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Improved pseudofermion approach for all-point propagators
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Quark propagators with arbitrary sources and sinks can be obtained more efficiently using a pseudofermion
method with a mode-shifted action. Mode shifting solves the problem of critical slowing dfowright
quarks induced by low eigenmodes of the Dirac operator. The method allows the full physical content of every
gauge configuration to be extracted, and should be especially helpful for unquenched QCD calculations. The
method can be applied for all the conventional quark actions: Wilson, Sheikholeslami-Wohlert, Kogut-
Susskind, as well as Ginsparg-Wilson compliant overlap actions. The statistical properties of the method are
examined and examples of physical processes under study are presented.
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[. INTRODUCTION ready be familiar to practitioners of the hybrid Monte Carlo
algorithm[3] or the Luescher multiboson methpd]. In Sec.
The development of more powerful computing platformslll we describe in some detail the use of pseudofermion
as well as improvements in algorithms suggest that unquark propagators in constructing a variety of hadronic cor-
quenched lattice QCD gauge configurations on reasonabRglators(corresponding to both two- and three-point hadronic
large lattices should become available in the not too distarfereen’s functiong such as disconnected parts contributing
future. The generation of equilibrated and decorrelated dytO form factors or to hairpin amplitudes for isoscalar mesons,
namical gauge configurations for lighter quark masses wilftC In Sec. IV we describe the statistical properties of had-
nevertheless remain extremely costly in computational termd©nic correlators computed using pseudofermion all point
and elementary considerations of load balancing suggest thRfoPagators. The availability of all-point propagators allows
we should be willing to expend a correspondingly large comigh-statistics evaluations of t_he full four—momentum struc-
putational effort in extracting the maximum physical contentture of such correlator.s. Detailed autocorrelation stu_dles re-
from each available gauge configuration. Hadronic correla¥®@l that the method gives very accurate resifth rapidly
tors built from conventional quark propagatawghich give decorrelating amplitudes with a time constant of a few heat-
the quark propagation amplitude from a single source to alPath sweeps of the pseudofermion figlétw all but the low-
points on the lattice, for examplevidently exploit only a est Iatt|_ce momenta. The critical slowmg. down in these
fraction of the physical information latent in each gauge conmodes s related to the presence of low eigenmodes of the
figuration. In this paper we explore the statistical propertied€rmitian Wilson-Dirac operator. Projection and shifting of a
and computational feasibility of an alternative stochastic apf@W low-lying modes turns out to be computationally
proach to generating quark propagators, one which suppliedraightforward, and finally in Sec. V we show that such
simultaneously quark propagation amplitudes from any poianOd?-Shlfted pseudofermion simulations allow accurate ex-
on a space-time lattice to any othgre. all-point propaga- traction ofall momentum components of hadronic correla-
tors). The use of pseudofermion fields has been studied prd®'s:
viously[1,2]; particularly for single light quark systengs.g.

heavy-light mesons With these approaches, as the quark || pPSEUDOFERMION ACTIONS AND ALL-POINT

mass becomes light the convergence of pseudofermion QUARK PROPAGATORS

Monte Carlo calculation suffers critical slowing down. In

this paper, we observe that for physical correlai@msmo- A pseudofermion action suitable for computing all-point

mentum spadethe statistical noise problem resides mainly quark propagators is constructed from the quadratic f@rm
in its low momentum behavior. We will find that the conver- defining the basic quark action of the theory:
gence can be greatly improved by separating off the lowest
eigenmodes of the Dirac operator and treating them exactly _
while doing the Monte Carlo calculations with a mode- Squar= > YaxQax byWny (1)
shifted action. ax.by

In Sec. Il we review the essential properties of pseudo-
fermion fields which allow the computation of an all-point wherea,b are spin-color indices arndy lattice sites. For the
propagator. Although the detailed results presented in thiime being, we shall consider Wilson or clover-improved ac-
paper primarily concern Wilson or clover-improved quarktions only (later, we return to the case of Ginsparg-Wilson
actions, we also indicate here how the method can be applid®] compliant overlap actionsThen the operatdd = ysQ is
to the computation of an all-point overlap operator. OfHermitian and we can form a positive-definite bosonic
course, the basic properties of pseudofermion fields will al{“pseudofermion” action as follows:
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R The pseudofermion method can be readily generalized to

Spr= Eb $axHax by Pby (2)  study the all-point overlap operator arising from an overlap
by action satisfying the Ginsparg-Wilson conditif6]. Let H

be the Hermitian Wilson-Dirac operator with suitably chosen

verlap mass. The all-point overlap operator for arbitrary

are quark mass is trivially computable once all matrix ele-
ments of the nonlocal operate{H)=H-(H?) ' are ob-
tained. Using an optimal rational approximatidn], this

in terms of a complex bosonic pseudofermion figldAver-
ages of products of the pseudofermion field with respect t
the Gaussian weight defined in EQ) yield inverses oH?

in the usual way:

<<F(¢,¢*)>>Ezflf déd g Fefspf(gb,(p*)' nonlocal operator can be v'il/rltten
1
H)= + ——|H 7
e(H)=| ao+ 2, GV v

ZEJ d¢d¢*e_spf(d’r¢*),
wherea,, are real and thé,, are real positive. The number
* A\ (-2 of pole termaN needed for a given level of uniform accuracy
((@axdioy))=(H Dy ® over the spectrum off is related in a fairly straightforward
Note that the Gaussian dependence of the pseudofermion a¢2y to the condition number df, but typical studies of the
tion implies overlap operator have used<t0l<<100. We shall return to
this issue in Sec. IV, where we show that mode shifting can
((Spr)) =NgoNgpinV =12V (4)  be used to dramatically improve this condition number and
reduce the number of poles needed. The needed all-point
whereV is the lattice volume £ number of lattice sitgs  operator can clearly be obtained by an averagd pseudo-
This exact result is extremely useful in checking for errors infermion fields,¢>(m), m=1N: we begin from the positive
the simulation algorithm and in determining equilibration of definite action
an ensemble. Of course, the quark propagator of interest in N
lattice QCD simulations igup to a trivial ys facton H ™2, St overlag= > M (HZ2+b,,) p™ (8)
not H™2. This can easily be achieved by a single additional ' m=1
“dslash” operation applied to the conjugate pseudofermion

field: and construct the desired combination of pole terms from a
' _ corresponding combination of pseudofermion fields, aver-
bry=(d"H)py, aged relative to the weigli8):
(baxdoy)=(H Dapy=(Q ¥e)axpy- (6 6<H>ax,by=<<§ am¢é“x“’?&é?)> > TagHacny (9

Note that separate pseudofermion fields are needed for ea

Gfl'lﬁe computation of all-point overlap propagators will re-
quark propagator as averages of products(sdy four P P P bropag

b . dof ion fields will d iracti ith quire a simulation within a simulatiofanalogous to the situ-
osonicpseudotermion Tields will produce contractions With a4jn for single source overlap propagators, where inversions

the wrong sign relative to the corresponding fermionic 4, inin an outer conjugate gradient inversion are required
guark amplitudes. The simulation of averages of the k|nd[7])_

found in Egs.(3),(4),(5) can be readily accomplished by
heat-bath updates, due to the simple Gaussian dependence of
the action on the fields. For either Wilson or clover-improved
actions, the dependence of the pseudofermion weight on the

IIl. HADRONIC CORRELATORS FROM ALL-POINT
PSEUDOFERMION QUARK PROPAGATORS

pseudofermion field at a specific lattice sitéakes the form In general, the computation of multipoint hadronic corr-
: . elators involvingn quark propagators can be reduced to con-
e Spi= @~ PaxxabPox T 4K Re(davax) (6)  volutions of n pseudofermion field§10], rapidly computed

by fast Fourier transforniFFT). In fact, using FFT we can
wherev ,, is a complex spin-color vector assembled from theeasily construct a wide range of correlators involving both
pseudofermion field at nearest and next-to-nearest sites, #scal and smeared operators. In this section we shall illustrate
well as appropriate gauge-link variables connecting to thosehis by considering a number of examples of physical inter-
sites. The 1X 12 matrixA is a multiple of the identityspe-  est. We note here that it may be advisable to combine all-
cifically A=1+16«?) for Wilson actions, and a more com- point with conventional fixed sourcér sink) propagators
plicated Hermitian matrix assembled from clover gauge(obtained, say, from a conjugate gradient inversias accu-
fields in the Sheikholeslami-WohlertSW)-improved case. rate results become increasingly difficult as the number of
In either case, the heat-bath updatefgfis readily managed all-point propagators used increases, due to the large condi-
by completing the square in E¢G). For the clover actions, tion number ofH, as will become clear in subsequent sec-
the matricesA,,, can be prediagonalized just once at thetions. Furthermore, the projection methods described in Sec.
start of the simulation, and the resulting stored eigenvalue¥ become increasingly essential in reducing the statistical
and eigenvectors used to quickly generatepdates at each errors of the pseudofermion average as the number of inde-
site according to the weigh6). pendent all-point propagators increases.
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A. Local two-point correlators tors Q! in Eqg. (11). The full momentum-space correlator

The all-point propagators obtained by the pseudofermioﬁhus becomes an easily_ eva_lluated fast Fourier transform of
technique can be used to construct the complete momenturﬁ-rOdUCtS of pseudofermion fields:
space dependence of 2-point correlators of scalar or pseudo- 5 = —{FFT(>. FET(- v)(—
scalar densities, or vector or axial-vector currents, while ex- psps(d) « (x-¢)a) (¢-0(=a)). (13
ploiting the full physical content of each gauge

configuration. For example, we may be interested in the full At this point, it may be of use to the reader to indicate the
4-momentum transform computational requirements of these pseudofermion simula-

tions (see[8] for more details For a 6 lattice, a single
heat-bath update of the two pseudofermion fieltly re-

Apsps(CI)ExE e'd NA(x,y) quires 0.366 s on a 1.5 GHz Pentium-4 processor. The con-
i volutions and FFT operations required to obtain the desired
of the 2-point pseudoscalar correlatb¢x,y), given by four-momentum field\p5p4(q) in EQ. (13) require an addi-

. . tional 0.024 s and are performed after every 2 heat-bath up-
A(X,y)= (0| T{¥ (x) ys¥ (x)¥ (y)ys¥(y)}|0) (10) dates ofe,x. Typically, a sufficiently accurate pseudofer-
mion average forApgpg(q) was obtained from 20000

=t (Q Yy5)(Q Lys) (11 measurements, corresponding to 2.1 Pentium-4 h. For

{l 50y 75hyd) 10°% 20 lattices, a heat-bath update costs 3.30 s, a measure-

; ; ment of A(g?) requires 0.43 gagain, performed every 2
=- % xal @ H)ypxyp(X 'H)xa heat-bath stepsand final averages are taken from 7000 mea-
surements, corresponding to 6.8 Pentium-4 h. For compari-
_ H H son, the evaluation of a conventional conjugate-gradient

(L@ THXyy X H ) single-source propagator on a®¥20 lattice requires 1.2

~ ~ Pentium-4 h.
:_<<(¢'X)yy()('¢)xx>>y (12
where Eq.(10) represents a conventional operator vacuum B. Smeared meson propagators

expectation value, the single angular brackets in @4) In lattice QCD, hadron spectroscopy is usually studied
refer to a functional average over gauge fields, and thesing smeared hadron sources/sinks to optimize the ground-
double angular brackets in Eql2) imply averages over state signal in each hadronic channel. A typical multistate
gauge configurations as well as a pseudofermion average fpropagation amplitude from Euclidean timgto t; might
each gauge configuration to determine the all-point propagaherefore involve evaluation of the matrix

Map(ti t)= > £, 5O T{W(Z+X,t)) 50, W (Z,t;) W (W+Y,t;) 750 4 (W, ;)}| O) (14)

Xyzw

where f (x) are a set of spatial smearing wave functions,nishing loop-back*hairpin”) amplitude. The fourfold spa-
W(x,t) denotes the quark field at spatifittice) pointx and &l sum in Eq.(15) can fortunately be reduced to operations
time t, andO,, are the appropriate spin matrices for the de-"”eaf in the spatial volu.mla/S of the lattice via the magic qf
sired hadronic channels. The sums oww project the Fourier transforms. Define the smeared pseudofermion fields
physical states onto zero momentum. Of course, delta func-

tion choices forf , allow us to use local sources or sinks. In

terms of pseudofermion quark propagators »< Ei E el Xf (_5)¢’;t
X,t; VS = @ L?
P
Mag(tit)=—=2 f,00f4(y)
Xyzw 1
g - B iDYF (—)ye
X{{(Pw+y.,OpXut X245, Oadbzr) Xy~ VSEF; e (= P)Xp e

~N{(b71 54, 0abzi Xi+7.4,OpXie, )}

(15 wherefa(f)) is the Fourier transform smearing function and

¢p: represents the spatially Fourier transforn{add time-
where the third line of Eq(15) (N;= number of flavorsis  sliced pseudofermion field. Taking the isovector amplitude
present only for isoscalar amplitudes where there is a nonvapart of Eq.(15) for simplicity, one finds that this reduces to
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The isoscalar contribution, if present, is trivially obtained by

interchanging the pseudofermion fields in an obvious way.

C. Three point functions—the pion form factor
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FIG. 2. Equilibration of pseudofermion average ori 24 lat-
tices.

ume. Finally, as for the case of smeared meson propagators
discussed above, the disconnected contribution involving the

contraction of¥(y,t;) back toW¥(y,t;) can be calculated
with no extra effort, as the all-point propagator for just this
case has been computed. In this case the pseudofermion field

will appear in an average of the forma)y*tlyoyg,qbgtl)).

IV. STATISTICAL PROPERTIES OF PSEUDOFERMION
PROPAGATORS

In this section we shall describe the results of detailed

The computation of more complicated correlators, such astudies of the statistical proper_ties of pseudofer_mion propa-
the 3-point functions needed to extract form factors, isgators computed from the basic formuks. We first con-

greatly facilitated if we have all-point quark propagators atSider & case where only one all-point propagator is used in
our disposal. A typical example is shown in Fig. 1, where a@sseémbling the full hadronic amplitude- namely, the 3-point
smeared meson created at tirhe propagates to time;, correlatorJ(q) giving the pion form factor discussed in Sec.
where spacelike momentumis injected at spacetime point !l C. We shall see shortly that as a consequence of the typi-

()7 t,) by an electromagnetic current, followed by propaga—ca"y high condition number of the Hermitian Wilson-Dirac

tion of the final-state meson to timg, when it is removed
by an appropriate smeared-sink operator.

The quark diagram displayed in Fig. 1 represents the co
nected contribution to the following hadronic correlator:

3y, ()= €9 NS Z) fmy)
WXyz

X (W(Z+%,t5) ys¥ (X, 1) W(y,ty)

X yoW (,t) W (W,t0) ys¥ (0tg))  (17)

where in this case the same smearing funcfidh(optimized
for a pion, sayis applied at both initial and final times. The

operatorH, autocorrelations for low-momentum amplitudes
become progressively longer as more all-point propagators
are introduced into the calculatigm Sec. V, we shall show
how to fix this problem by mode shiftingHere, we begin
with an application where autocorrelations are relatively un-
problematic.

For the pion form-factor calculation, we generated
quenched configurations @&=5.9 on 13X 24 lattices, and
studied the resulting quark propagatorsxat 0.1590 (with
the Wilson action The results described here were obtained
by studying the simulation of the quantig(q) for a ran-
domly chosen gauge configuration from this ensemble: ex-
amination of other configurations reveals that the behavior
we describe is generic. From E@) the (infinite ensemble

complete momentum-dependence of this 3-point functiordverage pseudofermion action should therefore $e
can be obtained by using an all-point pseudofermion propa=497664. From Fig. 2 it is apparent that the equilibrium

gator for the quark propagator frony.t;) to (X,t,). The
qguark propagators into the point sink attg),and from the

smeared source point af/(to) can be computed by conven-

tional conjugate-gradient techniques. Again, by using Fourie

transforms appropriately, the calculationhgtltz(ﬁ) can be

value for this quantity is reached rather quickly, after about

20 heat-bath sweeps through the lattice. An average of the
value of 200 consecutive pseudofermion configurations after
this gives for exampl&,=497599 with a standard deviation

bf ~650. Typically, we have performed measurements using
pseudofermion fields after 100 initial sweeps.

reduced to operations at most linear in the spatial lattice vol- The decorrelation of hadronic amplitudes in the course of
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FIG. 3. Cumulative averages for pion form-factor amplitude

FIG. 5. Cumulative averages of pseudoscalar density correlator
J(qZ), q2:0’1. g p y

Apsps(0?), 0=g?<4.

a Monte Carlo simulation of the pseudofermion propagator The critical slowing down seen in low eigenmodes be-
(3) is extremely sensitive to the particular momentum com-comes a more serious problem in situations where two sepa-
ponent being calculated. In particular, low momentum comyate all-point propagators are required to construct the de-
ponents have a large overlap with the smallest eigenmodes @fred correlator, as in the local two-point correlators
H, which can have very small eigenvalues 10~% is not  discussed in Sec. Il A. In this case the very large condition
uncommon. These low modes decorrelate only slowly in humber ofH? implies anextremelyslow convergence for the
any local update of the actiof2). This property becomes zero-momentum component of the correlator. For example,
immediately apparent when we examine the momentum derom Eq.(11) we see that the local pseudoscalar density cor-
pendence of either the convergence of cumulative averaggg|ator can be written, in momentum space,

(Fig. 3) of J(g?) (takingt,—t;=t;—t,=3) or the autocor-

relation function of the same quantitfig. 4), as a function Apsps(q)zz e‘q'(X*V)Tr(H;ylH;xl) (18)

of number of pseudofermion heat-bath sweeps performed. Xy

The autocorrelation timédefined as the integral under the
autocorrelation curve of Fig.)4urns out to be about 13 for
the zero-momentum mode and 7 for =1 (lattice unit3

mode: higher momenténot shown hergyield autocorrela- Ap3p5(0)=Tr(m
tion times of order unity. In fact, the autocorrelation times for

this .correlator are fairly mild in comp_arison to the cases in-pq one not uncommonly encounters small eigenvalued, of
volving two all-point propagators discussed below: 8000 j5 annarent that a few low eigenmodes can contribute dis-
pseudofermion sweeps=(12 h on a 1.5 GHz Pentium)4  .ohortionately to this quantity. Moreover, these are exactly
allow J(q) to be extracted with error bars well below the e modes that decorrelate most slowly in the pseudofermion
intrinsic fluctuation of the correlator from one gauge con-gjmuylation. To illustrate this, we have studiég] hadronic
figuration to the nextsee Fig. 5 2-point correlators on an ensemble of unquenched configu-
rations generated with the truncated determinant algorithm,
1F [9] (TDA) on physically large coarse*@attices(lattice spac-
ing =0.4 fm; seeg[12] and[11]). Cumulative averages for
Apsps(q) for a range of values ofi?, for a typical gauge
configuration in this ensemble, are shown in Fig. 5. The zero
momentum mode is clearly not convergent even after 8000
pseudofermion sweeps, while even the smallest nonatro
tice) momentum component shows much more rapid conver-
gence. For the particular gauge configuration illustrated here,
the lowest eigenvalue afl turns out to be 0.0024, which
contributes 54% of the total zero-momentum value
Tr(1/H?). The problem for this lowest mode can be seen
e i (Fig. 6 in another guise in the autocorrelation curves for
' . ' . . Apsps(g?), 0=@g?<2 [the autocorrelation time is=1
0 50 P 100 1%0 200 pseudofermion sweep fog?>2 (lattice unit3 so these
seudofermion sweeps T X
curves are not shownFortunately, the critical slowing down
FIG. 4. Autocorrelation function of pion form-factor amplitude experienced in these pseudofermion simulations of all-point
J(9?), 9°=0,1. propagators appears to infect only the very lowest momen-

which becomes, for zero momentum,

. (19

e
o
T

o
>
T

Autocorrelation of J(q?)
1)
'S
T

e
N
T
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m components. We shall in the nex ion that th — * (142
tum components We shall see the next section that the Ssp— E BE(HZ) ax oy Doy - (22)
problem can be eliminated for these components by mode ax,by

shifting a relatively small number of low eigenmodesHbf

This preconditioning substantially reduces autocorrelatiofonce the relevant low eigenmodesare known, the heat-
times and allows us to extract reasonably accurate valudgath update of the pseudofermion figidcan be performed
even for the zero-momentum component of hadronic correlaby trivial modifications of the procedure outlined in Sec. II.
tors. The extraction and separate treatment of low eigenfhe added computational load is not largeNi# 10 modes
modes are also essential in calculating accurate all-poirare shifted, the time required for a pseudofermion update

overlap operators. increases by about 20%. For the rest of this section, we shall
use the double-bracket notati¢ft - - )) introduced in Sec. Il

V. MODE-SHIFTED SIMULATIONS OF ALL-POINT to indicate averages relative to the weight generated by the
PROPAGATORS shifted actionS; ;. Accordingly, theunshiftedquark propa-

gator is given by

The slow convergence of the lowest momentum modes N
discussed in the preceding section can be substantially accel- -1 _ ~ _ T
erated by shifting the low eigenmodes of the Hermitian Haxby = {( baxboy) Z‘l Aivi axVi.oy @3
Wilson-Dirac operatoH responsible for the critical slowing
down. In the case of the two-point correlatd®), the rel-  where
evant parameter is the condition numberktf, which (for
the ensemble of unquencheti lattices discussed in Sec. IV

can typically be reduced by two orders of magnitude by Aj=1- 2 (29)
shifting the lowest 10 eigenmodes bI?. More generally, i
define

and the tilde notation on the right-hand side of Ezp) still

B N + refers to the unshifted operatbl; as in Eq.(5). The pseudo-
Hs=H+ 241 SiViV; (200 scalar correlator in Eq$10)—(12) can therefore be written

wherev; are a complete orthonormal set of eigenmodeld of Apspdq)= 2:,) e ONHE H

Hv;=\,v;, and the lowesN modes(in absolute valugare by

e =2 O { (B x)y(x )
S=NT-\;. (21) Xy g i

implici (s) = (s) - ~ ~
For simplicity we shall taken;” =sgn(;”’) henceforth, al _Z AV x)y

though any value with magnitude of order unity will do. The

extraction of low eigenmodes oH is computationally

straightforward using implicitly restarted Arnoldi techniques + (V- ) (B-Vi)y)

[13]: each mode requires a few minutes on a Pentium-4 pro- b 1y

cessor for the § lattices discussed here. Corresponding to

the shifted operatoHg defined in Eq.(20) is a shifted +2 AA (Vi) (V- V) b (25)
pseudofermion action 7 TR AT
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correlator. scalar correlator.

tively, and the cumulative averages reflect a correspondingly

The term involving a double su; ; over shifted modes in higher stability. The numerical evidence from these simula-

Eq. (25 does not involve pseudofermion fields and is there-. .
fore calculated just once. We see that the usual re¢d@jt tions clearly suggests that mode shifting whi-10 modes,

has to be supplemented by an average of overlaps of the t ol the ensemble Of%TDA lattices considered here, is per-
pseudofermion fields with the shifted eigenmodes. Again,eCtIy adequate for obtaining accurate results at all momenta.

The dramatic effect of shifting even a few low eigen- u ! . ylarg ICES.
evaluation of an all-point propagator forsay 10°x 20 lat-

modes on the convergence of correlators built from pseudo:
tice to adequate accuracy may take several days on a Pen-

fermion averages is illustrated in Figs. 7—10. As expectedf. di few h t th tset t lculate th
the worst behavior is found in the zero momentum mode UM SO SPENCING a few hours at the outset to calculate the

where the unshifted averagésg. 7) are still 60% below the lowest 5 or 10 modes may well be advantageous. An ex-

correct answer after 50000 pseudofermion sweeps, Wh“gmple of the dramatic effectiveness of even a few shifted

only 10000 sweeps afeady gve a reasonably good res 2065 1 1o auocoriton i #4B0 compuaton
after the 10 lowest modes are shifted. The autocorrelatioﬁ) P

curves for the zero-momentum component tell the sam p Fig. 11.

; : c The calculation of an all-point overlap operator using Eq.
story (Fig. 8): the autocorrelation time is about 140 sweeps . s
for the unshifted simulation, dropping to 13) sweeps after (7) can be greatly facilitated by mode shifting. The numiker

shifting 10(20) modes. The overall situation is much betterOf poles need_ed n the optimal rational approximation to
for the lowest nonzero momentum mod@=1, as shown in achieve a desired uniform accuracy fefH) over the full

Figs. 9,10. Here the autocorrelation times are roughly 8,3, pectrum ofH is directly related to the condition number

. ) . . ratio of highest to lowest eigenvalyesf H. On the other
sweeps for simulations with 0,10,20 shifted modes respechand’ provided the mode shifting preserves the algebraic sign

of the shifted eigenvalugsgn(x{*)=sgn(\;)], one clearly

35

1F

1)

unshifted (N=0)

----- N=10
................. N=20

0)

08 | unshifted (N=0)

--------- N=10

30 |-

25 | 04 |

Cumulative average of Apg.pg(g?

Autocorrelation of Apg.ps(¢?

20 ) ) ! ! ) - VP T
0 14104 21104 3+10% ax10% 5+10% 0 b . . LT T

Pseudofermion sweeps 0 50 100 150 200
Pseudofermion sweeps

FIG. 9. Cumulative average for unit-momentum pseudoscalar
correlator. FIG. 11. Autocorrelation curve for zero-momentum correlator

on 13x 20 lattice.
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