
PHYSICAL REVIEW D, VOLUME 65, 114025
Structure functions are not parton probabilities
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The common view that structure functions measured in deep inelastic lepton scattering are determined by the
probability of finding quarks and gluons in the target is not correct in gauge theory. We show that gluon
exchange between the fast, outgoing partons and target spectators, which is usually assumed to be an irrelevant
gauge artifact, affects the leading twist structure functions in a profound way. This observation removes the
apparent contradiction between the projectile~eikonal! and target~parton model! views of diffractive and small
xB phenomena. The diffractive scattering of the fast outgoing quarks on spectators in the target causes shad-
owing in the DIS cross section. Thus the depletion of the nuclear structure functions is not intrinsic to the wave
function of the nucleus, but is a coherent effect arising from the destructive interference of diffractive channels
induced by final state interactions. This is consistent with the Glauber-Gribov interpretation of shadowing as a
rescattering effect.

DOI: 10.1103/PhysRevD.65.114025 PACS number~s!: 13.60.Hb, 12.38.2t, 24.85.1p
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I. INTRODUCTION

Deep inelastic lepton scattering~DIS! lN→ l 81X is cen-
tral for our understanding of hadron structure. Ever since
earliest days of the parton model, it has been assumed
the leading-twist structure functionsFi(x,Q2) measured in
deep inelastic lepton scattering are determined by theprob-
ability to find quarks and gluons in the target@1#. This prob-
ability is given by the target wave function at the light-co
~LC! time when the current interacts~in the q1<0 frame!.
For example, the quark probability distribution is

Pq/N~xB ,Q2!5(
n
Eki'

2
,Q2F)

i
dxid

2k' i G ucn~xi ,k' i !u2

3(
j 5q

d~xB2xj ! ~1!

where thecn are LC wave functions of the target@see Eq.
~2!#. The identification of structure functions with the squa
of light-front wave functions is usually made in the gho
free LC gaugen•A5A150, the argument being that th
path-ordered exponential in the operator product appea
in parton distributions@see Eq.~3!# reduces to unity. Thus the
DIS cross section appears to be fully determined by the p
ability distribution of partons in the target.

However, we shall show that this parton model interp
tation of the structure functions, which was established fo
theory with Yukawa couplings@1#, is not correct in gauge
theory. The critical issue is whether the scattering tak
place after the virtual photon interacts can affect the lead
twist cross section. It is well known that in Feynman a
other covariant gauges one has to include corrections to

*On leave of absence from the Department of Physics, Univer
of Helsinki, Finland.
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‘‘handbag’’ diagram due to final state interactions of t
struck quark with the gauge field of the target. The light-co
gauge is singular—in particular, the gluon propaga
dLC

mn(k)5@ i /(k21 i«)#@2gmn1(nmkn1kmnn)/n•k# has a
pole at k150 which requires an analytic prescription. I
final-state scattering involving on-shell intermediate stat
the exchanged momentumk1 is of O(1/n) in the target rest
frame, which enhances the second term in the propag
This enhancement allows rescattering to contribute at lead
twist even in light-cone gauge.

We find that gluon exchange between the outgoing qua
and target spectators, which is usually assumed to be
pressed in the Bjorken limit, affects the leading twist stru
ture functions in a profound way. Final state diffractive sc
tering gives rise to interference effects in the DIS cro
section. Thus nuclear shadowing is not caused by the w
function of the nucleus, but is induced by final state inter
tions.

The depletion of the nuclear structure functions at lowxB
is a coherent effect reflecting the destructive interference
diffractive channels induced by the final state interactio
The distinction between structure functions and parton pr
abilities is already implied by the Glauber-Gribov picture
nuclear shadowing@2–5#. In this framework shadowing
arises from interference between complex rescattering am
tudes involving on-shell intermediate states. In contrast,
wave function of a stable target is strictly real since it do
not have on energy-shell configurations. A probabilistic
terpretation of the DIS cross section is thus precluded.

Our paper thus explains the origins of nuclear shadow
and leading-twist diffraction, giving a new, first principle
perspective on these problems. Our formalism of final-st
interactions has recently been used to analyze single-
asymmetries in deep inelastic processes and to show
such asymmetries survive in the Bjorken limit, contrary
conventional arguments which claim that final state inter
tions are always power-law suppressed in the large scal
hard QCD processes@6#.
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II. THE FOUNDATIONS OF THE QCD-IMPROVED
PARTON MODEL

Soon after the observation of Bjorken scaling~and before
the advent of QCD! it was suggested@1# that the DIS cross
section is fully determined by the target wave function. S
cifically, consider the Fock expansion of the nucleon st
uN& in terms of its quark and gluon constituents at eq
light-cone~LC! time t5t1z/c5y15y01y3,

uN&5E F)
i

dxid
2kW' i

16p3 G @cuud~xi ,kW' i ,l i !uuud&

1cuudg~ . . . !uuudg&1 . . .

1c
•••

~ . . . !uuudqq̄&1 . . . ]. ~2!

Each Fock stateuuud . . . & is weighted by an amplitude
c which depends on the LC momentum fractionsxi

5ki
1/p1 (( ixi51), the relative transverse momentakW' i

(( ikW' i50), and the helicitiesl i of its constituents.1 The DIS
cross section thus appeared to measure the single p
probabilitiesPj /N(xB ,Q2) as defined in Eq.~1!, which ex-
press the probability for finding~at resolution 1/Q) a parton
j carrying the momentum fractionxB5Q2/2p•q of the
nucleon. Hereq is the virtual photon momentum (q25
2Q2) andp the target nucleon momentum.

Later analyses@8# of perturbative QCD~PQCD! have es-
tablished the QCD factorization theorem to all orders in
coupling. The DIS cross section can be expressed for e
parton type as a convolution of a perturbatively calcula
hard subprocess cross section and a target parton dist
tion. The parton distributions are given by operator mat
elements of the target. For the~spin-averaged! quark distri-
bution in the nucleonN of momentump,

f q/N~xB ,Q2!5
1

8pE dy2exp~2 ixBp1y2!

3^N~p!uq̄~y2!g1

3P expF igE
0

y2

dw2A1~w2!G
3q~0!uN~p!& ~3!

where all fields are evaluated at equal LC timey150 and
vanishing transverse separationy'50. The light-like dis-
tance between the absorption and emission vertices of
virtual photon in the forward amplitude is measured byy2.
The path-ordering P orders the gauge fields according
their position on the light-cone and ensures the gauge inv
ance of the matrix element.

The identification of the quark distribution~3! as a prob-
ability distribution ~1! is made in the LC gaugen•A5A1

50, where the path-ordered exponential in Eq.~3! reduces to
unity, and one findsf q/N→Pq/N . A recent derivation in the

1See Ref.@7# for the normalization conventions.
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more general case of non-forward matrix elements~skewed
parton distributions! may be found in Ref.@7#. Thus the DIS
cross section appears to be fully determined by the proba
ity distribution of partons in the target. However, as we sh
show the expression forf q/N cannot be given by Eq.~3! in
the LC gauge.

In a general gauge the matrix element~3! depends on final
state interactions~FSI! of the struck quark with the gaug
field of the target via theA1 dependence of the path-ordere
exponential. Based on the above argument in the LC ga
it is generally believed that the exponential is a gauge arti
and thus that the presence of FSI does not influence the c
section. But this assumes thatf q/N is given by Eq.~3! in all
gauges,including the LC gauge. Here we find that final sta
rescattering in factdoeschange the DIS cross section inall
gauges. Our analysis is consistent with the QCD factori
tion theorem and with the form~3! of the parton distributions
in all gauges except the LC gauge.

The influence of FSI we find at leading-twist is specific
gauge theories. The impossibility to interpret parton distrib
tions as probabilities could thus not be inferred before
advent of QCD. Instead, the equivalence between DIS st
ture functions and the target wave function was assum
though it was only shown in a theory with Yukawa couplin
@1#.

The expression~3! for f q/N is valid for covariant gauges
in the Bjorken limit, which selects theA1 field of the target.
We shall show that setting thenA150 in Eq.~3! leads to an
incorrect expression forf q/N . From a mathematical point o
view this means that the high energy Bjorken limit does n
commute with theA1→0 limit of the LC gauge. In fact~see
Sec. VII! the high energy and the LC gauge limits do n
commute even for ordinary elastic electron scattering.

In Sec. III we recall why in Feynman gauge final sta
interactions among the spectator partons of the target sys
do not affect the DIS cross section at leading twist. We th
show that this general argument does not apply to resca
ing of the struck quark.

In Sec. IV we discuss the Glauber-Gribov picture a
show why it implies that the final state interactions, r
summed in covariant gauges by the path ordered expone
of Eq. ~3!, affect the cross section. We then study a sim
perturbative model of rescattering effects in Sec. V,
which explicit expressions of the amplitudes can be obtai
at smallxB . Using this example we demonstrate in Sec.
that rescattering of the struck quark on the target can cau
leading twist shadowing effect.

The analysis of Secs. III to VI is carried out in Feynma
gauge. In Sec. VII we show why rescattering effects c
persist even inA150 gauge, in contradiction with the form
~3! of the matrix element. As is well known, this gauge
singular—in particular, the gluon propagator

dLC
mn~k!5

i

k21 i«
F2gmn1

nmkn1kmnn

n•k G ~4!

has a pole atn•k5k150 which requires an analytic pre
scription. In final-state elastic scattering of the struck qu
5-2
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STRUCTURE FUNCTIONS ARE NOT PARTON PROBABILITIES PHYSICAL REVIEW D65 114025
the exchanged momentumk1 is of O(1/n) in the target rest
frame, which enhances the second term in the propagator~4!.
This enhancement allows rescattering to contribute at lea
twist in the LC gauge.

We reevaluate our model amplitudes using the LC ga
in the Appendix. Although the expressions for the individu
diagrams depend on the prescription used atn•k50, the
prescription dependence vanishes when all diagrams
added. The scattering amplitudes which we calculate up
two-loops in the LC gauge thus agree with the result in Fe
man gauge.

For the issues of this paper, the spin and color of
quarks are not relevant. We therefore conduct our discus
in the simpler framework of Abelian gauge theory with sc
lar quarks.

III. EFFECTS OF FINAL STATE INTERACTIONS IN DEEP
INELASTIC SCATTERING

The DIS cross section is given by the discontinuity of t
forward amplitude:

s~g* T→X!5
1

4Mn
DiscM~g* T→g* T!, ~5!

FIG. 1. Two types of final state interactions.~a! Scattering of the
antiquark (p2 line!, which in the aligned jet kinematics is part of th
target dynamics.~b! Scattering of the current quark (p1 line!. For
each LC time-ordered diagram, the potentially on-shell intermed
states corresponding to the denominatorsDa ,Db ,Dc are denoted by
dashed lines.
11402
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whereM is the target mass andn the photon energy in the
rest system of the target. We take the Bjorken limitn,Q25
2q2→` with xB5Q2/2Mn fixed. In the LC notationk

5(k1,k2,kW'), where k65k06k3, the photon and targe
momenta are~at leading order!

q5~2MxB,2n,0'!,
~6!

p5~M ,M ,0'!.

In the following we define a final state interaction~FSI! as
any interaction which occurs after the virtual photon h
been absorbed. Here ‘‘after’’ refers to the LC time,y15y0

1y3, in the frame~6!. In deep inelastic scattering initial stat
interactions~ISI! occur only within the target bound stat
and determine the target wave function~2!. We shall show
that soft rescattering of the struck quark in the target a
affects the DIS cross section.

We can distinguish FSI from ISI using the LC time
ordered perturbation theory~LCPT! @11#. Figure 1 illustrates
two LCPT diagrams which contribute to the forwardg* T
→g* T amplitude, where the targetT is taken to be a single
quark. We use these diagrams in a generic sense here, w
in Secs. V and VI we consider them in the framework o
specific perturbative model of the DIS process.

We recall that in the LCPT the ‘‘2 ’’ momentum compo-
nent is not an independent variable, but is given by the
shell condition,k25(k'

2 1m2)/k1. Each propagating line
has a factor 1/k1, and there is a denominator factor

Dint5(
inc

k22(
int

k21 i« ~7!

for each intermediate state, which measures the LC en
difference between the incoming and intermediate states
Feynman gauge~which we use in this section! an imaginary
part or discontinuity can arise only via thei« prescription in
Eq. ~7!, when LC energy is conserved and the intermedi
state is on-shell.

We consider the ‘‘aligned jet’’~or parton model! configu-
ration @12#, where the hard vertex is taken at zeroth order
the strong coupling:g* q→q. In the aligned jet kinematics
the momentump1 of the struck quark in Fig. 1 is the only
one which grows in the Bjorken limit:p1

2.2n, with pW 1'

independent ofn. All momenta in Fig. 1 other thanq andp1
remain finite in the Bjorken limit. The condition that th
momentum fraction of the struck quark equalsxB follows
from the conservation of ‘‘1 ’’ momentum, given thatp1

1

5O(1/n).
We recall@see, e.g., Eq.~A5! of Ref. @13## that the virtual

photon polarization vectors may be chosen as

«~l561!52
1

A2
~0,0,1,6 i !

~8!

«~l50!5
Q

n
~1,21,0,0!.

te
5-3
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BRODSKY, HOYER, MARCHAL, PEIGNÉ, AND SANNINO PHYSICAL REVIEW D 65 114025
Since we take all lines~except the gauge bosons! in Fig. 1 to
be scalars, the longitudinal photon coupling«(l50)•(p1
1k12p2).Q dominates over the transverse ones in
Bjorken limit. The two longitudinal photon couplings to
gether contribute a factorQ2 to the forward amplitudes in
Figs. 1a and 1b.

Both diagrams in Fig. 1 contain final state interactio
between theg* vertices. Only the three intermediate stat
indicated by dashed vertical lines can kinematically be
shell and thus contribute to the discontinuity of the diagra
via the vanishing of the corresponding denominatorDa , Db
or Dc . We wish to ascertain whether the sum of these d
continuities gives a leading-twist contribution to the D
cross section through the optical theorem~5!. We use Feyn-
man gauge in the following discussion. As we shall see
Sec. VII and Appendix C, the specific Feynman diagra
causing FSI effects in DIS actually depend on the gauge

The three denominators of Fig. 1a are

Da5q21p22p1
22p2

22~p2k1!2

52n2
p1'

2 1m2

p1
1

1M2
p2'

2 1m2

p2
1

2
k1'

2 1M2

M2k1
1

Db52n2
p1'

2 1m2

p1
1

1M2
p2'

2 1m2

p2
1

2
k2'

2

k2
1

2
~kW1'1kW2'!21M2

M2k1
12k2

1
~9!

Dc52n2
p1'

2 1m2

p1
1

1M2
~pW 2'1kW2'!21m2

p2
11k2

1

2
~kW1'1kW2'!21M2

M2k1
12k2

1

and have the form

Da,b,c52n2
p1'

2 1m2

p1
1

1 f a,b,c ~10!

where f a , f b , f c are independent ofn in the aligned jet con-
figuration. If we consider these denominators as function
p1

1 then the three conditionsDa,b,c50 give to leading order
the samevalue ofp1

1 ,

p1
15

p1'
2 1m2

2n F11OS 1

n D G . ~11!

All denominators and other factors in the LCPT expre
sion of Fig. 1a exceptDa , Db and Dc are insensitive~at
leading order! to a relative change inp1

1 of O(1/n). Thus, as
11402
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far as the discontinuity of Fig. 1a is concerned, we can
gard the other factors as constants in thep1

1 integral contain-
ing the denominator poles,

Disc~Fig. 1a!

}Q2 DiscE dp1
1

p1
1

1

~Da1 i«!~Db1 i«!~Dc1 i«!

~12!

where the factorQ2 stems from the photon couplings. A
remaining factors in the proportionality are independent ofn.
Each of the three denominators in Eq.~12! gives a
n-independent contribution to the discontinuity in th
Bjorken limit. This means that each partial discontinuity co
tributes to the DIS cross section of Eq.~5! at the leading
twist level, s(g* T→X)}1/Q2. However, as is easily seen
the contributions from the three poles which to leading or
occur at the same value~11! of p1

1 cancel at leading twist.
The above argument is generic and applies to arbitra

complex diagrams having no interactions on the curr
quark linep1. The remarkable fact that FSI between targ
spectators do not affect the DIS cross section only relies
the Bjorken limit, which asn→` provides an ‘‘infinite en-
ergy reservoir’’ which compensates any target excitations

The situation is quite different for diagrams like Fig. 1
where the current quark reinteracts. In~quasi-!elastic scatter-
ing of the current quark the momentum transferk2

1}1/n. We
may check explicitly that this range of momentum trans
indeed gives a leading-twist contribution to each partial d
continuity. The denominators are now of the form

Da.2n2
p1'

2 1m2

p1
1

1ga

Db.2n2
p1'

2 1m2

p1
1

2
k2'

2

k2
1

1gb ~13!

Dc.2n2
~pW 1'1kW2'!21m2

p1
11k2

1
1gc

wherega,b,c are again independent ofn. For example, pick-
ing up theDa50 pole in thep1

1 integral we have

Disca~Fig. 1b!}Q2p1
1p1

2 E dk2
1

k2
1~p1

11k2
1!

1

Db Dc
~14!

wherep1
1 is given by Eq.~11! and the factorp1

2 originates
from the interaction in the Feynman gauge.

Note thatDb andDc are still ofO(n) at the value~11! of
p1

1 for which Da50. The fact that the contributions from
Da50, Db50 and Dc50 thus occur at distinct values o
p1

1 means that they no longer cancel. Disca is independent of
n and hence contributes to the DIS cross section at lead
twist. We conclude that rescattering of the current quark g
5-4
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STRUCTURE FUNCTIONS ARE NOT PARTON PROBABILITIES PHYSICAL REVIEW D65 114025
erally affects the cross section. In Sec. VI we shall dem
strate, in terms of an explicit perturbative example, that t
conclusion is indeed correct.

Since the LC energy differencesDb,c}n at Da50, the
struck quark rescattering occurs on the light cone,y1

;O(1/n). This rescattering is part of the dynamics describ
by the path-ordered exponential in the matrix element~3!,
where allA1 fields are evaluated at the same LC timey1.
During its passage through the target the struck quark ha
time to emit or absorb gluons, it only ‘‘samples’’ the Co
lomb field of the target. The rescattering neverthel
changes the transverse momentum of the quark and in
ences the cross section. This is analogous to the Lan
Pomeranchuk-Migdal~LPM! effect @14#, which suppresses
the bremsstrahlung of a high energy electron in matter du
Coulomb rescattering within the formation time of the ra
ated photons.

IV. THE GLAUBER-GRIBOV PICTURE OF SHADOWING

DIS data on nuclear targetsA has shown that nuclea
structure functions are suppressed forxB&0.05:
F2

A(xB ,Q2),A F2
N(xB ,Q2) @10#. This is generally inter-

preted as a leading twist ‘‘shadowing’’ effect, arising fro
quantum mechanical interference@9,10#. The coherence
length of the virtual photon in the target rest frame~6! is long
at smallxB ,

2n

Q2
5

1

MxB
5^y2& ~15!

as can also be seen from Eq.~3!. Rescattering from differen
nucleons in the nucleus can thus interfere.

In the aligned jet kinematics the virtual photon fluctua
into a qq̄ pair with limited transverse momentum, and t
~struck! quark takes nearly all the longitudinal momentum
the photon. Using the notation of Fig. 1, where the initiaq

andq̄ momenta are denotedp1 andp22k1, respectively, we
have

p1
2.2n

p2
12k1

1.2MxB ~16!

pW 1'52~pW 2'
2kW1'

!;LQCD .

FIG. 2. Glauber-Gribov shadowing involves interference b
tween rescattering amplitudes.
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The ~covariant! virtualities p1
2 and (p22k1)2 are limited.

Hence (p11p22k1)2;p1
2(p2

12k1
1);2Q2 as required by

momentum conservation. The virtual quark pair is put
shell by a~total! momentum transferk from the target, with

k15p1
11p2

12q1.p2
11MxB . ~17!

The DIS cross section is dominated by minimal transfersk1,
which for the final antiquark momentum gives

p2
1;MxB . ~18!

With this kinematics in mind the Glauber-Gribov pictu
of shadowing can be summarized as follows. At smallxB the
antiquark momentump2

2}1/xB is large but the momentum
transfer k1;MxB is small. The scattering will therefore
have a diffractive component. In particular, the quark p
may scatter elastically on a ‘‘front’’ nucleonN1 in the
nucleus before suffering an inelastic collision at a ‘‘bac
nucleon N2, as indicated on the lhs of Fig. 2. The sma
momentum transferk1 at N1 required to put the quark pai
on-shell can be absorbed by the nuclear wave funct
Hence this amplitude interferes with the amplitude for
single scattering onN2 shown on the right-hand side~rhs! of
Fig. 2. The interference is destructive due to the imagin
nature of the Pomeron exchange amplitude atN1 and the
factor of i resulting from the intermediate state betweenN1
andN2 going on shell.

This shadowing effect on the DIS cross section is n
compatible with the cross section being determined by
parton probabilitiesP of Eq. ~1!. Since the Pomeron ampli
tude in Fig. 2 is imaginary it must involve on-shell interm
diate states. But initial state interactions in the targetbefore
the virtual photon is absorbed cannot create on-shell inter
diate states—they would constitute decay channels of
target. We conclude that Glauber-Gribov shadowing involv
final state interactions and hence must be associated with
path ordered exponential in Eq.~3!.

V. A PERTURBATIVE EXAMPLE OF SHADOWING

We shall construct a perturbative example of the phys
of Glauber-Gribov shadowing, which is simple enough
allow explicit expressions for the scattering amplitudes
small xB . We use this example in Sec. VI to verify the ge
eral result of Sec. III that final state interactions betwe
target spectators do not affect the DIS cross section, whe
rescattering of the struck quark does.

-
FIG. 3. Forwardg* T→g* T amplitude. All attachments of the

exchanged gluons to the upper scalar loop are included, as we
topologically distinct permutations of the lower vertices on the t
get line.
5-5
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BRODSKY, HOYER, MARCHAL, PEIGNÉ, AND SANNINO PHYSICAL REVIEW D 65 114025
In this section we use standard covariant perturba
theory in Feynman gauge of a scalar Abelian gauge the
We consider the forwardg* T→g* T amplitude of Fig. 3, the
discontinuity of which gives a contribution tos(g* T) at
orderaas

4 via the optical theorem~5!. Since we may assum
the charges of the targetT and the ‘‘quark’’q to be distinct,
we can focus on the gauge invariant set of diagrams in wh
the gluons are exchanged between the quark pair and
target. Each gluonki can couple to either theq or theq̄ line,
and all distinct permutations of the gluon vertices are
cluded.

Taking the discontinuity between gluonsk3 andk4 gives a
contribution which models the interference term of Fig.
The scattering onN2 is given by single gluon exchange
while the Pomeron exchange onN1 is modelled by the two-
gluon exchange. The discontinuity between gluonsk2 andk3
gives the square of the ‘‘Pomeron’’ exchange amplitude.
calculate the one-, two- and three-gluon exchange am
tudes forg* T→qq̄T explicitly for xB!1, making use of the
results of Ref.@13# where a similar model was studied. Sin
the targetT is taken to be elementary this model does n
have shadowing in the conventional sense described in
IV. It nevertheless demonstrates how final state interfere
effects reduce the DIS cross section.

We work in the target rest frame~6! and in the aligned jet
kinematics of Eqs.~16! and~18!. The Feynman gauge calcu
lation is simplified by assuming2 a large target massM.
Hence the kinematic limit we consider is

2n;p1
2@M@p2

2@ki' , p2' , ki
2 , m@ki

1 ,
~19!

k15MxB1p2
1

wherem is the mass of theq,q̄ quarks andk5( iki is the
total momentum transfer from the target.

A. Single gluon exchange amplitudeA

The three Feynman diagrams are shown in Fig. 4. As
Sec. III we use the virtual photon polarization vectors~8! and
find that the dominant~leading twist! contribution comes
from «(l50)•p1.Q. Diagram 4c is proportional to«•(p
1p8) and is thus non-leading. Diagram 4a involves t
quark propagator

2The expressions for the scattering amplitudes that we deriv
large M are actually valid also whenM and k' are of the same
order. This is seen directly for the Born amplitude of Fig. 4, a
from the LC gauge calculations in the Appendixes for the lo
amplitudes.

FIG. 4. Single gluon exchange diagrams in scalar Abel
theory.
11402
n
y.

h
he

-

.

e
li-

t
ec.
ce

n

~p22k!22m2.p2
2~p2

12k1!2~pW 2'2kW'!22m2

52D~pW 2'2kW'! ~20!

where we used Eq.~17! and defined

D~pW'![p2
2MxB1p'

2 1m2. ~21!

Similarly the quark propagator in diagram 4b givesD(pW 2').
The full amplitude in the limit~19! is

A~p2
2 ,pW 2' ,kW'!5

2eg2MQp2
2

k'
2 F 1

D~pW 2'!
2

1

D~pW 2'2kW'!
G

~22!

We may readily verify that this contribution is of leadin
twist. The l 1T→ l 81X DIS cross section is3

Q4
ds

dQ2 dxB

5
a

16p2

12y

y2

1

2Mn

3E dp2
2

p2
2

d2pW 2'

~2p!2

d2kW'

~2p!2
uAu2 ~23!

wherey5n/El . The factorQ2 in uAu2 combines with 1/2Mn
in Eq. ~23! to make the rhs independent ofQ2 in the Bjorken
limit, when the soft momentakW' andp2 are integrated over
any finite domain.

We also note that the dominant contribution to the D
cross section at smallxB comes fromp2

1;MxB and p2
2

;(p2'
2 1m2)/MxB as assumed in Eq.~18!. To see this, note

that the amplitudeA}p2
2 for p2

2!(p2'
2 1m2)/MxB , while

A}1/p2
2 for p2

2@(p2'
2 1m2)/MxB .

Since A}1/k' for k'→0 the cross section~23! has a
logarithmic singularity in this limit, which is regulated by th
longitudinal momentum exchange atk';k1;MxB . This
logarithmic behavior occurs only at lowest order@15# and
will not be relevant for our conclusions.

It is instructive to express the cross section also as
integral over the transverse distancesr' ,R' conjugate to
p2' ,k' . Defining

Ã~p2
2 ,rW' ,RW'!5E d2pW 2'

~2p!2

d2kW'

~2p!2
A~p2

2 ,pW 2' ,kW'!

3exp~ irW'•pW 2'1 iRW'•kW'! ~24!

and using

V~mr'![E d2pW'

~2p!2

eirW'•pW'

p'
2 1m2

5
1

2p
K0~m r'! ~25!

whereK0 is a Bessel function, and
at

3Here the leptonl is assumed to have spin12 .

n
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W~rW' ,RW'![E d2kW'

~2p!2

12eirW'•kW'

k'
2

eiRW'•kW'

5
1

2p
logS uRW'1rW'u

R'
D ~26!

we get from Eq.~22!,

Ã~p2
2 ,rW' ,RW'!52eg2MQp2

2 V~mir'!W~rW' ,RW'! ~27!

where

mi
25p2

2MxB1m2. ~28!

The contribution~23! to the DIS cross section can then b
expressed as

Q4
ds

dQ2 dxB

5
a2as

2

p3

12y

y2
xBM2

3E dp2
2

p2
2

~p2
2MxB1m2!2 E d2uW'd2UW '

3FK0~u'!logS uUW '1uW'u
U'

D G2

. ~29!

Here the dimensionless integration variables were define
uW'5rW'mi and UW '5RW'mi , showing that the typical trans
verse distancesrW' ,RW' scale as 1/mi . Thep2

2 integral in Eq.

~29! is logarithmic4 at large p2
2.m2/MxB , where the

aligned jetg* q→q subprocess turns intog* g→qq̄ @13#.

B. Two-gluon exchange amplitudeB

Figure 5 shows two of the altogether six two-gluon e
change diagrams which give leading contributions to
g* T→qq̄T amplitude forxB!1 in Feynman gauge. Dia
grams with 4-point vertices~cf. Fig. 4c! are again suppresse
in this gauge. We illustrate the calculation of this one-lo
amplitude using the diagrams of Fig. 5.

Our assumption~19! of a large target massM simplifies
the loop integral by suppressing theki

0 momentum compo-
nents. For the overall exchange we find from the mass-s

4We also note that Eq.~29! contains a collinear singularity whe
m→0. In this limit the exchanged gluon becomes acollinear line in
the language of Ref.@8#.

FIG. 5. Double gluon exchange diagrams. In the Feynm
gauge four more diagrams contribute at leading order, where on
both of the exchanged gluons attach to the quark (p1) line.
11402
as

-
e

ell

conditionp825(p2k)25M2 that

k05k1
01k2

052
k'

2

2M
!k6,k' ~30!

The corresponding suppression for the loop momentumk1
0

.2k2
0 results from the sum of the uncrossed and cros

gluon attachments to the target line in Fig. 5,

~2 ig 2M !2F i

~p2k1!22M21 i«

1
i

~p2k2!22M21 i«
G

.2ig2M S 1

k1
02 i«

1
1

k2
02 i«

D
.2ig2M2p id~k1

0!. ~31!

Making use of Eqs.~20! and ~31! we find

B~Fig. 5a!1B~Fig. 5b!

52
2eg4MQ p2

2

D~pW 2'2kW'!
E d2kW2' dk2

1

~2p!3

1

kW1
2kW2

2

3
1

k2
12~2pW 2'•kW2'2kW2

2!/p2
22 i«

. ~32!

Symmetrizing the integrand inkW1↔kW2 and recalling~17! the
last factor becomes

1

2 F 1

k2
12~2pW 2'•kW2'2kW2

2!/p2
22 i«

2
1

k2
12k11~2pW 2'•kW1'2kW1

2!/p2
21 i«

G. ipd~k2
1!.

~33!

Thus

B~Fig. 5a!1B~Fig. 5b!

52
ieg4MQ p2

2

D~pW 2'2kW'!
E d2kW2'

~2p!2

1

k1'
2 k2'

2
. ~34!

Adding the contributions from the remaining four dia
grams we find for the full two-gluon exchange amplitude

n
or
5-7
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B~p2
2 ,pW 2' ,kW'!52 ieg4MQp2

2E d2kW1'

~2p!2

1

k1'
2 k2'

2

3F 1

D~pW 2'!
2

1

D~pW 2'2kW1'!

2
1

D~pW 2'2kW2'!
1

1

D~pW 2'2kW'!
G

~35!

where kW2'5kW'2kW1' . We note that the amplitude is fully
imaginary as required by crossing symmetry, sinceB}p2

2 as
p2

2→` and the two-gluon exchange has even charge co
gation. Thus our model captures the essential feature
Pomeron exchange. We note also thatB(p2

2 ,pW 2' ,kW')
} logk' for k'→0. In contrast to the single gluon exchan
contribution to the DIS cross section, the square of Eq.~35!
can thus be safely integrated overk' and ~for mÞ0) over
p2

2 .
Because of conservation of the transverse distan

rW' ,RW' in the peripheral scattering, the Fourier transfo
~24! returns the simple form

B̃~p2
2 ,rW' ,RW'!52 ieg4MQp2

2V~mir'!W2~rW' ,RW'!

5
2 ig2

2!
WÃ ~36!

where we used Eq.~25! and ~26!.
We stress that in thexB→0 limit, the amplitudeB is

dominated by the configuration where the intermediate s
between the two exchanges is on shell. This can be see
calculating B in the LC time-ordered perturbation theor
where this intermediate state is associated with a vanis
denominator~7!. Alternatively, we may note that since th
real part ofB is suppressed in thexB→0 limit the full am-
plitude is~via the optical theorem! given by its discontinuity.
This is true in all gauges sinceB is gauge invariant.

C. Three-gluon exchange amplitudeC

No qualitatively new aspects appear in the calculation
this two-loop amplitude. Permuting the attachments of
three gluons on the target line one finds in analogy to
~31! that ki

0.0 for all exchanges (i 51,2,3). Similarly the
ki

1 integrations are simply evaluated after symmetrizatio
analogous to Eq.~33!. The final expression in momentum
space is

C~p2
2 ,pW 2' ,kW'!52

1

3
eg6MQp2

2

3E d2kW1'

~2p!2

d2kW2'

~2p!2

1

kW1'
2 kW 2'

2 kW 3'
2

3F 1

D~pW 2'!
2

3

D~pW 2'2kW1'!
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1
3

D~pW 2'2kW1'2kW2'!
2

1

D~pW 2'2kW'!
G

~37!

wherekW3'5kW'2kW1'2kW2' .
The Fourier transform~24! gives the amplitude in trans

verse coordinate space as

C̃~p2
2 ,rW' ,RW'!52

1

3
eg6MQp2

2V~mir'!W3~rW' ,RW'!

5
~2 ig2!2

3!
W2Ã.

~38!

Similarly to theB amplitude,C arises from the interme
diate states between the rescatterings being on shell in
xB→0 limit. Again this must hold also in LC gauge. Since
the two-loop case there are two consecutive intermed
states,C is purely real.

From the expressions~27!, ~36! and ~38!, it is apparent
that the sum of gluon-exchange amplitudes exponentiate

M̃~p2
2 ,rW' ,RW'!5Ã1B̃1C̃ . . .

522ieMQp2
2V@12exp~2 ig2W!#.

~39!

As noted at the beginning of this section, we have
sumed the charges of the quark and target lines to be dist
This allows us to restrict our analysis to the subclass
Feynman diagrams considered above, since diagrams
different powers of the charges cannot cancel in the D
cross section. However, we should note that at the leve
three-gluon exchanges there are new types of diagr
which have the same charge dependence asC in Eq. ~37!.
For example, one of the three gluons may be exchan
between the quarks while another forms a loop on the ta
line. The k' dependence of this contribution would diffe
from that of Eq.~37!. We do not further consider such con
tributions.

VI. EFFECTS OF RESCATTERING ON THE DIS CROSS
SECTION

We now use our perturbative amplitudes to demonstr
that final-state rescattering of the struck quark affects
DIS cross section. In the preceding section we used covar
~rather than time-ordered! perturbation theory, and thus di
not distinguish between initial~ISI! and final~FSI! state in-
teractions. However, diagrams involving rescattering of
struck quark necessarily are FSI because the exchan
gluon couples to the struck quark (p1) line after the virtual
photon. We shall see that precisely such diagrams contrib
to the cross section.

We consider the DIS cross section~23! expressed as a
sum over the transverse distancesrW' ,RW' defined in Eq.~24!,
5-8
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Q4
ds

dQ2 dxB

5
a

16p2

12y

y2

1

2Mn

3E dp2
2

p2
2

d2rW'd2RW' uM̃u2 ~40!

where

uM̃~p2
2 ,rW' ,RW'!u

5Usin@g2W~rW' ,RW'!/2#

g2W~rW' ,RW'!/2
Ã~p2

2 ,rW' ,RW'!U ~41!

is the resummed amplitude~39! andV,W are given in Eqs.
~25! and ~26!, respectively.

The fact that the coefficient ofÃ in Eq. ~41! is less than
unity for all rW' ,RW' shows that the rescattering correctio
included inM̃ reduce the cross section. This effect agre
with the Glauber-Gribov picture of DIS shadowing and mu
be present also in LC gauge~see Sec. VII!.

The forwardg* T→g* T amplitude in Fig. 3 can also b
cut through some of the gluon lines, corresponding to fi
states with real gluons. Such contributions have, howeve
different target massM dependence@cf. Eq. ~30!#. Similar
arguments suggest that other contributions, even if they
of the same order in the coupling constants, cannot cha
the conclusion that the DIS cross section is influenced
final state interactions.

In Sec. III we gave a general argument~in Feynman
gauge! which showed that final state interactions betwe
target spectators cannot influence the DIS cross section~cf.
Fig. 1a!. We shall now check this statement using our p
turbative amplitudes.

In the aligned jet kinematics the antiquark belongs to
target system. We thus consider the subset of diagrams
Figs. 4a and 5 where all exchanged gluons attach to thq̄
(p2) line. One can easily verify that this subset of diagra
is gauge invariant in the class of covariant gauges in
kinematic limit~19!. The corresponding sum of cuts in Fig.
is then proportional to

Sq̄~p2
2 ,pW 2' ,kW'!5uBq̄u212Re~Aq̄Cq̄

* ! ~42!

where the subscriptq̄ indicates the subset of diagrams.
Diagrams where all gluons attach to the antiquark line

involve both ISI and FSI. Since the two-gluon exchange c
tribution ~34! is imaginary it must, however, involve resca
tering of on-shell intermediate states which can only ar
after the virtual photon has been absorbed. Similarly
~real! three-gluon exchange amplitudeC ~37! involves
double rescattering of on-shell states. Hence all our am
tudes~except the Born termA) involve FSI.

It is straightforward to identify theAq̄ ,Bq̄ ,Cq̄ contribu-
tions to the expressions~22!,~35!,~37! of the full one-, two-
and three-gluon exchange amplitudes in momentum sp
According to Eq.~20! the antiquark propagator next to th
virtual photon vertex gives a denominatorD(pW 2'2kW') for
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all diagrams in our subset. This factor appears explicitly
each amplitude. Dimensionally regularizing the logarithm
infrared divergencies atki'50 we thus find

Sq̄~p2
2 ,pW 2' ,kW'!5F eg4MQp2

2

~2p!2D~pW 2'2kW'!
G 2

3H @R2~k'!#22
4

3
R13~k'!J ~43!

where

R2~k'!5E dDkW1'

k1'
2 ~kW'2kW1'!2

5
pD/2

k'
42D

FGS D

2
21D G2

GS 22
D

2 D
G~D22!

~44!

R13~k'!5
1

k'
2 E dDkW1' dDkW2'

k1'
2 k2'

2 ~kW'2kW1'2kW2'!2

5
pD

k'
822D

FGS D

2
21D G3

G~32D !

GS 3D

2
23D .

ExpandingR2 andR13 aroundD52 gives

R2~k'!5
pD/2

k'
42D H 4

D22
12g

1
1

12
~6g22p2!~D22!1

1

24
@2g32gp2

214c (2)~1!#~D22!21

O@~D22!3#J ,

~45!

R13~k'!5
pD

k'
822D H 12

~D22!2
1

12g

D22

1S 6g22
p2

2 D1
1

2
@4g32gp2216c (2)~1!#

3~D22!1O@~D22!2#J ,

where g.0.577 is Euler’s constant andc (n)(z) is the (n
11)th logarithmic derivative of the gamma function wit
c (2)(1).22.40. Hence
5-9
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@R2~k'!#22
4

3
R13~k'!5

pD

k'
822D

6c (2)~1!~D22!

1O@~D22!2# ~46!

vanishes atD52. Thus FSI between the target spectators
not change the DIS cross section. We conclude that in co
riant gauges, only final state interactions which involve r
catterings of the current quark affect the DIS cross secti

VII. LIGHT-CONE GAUGE A¿Ä0

We have seen that in a covariant gauge, the DIS cr
section is influenced by final-state interactions of the str
quark in the target. This soft physics is contained in the pa
ordered exponential of the matrix element~3! in a general
gauge and appears to vanish in LC gauge,n•A5A150.

However, as we have seen in Sec. V the amplitudesB and
C arise from on-shell intermediate states in thexB→0 limit.
Thus in Eq.~40! the contribution ofuM̃u2, whose expansion
starts asuB̃u212ÃC̃, also arises purely from on-shell inte
mediate states. The presence of such on-shell states is g
independent and they can only occur in the final state.
conclude that the DIS cross section is influenced by fi
state interactions in all gauges. Thus parton distributions c
not be fully determined by parton probabilities in the targ

Let us now discuss some features inherent to the
gauge preventing parton distributions from being probab
ties, in other words making the expression~3! for f q/N incor-
rect in LC gauge. It turns out that terms which are next-
leading corrections in a general gauge cannot be ignore
LC gauge. To see this, it is helpful to recall how the exp
nential arises from perturbative diagrams.

As explained in Ref.@8# each quark field is associate
with an ordered exponential

@A1#[P expF igE
0

`

dy2A1~y2!G ~47!

where the gauge fieldA1 is evaluated on the light cone
y15y'50. This factor arises from the interactions of th
struck quark as it moves through the target. While the pat
Eq. ~47! extends to infinity, there is a partial cancellatio
between the quark fields in the matrix element~3! leaving a
path of lengthy2;1/MxB equal to the coherence length
the virtual photon. Only interactions within this LC distan
can influence the cross section.

Expanding the exponential~47! gives

@A1#511 igE
0

`

dy1
2A1~y1

2!

3F11 igE
y1

2

`

dy2
2A1~y2

2!1 . . . G
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511gE
2`

` dk1
1

2p

Ã1~k1
1!

k1
12 i«

1g2

3E
2`

` dk1
1dk2

1

~2p!2

Ã1~k1
1!Ã1~k2

1!

~k1
11k2

12 i«!~k2
12 i«!

1 . . . ~48!

where

A1~y2!5E
2`

` dk1

2p
Ã1~k1!exp~2 ik1y2!. ~49!

The terms in the expansion~48! arise from the perturba
tive diagrams of Fig. 6, where the cross indicates the virt
photon vertex. The struck quark momentum is asympt
cally large,p1

2→`, implying that the quark moves along th
light coney15y'50. The two-gluon exchange term in Fig
6 is given by

~ ig !2i 2
p1

2Ã1~k1
1! p1

2Ã1~k2
1!

@2p1
2~k1

11k2
1!1 i«#~2p1

2k2
11 i«!

5g2
Ã1~k1

1!Ã1~k2
1!

~k1
11k2

12 i«!~k2
12 i«!

. ~50!

Thus we find equivalence to the expression~48! by approxi-
mating (2p12k2)•Ã(k2

1).p1
2Ã1(k2

1), i.e., by keeping only
the asymptotically large component ofp1. This is correct in
all gaugesexcept A150, where this ‘‘leading’’ term actually
vanishes.

Neglecting the dependence of the matrix element~3! on
the gauge fieldÃ(k1) in LC gauge is equivalent to assumin
that interactions of the struck quark with the gauge field su

as (2pW 12kW2)'•ÃW' do not contribute at leading twist. Th
following example shows how this assumption can fail.

As a simple illustration of how the high energy an
the LC gauge limit can fail to commute we consider t
elastic processq(p12k)T(p)→q(p1)T(p2k), where p

5(M ,M ,0W') andp1
2→` at fixedp1' ,k' . Momentum con-

servation implies

k15
~2pW 1'2kW'!•kW'

p1
2

→0

~51!

k252
k'

2

M
fixed.

The interaction of the gauge field with the quark is given
(2 ig)(2p12k)m•dmn(k). In Feynman gauge the propagat

FIG. 6. Scattering of the struck quark on the gauge field of
target which gives rise to the ordered exponential~47!.
5-10



d
n

ti
b

L
d
a

ha
e
th
f

ur
ai

-

nt

tu

e
r,
e

the

also

ons
ue
the

ark
se
in

c
ec-
ip-
he
e
t in
also
de
-
s in

the

g
art
u-
uc-
he
,
lly
ht-
so-
on
plex
ne
ne
the
ns
d,
e-

t

de
get

STRUCTURE FUNCTIONS ARE NOT PARTON PROBABILITIES PHYSICAL REVIEW D65 114025
is dF
mn(k)52 igmn/(k21 i«) and the coupling is dominate

by 2 igp1
2dF

12(k), which is analogous to the interactio
~50! in the ordered exponential. The elastic amplitude

A~qT→qT!522g2M
p1

2

k'
2

~52!

is thus}p1
2 as befits Coulomb exchange.

In the LC gauge the propagator~4! satisfiesdLC
1n(k)50,

hence thep1
2 component does not contribute. Yet the elas

amplitude is gauge independent and must still be given
Eq. ~52!. The absence of the factorp1

2 in the numerator
coupling is in fact compensated by the factork1}1/p1

2 in
the denominator of the LC gauge propagator~4!. The domi-
nant contribution is from2(2pW 12kW )'

•d2'(k) and the re-
sult indeed agrees with Eq.~52!.

Note that if we had kept only thed1n(k) part of the gauge
propagator in the high energy limit and then chosen the
gauge the elastic scattering amplitude would have seeme
vanish. This incorrect result is analogous to the apparent
sence of rescattering effects in the matrix element~3! for
A150.

In the Feynman gauge calculation of Sec. V we saw t
the reinteractions of the struck quark with the target are
sentially elastic, the intermediate states being on-shell in
xB→0 limit. It is thus not surprising that the calculation o
the scattering amplitudes in the LC gauge has many feat
in common with the elastic scattering example above. Det
of the calculation of the one-loop and two-loop amplitudesB
andC ~35! and~37! in the LC gauge are given in the Appen
dices.

In the LC gauge the Feynman rules must be suppleme
with a prescription for thek150 pole of the propagator~4!.
Three prescriptions that have been studied in the litera
@11,16,17# are given in Eq.~A13! of Appendix A. The con-
tributions of the individual diagrams shown in Fig. 7 for th
one-loop amplitudeB depend on the prescription. Howeve
the k i

150 poles cancel when all diagrams are added. Th

FIG. 7. Diagrams that can give leading order contributions
the one-loop amplitudeB in A150 gauge.
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sum is thus prescription independent and agrees with
Feynman gauge result~35!. We verify the prescription inde-
pendence of the two-loop amplitudeC in Appendix B. A
consistent procedure for regulating the spurious poles is
discussed there.

As we have already emphasized, final state interacti
~FSI! modify the DIS cross section also in the LC gauge d
to the presence of on-shell intermediate states between
rescatterings in the amplitudesB and C. However, while in
the Feynman gauge it is the rescattering of the struck qu
p1 which affects the cross section, in the LC gauge tho
rescatterings actually do not contribute. Indeed, we show
Appendix C that contributions from diagrams like Fig. 7
and 8b to the individual amplitudes cancel in the cross s
tion. Thus in the LC gauge, independently of the prescr
tion, the cross section is modified by FSI occurring on t
antiquark p2, i.e., within the target system. Choosing th
A150 gauge shifts the rescatterings of the quark presen
the Feynman gauge to rescatterings of the antiquark. As
shown in Appendix C, in the LC gauge the partial amplitu
where only attachments top2 are kept equals the full ampli
tude, up to a phase factor. Which particle actually scatter
the quark-antiquark system depends on the gauge, but
presence of on-shell intermediate states does not.

Subtleties can appear when using the Kovchegov~K! pre-
scription @see Eq.~A13!#, since the imaginary part arisin
from a physical cut can be changed by the imaginary p
created by the prescription itself. The K prescription sim
lates the physics of the rescattering corrections by introd
ing an external gauge field into the dynamics. Unlike t
principal value~PV! or Mandelstam-Leibbrandt prescription
the K prescription is not causal, and thus it would norma
not be used for solving the bound state problem and lig
cone wave functions of an isolated hadron in QCD. The
lutions for the light-cone wave function of the target hadr
in the presence of an external gauge field can have com
phases. This is apparently the way in which the light-co
wave functions of a nucleus in the Kovchegov light-co
gauge prescription mimic the effects of rescattering of
fast quark and the Glauber-Gribov shadowing modificatio
of the structure functions. If this picture could be validate
the Kovchegov LC gauge prescription would give a fram

o

FIG. 8. Diagrams that can contribute to the two-loop amplitu
C in A150 gauge. All permutations of the attachments to the tar
line are implied.
5-11
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work in which sDIS is fully determined by the target LC
wave function, solved in the presence of an external field

VIII. CONCLUSIONS

We have found that final state Coulomb rescattering in
target, within the coherence length 2n/Q251/MxB of the
hard process, influences thelN→ l 8X DIS cross section. In
particular, diffractive scattering of the outgoing quark-pair
target spectators is a coherent effect which is not include
the light-front wave functions, even in light-cone gaug
Such effects modify the contributions of the individual targ
partons, implying that the DIS cross section is not fully giv
by the parton probabilities of the initial state. These coher
effects are reminiscent of the LPM effect@14#, which sup-
presses the bremsstrahlung of a high energy electron in
ter due to Coulomb rescattering of the electron within
formation time of its radiated photons.

Our analysis, when interpreted in frames withq1.0, also
supports the color dipole description of deep inelastic lep
scattering at smallx. Even in the case of the aligned je
configurations, one can understand DIS as due to the co
ent color gauge interactions of the incoming quark-pair s
of the photon interacting first coherently and finally incoh
ently in the target.

Our analysis in light-cone gauge resembles the ‘‘covari
parton model’’ of Landshoff, Polkinghorne and Short@18#
and its extensions@19# in the target rest frame. In this de
scription of smallx DIS, the virtual photon with positiveq1

first splits into the pairp1 andp2. The aligned quarkp1 has
no final state interactions. However, the antiquark linep2 can
interact in the target with an effective energyŝ}k'

2 /x while

staying close to its mass shell. Thus at smallx and largeŝ,
the antiquarkp2 line can first multiple scatter in the targe
via the Pomeron and Reggeon exchange, and then fin
scatter inelastically or be annihilated. The DIS cross sec
can thus be written as an integral of thes(q̄p→X) cross
section over thep2 virtuality. In this way, the diffractive
scattering of the antiquark in the nucleus gives rise to
shadowing of the nuclear cross sections(q̄A→X) @4#.

Our results do not contradict the QCD factorization the
rem @8# for inclusive reactions in a general gauge. Howev
they show that the apparent equivalence between the
cross section and the target parton probabilities~1! suggested
by the forward matrix element~3! in A150 gauge is incor-
rect. TheA' components of the gauge field give leadi
twist contributions in the LC gauge.

Our investigation was triggered by the fact that the phy
cally plausible and phenomenologically successful Glaub
Gribov description of DIS shadowing@9,10# implies that fi-
nal state interactions influence the DIS cross section.
physics of shadowing is associated with final state diffract
scattering rather than with the~real! light-cone wave function
of the target. There remains the possibility of incorporat
shadowing in the target wave function by solving it under
specific boundary conditions implied by the Kovchegov L
gauge prescription@17#.

Our analysis is consistent with the standard opera
11402
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product expansion. Hence the usual sum rules of the pa
distributions remain valid in spite of the rescattering~shad-
owing! physics. We have not estimated the quantitative i
portance of the rescattering effects onsDIS , but it is natural
to expect that they are more prominent at small values ofxB
where the coherence length is long. In particular, diffract
DIS is related to shadowing and is apparently generated
rescattering contributions.
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APPENDIX A: ONE-LOOP CALCULATION
IN A¿Ä0 GAUGE

In this appendix we present the calculation of the tw
gluon exchange amplitudeB ~35! in the light-conen•A
5A150 gauge of a scalar Abelian theory. We shall take
target mass to be of the order of the transverse momenta,
rather than Eq.~19!, we here consider the kinematic limit

2n;p1
2@p2

2@ki' ,p2' ,ki
2 ,m,M@ki

1 ,
~A1!

k15MxB1p2
1

and show that the expression for the amplitude remains
same. Leading contributions to the amplitude can come fr
diagramsBa . . . Be of Fig. 7. The factors associated with th
gluon propagators are approximated as

~p1p8!mdmn~k!~2l 1k!n. i
2M

k'
2 k1

@D~k1 l !2D~ l !#

~A2!

where only thed2' part of the propagator~4! contributes,
and the functionD(p)[D(pW') is defined in Eq.~21!. Simi-
larly, the factor from the four-leg scalar Abelian vertex sim
plifies to

~2p2k1!mdmn~k1!dm8n~k2!~2p81k2!m8

.
~2M !2

k1
1k2

1

kW1'•kW2'

k1'
2 k2'

2
~A3!

where again thed2' components dominate. A factor 2ig2

has been omitted for the time being. Direct use of the Fe
man rules and of the kinematics~A1! leads to:
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Ba1Bb52eg4QME
'
E dk1

2

2ip
J~k1

2!E dk2
1

p

1

k1
1k2

1

@D~p1!2D~p22k2!#@D~p22k2!2D~p2!#

2D~p1!@2p2
2k2

11D~p2!2D~p22k2!1 i e#

Bc1Bd52eg4QME
'
E dk1

2

2ip
J~k1

2!E dk2
1

p

1

k1
1k2

1

@D~p1!2D~p22k1!#@D~p22k1!2D~p2!#

@2p1
2k2

11D~p1!2D~p22k1!1 i e#@p2
2k2

12D~p22k1!1 i e#
~A4!

Be52eg4QME
'
E dk1

2

2ip
J~k1

2!E dk2
1

p

1

k1
1k2

1

kW1'•kW2'

2D~p1!

where we use the shorthand notation

E
'

[E d2kW1'

~2p!2

1

k1'
2 k2'

2

~A5!

J~k1
2!5

1

k1
21k1'

2 /M2 i e
1

1

k2
21k2'

2 /M2 i e
.

In order to isolate the poles atki
150 coming from the gluon propagators we view the integrands in Eq.~A4! as rational

functions ofk2
1 , which we decompose in terms of simple elements. Also, sincep1

2 is the largest scale we can approxima

1

k2
1@2p1

2k2
11D~p1!2D~p22k1!1 i e#

.
1

D~p1!2D~p22k1! S 1

k2
1

2
1

k2
12 i e

D . ~A6!

We also use

1

k1
1k2

1
5

1

k1 S 1

k1
1

1
1

k2
1D ~A7!

to arrive at

Ba1Bb52eg4QMp2
2E

'
E dk1

2

2ip
J~k1

2!E dk2
1

p F 1

D~p1!
2

1

D~p22k2!G H 1

k2
12@D~p2!2D~p22k2!#/p2

22 i e

1
1

k1
1 S 12

D~p22k2!

D~p2! D2
1

k2
1

D~p22k2!

D~p2! J
Bc1Bd52eg4QMp2

2E
'
E dk1

2

2ip
J~k1

2!E dk2
1

p F 1

D~p2!
2

1

D~p22k1!G H 1

k2
12 i e

2
1

k2
1J ~A8!

Be52eg4QMp2
2E

'
E dk1

2

2ip
J~k1

2!E dk2
1

p

2kW1'•kW2'

D~p1!D~p2! H 1

k1
1

1
1

k2
1J .

Using the relation

2kW1'•kW2'5D~p1!1D~p2!2D~p22k1!2D~p22k2! ~A9!

one easily checks that the terms}1/ki
1 in Eq. ~A8! give the contribution
114025-13
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2eg4QMp2
2E

'
E dk1

2

2ip
J~k1

2!E dk2
1

2p H 1

k1
1 F 1

D~p2!
2

2

D~p22k2!
1

1

D~p1!
1

D~p22k1!2D~p22k2!

D~p1!D~p2! G
2

1

k2
1 F 1

D~p2!
2

2

D~p22k1!
1

1

D~p1!
1

D~p22k2!2D~p22k1!

D~p1!D~p2! G J ~A10!
of
th

on
th e
which vanishes by symmetry of*' and J(k1
2) under

(k1
1 ,k1

2 ,kW1')↔(k2
1 ,k2

2 ,kW2'). As a consequence, the sum
all diagrams is independent of the way one regularizes
spuriouspoles atki

150. Noting that

E dk1
2

2ip
J~k1

2!51 ~A11!

the prescription independent result forB reads

B52 ieg4QMp2
2E

'
F 1

D~p2!
2

2

D~p22k2!
1

1

D~p1!G
~A12!

in agreement with the result~35! in the Feynman gauge~and
largeM ).

As an individual diagram may contain pole terms;1/ki
1 ,

its value can depend on the prescription. As an illustrati
we give the expressions of the different diagrams using
three following prescriptions:

1

ki
1

→F 1

ki
1G

h i

5H ki
1@~ki

12 ih i !~ki
11 ih i !#

21 ~PV!,

@ki
12 ih i #

21 ~K!,

@ki
12 ih ie~ki

2!#21 ~ML !,
~A13!

namely the principal value, Kovchegov5 @17# and
Mandelstam-Leibbrandt@16# prescriptions. The ‘‘sign func-
tion’’ is denoted e(x)5Q(x)2Q(2x). With the PV pre-
scription we have

E dk2
1F 1

k2
1G

h2

50 ~A14!

and get

Ba1Bb52 ieg4QMp2
2E

'
F 1

D~p1!
2

1

D~p22k2!G
5Only thed2' component of the gauge field propagator in Eq.~4!

of @17# contributes in our calculation.
11402
e

,
e

Bc1Bd52 ieg4QMp2
2E

'
F 1

D~p2!
2

1

D~p22k1!G
Be50. ~A15!

Using the K prescription we obtain

Ba1Bb522ieg4QMp2
2E

'
F 1

D~p1!
2

1

D~p22k2!G
3F12

D~p22k2!

D~p2! G
Bc1Bd50 ~A16!

Be52 ieg4QMp2
2E

'

22kW1'•kW2'

D~p1!D~p2!
.

The calculation with the ML prescription is a little mor
complicated. Defining

I 15E dk1
2J~k1

2!Q~2k2
2!

~A17!

I 25E dk1
2J~k1

2!Q~k1
2!

and using Eq.~A11! we get after regularizing Eq.~A8!

Ba1Bb52
eg4QMp2

2

p E
'
F 1

D~p1!
2

1

D~p22k2!G
3F I 1

D~p22k2!

D~p2!
1I 2S 12

D~p22k2!

D~p2! D G
Bc1Bd52

eg4QMp2
2

p E
'
F 1

D~p2!
2

1

D~p22k1!G I 1

~A18!

Be52
eg4QMp2

2

p E
'

kW1'•kW2'

D~p1!D~p2!
~ I 12I 2!.

Calculating explicitlyI 1 and I 2 gives
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I 15 logS k2'
2

uk1'
2 2k'

2 u D 1 ip@11Q~k'
2 2k1'

2 !#

~A19!

I 25 logS uk'
2 2k2'

2 u

k1'
2 D 1 ipQ~k2'

2 2k'
2 !.

We can then use the relation

I 1~k1 ,k2!1I 2~k2 ,k1!52ip ~A20!
11402
to check that the sum of all diagrams evaluated with the M
prescription indeed reproduces the result~A12!.

Instead of using Eq.~A8!, one can also directly use Eq
~A4!, after regularizing theki

150 poles with a chosen pre
scription@for instance, one of those given in Eq.~A13!#, and
perform thek2

1 integral using Cauchy’s theorem. The calc
lation is more involved, but reproduces all results presen
above. See the comments at the end of Appendix B conc
ing this procedure.
ine are
APPENDIX B: TWO-LOOP CALCULATION IN A¿Ä0 GAUGE

Here we evaluate the three-gluon exchange amplitudeC ~37! in A150 gauge and in the kinematic limit~A1!. The leading
order diagramsCa . . . Cg are displayed in Fig. 8. For each diagram, the 6 permutations of the vertices on the target l
taken into account. Since two permutations correspond to the same topology for diagramsCd . . . Cg , there is a factor 1/2 for
those diagrams. We will use the following shorthand notation:

E
'

[E d2kW1'

~2p!2

d2kW2'

~2p!2

1

k1'
2 k2'

2 k3'
2

, E
1

[E dk1
1

2p

dk2
1

2p
, E

2
[E dk1

2

2p i

dk2
2

2p i

~B1!

J5
1

@k1
21k1'

2 /M2 i e#@k1
21k2

21~kW1'1kW2'!2/M2 i e#
1perm~k1 ,k2 ,k3!

~whereJ contains 6 terms arising from the 6 permutations mentioned above!, and

Di j [D~pW i'2kW j'!, Di[D~pW i'! for i 51,2 and j 51,2,3 ~B2!

whereD is defined in Eq.~21!. Using the kinematic limit~A1! and approximations as in Eqs.~A2! and~A3!, the scalar Abelian
Feynman rules give

Ca522eg6QME
'
E

2
JE

1

N1N2N3

k1
1k2

1k3
1

1

2D1~p2
2k1

12D111 i e!~2p2
2k3

12N31 i e!

Cb522eg6QME
'
E

2
JE

1

N1N2N3

k1
1k2

1k3
1

1

~2p1
2k1

11N11 i e!~p2
2k1

12D111 i e!~2p2
2k3

12N31 i e!

Cc522eg6QME
'
E

2
JE

1

N1N2N3

k1
1k2

1k3
1

1

~2p1
2k1

11N11 i e!~2p1
2~k1

11k2
1!1N11N21 i e!~2p2

2k3
12N31 i e!

Cd522eg6QME
'
E

2
JE

1

N3kW1'•kW2'

k1
1k2

1k3
1

1

2D1~2p2
2k3

12N31 i e!
~B3!

Ce522eg6QME
'
E

2
JE

1

N1kW2'•kW3'

k1
1k2

1k3
1

1

2D1~p2
2k1

12D111 i e!

Cf522eg6QME
'
E

2
JE

1

N3kW1'•kW2'

k1
1k2

1k3
1

1

~2p1
2~k1

11k2
1!1N11N21 i e!~2p2

2k3
12N31 i e!

Cg522eg6QME
'
E

2
JE

1

N1kW2'•kW3'

k1
1k2

1k3
1

1

~2p1
2k1

11N11 i e!~p2
2k1

12D111 i e!
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with

N15D12D11, N25D112D23, N35D232D2 . ~B4!

Similarly to what was done in Appendix A for the one-loop calculation, one now considers all integrands in Eq.~B3! as
rational functions ofki

1( i 51,2,3), which we decompose in simple elements, making first use of

1

k1
1k2

1k3
1

5
1

k1 S 1

k1
1k2

1
1

1

k1
1k3

1
1

1

k2
1k3

1D . ~B5!

The limit p1
2→` must be takenafter the decomposition in simple elements has been completed, otherwise some

singularities can arise. As there are in the two-loop case two independent ‘‘1 ’’ integration variables (k1
11k2

11k3
15k1), each

integrand can be expressed as a sum of terms having one of the following forms:

1

ki
1kj

1
,

1

ki
1~kj

16 i e!
,

1

~ki
16 i e!~kj

16 i e!
~ iÞ j !. ~B6!

In Eq. ~B6! the poles atki
150 come from the gluon propagators in the LCA150 gauge, whereas those atki

156 i e originate
from the scalar quark propagators. The result of the full decomposition is

Ca522eg6QMp2
2E

'
E

2
JE
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D23
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D S 12
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Equation~B7! can be conveniently used to group togeth
the poles atki

150, which appear in the two first forms o
Eq. ~B6!. For each of these forms, a lengthy calculati
shows that theki

150 poles add to a contribution which i
identically zero, analogously to Eq.~A10! for the one-loop
calculation. On the way we use the identities

22kW1'•kW2'5D111D122D232D1

~B8!

22kW2'•kW3'5D131D122D212D1

D21D111D121D132D212D222D232D150 ~B9!

and realize that in every factor@1/ki
161/(kj

16 i e)#( iÞ j ) of
Eq. ~B7!, kj

1 can be replaced byki
1 ~and not the contrary6!

by a change of variable. We also use the symmetry of*' and
J underki↔kj for iÞ j .

Thus we have explicitly checked the complete presc
tion independence of our two-loop calculation. Only terms
the last form of Eq.~B6! remain in Eq.~B7!. Using

E
2

J~k1
2 ,k2

2!51 ~B10!

as well as Eqs.~B8! and~B9! and symmetry arguments, on
shows that these terms add to

C52
1

3
eg6MQp2

2E
'
F 1

D2
2

3

D23
1

3

D11
2

1

D1
G

~B11!

which exactly reproduces the result~37! obtained in the
Feynman gauge~for largeM ).

After having shown the complete prescription indepe
dence of our calculation, we conclude this appendix w
some important remarks. We stress that Eqs.~B3! and ~B7!
are equivalent mathematical expressions for any of the
gramsCa . . . Cg . To evaluate a given diagram, one needs
regularize theki

150 poles, but this can be done startin
either from Eqs.~B3! or from ~B7!, and the same result
must follow. We have checked this for all diagrams using
PV and K prescriptions. We thus see no problems in apply
the PV prescription to two-loop diagrams. Using the PV p
scription on Eq.~B7! is straightforward, but applying it to
Eq. ~B3! requires some comments. Regularizing

6We do not allow the inverse change 1/ki
1→1/kj

1 to have the

possibility of dealing with a regularized form of 1/ki
1 depending on

ki
2 , as is the case for the ML prescription, see Eq.~A13!.
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r

-
f

-
h

a-
o

e
g
-

1/(k1
1k2

1k3
1) yields

1

k1
1k2

1k3
1

→)
i 51

3

PVS 1

ki
1D

5 lim
h3→0

lim
h2→0

lim
h1→0

F 1

k1
1G

h1

F 1

k2
1G

h2

F 1

k3
1G

h3

~B12!

where@1/ki
1#h i

is given in Eq.~A13!. Thus the poles atki
1

50 must be regularized withdistinctsmall finite parameters
h i . Then theki

1 integrals are performed using Cauchy
theorem, and only in the end the limitsh1→0, h2→0, h3
→0 are taken separately~in arbitrary order!. We found this
procedure to be well-defined and to give results consis
with those directly obtained from Eq.~B7!.

Finally, as in the one-loop case, it is remarkable that the
prescription makes all two-loop diagrams where the f
quark rescatters vanish, i.e., onlyCa , Cd andCe contribute
to the amplitudeC.

APPENDIX C: ABSENCE OF STRUCK QUARK
RESCATTERING IN A¿Ä0 GAUGE

In this appendix we show that in theA150 gauge,
independently of the prescription used to regularize
spurious ki

150 poles, rescatterings of the struck quarkp1

cancel in the cross section, i.e. after summing over cuts
the forward Compton amplitude. This is done by proving th
the full contribution to the cross section@use Eqs.
~27!,~36!,~38!#

E d2rW'd2RW'@ uB̃u212ÃC̃#

52
1

3
~eg4QMp2

2!2E d2rW'd2RW'V~mir'!2

3W~rW' ,RW'!4 ~C1!

is given by attachments top2 only.
We need to know the partial amplitudesA2 ,B2 ,C2 con-

tributing toA,B,C where only attachments top2 are kept. For
the Born amplitudeA, only the diagram of Fig. 4a contrib
utes in A150 gauge. Thus the partial amplitudeA2 from
attachments top2 is actually the full amplitudeA given in
Eq. ~22!,

A25A5
2eg2MQp2

2

k'
2 F 1

D2
2

1

D1
G ~C2!
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The partial one-loop amplitudeB2 is given by the sum of the
diagramsBa , Bb andBe of Fig. 7. This sum is prescription
dependent. We use the notation@see Eq.~A13!#

I h5E dk2
1

ip F 1

k2
1G

h

~C3!

giving I PV50 and I K51. After regularizing Eq.~A8! and
using Eq.~A11! and symmetry arguments we find7
11402
B25Ba1Bb1Be

52 i eg4QMp2
2E

'
F S 1

D1
2

1

D22
D1I hS 1

D2
2

1

D22
D G .

~C4!

The partial two-loop amplitudeC2 is given by the diagrams
Ca , Cd and Ce of Fig. 8. Regularizing Eq.~B7! and using
Eq. ~B10! we get
full
Ca52
1

2
eg6QMp2

2E
'
H S 1

D23
2

1

D11
D S 12

D11

D1
D S D23

D2
21D ~ I h11!21S 1

D11
2

1

D1
D D112D23

D2
~ I h

221!

2
~D12D11!~D112D23!

D1D2~D22D11!
~ I h21!2J

Cd5
1

2
eg6QMp2

2E
'

kW1'•kW2'

D1D2
H 2I h~ I h21!1S 12

D2

D23
D ~ I h11!2J

Ce5
1

2
eg6QMp2

2E
'

kW2'•kW3'

D1D2
H S 12

D1

D11
D2I h~2I h21!1

D112D1

D22D11
~ I h21!2J . ~C5!

Using Eqs.~B8! and ~B9! and symmetry arguments we get, after some algebra,

C25Ca1Cd1Ce52
1

2
eg6QMp2

2E
'
H F2

2

3D1
1

1

6D2
2

1

2D23
1

1

D11
G1I hF2

1

D23
1

1

D11
G1I h

2F 1

2D2
2

1

2D23
G J . ~C6!

It is an easy exercise to express the partial amplitudesA2 ,B2 ,C2 in transverse coordinate space, as was done for the
amplitudesA,B,C in Sec. V@see Eq.~24!#. Since the partial amplitudes are not infrared finite,8 we introduce a small photon
massl in the exchanged photon propagators, i.e.1/ki'

2 →1/(ki'
2 1l2) in the definition of*' ~A5! or ~B1!. Then

Ã252eg2QMp2
2VW

B̃252 ieg4QMp2
2VW

I hK0~lR'!2K0~luRW'1rW'u!
2p

~C7!

C̃252
1

4
eg6QMp2

2VWFW2

3
1S I hK0~lR'!2K0~luRW'1rW'u!

2p
D 2G
cal
rk
whereV andW stand forV(mir') andW(rW' ,RW'). The con-
tribution from attachments top2 to the cross section reads

E d2rW'd2RW'@ uB̃2u212Ã2C̃2#

52
1

3
~eg4QMp2

2!2E d2rW' d2RW' V2W4.

~C8!
This is infrared finite, prescription independent, and identi
to the full result~C1!. Hence rescatterings of the struck qua
p1 cancel in the cross section inA150 gauge.

From Eqs.~C1! and~C8! we see that inA150 gauge and
in coordinate space, the contribution from attachments top2
equals the full contributionuBu212AC even at the integrand

7In order to use Eq.~A11! in Eq. ~A8!, we need to consider a
regularized form of 1/ki

1 independent ofki
2 ~i.e. we exclude for

simplicity the ML prescription in this Appendix!. Equation~C4! is
valid for any such prescription.
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level, i.e., before integrating overrW' andRW' . We thus have,
in coordinate space,

uM̃u25uM̃2u2 ~C9!

where M̃5Ã1B̃1C̃1 . . . is given in Eq.~39! and M̃2

5Ã21B̃21C̃21 . . . corresponds to the partial amplitud
where only attachments top2 are kept. Thus inA150 gauge

M̃~rW' ,RW'!5eifM̃2~rW' ,RW'!. ~C10!

The full amplitudeM̃ is obtained fromM̃2 by inserting any
number of rescatterings of the quarkp1. Equation ~C10!
reads

Ã1B̃1C̃1 . . . 5eif~Ã21B̃21C̃21 . . . !. ~C11!

By expanding the lhs and rhs of Eq.~C11! up to orderg6,
one realizes thatf must be at least of orderg2,

f5f1 g21f2 g41 . . . . ~C12!

Identification of the terms of orderg4 andg6 in the two sides
of Eq. ~C11! leads to

f15
I h21

4p
K0~lR'!

~C13!
f250

or

f5g2
I h21

4p
K0~lR'!1O~g6!. ~C14!

8Note, however, that with the K prescription (I h51) the partial
amplitudes~C7! equal the full ones, as already mentioned at the e
of Appendix B. Thus the partial amplitudes are finite whenl→0
with this particular prescription.
11402
Although not proven here, theO(g6) terms in f are ex-
pected to vanish because adding one rescattering ofp1 can
only bring a powerg2 ~see also the following discussion!.
Thus we get

M̃~rW' ,RW'!5expF i
g2

4p
~ I h21!K0~lR'!G

3M̃2~rW' ,RW'!. ~C15!

As expected, sinceM̃ is infrared safe and prescription inde
pendent, all the dependence onl andI h of M̃2 is contained
in the phase. Note also that with the K prescription,I h51
andM̃5M̃2.

Equation~C15! can also be understood as follows. In m
mentum space, if we callm the Lorentz index associated t
the coupling ofp1, we know that the amplitude is dominate
by the nnki

m/ki
1 term of the exchanged gluon propagator

A150 gauge, withm5' andn52. Together with the sca-
lar quark propagator

D i
21}~p12ki !

22m21 i«.2p1
2ki

11ai1 i« ~C16!

whereai5D(p1)2D(p12ki), the factor 1/ki
1 yields

E dki
1

2p i

1

~2p1
2ki

11ai1 i«!ki
1

→ 1

ai
E dki

1

2p i S F 1

ki
1G

h

1
1

2ki
11 i« D

5
1

ai

I h21

2
~C17!

where some simplification similar to Eq.~A6! was made. The
scalar coupling brings a factorg2kW i'•(2pW 12kW i)'5g2ai
which compensates the prefactor in the rhs of Eq.~C17!. We
are left with the 1/(ki'

2 1l2) factor from the gluon propaga
tor, which after Fourier transform givesK0(lR')/(2p).
This builds the complete phase in Eq.~C15!.
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