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Improved pseudofermion approach for all-point propagators
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Quark propagators with arbitrary sources and sinks can be obtained more efficiently using a pseudofermion
method with a mode-shifted action. Mode shifting solves the problem of critical slowing down~for light
quarks! induced by low eigenmodes of the Dirac operator. The method allows the full physical content of every
gauge configuration to be extracted, and should be especially helpful for unquenched QCD calculations. The
method can be applied for all the conventional quark actions: Wilson, Sheikholeslami-Wohlert, Kogut-
Susskind, as well as Ginsparg-Wilson compliant overlap actions. The statistical properties of the method are
examined and examples of physical processes under study are presented.
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I. INTRODUCTION

The development of more powerful computing platform
as well as improvements in algorithms suggest that
quenched lattice QCD gauge configurations on reason
large lattices should become available in the not too dis
future. The generation of equilibrated and decorrelated
namical gauge configurations for lighter quark masses
nevertheless remain extremely costly in computational ter
and elementary considerations of load balancing suggest
we should be willing to expend a correspondingly large co
putational effort in extracting the maximum physical conte
from each available gauge configuration. Hadronic corre
tors built from conventional quark propagators~which give
the quark propagation amplitude from a single source to
points on the lattice, for example! evidently exploit only a
fraction of the physical information latent in each gauge c
figuration. In this paper we explore the statistical propert
and computational feasibility of an alternative stochastic
proach to generating quark propagators, one which supp
simultaneously quark propagation amplitudes from any po
on a space-time lattice to any other~i.e. all-point propaga-
tors!. The use of pseudofermion fields has been studied
viously @1,2#; particularly for single light quark systems~e.g.
heavy-light mesons!. With these approaches, as the qua
mass becomes light the convergence of pseudoferm
Monte Carlo calculation suffers critical slowing down.
this paper, we observe that for physical correlators~in mo-
mentum space! the statistical noise problem resides main
in its low momentum behavior. We will find that the conve
gence can be greatly improved by separating off the low
eigenmodes of the Dirac operator and treating them exa
while doing the Monte Carlo calculations with a mod
shifted action.

In Sec. II we review the essential properties of pseu
fermion fields which allow the computation of an all-poi
propagator. Although the detailed results presented in
paper primarily concern Wilson or clover-improved qua
actions, we also indicate here how the method can be app
to the computation of an all-point overlap operator.
course, the basic properties of pseudofermion fields will
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ready be familiar to practitioners of the hybrid Monte Car
algorithm@3# or the Luescher multiboson method@4#. In Sec.
III we describe in some detail the use of pseudoferm
quark propagators in constructing a variety of hadronic c
relators~corresponding to both two- and three-point hadro
Green’s functions!, such as disconnected parts contributi
to form factors or to hairpin amplitudes for isoscalar meso
etc. In Sec. IV we describe the statistical properties of h
ronic correlators computed using pseudofermion all po
propagators. The availability of all-point propagators allo
high-statistics evaluations of the full four-momentum stru
ture of such correlators. Detailed autocorrelation studies
veal that the method gives very accurate results~with rapidly
decorrelating amplitudes with a time constant of a few he
bath sweeps of the pseudofermion fields! for all but the low-
est lattice momenta. The critical slowing down in the
modes is related to the presence of low eigenmodes of
Hermitian Wilson-Dirac operator. Projection and shifting o
few low-lying modes turns out to be computational
straightforward, and finally in Sec. V we show that su
mode-shifted pseudofermion simulations allow accurate
traction of all momentum components of hadronic corre
tors.

II. PSEUDOFERMION ACTIONS AND ALL-POINT
QUARK PROPAGATORS

A pseudofermion action suitable for computing all-poi
quark propagators is constructed from the quadratic formQ
defining the basic quark action of the theory:

Squark5 (
ax,by

c̄axQax,bycby ~1!

wherea,b are spin-color indices andx,y lattice sites. For the
time being, we shall consider Wilson or clover-improved a
tions only ~later, we return to the case of Ginsparg-Wilso
@5# compliant overlap actions!. Then the operatorH[g5Q is
Hermitian and we can form a positive-definite boson
~‘‘pseudofermion’’! action as follows:
©2002 The American Physical Society02-1
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Spf5 (
ax,by

fax* Hax,by
2 fby ~2!

in terms of a complex bosonic pseudofermion fieldf. Aver-
ages of products of the pseudofermion field with respec
the Gaussian weight defined in Eq.~2! yield inverses ofH2

in the usual way:

^^F~f,f* !&&[Z21E dfdf* Fe2Spf(f,f* ),

Z[E dfdf* e2Spf(f,f* ),

^^faxfby* &&5~H22!ax,by . ~3!

Note that the Gaussian dependence of the pseudofermio
tion implies

^^Spf&&5NcolNspinV512V ~4!

whereV is the lattice volume (5 number of lattice sites!.
This exact result is extremely useful in checking for errors
the simulation algorithm and in determining equilibration
an ensemble. Of course, the quark propagator of interes
lattice QCD simulations is~up to a trivial g5 factor! H21,
not H22. This can easily be achieved by a single additio
‘‘dslash’’ operation applied to the conjugate pseudoferm
field:

f̃by[~f†H !by ,

^^faxf̃by&&5~H21!ax,by5~Q21g5!ax,by . ~5!

Note that separate pseudofermion fields are needed for
quark propagator as averages of products of~say! four
bosonicpseudofermion fields will produce contractions wi
the wrong sign relative to the corresponding fermionic
quark amplitudes. The simulation of averages of the k
found in Eqs.~3!,~4!,~5! can be readily accomplished b
heat-bath updates, due to the simple Gaussian dependen
the action on the fields. For either Wilson or clover-improv
actions, the dependence of the pseudofermion weight on
pseudofermion field at a specific lattice sitex takes the form

e2Spf.e2fax
† Axabfbx14k Re(fax* vax) ~6!

wherevax is a complex spin-color vector assembled from t
pseudofermion field at nearest and next-to-nearest site
well as appropriate gauge-link variables connecting to th
sites. The 12312 matrixA is a multiple of the identity~spe-
cifically A51116k2) for Wilson actions, and a more com
plicated Hermitian matrix assembled from clover gau
fields in the Sheikholeslami-Wohlert-~SW!-improved case.
In either case, the heat-bath update offx is readily managed
by completing the square in Eq.~6!. For the clover actions
the matricesAxab can be prediagonalized just once at t
start of the simulation, and the resulting stored eigenval
and eigenvectors used to quickly generatef updates at each
site according to the weight~6!.
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The pseudofermion method can be readily generalize
study the all-point overlap operator arising from an over
action satisfying the Ginsparg-Wilson condition@5,6#. Let H
be the Hermitian Wilson-Dirac operator with suitably chos
overlap mass. The all-point overlap operator for arbitra
bare quark mass is trivially computable once all matrix e
ments of the nonlocal operatore(H)[H•(H2)21/2 are ob-
tained. Using an optimal rational approximation@7#, this
nonlocal operator can be written

e~H !.S a01 (
m51

N

am

1

H21bm
D H ~7!

wheream are real and thebm are real positive. The numbe
of pole termsN needed for a given level of uniform accurac
over the spectrum ofH is related in a fairly straightforward
way to the condition number ofH, but typical studies of the
overlap operator have used 10,N,100. We shall return to
this issue in Sec. IV, where we show that mode shifting c
be used to dramatically improve this condition number a
reduce the number of poles needed. The needed all-p
operator can clearly be obtained by an average ofN pseudo-
fermion fields,f (m), m51,N: we begin from the positive
definite action

Spf,overlap5 (
m51

N

f (m)†~H21bm!f (m) ~8!

and construct the desired combination of pole terms from
corresponding combination of pseudofermion fields, av
aged relative to the weight~8!:

e~H !ax,by5K K (
m

amfax
(m)f̃by

(m)L L 1a0Hax,by . ~9!

The computation of all-point overlap propagators will r
quire a simulation within a simulation~analogous to the situ
ation for single source overlap propagators, where inversi
within an outer conjugate gradient inversion are requi
@7#!.

III. HADRONIC CORRELATORS FROM ALL-POINT
PSEUDOFERMION QUARK PROPAGATORS

In general, the computation of multipoint hadronic co
elators involvingn quark propagators can be reduced to co
volutions of n pseudofermion fields@10#, rapidly computed
by fast Fourier transform~FFT!. In fact, using FFT we can
easily construct a wide range of correlators involving bo
local and smeared operators. In this section we shall illust
this by considering a number of examples of physical int
est. We note here that it may be advisable to combine
point with conventional fixed source~or sink! propagators
~obtained, say, from a conjugate gradient inversion!, as accu-
rate results become increasingly difficult as the number
all-point propagators used increases, due to the large co
tion number ofH, as will become clear in subsequent se
tions. Furthermore, the projection methods described in S
V become increasingly essential in reducing the statist
errors of the pseudofermion average as the number of in
pendent all-point propagators increases.
2-2
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IMPROVED PSEUDOFERMION APPROACH FOR ALL- . . . PHYSICAL REVIEW D 65 114502
A. Local two-point correlators

The all-point propagators obtained by the pseudoferm
technique can be used to construct the complete momen
space dependence of 2-point correlators of scalar or pse
scalar densities, or vector or axial-vector currents, while
ploiting the full physical content of each gaug
configuration. For example, we may be interested in the
4-momentum transform

DPS-PS~q![(
x,y

eiq•(x2y)D~x,y!

of the 2-point pseudoscalar correlatorD(x,y), given by

D~x,y!5^0uT$C̄~x!g5C~x!C̄~y!g5C~y!%u0& ~10!

52^tr@~Q21g5!xy~Q21g5!yx#& ~11!

52K K (
ab

fxa~f†H !ybxyb~x†H !xaL L
52^^~f†Hx!yy~x†Hf!xx&&

52^^~f̃•x!yy~ x̃•f!xx&&, ~12!

where Eq.~10! represents a conventional operator vacu
expectation value, the single angular brackets in Eq.~11!
refer to a functional average over gauge fields, and
double angular brackets in Eq.~12! imply averages over
gauge configurations as well as a pseudofermion averag
each gauge configuration to determine the all-point propa
s

e

n
In

v
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tors Q21 in Eq. ~11!. The full momentum-space correlato
thus becomes an easily evaluated fast Fourier transform
products of pseudofermion fields:

DPS-PS~q!52^^FFT~ x̃•f!~q!FFT~f̃•x!~2q!&&.
~13!

At this point, it may be of use to the reader to indicate t
computational requirements of these pseudofermion sim
tions ~see @8# for more details!. For a 64 lattice, a single
heat-bath update of the two pseudofermion fieldsf,x re-
quires 0.366 s on a 1.5 GHz Pentium-4 processor. The c
volutions and FFT operations required to obtain the des
four-momentum fieldDPS-PS(q) in Eq. ~13! require an addi-
tional 0.024 s and are performed after every 2 heat-bath
dates off,x. Typically, a sufficiently accurate pseudofe
mion average forDPS-PS(q) was obtained from 20000
measurements, corresponding to 2.1 Pentium-4 h.
103320 lattices, a heat-bath update costs 3.30 s, a meas
ment of D(q2) requires 0.43 s~again, performed every 2
heat-bath steps!, and final averages are taken from 7000 me
surements, corresponding to 6.8 Pentium-4 h. For comp
son, the evaluation of a conventional conjugate-gradi
single-source propagator on a 103320 lattice requires 1.2
Pentium-4 h.

B. Smeared meson propagators

In lattice QCD, hadron spectroscopy is usually stud
using smeared hadron sources/sinks to optimize the gro
state signal in each hadronic channel. A typical multist
propagation amplitude from Euclidean timet i to t f might
therefore involve evaluation of the matrix
Mab~ t i ,t f ![ (
xWyWzWwW

f a~xW ! f b~yW !^0uT$C̄~zW1xW ,t i !g5OaC~zW,t i !C̄~wW 1yW ,t f !g5ObC~wW ,t f !%u0& ~14!
ns

elds

d

de
o

where f a(xW ) are a set of spatial smearing wave function
C(xW ,t) denotes the quark field at spatial~lattice! point xW and
time t, andOa are the appropriate spin matrices for the d
sired hadronic channels. The sums overzW,wW project the
physical states onto zero momentum. Of course, delta fu
tion choices forf a allow us to use local sources or sinks.
terms of pseudofermion quark propagators

Mab~ t i ,t f ![2 (
xWyWzWwW

f a~xW ! f b~yW !

3$^^f̃wW 1yW ,t f
ObxwW ,t f

x̃zW1xW ,t i
OafzW,t i

&&

2Nf^^f̃zW1xW ,t i
OafzW,t i

x̃wW 1yW ,t f
ObxwW ,t f

&&%,

~15!

where the third line of Eq.~15! (Nf5 number of flavors! is
present only for isoscalar amplitudes where there is a non
,

-

c-

a-

nishing loop-back~‘‘hairpin’’ ! amplitude. The fourfold spa-
tial sum in Eq.~15! can fortunately be reduced to operatio
linear in the spatial volumeVs of the lattice via the magic of
Fourier transforms. Define the smeared pseudofermion fi

f̂xW ,t i

a
[

1

Vs
(

pW
eipW •xW f a~2pW !fpW ,t i

,

x̂yW ,t f

b
[

1

Vs
(

pW
eipW •yW f a~2pW !xpW ,t f

,

where f a(pW ) is the Fourier transform smearing function an
fpW ,t represents the spatially Fourier transformed~and time-
sliced! pseudofermion field. Taking the isovector amplitu
part of Eq.~15! for simplicity, one finds that this reduces t
2-3
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M ab
isovec~ t i ,t f !52K K S (

xW
x̃xW ,t i

Oaf̂xW ,t i

a D
3S (

yW
f̃yW ,t f

Obx̂yW ,t f

b D L L . ~16!

The isoscalar contribution, if present, is trivially obtained
interchanging the pseudofermion fields in an obvious wa

C. Three point functions—the pion form factor

The computation of more complicated correlators, such
the 3-point functions needed to extract form factors,
greatly facilitated if we have all-point quark propagators
our disposal. A typical example is shown in Fig. 1, where
smeared meson created at timet0 propagates to timet1,
where spacelike momentumq is injected at spacetime poin
(yW ,t1) by an electromagnetic current, followed by propag
tion of the final-state meson to timet2, when it is removed
by an appropriate smeared-sink operator.

The quark diagram displayed in Fig. 1 represents the c
nected contribution to the following hadronic correlator:

Jt0t1t2
~qW !5 (

wW xWyWzW
eiqW •(xW2yW ) f sm~zW ! f sm~wW !

3^C̄~zW1xW ,t2!g5C~xW ,t2!C̄~yW ,t1!

3g0C~yW ,t1!C̄~wW ,t0!g5C~0,t0!& ~17!

where in this case the same smearing functionf sm ~optimized
for a pion, say! is applied at both initial and final times. Th
complete momentum-dependence of this 3-point funct
can be obtained by using an all-point pseudofermion pro
gator for the quark propagator from (yW ,t1) to (xW ,t2). The
quark propagators into the point sink at (0,t0) and from the
smeared source point at (wW ,t0) can be computed by conven
tional conjugate-gradient techniques. Again, by using Fou
transforms appropriately, the calculation ofJt0t1t2

(qW ) can be
reduced to operations at most linear in the spatial lattice

FIG. 1. Quark flow diagram for computing pion form facto
~connected part!.
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ume. Finally, as for the case of smeared meson propaga
discussed above, the disconnected contribution involving
contraction ofC(yW ,t1) back to C̄(yW ,t1) can be calculated
with no extra effort, as the all-point propagator for just th
case has been computed. In this case the pseudofermion
will appear in an average of the form̂̂f̃yW t1

g0g5fyW t1
&&.

IV. STATISTICAL PROPERTIES OF PSEUDOFERMION
PROPAGATORS

In this section we shall describe the results of detai
studies of the statistical properties of pseudofermion pro
gators computed from the basic formulas~3!. We first con-
sider a case where only one all-point propagator is use
assembling the full hadronic amplitude- namely, the 3-po
correlatorJ(q) giving the pion form factor discussed in Se
III C. We shall see shortly that as a consequence of the t
cally high condition number of the Hermitian Wilson-Dira
operatorH, autocorrelations for low-momentum amplitude
become progressively longer as more all-point propaga
are introduced into the calculation~in Sec. V, we shall show
how to fix this problem by mode shifting!. Here, we begin
with an application where autocorrelations are relatively u
problematic.

For the pion form-factor calculation, we generat
quenched configurations atb55.9 on 123324 lattices, and
studied the resulting quark propagators atk50.1590 ~with
the Wilson action!. The results described here were obtain
by studying the simulation of the quantityJ(q) for a ran-
domly chosen gauge configuration from this ensemble:
amination of other configurations reveals that the behav
we describe is generic. From Eq.~4! the ~infinite ensemble!
average pseudofermion action should therefore beSpf
5497664. From Fig. 2 it is apparent that the equilibriu
value for this quantity is reached rather quickly, after abo
20 heat-bath sweeps through the lattice. An average of
value of 200 consecutive pseudofermion configurations a
this gives for exampleSpf5497599 with a standard deviatio
of .650. Typically, we have performed measurements us
pseudofermion fields after 100 initial sweeps.

The decorrelation of hadronic amplitudes in the course

FIG. 2. Equilibration of pseudofermion average on 123324 lat-
tices.
2-4
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a Monte Carlo simulation of the pseudofermion propaga
~3! is extremely sensitive to the particular momentum co
ponent being calculated. In particular, low momentum co
ponents have a large overlap with the smallest eigenmode
H, which can have very small eigenvalues (.1023 is not
uncommon!. These low modes decorrelate only slowly
any local update of the action~2!. This property becomes
immediately apparent when we examine the momentum
pendence of either the convergence of cumulative avera
~Fig. 3! of J(q2) ~taking t22t15t12t053) or the autocor-
relation function of the same quantity~Fig. 4!, as a function
of number of pseudofermion heat-bath sweeps perform
The autocorrelation time~defined as the integral under th
autocorrelation curve of Fig. 4! turns out to be about 13 fo
the zero-momentum mode and 7 for theq251 ~lattice units!
mode: higher momenta~not shown here! yield autocorrela-
tion times of order unity. In fact, the autocorrelation times
this correlator are fairly mild in comparison to the cases
volving two all-point propagators discussed below: 80
pseudofermion sweeps (.12 h on a 1.5 GHz Pentium 4!
allow J(q) to be extracted with error bars well below th
intrinsic fluctuation of the correlator from one gauge co
figuration to the next~see Fig. 5!.

FIG. 3. Cumulative averages for pion form-factor amplitu
J(q2), q250,1.

FIG. 4. Autocorrelation function of pion form-factor amplitud
J(q2), q250,1.
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The critical slowing down seen in low eigenmodes b
comes a more serious problem in situations where two se
rate all-point propagators are required to construct the
sired correlator, as in the local two-point correlato
discussed in Sec. III A. In this case the very large condit
number ofH2 implies anextremelyslow convergence for the
zero-momentum component of the correlator. For exam
from Eq.~11! we see that the local pseudoscalar density c
relator can be written, in momentum space,

DPS-PS~q!5(
x,y

eiq•(x2y)Tr~Hxy
21Hyx

21! ~18!

which becomes, for zero momentum,

DPS-PS~0!5TrS 1

H2D . ~19!

As one not uncommonly encounters small eigenvalues oH,
it is apparent that a few low eigenmodes can contribute
proportionately to this quantity. Moreover, these are exac
the modes that decorrelate most slowly in the pseudoferm
simulation. To illustrate this, we have studied@8# hadronic
2-point correlators on an ensemble of unquenched confi
rations generated with the truncated determinant algorit
@9# ~TDA! on physically large coarse 64 lattices~lattice spac-
ing .0.4 fm; see@12# and @11#!. Cumulative averages fo
DPS-PS(q) for a range of values ofq2, for a typical gauge
configuration in this ensemble, are shown in Fig. 5. The z
momentum mode is clearly not convergent even after 8
pseudofermion sweeps, while even the smallest nonzero~lat-
tice! momentum component shows much more rapid conv
gence. For the particular gauge configuration illustrated h
the lowest eigenvalue ofH turns out to be 0.0024, which
contributes 54% of the total zero-momentum val
Tr(1/H2). The problem for this lowest mode can be se
~Fig. 6! in another guise in the autocorrelation curves
DPS-PS(q

2), 0<q2<2 @the autocorrelation time is.1
pseudofermion sweep forq2.2 ~lattice units! so these
curves are not shown#. Fortunately, the critical slowing down
experienced in these pseudofermion simulations of all-po
propagators appears to infect only the very lowest mom

FIG. 5. Cumulative averages of pseudoscalar density correl
DPS-PS(q

2), 0<q2<4.
2-5
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tum components. We shall see in the next section that
problem can be eliminated for these components by m
shifting a relatively small number of low eigenmodes ofH.
This preconditioning substantially reduces autocorrelat
times and allows us to extract reasonably accurate va
even for the zero-momentum component of hadronic corr
tors. The extraction and separate treatment of low eig
modes are also essential in calculating accurate all-p
overlap operators.

V. MODE-SHIFTED SIMULATIONS OF ALL-POINT
PROPAGATORS

The slow convergence of the lowest momentum mo
discussed in the preceding section can be substantially a
erated by shifting the low eigenmodes of the Hermiti
Wilson-Dirac operatorH responsible for the critical slowing
down. In the case of the two-point correlator~18!, the rel-
evant parameter is the condition number ofH2, which ~for
the ensemble of unquenched 64 lattices discussed in Sec. IV!
can typically be reduced by two orders of magnitude
shifting the lowest 10 eigenmodes ofH2. More generally,
define

Hs[H1(
i 51

N

d ivivi
† ~20!

wherevi are a complete orthonormal set of eigenmodes oH,
Hvi5l ivi , and the lowestN modes~in absolute value! are
shifted:

d i[l i
(s)2l i . ~21!

For simplicity we shall takel i
(s)5sgn(l i

(s)) henceforth, al-
though any value with magnitude of order unity will do. Th
extraction of low eigenmodes ofH is computationally
straightforward using implicitly restarted Arnoldi techniqu
@13#: each mode requires a few minutes on a Pentium-4 p
cessor for the 64 lattices discussed here. Corresponding
the shifted operatorHs defined in Eq.~20! is a shifted
pseudofermion action

FIG. 6. Autocorrelation curves of pseudoscalar density c
relatorDPS-PS(q

2), 0<q2<2.
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Ss,pf5 (
ax,by

fax* ~Hs
2!ax,byfby . ~22!

Once the relevant low eigenmodesvi are known, the heat-
bath update of the pseudofermion fieldf can be performed
by trivial modifications of the procedure outlined in Sec.
The added computational load is not large: ifN510 modes
are shifted, the time required for a pseudofermion upd
increases by about 20%. For the rest of this section, we s
use the double-bracket notation^^•••&& introduced in Sec. II
to indicate averages relative to the weight generated by
shifted actionSs,pf. Accordingly, theunshiftedquark propa-
gator is given by

Hax,by
21 5^^faxf̃by&&2(

i 51

N

D ivi ,axṽi ,by ~23!

where

D i[12
1

l i
2

~24!

and the tilde notation on the right-hand side of Eq.~23! still
refers to the unshifted operatorH, as in Eq.~5!. The pseudo-
scalar correlator in Eqs.~10!–~12! can therefore be written

DPS-PS~q!5 (
ax,by

eiq•(x2y)Hax,by
21 Hby,ax

21

5(
x,y

eiq•(x2y)H K K ~f̃•x!y~ x̃•f!x

2(
i

D i„~ x̃•vi !x~ ṽi•x!y

1~ ṽi•f!x~f̃•vi !y…L L
1(

i , j
D iD j~ ṽj•vi !x~ ṽi•vj !yJ . ~25!

FIG. 7. Cumulative average of zero-momentum pseudosc
correlator.-
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The term involving a double sum( i , j over shifted modes in
Eq. ~25! does not involve pseudofermion fields and is the
fore calculated just once. We see that the usual result~12!
has to be supplemented by an average of overlaps of the
pseudofermion fields with the shifted eigenmodes. Aga
this is computationally perfectly manageable.

The dramatic effect of shifting even a few low eige
modes on the convergence of correlators built from pseu
fermion averages is illustrated in Figs. 7–10. As expect
the worst behavior is found in the zero momentum mo
where the unshifted averages~Fig. 7! are still 60% below the
correct answer after 50 000 pseudofermion sweeps, w
only 10 000 sweeps already give a reasonably good re
after the 10 lowest modes are shifted. The autocorrela
curves for the zero-momentum component tell the sa
story ~Fig. 8!: the autocorrelation time is about 140 swee
for the unshifted simulation, dropping to 11~5! sweeps after
shifting 10 ~20! modes. The overall situation is much bett
for the lowest nonzero momentum mode,q251, as shown in
Figs. 9,10. Here the autocorrelation times are roughly 8,
sweeps for simulations with 0,10,20 shifted modes resp

FIG. 8. Autocorrelation curve for zero-momentum pseudosc
correlator.

FIG. 9. Cumulative average for unit-momentum pseudosc
correlator.
11450
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2
c-

tively, and the cumulative averages reflect a correspondin
higher stability. The numerical evidence from these simu
tions clearly suggests that mode shifting withN510 modes,
for the ensemble of 64 TDA lattices considered here, is pe
fectly adequate for obtaining accurate results at all mome

Mode shifting is practical and effective in reducing va
ance due to infrared modes on reasonably large lattices
evaluation of an all-point propagator for a~say! 103320 lat-
tice to adequate accuracy may take several days on a
tium, so spending a few hours at the outset to calculate
lowest 5 or 10 modes may well be advantageous. An
ample of the dramatic effectiveness of even a few shif
modes on reducing autocorrelation in a 103320 computation
of the pseudoscalar correlator~at zero momentum! is shown
in Fig. 11.

The calculation of an all-point overlap operator using E
~7! can be greatly facilitated by mode shifting. The numbeN
of poles needed in the optimal rational approximation
achieve a desired uniform accuracy fore(H) over the full
spectrum ofH is directly related to the condition numbe
~ratio of highest to lowest eigenvalues! of H. On the other
hand, provided the mode shifting preserves the algebraic
of the shifted eigenvalues@sgn(l i

(s))5sgn(l i)#, one clearly

r

r

FIG. 10. Autocorrelation curve for unit-momentum pseud
scalar correlator.

FIG. 11. Autocorrelation curve for zero-momentum correla
on 103320 lattice.
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hase(Hs)5e(H). Accordingly, the condition number ofH
can be drastically reduced by computing the overlap pseu
fermion operator using Eq.~8! with H replaced byHs as the
pseudofermion action: the required code is identical to t
used in the mode-shifted calculations of conventional Wils
propagators described above.
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