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Perturbative study of a general class of lattice Dirac operators
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A perturbative study of a general class of lattice Dirac operators is reported, which is based on an algebraic
realization of the Ginsparg-Wilson relation in the forpa(ysD)+ (ysD)ys=2a%"1(ysD)%"2 where k
stands for a non-negative integer. The chdiee0 corresponds to the commonly discussed Ginsparg-Wilson
relation and thus to the overlap operator. We study one-loop fermion contributions to the self-energy of the
gauge field, which are related to the fermion contributions to the onegdapction and to the Weyl anomaly.
We first explicitly demonstrate that the Ward identity is satisfied by the self-energy tensor. By performing
careful analyses, we then obtain the correct self-energy tensor free of infrared divergences, as a general
consideration of the Weyl anomaly indicates. This demonstrates that our general operators give correct chiral
and Weyl anomalies. In general, however, the Wilsonian effective action, which is supposed to be free of
infrared complications, is expected to be essential in the analyses of our general class of Dirac operators for the
dynamical gauge field.
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I. INTRODUCTION where the second relation is shown by using the defining
relation (1.4), and the first relation in Eq(1.5 becomes
Recent developments in the treatment of fermions in latidentical to the ordinary Ginsparg-Wilson relatiéh.1) if
tice gauge theory are based on a Hermitian lattice Dirac opene definedd 5. 1)= H2*1 One can thus construct a solu-
erator ysD which satisfies the Ginsparg-Wilson relatigh tion to Eq.(1.5 by following the prescription used by Neu-

berger[2]:
1 1
where the lattice spacingis utilized to make a dimensional H == yg| 1+ DD l
. . ) o . . (2k+1) Vs w
consideration transparent, awd is a Hermitian chiral Dirac 2 J(Dﬁk* l))TDWﬁ Y
matrix. An explicit example of the operator satisfying Eq. (1.6

(1.1) and free of species doubling has been given by Neu-
berger[2]. The relation(1.1) led to an interesting analysis of where
the notion of index in lattice gauge theof8]. This index
theorem in turn led to a new form of chiral symmetry, and
the chiral anomaly is obtained as a non-trivial Jacobian fac-
tor under this modified chiral transformatip]. This chiral
Jacobian is regarded as a lattice realization of that in thélere we note that the conventional Wilson fermion operator
continuum path integral5]. See Refs[6] for reviews of D, (with a nonzero mass tednis given by
these developments.

We have recently studied a specific generalization of the 1
algebra(1.1) [7]: Dw(X,y)=iy#Cu(x,y) +B(X,y) = 2 Modyy,

mg 2k+1

D$k+1)zi(¢)2k+l+82k+l_ 2

.7

¥s(ysD)+ (ysD)ys=2a%"1(ysD)%**2, (1.2

1
N . _ ut
wherek stands for a non-negative integer ake 0 corre- Culxy) 2a[5"+“a*yuﬂ(y) Oxy+ial (],

sponds to the ordinary Ginsparg-Wilson relation. When one

defines r t
BX,Y)= 52 2 [28¢y= 8y jiaxVUL(X)
H=ysaD, (1.3 s
Eq. (1.2 is rewritten as ~ Oy x+iiadu(Y) ],
YeH+Hys=2H2+2, (1.4 U, (y)=exdiagA,(y)]. (1.9
The algebra1.4) is equivalent to a set of equations The parameter stands for the Wilson parameter. Our matrix
convention is thaty“ are anti-Hermitian, 4*)"=—y#, and
H2K Ly + ygH 2K 1= 2H2(2k+ 1) thus €= y*C ,(n,m) is Hermitian:

H?ys— ysH?=0, (1.5 ct=c. (1.9
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The Hermitian operator itself is then finally defined by terms. The locality of this explicit constructiofi.12) has

(in the representation wheté ;. 1) is diagonal

H=(H oys 1) Y2

(1.10

in such a manner that the second relation of EQ5) is

been shown by examining the analytic properties in the Bril-
louin zone[12].

It is important to recognize that this operator is not ul-
tralocal but exponentially locdll3]; the operatoH(x,y) in
Eqg. (1.12 decays exponentially for large separation in coor-

satisfied, which is in fact confirmed in the representationginate representation 4%2]

where H 5 1) is diagonal[7]. Also the conditions &m,

<2r=2 and

2maktl=1

ization of the Dirac operatdf.

The locality properties are crucial in any construction o
the lattice Dirac operator, and the locality of the standar
overlap operator witlk=0 has been established by Hernan-

dez, Jansen and kaher[10], and by Neubergdri].

As for the direct proof of locality of the operat@ for
generalk, it is shown for the vanishing gauge field by using
the explicit solution for the operatdt in momentum repre-

sentation12,9]

H(aDM)=7’5(§

where

and

For k=0, this operator is reduced to Neuberger’'s overlap

\/ﬁva

I3
+ M) (ke D2k 1) H\ZN_ M ) K/(2kc+ 1)_]

(VHE,

1) (k+1)/(2k+ 1)( 1 ) (k+1)/(2k+ 1)r

a

1) (k+1)/(2k+ 1)( 1

=’}/5(§ \/% {(ﬁ

+ M) (kHDI2KED) \/m_ M DRk gy
(1.12

)(k+1)/(2k+1)

£ 2
F(k):(82)2k+1+ Mka

~ 2k+1
M, = —maktt (1.13

> (1-c,)
M

s,=sinap,,,
c,=cosap,,

g=y*sinap, .

(1.19

operator{2]. Here the inner product is defined to b&0.
This operator for an infinitesimap,,, i.e., for [ap,|<1,
gives rise to

H=— ysap(1+0(ap)®)+ ys(ysap)®*2 (1.15

(1.1
ensure the absence of species doublers and a proper norm

f||F,w|| has been performed. The locality domain fié
qﬁecomes smaller for largée but a definite nonzero domain

H(x,y)~exd —|x—y|/(2.5%a)]. (1.19
An explicit analysis of the locality of the operatét . 1)
=|H2k+1 (not H itself) in the presence of gauge field, in

Sarticular, the locality domain for the gauge field strength

ol

as been establish¢l2]. The remaining task is to show the
locality of the operatorH = (H 1)) ¥**) itself in the
presence of gauge field. Due to the operation of taking the
(2k+ 1)th root, an explicit analysis has not been performed
yet, though a supporting argument has been given in Ref.
[12].

It has been shown that all the good chiral properties of the
overlap operatof2] are retained in the generalization in Eq.
(1.4) [8,9]. The practical applications of this generalized op-
eratorD are not known at this moment. We however mention
the characteristic properties of this generalization: The spec-
trum near the continuum configuration is closer to that of
continuum theory and the chiral symmetry breaking terms
become more irrelevent in the continuum limit for0. The
operator however spreads over more lattice points for larger
k, as is indicated in Eq1.16).

In this paper we study a perturbative aspect of the general
class of Dirac operators. To be specific, we study the one-
loop fermion contribution to the gauge field self-energy,
which is related to the8 function and to the Weyl anomaly.

Il. SELF-ENERGY TENSOR, B-FUNCTION
AND WEYL ANOMALY

The lattice perturbation theory is very tedious in general
[14-232, and it is more so in our generalization. For this
reason, we study the simplest diagrams related to the one-
loop self-energy correction to gauge fields. This effect is also
related to the fermion contribution to the lowest order
B-function and to the Weyl anomal23,24. A rather general
analysis of Weyl anomaly is possible, and we first briefly
summarize it.

In the standard continuum formulation, one starts with the
path integral defined in a background curved sg&g

J d,uexF“d“x\/g_zpisz

. (2.1

The general coordinate invariant path integral measure is de-
fined by

du=DyDy (2.2

to be consistent wittH= ysaD; the last term in the right-
hand side is the leading term of chiral symmetry breakingand the Weyl transformation laws are given by
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e(x)—exp a(x)]eX(x), The term quadratic i_n the gauge fiel, gives the self-
energy correction, which isk2+ 1 times larger than the self-

- va 1 - energy correction generated by @et

P(X)=(9)"P(x)—exp — 5 a(x) | ¥(x), This analysis of the self-energy correction is applicable to
the present lattice operator. By our definition in Ef.10

B . 1 : we have

¢<x)z<g)1’4¢<x>~exp[ = 5 a(x) [§(x), 2.3

exd TrinH]=exg TrinH32 1]
whereef(x) stands for the vierbein. This transformation law 1
is fixed by the invariance of the action in the above path _
. : =exp=——=TrinH . 2.1
integral under a globdl.e., constanta, and the Weyl weight XF{ 2k+1 (2k+1) (210
factor of fermionic variables is essentially defined by the

vierbein inD=e%(x)y*D,, . For a sufficiently small coupling constagt we have
The Jacobian for this transformation of fermionic vari-
ables is gl|\;e\]n( b;/ i T et — (DI exd TrinH]=exg TrinH O+ Trg?A ,(x)O(X,Y) ., A,(Y)
)= o -
Mo +0(g%)], (2.19

2

where H(©® stands for the free Dirac operator given in Eq.
2472 0

(1.12, and the second term stands for the lowest order term
in the effective potential and thus for the lowest order self-
where the mode cutoff o is provided byef(An/M)2 in  energy correction to the gauge field. Similarly, we have
terms of the eigenvalues dd. See Ref.[25] for further

=Tr a(X) Frr, (2.9

details. 1
When one analyzes the higher derivative theory exp{mTrln H k1)
Laam [ dxGp@* . @9 i R S
“eH k1 e g TTOA)

the Weyl transformation laws are given by
e (x)—exd a(x)]e5(x), XO(X,Y) ., ALY)+ 0(93)} , (2.12

~ _2k+1
HX)=(9) V(0 —exp — 5= a(x)

(%), where TrInH®), ;) stands for the free part ¢fy.1). Those
zeroth order terms satisfy the relation

- Vi 2k+1 -
P(x)=(9)"P(x)—exp — ——a(X) |¢(x) (2.6)
(0) = (0)
and the Weyl anomaly is given by TrinH 2k+1 TrinH Gy (213
INJop i 1(a@)=lim Tr(2k+1)a(x) ) o )
Mo if one uses the explicit form of the operator in Ef.12.
We thus conclude
Xexp[—((D)Zk”/M 2k+l)2]. (27)
Since the Weyl anomaly is independent of the regulator func- Trg?A,L(X)O0(X,Y) ., ALY)
tion [25], we have 1
INJops1(@)=(2k+1)InI(a). (2.9 = 2k+1TrngM(x)O(x,y),wA,,(y) (2.19

This relation(2.8) is also understood from a viewpoint of

the self-energy correction to the gauge field as follows: for a sufficiently small coupling constagt which shows that

the lowest order self-energy correction in the left-hand side

de()2k+1 for the operatoH is evaluated by the self-energy correction
in terms ofH 5 1). We use this relation for the evaluation
=exg (2k+1)TrinD] of the lowest order self-energy correction for dey 1. Note

that the operatoH ., 1y=H?*"* is much better understood

=exd (2k+1)Trin(/—igA)] thanH itself in our construction. We also confirm that this

ok+1 1 1 relation(2.14) is in fact valid by evaluating the left-hand side
=exp (2k+1)Trind— ——(ig)*Tr-A-A+---|.  directly for the simplest case=1.
2 b b . : .
From a viewpoint of Weyl anomaly, one may tentatively
(2.9 take
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t+p t In lattice perturbative calculations, however, we should be

careful of the possible appearance of infrared divergences,
which should cancel in the final result. We show that a care-
ful analysis gives the correct result of continuum theory free

of infrared divergences foa— 0.

() () 1. THE VACUUM POLARIZATION TENSOR BY  H (2k41)

In this section, we calculate the one-loop fermion contri-
bution to the vacuum polarizatiol ,, on the basis of the
operatorH . 1y (and notH itself) following the analyses in

FIG. 1. Feynman diagrams for the vacuum polarization.

lim Tr(2k+1)a(x)exd — (H k1) /(@M)Z*F1)2] Sec. Il. We first show that the Ward identity is satisfied to be
M—ee consistent with gauge invariance and that there appear no
: divergences except for the logarithmic divergence &r
+ ) : .
_>,\,I,ITOC Tr2k+ Da(x) —0. We then discuss the gauge field wave function renor-
malization factor.
Xexd — (D)2 /M1 (2.15 Feynman diagrams for the vacuum polarization with fer-

mion one loop are shown in Fig. 1, and the necessary Feyn-
as a lattice version of the Weyl anomaly. We then obtain thanan rules are given in Appendix A.

same result as the self-energy correction in the liait 0, The amplitude corresponding to Figalis given in terms
although no systematic formulation of Weyl anomaly on theof the notation in Appendix A byby using tr(TATE)
lattice is known. =1/26"B andN; flavors in QCO

2
-9 Nf 1 Xo(t) Xo(t+p)
(@) n) = _ T )27
_ Xo(t+p) Xo(t )H
XDy (t+ X, (t+p,t,p)— ———— X! (t+p,t, 3.1
o ( p)ys[ LU PP = gy Xu(th P Lp) 1 3.9
We omit the factors*® from now on.
The amplitude corresponding to Fighl is similarly given by
2
9?2 N; 1 Xo(t) Xo(1) 1
(b) _ _
H;w(p) 2a2R+ 2 ftr DO (t)752 (t) XZ,u,v(t!tv P, p) (t) XZMy(t t,— p) W(t) (W(t)+W(t+p))2

X4 Xy, (6, p+1,—P)X],(p+1,t,p) Xo(t) + Xq,(t,p+1,— P)X§(p+1) X1, (p+1,t,p)

2w(t)+w(p+t)

+Xo(DX],(,p+t,—p) Xy, (p+t,t,p)— W(O)ZW(p+ 1) Xo(t)XLL(t,ert,—p)XO(ert)XI,,(p+t,t,p)XO(t)]

Xl o o XelD) 1
wD) Xe(LLP =P L G W= p)

+X2V}L(tlt’p’ - p) -

X1 X1, (t,t=p,p)X],(t=Pp,t, = p)Xo(t) + Xy,(t,t=p,p)X{(t—P) Xy, (t—p,t, = P) +Xo(t)

+ 2w(t)+w(t—p) t +
XX, (tLt=p,p) Xy, (t=p,t,—p)— WXO(t)le(t!t_pvp)XO(t_p)xllu(t_pit!_p)XO(t) a2
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A. Ward identity

We first show that the Ward identity fdi ,, as a manifestation of gauge invariance holds as follows,

2 LT3 () +11E)(p))=0, 3.3

wherep, = (2/a)sinap,/2.! For this purpose we first calcula®,p,X;, andX,p,X,,,. Forx,p,X;, we have

a2k+12 ﬁvxlv(t+p!tvp): 2 |:i(i$t+p)|(i$t+p_i$t)i(i$t)m+
v I +m=2k

r>, (1—cogt+p),a)
p

|

2kl
—Mg

r>, (1—codt+p),a)|—|r>X (1—cost,a) }
p p

r>, (1—cost,a)
p

2k+1
:i(i$t+p)2k+l+

r>, (1—cogt+p),a)

2k+1
2k+1

=aZ**" Y Xo(t+p) — Xo(t)}, (3.9

—[i(i$t)2k+1+

r>, (1—cost,a)
p

and further we have

Xo(t)
w(t)

Xo(t+p)

t
W(t+ p) le(t+ pltvp)

2P| Xuut+ptp) = )=27532k+1(w(t+ p)+W(t))(Do(p+1)—Do(t)), (3.5

where we used the following relations:

~ 1
2 Py, COSt+pl2),a= — (b p— ), (3.6)

(rE (1—cost,a)
P

E P,rsin(t+p/2),a= - ((rZ (1—coqt+p),a) ] (3.7

Using the above relations, we also have

aZKEV Tgyxzﬂv(t,t,—p,p)=l+2:2 { (i%,) (I)/M CO{H— )(|$Hp)m—|(|$t) (Iyﬂ cos{t+ P )(|$t)m
s

+|r> (1—cost,a) (r sin t+ ) r>, (1—codt+p),a)

P P
—( E 1—cost,a) (r sin t+ ) rz (1—cost,a)

P P
+E i(ig)'[iy,co t+E a—ivy,co t—E al(ig)m

2 t 7',u 2 ’)/,u t
“ “
| m

+(r> (1—cost,a) (rsin t+g a—rsin(t—g a)x r>, (1—cost,a) H (3.9

P M “ P

The Ward identity in the case of the overlap Dirac operator has been confirmed explicitly if2Bef.
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Therefore we obtain

2 V[XZ,uV 4L=p, p)+x2v,u.(t tLp,— p)]:Xl,u.(tit—’_p!_p)_xly(t_pytr_p)- (39)

v

By using these reIation§,VT)VH£f‘3(p) is written as

-9% N 1 _ _
(a) ! - _
2 pVH W 2 ‘ {W(t)+W(t+p)} tr {Dol(t) Dol(H'p)}VS
Xo(t) Xo(t+p)
X Xlﬂ(t,t-i-p, p w(t) (tt p,—p)m }, (3.10
and similarly= ,p,115)(p) is written as
2
- () g° Ng 1 Xy Xo(t+p)
2 BILP)= ozt f”[DO (t)7’5[w(t)+w(t+p) XaulLEEP 7Py iy KB TP R) )
xo(t—p) Xo(1)
WO Wt p) [Xlﬂ(‘_p"*p)_ wit—p) PR H
9> N
= 52kl ZJ'I{{DO ()=Dg *(t+p)}ys
1 Xoll) _, Xo(t+p)
X \N(t)T(t_l_p){Xlﬂ(t,t‘i‘p,—p)— w(t) Xlﬂ(t,t-l—p,—p)w(t—ij) H (3.11

Combining these two expressions, the Ward identity for the vacuum polarization tensor holds as(313Eq.his Ward
identity dictates the tensor structureldf, ,(p) for smallp, to be

H,uv(p)z(pza,uv_pMpV)H(azpz)' (312

B. Structure of divergences

We next examine the structure of various divergences. To evaluate the divergent ;ﬂﬁ&( pj and HEPZ(D). we rescale
the integration momentg,—t,/a in each amplitudé3.1) and(3.2). For QCD withN; flavors, we obtain

o g 1 (St)kﬁt
IL(p)= 8a2 ft{w(t)+w(t+pa)}~2tr“W(t)+|\/|(t)Jrl

Xo(t) + Xo(t+pa)
><|X1M(t,t+ pa,—pa)— leﬂ(t,H—pa,— pa) W(Tpa)
(st2+ pa)k$t+ pa Xo(t+ p a)

w(t+pa)+M(t+pa) w(t+pa) w(t)

+1] {le(t'f' pat,pa)— X} (t+pat,pa) Xolt )H (3.13

and
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Xo(t) Xo(1)

(sH)é
St : XZMV(t!ti_paipa) W(t) (t,t, pa,pa) W(t)

W(t)+ M) +1}2W(t)

ME(p)=— fg tr[
t

T W)+ w(tr pa))2[Xlﬂ(t’pa'H-_pa)xlv(pa-l-t,t,pa)xo(t)

+ Xy, (t,patt,—pa)Xj(patt)Xy,(patt,t,pa)+Xo(t)X],(t,pat+t,—pa)X,,(pa+tt,pa)

2w(t)+w(pa+t)
—w(t)2w(pa+t)

Xo(H)X],(t,pa+t,—pa)Xo(pa+t)X],(patt,t,pa)Xo(t)

Xol) g Xl 1
w(n) Xen(LLPA=PA) L T pa))?

+Xo,u(tt,pa, —pa) — ——

X1 Xy, (t,t—pa,pa)X],(t—pat,—pa)Xo(t) + Xy, (t,t—pa,pa)Xj(t—pa)Xy,(t—pat,—pa)

2w(t) +w(t—pa)
w(t)’w(t—pa)

+Xo(D)X],(t,t—pa,pa)Xy,(t—pat,—pa)—

><xo<t>><L<t,t—pa,pa>xo<t—pa)x;(t—pa,t,—pa)xou)] } (3.14

wheref=[7 _d*/(27)%. In the above two equationg X,, X1,y X2, are appropriately redefined according to the rescaling
of t,. For example,

2k+1

2
w(t)=\/(s$)2k+1+ ry, (1—costp)) —(m0)2k+1} , (3.15
P

wheres?=3 , sirft,,.
We first want to show that there are no nonlocal divergences of the fpfifa®p?)" or p,,p,/(ap?)" (n=2). For this
purpose we confirm that E§3.13 and Eq.(3.14) are not singular fop=0. Settingp=0 in these equations, we have

-Nig? [ 1 (s7) 8 Xo(t) Xo(t)
(a) — _ T
(0= g ft4w<t>2”Hw<t>+M<t>”} Xau(L L0~y gy Xau(110) w(t)]
()% Xo(t) 4 Xo(t)
[m'f’l X1,(t,1,00— w(D) X1,(t,1,0) W(t)] (3.16

and

0= fg tr[ ()" +1 X5, (1,£,0,0)— Xot) oy (1,£,0,0) ~2— X 1

e LIwO M@ 72wt [ TR wi) TR T w() Aw(t)?

X1 X1, (1,1,0XT,(£,8,0) Xo(t) + X, (£,1,0)X5(1) X1, (t,8,0) + Xo() X],(1,8,0) X4, (1,1,0)

Xo(t) Xo(t) 1

+X2y,u(tat10 0)— ( ) 2V,LL(t 10,00 w(t) 4W(t)2

3
w02 o DXL L0 Xo(D X1, (18,0 Xo(1)

X1 X1, (1,5,00XL,(£,8,0) Xo(t) + X, (£,1,0)X5(1) X1, (1,8,0) + Xo() X],(1,8,0)Xy,,(1,1,0)

3
~ w2 Xolt >XL<t,t,0>xo<t>XIM<t,t,0>xo<t>]H. (317
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Now on the basis of the expressionsmfX,, X;, andX,,, N;g? 1
and the fact that there are no doublers, the possible singular- 1_[(a)(p)~ 2aZ 2tr[mfk+_l
ity may occur only around the regidn=0 in each integral.

Only the fermion propagators can exhibit singular behavior

for t=0. The leading singularity inin I1?)(0) vanishes as X

22k (iD)iy,G(1+pa)™

I+m=

1
“ i+ pa)®l

12)(0)~ o - (t3)k ! (t)*y,|~0
v 2 2 (t_z)m 'Y,u(t_z)k+_1 Vv

x| 2 (i(t+¢a>)'m<it>mﬂ,
I+m=2k
(5<1), (3.18 (3.21)
and similarly the leading singularity if{’)(0) vanishes as 11®)(p)= Nig® . 1
wP)= 207 Joo 2| D7

><| > (D
l+m+n=2k—1

I1,(0)~ f [_k_z) Vurt)H |~
+pa))"iy,(if)"

(6<1). (3.19 + > (1) iy, (it

I+m+n=2k—-1

—pa))™i yﬂ(it)”H. (3.22
Higher order terms i are obviously nonsingular. Since both
11(2)(0) andI1(?)(0) are not singuladl,,(p) does not have
the nonlocal divergences of the formg?/(a%p?)" o
p.p,/(a%p?)" (n=2).

There may still exist the quadratic divergencdlnp,(p).

From Eq. (3.3, the form of the quadratic divergence for
smallp, is

These amplitude&) and (b) separately could contain infra-
red singularities. The cancellation between the amplitdaes
and (b) further takes place as

Hif3<p>+nﬁf’3<p>
~ 1
8y p—pzp—)c (3.20 <2"+ b, [.y RZTEr e
(3.23

1
a?

with a constantC. We have already established that fhe  This final expression, which has the same structure as that in
—0 limit of HM(p) is well-defined, which excludes the contlnuum theory, means that there are no divergences such
singular terrrpﬂpvlp this term depends on the direction of asap?x, etc.
the approactp,—0. We thus conclud€ =0, namely, the Finally, we investigate the logarithmic divergence. From
quadratic divergences cancel between diagréanand (b). the above analyses, we know ttaf,,(p) does not have the
Next we confirm that there are no divergences of thedivergences of the negative poweranTherefore if there is
structure such aa”p?x, etc. which vanish in the naive the logarithmic divergence il (p), it appears from the
continuum limit. These unusual divergences, which may besingular part in the integral foo—0 and thus the singular
termed as infrared singularities, may occur in our treatmenpart should appear in the integration region arots®. We
of H 2+ 1) which corresponds to a higher derivative theoryfirst evaluateﬂ(a)(p) There are several ways to extract the
on the Iattlce These divergences, if they should exist, coulgbgarithmic d|vergenc¢21 22. Here we use the procedure
appear in the integration region aroutrdO and could re- discussed in the paper by Karsten and Siait]. First, the
main even for arbitrarily smalp. Therefore we evaluate denominators of the propagator are combined using Feyn-
%(p) (3.13 and I1{)(p) (3.14 for t?<6® andap~0. man parameters and the integration variables are shifted
After a straightforward calculation, we obtain —1,—p,ax as follows:
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e _ —Nig® T(4k+2) J“Pax d“t Y x2(1—x)%
o 8a® (I'(2k+1)% J-rspad2m* Jo X{W(t—|0<'=1X)+w(t+|oa(1—x))}2

1
x [a(1—X) +,8x]‘”‘+2tr

(sfpax)kétpax[ Xy, (t—paxt+pa(l—x),—pa)

Xo(t—pax)

Xo(t+pa(l—x))
w(t—pax)

XLL(t—pax,H pa(l—x),—pa)m

X (S[2+pa(]_7x))k$t+pa(l—x) xlv(t+ pa(l_ X)at_ paxvpa)

—%xh(wpa(1—x),t—pax,pa)>\f\f((:__—m] : (3.29

wheré
a={w(t—pax)+M(t—pax)} !+ (3.25
B={w(t+pa(l—x))+M(t+pa(l—x))}N*+D), (3.26

Then we split the integration domain into two regions as follows

ftz: ftzqz* ft2>52’ o<1, (3.27

and we evaluate th< 62 part in the continuum limit, ignoring th&> 62 part which does not contain divergence. Equation
(3.24) is the complicated integral including sines and cosines. However’fos> anda—0 with fixed smallp, we can
expand both the denominator and the numerator of(Bg4) separately in powers dfanda, and we have

. _ —Nig® T(4k+2) dt 1 x2K(1—x)%K
a(P)="55 (r<2k+1>)2ftz<5z<2w>4fo X[ platx(1-x)] 2
X tr i[i(t—pax)]z"“[o IEZK i[i(t—pax)]'iyﬂ[i(t+pa(1—x))]2k"}
><i[i(t+|ba(1—x))]2k+1[0 EZK i[i(t+pa(1—x)]™ yv[i(l‘—pax)]z“‘mH. (3.289
We next evaluatd])(p) in a similar way and we obtain
—N;g? T'(4k+2) dt (1 x2K(1—x)K
(b)) f
a(P)= 55 (F<2k+1)>2Jtz<az<2w>“fo X+ p7ax(1— )15

Xtr| [i (t+ pa(1—x)]* 2 (f— pax) ]2+t

><| > ili(t=pax)iy,Li(t+ pa(l—x))]" y,,[i(t—pax)]%—l—'—m]

o=<l+m=2k-1

+[i(t—pax)]* T2l + pa(l—x))]?<* L

><| > i[i(Hba(l—X))]'i%[i(f—lbax)]min[i(Hlba(l—X))]Zk1'm”- (3.29

Oo<l+m=2k—1

2We used the Feynman formula:

1 o T(4k+2) 1 X(1—x)%
PR T2k DI (2k+1) JO X[axt BA—x) 72"
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In this wayII,,,(p)=T1C)(p) +TI{)(p) is written as

. ~Ng? F(4k+2)f d*t fl X (1—x)%
MV(p)_ 232 (F(2k+1))2 2o 52 (2,”_)4 X{t2+p2azx(l_x)}4k+2

X (2k+1)(t—pax)*(t+pa(1—x)*tr[ (f—pax) y,(t+pa(l-x))y,]. (3.30

The singular part corresponding to the logarithmic divergence is obtained from the leadingtartian Noting the spherical
symmetry of the integral and droppirt®(a®) terms in the numerator, the singular part is given by

_Nfg d4t 1 2k(l X)Zk ook
#V(p) _2_ 2 2 (277)4 J’O dx{t2+p }4k+24(2k+1) (t ) 5;41/
4
+(t%)*p?a?s : %+ (1— x)Z)( k2+3k +x(1—X) k2+2k+1)}

4
+(t2)%p,,p,a% (x*+(1- x)2)< K2+ = 3k|-x(1- x)( k?+4k+2 } (3.3D)
After some calculations, the term proportional to fiBg? is obtained agby restoring the factos"8)
N¢g®
(2k+1) 8" —5 (p?6,.,— P,P,)logp*a’ (3.32

Combined with the general analydi8.14) in the previous section, we conclude that the divergent part of the gauge field
renormalization factor arising from fermion one-loop diagrams for the general Dirac opBratbys/a)H is given by

Nfgz 2.2
Zpy=1+ Wlog,u as, (3.33

where u is the renormalization scale. This factor indeed reproduces the correct result for the QCD-type continuum theory
[23,24.

Incidentally, the resul3.32 could also be directly obtained from E®.23, which corresponds tok2+ 1 times the vacuum
polarization tensor generated by a conventional massless fermion.

IV. THE VACUUM POLARIZATION TENSOR FOR H WITH k=1

In this section we calculate the one-loop fermion contribution to the vacuum polarization Ipson the basis oH with
the simplest cask=1. We perform essentially the same analysis as in the previous section.

Feynman diagrams for the vacuum polarization with a fermion loop are shown in Fig. 1, and the necessary Feynman rules
are given in Appendix B.

The amplitude corresponding to Figalis given by(for QCD with N; flavorg

1
a? 2 g fta(t,H—p)
—vsHo(t) (ysH(3)1,(t,t+p,— P) ysHo(t+p)} Do H(t+p){D(t+p,t) ysH(z)1,(t+p,t,p)
— ¥sHo(t+p) (vsH 3)1,(t+ p,t,p)) TysHo()}]. 4.1

The amplitude corresponding to Figbl is

2
~g2N .
M@ (p)=—5 — 5*° Dy X (t{D(t,t+p) ysH 3 1,(t,t+ P, —p)

(b) _92 Ny AB -1 t
I, (p)= 375 ttf Dy “(1) alt, t){D(t ) vsH (3)2,(L5, =P, P) = ¥5Ho(1) (¥5H (3)2,,,(t, 1, — P, P)) " ysHo(t)

—Ho()2ysH,(t,t+p,—p) (ysH 1, (t+p,t,p)) T ysHo(t) = 2Ho(t) 2ysHy . (t,t+p,—p)
X (ysHo(t+p) T ysH 1, (t+p,t,p) = Ho() 2 ysHo(t) (vsH 1, (t,t+p, = p) TysH o, (t+p,t,p)

+ ’)/SHO(t)(’YSHl,U,(tvt_{— p,— p))T75HO(t+ p)(75Hlv(t+ pitvp))T')/SHO(t) +(p,,LL<—> —-p V)} ’ (42)
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where

1
ysHp, (t+p,t,p)= m{D(H’ P,t) ysH3)1,(t+p,t,p) — ysHo(t+ p) (vsH 31, (1 + p.t,p) vsHo(D}. (4.3

We first show that the Ward identity fdi ,, holds in this case also. From the analysis in Sec. Ill A, we obtain

> Po(ysH 32,065, =P, P) + ¥5H (32,61, P, — P)) = ysH ()1, (Lt P, — P) — ¥5H (3)1,.(t—P,t, — p). (4.9

v

. . ~ b . .
Using these relations ,p,11{)(p) is written as

~ 9% Ny - 1
2 DAL= 5 ft tr[Do (0 2 PO (sHE (LT —P) ~ VM @)1u(t= Pt =)

—vsHo(1) (vsH 3)1,.(t,t+p,—P) = ¥5H (3)1.(t—p,t, — P) ysHo(t)
+Ho(t)?ysH1, Ho(t+p)Ho(t) =1 X ysHy, — 2Ho(t)275Ho(t)HIMHo(t+ p)

+D(t,t+p) ysHo(t)H1,Ho(t) = Ho(t)?ysH1,Ho(t—p)Ho(t) +1" X ysH1,
+2H(t)?ysHo(H)H], Ho(t—p) = D(t,t=p) ysHo(t)H1, Ho()} |, (4.5
where’ meansp— —p and
I =—3H(t)*+2H,(t)?D(t,t+p). (4.6)

Noting Eq.(B5), =,p,I1T)(p) is rewritten as follows:

14

- g% Ny - 1
2P = 5 0 fttr Do (1) gy 75 12Ho(0*(Hignu(tt+P,—P) ~Hig,(t=p.t, = p))

—Ho(t)(H(3)1,(t,t+p,—p)—H 31, (t—=p,t,— p))Ho(t) +3Ho() *Hy ,(t,t+p,— p)
—2Ho(1)?H(3)1,(t,t+p,—p) +Ho(t)H 3)1,,(t,t+p,—p)Ho(t)

—3Ho(t)*Hy,(t=p,t, = p) +2Ho(1)®H 31,,(t=p,t, = ) = Ho(t)H(3)1,(t—p,t, = p)Ho(t)}

9 Ny

=5 5A3fttr[D51(t)75(H1M(t,t+ p,—P)—Hy(t=p.t,—p))]. (4.7

We next calculates,p,IT7) (p)

_n2 N
2 B (p)= —a%— 5 3° ft t{Dg (1) ysH 1, (t,t+ P, =)D (t+P) ys(Ho(t+p) = Ho(1))]

2

-9g? N
- Tg %ﬁBLtr[(Dal(t)_ Do '(t+p))ysHy,(t,t+p,—p)]
—n2 N
= Tg 5 o ft Do (1) ys(H1,(t,t+P, = P) = Hy,(t=p,t,—P))]. 4.9

From Eq.(4.8) and Eq.(4.7), one can see that the Ward identity for the vacuum polarization tensor holds.
We next examine the structure of various divergences. Rescaling the integration mogrenjda in each amplitude, we
obtain (by omitting the factors"® from now on
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—N;g? 1
@(g)= -1 _
H,U,V(p) 2a2 fta(t,t+pa)2tr[D0 (t){D(tvt+pa)’)/SH(3)l,u,(tlt+pai pa)

— vsHo(t) (ysH(3)1,.(t,t+pa,— pa))TysHo(t+pa)} Dy H(t+pa)

X{D(t+pa,t) ysH3)1,(t+pa,t,pa)

— ysHo(t+pa) (ysH (g1, (t+past,pa)) ysHo(t)}] (4.9
and

fg

I(P)= 52

1
ttr[Do (t) a(th) {D(t t)ysH s zw(t,t,—pa,pa)—75Ho(t)(75H<3)2W(t,t,—pa,pa))*ysHo(t)
—Ho(t)2ysHy,(t,t+pa,—pa)(ysHy,(t+pat,pa)) ysHo(t)

—2H(t)2ysH 1, (t,t+pa,—pa) (ysHo(t+pa)) T ysHq,(t+pat,pa)

—Ho()2ysHo(t) (ysH1,(t,t+pa,—pa))TysHy,(t+pat,pa)
+ysHo(t) (ysH1,(t,t+pa, —pa) T ysHo(t+pa) (ysH,(t+pat,pa)TysHo(t) + (p,u——p,»)}|. (4.10

First, we want to show thdﬂﬁf‘g(p) andI1(?)(p) are finite and well defined fgy=0, and thus the divergent terms of the forms

p?l(a?p?)"*1s,, andp,p,/(a?p?)""! with n=0 do not appear. Setting=0 in these expressions, we have
@ —Nig? 1 t
I1,5(0)= 227 Jalt, t)ztr[Do YD (t,1) ysH (3)1,(1,,0) = ¥sHo(t) (¥5H (3)1,,(1,1,00) TysHo(1)}

X Do (1) {D(t,1) y5H (31,(t,t,00 = ¥sHo(t) (¥5H (3)1,(1,1,0) TysH (1) }] (4.1

and
(0 fg ftl’[Do ) —— (t 0 {D(t,t) y5H (3)2,15(1,£,0,0) = ¥5Ho(t) (¥5H (3)2,.,(1,£,0,00) T ysHo(t)

- Ho(t)z'}’sH1M(t,t,0)(’}/5H1V(t,t,0))T')/5Ho(t) - 2H0(t)2’)’5H1M(t,t,0)('}/5Ho(t))T'}/5H1V(t,t,o)
- HO(t)ZYSHO(t)(YSHlu(t!tlo))T75Hlv(titao) + ’}/5H0(t)(’y5H1M(t,t,0))T’)/5H0(t)

X(75Hlv(t1t10))T75H0(t)+(lu’<_)V)} . (412

The singularity may occur around the regibr0 in each  for §<1. Since both1{?)(0) andII{)(0) are nonsingular,
integral. However, the leading order parttim Hﬁf‘g(O) and II,, does not contain the non-local divergences. From the
11()(0) vanish as fact that thep,— 0 limit of IT,,,(p) is well defined and finite
and that the Ward identity holds, we also conclude that the
N;g? 1 possible quadratic divergengeg cancel between diagams
282 | oo (157 and(b). See also the analysis in Sec. Ill.
=0 Next we confirm that there are no divergences of the
t i structure such aa?p?x«, etc. which vanish in the naive
t—z(t2)2mt—2(t2)27v} continuum limit even if they existed. For this purpose we
evaluateHEf‘V)(p) and Hﬁfg(p) for t?< 6% and ap~0. We
=0, thus examine the behavior of various functions appearing in
these amplitudes for’< 5> and ap~0. They are given as
follows:

Xtr

H<b>(0)~— L (t)1
Za. (222 t2 (t2)2 YMYV

t 1 4/3
Dy H(t)=(2Mg)*35 el a(t,t):3(2—,v|0) (t%)2,
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1 1/3 1 2/3
_— 2~ 2
ysHo(t) (ZMO) t, Ho(t) (ZMO) te,
1 1/3
ySHlp(tvt+p!_p):_(m> ’)/,u,!

2/3
{t?+ (t+pa)?},

D(t,t+pa)= 2_|V|o)

H t,t ! >
Ys (3)2/LV( (A} pa!pa _2M0|+

m+n=

) {i(iD)iy,

X (i(t+pa))™iy,(i1)"},

PHSICAL REVIEW D 65 114504

This expression agrees with the one expected for the con-
tinuum theory[23,24 to be consistent with the general
analysis in Sec. Il.

V. DISCUSSION

We have studied a perturbative aspect of a general class of
Dirac operators. To avoid excessive complications, we exam-
ined the simplest diagrams of the one-loop fermion correc-
tion to the gauge field self-energy tensor. This quantity is
related to the one-loogB function and also to the Weyl
anomaly. We have confirmed that the perturbative analysis
gives the correct result for any=1 by using the relation
(2.14), in accord with the general analysis of the Weyl
anomaly. This correct result is consistent with our previous

where all the higher order terms are nonsingular. Using thesanalyses of the locality of the general operaqgy . ;) and

expressionsl1{?)(p) andI1{)(p) for t?< 5 andap~0 are
expressed as

N;g? 1
(@) —
I,.»(p) 2a’ t2(t+pa)?

t2< 62
Xtty,(t+pa)y,],

N;g?
By
I1,.,(p) 2aZ t2<62tr

tlft
t—zt—z(,Pa)

wheref(t,pa) is a nonsingular function of and pa. Since

I®)(p) vanishes in this limit and the expression of

the locality domain ofF ,,| for H . 1) [12]: Also, our re-
sult does not contradict the general perturbative analysis of
lattice theory in26] if one remembers the locality properties
of Hiz11). We have also confirmed the relati¢2.14) for
the simplest cask=1 by evaluating the self-energy correc-
tion in terms of the operatdd itself.

When combined with the analysis of chiral anomgsy,
our present analysis shows that all the local anomalies are
properly reproduced by our general class of operafdrs
These analyses give some confidence in the treatment of the
fermionic determinant

detH :(detH(2k+1))1/(2k+l) (51)

Hﬁfz(p) has the same structure as that in continuum theory the possible application to QCD, for example.

we conclude that there are lonusual divergences such as

a’p?x =, etc. in the vacuum polarization tensor.

At the same time, we recognized that infrared divergences
may generally appear in the intermediate stages of perturba-

Finally, we investigate the logarithmic divergence. Fromtjye calculations for finitea, which should cancel in the final

the above analyses, the logarithmic divergencdlip,(p)
appears from the singular part in the integral &0 and

t=0. SmcerLz(p) is nonsingular in this limit, we consider

only the amplitudd1{®)(p). In Eq. (4.9, we use the Feyn-
man’s parameter and shift the integration variatilgs-t,,

result. This treatment of infrared divergences in perturbation
theory is quite tedious in our generalized operdior To
avoid the infrared complications, tieonperturbative Wil-
sonian effective action, which is supposed to be free of in-
frared complications, is expected to be essential for the gen-

—ap,x. We then evaluate the contribution from the integra-eral operatorD. As for the perturbative treatment of fully

tion regiont?<é?, 8<1 in the continuum limit. We then
have

2 4
H(a)(p)z—Nfg det
mr 2a° Jeog2(2m)*
x2(1—x)? I'(6)

1
% fo dx{t2+ p?a’x(1—x)}° I'(3)?
X ((t—pax)?)?([t+pa(1l—x)]?)?

Xt (1—pax)y, (t+pa(l—x))y,].
(4.13

After some calculations, the term proportional to #8g? is
extracted as follows:

Nf92

242 P

8,,— PP, loga?p? (4.14

dynamical gauge field such as in the one-loop correction to
the fermion self-energy, some auxiliary regulator such as the
dimensional regulator may become neces$agy for a reli-
able treatment of infrared divergences.

APPENDIX A: FEYNMAN RULES FOR THE GENERAL
Hok+1)

We derive the Feynman rules fét, 1) theory (not H
itself) to calculate the vacuum polarization at the one-loop
level on the basis of Eq2.14. H 5 1) has been defined by
Egs. (1.6), (1.7) and (1.8). We expandH 1) up to the
second order in the coupling constanas follows:

H ok 1)=H 2k 10+ 9H ok 1)1+ 9%H 2k 192+ 0(93)(- :
Al

For this purpose we first need to expaD{f,k”)(x,y) in g.
D{E**B(x,y) up to the second order igis given by
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d*p dq . . mla  d%k, (ma d*
(2k+1) _ a4 ipx—iqy = 1 2
Pw = | @me XPD=2 | ) azm
X[Xo(p)Sp(P—a)+ Xy(P,a) +X2(p.q) X 8p(p—q—k1—k2)g%A . (k)A, (k)
+0(g%)], (A2) X Xoun(P:A,Ky1,Ka). (AS5)
where Here we defined
i 2k+1 i _ !
Xo(p)=i ayMsiana Xlﬁ(p,q,t)ZHE_Zk I\ 3 7o Sinp,2
r 2k+1 Mo 2k+1 t i m
+ 5% (1—cosp,a) -5 x(|yucos<q+§ #a) 3 YpSing,a
sirfp,a\Xy,sinp,a r ! t
= Ep YpSIND, +M(p), (A3) + —E (1—cosppa)) (r sin g+ = a)
a a a<; 2 "
2 mla 4t r 2 m
= —_— — 11— X — —
Xap@)=2 | e (Pt )AL a < (1-cosq,a) (A6)
X X1,(p,q,1), (A4) and
|
Xou (piiky ko) = D i1y sinp.a| [iy,cod p- =| a
R R I+m+n=2k-1 a’’ P " 2 “
[ . m ka P "
X aypsm(p—kl)pa iy,co q+§ Va aypsmqpa
r ! k
+( =2 (1—cosp,a) (r sin(p——1 a)
a< 2 u
'S a k (1 sin g+ 2 'S )
X a - (1—cogp—ky),a) | [rsinq > Va a : (1—cosg,a)
1 > N ) o 5 s ki+ky i ) m
+§|+m:2k I 5 7psinp,al (—iay,d,,sin q+ > Ma 5 Y»Sing,a
r ! ky+k r m
+ —E (1—cosp,a) (aréﬂycos<q+ L = a) —E (1—cosqg,a) J (A7)
as 2 u a“
where
r 2k+1 m 2k+1
M(p>=(52 (1-cospa)|  —(—=| (A8)
P
andl, m, n are the nonnegative integers abgl is the periodic lattice delta functios ,(k) is defined by
ma  d'k ik(x—ag/2)
= —au
A, (X) Jiﬂ/a (277)4Aﬂ(k)e , (A9)

and has the propertie%L(k):AM(—k) andA#(k+(27r/a)I)=(—1)'uA#(k) (I: integep.

Next we want to expand the factor(D{T* " V) T(D{F* ) in H 4+ 1) (1.6). But it is very complicated to perform the weak
coupling expansion of (D& )T (D) directly, if not impossible. Therefore we use the following identity:
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1 = dt 1
XX f e XX (A10)

The weak coupling expansion of the integrand on the right-hand side can be readily performed. After some calculations, we
obtain

d* dq 1
H(2k+1):a4f(zTF))4f q ipx—iqy.

+ ( Xo(P)
(2,”_)46 2 Vs

1+—>5p(p—Q)+{

el
o(p) o(p)+w(q)

XO(p) t q) Xo(CI)}
w(q)

Xo(p)
o(p)

Xo(d)

X w(q)]+(w(p)+w<q>”X2(p'q)_ wo(p) (2P

X1(p,q)— X1(p,q)

*J |5 (e [awara)
Lo+ o@| |+ o] | o+ o

X1 = Xo(P)XT(P, 1) X1(t,0) = X1 (p,t) X{(1) X1 (t,G) — X1(p, 1) X1(t,4) Xo(q)

o(p)+w(q)+ o(t)
o(p)o(t)w(q)

1
w(p)= \/(ysinz p,a

andX'= ysXys. We write H o1 1y0(X,Y), Haks 1y1(X.Y), andH k1 1)2(X,y) as follows:

H 2k 1)0(X,Y) = 34L<9ipxipyH(szr 1o(P), (A13)

Xo(P)X1(p,t) Xo(1)X](t,a)Xo(q)

+ (9(93)} , (A11)

where

2k+1

Mg
+

a

: (A12)
p

r 2k+1 2k+1) 2
52 (1—cosppa)> - ]

H(2k+1>1(X,y):a42 pqteipx’iqyb‘p(p—q—t)A#(t)HQkH)l#(p,q,t), (A14)
122 *h

Haks1y2(xy)=a*> kK &P o (p— =Ky — ko) AL (KA, (K2 H ks 12,00 P, 0 K1 K2), (A15)
wy Jpiaky ke

where [,=["2[d*p/(27)*]. Then from Eq.(A11), Heokr1y0(P). Hzks 1)1.(P.0:t), @ndH zis1)2,,(P. 0Ky k;) can be
written as

Xo(P)

1
H 2K+ 1)0(P) = > 75( 1+ m) ) (A16)

1 1
Hks 1P A =5 Y5 (p) + @(q)

Xo(P) + Xo(Q)]1 (A17)

X[Xl,u(pqut)_ w(p) Xl,u(piqat) w(q)

Xo(P) Xo(q)
Xaul Pk ko) = T X, (P K ko) o

1 1
H 2kt 1)2,0(P: 0Ky, K2) = > Ysm
1
(w(p)+w(p—k))Nw(p—ky)+w(q))
+X1,,(p.P— Ky k) XF(P— K1) X1,(a+ Kz, 0,Kz) + Xo(P)XT,(p,p— K1, K1) X1, (q+Kz,0,ky)

_o(p)to(p—k)+w(q)
w(p)o(p—ky)o(q)

{Xlﬂ(pyp_ k1, k) X1, (a+ka,0,K2) Xo(Q)

xo<p>XIﬂ(p,p—k1,kl>xo<p—k1>><L(q+k2,q,k2>xo<q>]} :
(A18)
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Note thatg=p—t in Hz1)1,(P.4,t) andg=p—ky—ky in H o+ 1)2,,(P,A,K1,K2). _
From this weak coupling expansion we can derive the Feynman ruled fQr. ;) theory, which are necessary for the
one-loop analyses. To make the structure of the divergences in one-loop amplitudes explicit we derive the Feynman rules for

(1/a?<*1) Hz(lfﬂl):(%D)zkH' Using Eq.(A16), the fermion propagatdd, (p), whereD, *(p) stands for the inverse of

free (ysD) , Is written as
(s5)"8
~1n)— p’ 7P 2k+1
wheres,=2 v, sinap, and SSEEMsinzapﬂ. Using Eq.(Al17), we assign the following factor to the fermion-gauge field
three-point vertex depicted in Fig. 2
_ g A 1 _ XO(p) t XO(q)
2a2k+lTba’Y5w(p)+w(q) [Xl,u,(paqat) w(p) le,(paqyt) w(q) ) (AZO)

whereT areSU(N) generators. Using E§A18), we assign the following factor to the fermion-gauge field four-point vertex
depicted in Fig. 3

2 Xo(P)

o(p)

Xo(Q)
o(q)

X2,u(P, 0, Ky  Ko) — X3,,(P,0.Kq kp)

ATB 1
_W(T T )ba75m
- 1

(w(p)+ o(p—k))(w(p—ky)+w(q))
+X1,,(p,p—Ky, k) X§(P— K1) X1,(a+Kz,0,Ka) + Xo(P)X],(p,p— K1, K1) X1,(q+Kz,0,ky)

_o(p)to(p—k)+w(q)
w(p)o(p—kyw(q)

rxl,u(plp_ kl’kl)xlv(q—‘r k2 1q=k2)xo(q)

Xo(P)X1,(P.p—Ky k1) Xo(p—k)X],(q+k, aqakz)xo(Q)] +(Ap, k=B, v, ky), (A21)

where we have imposed the Bose symmetry for gauge fields. 1 1 1 ) .

In Sec. Ill of the present paper, we calculate the vacuum D=7 7sHot 7 vs9H1+ 7 759°Ha+ O(g7),
polarization tensor at the one-loop level by using these Feyn-
man rules. 5 3

H3=H )0t 9H3)1T9°H(3)2+ O(g°)
APPENDIX B: FEYNMAN RULES FOR THE OPERATOR =(Ho+gH; +9%H,+0(g%)® (=H?)
H WITH k=1
—_ g3 m 2-m
In this appendix we derive the Feynman rules for the op- _H0+go§§§2 HoH1Hp

eratorH to calculate the vacuum polarization at the one-loop

level. For simplicity we consider the case wik 1. For the + g2 E HMH 2™

Feynman rules for the operatbt sy, we refer to Appendix 9 oS, 0772070

A. We expandH and Hy up to the second order in the

coupling constang as follows: n E H'OHlHS“HlH(l)"‘m +0(gP).
o<l+m=1

H=H0+gH1+ng2+(’)(g3), (B1) (B2)

A, U, kl B,I/, kz

p,a q,b b,a qab

FIG. 2. Fermion-gauge field three-point vertex. FIG. 3. Fermion-gauge field four-point vertex.
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Now we want to know the expressionsidf, H;, andH,.
We have obtainedH, in our previous papef12,9. In mo-
mentum spacél, is written as

23 23
Ho(p)= ?’5(5) (W) [ (w(p)+M(p))**

5
—(w(p)—M <p>>l’3—”] ,

a
B ( 1 )2/3( 1 )1/3
~ 5 20(p)] | w(p)+M(p)
2\ &
X a—‘z’ gp-l-w(p)—kM(p)], (B3)

where$,=% v, sinap, ands’==
ily check thatH (3)0(p) = (Ho(p))3.

Next we derive the expression &f;. We write H; as
follows:

H1:a42
“oJIpat
X Hl,u(p!qlt)i

where [, o =[[d*p/(2m)*]f[d*a/(2m)*]f[d*/(2m)*].
Using Eq.(B2) at first order ing, we obtain

.. Sifap,. One can eas-

PV 5p(p—g—t)A, (1)

(B4)

Hianu(P.a0=_ 2 Ho(P)™Hu,(P,q,0Ho(a)* ™"

= D(prq)Hl,u,(p!qit)

+Ho(p)H1.(P.a,)Ho(d), (BS)

PHSICAL REVIEW D 65 114504

where
D(p,a)=Ho(p)+Ho(a)?, (B6)
1 M 1/3
Ho(p)2=[§<1+ —w((s)))] . (B7)
Now we consider an ansatz as
1
H1,(p,a,0)=—(D(p,a)H 3)1,,(P,q,1)
—Ho(P)H3)1.(P,a,)Ho(@)).  (B8)

Substituting this ansatz for,, into Eq. (B5), we easily
obtain the expression af as

a(p,q)=D?(p,q)—H3(p)H3(a)

= 2 Ho(p)MHo(@** ™. (BY)

Thus we have obtained the expressiorHaf.

Further we derive the expression ldf, performing the
similar procedure as deriving,. We first writeH, as fol-
lows:

H2:a42

Mmv p.a.ky ko

XAM(kl)Av(kZ)HZ,uV(pqukl!kZ)'

PV 5p(p—q—k;—ky)
(B10)

Using Eq.(B2) at the second order ig, we obtain

Hiazun(Pothka ko) = 2 Ho(P)™Ha,u(P.a.Ky k) Ho(@)?

+_ 2 Ho(P)'Hu,(p.p—ky kn)Ho(p—ki)™H1,(P—ki1,0 ko) Ho(@) ™'~

:D(p!q)HZMV(p!q!klrk2)+HO(p)HZ,u,V(prqvkl!kZ)HO(Q)
+Hyp,(p,p—Ki,k)H1,(p—Kq,0,K2)Ho(q) +Hy (P, p— K1, k) Ho(p—k)H1,(p—k1,0,kp)

+Ho(P)H1.(P,p—Ky, k) H1,(p—K1,0,Kz).

Now we define

H('3)2W(p,q,k1 K2)=H3)2,,—{H1,H1,Ho+Hy1,HoH1,+HoHq, Hy, b

UsingH )5, EQ.(B11) is written as

H(’3)2,LLV: DHZ,u,V+ HO(p)HZMVHO(Q)

(B11)

(B12)

(B13)

The structure of this equation is the same as that of(Bg). ThereforeH,,,, is written as
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1
HZMV:m (D(pvq)H(,?;)Z,uV_ HO(p)H(3)2,uVHO(q)) (814)

Finally we obtain the expression #f,,, in momentum space as follows:
1
Ha,(P,d, K1, ko) = (p.q) q){D(p,Q)H(s)qu(P,q,M:kz)—Ho(p)H(3)2W(p:q7k1akz)Ho(Q)
—Ho(a)®Hy,.(p.p—Kq, k) H1,(p—Ky1,0,k) Ho(@) = D(p,@)H1,(p,p—Kq,kq)
XHO(p_kl)Hlv(p_klyq:kZ)_HO(p)zHO(p)Hlﬂ(p-p_klukl)Hlv(p_klaq:kZ)
+Ho(P)H 1, (P, p—Ky,K)Ho(Pp—K)H1,(p—Kq,0,Ka)Ho(a) ] (B15)

From this weak coupling expansion we can derive the Feynman ruld3 fioithe case ok=1, which are necessary for the
one-loop analysis. Using E@B3), the fermion propagatdbgl(p) is written as

Zsp

aHo(p)? a
o(p)+M(p)

Using Eq.(B8) and Eq.(B9), we assign the following expression to the fermion-gauge field three-point vertex depicted in Fig.
2:

»
a2

Do (p)= +aHo(p)2. (B16)

g

1
- aTé\am{D(p,Q) ¥sH(3)1,.(P,0,t) — 75H0(p)(75H(3>1;L(paq,t))TysHo(Q)}, (B17)

whereTA areSU(N) generators. Using E¢B15), we assign the following expression to the fermion-gauge four-point vertex
depicted in Fig. 3,

92
- ;(TATB)b {D(P, ) ¥sH (3)2,,0( P, 0, K1 . K2) = ¥5Ho(P) (¥5H (3)2,44( P, 0. K1 . k2)) T ysHo(a)

1
%a(p.9)
- HO(Q)275H1M(p,p_ k1,ke) (ysH1,(p—K1,0,k2) T ¥sHo(Q)

—D(P,@) ¥sH1,(P.P—k1 k1) (¥sHo(P—k1) ysH1,(P—k1,0,kz)

—Ho(p)?ysHo(p) (¥sH1,.(P.p—K1. ki) vsH1,(p—K1,0.ky)

+ vsHo(P) (ysH 1, (P, p— k1, k1)) ysHo(p—Ky)

X (ysH1,(p—K1,0.k2) TysHo( @)} + (A, i,k =B, v, ky). (B18)

We perform a one-loop calculation in Sec. IV on the basis of these Feynman rules.
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