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Witten-Veneziano relation, quenched QCD, and overlap fermions
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The quarks in quenched QCD have an anomalous self-interaction in the flavor singlet Goldstone boson
channel. This coupling is extracted from a graph with disconnected quark lines, and is used to infer the mass
of the eta-prime meson in full QCD. When the fermions are described by an overlap action, the Witten-
Veneziano relation is an exact relation between the topological susceptibility~as defined through fermionic
zero modes! and the inferred value of the eta-prime mass. Using an overlap action we compute the hairpin
amplitude and determine the fermion zero-mode susceptibility, the inferred eta-prime mass and other param-
eters characterizing the low energy chiral properties of quenched QCD.
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I. INTRODUCTION

The physics of the flavor singlet pseudoscalar eta-pr
meson has long been a source of puzzles.

~i! The eta-prime is not a Goldstone boson because of
presence of the axial anomaly.

~ii ! The eta-prime propagator in full QCD involves a s
of connected and disconnected quark-line diagrams. S
ming a plausible subset of these diagrams~see Fig. 1! pro-
duces a shift in the eta-prime mass away from the masse
the true Goldstone bosons. But what gauge field dynam
‘‘fills in the white space’’ between the quark loops?

~iii ! In the limit of a large number of colorsNc , the eta-
prime mass is expected to scale as 1/Nc as opposed to the
masses of non-Goldstone mesons, which remain order
mass formula relating the eta-prime mass to the topolog
susceptibility has been derived by Witten and Veneziano@1#:

mh8
2

1mh
222mK

2 5m0
25

4NfxT

f p
2 ~1!

wherexT is the topological susceptibility of the pure gau
theory,Nf is the number of flavors, and the pion decay co
stant, defined througĥ0uc̄g0g5cup&5mp f p , has the ex-
perimental value of 132 MeV. The right-hand side is fo
mally O(1/Nc) because f p.ANc. The suppression o
fermion loops at largeNc is similar to the absence of fermio
loops in the quenched approximation, and lattice calculati
of the topological susceptibility in quenched QCD~using
pure gauge observables! give numbers with good numerica
agreement with Eq.~1!, when evaluated with the physica
masses of the particles. It seems strange that this largNc
formula should be quantitatively correct, since the eta-pri
mass is not particularly small compared to the masses
other non-Goldstone boson mesons.@It is worth remarking
that the flavor-nonsinglet pseudoscalar sector is also
home of other large-mass quantities: one example is the s
0556-2821/2002/65~11!/114501~9!/$20.00 65 1145
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of chiral symmetry breaking:mp
2 /(mu1md).3 GeV. The

physical eta-prime mass is less than one-third of that nu
ber.#

The relation of these statements to each other is an on
ing source of controversy. Lattice simulations can in pr
ciple contribute to the discussion and, indeed, there h
been many studies of the eta-prime on the lattice, dating b
to the earliest days of simulation~a partial list includes
@2–8#!. Most of these studies have been in the quenc
approximation, where the mass of the eta-prime is infer
from the size of the hairpin graph compared to the connec
graph and compared to the topological susceptibility. Wh
the contribution of individual eigenmodes of the Dirac o
erator to the hairpin graph is computed, it is often seen t
the low-lying eigenmodes make a substantial contribution
the hairpin graph.

This paper is another calculation of the hairpin diagram
quenched QCD. Why revisit this question yet again? T
reason is that the calculations presented here are done w
fermion action which respects chiral symmetry on the latt
via the Ginsparg-Wilson relation@9#: an overlap@10# action.
All previous studies of the eta-prime were done with latti
actions which have chiral symmetry breaking artifacts:
Wilson-type fermions, for example, real eigenmodes of
Dirac operator are not zero modes nor are they eigenstate
g5. Since the properties of the eta-prime are known to
intertwined with the anomaly, one would expect that calc
lations with exact lattice chiral symmetry might be mo

FIG. 1. A plausible set of quark line graphs, which sum into
geometric series to shift the eta-prime mass away from the mas
the flavor nonsinglet pseudoscalar mesons. In the quenched
proximation, only the first two terms in the series survive as
‘‘direct’’ and ‘‘hairpin’’ graphs.
©2002 The American Physical Society01-1
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revealing for the study of the eta-prime.
Indeed that is the case: when the fermions are descr

by an overlap action, the Witten-Veneziano~WV! relation is
an exact relation between the expectation value of the hai
diagram—which is given by the susceptibility of fermio
zero modes—and the anomalous coupling between two
vor singlet Goldstone bosons. Interpreting that coupling
the eta-prime mass and equating the zero mode suscepti
to the topological susceptibility yields Eq.~1!.

To see this, first recall some facts about the overlap
tion:

The eigenmodes of any massless overlap operatorD(0)
are located on a circle in the complex plane of radiusx0 with
a center at the point (x0,0). The corresponding eigenfunc
tions are either chiral~for the eigenmodes with real eigen
values located atl50 or l52x0) or nonchiral and paired
the two eigenvalues of the nonchiral modes are complex c
jugates. The massive overlap Dirac operator is convent
ally defined to be

D~mq!5S 12
mq

2x0
DD~0!1mq ~2!

and it is also conventional to define the propagator so that
chiral modes atl52x0 are projected out:

D̂21~mq!5
1

12mq /~2x0! S D21~mq!2
1

2x0
D . ~3!

For a summary of useful formulas, see Ref.@11# ~for the
special casex051/2).

Now consider the hairpin diagram involving a single fl
vor of quarks, where the source and sink~black dots in Fig.
1! are the local pseudoscalar density,c̄g5c. The hairpin dia-
gram then is just

H~x,y!5^Tr g5D̂~x,x!21Tr g5D̂~y,y!21&. ~4!

Because only zero modes are chiral, the volume integra
the hairpin graph is proportional to the zero mode susce
bility @11#:

1

V (
x,y

H~x,y!5
^Q2&
Vmq

2 5
x

mq
2 , ~5!

whereQ is just the number of zero modes, the difference
positive and negative chirality zero modes,Q5n12n2 .
Regardless of any dynamical model used to describe
hairpin graph, we expect to see a large contribution fr
zero modes toH(x,y) itself, since only they contribute to th
susceptibility.

In quenched QCD, as described by quenched chiral
turbation theory@12#, there is an anomalous coupling of tw
Goldstone bosons in the flavor singlet channel, parametr
by a coupling with the dimensions of a squared mass.
hairpin graph is analyzed as if each of its quark loops i
propagator for an ordinary pseudoscalar Goldstone me
That is, the momentum space amplitude for the connec
graph is
11450
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C~q!5 f P

1

q21mp
2 f P ~6!

while the hairpin amplitude involving a single flavor is

H~q!5 f P

1

q21mp
2

m0
2

Nf

1

q21mp
2 f P . ~7!

The quantitym0
2 is the squared mass of the ‘‘quenched a

proximation eta-prime’’ in the chiral limit.@The factor 1/Nf
converts the single-flavor graph into the expectation of
eta-prime mass inNf-flavor QCD, since each closed loop ha
a multiplicity of Nf , and the wave function~vertex! is scaled
by a factor of 1/ANf .# In full QCD the correlator which gives
the mass of the isosinglet meson is the differenceC(t)
2NfH f ull(t), andH(t) is supposed to represent the first ter
in a geometric series, which sums up to

C~q!2NfH f ull~q!5C~q!2NfH~q!1•••

5 f P

1

q21mp
2 1m0

2 f P , ~8!

shifting the squared mass of the meson frommp
2 to mp

2

1m0
2 . In these expressions, f P5^0uc̄g5cup&

5mp
2 f p /(2mq) from the PCAC ~partial conservation of

axial-vector current! relation. Computing the susceptibilit
directly from Eq.~7! gives

1

V (
x,y

H~x,y!5
f P

2

mp
4

m0
2

Nf
5

m0
2f p

2

4Nfmq
2 . ~9!

Equating Eqs.~5! and ~9!, we obtain the Witten-Veneziano
relation m0

254Nfx/ f p
2 , wherex is the zero mode suscept

bility.
This simple derivation of the Witten-Veneziano relatio

from the overlap action uses only the quenched approxi
tion, without any reference to the largeNc limit. The crucial
ingredient is the fact that the hairpin graph, in the quench
approximation, takes the form of Eq.~7!. Conventional deri-
vations of the Witten-Veneziano relation in unquench
QCD proceed rather differently: One begins by considerin
correlator of the local topological charge density,

U~k!5E d4x exp~ ikx!K S g2

16p2Nc
FF̃~x! D

3S g2

16p2Nc
FF̃~0! D L ~10!

which is assumed to be dominated by an eta-prime reson
plus other massive states:

U~k!5
Ch8

2

k21mh8
2 1••• ~11!

with Ch85^0ug2/(16p2Nc)FF̃uh8&. Using the anomaly
equation 2Nf@g2/(16p2Nc)FF̃#5]mJ5

m allows one to re-
1-2
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WITTEN-VENEZIANO RELATION, QUENCHED QCD, . . . PHYSICAL REVIEW D 65 114501
place the gluonic matrix element by the matrix element
the divergence of the quark current. Computing the susc
tibility by taking k to zero and setting the eta-prime and pi
decay constants equal, so^0u]mJ5

muh8&5ANfmh8
2 f p , gives

the Witten-Veneziano relation. The difference is that here
eta-prime really is a propagating particle, whereas in
quenched approximation the mass is just the value of
two-boson coupling. Note also that in the derivation we ha
just given, the topological susceptibility is replaced by t
squared fluctuation in the number of fermionic zero mod
The k→0 limit of U(k) is a problematic one due to th
contribution of contact terms@13#.

A third kind of derivation of the Witten-Veneziano rela
tion has recently been given by Giustiet al. @14#. Building
on derivations of the Ward identity for the flavor singlet ax
vector current by Hasenfratz, Laliena and Niedermayer@15#
and Lüscher@16#, they show that the Witten-Veneziano rel
tion for overlap fermions involves the zero mode suscepti
ity, not the topological susceptibility. However, they assu
that the axial current correlator is saturated by a propaga
eta-prime resonance, keeping Eq.~11!. That does not occu
in quenched approximation, where the flavor singlet chan
propagator is given by Eq.~7!.

In full QCD the hairpin correlator is a single partic
propagator, but the correlator which gives the eta-prime m
is given byC(q)2NfH f ull(q). HereH f ull(q) still couples to
zero modes, but in order for the difference to couple only
the eta prime, the hairpin must have a piece which can
the connected correlatorC(q), the susceptibility of which is
order 1/mp

2 . Then H f ull(0)51/mp
2 1•••5x/mq

2 and one
finds @11,17# the expected result@18# that x.mq . The eta-
prime mass is only connected to the zero-mode susceptib
through terms which are higher order in the quark mass.

We will compute the zero mode susceptibility both d
rectly and via a calculation of the hairpin graph, and comp
the results. In practice, in common with all lattice calcu
tions of matrix elements, we will extractm0

2 from correlators
using extended sources and sinks. We infer that the m
relation persists, regardless of the choice of source and s
by assuming that the hairpin graph is a two-point vertex
pseudoscalar mesons, as required by quenched chiral pe
bation theory.

We will see that Eq.~5! produces a measurement ofm0
2

andx with a somewhat larger statistical uncertainty than o
would get from a direct measurement~counting zero modes!
of ^Q2&. This happens despite the fact that in the fit to t
hairpin, one is using information from many points of th
lattice, while counting zero modes gives just one number
lattice. The signal from the many points just shows ve
strong correlations from point to point, and the actual hair
graph is computed at nonzero quark mass and must be
trapolated to the chiral limit.

II. LATTICE CALCULATION

The overlap action used in these studies@19# is built from
an action with nearest- and next-nearest-neighbor coupli
and APE-blocked links@20#. Eigenmodes of the massles
overlap Dirac operatorD(0) are constructed from eigen
11450
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modes of the Hermitian Dirac operatorH(0)5g5D(0), us-
ing an adaptation of a conjugate gradient algorithm of Bu
et al. and Kalkreuter and Simma@21#. These eigenmodes ar
used to precondition the calculation of the quark propaga
and to construct quark propagators truncated to some num
of low-lying eigenmodes.

The data set is generated in the quenched approxima
using the Wilson gauge action at a couplingb55.9. The
nominal lattice spacing isa50.13 fm from the measured
rho mass~a value we prefer; see below! or inferred to be 0.11
fm from the Sommer parameter using the interpolation f
mula of Ref. @22#. We worked with lattices with 123324
sites. Quark masses in lattice units areamq50.02, 0.04, and
0.06, corresponding to pseudoscalar-to-vector meson m
ratios of mPS/mV.0.5, 0.61 and 0.67. The fermions hav
periodic boundary conditions in the spatial directions a
anti-periodic temporal boundary conditions. We calcula
the 20 smallest eigenvalue modes ofH2(0) in the chiral
sector of the minimum eigenvalue, and reconstructed the
generate opposite chirality eigenstate ofH2(0) for each non-
zero eigenvalue mode. These modes are then recoupled
eigenmodes ofD(0). Their eigenvalues have imaginary par
ranging up to 0.3/a–0.35/a, or about 500 MeV@23#.

All correlators we measured will include a smearing fun
tion which averages the source of the propagator over a
calized spatial volume, in order that the meson source
semble an actual hadron wave function. The hair
correlator that we measure is

HG~ t !5
1

T (
t1

K (
x

(
y

Tr LG~x,t1t1!Tr LG~y,t1!L
~12!

where the single fermion loop is

LG~x,t !5 (
x1 ,x2

F~x12x!F~x22x!^c̄~x1 ,t !Gc~x2 ,t !&.

~13!

G is a product of Dirac matrices:g5 andg0g5 are studied for
the eta prime.

The connected correlator uses the same~separable!
weighting function

CG~ t !5K (
x

(
x1 ,x2

F~x12x!F~x22x!c̄~x1 ,t !Gc~x2 ,t !

3 (
y1 ,y2

F~y1!F~y2!c̄~y1,0!Gc~y2,0!L . ~14!

We take the weighting function to be a Gaussian,F(x)
5exp(2uxu2/r0

2), of width r 053a.
In coordinate space we fit

C~ t !5
Z

2m
$exp~2mt!1exp@2m~T2t !#% ~15!

and, since
1-3
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THOMAS DeGRAND AND URS M. HELLER PHYSICAL REVIEW D65 114501
H~q!52
m0

2

Nf

]

]m2 C~q!, ~16!

the coordinate space hairpin is

H~ t !5
Z

4m3

m0
2

Nf
$~11mt!exp~2mt!

1@11m~T2t !#exp@2m~T2t !#%. ~17!

We break up the computation of the single loop into tw
terms. The first term includes the contribution of the lo
eigenmodes ofD, and is done exactly~for those modes!:
Chiral eigenmodes ofD(0)†D(0) are labeled asf j 6(x,t),
the plus or minus sign corresponding to the chirality. Th
have associated eigenvaluesl j . These modes are recouple
into eigenmodes ofD̂21(m). The only mode mixing occurs
between degenerate eigenmodes ofD(0)†D(0). Thesingle
fermion loop becomes

L1~x,t !5(
j

N

@Tr a j 1C j 1
† ~x,t !GC j 1~x,t !

1Tr a j 2C j 2
† ~x,t !GC j 2~x,t !#, ~18!

where C j 6(x,t)5(x1
F(x2x1)f j 6(x1 ,t) is the convolu-

tion of the j th eigenmode with the smearing functionF.
Here, definingm5m/(2x0), e j5l j /(2x0), thea j 6 , the ei-
genvalues ofD̂21(m), are

a j 65
1

2x0

m~12e j
2!6 i e jA12e j

2

e j
21m2~12e j

2!
. ~19!

For zero modes only one term in the brackets in Eq.~18!
exists.

The second part of the loop is computed using a stocha
estimator. We cast a vector of Gaussian random num
ur (x,t)& on every site of the lattice, projected the modes u
in L1 from it ~so ur 1&5ur &2( j u j &^ j ur &), convoluted ur 1&
with the smearing function, and used this vector as
source for a propagator. A final convolution of the propaga
with the source vector produced a noisy estimator for
difference L(x,t)2L1(x,t). We averaged over 12 random
sources per lattice. Each source was broken into two op
site chirality pieces, so a total of 24 inversions, restricted
a single chirality sector each, were done per configuratio

In retrospect, our simple stochastic estimator did not p
duce a useful signal. We first generated a 40-lattice data
on which we found the complete hairpin correlator, fro
both low modes and the stochastic estimator of high mod
For the pseudoscalar hairpin, all of the signal is containe
the low eigenmodes, which we captured exactly. Even so
did not have a good enough signal from 40 lattices to ana
the hairpin graph, so we generated an additional 40 latti
On these lattices we did an ordinary spectroscopy calcula
for the connected diagram and computed the hairpin from
low modes. For our version of the overlap, the cost of find
the eigenmodes in addition to constructing ordinary propa
11450
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tors is negligible because the eigenmodes can be use
precondition the conjugate gradient calculation of propa
tors. At 24 inversions per lattice, a stochastic evaluation
the higher mode contribution is about twice as costly as
ordinary propagator calculation.

We did not experiment with more sophisticated noise
duction methods@24#.

III. RESULTS

It is an interesting exercise to ask how the contributions
different sets of eigenmodes contribute to the pseudosc
hairpin correlator. We find that the low modes complete
saturate the hairpin graph at all mass values studied. Bec
the plots are rather cluttered, we show results for only o
mass value,amq50.04, in Fig. 2: The full correlator, includ
ing the low modes treated exactly and the high modes c
puted using the noisy estimator, is shown by octagons. C
pletely overlapping these points is the correlator built of t
lowest 20 eigenmodes ofD†D.

The zero mode piece is shown by diamonds. At la
quark mass there is a rather strong interference between
zero mode contribution and the nonzero modes, which p
the full propagator down. Since the low modes themsel
saturate the correlator, this interference must be domina
by them.

Finally, the contribution of the nonzero modes by the
selves is positive at short distance but becomes nega
above a separation oft>7 lattice spacings. We have dis
played this by changing the plotting symbol for this cont
bution from crosses, when the signal is positive, to bur
where it becomes negative.

FIG. 2. Contribution to the pseudoscalar hairpin for theamq

50.04 data set from various subsets of eigenmodes: In all figu
the full propagator is shown by octagons. In panel~a!, the zero
mode contribution is given by diamonds. In~b! the contribution of
all nonzero modes is shown by crosses~where the contribution is
positive! and bursts~where it is negative!. In ~c! the contribution of
the lowest 20 modes ofD†D is shown by squares.
1-4
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It is easy to understand why nonzero modes contrib
negatively at large separation. Thej th pair of nonchiral
modes contribute a term to the hairpin of

Ĥ~ t !5
1

T (
t8

(
j , j 8

(
x,x8

a ja j 8^V j~x,t1t8!V j 8~x8,t8!&

~20!

where@see Eq.~18!#

V j~x,t !5 (
x1 ,x2

F~x12x!F~x22x!

3f j~x1 ,t !†g5f j~x2 ,t ! ~21!

is a local smearing of the chiral density of thej th mode. The
nonzero modes have zero overall chirality and so at la
distance the correlation function of the chiral density m
become negative. This can be seen even on a single con
ration. This behavior has been observed in the eigenm
studies of Ref.@23#. It may be more than a coincidence th
these authors saw the chirality autocorrelator~for the same
data set as we studied here! becoming negative around
distance of 6 or 7 lattice spacings.

Could we have used fewer modes? Figure 3 shows
contributions to the hairpin correlator of the lowest 5, 10, 1
and 20 modes ofH(0)2, for the amq50.04 data set. The
pictures for the other masses are virtually identical. We co
have kept only five modes ofH(0)2 and almost completely
saturated the hairpin correlator, in our particular simulat
volume.

We have performed correlated fits to the connected
hairpin pseudoscalar graphs to Eqs.~15! and ~17! and ex-
tracted lattice predictions form0

2/Nf . An example of a fit, to
the amq50.04 low-eigenmode hairpin, is shown in Fig.
The error bars on the points are the naive ones and do
show the considerable correlation between the data from
ferent time slices. A set of fits, for a time slice range
tmin53 out to tmax512, is shown in Fig. 5. We have sep
rated fits to using hairpin correlators with truncated qu
propagators and fits using the full quark propagator in

FIG. 3. Saturation of the pseudoscalar hairpin graph atamq

50.04 by 5, 10, 15, and 20 eigenmodes ofH(0)2 ~with symbols
octagons, diamonds, squares, and crosses!. Bursts show the full
correlator.
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hairpin. All of the fits to the low-mode hairpin have goo
confidence levels fortmin>5 –6. Pion masses are also
byproduct of the fit. Their values are stable fortmin>3 –4
and equal within uncertainties to the results of fits to pi
propagators in isolation.

The ‘‘full’’ signal is much noisier than the low mode trun
cation ~even more than one would expect, knowing that t
low mode data set is twice as big!, and since both are equa
within uncertainties, we quote the latter. Our chosen best
typically over a range 6–12, are shown in Table I and plot
in Fig. 6. We have also extrapolated our results form0

2/Nf to
zero quark mass, assuming thatm0

2/Nf is a linear function of
the quark mass, using a single elimination jackknife.

Taking the lattice spacing from the rho mass, i.e.,a
50.13 fm, and setting Nf53 we predict m0
5770(54) MeV3(a21/1520 MeV). Had we used the
Sommer parameter to set the scale, i.e.a50.11 fm ora21

51770 MeV, the mass would have come out about 1

FIG. 4. Connected correlator~crosses! and hairpin~octagons!,
for the lowest 20 eigenmode hairpin, at bare quark massamq

50.04, showing the result of a correlated fit to the two correlat
over the ranget56 –18 ~folded to 6–12!.

FIG. 5. Extracted pseudoscalar hairpin couplingm0
2/Nf from fits

from distancet to 12 atamq50.04. Octagons show the results
fits to the hairpin correlator when the quark propagator is trunca
to the lowest 20 eigenmodes~80 lattice data set! of D†D, and
crosses show fits using the full propagators~40 lattice data set! in
the hairpins.
1-5
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higher. This difference is, of course, a reflection of the inh
ent scale uncertainty in quenched QCD. Evaluating the l
hand side of Eq.~1! with observed particle masses giv
m05860 MeV.

If the ‘‘standard picture’’ of the hairpin graph make
sense, we should be able to measurem0

2 using any interpo-
lating field at the source and sink points. In particular,
axial vector (g0g5–g0g5) hairpin correlator is an interestin
operator to study. No zero modes contribute to its hair
correlator, and yet the pseudoscalar and axial vector hair
should both give the same result form0

2—the only difference
in the two channels is that the coupling of the external c
rent source to the pseudoscalar channel is different.

We attempted to measurem0
2 from this correlator, without

success. We raise the point as a potentially interesting e
cise if future high-statistics data become available.

At short distances this correlator is negative. At larg
distances it swings positive, before disappearing into nois
large separation.~See Fig. 7 for theamq50.04 data set.! The
node in the correlator makes it impossible to fit the data
the simple form of the hairpin we have used above. Not
from Fig. 7 that the hairpin correlator saturates more slow
with number of eigenmodes than the pseudoscalar corre
does: this, plus the nodes in the signal, makes the ana
impossible to do.

Now we return to the pseudoscalar correlator. To ma
contact with other chiral observables we need a lattice de
mination of f p . We do this by measuring the pseudosca
densityP ~as one vertex of a two-point function! and extract-

FIG. 6. Pseudoscalar hairpin couplingm0
2/Nf in lattice units as a

function of quark mass. The jackknife-extrapolated zero-qua
mass value is shown as the burst.

TABLE I. Table of best-fit lattice parametersa2m0
2/Nf , a fp ,

a4x, andd as a function of quark mass and after jackknife extra
lations to zero mass.

m0 a2m0
2/Nf a fp a4x d

0.06 0.064~5! 0.102~2! 1.67(21)31024 0.077~8!

0.04 0.071~6! 0.104~4! 1.95(34)31024 0.083~17!

0.02 0.077~7! 0.106~7! 2.24(40)31024 0.088~20!

0 0.086~12! 0.108~14! 2.52(58)31024 0.093~28!
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ing f p from mp
2 f p52mq^0uPup&. Because the overlap ac

tion is chiral, the renormalization factors for the quark ma
and the pseudoscalar density cancel. The pseudoscalar
sity is taken to be the naive operatorP(x)5c̄g5c. Note that
because we use the ‘‘subtracted’’ propagatorD̂21, Eq. ~3!,
our measurement is equivalent to the use of the ‘‘ordera2

improved current’’ c̄@11D/(2x0)#g5@11D/(2x0)#c. The
results of this exercise are shown in Fig. 8 and also given
Table I. Using again the lattice spacing from the rho mass
find in the chiral limit, obtained by linear extrapolation in th
quark mass,f p5163(21) MeV. Had we used the Somm
parameter to set the scale we would have obtainedf p

5193(25) MeV. The latter number is obviously muc
larger than the experimental value of 132 MeV. We prefer
lattice spacing from the rho mass for phenomenology w
the overlap fermions. A comparison of the point-to-point c
relator in the pseudoscalar channel with instanton liq
model predictions also requires a large lattice spacing@25# of
0.13 fm. This correlator is proportional tô0uPup&2.

The two parameters which are related tom0
2 are the zero

mode susceptibility x5m0
2f p

2 /(4Nf) and the paramete

-

FIG. 7. Contribution to theamq50.04 g0g5 hairpin from low
modes ofD†D: 5 modes~small diamond with cross when positive
plus sign when negative!, 10 modes~diamond and fancy cross!, 15
modes~square and burst! and 20 modes~octagon and cross!.

FIG. 8. Pseudoscalar decay constant~in lattice units! from this
overlap action. Crosses are our data and a jackknife linear extr
lation to mq50 is shown by the square.
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WITTEN-VENEZIANO RELATION, QUENCHED QCD, . . . PHYSICAL REVIEW D 65 114501
which characterizes the strength of the hairpin contribut
in quenched chiral perturbation theory@12#, d
5m0

2/(8p2Nf f p
2 ). We compute each of these parameters

each value of quark mass using a combination of sing
elimination jackknife with correlated fits to pairs of two
point functions, and extrapolate the results linearly in
quark mass tomq50. The resulting values are shown
Table I and in Figs. 9 and 10.

We can also perform a direct measurement of the to
logical susceptibility by counting zero modes: the topolo
cal chargeQ on each configuration is just defined as t
difference in number of opposite chirality zero modes in
configuration. For our 80 lattices, we find^Q&50.3160.32.
We can~formally! eliminate thê Q&2 term from the average
by combining our data with a parity-reversed copy of eve
lattice. ~This is equivalent to the usual replacement of
propagator by its real part in conventional spectroscopy
matrix element calculations.! The zero modes give us th
result ^Q2&58.2461.11 and

FIG. 9. The quenched chiral perturbation theory parameted
5m0

2/(8p2Nf f p
2 ) evaluated forNf53. Crosses are our data and th

extrapolated value atmq50 is shown by the octagon.

FIG. 10. The inferred zero mode susceptibility in lattice un
from the hairpin graphx5m0

2f p
2 /(4Nf) evaluated for Nf53.

Crosses are our data and the extrapolated value atmq50 is shown
by the octagon. The susceptibility measured directly from z
modes is shown with the square.
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a4x5
^Q2&

V
51.98~27!31024. ~22!

This result agrees with the calculation ofx from m0
2. The

quality of our signal is similar to what is seen in calculatio
of x using pure gauge observables~lattice analogue of the
topological charge density! with similar statistics. Convert-
ing this lattice number to a continuum result using the So
mer scale, as is conventional for the topological suscepti
ity, and taking the fourth root yieldsx1/45213(7) MeV
from the direct counting of zero modes andx1/4

5226(12) MeV from the hairpin fit. Pure gauge studi
produce similar numbers to what we see@26#.

Obviously, with the scale set by the rho mass, the re
would be about 16% lower, 180~6! and 191~11! MeV.

Our measurement ofd.0.093 is a bit higher than recen
determinations made using nonchiral actions@8,27,28#,
which measured.0.065 @but somewhat smaller than wha
one would infer from the WV relation with physical masse
Eq. ~1!#. The first calculation is done using clover fermion
at b55.7. Clover fermions have real eigenmodes wh
make a nonvanishing contribution to Trg5D21. The overlap
action counts each zero mode with unit weight. It is o
experience that as the value of the real eigenvalue of a clo
mode moves away from zero, the associated chirality a
decreases, and so it is not surprising that our result is lar
The other two calculations determined from the small quark
mass behavior of the pion mass, i.e. from observ
quenched chiral logarithms, and can easily have quite dif
ent systematic uncertainties than our measurement.

We do not see any effects of quenched chiral logarith
in any observables. A fit to the pion mass in various chann
~pseudoscalar, axial vector, difference of pseudoscalar
scalar! to the form suggested in Ref.@27#, mp

2 5Cmq@1
2d log(Cmq /L2)#, choosesd ’s in the range 0.0–0.2, but with
uncertainties from any fit also of the same order. The m
effect of quenching we have seen is the presence of z
modes in the pseudoscalar and scalar channels; in contra
the hairpin case, these are finite volume artifacts.

We do not have any useful signals from other chann
The scalar channel is dominated by zero and low eig
modes, but the major structure in the channel is just
constant chiral condensate. In the vector channel the l
eigenmode correlator even has the wrong sign—it is nega
over most of its range~compare Fig. 11!. The absence of a
signal could be consistent with a naive expectation fr
Zweig’s rule, namely that the size of the hairpin in the vec
channel is small. The low eigenmodes which we include
actly do not seem to make much of a contribution to disc
nected diagrams in the vector channel, either. This featur
expected in instanton liquid models@29#.

We would feel much more comfortable making the
statements if we had a real signal@30#.

IV. CONCLUSIONS

For overlap actions and in the quenched approximati
the Witten-Veneziano formula is an exact relation betwe
the eta-prime mass inferred from the hairpin graph and

o
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fermionic zero-mode susceptibility. However, the physics
the Witten-Veneziano relation in the overlap is rather diff
ent than in ‘‘standard derivations’’: the eta-prime is not a r
particle; the mass we measure is the size of a quenc
artifact coupling between two flavor-singlet Goldsto
bosons. For quenched QCD, the gauge configurations w
‘‘fill in the white space’’ in the hairpin diagram are the one
which produce zero modes. We have not addressed the q
tion of what choice of contact term is needed to equat

FIG. 11. Contribution to theamq50.04g i hairpin from the low-
est 20 modes~square when positive, burst when negative! as com-
pared to the full correlator~octagon when positive, cross whe
negative!.
cl.
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particular definition of the topological susceptibility to th
zero mode susceptibility.

The numbers we have found for the inferred eta-pri
mass and the zero mode susceptibility are not all that dif
ent from previous results using nonchiral fermion actio
We believe that the theoretical underpinning of our calcu
tion done with a chiral action is more reliable than any c
culation done with a nonchiral action. We are well aware t
our calculation is performed at only one value of the latt
spacing and that simulations at several lattice spacings
necessary for an honest extrapolation to a continuum va

The strong coupling of low eigenmodes to the hairp
amplitude allowed us to perform the numerical simulatio
This connection between the zero mode susceptibility
the coupling strength is not automatic for a nonchiral f
mion action. Nevertheless, we expect that small eigenmo
of the Dirac operator will make a large contribution to th
pseudoscalar hairpin correlator. We suggest that future s
ies of the hairpin graph, even done using nonchiral actio
can reduce the measurement noise by first finding all the z
or near-zero eigenmodes of the Dirac operator so that t
contribution can be included exactly@31#.
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