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The quarks in quenched QCD have an anomalous self-interaction in the flavor singlet Goldstone boson
channel. This coupling is extracted from a graph with disconnected quark lines, and is used to infer the mass
of the eta-prime meson in full QCD. When the fermions are described by an overlap action, the Witten-
Veneziano relation is an exact relation between the topological susceptilaiitdefined through fermionic
zero modepgand the inferred value of the eta-prime mass. Using an overlap action we compute the hairpin
amplitude and determine the fermion zero-mode susceptibility, the inferred eta-prime mass and other param-
eters characterizing the low energy chiral properties of quenched QCD.
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. INTRODUCTION of chiral symmetry breakingm?/(m,+my)=3 GeV. The

physical eta-prime mass is less than one-third of that num-
The physics of the flavor singlet pseudoscalar eta-primger]

meson has long been a source of puzzles. The relation of these statements to each other is an ongo-
(i) The eta-prime is not a Goldstone boson because of thg source of controversy. Lattice simulations can in prin-
presence of the axial anomaly. ciple contribute to the discussion and, indeed, there have

(i) The eta-prime propagator in full QCD involves a setheen many studies of the eta-prime on the lattice, dating back
of connected and disconnected quark-line diagrams. Sump the earliest days of simulatiofa partial list includes
ming a plausible subset of these diagraf®se Fig. 1 pro-  [2-8]). Most of these studies have been in the quenched
duces a shift in the eta-prime mass away from the masses gpproximation, where the mass of the eta-prime is inferred
the true Goldstone bosons. But what gauge field dynamicfom the size of the hairpin graph compared to the connected
“fills in the white space” between the quark loops? graph and compared to the topological susceptibility. When

(ii) In the limit of a large number of colom., the eta-  the contribution of individual eigenmodes of the Dirac op-
prime mass is expected to scale abllas opposed to the erator to the hairpin graph is computed, it is often seen that
masses of non-Goldstone mesons, which remain order 1. the low-lying eigenmodes make a substantial contribution to
mass formula relating the eta-prime mass to the topologicahe hairpin graph.

susceptibility has been derived by Witten and Venezidrjo This paper is another calculation of the hairpin diagram in
guenched QCD. Why revisit this question yet again? The
, TP reason is that the _calculations pre_zsented here are done with a
m’, +m?—2mg=ug= : (1)  fermion action which respects chiral symmetry on the lattice
m via the Ginsparg-Wilson relatiof®]: an overlag 10] action.

All previous studies of the eta-prime were done with lattice
where x1 is the topological susceptibility of the pure gauge actions which have chiral symmetry breaking artifacts: for
theory,N; is the number of flavors, and the pion decay con-Wilson-type fermions, for example, real eigenmodes of the
stant. defined througl(10|$y ye|my=m_f_, has the ex- Dirac operator are not zero modes nor are they eigenstates of
perirrllental value of 132 Moe\;). The rigﬁt-ﬁénd side is for- 5 Since the properties of the eta-prime are known to be

mally O(LN,  because,— .. The suppresson of [eTInEG VIO e snomay, ane would expet it ol
fermion loops at largél, is similar to the absence of fermion y y mig

loops in the quenched approximation, and lattice calculations

of the topological susceptibility in quenched QGDsing Q + Q Q +

pure gauge observablegive numbers with good numerical

agreement with Eq(1), when evaluated with the physical Q O Q + .

masses of the particles. It seems strange that this Mgge-

formula should be quantitatively correct, since the eta-prime fFig. 1. A plausible set of quark line graphs, which sum into a
mass is not particularly small compared to the masses Qjeometric series to shift the eta-prime mass away from the mass of
other non-Goldstone boson mesofis.is worth remarking  the flavor nonsinglet pseudoscalar mesons. In the quenched ap-

that the flavor-nonsinglet pseudoscalar sector is also thgroximation, only the first two terms in the series survive as the
home of other large-mass quantities: one example is the scaldirect” and “hairpin” graphs.
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revealing for the study of the eta-prime.
Indeed that is the case: when the fermions are described Cla)=fpz=fp (6)

by an overlap action, the Witten-VeneziafWwV) relation is q g

an exact relation between the expectation value of the hairpiile the hairpin amplitude involving a single flavor is

diagram—uwhich is given by the susceptibility of fermion

zero modes—and the anomalous coupling between two fla- 1 M(Z) 1

vor singlet Goldstone bosons. Interpreting that coupling as H(a)=fp

the eta-prime mass and equating the zero mode susceptibility q

to the topological susceptibility yields E(). The quantity,ug is the squared mass of the “quenched ap-

tio;'.o see this, first recall some facts about the overlap C5roximation eta-prime” in the chiral limitf The factor 1K

The eigenmodes of any massless overlap ope(®) converts the single-flavor graph into the expectation of the
: . R eta-prime mass ifl;-flavor QCD, since each closed loop has
are located on a C|r_cle in the complex plane .Of rad_wswth a multiplicity of N, and the wave functiofvertey is scaled
a center at the pointx,0). The corresponding eigenfunc- by a factor of 14/N;.] In full QCD the correlator which gives
tions are either chiralfor the eigenmodes with real eigen- y K g

values located ak =0 or A =2X,) or nonchiral and paired; the mass of the isosinglet meson is the differe/@)

the two eigenvalues of the nonchiral modes are complex conlfn 'if Hégl;l(qte)t,rs:ns;i(etg I?/v?]lijc[:)hpcs)j?r?stz ret%resent the first term
jugates. The massive overlap Dirac operator is convention- 9 ' P

) N_fq2+m2fp' (7)

ally defined to be C(a) = N¢Hpun(a)=C(a) ~NyH(@) + - - -
m 1
D(mq)=<1—2—X‘:) D(0)+m, (2 =qusz2+_Mng, 8

and itis also conventional to define the propagator so that thenifting the squared mass of the meson from to m?2

chiral modes ah =2x, are projected out: +M(2)_ In  these expressions, fp=<0|Z75lﬂ| )

1 =m2Wf7T/(2mq) from the PCAC (partial conservation of
A-1 — -1 _ ol ; ; il
D™ (mg) 1—mq/(2x0)<D (mg) ) (3)  axial-vector currentrelation. Computing the susceptibility

directly from Eq.(7) gives

For a summary of useful formulas, see REf1] (for the 1

special casey=1/2). =D H(XY)=
Now consider the hairpin diagram involving a single fla- Vi

vor of quarks, where the source and sitkack dots in Fig.

1) are the local pseudoscalar dens@sw. The hairpin dia-
gram then is just

f2 2 2f2
_P@: Mol 7 (9)
m? N 4meq7'
Equating Eqgs(5) and (9), we obtain the Witten-Veneziano
relation u5=4N;x/f2, wherey is the zero mode suscepti-
bility.

_ A 1 A 1 This simple derivation of the Witten-Veneziano relation
HOGY) =(TrysD (x,x) = Tr ysD(y.y) ™). “) from the overlap action uses only the quenched approxima-

Because only zero modes are chiral, the volume integral dfon, Without any reference to the largg limit. The crucial

the hairpin graph is proportional to the zero mode Susceptil_ngredient is the fact that the hairpin graph, in the quenched

bility [11]; approximation, takes the form of E€y). Conventional deri-
vations of the Witten-Veneziano relation in unquenched
1 Q%) x QCD proceed rather differently: One begins by considering a
v > H(x,y)= Vg~ m2’ (50 correlator of the local topological charge density,
X,y mq mq
2
whereQ is just the number of zero modes, the difference of U(k)zf d*x exp(ikx)< WFTZ(X))
positive and negative chirality zero mode®=n,—n_ T Ne
Regardless of any dynamical model used to describe the g2 _
hairpin graph, we expect to see a large contribution from X mFF(0)>> (10
zero modes tdl(X,y) itself, since only they contribute to the ¢
susceptibility. _ _ which is assumed to be dominated by an eta-prime resonance
In quenched QCD, as described by quenched chiral pet;ys other massive states:
turbation theonyf12], there is an anomalous coupling of two
Goldstone bosons in the flavor singlet channel, parametrized c?,
by a coupling with the dimensions of a squared mass. The Uk)=— U =t (11
hairpin graph is analyzed as if each of its quark loops is a k tm,

propagator for an ordinary pseudoscalar Goldstone meson. ) 5 ~ .
That is, the momentum space amplitude for the connecteith C, =(0[g%/(167°Nc)FF|7"). Using the anomaly
graph is equation N g?/(16m°N;)FF]=4,J¢ allows one to re-
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place the gluonic matrix element by the matrix element ofmodes of the Hermitian Dirac operatbi{0)= ysD(0), us-

the divergence of the quark current. Computing the suscepng an adaptation of a conjugate gradient algorithm of Bunk
tibility by taking k to zero and setting the eta-prime and pionet al. and Kalkreuter and Simni&1]. These eigenmodes are
decay constants equal, $6|d,J|7')= \/N—fmfy,fm gives  used to precondition the calculation of the quark propagator
the Witten-Veneziano relation. The difference is that here thénd to construct quark propagators truncated to some number
eta-prime really is a propagating particle, whereas in théf low-lying eigenmodes.

quenched approximation the mass is just the value of the The data set is generated in the quenched approximation
two-boson coupling. Note also that in the derivation we havelsing the Wilson gauge action at a coupligg=5.9. The

just given, the topological susceptibility is replaced by thenominal lattice spacing i®#=0.13 fm from the measured
squared fluctuation in the number of fermionic zero modesho masga value we prefer; see belpwr inferred to be 0.11
The k—0 limit of U(k) is a problematic one due to the fm from the Sommer parameter using the interpolation for-
contribution of contact termgL3]. mula of Ref.[22]. We worked with lattices with 12x 24

A third kind of derivation of the Witten-Veneziano rela- sites. Quark masses in lattice units are,=0.02, 0.04, and
tion has recently been given by Giusti al. [14]. Building  0.06, corresponding to pseudoscalar-to-vector meson mass
on derivations of the Ward identity for the flavor singlet axial ratios of mps/my=0.5, 0.61 and 0.67. The fermions have
vector current by Hasenfratz, Laliena and Niederm4g&f  periodic boundary conditions in the spatial directions and
and Lischer[16], they show that the Witten-Veneziano rela- anti-periodic temporal boundary conditions. We calculated
tion for overlap fermions involves the zero mode susceptibilthe 20 smallest eigenvalue modes t8f(0) in the chiral
ity, not the topological susceptibility. However, they assumesector of the minimum eigenvalue, and reconstructed the de-
that the axial current correlator is saturated by a propagatingenerate opposite chirality eigenstate-5{(0) for each non-
eta-prime resonance, keeping Ef1). That does not occur zero eigenvalue mode. These modes are then recoupled into
in quenched approximation, where the flavor singlet channetigenmodes oD (0). Their eigenvalues have imaginary parts
propagator is given by Ed7). ranging up to 0.&—0.354A, or about 500 Me\[23].

In full QCD the hairpin correlator is a single particle  All correlators we measured will include a smearing func-
propagator, but the correlator which gives the eta-prime masiéon which averages the source of the propagator over a lo-
is given byC(q) — N¢H¢,;(q). HereH;,;;(q) still couplesto  calized spatial volume, in order that the meson source re-
zero modes, but in order for the difference to couple only tosemble an actual hadron wave function. The hairpin
the eta prime, the hairpin must have a piece which cancelgorrelator that we measure is
the connezcted correlat@(q), the 2susceptibilityzof which is 1
order 1m, . Then Hg,,(0)=1/m:+---=x/m; and one _*
finds[11,17 the expected resuJtL8] that)(zms. The eta- Hr(O=7 Zl 2 ; TrLrOGtHt) Trin(y.ty)
prime mass is only connected to the zero-mode susceptibility (12
through terms which are higher order in the quark mass.

We will compute the zero mode susceptibility both di- where the single fermion loop is
rectly and via a calculation of the hairpin graph, and compare
the results. In practice, in common with all lattice calcula- —
tions of matrix elements, we will extragij from correlators Lr(x0) :X§<2 DX =X) PG X) (X1, DT h(Xz.1)).
using extended sources and sinks. We infer that the mass (13
relation persists, regardless of the choice of source and sink,
by assuming that the hairpin graph is a two-point vertex ofl" is a product of Dirac matriceg;s andy,ys are studied for
pseudoscalar mesons, as required by quenched chiral pertdite eta prime.
bation theory. The connected correlator uses the safseparable

We will see that Eq(5) produces a measurement @S weighting function
andy with a somewhat larger statistical uncertainty than one
would get from a direct measuremgobunting zero modes —
of (Q2). This happens despite the fact that in the fit to the Cr(t)= ; sz P X1 =X)P (X = X) (X1, DT (X3, 1)
hairpin, one is using information from many points of the 1
lattice, while counting zero modes gives just one number per —
lattice. The signal from the many points just shows very Xyzy D(y)DP(y2) h(y1,00 T i(y2,0) ). (14
strong correlations from point to point, and the actual hairpin 1

graph is computed at nonzero quark mass and must be eyys take the weighting function to be a Gaussidn(x)
trapolated to the chiral limit. =exp(—|x|2/r§), of width r,=3a.

In coordinate space we fit
Il. LATTICE CALCULATION

The overlap action used in these studigg] is built from
an action with nearest- and next-nearest-neighbor couplings,
and APE-blocked linkd20]. Eigenmodes of the massless
overlap Dirac operatoD(0) are constructed from eigen- and, since

C(t)=%{exp(—mt)Jrexp[—m(T—t)]} (15

114501-3



THOMAS DeGRAND AND URS M. HELLER

2
Mo d
H(Q):—N—fa—mzC(Q), (16)
the coordinate space hairpin is
Kb
H(t)= e N_f{(1+ mt)exp(—mt)
+[1+m(T—t)]exd —m(T—t)]}. a7

We break up the computation of the single loop into two
terms. The first term includes the contribution of the low

eigenmodes oD, and is done exactlyfor those modes
Chiral eigenmodes ob(0)'D(0) are labeled agh;+(x,t),

the plus or minus sign corresponding to the chirality. They
have associated eigenvalues. These modes are recoupled

into eigenmodes ob ~*(m). The only mode mixing occurs

between degenerate eigenmodeD¢D)'D(0). Thesingle
fermion loop becomes

N
Li(x,t) =2 [Tra; ¥, (x, )P, (x,1)
J

+Tra; ¥ (x,OI'¥;_(x,n],  (18)

where ‘Ifji(x,t)=Exl<b(x—xl)¢ji(xl,t) is the convolu-
tion of the jth eigenmode with the smearing functidb.
Here, definingu=m/(2x), €;=\;/(2Xo), the a;- , the ei-
genvalues oD ~1(m), are

1 ,u(l—ejz)iiejxll—ejz

Z_XO Ej2+,LL2(1—6J-2)

(19

ajt:
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FIG. 2. Contribution to the pseudoscalar hairpin for e,
=0.04 data set from various subsets of eigenmodes: In all figures
the full propagator is shown by octagons. In pat®l| the zero
mode contribution is given by diamonds. (b) the contribution of
all nonzero modes is shown by crossegere the contribution is
positive) and burstgwhere it is negative In (c) the contribution of
the lowest 20 modes d'D is shown by squares.

tors is negligible because the eigenmodes can be used to
precondition the conjugate gradient calculation of propaga-
tors. At 24 inversions per lattice, a stochastic evaluation of
the higher mode contribution is about twice as costly as an
ordinary propagator calculation.

We did not experiment with more sophisticated noise re-

duction method$24].
For zero modes only one term in the brackets in B@®)

exists.

The second part of the loop is computed using a stochastic
estimator. We cast a vector of Gaussian random numbers Itis an interesting exercise to ask how the contributions of
[r(x,t)) on every site of the lattice, projected the modes usedlifferent sets of eigenmodes contribute to the pseudoscalar
in Ly from it (so [r;)=[r)—=;[j)(j[r)), convoluted|r;)  hairpin correlator. We find that the low modes completely
with the smearing function, and used this vector as thesaturate the hairpin graph at all mass values studied. Because
source for a propagator. A final convolution of the propagatoithe plots are rather cluttered, we show results for only one
with the source vector produced a noisy estimator for thenass valueam,=0.04, in Fig. 2: The full correlator, includ-
difference L(x,t) —L,(x,t). We averaged over 12 random ing the low modes treated exactly and the high modes com-
sources per lattice. Each source was broken into two oppgsuted using the noisy estimator, is shown by octagons. Com-
site chirality pieces, so a total of 24 inversions, restricted tgpletely overlapping these points is the correlator built of the
a single chirality sector each, were done per configuration. lowest 20 eigenmodes @ 'D.

In retrospect, our simple stochastic estimator did not pro- The zero mode piece is shown by diamonds. At large
duce a useful signal. We first generated a 40-lattice data sejuark mass there is a rather strong interference between the
on which we found the complete hairpin correlator, fromzero mode contribution and the nonzero modes, which pulls
both low modes and the stochastic estimator of high modeghe full propagator down. Since the low modes themselves
For the pseudoscalar hairpin, all of the signal is contained irsaturate the correlator, this interference must be dominated
the low eigenmodes, which we captured exactly. Even so, wby them.

did not have a good enough signal from 40 lattices to analyze Finally, the contribution of the nonzero modes by them-
the hairpin graph, so we generated an additional 40 latticeselves is positive at short distance but becomes negative
On these lattices we did an ordinary spectroscopy calculatioabove a separation d&=7 lattice spacings. We have dis-
for the connected diagram and computed the hairpin from thplayed this by changing the plotting symbol for this contri-
low modes. For our version of the overlap, the cost of findingbution from crosses, when the signal is positive, to bursts,
the eigenmodes in addition to constructing ordinary propagawhere it becomes negative.

IIl. RESULTS
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FIG. 3. Saturation of the pseudoscalar hairpin graplamay,
=0.04 by 5, 10, 15, and 20 eigenmodeshHf0)? (with symbols
octagons, diamonds, squares, and crgsdgsrsts show the full
correlator.

FIG. 4. Connected correlatgcrosses and hairpin(octagons,
for the lowest 20 eigenmode hairpin, at bare quark nmasg
=0.04, showing the result of a correlated fit to the two correlators
over the rangeé=6-18(folded to 6-12.

It is easy to understand why nonzero modes contribute
negatively at large separation. ThHéh pair of nonchiral hairpin. All of the fits to the low-mode hairpin have good
modes contribute a term to the hairpin of confidence levels fot,,;,;=5-6. Pion masses are also a
byproduct of the fit. Their values are stable tgf,,=3-4
and equal within uncertainties to the results of fits to pion
propagators in isolation.

The “full” signal is much noisier than the low mode trun-
cation (even more than one would expect, knowing that the
low mode data set is twice as bignd since both are equal
within uncertainties, we quote the latter. Our chosen best fits,
typically over a range 6—12, are shown in Table | and plotted
in Fig. 6. We have also extrapolated our results,défo to
zero quark mass, assuming thé/Nf is a linear function of
the quark mass, using a single elimination jackknife.

X i(%1,1) Tys i (X2,1)
is a local smearing of the chiral density of tjta mode. The Taking the lattice spacing from the rho mass, ie.,
=0.13 fm, and setting N;=3 we predict uq

nonzero modes have zero overall chirality and so at large 3
distance the correlation function of the chiral density must_ / 70(54) MeVx(a 7/1520 MeV). Had we usediihe
become negative. This can be seen even on a single configg®MMer parameter to set the scale, ae.0.11 fm ora
ration. This behavior has been observed in the eigenmode 1770 MeV, the mass would have come out about 16%
studies of Ref[23]. It may be more than a coincidence that

these authors saw the chirality autocorrelgfor the same

data set as we studied hgreecoming negative around a

distance of 6 or 7 lattice spacings.

Could we have used fewer modes? Figure 3 shows the
contributions to the hairpin correlator of the lowest 5, 10, 15, =
and 20 modes oH(0)?, for the am,=0.04 data set. The o

I
©

N 1
A =2 2 2 2 aja(Q(xt+1) Q) (x' 1)
t" g, xx
i 20
where[see Eq.(18)]

Q=2 D= X)P(X—x)

Xl,Xz

(21)

=4
—_
w

pictures for the other masses are virtually identical. We could
have kept only five modes d4(0)? and almost completely
saturated the hairpin correlator, in our particular simulation
volume.

We have performed correlated fits to the connected and
hairpin pseudoscalar graphs to E¢$5) and (17) and ex- 011 S N ——
tracted lattice predictions fqu3/N;. An example of a fit, to 0 5 10
the am,=0.04 low-eigenmode hairpin, is shown in Fig. 4. t
The error bars on the points are the naive ones and do not g, 5. Extracted pseudoscalar hairpin couplisggN; from fits
show the considerable correlation between the data from difrom distancet to 12 atam,=0.04. Octagons show the results of
ferent time slices. A set of fits, for a time slice range offits to the hairpin correlator when the quark propagator is truncated
tmin=3 out tot, =12, is shown in Fig. 5. We have sepa- to the lowest 20 eigenmode80 lattice data setof D'D, and
rated fits to using hairpin correlators with truncated quarkcrosses show fits using the full propagat6t lattice data sgtin
propagators and fits using the full quark propagator in thehe hairpins.

T T T T | T T T T | T T T T
o B
o>
He

HH
<=k
e
1 1 1 1 | 1 1 1 1 | 1 1 1 1

min
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TABLE I. Table of best-fit lattice parametee®u2/N¢, af,,, 107 g
a*y, andé as a function of quark mass and after jackknife extrapo- ¥ %]
lations to zero mass. fx% §§x:
1072 ¢z b=
E ‘I' -I' =
Mo a?ug/Ny af, a'y o F f?z: %@%?g%@% ;E{ b
006 00645 01022 1.67(21)x104  0.0778) S ol Fd 1HE
0.04 0.0716)  0.1044) 1.95(34)x10°* 0.08317) = E I I 3
0.02 0.0777) 0.1067) 2.24(40)x10°*  0.08820) L ]
1074 —
0 0.08612) 0.10814) 2.52(58)x10 % 0.09328) E 3
10—5 i [T B | Lo | I 1
higher. This difference is, of course, a reflection of the inher- 0 10 R0
ent scale uncertainty in quenched QCD. Evaluating the left- t
hand side of Eq(1) with observed particle masses gives kG, 7. Contribution to themy=0.04 y,ys hairpin from low
#o=860 MeV. modes ofD'D: 5 modes(small diamond with cross when positive,

If the “standard picture” of the hairpin graph makes pjus sign when negatiye10 modesdiamond and fancy crogsl5s
sense, we should be able to measuéeusing any interpo- modes(square and bursand 20 modegoctagon and crogs
lating field at the source and sink points. In particular, the
axial vector (yoys—yos) hairpin correlator is an interesting ing f_ from mZf,=2my(0|P|x). Because the overlap ac-
operator to study. No zero modes contribute to its hairpinjon is chiral, the renormalization factors for the quark mass
correlator, and yet the pseudoscalar and axial vector hairpingnd the pseudoscalar density cancel. The pseudoscalar den-

should both give the same result f,oﬁ—the only difference sity is taken to be the naive operaffx) =%sw. Note that

in the two channels is that the coupling of the external cur- “ » S g
rent source to the pseudoscalar channel is different. because we use the “subtracted” propagalor®, Eq. (3),

We attempted to measup% from this correlator, without our measurement is equivalent to the use of the “omfer

success. We raise the point as a potentially interesting exefnproved current’ '/’_[1+ D/(2X0)17’_5[1f D/(2X0) 1. The .
cise if future high-statistics data become available. results of this exercise are shown in Fig. 8 and also given in
Table I. Using again the lattice spacing from the rho mass we

At short distances this correlator is negative. At larger " J a9l ; ) o
distances it swings positive, before disappearing into noise 4t"d in the chiral limit, obtained by linear extrapolation in the

large separatior(See Fig. 7 for them,=0.04 data setThe quark massf,=163(21) MeV. Had we used the Sommer
node in the correlator makes it impossible to fit the data tg°@rameter to set the scale we would have obtaified
the simple form of the hairpin we have used above. Notice= 193(25) MeV. The latter number is obviously much
from Fig. 7 that the hairpin correlator saturates more slowlyl2rger than the experimental value of 132 MeV. We prefer the
with number of eigenmodes than the pseudoscalar correlatdittic® spacing from the rho mass for phenomenology with
does: this, plus the nodes in the signal, makes the analys{3€ overlap fermions. A comparison of the point-to-point cor-
impossible to do. relator in the_ pseudoscala_r channel W|th instanton liquid
Now we return to the pseudoscalar correlator. To makdn@del predictions also requires a large lattice sga@'jﬁ]of
contact with other chiral observables we need a lattice detefd-13 fm. This correlator is proportional (®@|P|)*.
mination of f .. We do this by measuring the pseudoscalar 1he two parameters which are related.tp are the zero
densityP (as one vertex of a two-point functipand extract- mode susceptibility y=5f%/(4N;) and the parameter

0.15 T T T T | T T T T 0.15 T T T T | T T T
0.10 = — 0.10 |— % % X ]
S ] e | '
« 1 o B T
S ? ) R 1
Nﬂ | @ i [ i
0.05 |— — 0.05 — —
ooo b 1 ooob——v v )
0.00 0.05 0.10 0.00 0.05 0.10
am, almly
FIG. 6. Pseudoscalar hairpin couplipé/Nf in lattice units as a FIG. 8. Pseudoscalar decay consténtlattice unitg from this
function of quark mass. The jackknife-extrapolated zero-quark-overlap action. Crosses are our data and a jackknife linear extrapo-
mass value is shown as the burst. lation tomy=0 is shown by the square.
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0.15 T T T T | T T T

2
a*y= <(3/ ) =1.9827)x 10 “. (22)
This result agrees with the calculation gffrom ,u(z). The
quality of our signal is similar to what is seen in calculations
of xy using pure gauge observabl@attice analogue of the
topological charge densitywith similar statistics. Convert-
ing this lattice number to a continuum result using the Som-
mer scale, as is conventional for the topological susceptibil-
ity, and taking the fourth root yieldg**=213(7) MeV
NS R from the direct counting of zero modes ang'*
" 0.00 0.05 0.10 =226(12) MeV from the hairpin fit. Pure gauge studies
am, produce similar numbers to what we 4&6).
Obviously, with the scale set by the rho mass, the result
FIG. 9. The quenched chiral perturbation theory paraméter \would be about 16% lower, 186) and 19111) MeV.
=g/ (8m*N;f2) evaluated foN;=3. Crosses are our data and the  OQur measurement af=0.093 is a bit higher than recent
extrapolated value an,=0 is shown by the octagon. determinations made using nonchiral actiof,27,29,
which measures=0.065[but somewhat smaller than what
which characterizes the strength of the hairpin contributiorpne would infer from the WV relation with physical masses,
in quenched chiral perturbation theory{12], &  Ed.(1)]. The first calculation is done using clover fermions
:Mé/(SWZfoi)- We compute each of these parameters forat B=5.7. Clov_er.fermlong hz_ive real elgl;enmodes which
each value of quark mass using a combination of singleMake a nonvanishing contribution to D ~*. The overlap
elimination jackknife with correlated fits to pairs of two- actlon counts each zero mode with un'lt weight. It is our
point functions, and extrapolate the results linearly in theSXPerence that as the value of the real eigenvalue of a clover

quark mass tam,=0. The resulting values are shown in mode moves away from zero, the associated chirality also
Table | and in Fig]s 9 and 10 decreases, and so it is not surprising that our result is larger.

We can also perform a direct measurement of the topoThe other two calculations determiderom the small quark
logical susceptibility by counting zero modes: the topologi-"asS behavior of the pion mass, i.e. from observing
cal chargeQ on each configuration is just defined as theduenched ch_lral Ioganthms, and can easily have quite differ-
difference in number of opposite chirality zero modes in theSNt Systematic uncertainties than our measurement.
configuration. For our 80 lattices, we fif@)=0.31+0.32. . We do not see any .effects Of. quenche'd Ch'Fa' logarithms
We can(formally) eliminate the(Q)? term from the average in any observables. A fit to the pion mass in various channels
by combining our data with a parity-reversed copy of eVery(pseudoscalar, axial vector, dn‘fgrence of psgudoscalar and
lattice. (This is equivalent to the usual replacement of ascalaif to thezform sugge'stgd in Ref27], mﬁ=Cmq[1_
propagator by its real part in conventional spectroscopy o 9 109(Cmy/A%)], choosess's in the range 0.0-0.2, but with

matrix element calculationsThe zero modes give us the uncertainties from any fit also of the same order. The main
result(Q2)=8.24+1.11 and effect of quenching we have seen is the presence of zero

modes in the pseudoscalar and scalar channels; in contrast to
the hairpin case, these are finite volume artifacts.

0.05

——
>
P I

AT T ] We do not have any useful signals from other channels.
C ] The scalar channel is dominated by zero and low eigen-
- . modes, but the major structure in the channel is just the
3 ] constant chiral condensate. In the vector channel the low-
X i eigenmode correlator even has the wrong sign—it is negative
;‘ 2 E B over most of its rangécompare Fig. 11 The absence of a
<« F E % i signal could be consistent with a naive expectation from
~ [ ] Zweig’s rule, namely that the size of the hairpin in the vector
- ] channel is small. The low eigenmodes which we include ex-
L i actly do not seem to make much of a contribution to discon-
r ] nected diagrams in the vector channel, either. This feature is
ol v T expected in instanton liquid moddI29].
0.00 0.05 0.10 We would feel much more comfortable making these
am, statements if we had a real sigridD].
FIG. 10. The inferred zero mode susceptibility in lattice units IV. CONCLUSIONS
from the hairpin graphy=u3f2/(4N;) evaluated forN;=3.
Crosses are our data and the extrapolated valug,at0 is shown For overlap actions and in the quenched approximation,
by the octagon. The susceptibility measured directly from zerathe Witten-Veneziano formula is an exact relation between
modes is shown with the square. the eta-prime mass inferred from the hairpin graph and the
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107! particular definition of the topological susceptibility to the
zero mode susceptibility.

The numbers we have found for the inferred eta-prime
mass and the zero mode susceptibility are not all that differ-
ent from previous results using nonchiral fermion actions.
We believe that the theoretical underpinning of our calcula-
tion done with a chiral action is more reliable than any cal-
culation done with a nonchiral action. We are well aware that
our calculation is performed at only one value of the lattice
spacing and that simulations at several lattice spacings are
necessary for an honest extrapolation to a continuum value.

The strong coupling of low eigenmodes to the hairpin
0 10 20 amplitude allowed us to perform the numerical simulation.

t This connection between the zero mode susceptibility and

FIG. 11. Contribution to them,=0.04y; hairpin from the low- the coupling strength is not automatic for a nonchiral fer-
est 20 modegsquare when positive, burst when negatige com- ~ Mion action. Nevertheless, we expect that small eigenmodes

pared to the full correlatofoctagon when positive, cross when Of the Dirac operator will make a large contribution to the
negative. pseudoscalar hairpin correlator. We suggest that future stud-

ies of the hairpin graph, even done using nonchiral actions,

- . nr he m rement noi first finding all the zer
fermionic zero-mode susceptibility. However, the physics ofca educe the measurement noise by first finding all the zero

the Witte_n—Yeneziano relgtion in"the overlap_ is r{:\ther diﬁer'ggl"n?i%:tzii:loczlr?%g?gglizgé ;hngﬂgi]c_ operator so that their
ent than in “standard derivations”: the eta-prime is not a real

particle; the mass we measure is the size of a quenched-
artifact coupling between two flavor-singlet Goldstone
bosons. For quenched QCD, the gauge configurations which This work was supported by the U.S. Department of En-
“fill in the white space” in the hairpin diagram are the ones ergy with grants DE-FG02-97ER41022.M.H.) and DE-
which produce zero modes. We have not addressed the qudss03-95ER40894T.D.). The computations were carried out
tion of what choice of contact term is needed to equate &n Linux clusters at CU and FSU.
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