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Overlap quark propagator in the Landau gauge
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The properties of the quark propagator in the Landau gauge in quenched QCD are examined for the overlap
quark action. The overlap quark action satisfies the Ginsparg-Wilson relation and as such provides an exact
lattice realization of chiral symmetry. This in turn implies that the quark action is fre@(af) errors. We
present results using the standard Wilson fermion kernel in the overlap formalism otx&4 2attice at a
spacing of 0.125 fm. We obtain the nonperturbative momentum-dependent wave function renormalization
functionZ(p) and the nonperturbative mass functidr{p) for a variety of bare masses. We perform a simple
extrapolation to the chiral limit for these functions. We clearly observe the dynamically generated infrared
mass and confirm the qualitative behavior found for the Landau gauge quark propagator in earlier studies. We
attempt to extract the quark condensate from the asymptotic behavior of the mass function in the chiral limit.
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I. INTRODUCTION [2] and quark[3—6] propagators and vertices such as the
qguark-gluon vertex[10]. By studying the momentum-
Hadron correlators on the lattice provide a direct means oflependent quark mass function in the infrared region we can
calculating the physically observable properties of quantungain some insights into the mechanism of dynamical chiral
chromodynamic(QCD). They are by construction color- Symmetry breaking and the associated dynamical generation
singlet (i.e., gauge-invariant quantities. Any finite, Of mass. Studying the uItra\_/ic_)Iet behavior of propagators at
Boltzmann-distributed ensemble of gauge configurations hal@rge momentum is made difficult because of lattice artifacts
a negligible probability of containing two gauge-equivalent¢ausing the propagator to deylate strongly from its correct
configurations. Hence, there is a negligible probability of anycontinuum behavior in this regime. The method of tree-level
gauge orbit being represented more than once in the Montgorrection was _developed and used successfully in gluon
Carlo estimate of the color-singlet hadron correlator and thi®ropagator studief?] and has recently been extended to the
is the reason that there is no need to gauge fix in such caf@se of the quark propagatpt—6]. Some related studies
culations. have been performed for the case of domain-wall fermions
On the other hand, calculations of high-energy processefg]- De_tailed discussions of nonpertuba_tive renormalization
are carried out analytically with perturbative QCD, where itfor lattice operators can be found, e.g., in Ré&9] _
is necessary to select a gauge. Quark models and QCD- We present here results.for the quark propagator obtained
inspired Dyson-Schwinger equation modgl$ are necessar- from the overlap quark action and using an improved gauge
ily formulated in a particular gauge. The usual Faddeev&ction and improved Landau gauge fixing. The overlap ac-
Popov gauge-fixing procedure is adequate for perturbativlion is an exact r_eallzatl_on of chiral symmetry on the lattice
QCD. However, in the nonperturbative infrared region stan2nd is necessarily)(a) improved. In Secs. Il and Ill we
dard gauge choices, such as the Landau gauge, have GribBuefly introduce the |mpr_oved gauge action a_nd the lattice
copies; i.e., there are multiple gauge configurations on &uark propagator respectively. In Sec. IV we introduce the
given gauge orbit which satisfy the gauge-fixing condition.0verlap quark propagator and describe how it is calculated.
Since no finite ensemble will ever contain two configurationsOur numerical results are presented in Sec. V and finally in
from the same gauge orbit, the Landau gauge on the lattice€c- VI we give our summary and conclusions.
actually corresponds to a gauge where there is a more or less
random choice between the Landau gauge Gribov copies on Il. IMPROVED GAUGE ACTION
the represented gauge orbits in the ensemble. Before gauge
fixing, the ensemble contains configurations randomly lo-
cated on their gauge orbits. After Landau gauge fixing on the 583
lattice each configuration in the ensemble will typically settle SG:? > Re tf1- Puu(X)]

The tree-level®(a?)-improved action is defined as

on one of the nearby Landau gauge Gribov copies. This is ﬁg;
the standard lattice implementation of the Landau gauge and
the one that we consider in this work. B
In order to study the transition from the nonperturbative a 2 2 Re t{1-R,,(X)], @
. ? . 12 UO Xpv
to perturbative regime on the lattice we can study the gluon v>p
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whereP,, andR,,, are defined as

PLu()=U,00 U,(x+p) UL(x+nUf(x), (2
Ruu(X)=U 00 U, (x+ ) U, (x+ v+ p)
XUL(x+2p) Ul (x+v) Ul(x)
+U,(X) U, (x+p) U, (x+24)
XUT (x+ 4 ) Ul (x+ ) UJ(x). 3)

The link productR,,,(x) denotes the rectangular<l2 and
2Xx1 plagquettes. The mean linky is the tadpolgor mean-
field) improvement factor that largely corrects for the quan-
tum renormalization of the coefficient for the rectangles rela
tive to the plaquette. We employ the plaquette measure f
the mean link

1/4

(4)

1
Ug= ( §Re (P ,,(X))

where the angular brackets indicate averaging ayver, and
V.

o
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where( is the renormalization point and where the renormal-
ization point boundary conditions ar&(Z;Z?)=1 and
M(Z%)=m(¢) and wherem(?) is the renormalized quark
mass at the renormalization point. Since the gauge-fixing
condition has no preferred direction in color space, the quark
propagator must be diagonal in color space; iI2\.({;p)
=3(¢;p) 8" where 8" is the 3x3 SU(3), identity matrix.
The functions A(¢;p?) and B(¢;p?), or alternatively
Z(£:p?) andM (p?), contain all of the nonperturbative infor-
mation of the quark propagator. Note thad(p?) is
renormalization-point independent, i.e., Sirf&;p) is mul-
tiplicatively renormalizable all of the renormalization-point
dependence is carried &(;p?). For sufficiently large mo-
menta the effects of dynamical chiral symmetry breaking be-
come negligible for nonzero current quark masses; i.e., for

Irargeg“ andm,#0 we havem({)—m,; wherem, is the usual
current quark mass of perturbative QCD at the renormaliza-
tion point . When all interactions for the quarks are turned
off, i.e., when the gluon field vanishes, the quark propagator

has its tree-level form

1
ip+mo’

s9(p)= (6)

Gauge configurations are generated using the Cabibbo-

Marinari [11] pseudo-heat-bath algorithm with three diago-
nal SU.(2) subgroups cycled twice. Simulations are per-

wherem® is the bare quark mass. When the interactions with
the gluon field are turned on we have

formed using a parallel algorithm on a Sun Cluster composed

of 40 nodes and on a Thinking Machines Corporations

(TMC) CM-5 both with appropriate link partitioning. We
partition the link variables according to the algorithm de-
scribed in Ref[12]. We use 50 configurations generated on
128 24 lattice atB=4.60, selected after 5000 thermaliza-

tion sweeps from a cold start and every 500 sweeps therealg

ter with a fixed mean-link value. Lattice parameters are sum

SO (p)— S a;p)=Z,(L;@)S(L;p), @)

wherea is the regularization parametére., the lattice spac-

aing herg andZ,(¢;a) is the quark wave-function renormal-

ization constant chosen so as to ensfifg; ;?) =1. For sim-
licity of notation we suppress treedependence of the bare
guantities.

marized in Table I. The lattice spacing is determined from" . the |attice we expect the bare quark propagators, in

the static quark potential with a string tensiofo
=440 MeV[13].

momentum space, to have a similar form as in the continuum
[3-5], except that th®(4) invariance is replaced by a four-

The gauge field configurations are gauge fixed to the Landagimensjonal hypercubic symmetry on an isotropic lattice.

gauge using a conjugate gradient Fourier accelerdtidh
algorithm with an accuracy 0052|(9#Aﬁ(x)|2< 1012 wWe

Hence, the inverse lattice bare quark propagator takes the
general form

use an improved gauge-fixing scheme to minimize gauge-

fixing discretization errors. A discussion of the functional

and method for improved Landau gauge fixing can be found

in Ref.[15].

I1l. QUARK PROPAGATOR ON THE LATTICE

+B(p). ®

(Sba'e)_l(p)zi(% Cu(P) vy

We use periodic boundary conditions in the spatial directions
and antiperiodic in the time direction. The discrete momen-

In a covariant gauge in the continuum the renormalizedum values for a lattice of sizbl?x Ni, withn;=1,... N,
Euclidean space quark propagator must have the form andn,=1,... N;, are
1 Z(¢p%) 2m N,
P G T B M) PiTNa|\M 2] and
TABLE |. Lattice parameters. ©
Action \Volume Ninerm Nsamp B a (fm) Ug Physical volume (frf)
Improved 13x24 5000 500 4.60 0.125 0.88888 453.00
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Defining the bare lattice quark propagator as

Sbare(p)E—i(Z Cu(P)yu| +B(p), (10)
“
we perform a spinor and color trace to identify
C.(P)= 3517, 5™p)]  and
(11)
1
B(p)= mtr[sbar&(p)]-
The inverse propagator is
1
(89 Y(p)=
—i(% Cu(P) 7, | +B(p)
.(; CulP) V| +B(P)
= : (12
C*(p)+B%(p)
whereC?(p) =X ,[C,(p)]?. From Eq.(8) we identify
Cu(P)
C - w7
“P)= o)+ 5(p)
(13
B(p)
B(p)=—————.
P~ o)+ Bp)

A. Tree-level correction

At tree level, i.e., when all the gauge links are set to the

PHYSICAL REVIEW D65 114503

Sbar =
= A+ B0)

__Z(p)
id+M(p)
=Z,({;a)S(L;p)

and the lattice version of the renormalized propagator in Eq.

(5):

(16)

_Z(&p)
idA(Z;p)+B(Lp)  id+M(p)

The general approach to tree-level correcfia -6 uti-
lizes the fact that QCD is asymptotically free and so it is the
difference of bare quantities from their tree-level form on the
lattice that contains the best estimate of the nonperturbative
information. For example, the multiplicative tree-level cor-
rections forZ(p) andM(p) have the form

S(&ip)= (17)

Z(p)
©(p)= d
Z'%(p) Z0)(p) n
(18
M(p)
(c) — 0
P e

The identification of the kinematical variabtgensures that
AO(p)=1/zO(p)=1 by construction and soZ(p)
=7©)(p) and is already tree-level corrected. For overlap
quarks we will see thav(®(p)=mP and so the mass func-
tion satisfiesV (p) =M (9 (p) and needs no tree-level correc-
tion either. This feature is a major advantage of the overlap
formalism.

IV. OVERLAP FERMIONS

identity, the inverse bare lattice quark propagator becomes Tphe overlap fermion formalisifil6—25 realizes an exact

the tree-level version of Ed8):

<s<°>>1<p>zi(2 CcO(p)y, |+BO(p).
M

14

We calculate 89)(p) directly by setting the links to unity

in the coordinate space quark propagator and taking its Fou-

rier transform

It is then possible to identify the appropriate kinematic

lattice momentum directly from the definition

(p)
=C(p)= . :
=GP = Lo 12 15O p) 2

(15

chiral symmetry on the lattice and is automaticatB(a)
improved, since anyD(a) error would necessarily violate
chiral symmetry [20]. The massless coordinate-space
overlap-Dirac operator can be written in dimensionless lat-
tice units ag21]

1
D(0)=5[1+ysHal, (19)

whereH, is a Hermitian operator that depends on the back-
ground gauge field and has eigenvaldes. Any suchD(0)
is easily seen to satisfy the Ginsparg-Wilson relafiad|

{75,D(0)}=2D(0)ysD(0) (20

This is the starting point for the general approach to tree-
level correction developed in earlier studies of the gluonand, provided that its Fourier transform at low momenta is

propagatof2] and the quark propagatp4—6|.

proportional to the momentum-space covariant derivative, it

Having identified the appropriate kinematical lattice mo-will satisfy a deformed lattice realization of chiral symmetry.
mentumg, we can now define the bare lattice propagator asgt immediately follows from Eq(19) that
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1 usual Wilson-Dirac operator on the lattice. However, in the
DT(O)D(0)=D(0)DT(0):E[DT(OHD(O)] (21 overlap formalism the Wilson mass parametey, is the
negative of what it is for standard Wilson fermions and at
and that tree level must satisfy @m,a<2. In the overlap formalism
m,, is an intermediate lattice regularization parameter, it is
not the bare quark mass. When interactions are present, we
must havem;a<m,a in order that the Wilson operator has
zero crossings and, in turn, thBt(0) has nontrivial topo-
logical charge. Numerical studies have found tihmt=m_,
wherem, is the usual critical mass for Wilson fermiof5].
{%'5—1(0)}:0. (23) The constraintn,a<2 at tree level grise; from the fact that
Wilson doublers reappear above this point. In summary, we
The standard choice ofH,(x,y) is H,=e(H,) use hereH,,(—m,)=y5D,(—my).
=H,,/|Hy|=Hy/(HIH)Y2 where Hy(x,y) = ysDw(X.y) Recall that the standard Wilson-Dirac operator can be
is the Hermitian Wilson-Dirac operator and whédg is the  written as

D*(0)=7y5D(0)7s. (22

It also follows easily thafys,D ~1(0)}=2vs and by defin-
ing D ~1(0)=[D(0)—1] we see that the Ginsparg-Wilson
relation can also be expressed in the form

1 N
DY) =[(= @)+ 418y = 5 3 {(r=7,0U,00 8yt (17,0 UL - aR) 8y )

1

= 5| O K {(r=Y,)U (X 8y xi i+ (T +y,)Ul (x—an) 8, 1}, (24)
o

where the negative Wilson mass term iy, a) is then de- 1 ; o
fined by (—m,,a) +4r=1/2«% or equivalently D(0)=5[1+Dw(DyDw) 7. (28)
K= ! (25 In coordinate space the Wilson-Dirac operator has the form
2(—mya) + (k) P P

Dw=V+(r/2)A+(—m,a), whereV, is the symmetric di-
and wherex, throughout this work is the tree-level critical mensionless lattice finite difference operator, ands the

K, i.e., ke=1/(8r). dimensionless lattice Laplacian operator. Recall that the Wil-
In the present work we use the mean-field improvedson mass term istm,a) here. Setting the links to the iden-
Wilson-Dirac operator, which can be written as tity gives
Ug U,.(x) Dw=(1/2)(3,+3,)y,+(r12)(—3d,d,)
Dw(X,Y)ZZ 5x|y_ KZ [(r—’YM)M—éy,X‘F;L v w0 Y mor
. +(—mya), (29

UL(x—apu)
+(r+ y#)'“u— Syx—nl |- (26)  where the partial derivatives are the forward and backward
0 lattice finite difference operators. Hence we have from Eq.

é28) that

We see that this is equivalent to the standard Wilson-Dira
operator with the identification of the mean-field improved

coefficientk= k®'u,. It is U/u, that has a more convergent 1 Y+ (r/l2)A—mya y
expansion around the identity than the linksthemselves. D(0)= 2 1+ (m,,a)2+ O(?) “2ma’ (30
W

The negative Wilson mass—(m,,a) is then related to this

improvedx b
P by where the last line is a limit approached when operating on

Uo very smooth functions such that only first powers of deriva-
K= 57— . (27)  tives are kept. The reason for needing a negative Wilson
2(—mya)+(1l/k.) X L
mass (m,a) is how apparent, i.e., it is needed to cancel the
The Wilson parameter is typically chosen totbel and we 1 in D(0). We seethat, at sufficiently fine lattice spacings
will also user =1 here in our numerical simulations. and forpa<1,
For this mean-field improved Wilson-Dirac choice we
then have D.(0)=(2m,,)D(0), (32

114503-4
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whereD(0) in the continuum limit becomes the usual fer- In order to complete the discussion we now relate our
mion covariant derivative contracted with the matrices, presentation to standard notation used elsewhere. We first
i.e.,D,(0)—D asa—0. define the dimensionless overlap mass parameter

The massless overlap quark propagator is given by 0

m
~ 1 M=o (36)
Sbareto)EDc—l(o)EDc—l(o)_R 2mW
" and then defin®_ *(u) in analogy with Eq(32)
1 — ~ _
= m (D (0~ 1] SEm®)=D; () (37

1 i.e., Do '(u) is a generalization oD (0) to the case of
=—D %0). (320  nonzero mass. Extending the analogy with the massless case
2m,, . ~ . .
we introduceD(x) and D(u), which are generalized ver-

This definition of the massless overlap quark propagator folsions ofD(0) andD(0), through the definitions
lows from the overlap formalisrfl9] and ensures that the

massless quark propagator anticommutes wjth i.e., Bl i~ -1

{y5,S"¥90)}=0 just as it does in the continuuf21]. At De(w)=5m, D (#) and

tree level the momentum-space form of the massless propa- (39
gator defines the kinematic lattice momentugyri.e., we set 1 N 1

the links to 1 such that we have for the momentum-space D (M)=E[D (u)—1].

massless quark propagator
We can now use Ed34) and the above definitions to obtain
an expression foD(x). From Eqgs.(34), (36), and(38) we

~ 1

bar —nn1 _ (0) _ . L) h
$™10.p)=D. "(0.p)—~S7(0p) iq’ (33 see that we must have(w)=D(0)+ w. Inverting this gives
recall thatp is the discrete lattice momentum defined in Eqg. 1 = 1
(9) andq is the kinematical lattice momentum defined in Eq. E[D (n)—1]=[D(0)+ u] (39
(15). We can obtairg numerically in this way from the tree-
level massless quark propagator. We can compare this witAnd so
the analytic form forg derived in the Appendix and given in

Eq. (A9). D M) =(1-w)[D(0)+u] *+1
Note that for our mean-field improved Wilson-Dirac op-
erator, the tree-level limit for defining implies that we =[D(0)+1][D(0)+ u] ™ (40)

should takeU —1 anduy—1 in D,, while keepingx fixed.
Thus thex that appears in the tree-level expressiondpiin Inverting gives
Eq. (A9) is actually the improved and not«®. This means

that the tree-level Wilson mass parametelf’ used in the D()=[D(0)+u][D(0)+1]"* and also
Appendix is given byk=112(—m{®a) + (1/x.)] and hence o (41)
differs from them,, in Eq. (27) used in the main body of the D(0)=D(0)[D(0)+1]"*

paper. We have found that tlgeobtained in this way gives a ,
much superior large momentum behavior for ¥Mép) and ~ @nd so finally
Z(p) functions than is obtained when we do not use mean-

field improvement. D()=[(1-u)D(0)+u(D(0)+1)][D(0)+1]*
Having identified the massless quark propagator in Eq. B
(32), we can construct the massive overlap quark propagator =(1=w)DO)+u

by simply adding a bare mass to its inverse, i.e.,

1
(Sbarﬁfl(mO)E(Sbanafl(o)+mO' (34) :§[1+ILL+(1_M)75Ha]' (42)

Hence, at tree level we have for the massive, momentumWe have then recovered the standard expressiom{qr)
space overlap quark propagator found, for example, in Ref.21] and elsewhere.

We see that the massless limit®—0 implies thatu
—0 and D(x)—D(0), D~*(u)—D"*(0), and D;*(u)
i -+m° —D;1(0). For non-negative bare mass® we require u

=0. In order that the above expressions and manipulations

and the reason that the overlap quark propagator needs he well defined we must have<1. Hence, Gsu<1 de-
tree-level correction beyond identifyingis now clear. fines the allowable range of bare masses.

S mP, p)—SO(m°,p) = (35

114503-5
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Our numerical calculation begins with an evaluation of
the inverse oD (u), whereD(u) is defined in Eq(42) and
using H,=e¢(H,,) for each gauge configuration in the en-
semble. We then calculate E37) for each configuration
and take the ensemble average to ob&H{x,y). The dis-
crete Fourier transform of this finally gives the momentum-
spoace bare quark propaga®¥"{p) for the bare quark mass
m".

Our calculations used=0.19 anduy=0.88888 and since
at tree levelk.=1/8, we then haven,a=1.661. Recall that
the lattice spacing i=0.125 fm and so we hava !
=1.58 GeV andn,,=2.62 GeV. We calculated at ten quark o 1 2 3 4 5 6
masses specified by=0.024, 0.028, 0.032, 0.040, 0.048, p GeV
0.060, 0.080, 0.100, 0.120, and 0.140. This corresponds to
bare masses in physical unitsrof=2um,, =126, 147, 168, FIG. 1. The kinematical momentumfor overlap quarks versus

210, 252, 315, 420, 524, 629, and 734 MeV respectively. the Qiscrete momentlumnwith both in GeV. No daFa cuts have been
applied. The analytic result from the Appendix for the case of

purely diagonal momenta is shown as the solid line for comparison.

q Gev
= o= e
O, VWA LID®OI e~ N
T
N
AY
1

TR
7 8 9 10 11 12

V. NUMERICAL RESULTS

We have numerically extracted the kinematical lattice mo-hypercubic artifacts we plot the cut version of Fig. 1 in Fig.
mentumg,, directly from the tree-level overlap propagator 2. The cylinder-cut data points have much reduced hypercu-
using Egs.(11), (13), and(15). In particular, by settingJ bic spread and lie on a smooth curve. We also sometimes
—1 anduy—1 we have numerically verified to high preci- make use of a “half cut” where we retain only momentum
sion the tree-level behavior in E(B5) for all ten of our bare  componentg,, half way out into the Brillouin zone.
massesn®, which is a good test of our code for extracting ~ On an isotropic four-dimensional lattice we hai¢4)
the momentum-space quark propagator. We qbt\/EMqi inyarignce. S.in.ce. our Iattice_ is tyvicg as Io_ng in the time
against the discrete lattice momentys m in Fig. 1. direction as it is in the spatial direction, this symmetry is

For pure Wilson quarks we would haug = (1/a)sin(p,a). It broken down toZ(3). This symmetry may be used to im-
is interesting thaty for the overlap lies above the discrete Prove the statistics by averaging ou&(3)-identical momen-

lattice p, while q for Wilson quarks lies below. Of course, in tUm points. Since QCD and our lattice are parity invariant,
both casesq— p at smallp we can also perform a reflection average at the same time.

This average treats the negative momentum combinations in
the same way as the positive ones. In an obvious notation, if
we wish to calculate some quantig(1,2,3,4), then we cal-

To clean up the data and improve our ability to drawculate all of the quantitieS(*i,*j,*k,=4) fori,j,k any
conclusions about continuum physics, we will on occasiorpermutation of 1,2,3 and perform an average over all of
employ the so-called “cylinder cut,” where we select only these quantities.
lattice four-momenta lying near the four-dimensional diago- We could also, in principle, average over all lattice start-
nal in order to minimize hypercubic lattice artifacts. This cuting points in the calculation of the propagator, since we
has been successfully used elsewhere in combination witshould have translational invariance, i.8(y,x) should be
tree-level correction in studies of the quark and gluon propathe same for all equaly(—x). However, this averaging is too
gator[2,4,5. It is motivated by the observation that for a expensive to implement and we use a single starting pojint
given momentum square@?), choosing the smallest mo- and calculateS(y,x) for all finishing pointsy,, . We obtain
mentum values of each of the Cartesian compongnts the Fourier transforn$(p) in the usual way with
should minimize finite lattice spacing artifacts.

We calculate the distancep of a momentum four-vector .

p, from the diagonal using S(D)Eg e P UTIg(y,x). (45)

A. Data cuts and averaging

Ap=|p|siné,, (43

B. Overlap quark propagator
In Fig. 3 we first show the half-cut results for all ten
masses for both the mass and wave function renormalization
cosd :p;, (44) functionsM(p) and Z(R)(p)EZ(g;p)_, respectively, against
> Ipl the discrete lattice momentum Statistical uncertainties are
estimated via a second-order, single-elimination jackknife.
andn=1(1,1,1,1) is the unit vector along the four-diagonal. The renormalization point in Fig. 3 foZ(F(p) has been
For the cylinder cut employed in this study we neglect pointschosen asf=3.9 GeV on thep scale. We see that both
more than one spatial momentum unit/N; from the diag- M (p) andZ®(p) are reasonably well-behaved up to 5 GeV
onal. To see that this cut has the desired effect of reducinglthough some anisotropy is evident. We see that at large

where the anglé, is given by

>
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FIG. 2. The kinematical momentumfor overlap quarks versus
the discrete momentum with both in GeV. The cylinder cut has

been applied and the hypercubic spread has been much reduced. 10 -w..-- [
.Ii:*

1.1 | T

The analytic result from the Appendix for the case of purely diag- 09 - i |
onal momenta is shown as the solid line for comparison. = i|=|||=h At

508 | -
momenta the quark masses are approaching their bare mass ® o L i I )
values as anticipated due to asymptotic freedom. ‘

In the plots ofM(p) the data are ordered as one would 06 - .
expect by the values fqu, i.e., the larger the bare mas® 05 | ]
the higher is theM (p) curve. In the figure foZ®(p) the ‘
smaller the bare mass, the more pronounced is the dip at low 04 ) > 3 . 5
momenta. Also, at small bare mas3ddgp) falls off more p GeV

rapidly with momentum, which is understood from the fact
that a larger proportion of the infrared mass is due to dy- FIG. 3. The functions(p) andz(®(p)=Z(¢;p) for renormal-
namical chiral symmetry breaking at small bare quarkization point{=3.9 GeV (on thep scalg for all ten bare quark
masses. This qualitative behavior is consistent with what ignasses for the half-cut data. Data are plotted versus the discrete
seen in Dyson-Schwinger based QCD modEl§. The  momentum values defined in EG), p==pZ, over the interval
spread in the lattice data points indicates that some anisol9,5] GeV. The data in both parts of the figure correspond from
ropy from hypercubic lattice artifacts has survived the iden-bottom to top to increasing bare quark masses,i.€09.024, 0.028,
tification of the kinematical lattice momentum In Fig. 4  0.032, 0.040, 0.048, 0.060, 0.080, 0.100, 0.120, and 0.140, which in
we repeat these plots but now against the kinematical latticehysical units corresponds to°=2um,, =126, 147, 168, 210, 252,
momentumg. We see that the spread in the data is not sig-315, 420, 524, 629, and 734 MeV, respectively. The mass func-
nificantly reduced and that the kinematical momentumtions at large momenta are very similar to the bare quark masses, as
reaches up to 12 GeV. expected.

The cylinder-cut version of Figs. 3 and 4 are given in
Figs. 5 and 6, respectively. The cylinder cut removes almost
all of the remaining spread in the overlap quark data an
leaves data points that appear to lie on smooth curves. The
is no apparent difference in the spread of the cylinder-cu
data when plotted againptor g. Experience with the gluon
propagatof 2] suggests that the continuum limit f&( &, p)
will be most rapidly approached as—0 by plotting it
against its associated kinematical lattice momenturit is

hould not be overly sensitive to the fact that our calculation
quenched. For exploratory purposes, we regard our simu-
tion results at our bare quark masses to be a reasonable
gpproximation to the infinite volume and continuum limits.
We perform a simple linear extrapolation of our data to a
zero bare quark mass, i.e., a linear extrapolation to the chiral
limit. The results of our extrapolation for the mass function
are shown in Fig. 7. The top figure shows the chiral extrapo-
not obvious whetheM (p) would converge to its continuum- lation of M (p) f_or the full uncut data set and plotted agai_nst
p. The bottom figure shows the same results plotted agqinst

limit behavior more rapidly aa—0 by plotting againsq or p to 12 GeV. The fact that the linear extrapolation gives an

p or perhaps some other momentum scale. The only way tg/‘ hich ish ithin statistical Cl
resolve this question is to repeat the calculation on a lattic (p) w Ich vanishes within statistical errors at largé mo-
menta confirms that our simple linear extrapolation is rea-

with different spacinga and to see which choice of momen-
P ¢ sonable at large momenta. In fact, the data are found to be

tum on the horizontal axis leads aeindependent behavior of X . . .
Z(¢:p) and M(p) most rapidly asa—0. This is left for consistent with such a linear fit at all momenta for the bare
’ ’ masses considered.

future investigation. In Fig. 8 we plot the cylinder-cut data after the linear
chiral extrapolation for both function® (p) and Z®(p)
=Z({;p). These are shown against bagthand g with the

Our lightest bare quark mass s°=126 MeV and our renormalization points chosen as in the previous figures, i.e.,
heaviest is 734 MeV and hence we expect that our result8.9 GeV and 8.2 GeV for plots agairsandg, respectively.

C. Extrapolation to chiral limit

1145083-7
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FIG. 4. The functions (p) andZ™(p)=Z({;p) for renormal FIG. 5. The functiond (p) andZ(P(p)=2Z(Z;p) for renormal-

ization point{=8.2 GeV (on theq scalg for all ten bare quark jzation point{=3.9 GeV (on thep scalg for all ten bare quark
masses for the half-cut data. Data are plotted versus the discrefgasses and for data with a cylinder cut, i.e., the data are identical to

momentum values defined in EAL5), = VZqy,, over the interval  those of Fig. 3 except that they have been cylinder(one spatial
[0,12] GeV. The data in both parts of the figure correspond frommomentum unitrather than half cut.

bottom to top to increasing bare quark masses. The values of the
bare quark masses are in the caption of Fig. 3. (i.e., a nonzero bare masshe asymptotic behavior of the
mass function is that of the running quark mass. Specifically

We see that botiM (p) and Z(®(p) deviate strongly from for large, Euclidearp? and renormalization poinf we have

the tree-level behavior. In particular, as in earlier studies ofhe one-loop resul1]
the Landau gauge quark propagafd~6], we find a clear 2, 2142

. ; ; C . oo IN(£%/Adcp)
signal of dynamical mass generation and a significant infra- M (p?) Q
red suppression of th&({;p) function. At the most infrared ¢ In(pzlAéCD)
point, the dynamically generated mass has the value

=297(11) MeV and the momentum-dependent wave funcwheredy = 12/(33-2Ny) is the anomalous mass dimension,
tion renormalization function has the vali =0.482). M, is the current quark mas$J; is the number of quark
The resultM;,=297(11) MeV is similar to typical mass val- flavors, andAocp is the QCD scale parameter. In this limit
ues attributed to the “constituent quark” mass and is apWwe see then that the mass at the renormalization point,
proximately 1/3 of the proton mass. These values are veryn({)=M(¢?), approaches the current quark mass, i.e.,
similar to the results found in previous studfds-6] and are  M({)=M({%)—m, as stated earlier. The vanishing of the
also similar to typical values in QCD-inspired Dyson- bare massn® defines the chiral limit and in that case the
Schwinger equation mode&,28,29. current quark mass also vanishes and the asymptotic behav-

As the bare mass1’ is increased from the chiral limit as ior of the mass function at one loop becomes

in Figs. 5 and 6, we are increasing the proportion of explicit
to dynamical chiral symmetry breaking. Associated with this

dm
: (46)

P e 4midy (_<EQ>§) 1

we see that the dip id({;p) becomes less pronounced and M(p?) 3 [IN(ZHA2p)] "2

the relative importance of dynamical chiral symmetry break- QcD P

ing in the mass functioM (p) also decreases, i.e., we see X[|n(p2/AéCD)]dM_1_ 47
that M (p) becomes an increasingly flat function of momen-

tum as the bare mass is increased. This is the asymptotic behavior of the dynamically generated

In the continuum at one-loop order in perturbation theoryquark mass. We see that the running mass in(£#).falls off
and in the presence of explicit chiral symmetry breakinglogarithmically with momentum, whereas from Ed.7) the
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FIG. 6. The functiond/ (p) andZ®(p)=2(¢:p) for renormal- _ FIG. _7. The chiral Ilmlt mass fun_ctloM(p) obtaln_ed from a

ization point¢=8.2 GeV (on theq scalg for all ten bare quark simple linear extrapolation of the various mass functions using the
full uncut data set. This is plotted against both the discrete lattice

masses and for data with a cylinder cut, i.e., the data are identical tr%omentu and the kinematical lattice momentumThe latter is
those of Fig. 4 except that they have been cylinder(coe spatial mo L

momentum unit rather than half cut. shown only up to 12 GeV.

dynamically generated mass falls off more rapithg 1p> performed the fit to both, i.e., we have fitted E4j7) to both

up to logarithm in the chiral limit. This is the reason that sets of ultraviolet data favl (p) in the half-cut version of the

the effects of dynamical chiral symmetry breaking candata in Fig. 7.

be neglected at large momenta. Sincel(p®) s A summary of the fitting results is shown in Tables Il and
renormalization-point  independent, the  combinationsj|| for various fitting regions and QCD scale parameters. As
m [ IN(ZIAGcp) 1™, (aa) /[In(AScp) 1, and m{qq), is standard practice, we quote the extracted condensate at the
are renormalization-group invariant. The anomalous dimenrenormalization scalé=1 GeV using the renormalization
sion of the quark propagator itself vanishes in the Landay:g|e independence @Qh/[m((z//\écp)]d”‘- It is the latter

gauge. Hence, in the continuum in the Landau gauge, that is extracted in the fit to the chirM (p). The extracted

D2, ¢ condensate is relatively insensitive to the value\gf, and
Z2(5pd) — 1. (48)  the fitting window. There is, however, a very strong depen-
dence on which momentum scale is used ké(p), i.e.,
In our lattice results we clearly observe that®(p) ~350 MeV for p compared with~600 MeV forg. It is

=Z({;p) behaves in a way consistent with E¢8). We can  clear that a quantitatively meaningful extraction of the quark
then also examine whether or not the asymptotic behavior ofondensate will require us to establish which momentum
our linearly extrapolated chiral mass function satisfies Eqscale forM (p) most rapidly reproduces the continuum limit
(47). Since we are working in the quenched approximationas a—0. Other attempt$31-33 to directly calculate the
we haveN;=0. We attempt to extrapolate the quark conden-quark condensate in the overlap formalism in quenched QCD
sate for three different values dfqcp, i.e., 200, 234, and suggest a condensate val€50 MeV, which implies that
300 MeV. Note that 234 MeV is among typical values quotedM (p) may be more appropriately plotted against the discrete
for quenched QCD)30]. lattice momentunp. The resolution of this issue is beyond

We also do the extraction over different ultraviolet fitting the scope of the present study and is left for future work.
windows in order to verify the insensitivity of the chiral However, once the correct momentum scale is identified and
condensate to the fitting window. Since it is at present unthe continuum limit estimated, the good quality of the over-
clear whetheiM (p) most rapidly approaches the continuum lap data indicates that an extraction of the quark condensate
limit when plotted againsp or plotted againstj, we have should be possible.
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TABLE Ill. Summary of the results for the quark condensate
—(qq}}/e‘ extracted from Eq(47) in MeV and scaled to the renor-
malization point{=1.0 GeV. The fit was done using E@7) for
each ofA gcp=200,234,300 MeV on various momentum windows
using the linearly extrapolated half-cut data fit(p) plotted
against the kinematical lattice momentum

Aqep
p (GeV) 200 MeV 234 MeV 300 MeV
3-5 60468) 591(67) 566(64)
3-7 60066) 587(65) 56262)
3-9 59463) 581(62) 557(59)
4-5 61381) 59979) 57476)
4-7 60Q71) 586(70) 56367)
4-9 58967) 576(65) 55363)
5-7 59066) 577(65) 556(32)
5-9 57741) 56362) 541(60)

so-called “Asqtad” action withO(a*) and O(a%g?) errors,
is also seen to be superior to thi¥a)-improved quark ac-
tion and these resultgs] are qualitatively consistent with
what we have found here.

We use ten different quark masses and observe an ap-
proximately linear relation between the bare mass and the
current quark mass for bare masses in the rard25 to
~730 MeV. This allows a simple linear extrapolation to the
chiral limit. Such a linear extrapolation is justified in the
ultraviolet, since the resulting ultraviolet mass function van-
ishes within errors in the chiral limit, as expected. For the
most infrared momentum points in the chiral limit using this
linear extrapolation we findV;,=297(11) MeV andZz;
=0.48(2) for the mass function and the momentum-

To the best of our knowledge, this is the first detailegdependent wave function renormalization function, respec-

study of the Landau gauge momentum-space quark propagﬁ\—’

tor in the overlap formalism. By construction, the overla ) , e s
P Y 5] ehavior of the chiral extrapolated mass function is possible

with this quality of data. However, it is clear that this cannot

quark propagator needs no tree-level correction beyond

identification of the appropriate kinematical lattice momen-

tum g. The quality of the data in the overlap formalism is
seen to be far superior to that from earlier studiés,
which use arO(a)-improved Sheikholeslami-Wohle(BW)

quark action with a tree-level mean-field improved clover
coefficient cg,. In these earlier studies it was found that

ely.
An extraction of the quark condensate from the ultraviolet

be done in a quantitatively reliable way until one or more
additional lattice spacings become available so that we can
identify the appropriate momentum against which to plot
M(p?).

The first calculation presented here is performed on a

Hglatively small volume of 15x3.0 fnf and an intermedi-

careful tree-level correction schemes are essential and tH&

resulting corrected data remain of inferior quality. The qua

|-ate lattice spacing of 0.125 fm. Ultimately, a variety of lattice

ity of the data for the improved staggered quark action, the?P2cings and volumes should be used so that a study of the

TABLE Il. Summary of the results for the quark condensate

—(qq);” extracted from Eq(47) in MeV and scaled to the renor-
malization point{=1.0 GeV. The fit was done using E@7) for
each ofA gcp=200,234,300 MeV on various momentum windows

usingM (p) plotted against the discrete lattice momentpm

Aqeop
p(GeV) 200 MeV 234 MeV 300 MeV
3-5 35635) 34734 33332
4-5 35269 344(67) 330(64)

infinite volume, continuum limit of the overlap quark propa-
gator can be performed. It will also be interesting to simulate
at lighter quark masses in order to study the chiral limit of
the quenched theory in some detail. Finally, one should con-
sider kernels in the overlap formalism other than the pure
Wilson kernel, e.g., using a fat-link irrelevant clover action
[34] as the overlap kerngB5]. These studies are currently
under way and will be reported elsewhere.
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APPENDIX: TREE-LEVEL BEHAVIOR —iy-k
= ————+1 (AB)
1. Tree-level overlap propagator A+ VK2+ A2
We can derive an explicit form for the tree-levgle.,
free) overlap quark propagator with the Wilson fermion ker- and then
nel. Let us work in the infinite volume limit with finite lattice 5
spacinga. D Y0)=D"*0)-1
It is convenient to define the dimensionless momentum
variables -~
—iy-k
k,=sin(p,a), k,=2sinp,al2). (A1) AL Fk2+A2
Let us also define the dimensionless combination
2
(A7)

A=

r.
(—am§$>)+§k2

’ (A2) . iy KA+ VK2 +AZ)

where (—am(A?)) is the negative, dimensionless tree-levelClearly then{'f)*l(O),yS}:O, as it must in the overlap for-
Wilson mass defined bye=1[2(—-m{"a)+(1/k.)]. We  malism. The tree-level momentum-space overlap quark
have k.= 1/8 andr is the usual Wilson parametéypically  propagator in the massless limit is then given by

one chooses=1). Note that for small momenta we have

A<0. We can then write the momentum-space Wilson op-

erator at tree level as SO0,p)= —=D%(0)
2m{?
D,= L k+A A3
It follows that 2mQ| iy k{A+ VK2 +A2)
1
— _— JKk2 2 1
DiDw= 5-VKE+AZ (Ad) _L 8)

where it is to be understood that by definitionly the posi-
tive rootis kept. In Euclidean space it is clear that we will Hence, we recognize that the kinematical tree-level momen-
always havek?+A?>0 and the square root is always well tum is given by
defined. The momentum-space overlap Dirac operator can
then be written as o 1A+ w/k:2+A2}
q,U-:Zm\(N)’R,UT' (Ag)
D k
w

Joip,

1 1
D(O)E E[l‘F ’y5Ha]: E 1+

This analytic form for theqz\/Zqi versuspz\/zpﬂ2 be-
havior is plotted as the solid line in Figs. 1 and 2 for the case

1 [ iy k+A of purely diagonal momentg{ = p,=p3=p,). The analytic
= 3 1+ — form can be checked against eddmgonal or nondiagongl
| Vk2+A? point on a case-by-case basis and they agree to within nu-

merical precision.
[ = We can verify analytically thatj, —p, asp—0 as seen
k+{A+ VKk?+A2 I ro P
E Ly K {AT VKT AT _ (A5) in Fig. 2. Note that ap— 0 we haveA<0 and hence
2 I A lk2+A2

VK + A2 |A] % g’

(O Zqj
We see thaH,=ysD,,/\/DID,, and thatH!=H, andH2 Qu—2my Ky, T2 K TAl —55in(p,a)
=1 as required in the overlap formalism, i.Bl, has eigen-
valuest1. We can readily inverD(0) to give —P,- (A10)
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2. Tree-level dispersion relation 2.0 . — — .
. \ /,
The massless, tree-level overlap propagator has the ---- continuum | %
momentum-space form overlap o
P 18 P weraz—o * ]
—id —— A=0 b
(0) =" 8 ——- Wilson ,~ e =
S*™(0,p) 5 (A11) 10 - p - pe-——=
q = s e \\ -
(/
and so has poles whegf=0. We can analytically continue a5 L y / T
q4—iE and then we find poles &=|q|, i.e., in terms of our ’ / ‘
tree-level corrected propagator we have a perfect massless ’
dispersion relation. o.o0 S 0'5 1'0 1'5 ';o 2'5 o
However, for hadronic properties without tree-level cor- : ‘ : pa : : :

rection it is the dispersion relation mthat is relevant, i.e.,

we need to analytically continug,—iE and find the poles FIG. 9. The dispersion relation for the overlap quark propagator
in S(°(0,p). Our discussion here generalizes that given inof Eq. (A15) is shown as the solid line and correspondste-0.
Ref. [20]. It is clear from Eq.(A4) and Eq.(A5) that the  The dispersion relation does not continue into the region where
analytic continuation is defined only in the region whife =0 i-€., it does not extend to the right beyond the long-dash dot
+A?=0, since otherwise the argument of the square root idn€ denotingA=0 [the solution of Eq(A16)]. The analytic con-

negative and the definition dd(0) has no meaning. The tinuation to Minkowski space has no meaning whén-A*<0,
poles occur when i.e., it is undefined above the short-dash dot Jine, the solution of

Eq.(Al17)]. The intersection point of these three curves is where we
simultaneously havé, k?, andk?+A? equal to zero. Also shown

0=0g?=4(m{®)?

{A+\k?+A?)2
~k2

for reference are the dispersion relations for the continuum limit
(short dashesand for the ordinary Wilson actiofiong dashes

a

(0)

2A2 —~
=4(m{®)2 1+%[1+sgr{A)\/1+(k2/A2)] . coshEa)>2—cogpa)— (A16)

(A12) Note that the analytic continuation to Minkowski space is

well defined only when the square-root operation is well de-

fined, i.e., fork?+ A2=0, and so this condition must also be
satisfied. We can rewrite this condition as

2+[2—(am{?)12-2[2— (am{?) ]cog pa)

ProvidedA<0 we see thatj?>—0 ask?’—0. Consider these

poles whenp,—iE andp=(0,0p); then the condition&?
=0, A<0 become

sirf(iEa) +sirf(pa) =0, (A13) cosEa)<
o 2[2~(am(})) ~cogpa)]
0 (A17)
amy
irP(iEa/2) + sirf(pa/2) < Al4 . . -
Si(iEaf2)+sin(pa/2) 2r (A1) Recall that Eq(A16) is equivalent to the conditioA<O. If
ivelv. Th h los at A=0 theng?=4(m{?)2+0 for any realk? and hence there
respectively. Thus we have poles a are no poles. IA>0 then in the region where the square root
cosiEa)= 1+ sir?(pa) (A15)  is well defined{A+ Vk?*+A? >0 and there are no poles in

that case either. We have plotted these results for the overlap

when we satisfy the condition dispersion relation in Fig. 9.
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