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Overlap quark propagator in the Landau gauge

Frédéric D. R. Bonnet,1 Patrick O. Bowman,2 Derek B. Leinweber,1 Anthony G. Williams,1 and J. B. Zhang1

~CSSM Lattice Collaboration!
1Special Research Center for the Subatomic Structure of Matter (CSSM) and Department of Physics and Mathematical Phy

University of Adelaide 5005, Australia
2Department of Physics and School for Computational Science and Information Technology, Florida State University,

Tallahasse, Florida 32306
~Received 3 February 2002; revised manuscript received 9 April 2002; published 7 June 2002!

The properties of the quark propagator in the Landau gauge in quenched QCD are examined for the overlap
quark action. The overlap quark action satisfies the Ginsparg-Wilson relation and as such provides an exact
lattice realization of chiral symmetry. This in turn implies that the quark action is free ofO(a) errors. We
present results using the standard Wilson fermion kernel in the overlap formalism on a 123324 lattice at a
spacing of 0.125 fm. We obtain the nonperturbative momentum-dependent wave function renormalization
functionZ(p) and the nonperturbative mass functionM (p) for a variety of bare masses. We perform a simple
extrapolation to the chiral limit for these functions. We clearly observe the dynamically generated infrared
mass and confirm the qualitative behavior found for the Landau gauge quark propagator in earlier studies. We
attempt to extract the quark condensate from the asymptotic behavior of the mass function in the chiral limit.
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I. INTRODUCTION

Hadron correlators on the lattice provide a direct mean
calculating the physically observable properties of quant
chromodynamics~QCD!. They are by construction color
singlet ~i.e., gauge-invariant! quantities. Any finite,
Boltzmann-distributed ensemble of gauge configurations
a negligible probability of containing two gauge-equivale
configurations. Hence, there is a negligible probability of a
gauge orbit being represented more than once in the M
Carlo estimate of the color-singlet hadron correlator and
is the reason that there is no need to gauge fix in such
culations.

On the other hand, calculations of high-energy proces
are carried out analytically with perturbative QCD, where
is necessary to select a gauge. Quark models and Q
inspired Dyson-Schwinger equation models@1# are necessar
ily formulated in a particular gauge. The usual Fadde
Popov gauge-fixing procedure is adequate for perturba
QCD. However, in the nonperturbative infrared region st
dard gauge choices, such as the Landau gauge, have G
copies; i.e., there are multiple gauge configurations o
given gauge orbit which satisfy the gauge-fixing conditio
Since no finite ensemble will ever contain two configuratio
from the same gauge orbit, the Landau gauge on the la
actually corresponds to a gauge where there is a more or
random choice between the Landau gauge Gribov copie
the represented gauge orbits in the ensemble. Before g
fixing, the ensemble contains configurations randomly
cated on their gauge orbits. After Landau gauge fixing on
lattice each configuration in the ensemble will typically set
on one of the nearby Landau gauge Gribov copies. Thi
the standard lattice implementation of the Landau gauge
the one that we consider in this work.

In order to study the transition from the nonperturbat
to perturbative regime on the lattice we can study the glu
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@2# and quark@3–6# propagators and vertices such as t
quark-gluon vertex @10#. By studying the momentum
dependent quark mass function in the infrared region we
gain some insights into the mechanism of dynamical ch
symmetry breaking and the associated dynamical genera
of mass. Studying the ultraviolet behavior of propagators
large momentum is made difficult because of lattice artifa
causing the propagator to deviate strongly from its corr
continuum behavior in this regime. The method of tree-le
correction was developed and used successfully in gl
propagator studies@2# and has recently been extended to t
case of the quark propagator@4–6#. Some related studie
have been performed for the case of domain-wall fermio
@7#. Detailed discussions of nonpertubative renormalizat
for lattice operators can be found, e.g., in Refs.@8,9#

We present here results for the quark propagator obta
from the overlap quark action and using an improved ga
action and improved Landau gauge fixing. The overlap
tion is an exact realization of chiral symmetry on the latti
and is necessarilyO(a) improved. In Secs. II and III we
briefly introduce the improved gauge action and the latt
quark propagator respectively. In Sec. IV we introduce
overlap quark propagator and describe how it is calcula
Our numerical results are presented in Sec. V and finally
Sec. VI we give our summary and conclusions.

II. IMPROVED GAUGE ACTION

The tree-levelO(a2)-improved action is defined as

SG5
5b

3 (
x m n
n.m

Re tr@12Pmn~x!#

2
b

12u0
2 (

x m n
n.m

Re tr@12Rmn~x!#, ~1!
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wherePmn andRmn are defined as

Pmn~x!5Um~x! Un~x1m̂ ! Um
† ~x1 n̂ !Un

†~x!, ~2!

Rmn~x!5Um~x! Un~x1m̂ ! Un~x1 n̂1m̂ !

3Um
† ~x12n̂ ! Un

†~x1 n̂ ! Un
†~x!

1Um~x! Um~x1m̂ ! Un~x12m̂ !

3Um
† ~x1m̂1 n̂ ! Um

† ~x1 n̂ ! Un
†~x!. ~3!

The link productRmn(x) denotes the rectangular 132 and
231 plaquettes. The mean link,u0 is the tadpole~or mean-
field! improvement factor that largely corrects for the qua
tum renormalization of the coefficient for the rectangles re
tive to the plaquette. We employ the plaquette measure
the mean link

u05S 1

3
Re tr̂ Pmn~x!& D 1/4

, ~4!

where the angular brackets indicate averaging overx, m, and
n.

Gauge configurations are generated using the Cabib
Marinari @11# pseudo-heat-bath algorithm with three diag
nal SUc(2) subgroups cycled twice. Simulations are p
formed using a parallel algorithm on a Sun Cluster compo
of 40 nodes and on a Thinking Machines Corporatio
~TMC! CM-5 both with appropriate link partitioning. We
partition the link variables according to the algorithm d
scribed in Ref.@12#. We use 50 configurations generated on
123324 lattice atb54.60, selected after 5000 thermaliz
tion sweeps from a cold start and every 500 sweeps ther
ter with a fixed mean-link value. Lattice parameters are su
marized in Table I. The lattice spacing is determined fro
the static quark potential with a string tensionAs
5440 MeV @13#.
The gauge field configurations are gauge fixed to the Lan
gauge using a conjugate gradient Fourier acceleration@14#
algorithm with an accuracy ofu[(u]mAm(x)u2,10212. We
use an improved gauge-fixing scheme to minimize gau
fixing discretization errors. A discussion of the function
and method for improved Landau gauge fixing can be fou
in Ref. @15#.

III. QUARK PROPAGATOR ON THE LATTICE

In a covariant gauge in the continuum the renormaliz
Euclidean space quark propagator must have the form

S~z;p!5
1

ip”A~z;p2!1B~z;p2!
5

Z~z;p2!

ip”1M ~p2!
, ~5!
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wherez is the renormalization point and where the renorm
ization point boundary conditions areZ(z;z2)[1 and
M (z2)[m(z) and wherem(z) is the renormalized quark
mass at the renormalization point. Since the gauge-fix
condition has no preferred direction in color space, the qu
propagator must be diagonal in color space; i.e.,Si j (z;p)
5S(z;p)d i j whered i j is the 333 SU(3)c identity matrix.
The functions A(z;p2) and B(z;p2), or alternatively
Z(z;p2) andM (p2), contain all of the nonperturbative infor
mation of the quark propagator. Note thatM (p2) is
renormalization-point independent, i.e., sinceS(z;p) is mul-
tiplicatively renormalizable all of the renormalization-poi
dependence is carried byZ(z;p2). For sufficiently large mo-
menta the effects of dynamical chiral symmetry breaking
come negligible for nonzero current quark masses; i.e.,
largez andmzÞ0 we havem(z)→mz wheremz is the usual
current quark mass of perturbative QCD at the renormal
tion point z. When all interactions for the quarks are turn
off, i.e., when the gluon field vanishes, the quark propaga
has its tree-level form

S(0)~p!5
1

ip”1m0
, ~6!

wherem0 is the bare quark mass. When the interactions w
the gluon field are turned on we have

S(0)~p!→Sbare~a;p!5Z2~z;a!S~z;p!, ~7!

wherea is the regularization parameter~i.e., the lattice spac-
ing here! andZ2(z;a) is the quark wave-function renorma
ization constant chosen so as to ensureZ(z;z2)51. For sim-
plicity of notation we suppress thea-dependence of the bar
quantities.

On the lattice we expect the bare quark propagators
momentum space, to have a similar form as in the continu
@3–5#, except that theO(4) invariance is replaced by a four
dimensional hypercubic symmetry on an isotropic lattic
Hence, the inverse lattice bare quark propagator takes
general form

~Sbare!21~p![ i S (
m

Cm~p!gmD 1B~p!. ~8!

We use periodic boundary conditions in the spatial directio
and antiperiodic in the time direction. The discrete mome
tum values for a lattice of sizeNi

33Nt , with ni51, . . . ,Ni

andnt51, . . . ,Nt , are

pi5
2p

Nia
S ni2

Ni

2 D and
~9!

TABLE I. Lattice parameters.

Action Volume Ntherm Nsamp b a ~fm! u0 Physical volume (fm4)

Improved 123324 5000 500 4.60 0.125 0.88888 1.5333.00
3-2
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pt5
2p

Nta
S nt2

1

2
2

Nt

2 D .

Defining the bare lattice quark propagator as

Sbare~p![2 i S (
m

Cm~p!gmD 1B~p!, ~10!

we perform a spinor and color trace to identify

Cm~p!5
i

4Nc
tr@gmSbare~p!# and

~11!

B~p!5
1

4Nc
tr@Sbare~p!#.

The inverse propagator is

~Sbare!21~p!5
1

2 i S (
m

Cm~p!gmD 1B~p!

5

i S (
m

Cm~p!gmD 1B~p!

C2~p!1B2~p!
, ~12!

whereC2(p)5(m@Cm(p)#2. From Eq.~8! we identify

Cm~p!5
Cm~p!

C2~p!1B2~p!
and

~13!

B~p!5
B~p!

C2~p!1B2~p!
.

A. Tree-level correction

At tree level, i.e., when all the gauge links are set to
identity, the inverse bare lattice quark propagator becom
the tree-level version of Eq.~8!:

~S(0)!21~p![ i S (
m

Cm
(0)~p!gmD 1B(0)~p!. ~14!

We calculate (S(0))(p) directly by setting the links to unity
in the coordinate space quark propagator and taking its F
rier transform

It is then possible to identify the appropriate kinema
lattice momentum directly from the definition

qm[Cm
(0)~p!5

Cm
(0)~p!

@C(0)~p!#21@B(0)~p!#2
. ~15!

This is the starting point for the general approach to tr
level correction developed in earlier studies of the glu
propagator@2# and the quark propagator@4–6#.

Having identified the appropriate kinematical lattice m
mentumq, we can now define the bare lattice propagator
11450
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Sbare~p![
1

iq”A~p!1B~p!

5
Z~p!

iq”1M ~p!

5Z2~z;a!S~z;p! ~16!

and the lattice version of the renormalized propagator in
~5!:

S~z;p![
1

iq”A~z;p!1B~z;p!
5

Z~z;p!

iq”1M ~p!
. ~17!

The general approach to tree-level correction@2,4–6# uti-
lizes the fact that QCD is asymptotically free and so it is t
difference of bare quantities from their tree-level form on t
lattice that contains the best estimate of the nonperturba
information. For example, the multiplicative tree-level co
rections forZ(p) andM (p) have the form

Z(c)~p!5
Z~p!

Z(0)~p!
1 and

~18!

M (c)~p!5
M ~p!

M (0)~p!
m0.

The identification of the kinematical variableq ensures that
A(0)(p)51/Z(0)(p)51 by construction and soZ(p)
5Z(c)(p) and is already tree-level corrected. For overl
quarks we will see thatM (0)(p)5m0 and so the mass func
tion satisfiesM (p)5M (c)(p) and needs no tree-level corre
tion either. This feature is a major advantage of the over
formalism.

IV. OVERLAP FERMIONS

The overlap fermion formalism@16–25# realizes an exac
chiral symmetry on the lattice and is automaticallyO(a)
improved, since anyO(a) error would necessarily violate
chiral symmetry @20#. The massless coordinate-spa
overlap-Dirac operator can be written in dimensionless
tice units as@21#

D~0!5
1

2
@11g5Ha#, ~19!

whereHa is a Hermitian operator that depends on the ba
ground gauge field and has eigenvalues61. Any suchD(0)
is easily seen to satisfy the Ginsparg-Wilson relation@27#

$g5 ,D~0!%52D~0!g5D~0! ~20!

and, provided that its Fourier transform at low momenta
proportional to the momentum-space covariant derivative
will satisfy a deformed lattice realization of chiral symmetr
It immediately follows from Eq.~19! that
3-3
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D†~0!D~0!5D~0!D†~0!5
1

2
@D†~0!1D~0!# ~21!

and that

D†~0!5g5D~0!g5 . ~22!

It also follows easily that$g5 ,D21(0)%52g5 and by defin-
ing D̃21(0)[@D21(0)21# we see that the Ginsparg-Wilso
relation can also be expressed in the form

$g5 ,D̃21~0!%50. ~23!

The standard choice ofHa(x,y) is Ha5e(Hw)
[Hw /uHwu5Hw /(Hw

† Hw)1/2, where Hw(x,y)5g5Dw(x,y)
is the Hermitian Wilson-Dirac operator and whereDw is the
l

e

ira
ed
t

e

11450
usual Wilson-Dirac operator on the lattice. However, in t
overlap formalism the Wilson mass parametermw is the
negative of what it is for standard Wilson fermions and
tree level must satisfy 0,mwa,2. In the overlap formalism
mw is an intermediate lattice regularization parameter, it
not the bare quark mass. When interactions are present
must havem1a,mwa in order that the Wilson operator ha
zero crossings and, in turn, thatD(0) has nontrivial topo-
logical charge. Numerical studies have found thatm1.mc ,
wheremc is the usual critical mass for Wilson fermions@26#.
The constraintmwa,2 at tree level arises from the fact th
Wilson doublers reappear above this point. In summary,
use hereHw(2mw)5g5 Dw(2mw).

Recall that the standard Wilson-Dirac operator can
written as
Dw~x,y!5@~2mwa!14r #dx,y2
1

2 (
m

$~r 2gm!Um~x!dy,x1m̂1~r 1gm!Um
† ~x2am̂ !dy,x2m̂%

5
1

2kstFdx,y2kst(
m

$~r 2gm!Um~x!dy,x1m̂1~r 1gm!Um
† ~x2am̂ !dy,x2m̂%G , ~24!
rm

il-
-

ard
q.

on
a-

son
he
s

where the negative Wilson mass term (2mwa) is then de-
fined by (2mwa)14r 51/2kst or equivalently

kst[
1

2~2mwa!1~1/kc!
~25!

and wherekc throughout this work is the tree-level critica
k, i.e., kc51/(8r ).

In the present work we use the mean-field improv
Wilson-Dirac operator, which can be written as

Dw~x,y!5
u0

2k Fdx,y2k(
m

H ~r 2gm!
Um~x!

u0
dy,x1m̂

1~r 1gm!
Um

† ~x2am̂ !

u0
dy,x2m̂J G . ~26!

We see that this is equivalent to the standard Wilson-D
operator with the identification of the mean-field improv
coefficientk[kstu0. It is U/u0 that has a more convergen
expansion around the identity than the linksU themselves.
The negative Wilson mass (2mwa) is then related to this
improvedk by

k[
u0

2~2mwa!1~1/kc!
. ~27!

The Wilson parameter is typically chosen to ber 51 and we
will also user 51 here in our numerical simulations.

For this mean-field improved Wilson-Dirac choice w
then have
d

c

D~0!5
1

2
@11Dw~Dw

† Dw!21/2#. ~28!

In coordinate space the Wilson-Dirac operator has the fo
Dw5¹” 1(r /2)D1(2mwa), where¹m is the symmetric di-
mensionless lattice finite difference operator, andD is the
dimensionless lattice Laplacian operator. Recall that the W
son mass term is (2mwa) here. Setting the links to the iden
tity gives

Dw5~1/2!~]Qm1]Wm!gm1~r /2!~2]Qm]Wm!

1~2mwa!, ~29!

where the partial derivatives are the forward and backw
lattice finite difference operators. Hence we have from E
~28! that

D~0!5
1

2 F11
¹” 1~r /2!D2mwa

A~mwa!21O~]2!
G→ ¹”

2mwa
, ~30!

where the last line is a limit approached when operating
very smooth functions such that only first powers of deriv
tives are kept. The reason for needing a negative Wil
mass (2mwa) is now apparent, i.e., it is needed to cancel t
1 in D(0). We seethat, at sufficiently fine lattice spacing
and forpa!1,

Dc~0![~2mw!D~0!, ~31!
3-4
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whereDc(0) in the continuum limit becomes the usual fe
mion covariant derivative contracted with theg matrices,
i.e., Dc(0)→D” asa→0.

The massless overlap quark propagator is given by

Sbare~0![D̃c
21~0![Dc

21~0!2
1

2mw

5
1

2mw
@D21~0!21#

5
1

2mw
D̃21~0!. ~32!

This definition of the massless overlap quark propagator
lows from the overlap formalism@19# and ensures that th
massless quark propagator anticommutes withg5, i.e.,
$g5 ,Sbare(0)%50 just as it does in the continuum@21#. At
tree level the momentum-space form of the massless pr
gator defines the kinematic lattice momentumq, i.e., we set
the links to 1 such that we have for the momentum-sp
massless quark propagator

Sbare~0,p![D̃c
21~0,p!→S(0)~0,p!5

1

iq”
; ~33!

recall thatp is the discrete lattice momentum defined in E
~9! andq is the kinematical lattice momentum defined in E
~15!. We can obtainq numerically in this way from the tree
level massless quark propagator. We can compare this
the analytic form forq derived in the Appendix and given i
Eq. ~A9!.

Note that for our mean-field improved Wilson-Dirac o
erator, the tree-level limit for definingq implies that we
should takeU→I andu0→1 in Dw while keepingk fixed.
Thus thek that appears in the tree-level expression forqm in
Eq. ~A9! is actually the improvedk and notkst. This means
that the tree-level Wilson mass parametermw

(0) used in the
Appendix is given byk51/@2(2mw

(0)a)1(1/kc)# and hence
differs from themw in Eq. ~27! used in the main body of the
paper. We have found that theq obtained in this way gives a
much superior large momentum behavior for theM (p) and
Z(p) functions than is obtained when we do not use me
field improvement.

Having identified the massless quark propagator in
~32!, we can construct the massive overlap quark propag
by simply adding a bare mass to its inverse, i.e.,

~Sbare!21~m0![~Sbare!21~0!1m0. ~34!

Hence, at tree level we have for the massive, moment
space overlap quark propagator

Sbare~m0,p!→S(0)~m0,p!5
1

iq”1m0
~35!

and the reason that the overlap quark propagator need
tree-level correction beyond identifyingq is now clear.
11450
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In order to complete the discussion we now relate o
presentation to standard notation used elsewhere. We
define the dimensionless overlap mass parameter

m[
m0

2mw
~36!

and then defineD̃c
21(m) in analogy with Eq.~32!

Sbare~m0![D̃c
21~m!; ~37!

i.e., D̃c
21(m) is a generalization ofD̃c

21(0) to the case of
nonzero mass. Extending the analogy with the massless
we introduceD̃(m) and D(m), which are generalized ver
sions ofD̃(0) andD(0), through the definitions

D̃c
21~m![

1

2mw
D̃21~m! and

~38!

D̃21~m![
1

12m
@D21~m!21#.

We can now use Eq.~34! and the above definitions to obtai
an expression forD(m). From Eqs.~34!, ~36!, and ~38! we
see that we must haveD̃(m)5D̃(0)1m. Inverting this gives

1

12m
@D21~m!21#5@D̃~0!1m#21 ~39!

and so

D21~m!5~12m!@D̃~0!1m#2111

5@D̃~0!11#@D̃~0!1m#21. ~40!

Inverting gives

D~m!5@D̃~0!1m#@D̃~0!11#21 and also
~41!

D~0!5D̃~0!@D̃~0!11#21

and so finally

D~m!5@~12m!D̃~0!1m„D̃~0!11…#@D̃~0!11#21

5~12m!D~0!1m

5
1

2
@11m1~12m!g5Ha#. ~42!

We have then recovered the standard expression forD(m)
found, for example, in Ref.@21# and elsewhere.

We see that the massless limitm0→0 implies thatm
→0 and D(m)→D(0), D̃21(m)→D̃21(0), and D̃c

21(m)

→D̃c
21(0). For non-negative bare massm0 we requirem

>0. In order that the above expressions and manipulati
be well defined we must havem,1. Hence, 0<m,1 de-
fines the allowable range of bare masses.
3-5
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Our numerical calculation begins with an evaluation
the inverse ofD(m), whereD(m) is defined in Eq.~42! and
using Ha5e(Hw) for each gauge configuration in the e
semble. We then calculate Eq.~37! for each configuration
and take the ensemble average to obtainSbare(x,y). The dis-
crete Fourier transform of this finally gives the momentu
space bare quark propagatorSbare(p) for the bare quark mas
m0.

Our calculations usedk50.19 andu050.88888 and since
at tree levelkc51/8, we then havemwa51.661. Recall that
the lattice spacing isa50.125 fm and so we havea21

51.58 GeV andmw52.62 GeV. We calculated at ten qua
masses specified bym50.024, 0.028, 0.032, 0.040, 0.04
0.060, 0.080, 0.100, 0.120, and 0.140. This correspond
bare masses in physical units ofm052mmw5126, 147, 168,
210, 252, 315, 420, 524, 629, and 734 MeV respectively

V. NUMERICAL RESULTS

We have numerically extracted the kinematical lattice m
mentumqm directly from the tree-level overlap propagat
using Eqs.~11!, ~13!, and ~15!. In particular, by settingU
→I andu0→1 we have numerically verified to high prec
sion the tree-level behavior in Eq.~35! for all ten of our bare
massesm0, which is a good test of our code for extractin
the momentum-space quark propagator. We plotq[A(mqm

2

against the discrete lattice momentump[A(mpm
2 in Fig. 1.

For pure Wilson quarks we would haveqm5(1/a)sin(pma). It
is interesting thatq for the overlap lies above the discre
latticep, while q for Wilson quarks lies below. Of course, i
both cases,q→p at smallp.

A. Data cuts and averaging

To clean up the data and improve our ability to dra
conclusions about continuum physics, we will on occas
employ the so-called ‘‘cylinder cut,’’ where we select on
lattice four-momenta lying near the four-dimensional diag
nal in order to minimize hypercubic lattice artifacts. This c
has been successfully used elsewhere in combination
tree-level correction in studies of the quark and gluon pro
gator @2,4,5#. It is motivated by the observation that for
given momentum squared (p2), choosing the smallest mo
mentum values of each of the Cartesian componentspm
should minimize finite lattice spacing artifacts.

We calculate the distanceDp of a momentum four-vecto
pm from the diagonal using

Dp5upusinup , ~43!

where the angleup is given by

cosup5
p•n̂

upu
, ~44!

andn̂5 1
2 (1,1,1,1) is the unit vector along the four-diagon

For the cylinder cut employed in this study we neglect poi
more than one spatial momentum unit 2p/Ni from the diag-
onal. To see that this cut has the desired effect of reduc
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hypercubic artifacts we plot the cut version of Fig. 1 in F
2. The cylinder-cut data points have much reduced hype
bic spread and lie on a smooth curve. We also sometim
make use of a ‘‘half cut’’ where we retain only momentu
componentspm half way out into the Brillouin zone.

On an isotropic four-dimensional lattice we haveZ(4)
invariance. Since our lattice is twice as long in the tim
direction as it is in the spatial direction, this symmetry
broken down toZ(3). This symmetry may be used to im
prove the statistics by averaging overZ(3)-identical momen-
tum points. Since QCD and our lattice are parity invaria
we can also perform a reflection average at the same t
This average treats the negative momentum combination
the same way as the positive ones. In an obvious notatio
we wish to calculate some quantityS(1,2,3,4), then we cal-
culate all of the quantitiesS(6 i ,6 j ,6k,64) for i , j ,k any
permutation of 1,2,3 and perform an average over all
these quantities.

We could also, in principle, average over all lattice sta
ing points in the calculation of the propagator, since
should have translational invariance, i.e.,S(y,x) should be
the same for all equal (y2x). However, this averaging is too
expensive to implement and we use a single starting poinxm
and calculateS(y,x) for all finishing pointsym . We obtain
the Fourier transformS(p) in the usual way with

S~p![(
x

e2 ip•(y2x)S~y,x!. ~45!

B. Overlap quark propagator
In Fig. 3 we first show the half-cut results for all te

masses for both the mass and wave function renormaliza
functionsM (p) and Z(R)(p)[Z(z;p), respectively, agains
the discrete lattice momentump. Statistical uncertainties ar
estimated via a second-order, single-elimination jackkn
The renormalization point in Fig. 3 forZ(R)(p) has been
chosen asz53.9 GeV on thep scale. We see that bot
M (p) andZ(R)(p) are reasonably well-behaved up to 5 Ge
although some anisotropy is evident. We see that at la

FIG. 1. The kinematical momentumq for overlap quarks versus
the discrete momentump with both in GeV. No data cuts have bee
applied. The analytic result from the Appendix for the case
purely diagonal momenta is shown as the solid line for comparis
3-6
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momenta the quark masses are approaching their bare
values as anticipated due to asymptotic freedom.

In the plots ofM (p) the data are ordered as one wou
expect by the values form, i.e., the larger the bare massm0

the higher is theM (p) curve. In the figure forZ(R)(p) the
smaller the bare mass, the more pronounced is the dip at
momenta. Also, at small bare massesM (p) falls off more
rapidly with momentum, which is understood from the fa
that a larger proportion of the infrared mass is due to
namical chiral symmetry breaking at small bare qua
masses. This qualitative behavior is consistent with wha
seen in Dyson-Schwinger based QCD models@1#. The
spread in the lattice data points indicates that some an
ropy from hypercubic lattice artifacts has survived the ide
tification of the kinematical lattice momentumq. In Fig. 4
we repeat these plots but now against the kinematical la
momentumq. We see that the spread in the data is not s
nificantly reduced and that the kinematical moment
reaches up to 12 GeV.

The cylinder-cut version of Figs. 3 and 4 are given
Figs. 5 and 6, respectively. The cylinder cut removes alm
all of the remaining spread in the overlap quark data a
leaves data points that appear to lie on smooth curves. T
is no apparent difference in the spread of the cylinder-
data when plotted againstp or q. Experience with the gluon
propagator@2# suggests that the continuum limit forZ(j,p)
will be most rapidly approached asa→0 by plotting it
against its associated kinematical lattice momentumq. It is
not obvious whetherM (p) would converge to its continuum
limit behavior more rapidly asa→0 by plotting againstq or
p or perhaps some other momentum scale. The only wa
resolve this question is to repeat the calculation on a lat
with different spacinga and to see which choice of momen
tum on the horizontal axis leads toa-independent behavior o
Z(z;p) and M (p) most rapidly asa→0. This is left for
future investigation.

C. Extrapolation to chiral limit

Our lightest bare quark mass ism05126 MeV and our
heaviest is 734 MeV and hence we expect that our res

FIG. 2. The kinematical momentumq for overlap quarks versus
the discrete momentump with both in GeV. The cylinder cut has
been applied and the hypercubic spread has been much red
The analytic result from the Appendix for the case of purely dia
onal momenta is shown as the solid line for comparison.
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should not be overly sensitive to the fact that our calculat
is quenched. For exploratory purposes, we regard our si
lation results at our bare quark masses to be a reason
approximation to the infinite volume and continuum limit
We perform a simple linear extrapolation of our data to
zero bare quark mass, i.e., a linear extrapolation to the ch
limit. The results of our extrapolation for the mass functi
are shown in Fig. 7. The top figure shows the chiral extra
lation of M (p) for the full uncut data set and plotted again
p. The bottom figure shows the same results plotted againq
up to 12 GeV. The fact that the linear extrapolation gives
M (p) which vanishes within statistical errors at large m
menta confirms that our simple linear extrapolation is r
sonable at large momenta. In fact, the data are found to
consistent with such a linear fit at all momenta for the b
masses considered.

In Fig. 8 we plot the cylinder-cut data after the line
chiral extrapolation for both functionsM (p) and Z(R)(p)
[Z(z;p). These are shown against bothp and q with the
renormalization points chosen as in the previous figures,
3.9 GeV and 8.2 GeV for plots againstp andq, respectively.

ed.
-

FIG. 3. The functionsM (p) andZ(R)(p)[Z(z;p) for renormal-
ization point z53.9 GeV ~on the p scale! for all ten bare quark
masses for the half-cut data. Data are plotted versus the dis
momentum values defined in Eq.~9!, p5A(pm

2 , over the interval
@0,5# GeV. The data in both parts of the figure correspond fro
bottom to top to increasing bare quark masses, i.e.,m50.024, 0.028,
0.032, 0.040, 0.048, 0.060, 0.080, 0.100, 0.120, and 0.140, whic
physical units corresponds tom052mmw5126, 147, 168, 210, 252
315, 420, 524, 629, and 734 MeV, respectively. The mass fu
tions at large momenta are very similar to the bare quark masse
expected.
3-7
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BONNET, BOWMAN, LEINWEBER, WILLIAMS, AND ZHANG PHYSICAL REVIEW D 65 114503
We see that bothM (p) and Z(R)(p) deviate strongly from
the tree-level behavior. In particular, as in earlier studies
the Landau gauge quark propagator@4–6#, we find a clear
signal of dynamical mass generation and a significant in
red suppression of theZ(z;p) function. At the most infrared
point, the dynamically generated mass has the valueM ir
5297(11) MeV and the momentum-dependent wave fu
tion renormalization function has the valueZir50.48(2).
The resultM ir5297(11) MeV is similar to typical mass va
ues attributed to the ‘‘constituent quark’’ mass and is a
proximately 1/3 of the proton mass. These values are v
similar to the results found in previous studies@4–6# and are
also similar to typical values in QCD-inspired Dyso
Schwinger equation models@1,28,29#.

As the bare massm0 is increased from the chiral limit a
in Figs. 5 and 6, we are increasing the proportion of expl
to dynamical chiral symmetry breaking. Associated with t
we see that the dip inZ(z;p) becomes less pronounced a
the relative importance of dynamical chiral symmetry bre
ing in the mass functionM (p) also decreases, i.e., we s
that M (p) becomes an increasingly flat function of mome
tum as the bare mass is increased.

In the continuum at one-loop order in perturbation theo
and in the presence of explicit chiral symmetry break

FIG. 4. The functionsM (p) andZ(R)(p)[Z(z;p) for renormal-
ization point z58.2 GeV ~on the q scale! for all ten bare quark
masses for the half-cut data. Data are plotted versus the dis
momentum values defined in Eq.~15!, q5A(qm

2 , over the interval
@0,12# GeV. The data in both parts of the figure correspond fr
bottom to top to increasing bare quark masses. The values o
bare quark masses are in the caption of Fig. 3.
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~i.e., a nonzero bare mass!, the asymptotic behavior of the
mass function is that of the running quark mass. Specific
for large, Euclideanp2 and renormalization pointz we have
the one-loop result@1#

M ~p2! ——→
p2,z→`

mzF ln~z2/LQCD
2 !

ln~p2/LQCD
2 !

G dM

, ~46!

wheredM512/(3322Nf) is the anomalous mass dimensio
mz is the current quark mass,Nf is the number of quark
flavors, andLQCD is the QCD scale parameter. In this lim
we see then that the mass at the renormalization po
m(z)[M (z2), approaches the current quark mass, i
m(z)[M (z2)→mz as stated earlier. The vanishing of th
bare massm0 defines the chiral limit and in that case th
current quark mass also vanishes and the asymptotic be
ior of the mass function at one loop becomes

M ~p2! ——→
p2,z→` 4p2dM

3

~2^q̄q&z!

@ ln~z2/LQCD
2 !#dM

1

p2

3@ ln~p2/LQCD
2 !#dM21. ~47!

This is the asymptotic behavior of the dynamically genera
quark mass. We see that the running mass in Eq.~46! falls off
logarithmically with momentum, whereas from Eq.~47! the

ete

he

FIG. 5. The functionsM (p) andZ(R)(p)[Z(z;p) for renormal-
ization point z53.9 GeV ~on the p scale! for all ten bare quark
masses and for data with a cylinder cut, i.e., the data are identic
those of Fig. 3 except that they have been cylinder cut~one spatial
momentum unit! rather than half cut.
3-8
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dynamically generated mass falls off more rapidly~as 1/p2

up to logarithms! in the chiral limit. This is the reason tha
the effects of dynamical chiral symmetry breaking c
be neglected at large momenta. SinceM (p2) is
renormalization-point independent, the combinatio
mz@ ln(z2/LQCD

2 )#dM, ^q̄q&z /@ ln(z2/LQCD
2 )#dM, and mz^q̄q&z

are renormalization-group invariant. The anomalous dim
sion of the quark propagator itself vanishes in the Land
gauge. Hence, in the continuum in the Landau gauge,

Z~z;p2! →
p2,z→`

1. ~48!

In our lattice results we clearly observe thatZ(R)(p)
[Z(z;p) behaves in a way consistent with Eq.~48!. We can
then also examine whether or not the asymptotic behavio
our linearly extrapolated chiral mass function satisfies
~47!. Since we are working in the quenched approximat
we haveNf50. We attempt to extrapolate the quark conde
sate for three different values ofLQCD, i.e., 200, 234, and
300 MeV. Note that 234 MeV is among typical values quot
for quenched QCD@30#.

We also do the extraction over different ultraviolet fittin
windows in order to verify the insensitivity of the chira
condensate to the fitting window. Since it is at present
clear whetherM (p) most rapidly approaches the continuu
limit when plotted againstp or plotted againstq, we have

FIG. 6. The functionsM (p) andZ(R)(p)[Z(z;p) for renormal-
ization point z58.2 GeV ~on the q scale! for all ten bare quark
masses and for data with a cylinder cut, i.e., the data are identic
those of Fig. 4 except that they have been cylinder cut~one spatial
momentum unit! rather than half cut.
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performed the fit to both, i.e., we have fitted Eq.~47! to both
sets of ultraviolet data forM (p) in the half-cut version of the
data in Fig. 7.

A summary of the fitting results is shown in Tables II an
III for various fitting regions and QCD scale parameters.
is standard practice, we quote the extracted condensate a
renormalization scalez51 GeV using the renormalization

scale independence of^q̄q&z /@ ln(z2/LQCD
2 )#dM. It is the latter

that is extracted in the fit to the chiralM (p). The extracted
condensate is relatively insensitive to the value ofLQCD and
the fitting window. There is, however, a very strong depe
dence on which momentum scale is used forM (p), i.e.,
;350 MeV for p compared with;600 MeV for q. It is
clear that a quantitatively meaningful extraction of the qua
condensate will require us to establish which moment
scale forM (p) most rapidly reproduces the continuum lim
as a→0. Other attempts@31–33# to directly calculate the
quark condensate in the overlap formalism in quenched Q
suggest a condensate value;250 MeV, which implies that
M (p) may be more appropriately plotted against the discr
lattice momentump. The resolution of this issue is beyon
the scope of the present study and is left for future wo
However, once the correct momentum scale is identified
the continuum limit estimated, the good quality of the ov
lap data indicates that an extraction of the quark conden
should be possible.

to

FIG. 7. The chiral limit mass functionM (p) obtained from a
simple linear extrapolation of the various mass functions using
full uncut data set. This is plotted against both the discrete lat
momentump and the kinematical lattice momentumq. The latter is
shown only up to 12 GeV.
3-9
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VI. SUMMARY AND CONCLUSIONS

To the best of our knowledge, this is the first detail
study of the Landau gauge momentum-space quark prop
tor in the overlap formalism. By construction, the overl
quark propagator needs no tree-level correction beyond
identification of the appropriate kinematical lattice mome
tum q. The quality of the data in the overlap formalism
seen to be far superior to that from earlier studies@4,5#,
which use anO(a)-improved Sheikholeslami-Wohlert~SW!
quark action with a tree-level mean-field improved clov
coefficient csw. In these earlier studies it was found th
careful tree-level correction schemes are essential and
resulting corrected data remain of inferior quality. The qu
ity of the data for the improved staggered quark action,

FIG. 8. The linearly extrapolated estimates ofM (p) and
Z(R)(p)[Z(z;p) in the chiral limit using the cylinder-cut~one spa-
tial momentum unit! data of Figs. 5 and 6. The values of the e
trapolated functions at the most infrared momentum point areM ir

5297(11) MeV andZir50.48(2).

TABLE II. Summary of the results for the quark condensa

2^q̄q&z
1/3 extracted from Eq.~47! in MeV and scaled to the renor

malization pointz51.0 GeV. The fit was done using Eq.~47! for
each ofLQCD5200,234,300 MeV on various momentum window
usingM (p) plotted against the discrete lattice momentump.

LQCD

p(GeV) 200 MeV 234 MeV 300 MeV

3–5 356~35! 347~34! 333~32!

4–5 352~69! 344~67! 330~64!
11450
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so-called ‘‘Asqtad’’ action withO(a4) andO(a2g4) errors,
is also seen to be superior to theO(a)-improved quark ac-
tion and these results@6# are qualitatively consistent with
what we have found here.

We use ten different quark masses and observe an
proximately linear relation between the bare mass and
current quark mass for bare masses in the range;125 to
;730 MeV. This allows a simple linear extrapolation to th
chiral limit. Such a linear extrapolation is justified in th
ultraviolet, since the resulting ultraviolet mass function va
ishes within errors in the chiral limit, as expected. For t
most infrared momentum points in the chiral limit using th
linear extrapolation we findM ir5297(11) MeV andZir
50.48(2) for the mass function and the momentu
dependent wave function renormalization function, resp
tively.

An extraction of the quark condensate from the ultravio
behavior of the chiral extrapolated mass function is poss
with this quality of data. However, it is clear that this cann
be done in a quantitatively reliable way until one or mo
additional lattice spacings become available so that we
identify the appropriate momentum against which to p
M (p2).

The first calculation presented here is performed on
relatively small volume of 1.5333.0 fm4 and an intermedi-
ate lattice spacing of 0.125 fm. Ultimately, a variety of latti
spacings and volumes should be used so that a study o
infinite volume, continuum limit of the overlap quark prop
gator can be performed. It will also be interesting to simul
at lighter quark masses in order to study the chiral limit
the quenched theory in some detail. Finally, one should c
sider kernels in the overlap formalism other than the p
Wilson kernel, e.g., using a fat-link irrelevant clover actio
@34# as the overlap kernel@35#. These studies are currentl
under way and will be reported elsewhere.
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TABLE III. Summary of the results for the quark condensat

2^q̄q&z
1/3 extracted from Eq.~47! in MeV and scaled to the renor

malization pointz51.0 GeV. The fit was done using Eq.~47! for
each ofLQCD5200,234,300 MeV on various momentum window
using the linearly extrapolated half-cut data forM (p) plotted
against the kinematical lattice momentumq.

LQCD

p (GeV) 200 MeV 234 MeV 300 MeV

3–5 604~68! 591~67! 566~64!

3–7 600~66! 587~65! 562~62!

3–9 594~63! 581~62! 557~59!

4–5 613~81! 599~79! 574~76!

4–7 600~71! 586~70! 563~67!

4–9 589~67! 576~65! 553~63!

5–7 590~66! 577~65! 556~32!

5–9 577~41! 563~62! 541~60!
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APPENDIX: TREE-LEVEL BEHAVIOR

1. Tree-level overlap propagator

We can derive an explicit form for the tree-level~i.e.,
free! overlap quark propagator with the Wilson fermion ke
nel. Let us work in the infinite volume limit with finite lattice
spacinga.

It is convenient to define the dimensionless moment
variables

k̃m[sin~pma!, k̂m[2 sin~pma/2!. ~A1!

Let us also define the dimensionless combination

A[F ~2amw
(0)!1

r

2
k̂m

2 G , ~A2!

where (2amw
(0)) is the negative, dimensionless tree-lev

Wilson mass defined byk[1/@2(2mw
(0)a)1(1/kc)#. We

havekc51/8 andr is the usual Wilson parameter~typically
one choosesr 51). Note that for small momenta we hav
A,0. We can then write the momentum-space Wilson
erator at tree level as

Dw5
1

2k
~ ig• k̃1A!. ~A3!

It follows that

ADw
† Dw5

1

2k
Ak̃21A2, ~A4!

where it is to be understood that by definitiononly the posi-
tive root is kept. In Euclidean space it is clear that we w
always havek̃21A2.0 and the square root is always we
defined. The momentum-space overlap Dirac operator
then be written as

D~0![
1

2
@11g5Ha#5

1

2 F11
Dw

ADw
† Dw

G
5

1

2 F 11
ig• k̃1A

Ak̃21A2
G

5
1

2 F ig• k̃1$A1Ak̃21A2%

Ak̃21A2
G . ~A5!

We see thatHa5g5Dw /ADw
† Dw and thatHa

†5Ha and Ha
2

51 as required in the overlap formalism, i.e.,Ha has eigen-
values61. We can readily invertD(0) to give
11450
e
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D21~0!52Ak̃21A2F2 ig• k̃1$A1Ak̃21A2%

k̃21$A1Ak̃21A2%2
G

5F 2 ig• k̃

A1Ak̃21A2
11G ~A6!

and then

D̃21~0![D21~0!21

5
2 ig• k̃

A1Ak̃21A2

5
k̃2

ig• k̃$A1Ak̃21A2%
. ~A7!

Clearly then$D̃21(0),g5%50, as it must in the overlap for
malism. The tree-level momentum-space overlap qu
propagator in the massless limit is then given by

S(0)~0,p!5
1

2mw
(0)

D̃21~0!

5
1

2mw
(0) F k̃2

ig.k̃$A1Ak̃21A2%
G

[
1

iq”
. ~A8!

Hence, we recognize that the kinematical tree-level mom
tum is given by

qm52mw
(0)k̃m

$A1Ak̃21A2%

k̃2
. ~A9!

This analytic form for theq[A(qm
2 versusp[A(pm

2 be-
havior is plotted as the solid line in Figs. 1 and 2 for the ca
of purely diagonal momenta (p15p25p35p4). The analytic
form can be checked against each~diagonal or nondiagonal!
point on a case-by-case basis and they agree to within
merical precision.

We can verify analytically thatqm→pm as p→0 as seen
in Fig. 2. Note that asp→0 we haveA,0 and hence

qm→2mw
(0)k̃m

Ak̃21uAu22uAu

k̃2
→ k̃m

mw
(0)

uAu
→1

a
sin~pma!

→pm . ~A10!
3-11



t

le

r

i

t

is
e-
e

ot

n
rlap

tor

e
dot

we

mit

BONNET, BOWMAN, LEINWEBER, WILLIAMS, AND ZHANG PHYSICAL REVIEW D 65 114503
2. Tree-level dispersion relation

The massless, tree-level overlap propagator has
momentum-space form

S(0)~0,p!5
2 iq”

q2
~A11!

and so has poles whenq250. We can analytically continue
q4→ iE and then we find poles atE5uqW u, i.e., in terms of our
tree-level corrected propagator we have a perfect mass
dispersion relation.

However, for hadronic properties without tree-level co
rection it is the dispersion relation inp that is relevant, i.e.,
we need to analytically continuep4→ iE and find the poles
in S(0)(0,p). Our discussion here generalizes that given
Ref. @20#. It is clear from Eq.~A4! and Eq.~A5! that the
analytic continuation is defined only in the region wherek̃2

1A2>0, since otherwise the argument of the square roo
negative and the definition ofD(0) has no meaning. The
poles occur when

05q254~mw
(0)!2 $A1Ak̃21A2%2

k̃2

54~mw
(0)!2S 11

2A2

k̃2
@11sgn~A!A11~ k̃2/A2!] D .

~A12!

ProvidedA,0 we see thatq2→0 ask̃2→0. Consider these
poles whenp4→ iE and pW 5(0,0,p); then the conditionsk̃2

50, A,0 become

sin2~ iEa!1sin2~pa!50, ~A13!

sin2~ iEa/2!1sin2~pa/2!,
amw

(0)

2r
, ~A14!

respectively. Thus we have poles at

cosh~Ea!5A11sin2~pa! ~A15!

when we satisfy the condition
s,

s,
.

s.
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cosh~Ea!.22cos~pa!2
amw

(0)

r
. ~A16!

Note that the analytic continuation to Minkowski space
well defined only when the square-root operation is well d
fined, i.e., fork̃21A2>0, and so this condition must also b
satisfied. We can rewrite this condition as

cosh~Ea!<
21@22~amw

(0)!#222@22~amw
(0)!#cos~pa!

2@22~amw
(0)!2cos~pa!#

.

~A17!

Recall that Eq.~A16! is equivalent to the conditionA,0. If
A50 thenq254(mw

(0))2Þ0 for any realk̃2 and hence there
are no poles. IfA.0 then in the region where the square ro

is well defined$A1Ak̃21A2%.0 and there are no poles i
that case either. We have plotted these results for the ove
dispersion relation in Fig. 9.

FIG. 9. The dispersion relation for the overlap quark propaga

of Eq. ~A15! is shown as the solid line and corresponds tok̃250.
The dispersion relation does not continue into the region wherA
.0, i.e., it does not extend to the right beyond the long-dash
line denotingA50 @the solution of Eq.~A16!#. The analytic con-

tinuation to Minkowski space has no meaning whenk̃21A2,0,
i.e., it is undefined above the short-dash dot line@i.e., the solution of
Eq. ~A17!#. The intersection point of these three curves is where

simultaneously haveA, k̃2, and k̃21A2 equal to zero. Also shown
for reference are the dispersion relations for the continuum li
~short dashes! and for the ordinary Wilson action~long dashes!.
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