra~1.1! @7#:

g5~g5D !1~g5D !g552a2k11~g5D !2k12, ~1.2!

wherek stands for a non-negative integer andk50 corre-
sponds to the ordinary Ginsparg-Wilson relation. When o
defines

H[g5aD, ~1.3!

Eq. ~1.2! is rewritten as

g5H1Hg552H2k12. ~1.4!

The algebra~1.4! is equivalent to a set of equations

H2k11g51g5H2k1152H2~2k11!,

H2g52g5H250, ~1.5!
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where the second relation is shown by using the defin
relation ~1.4!, and the first relation in Eq.~1.5! becomes
identical to the ordinary Ginsparg-Wilson relation~1.1! if
one definesH (2k11)5H2k11. One can thus construct a solu
tion to Eq.~1.5! by following the prescription used by Neu
berger@2#:

H ~2k11!5
1

2
g5F11DW

~2k11!
1

A~DW
~2k11!!†DW

~2k11!G
~1.6!

where

DW
~2k11![ i ~C” !2k111B2k112S m0

a D 2k11

. ~1.7!

Here we note that the conventional Wilson fermion opera
DW ~with a nonzero mass term! is given by

DW~x,y![ igmCm~x,y!1B~x,y!2
1

a
m0dx,y ,

Cm~x,y!5
1

2a
@dx1m̂a,yUm~y!2dx,y1m̂aUm

† ~x!#,

B~x,y!5
r

2a (
m

@2dx,y2dy1m̂a,xUm
† ~x!

2dy,x1m̂aUm~y!#,

Um~y!5exp@ iagAm~y!#. ~1.8!

The parameterr stands for the Wilson parameter. Our matr
convention is thatgm are anti-Hermitian, (gm)†52gm, and
thusC” [gmCm(n,m) is Hermitian:

C” †5C” . ~1.9!
©2002 The American Physical Society04-1
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The Hermitian operatorH itself is then finally defined by
~in the representation whereH (2k11) is diagonal!

H5~H ~2k11!!
1/2k11 ~1.10!

in such a manner that the second relation of Eq.~1.5! is
satisfied, which is in fact confirmed in the representat
where H (2k11) is diagonal@7#. Also the conditions 0,m0
,2r 52 and

2m0
2k1151 ~1.11!

ensure the absence of species doublers and a proper no
ization of the Dirac operatorH.

The locality properties are crucial in any construction
the lattice Dirac operator, and the locality of the stand
overlap operator withk50 has been established by Herna
dez, Jansen and Lu¨scher@10#, and by Neuberger@11#.

As for the direct proof of locality of the operatorD for
generalk, it is shown for the vanishing gauge field by usin
the explicit solution for the operatorH in momentum repre-
sentation@12,9#

H~apm!5g5S 1

2D ~k11!/~2k11!S 1

AHW
2 D ~k11!/~2k11!H ~AHW

2

1Mk!
~k11!/~2k11!2~AHW

2 2Mk!
k/~2k11!

s”

aJ
5g5S 1

2D ~k11!/~2k11!S 1

AF ~k!
D ~k11!/~2k11!

$~AF ~k!

1M̃ k!
~k11!/~2k11!2~AF ~k!2M̃ k!

k/~2k11!s”%,

~1.12!

where

F ~k!5~s2!2k111M̃ k
2,

M̃ k5F(
m

~12cm!G2k11

2m0
2k11 ~1.13!

and

sm5sinapm ,

cm5cosapm ,

s”5gm sinapm . ~1.14!

For k50, this operator is reduced to Neuberger’s over
operator@2#. Here the inner product is defined to bes2>0.
This operator for an infinitesimalpm , i.e., for uapmu!1,
gives rise to

H.2g5ap” „11O~ap!2
…1g5~g5ap” !2k12 ~1.15!

to be consistent withH5g5aD; the last term in the right-
hand side is the leading term of chiral symmetry break
11450
n
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terms. The locality of this explicit construction~1.12! has
been shown by examining the analytic properties in the B
louin zone@12#.

It is important to recognize that this operator is not u
tralocal but exponentially local@13#; the operatorH(x,y) in
Eq. ~1.12! decays exponentially for large separation in co
dinate representation as@12#

H~x,y!;exp@2ux2yu/~2.5ka!#. ~1.16!

An explicit analysis of the locality of the operatorH (2k11)
5H2k11 ~not H itself! in the presence of gauge field, i
particular, the locality domain for the gauge field streng
iFmni has been performed. The locality domain foriFmni
becomes smaller for largerk, but a definite nonzero domai
has been established@12#. The remaining task is to show th
locality of the operatorH5(H (2k11))

1/(2k11) itself in the
presence of gauge field. Due to the operation of taking
(2k11)th root, an explicit analysis has not been perform
yet, though a supporting argument has been given in R
@12#.

It has been shown that all the good chiral properties of
overlap operator@2# are retained in the generalization in E
~1.4! @8,9#. The practical applications of this generalized o
eratorD are not known at this moment. We however menti
the characteristic properties of this generalization: The sp
trum near the continuum configuration is closer to that
continuum theory and the chiral symmetry breaking ter
become more irrelevent in the continuum limit fork.0. The
operator however spreads over more lattice points for lar
k, as is indicated in Eq.~1.16!.

In this paper we study a perturbative aspect of the gen
class of Dirac operators. To be specific, we study the o
loop fermion contribution to the gauge field self-energ
which is related to theb function and to the Weyl anomaly

II. SELF-ENERGY TENSOR, b-FUNCTION
AND WEYL ANOMALY

The lattice perturbation theory is very tedious in gene
@14–22#, and it is more so in our generalization. For th
reason, we study the simplest diagrams related to the o
loop self-energy correction to gauge fields. This effect is a
related to the fermion contribution to the lowest ord
b-function and to the Weyl anomaly@23,24#. A rather general
analysis of Weyl anomaly is possible, and we first brie
summarize it.

In the standard continuum formulation, one starts with
path integral defined in a background curved space@25#

E dm expF E d4xAgc̄ iD” c G . ~2.1!

The general coordinate invariant path integral measure is
fined by

dm5Dc! Dc̃ ~2.2!

and the Weyl transformation laws are given by
4-2
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ea
m~x!→exp@a~x!#ea

m~x!,

c̃~x![~g!1/4c~x!→expF2
1

2
a~x!G c̃~x!,

c! ~x![~g!1/4c̄~x!→expF2
1

2
a~x!Gc! ~x!, ~2.3!

whereea
m(x) stands for the vierbein. This transformation la

is fixed by the invariance of the action in the above p
integral under a global~i.e., constant! a, and the Weyl weight
factor of fermionic variables is essentially defined by t
vierbein inD” 5ea

m(x)gaDm .
The Jacobian for this transformation of fermionic va

ables is given by

ln J~a!5 lim
M→`

Tr a~x!exp@2~D” /M !2#

5Tr a~x!
g2

24p2 FmnFmn, ~2.4!

where the mode cutoff ofD” is provided bye2(ln /M )2
in

terms of the eigenvalues ofD” . See Ref.@25# for further
details.

When one analyzes the higher derivative theory

L2k115E d4xAgc̄ i~D” !2k11c, ~2.5!

the Weyl transformation laws are given by

ea
m~x!→exp@a~x!#ea

m~x!,

c̃~x!5~g!1/4c~x!→expF2
2k11

2
a~x!G c̃~x!,

c̃̄~x!5~g!1/4c̄~x!→expF2
2k11

2
a~x!Gc! ~x! ~2.6!

and the Weyl anomaly is given by

ln J2k11~a!5 lim
M→`

Tr~2k11!a~x!

3exp@2„~D” !2k11/M2k11
…

2#. ~2.7!

Since the Weyl anomaly is independent of the regulator fu
tion @25#, we have

ln J2k11~a!5~2k11!ln J~a!. ~2.8!

This relation~2.8! is also understood from a viewpoint o
the self-energy correction to the gauge field as follows:

det~D” !2k11

5exp@~2k11!Tr lnD” #

5exp@~2k11!Tr ln~]”2 igA” !#

5expF ~2k11!Tr ln ]”2
2k11

2
~ ig !2Tr

1

]”
A”

1

]”
A” 1¯G .

~2.9!
11450
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The term quadratic in the gauge fieldAm gives the self-
energy correction, which is 2k11 times larger than the self
energy correction generated by detD” .

This analysis of the self-energy correction is applicable
the present lattice operator. By our definition in Eq.~1.10!
we have

exp@Tr ln H#5exp@Tr ln H ~2k11!
1/~2k11!#

5expF 1

2k11
Tr ln H ~2k11!G . ~2.10!

For a sufficiently small coupling constantg, we have

exp@Tr ln H#5exp@Tr ln H ~0!1Tr g2Am~x!O~x,y!mnAn~y!

1O~g3!#, ~2.11!

whereH (0) stands for the free Dirac operator given in E
~1.12!, and the second term stands for the lowest order te
in the effective potential and thus for the lowest order se
energy correction to the gauge field. Similarly, we have

expF 1

2k11
Tr ln H ~2k11!G

5expF 1

2k11
Tr ln H ~2k11!

~0! 1
1

2k11
Tr g2Am~x!

3Õ~x,y!mnAn~y!1O~g3!G , ~2.12!

where Tr lnH(2k11)
(0) stands for the free part ofH (2k11) . Those

zeroth order terms satisfy the relation

Tr ln H ~0!5
1

2k11
Tr ln H ~2k11!

~0! ~2.13!

if one uses the explicit form of the operator in Eq.~1.12!.
We thus conclude

Tr g2Am~x!O~x,y!mnAn~y!

5
1

2k11
Tr g2Am~x!Õ~x,y!mnAn~y! ~2.14!

for a sufficiently small coupling constantg, which shows that
the lowest order self-energy correction in the left-hand s
for the operatorH is evaluated by the self-energy correctio
in terms ofH (2k11) . We use this relation for the evaluatio
of the lowest order self-energy correction for anyk>1. Note
that the operatorH (2k11)5H2k11 is much better understoo
than H itself in our construction. We also confirm that th
relation~2.14! is in fact valid by evaluating the left-hand sid
directly for the simplest casek51.

From a viewpoint of Weyl anomaly, one may tentative
take
4-3
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lim
M→`

Tr~2k11!a~x!exp@2„H ~2k11! /~aM!2k11
…

2#

→ lim
M→`

Tr~2k11!a~x!

3exp@2„~D” !2k11/M2k11
…

2# ~2.15!

as a lattice version of the Weyl anomaly. We then obtain
same result as the self-energy correction in the limita→0,
although no systematic formulation of Weyl anomaly on t
lattice is known.

FIG. 1. Feynman diagrams for the vacuum polarization.
11450
e

In lattice perturbative calculations, however, we should
careful of the possible appearance of infrared divergen
which should cancel in the final result. We show that a ca
ful analysis gives the correct result of continuum theory fr
of infrared divergences fora→0.

III. THE VACUUM POLARIZATION TENSOR BY H
„2k¿1…

In this section, we calculate the one-loop fermion con
bution to the vacuum polarizationPmn on the basis of the
operatorH (2k11) ~and notH itself! following the analyses in
Sec. II. We first show that the Ward identity is satisfied to
consistent with gauge invariance and that there appea
divergences except for the logarithmic divergence fora
→0. We then discuss the gauge field wave function ren
malization factor.

Feynman diagrams for the vacuum polarization with f
mion one loop are shown in Fig. 1, and the necessary Fe
man rules are given in Appendix A.

The amplitude corresponding to Fig. 1~a! is given in terms
of the notation in Appendix A by@by using tr(TATB)
51/2dAB andNf flavors in QCD#
Pmn
~a!~p!5

2g2

4a4k12

Nf

2
dABE

t

1

$w~ t !1w~ t1p!%2trFD0
21~ t !g5H X1m~ t,t1p,2p!2

X0~ t !

w~ t !
X1m

† ~ t,t1p,2p!
X0~ t1p!

w~ t1p! J
3D0

21~ t1p!g5H X1n~ t1p,t,p!2
X0~ t1p!

w~ t1p!
X1n

† ~ t1p,t,p!
X0~ t !

w~ t ! J G . ~3.1!

We omit the factordAB from now on.
The amplitude corresponding to Fig. 1~b! is similarly given by

Pmn
~b!~p!5

g2

2a2k11

Nf

2 E
t
tr FD0

21~ t !g5

1

2w~ t ! FX2mn~ t,t,2p,p!2
X0~ t !

w~ t !
X2mn

† ~ t,t,2p,p!
X0~ t !

w~ t !
2

1

„w~ t !1w~ t1p!…2

3H X1m~ t,p1t,2p!X1n
† ~p1t,t,p!X0~ t !1X1m~ t,p1t,2p!X0

†~p1t !X1n~p1t,t,p!

1X0~ t !X1m
† ~ t,p1t,2p!X1n~p1t,t,p!2

2w~ t !1w~p1t !

w~ t !2w~p1t !
X0~ t !X1m

† ~ t,p1t,2p!X0~p1t !X1n
† ~p1t,t,p!X0~ t !J

1X2nm~ t,t,p,2p!2
X0~ t !

w~ t !
X2nm

† ~ t,t,p,2p!
X0~ t !

w~ t !
2

1

„w~ t !1w~ t2p!…2

3H X1n~ t,t2p,p!X1m
† ~ t2p,t,2p!X0~ t !1X1n~ t,t2p,p!X0

†~ t2p!X1m~ t2p,t,2p!1X0~ t !

3X1n
† ~ t,t2p,p!X1n~ t2p,t,2p!2

2w~ t !1w~ t2p!

w~ t !2w~ t2p!
X0~ t !X1n

† ~ t,t2p,p!X0~ t2p!X1m
† ~ t2p,t,2p!X0~ t !J G G .

~3.2!
4-4
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A. Ward identity

We first show that the Ward identity forPmn as a manifestation of gauge invariance holds as follows,

(
n

p̃n„Pmn
~a!~p!1Pmn

~b!~p!…50, ~3.3!

wherep̃n5(2/a)sinapn /2.1 For this purpose we first calculate(np̃nX1n and(np̃nX2mn . For (np̃nX1n we have

a2k11(
n

p̃nX1n~ t1p,t,p!5 (
l 1m52k

F i ~ is” t1p! l~ is” t1p2 is” t!i ~ is” t!
m1S r(

r
„12cos~ t1p!ra…D l

3H S r(
r

„12cos~ t1p!ra…D 2S r(
r

~12costra! D J S r(
r

~12costra! D mG
5 i ~ is” t1p!2k111S r(

r
„12cos~ t1p!ra…D 2k11

2m0
2k11

2H i ~ is” t!
2k111S r(

r
~12costra! D 2k11

2m0
2k11J

5a2k11$X0~ t1p!2X0~ t !%, ~3.4!

and further we have

(
n

p̃nS X1n~ t1p,t,p!2
X0~ t1p!

w~ t1p!
X1n

† ~ t1p,t,p!
X0~ t !

w~ t ! D52g5a2k11
„w~ t1p!1w~ t !…„D0~p1t !2D0~ t !…, ~3.5!

where we used the following relations:

(
n

p̃ngn cos~ t1p/2!na5
1

a
~s” t1p2s” t!, ~3.6!

(
n

p̃nr sin~ t1p/2!na5
1

a H S r(
r

„12cos~ t1p!ra…D 2S r(
r

~12costra! D J . ~3.7!

Using the above relations, we also have

a2k(
n

p̃nX2mn~ t,t,2p,p!5 (
l 1m52k

F i ~ is” t!
l Xigm cosS t1

p

2D
m

aC~ is” t1p!m2 i ~ is” t!
l Xigm cosS t1

p

2D
m

aC~ is” t!
m

1S r(
r

~12costra! D l Xr sinS t1
p

2D
m

aCS r(
r

„12cos~ t1p!ra…D m

2S r(
r

~12costra! D l Xr sinS t1
p

2D
m

aCS r(
r

~12costra! D m

1
1

2 H i ~ is” t!
l Xigm cosS t1

p

2D
m

a2 igm cosS t2
p

2D
m

aC~ is” t!
m

1S r(
r

~12costra! D l Xr sinS t1
p

2D
m

a2r sinS t2
p

2D
m

aC3S r(
r

~12costra! D mJ G . ~3.8!

1The Ward identity in the case of the overlap Dirac operator has been confirmed explicitly in Ref.@20#.
114504-5
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Therefore we obtain

(
n

p̃n@X2mn~ t,t,2p,p!1X2nm~ t,t,p,2p!#5X1m~ t,t1p,2p!2X1m~ t2p,t,2p!. ~3.9!

By using these relations,(np̃nPmn
(a)(p) is written as

(
n

p̃nPmn
~a!~p!5

2g2

2a2k11

Nf

2 E
t

1

$w~ t !1w~ t1p!%
trF$D0

21~ t !2D0
21~ t1p!%g5

3H X1m~ t,t1p,2p!2
X0~ t !

w~ t !
X1m

† ~ t,t1p,2p!
X0~ t1p!

w~ t1p! J G , ~3.10!

and similarly(np̃nPmn
(b)(p) is written as

(
n

p̃nPmn
~b!~p!5

g2

2a2k11

Nf

2 E
t
tr FD0

21~ t !g5 F 1

w~ t !1w~ t1p! H X1m~ t,t1p,2p!2
X0~ t !

w~ t !
X1m

† ~ t,t1p,2p!
X0~ t1p!

w~ t1p! J
2

1

w~ t !1w~ t2p! H X1m~ t2p,t,2p!2
X0~ t2p!

w~ t2p!
X1m

† ~ t2p,t2p!
X0~ t !

w~ t ! J G G
5

g2

2a2k11

Nf

2 E
t
trF $D0

21~ t !2D0
21~ t1p!%g5

3F 1

w~ t !1w~ t1p! H X1m~ t,t1p,2p!2
X0~ t !

w~ t !
X1m

† ~ t,t1p,2p!
X0~ t1p!

w~ t1p! J G G . ~3.11!

Combining these two expressions, the Ward identity for the vacuum polarization tensor holds as in Eq.~3.3!. This Ward
identity dictates the tensor structure ofPmn(p) for small pm to be

Pmn~p!.~p2dmn2pmpn!P~a2p2!. ~3.12!

B. Structure of divergences

We next examine the structure of various divergences. To evaluate the divergent parts ofPmn
(a)(p) andPmn

(b)(p), we rescale
the integration momentatm→tm /a in each amplitude~3.1! and ~3.2!. For QCD withNf flavors, we obtain

Pmn
~a!~p!5

2Nfg
2

8a2 E
t

1

$w~ t !1w~ t1pa!%2 tr F H ~st
2!ks” t

w~ t !1M ~ t !
11J

3H X1m~ t,t1pa,2pa!2
X0~ t !

w~ t !
X1m

† ~ t,t1pa,2pa!
X0~ t1pa!

w~ t1pa! J
3H ~st1pa

2 !ks” t1pa

w~ t1pa!1M ~ t1pa!
11J H X1n~ t1pa,t,pa!2

X0~ t1pa!

w~ t1pa!
X1n

† ~ t1pa,t,pa!
X0~ t !

w~ t ! J G ~3.13!

and
114504-6
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Pmn
~b!~p!5

Nfg
2

4a2 E
t
tr F H ~st

2!s” t

w~ t !1M ~ t !
11J 1

2w~ t ! FX2mn~ t,t,2pa,pa!2
X0~ t !

w~ t !
X2mn

† ~ t,t,2pa,pa!
X0~ t !

w~ t !

2
1

„w~ t !1w~ t1pa!…2 H X1m~ t,pa1t,2pa!X1n
† ~pa1t,t,pa!X0~ t !

1X1m~ t,pa1t,2pa!X0
†~pa1t !X1n~pa1t,t,pa!1X0~ t !X1m

† ~ t,pa1t,2pa!X1n~pa1t,t,pa!

2
2w~ t !1w~pa1t !

w~ t !2w~pa1t !
X0~ t !X1m

† ~ t,pa1t,2pa!X0~pa1t !X1n
† ~pa1t,t,pa!X0~ t !J

1X2nm~ t,t,pa,2pa!2
X0~ t !

w~ t !
X2nm

† ~ t,t,pa2pa!
X0~ t !

w~ t !
2

1

„w~ t !1w~ t2pa!…2

3H X1n~ t,t2pa,pa!X1m
† ~ t2pa,t,2pa!X0~ t !1X1n~ t,t2pa,pa!X0

†~ t2pa!X1m~ t2pa,t,2pa!

1X0~ t !X1n
† ~ t,t2pa,pa!X1m~ t2pa,t,2pa!2

2w~ t !1w~ t2pa!

w~ t !2w~ t2pa!

3X0~ t !X1n
† ~ t,t2pa,pa!X0~ t2pa!X1m

† ~ t2pa,t,2pa!X0~ t !J G G , ~3.14!

where* t[*2p
p d4t/(2p)4. In the above two equationsw, X0 , X1m , X2mn are appropriately redefined according to the resca

of tm . For example,

w~ t !5A~st
2!2k111H S r(

r
~12costr! D 2k11

2~m0!2k11J 2

, ~3.15!

wherest
25(m sin2 tm .

We first want to show that there are no nonlocal divergences of the formsp2/(a2p2)n or pmpn /(a2p2)n (n>2). For this
purpose we confirm that Eq.~3.13! and Eq.~3.14! are not singular forp50. Settingp50 in these equations, we have

Pmn
~a!~0!5

2Nfg
2

8a2 E
t

1

4w~ t !2 tr F H ~st
2!ks” t

w~ t !1M ~ t !
11J H X1m~ t,t,0!2

X0~ t !

w~ t !
X1m

† ~ t,t,0!
X0~ t !

w~ t ! J
3H ~st

2!ks” t

w~ t !1M ~ t !
11J H X1n~ t,t,0!2

X0~ t !

w~ t !
X1n

† ~ t,t,0!
X0~ t !

w~ t ! J G ~3.16!

and

Pmn
~b!~0!5

Nfg
2

4a2 E
t
trF H ~st

2!ks” t

w~ t !1M ~ t !
11J 1

2w~ t ! FX2mn~ t,t,0,0!2
X0~ t !

w~ t !
X2mn

† ~ t,t,0,0!
X0~ t !

w~ t !
2

1

4w~ t !2

3H X1m~ t,t,0!X1n
† ~ t,t,0!X0~ t !1X1m~ t,t,0!X0

†~ t !X1n~ t,t,0!1X0~ t !X1m
† ~ t,t,0!X1n~ t,t,0!

2
3

w~ t !2 X0~ t !X1m
† ~ t,t,0!X0~ t !X1n

† ~ t,t,0!X0~ t !J 1X2nm~ t,t,0,0!2
X0~ t !

w~ t !
X2nm

† ~ t,t,0,0!
X0~ t !

w~ t !
2

1

4w~ t !2

3H X1n~ t,t,0!X1m
† ~ t,t,0!X0~ t !1X1n~ t,t,0!X0

†~ t !X1m~ t,t,0!1X0~ t !X1n
† ~ t,t,0!X1m~ t,t,0!

2
3

w~ t !2 X0~ t !X1n
† ~ t,t,0!X0~ t !X1m

† ~ t,t,0!X0~ t !J G G . ~3.17!
114504-7
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Now on the basis of the expressions ofw, X0 , X1m andX2mn

and the fact that there are no doublers, the possible sing
ity may occur only around the regiont.0 in each integral.
Only the fermion propagators can exhibit singular behav
for t.0. The leading singularity int in Pmn

(a)(0) vanishes as

Pmn
~a!~0!'E

t2,d2
trF t”

~ t2!k11 ~ t2!kgm

t”

~ t2!k11 ~ t2!kgnG;0

~d!1!, ~3.18!

and similarly the leading singularity inPmn
(b)(0) vanishes as

Pmn
~b!~0!'E

t2,d2
trF t”

~ t2!k11 gmgn~ t2!k21t”G;0

~d!1!. ~3.19!

Higher order terms int are obviously nonsingular. Since bo
Pmn

(a)(0) andPmn
(b)(0) are not singular,Pmn(p) does not have

the nonlocal divergences of the formsp2/(a2p2)n or
pmpn /(a2p2)n (n>2).

There may still exist the quadratic divergence inPmn(p).
From Eq. ~3.3!, the form of the quadratic divergence fo
small pm is

1

a2 S dmn2
p̃mp̃n

p̃2 DC, ~3.20!

with a constantC. We have already established that thepm
→0 limit of Pmn(p) is well-defined, which excludes th
singular termp̃mp̃n / p̃2; this term depends on the direction
the approachpm→0. We thus concludeC50, namely, the
quadratic divergences cancel between diagrams~a! and ~b!.

Next we confirm that there are no divergences of
structure such asa2p23`, etc. which vanish in the naive
continuum limit. These unusual divergences, which may
termed as infrared singularities, may occur in our treatm
of H (2k11) which corresponds to a higher derivative theo
on the lattice. These divergences, if they should exist, co
appear in the integration region aroundt.0 and could re-
main even for arbitrarily smallp. Therefore we evaluate
Pmn

(a)(p) ~3.13! and Pmn
(b)(p) ~3.14! for t2,d2 and ap;0.

After a straightforward calculation, we obtain
11450
ar-

r

e

e
nt

ld

Pmn
~a!~p!.2

Nfg
2

2a2 E
t2,d2

trF 1

~ i t” !2k11

3S (
l 1m52k

~ i t” ! l igm„i ~ t”1p”a!…mD
3

1

„i ~ t”1p”a!…2k11

3S (
l 1m52k

„i ~ t”1p”a!…l ign~ i t” !mD G ,
~3.21!

Pmn
~b!~p!.

Nfg
2

2a2 E
t2,d2

trF 1

~ i t” !2k11

3H (
l 1m1n52k21

~ i t” ! l igm„i ~ t”

1p”a!…mign~ i t” !n

1 (
l 1m1n52k21

~ i t” ! l ign„i ~ t”

2p”a!…migm~ i t” !nJ G . ~3.22!

These amplitudes~a! and ~b! separately could contain infra
red singularities. The cancellation between the amplitudes~a!
and ~b! further takes place as

Pmn
~a!~p!1Pmn

~b!~p!

.2
Nfg

2

2a2 ~2k11!E
t2,d2

trF 1

i t”
igm

1

i ~ t”1p”a!
ignG .
~3.23!

This final expression, which has the same structure as th
continuum theory, means that there are no divergences
asa2p23`, etc.

Finally, we investigate the logarithmic divergence. Fro
the above analyses, we know thatPmn(p) does not have the
divergences of the negative power ina. Therefore if there is
the logarithmic divergence inPmn(p), it appears from the
singular part in the integral fora→0 and thus the singula
part should appear in the integration region aroundt.0. We
first evaluatePmn

(a)(p). There are several ways to extract th
logarithmic divergence@21,22#. Here we use the procedur
discussed in the paper by Karsten and Smit@21#. First, the
denominators of the propagator are combined using Fe
man parameters and the integration variables are shiftetm
→tm2pmax as follows:
4-8
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Pmn
~a!~p!5

2Nfg
2

8a2

G~4k12!

„G~2k11!…2
E

2p1pax

p1pax d4t

~2p!4 E
0

1

dx
x2k~12x!2k

$w~ t2pax!1w„t1pa~12x!…%2

3
1

@a~12x!1bx#4k12trF ~st2pax
2 !ks” t2paxH X1m„t2pax,t1pa~12x!,2pa…

2
X0~ t2pax!

w~ t2pax!
X1m

†
„t2pax,t1pa~12x!,2pa…

X0„t1pa~12x!…

w„t1pa~12x!… J
3~st1pa~12x!

2 !ks” t1pa~12x!H X1n„t1pa~12x!,t2pax,pa…

2
X0„t1pa~12x!…

w„t1pa~12x!…
X1n

†
„t1pa~12x!,t2pax,pa…

X0~ t2pax!

w~ t2pax! J G , ~3.24!

where2

a[$w~ t2pax!1M ~ t2pax!%1/~2k11!, ~3.25!

b[$w„t1pa~12x!…1M „t1pa~12x!…%1/~2k11!. ~3.26!

Then we split the integration domain into two regions as follows

E
t2

5E
t2,d2

1E
t2.d2

, d!1, ~3.27!

and we evaluate thet2,d2 part in the continuum limit, ignoring thet2.d2 part which does not contain divergence. Equati
~3.24! is the complicated integral including sines and cosines. However fort2,d2 and a→0 with fixed smallpm we can
expand both the denominator and the numerator of Eq.~3.24! separately in powers oft anda, and we have

Pmn
~a!~p!.

2Nfg
2

2a2

G~4k12!

„G~2k11!…2
E

t2,d2

d4t

~2p!4 E
0

1

dx
x2k~12x!2k

$t21p2a2x~12x!%4k12

3trF i @ i ~ t”2p”ax!#2k11H (
0< l<2k

i @ i ~ t”2p”ax!# l igm@ i „t”1p”a~12x!…#2k2 l J
3 i @ i „t”1p”a~12x!…#2k11H (

0<m<2k
i @ i „t”1p”a~12x!…#mign@ i ~ t”2p”ax!#2k2mJ G . ~3.28!

We next evaluatePmn
(b)(p) in a similar way and we obtain

Pmn
~b!~p!.

2Nfg
2

2a2

G~4k12!

„G~2k11!…2
E

t2,d2

d4t

~2p!4 E
0

1

dx
x2k~12x!2k

$t21p2a2x~12x!%4k12

3trF @ i „t”1p”a~12x!…#4k12i @ i ~ t”2p”ax!#2k11

3H (
0< l 1m<2k21

i @ i ~ t”2p”ax!# l igm@ i „t”1p”a~12x!…#mign@ i ~ t”2p”ax!#2k212 l 2mJ
1@ i ~ t”2p”ax!#4k12i @ i „t”1p”a~12x!…#2k11

3H (
0< l 1m<2k21

i @ i „t”1p”a~12x!…# l ign@ i ~ t”2p”ax!#migm@ i „t”1p”a~12x!…#2k212 l 2mJ G . ~3.29!

2We used the Feynman formula:

1

a2k11b2k11 5
G~4k12!

G~2k11!G~2k11! E0

1

dx
x2k~12x!2k

@ax1b~12x!#4k12 .
114504-9
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In this wayPmn(p)[Pmn
(a)(p)1Pmn

(b)(p) is written as

Pmn~p!.
2Nfg

2

2a2

G~4k12!

„G~2k11!…2
E

t2,d2

d4t

~2p!4 E
0

1

dx
x2k~12x!2k

$t21p2a2x~12x!%4k12

3~2k11!~ t2pax!4k
„t1pa~12x!…4ktr@~ t”2p”ax!gm„t”1p”a~12x!…gn#. ~3.30!

The singular part corresponding to the logarithmic divergence is obtained from the leading part int anda. Noting the spherical
symmetry of the integral and droppingO(a3) terms in the numerator, the singular part is given by

Pmn~p!.
2Nfg

2

2a2 E
t2,d2

d4t

~2p!4 E
0

1

dx
x2k~12x!2k

$t21p2a2x~12x!%4k12 4~2k11!F2
1

2
~ t2!4k11dmn

1~ t2!4kp2a2dmnH 2„x21~12x!2
…S 4

3
k21

4

3
kD1x~12x!S 8

3
k212k11D J

1~ t2!4kpmpna2H „x21~12x!2
…S 4

3
k21

4

3
kD2x~12x!S 8

3
k214k12D J G . ~3.31!

After some calculations, the term proportional to logp2a2 is obtained as~by restoring the factordAB!

~2k11!dAB
Nfg

2

24p2 ~p2dmn2pmpn!log p2a2. ~3.32!

Combined with the general analysis~2.14! in the previous section, we conclude that the divergent part of the gauge
renormalization factor arising from fermion one-loop diagrams for the general Dirac operatorD5(g5 /a)H is given by

ZA511
Nfg

2

24p2 logm2a2, ~3.33!

wherem is the renormalization scale. This factor indeed reproduces the correct result for the QCD-type continuum
@23,24#.

Incidentally, the result~3.32! could also be directly obtained from Eq.~3.23!, which corresponds to 2k11 times the vacuum
polarization tensor generated by a conventional massless fermion.

IV. THE VACUUM POLARIZATION TENSOR FOR H WITH kÄ1

In this section we calculate the one-loop fermion contribution to the vacuum polarization tensorPmn on the basis ofH with
the simplest casek51. We perform essentially the same analysis as in the previous section.

Feynman diagrams for the vacuum polarization with a fermion loop are shown in Fig. 1, and the necessary Feynm
are given in Appendix B.

The amplitude corresponding to Fig. 1~a! is given by~for QCD with Nf flavors!

Pmn
~a!~p!5

2g2

a2

Nf

2
dABE

t

1

a~ t,t1p!2 tr@D0
21~ t !$D~ t,t1p!g5H ~3!1m~ t,t1p,2p!

2g5H0~ t !„g5H ~3!1m~ t,t1p,2p!…†g5H0~ t1p!% D0
21~ t1p!$D~ t1p,t !g5H ~3!1n~ t1p,t,p!

2g5H0~ t1p!„g5H ~3!1n~ t1p,t,p!…†g5H0~ t !%#. ~4.1!

The amplitude corresponding to Fig. 1~b! is

Pmn
~b!~p!5

g2

a

Nf

2
dABE

t
trFD0

21~ t !
1

a~ t,t !
$D~ t,t !g5H ~3!2mn~ t,t,2p,p!2g5H0~ t !„g5H ~3!2mn~ t,t,2p,p!…†g5H0~ t !

2H0~ t !2g5H1m~ t,t1p,2p!„g5H1n~ t1p,t,p!…†g5H0~ t !22H0~ t !2g5H1m~ t,t1p,2p!

3„g5H0~ t1p!…†g5H1n~ t1p,t,p!2H0~ t !2g5H0~ t !„g5H1m~ t,t1p,2p!…†g5H1n~ t1p,t,p!

1g5H0~ t !„g5H1m~ t,t1p,2p!…†g5H0~ t1p!„g5H1n~ t1p,t,p!…†g5H0~ t !1~p,m↔2p,n!% G , ~4.2!
114504-10
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where

g5H1n~ t1p,t,p!5
1

a~ t,t1p!
$D~ t1p,t !g5H ~3!1n~ t1p,t,p!2g5H0~ t1p!„g5H ~3!1n~ t1p,t,p!…†g5H0~ t !%. ~4.3!

We first show that the Ward identity forPmn holds in this case also. From the analysis in Sec. III A, we obtain

(
n

p̃n„g5H ~3!2mn~ t,t,2p,p!1g5H ~3!2mn~ t,t,p,2p!…5g5H ~3!1m~ t,t1p,2p!2g5H ~3!1m~ t2p,t,2p!. ~4.4!

Using these relations(np̃nPmn
(b)(p) is written as

(
n

p̃nPmn
~b!~p!5

g2

a

Nf

2
dABE

t
trFD0

21~ t !
1

a~ t,t !
$D~ t,t !„g5H ~3!1m~ t,t1p,2p!2g5H ~3!1m~ t2p,t,2p!…

2g5H0~ t !„g5H ~3!1m~ t,t1p,2p!2g5H ~3!1m~ t2p,t,2p!…†g5H0~ t !

1H0~ t !2g5H1mH0~ t1p!H0~ t !2I 3g5H1m22H0~ t !2g5H0~ t !H1m
† H0~ t1p!

1D~ t,t1p!g5H0~ t !H1mH0~ t !2H0~ t !2g5H1m8 H0~ t2p!H0~ t !1I 83g5H1m8

12H0~ t !2g5H0~ t !H1m
†8 H0~ t2p!2D~ t,t2p!g5H0~ t !H1m8 H0~ t !%G , ~4.5!

where8 meansp→2p and

I 523H0~ t !412H0~ t !2D~ t,t1p!. ~4.6!

Noting Eq.~B5!, (np̃nPmn
(b)(p) is rewritten as follows:

(
n

p̃nPmn
~b!~p!5

g2

a

Nf

2
dABE

t
trFD0

21~ t !
1

a~ t,t !
g5 $2H0~ t !2

„H ~3!1m~ t,t1p,2p!2H ~3!1m~ t2p,t,2p!…

2H0~ t !„H ~3!1m~ t,t1p,2p!2H ~3!1m~ t2p,t,2p!…H0~ t !13H0~ t !4H1m~ t,t1p,2p!

22H0~ t !2H ~3!1m~ t,t1p,2p!1H0~ t !H ~3!1m~ t,t1p,2p!H0~ t !

23H0~ t !4H1m~ t2p,t,2p!12H0~ t !2H ~3!1m~ t2p,t,2p!2H0~ t !H ~3!1m~ t2p,t,2p!H0~ t !%G
5

g2

a

Nf

2
dABE

t
tr@D0

21~ t !g5„H1m~ t,t1p,2p!2H1m~ t2p,t,2p!…#. ~4.7!

We next calculate(np̃nPmn
(a)(p)

(
n

p̃nPmn
~a!~p!5

2g2

a2

Nf

2
dABE

t
tr@D0

21~ t !g5H1m~ t,t1p,2p!D0
21~ t1p!g5„H0~ t1p!2H0~ t !…#

5
2g2

a

Nf

2
dABE

t
tr@„D0

21~ t !2D0
21~ t1p!…g5H1m~ t,t1p,2p!#

5
2g2

a

Nf

2
dABE

t
tr@D0

21~ t !g5„H1m~ t,t1p,2p!2H1m~ t2p,t,2p!…#. ~4.8!

From Eq.~4.8! and Eq.~4.7!, one can see that the Ward identity for the vacuum polarization tensor holds.
We next examine the structure of various divergences. Rescaling the integration momentatm→tm /a in each amplitude, we

obtain ~by omitting the factordAB from now on!
114504-11
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Pmn
~a!~p!5

2Nfg
2

2a2 E
t

1

a~ t,t1pa!2 tr@D0
21~ t !$D~ t,t1pa!g5H ~3!1m~ t,t1pa,2pa!

2g5H0~ t !„g5H ~3!1m~ t,t1pa,2pa!…†g5H0~ t1pa!% D0
21~ t1pa!

3$D~ t1pa,t !g5H ~3!1n~ t1pa,t,pa!

2g5H0~ t1pa!„g5H ~3!1n~ t1pa,t,pa!…†g5H0~ t !%# ~4.9!

and

Pmn
~b!~p!5

Nfg
2

2a2 E
t
trFD0

21~ t !
1

a~ t,t !
$D~ t,t !g5H ~3!2mn~ t,t,2pa,pa!2g5H0~ t !„g5H ~3!2mn~ t,t,2pa,pa!…†g5H0~ t !

2H0~ t !2g5H1m~ t,t1pa,2pa!„g5H1n~ t1pa,t,pa!…†g5H0~ t !

22H0~ t !2g5H1m~ t,t1pa,2pa!„g5H0~ t1pa!…†g5H1n~ t1pa,t,pa!

2H0~ t !2g5H0~ t !„g5H1m~ t,t1pa,2pa!…†g5H1n~ t1pa,t,pa!

1g5H0~ t !„g5H1m~ t,t1pa,2pa!…†g5H0~ t1pa!„g5H1n~ t1pa,t,pa!…†g5H0~ t !1~p,m↔2p,n!%G . ~4.10!

First, we want to show thatPmn
(a)(p) andPmn

(b)(p) are finite and well defined forp50, and thus the divergent terms of the form
p2/(a2p2)n11dmn andpmpn /(a2p2)n11 with n>0 do not appear. Settingp50 in these expressions, we have

Pmn
~a!~0!5

2Nfg
2

2a2 E
t

1

a~ t,t !2 tr@D0
21~ t !$D~ t,t !g5H ~3!1m~ t,t,0!2g5H0~ t !„g5H ~3!1m~ t,t,0!…†g5H0~ t !%

3D0
21~ t ! $D~ t,t !g5H ~3!1n~ t,t,0!2g5H0~ t !„g5H ~3!1n~ t,t,0!…†g5H0~ t !%# ~4.11!

and

Pmn
~b!~0!5

Nfg
2

2a2 E
t
trFD0

21~ t !
1

a~ t,t !
$D~ t,t !g5H ~3!2mn~ t,t,0,0!2g5H0~ t !„g5H ~3!2mn~ t,t,0,0!…†g5H0~ t !

2H0~ t !2g5H1m~ t,t,0!„g5H1n~ t,t,0!…†g5H0~ t !22H0~ t !2g5H1m~ t,t,0!„g5H0~ t !…†g5H1n~ t,t,0!

2H0~ t !2g5H0~ t !„g5H1m~ t,t,0!…†g5H1n~ t,t,0!1g5H0~ t !„g5H1m~ t,t,0!…†g5H0~ t !

3„g5H1n~ t,t,0!…†g5H0~ t !1~m↔n!%G . ~4.12!
the

the
s

the

e

in
The singularity may occur around the regiont.0 in each
integral. However, the leading order part int in Pmn

(a)(0) and
Pmn

(b)(0) vanish as

Pmn
~a!~0!.2

Nfg
2

2a2 E
t2,d2

1

~ t2!4

3trF t”

t2 ~ t2!2gm

t”

t2 ~ t2!2gnG
.0,

Pmn
~b!~0!.

Nfg
2

2a2 E
t2,d2

trF t”

t2

1

~ t2!2 ~ t2! t”gmgnG
.0,
11450
for d!1. Since bothPmn
(a)(0) andPmn

(b)(0) are nonsingular,
Pmn does not contain the non-local divergences. From
fact that thepm→0 limit of Pmn(p) is well defined and finite
and that the Ward identity holds, we also conclude that
possible quadratic divergences cancel between diagram~a!
and ~b!. See also the analysis in Sec. III.

Next we confirm that there are no divergences of
structure such asa2p23`, etc. which vanish in the naive
continuum limit even if they existed. For this purpose w
evaluatePmn

(a)(p) and Pmn
(b)(p) for t2,d2 and ap;0. We

thus examine the behavior of various functions appearing
these amplitudes fort2,d2 and ap;0. They are given as
follows:

D0
21~ t !.~2M0!1/3

t”

t2 , a~ t,t !.3S 1

2M0
D 4/3

~ t2!2,
4-12
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g5H0~ t !.2S 1

2M0
D 1/3

t”, H0~ t !2.S 1

2M0
D 2/3

t2,

g5H1m~ t,t1p,2p!.2S 1

2M0
D 1/3

gm ,

D~ t,t1pa!.S 1

2M0
D 2/3

$t21~ t1pa!2%,

g5H ~3!2mn~ t,t,2pa,pa!.
1

2M0
(

l 1m1n51
$ i ~ i t” ! l igm

3„i ~ t”1p”a!…mign~ i t” !n%,

where all the higher order terms are nonsingular. Using th
expressions,Pmn

(a)(p) andPmn
(b)(p) for t2,d2 andap;0 are

expressed as

Pmn
~a!~p!.2

Nfg
2

2a2 E
t2,d2

1

t2~ t1pa!2

3tr@ t”gm~ t”1p”a!gn#,

Pmn
~b!~p!.

Nfg
2

2a2 E
t2,d2

trF t”

t2

1

t2 f ~ t,pa!G ,
where f (t,pa) is a nonsingular function oft and pa. Since
Pmn

(b)(p) vanishes in this limit and the expression

Pmn
(a)(p) has the same structure as that in continuum the

we conclude that there are no~unusual! divergences such a
a2p23`, etc. in the vacuum polarization tensor.

Finally, we investigate the logarithmic divergence. Fro
the above analyses, the logarithmic divergence inPmn(p)
appears from the singular part in the integral fora→0 and
t.0. SincePmn

(b)(p) is nonsingular in this limit, we conside
only the amplitudePmn

(a)(p). In Eq. ~4.9!, we use the Feyn-
man’s parameter and shift the integration variablestm→tm
2apmx. We then evaluate the contribution from the integ
tion region t2,d2, d!1 in the continuum limit. We then
have

Pmn
~a!~p!.2

Nfg
2

2a2 E
t2,d2

d4t

~2p!4

3E
0

1

dx
x2~12x!2

$t21p2a2x~12x!%6

G~6!

G~3!2

3„~ t2pax!2
…

2
„@ t1pa~12x!#2

…

2

3tr@~ t”2p”ax!gm„t”1p”a~12x!…gn#.

~4.13!

After some calculations, the term proportional to loga2p2 is
extracted as follows:

Nfg
2

24p2 ~p2dmn2pmpn!loga2p2. ~4.14!
11450
se

y,

-

This expression agrees with the one expected for the c
tinuum theory @23,24# to be consistent with the genera
analysis in Sec. II.

V. DISCUSSION

We have studied a perturbative aspect of a general clas
Dirac operators. To avoid excessive complications, we ex
ined the simplest diagrams of the one-loop fermion corr
tion to the gauge field self-energy tensor. This quantity
related to the one-loopb function and also to the Wey
anomaly. We have confirmed that the perturbative analy
gives the correct result for anyk>1 by using the relation
~2.14!, in accord with the general analysis of the We
anomaly. This correct result is consistent with our previo
analyses of the locality of the general operatorH (2k11) and
the locality domain ofuFmnu for H (2k11) @12#: Also, our re-
sult does not contradict the general perturbative analysi
lattice theory in@26# if one remembers the locality propertie
of H (2k11) . We have also confirmed the relation~2.14! for
the simplest casek51 by evaluating the self-energy corre
tion in terms of the operatorH itself.

When combined with the analysis of chiral anomaly@8#,
our present analysis shows that all the local anomalies
properly reproduced by our general class of operatorsD.
These analyses give some confidence in the treatment o
fermionic determinant

detH5~detH ~2k11!!
1/~2k11! ~5.1!

in the possible application to QCD, for example.
At the same time, we recognized that infrared divergen

may generally appear in the intermediate stages of pertu
tive calculations for finitea, which should cancel in the fina
result. This treatment of infrared divergences in perturbat
theory is quite tedious in our generalized operatorD. To
avoid the infrared complications, the~nonperturbative! Wil-
sonian effective action, which is supposed to be free of
frared complications, is expected to be essential for the g
eral operatorD. As for the perturbative treatment of fully
dynamical gauge field such as in the one-loop correction
the fermion self-energy, some auxiliary regulator such as
dimensional regulator may become necessary@22# for a reli-
able treatment of infrared divergences.

APPENDIX A: FEYNMAN RULES FOR THE GENERAL
H

„2k¿1…

We derive the Feynman rules forH (2k11) theory ~not H
itself! to calculate the vacuum polarization at the one-lo
level on the basis of Eq.~2.14!. H (2k11) has been defined by
Eqs. ~1.6!, ~1.7! and ~1.8!. We expandH (2k11) up to the
second order in the coupling constantg as follows:

H ~2k11!5H ~2k11!01gH~2k11!11g2H ~2k11!21O~g3!.
~A1!

For this purpose we first need to expandDW
(2k11)(x,y) in g.

DW
(2k11)(x,y) up to the second order ing is given by
4-13
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DW
~2k11!~x,y!5a4E d4p

~2p!4 E d4q

~2p!4 eipx2 iqy

3@X0~p!dP~p2q!1X1~p,q!1X2~p,q!

1O~g3!#, ~A2!

where

X0~p!5 i S i

a
gm sinpmaD 2k11

1S r

a (
m

~12cospma! D 2k11

2S m0

a D 2k11

52S sin2 pra

a2 D k gr sinpra

a
1M ~p!, ~A3!

X1~p,q![(
m

E
2p/a

p/a d4t

~2p!4 dP~p2t2q!gAm~ t !

3X1m~p,q,t !, ~A4!
11450
X2~p,q![(
m,n

E
2p/a

p/a d4k1

~2p!4 E
2p/a

p/a d4k2

~2p!4

3dP~p2q2k12k2!g2Am~k1!An~k2!

3X2mn~p,q,k1 ,k2!. ~A5!

Here we defined

X1m~p,q,t !5 (
l 1m52k

H i S i

a
gr sinpraD l

3Xigm cosS q1
t

2D
m

aCS i

a
gr sinqraD m

1S r

a (
r

~12cospra! D l Xr sinS q1
t

2D
m

aC
3S r

a (
r

~12cosqra! D mJ ~A6!

and
k

X2mn~p,q,k1 ,k2!5 (
l 1m1n52k21

H i S i

a
gr sinpraD l Xigm cosS p2

k1

2 D
m

aC
3S i

a
gr sin~p2k1!raD mXign cosS q1

k2

2 D
n

aCS i

a
gr sinqraD n

1S r

a (
r

~12cospra! D l Xr sinS p2
k1

2 D
m

aC
3S r

a (
r

„12cos~p2k1!ra…D mXr sinS q1
k2

2 D
n

aCS r

a (
r

~12cosqra! D nJ
1

1

2 (
l 1m52k

H i S i

a
gr sinpraD l X2 iagmdmn sinS q1

k11k2

2 D
m

aCS i

a
gr sinqraD m

1S r

a (
r

~12cospra! D l Xardmn cosS q1
k11k2

2 D
m

aCS r

a (
r

~12cosqra! D mJ , ~A7!

where

M ~p!5S r

a (
r

~12cospra! D 2k11

2S m0

a D 2k11

, ~A8!

and l, m, n are the nonnegative integers anddP is the periodic lattice delta function.Am(k) is defined by

Am~x!5E
2p/a

p/a d4k

~2p!4 Am~k!eik~x2am̂/2!, ~A9!

and has the propertiesAm
† (k)5Am(2k) andAm„k1(2p/a) l …5(21)l mAm(k) ~l: integer!.

Next we want to expand the factor 1/A(DW
(2k11))†(DW

(2k11)) in H (2k11) ~1.6!. But it is very complicated to perform the wea
coupling expansion of 1/A(DW

(2k11))†(DW
(2k11)) directly, if not impossible. Therefore we use the following identity:
4-14
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1

AX†X
5E

2`

` dt

p

1

t21X†X
. ~A10!

The weak coupling expansion of the integrand on the right-hand side can be readily performed. After some calculat
obtain

H ~2k11!5a4E d4p

~2p!4 E d4q

~2p!4 eipx2 iqy
1

2
g5F S 11

X0~p!

v~p! D dP~p2q!1H 1

v~p!1v~q!J
3H X1~p,q!2

X0~p!

v~p!
X1

†~p,q!
X0~q!

v~q! J 1H 1

v~p!1v~q!J H X2~p,q!2
X0~p!

v~p!
X2

†~p,q!
X0~q!

v~q! J
1E

t
H 1

v~p!1v~q!J H 1

v~p!1v~ t !J H 1

v~ t !1v~q!J
3H 2X0~p!X1

†~p,t !X1~ t,q!2X1~p,t !X0
†~ t !X1~ t,q!2X1~p,t !X1

†~ t,q!X0~q!

1
v~p!1v~q!1v~ t !

v~p!v~ t !v~q!
X0~p!X1

†~p,t !X0~ t !X1
†~ t,q!X0~q!J 1O~g3!G , ~A11!

where

v~p!5AS 1

a2 sin2 praD 2k11

1H S r

a (
r

~12cospra! D 2k11

2S m0

a D 2k11J 2

, ~A12!

andX†[g5Xg5 . We writeH (2k11)0(x,y), H (2k11)1(x,y), andH (2k11)2(x,y) as follows:

H ~2k11!0~x,y!5a4E
p
eipx2 ipyH ~2k11!0~p!, ~A13!

H ~2k11!1~x,y!5a4(
m

E
p,q,t

eipx2 iqydP~p2q2t !Am~ t !H ~2k11!1m~p,q,t !, ~A14!

H ~2k11!2~x,y!5a4(
mn

E
p,q,k1 ,k2

eipx2 iqydP~p2q2k12k2!Am~k1!An~k2!H ~2k11!2mn~p,q,k1 ,k2!, ~A15!

where*p[*2p/a
p/a @d4p/(2p)4#. Then from Eq.~A11!, H (2k11)0(p), H (2k11)1m(p,q,t), and H (2k11)2mn(p,q,k1 ,k2) can be

written as

H ~2k11!0~p!5
1

2
g5S 11

X0~p!

v~p! D , ~A16!

H ~2k11!1m~p,q,t !5
1

2
g5

1

v~p!1v~q!

3H X1m~p,q,t !2
X0~p!

v~p!
X1m

† ~p,q,t !
X0~q!

v~q! J , ~A17!

H ~2k11!2mn~p,q,k1 ,k2!5
1

2
g5

1

v~p!1v~q! FX2mn~p,q,k1 ,k2!2
X0~p!

v~p!
X2mn

† ~p,q,k1 ,k2!
X0~q!

v~q!

2
1

„v~p!1v~p2k1!…„v~p2k1!1v~q!… H X1m~p,p2k1 ,k1!X1n
† ~q1k2 ,q,k2!X0~q!

1X1m~p,p2k1 ,k1!X0
†~p2k1!X1n~q1k2 ,q,k2!1X0~p!X1m

† ~p,p2k1 ,k1!X1n~q1k2 ,q,k2!

2
v~p!1v~p2k1!1v~q!

v~p!v~p2k1!v~q!
X0~p!X1m

† ~p,p2k1 ,k1!X0~p2k1!X1n
† ~q1k2 ,q,k2!X0~q!J G .

~A18!
114504-15
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Note thatq5p2t in H (2k11)1m(p,q,t) andq5p2k12k2 in H (2k11)2mn(p,q,k1 ,k2).
From this weak coupling expansion we can derive the Feynman rules forH (2k11) theory, which are necessary for th

one-loop analyses. To make the structure of the divergences in one-loop amplitudes explicit we derive the Feynman
(1/a2k11)H (2k11)5(g5D)2k11. Using Eq.~A16!, the fermion propagatorD0

21(p), whereD0
21(p) stands for the inverse o

free (g5D)2k11, is written as

D0
21~p!5S ~sp

2!ks”p

w~p!1M ~p!
1a2k11Dg5 , ~A19!

wheres”p[(mgm sinapm and sp
2[(m sin2 apm . Using Eq.~A17!, we assign the following factor to the fermion-gauge fie

three-point vertex depicted in Fig. 2

2
g

2a2k11 Tba
A g5

1

v~p!1v~q! H X1m~p,q,t !2
X0~p!

v~p!
X1m

† ~p,q,t !
X0~q!

v~q! J , ~A20!

whereTA areSU(N) generators. Using Eq.~A18!, we assign the following factor to the fermion-gauge field four-point ver
depicted in Fig. 3

2
g2

2a2k11 ~TATB!bag5

1

v~p!1v~q! FX2mn~p,q,k1 ,k2!2
X0~p!

v~p!
X2mn

† ~p,q,k1 ,k2!
X0~q!

v~q!

2
1

„v~p!1v~p2k1!…„v~p2k1!1v~q!… H X1m~p,p2k1 ,k1!X1n
† ~q1k2 ,q,k2!X0~q!

1X1m~p,p2k1 ,k1!X0
†~p2k1!X1n~q1k2 ,q,k2!1X0~p!X1m

† ~p,p2k1 ,k1!X1n~q1k2 ,q,k2!

2
v~p!1v~p2k1!1v~q!

v~p!v~p2k1!v~q!
X0~p!X1m

† ~p,p2k1 ,k1!X0~p2k1!X1n
† ~q1k2 ,q,k2!X0~q!J G1~A,m,k1↔B,n,k2!, ~A21!
ld
um
y

op
o

e

where we have imposed the Bose symmetry for gauge fie
In Sec. III of the present paper, we calculate the vacu

polarization tensor at the one-loop level by using these Fe
man rules.

APPENDIX B: FEYNMAN RULES FOR THE OPERATOR
H WITH kÄ1

In this appendix we derive the Feynman rules for the
eratorH to calculate the vacuum polarization at the one-lo
level. For simplicity we consider the case withk51. For the
Feynman rules for the operatorH (3) , we refer to Appendix
A. We expandH and H (3) up to the second order in th
coupling constantg as follows:

H5H01gH11g2H21O~g3!, ~B1!

FIG. 2. Fermion-gauge field three-point vertex.
11450
s.

n-

-
p

D5
1

a
g5H01

1

a
g5gH11

1

a
g5g2H21O~g3!,

H ~3!5H ~3!01gH~3!11g2H ~3!21O~g3!

5„H01gH11g2H21O~g3!…3 ~5H3!

5H0
31g (

0<m<2
H0

mH1H0
22m

1g2S (
0<m<2

H0
mH2H0

22m

1 (
0< l 1m<1

H0
l H1H0

mH1H0
12 l 2mD 1O~g3!.

~B2!

FIG. 3. Fermion-gauge field four-point vertex.
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Now we want to know the expressions ofH0 , H1 , andH2 .
We have obtainedH0 in our previous paper@12,9#. In mo-
mentum spaceH0 is written as

H0~p!5g5S 1

2D 2/3S 1

v~p! D
2/3H „v~p!1M ~p!…2/3

2„v~p!2M ~p!…1/3
s” p

a J ,

5g5S 1

2v~p! D
2/3S 1

v~p!1M ~p! D
1/3

3H 2S sp
2

a2Ds”p

a
1v~p!1M ~p!J , ~B3!

wheres”p[(mgm sinapm andsp
2[(m sin2 apm . One can eas-

ily check thatH (3)0(p)5„H0(p)…3.
Next we derive the expression ofH1 . We write H1 as

follows:

H15a4(
m

E
p,q,t

eipx2 iqydP~p2q2t !Am~ t !

3H1m~p,q,t !, ~B4!

where *p,q,t[*@d4p/(2p)4#*@d4q/(2p)4#*@d4t/(2p)4#.
Using Eq.~B2! at first order ing, we obtain

H ~3!1m~p,q,t !5 (
0<m<2

H0~p!mH1m~p,q,t !H0~q!22m

5D~p,q!H1m~p,q,t !

1H0~p!H1m~p,q,t !H0~q!, ~B5!
11450
where

D~p,q!5H0~p!21H0~q!2, ~B6!

H0~p!25H 1

2 S 11
M ~p!

v~p! D J 1/3

. ~B7!

Now we consider an ansatz as

H1m~p,q,t !5
1

a
„D~p,q!H ~3!1m~p,q,t !

2H0~p!H ~3!1m~p,q,t !H0~q!…. ~B8!

Substituting this ansatz forH1m into Eq. ~B5!, we easily
obtain the expression ofa as

a~p,q!5D2~p,q!2H0
2~p!H0

2~q!

5 (
0<m<2

H0~p!2mH0~q!2~22m!. ~B9!

Thus we have obtained the expression ofH1 .
Further we derive the expression ofH2 , performing the

similar procedure as derivingH1 . We first writeH2 as fol-
lows:

H25a4(
mn

E
p,q,k1 ,k2

eipx2 iqydP~p2q2k12k2!

3Am~k1!An~k2!H2mn~p,q,k1 ,k2!. ~B10!

Using Eq.~B2! at the second order ing, we obtain
H ~3!2mn~p,q,k1 ,k2!5 (
0<m<2

H0~p!mH2mn~p,q,k1 ,k2!H0~q!22m

1 (
0< l 1m<1

H0~p! lH1m~p,p2k1 ,k1!H0~p2k1!mH1n~p2k1 ,q,k2!H0~q!12 l 2m

5D~p,q!H2mn~p,q,k1 ,k2!1H0~p!H2mn~p,q,k1 ,k2!H0~q!

1H1m~p,p2k1 ,k1!H1n~p2k1 ,q,k2!H0~q!1H1m~p,p2k1 ,k1!H0~p2k1!H1n~p2k1 ,q,k2!

1H0~p!H1m~p,p2k1 ,k1!H1n~p2k1 ,q,k2!. ~B11!

Now we define

H ~3!2mn8 ~p,q,k1 ,k2![H ~3!2mn2$H1mH1nH01H1mH0H1n1H0H1mH1n%. ~B12!

Using H (3)2mn8 , Eq. ~B11! is written as

H ~3!2mn8 5DH2mn1H0~p!H2mnH0~q!. ~B13!

The structure of this equation is the same as that of Eq.~B5!. ThereforeH2mn is written as
4-17
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H2mn5
1

a~p,q!
„D~p,q!H ~3!2mn8 2H0~p!H ~3!2mn8 H0~q!…. ~B14!

Finally we obtain the expression ofH2mn in momentum space as follows:

H2mn~p,q,k1 ,k2!5
1

a~p,q!
$D~p,q!H ~3!2mn~p,q,k1 ,k2!2H0~p!H ~3!2mn~p,q,k1 ,k2!H0~q!

2H0~q!2H1m~p,p2k1 ,k1!H1n~p2k1 ,q,k2!H0~q!2D~p,q!H1m~p,p2k1 ,k1!

3H0~p2k1!H1n~p2k1 ,q,k2!2H0~p!2H0~p!H1m~p,p2k1 ,k1!H1n~p2k1 ,q,k2!

1H0~p!H1m~p,p2k1 ,k1!H0~p2k1!H1n~p2k1 ,q,k2!H0~q!%. ~B15!

From this weak coupling expansion we can derive the Feynman rules forD in the case ofk51, which are necessary for th
one-loop analysis. Using Eq.~B3!, the fermion propagatorD0

21(p) is written as

D0
21~p!5

aH0~p!2S sp
2

a2D s” p

a

v~p!1M ~p!
1aH0~p!2. ~B16!

Using Eq.~B8! and Eq.~B9!, we assign the following expression to the fermion-gauge field three-point vertex depicted i
2:

2
g

a
Tba

A 1

a~p,q!
$D~p,q!g5H ~3!1m~p,q,t !2g5H0~p!„g5H ~3!1m~p,q,t !…†g5H0~q!%, ~B17!

whereTA areSU(N) generators. Using Eq.~B15!, we assign the following expression to the fermion-gauge four-point ve
depicted in Fig. 3,

2
g2

a
~TATB!ba

1

a~p,q!
$D~p,q!g5H ~3!2mn~p,q,k1 ,k2!2g5H0~p!„g5H ~3!2mn~p,q,k1 ,k2!…†g5H0~q!

2H0~q!2g5H1m~p,p2k1 ,k1!„g5H1n~p2k1 ,q,k2!…†g5H0~q!

2D~p,q!g5H1m~p,p2k1 ,k1!„g5H0~p2k1!…†g5H1n~p2k1 ,q,k2!

2H0~p!2g5H0~p!„g5H1m~p,p2k1 ,k1!…†g5H1n~p2k1 ,q,k2!

1g5H0~p!„g5H1m~p,p2k1 ,k1!…†g5H0~p2k1!

3„g5H1n~p2k1 ,q,k2!…†g5H0~q!%1~A,m,k1↔B,n,k2!. ~B18!

We perform a one-loop calculation in Sec. IV on the basis of these Feynman rules.
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