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Lattice extraction of K\pp amplitudes to O„p4
… in chiral perturbation theory
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We show that the lattice calculation ofK→pp ande8/e amplitudes for~8,1! and~27,1! operators toO(p4)
in chiral perturbation theory is feasible when one usesK→pp computations at the two unphysical kinematics
allowed by the Maiani-Testa theorem, along with the usual~computable! two- and three-point functions,

namelyK→0, K→p ~with momentum!, and K-K̄. Explicit expressions for the finite logarithms emerging
from our O(p4) analysis to the above amplitudes are also given.
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I. INTRODUCTION AND MOTIVATION

Recent lattice QCD calculations done by the CP-PACS@1#
and RBC @2# Collaborations using domain wall fermion
have made significant progress in explaining thenI 51/2
rule in the decayK→pp, though their results for the direc
CP violation parametrized by Re(e8/e) differ rather drasti-
cally from experiment. Recall that measurements at CE
@3# and Fermilab@4# have yielded an experimental gran
average of Re(e8/e)5(17.261.8)31024. On the theoretical
side, both lattice collaborations find a value of Re(e8/e).
2531024, a negativevalue, though both groups have ma
rather severe~uncontrolled! approximations. Given that larg
cancellations occur between contributions of the strong
the electroweak penguins towardse8/e ~cancellations that
are not relevant in the calculation of theCP-conservingK
→pp amplitudes!, and given the serious approximation
the disagreement with experiment fore8/e should not be
totally unexpected@5,6#.

One of these uncontrolled approximations was the us
the quenched approximation, where the fermion determin
in the path integral is set to 1 in order to make the probl
tractable on current computers. Another was the use
leading-order chiral perturbation theory to relate unphys
K→p andK→u0& amplitudes to the physicalK→pp am-
plitudes. This method was first proposed by Bernardet al.
@7#. Because of the difficulty of extracting multihadron dec
amplitudes from the lattice, as expressed by the Maiani-T
theorem@8#, it is much easier to compute the two- and thre
point functions~i.e., K→u0& and K→p, respectively! and
use chiral perturbation theory~ChPT! to extrapolate to the
physical matrix elements.

It is likely, however, that next-to-leading-order ChPT w
introduce significant corrections (;30% or more! to the
leading-order amplitudes. Furthermore, since final-s
~strong! phases cannot arise at tree level in the chiral am
tudes, chiral-loop corrections are essential to enable us to
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the measured phases for theI 50 and 2 final states as a
additional testing ground of the calculational apparatus. U
fortunately, at higher orders in ChPT the number of fr
parameters that enters the theory~and must be determine
from first-principles methods like the lattice! proliferates rap-
idly. It has been shown by Cirigliano and Golowich@9# that
the dominant electroweak penguin contributions@(8L,8R)’s#
to K→pp can be recovered at next-to-leading order~NLO!
from K→p amplitudes using momentum insertion. Bijne
et al. @10# showed how to obtain most of the low-energ
constants~LEC’s! relevant for the case of the (8L,1R)’s and
(27L,1R)’s using off-shellK→p Green’s functions; not all
LEC’s could be determined, however.

On the lattice, though, not onlyK→u0& andK→p with
momentum insertion are calculable, but so isK→pp at the
two values of unphysical kinematics for which the Maian
Testa theorem can be bypassed. To recapitulate, de
Maiani-Testa restrictions, direct calculation ofK→pp on
the lattice is accessible at~i! mK

lattice5mp
lattice, where the weak

operator inserts energy@11# and~ii ! mK
lattice52mp

lattice, i.e., at
threshold@12#. We will refer to these two special locations a
unphysical kinematics point 1~UK1! and point 2~UK2!,
respectively. In this work, we therefore focus on usingK

→u0&, K→p with momentum insertion andK-K̄, along
with information fromK→pp at these two unphysical val
ues of the kinematics which are accessible to the lattice@13#.
Thereby, we are able to show that all the relevantO(p4)
LEC’s can be recovered forK→pp in the physical (8L,1R)
and (27L,1R) cases. Expressions forO(p4) finite logarithmic
contributions to all the processes that may be needed
fitting the lattice data are then given.

The content of the paper is as follows. Section II ve
briefly recapitulates the formalism of effective four-fermio
operators in a standard model calculation. Section III revie
ChPT and the realization of the effective four-quark ope
tors in terms of ChPT operators for weak processes. Sec
VI presents the results of this paper, showing how to obt
the low-energy constants necessary for physicalK→pp am-
plitudes atO(p4) from quantities which can, in principle, b
computed on the lattice. Section V presents the conclus
©2002 The American Physical Society20-1
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Finally, the finite logarithmic contributions to the releva
amplitudes are presented in a set of Appendixes.

II. EFFECTIVE FOUR-QUARK OPERATORS

In the standard model, the nonleptonic interactions can
expressed in terms of an effectiveDS51 Hamiltonian using
the operator product expansion@14,15#,

^ppuHnS51uK&5
GF

A2
VudVus* ( ci~m!^ppuQi uK&m ,

~1!

whereci(m) are the Wilson coefficients containing the sho
distance perturbative physics, and the matrix eleme
^ppuQi uK&m must be calculated nonperturbatively. The fo
quark operators are

Q15 s̄agm~12g5!uaūbgm~12g5!db , ~2!

Q25 s̄agm~12g5!ubūbgm~12g5!da , ~3!

Q35 s̄agm~12g5!da(
q

q̄bgm~12g5!qb , ~4!

Q45 s̄agm~12g5!db(
q

q̄bgm~12g5!qa , ~5!

Q55 s̄agm~12g5!da(
q

q̄bgm~11g5!qb , ~6!

Q65 s̄agm~12g5!db(
q

q̄bgm~11g5!qa , ~7!

Q75 3
2 s̄agm~12g5!da(

q
eqq̄bgm~11g5!qb , ~8!

Q85 3
2 s̄agm~12g5!db(

q
eqq̄bgm~11g5!qa , ~9!

Q95 3
2 s̄agm~12g5!da(

q
eqq̄bgm~12g5!qb , ~10!

Q105
3
2 s̄agm~12g5!db(

q
eqq̄bgm~12g5!qa . ~11!

In the effective theory,Q1 andQ2 are the current-curren
weak operators,Q32Q6 are the operators arising from QC
penguin diagrams, whileQ72Q10 are the operators arisin
from electroweak penguin diagrams.

III. CHIRAL PERTURBATION THEORY

Chiral perturbation theory~ChPT! is an effective quantum
field theory where the quark and gluon degrees of freed
have been integrated out, and is expressed only in term
the lowest mass pseudoscalar mesons@16#. It is a perturba-
11402
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tive expansion about small quark masses and small mom
tum of the low mass pseudoscalars. The effective Lagrang
is made up of complicated nonlinear functions of the ps
doscalar fields, and is nonrenormalizable, making it nec
sary to introduce arbitrary constants at each order in per
bation theory. In such an expansion, operators of hig
order in the momentum~terms with increasing numbers o
derivatives! or mass appear at higher order in the pertur
tive expansion. The most general set of operators at a g
order can be constructed out of the unitary chiral matrix fi
S, given by

S5expF2ifala

f G , ~12!

where la are proportional to the Gell-Mann matrices wi
tr(lalb)5dab , fa are the real pseudoscalar-meson fiel
andf is the meson decay constant in the chiral limit, withf p

equal to 130 MeV in our convention.
At leading order@O(p2)# in ChPT, the strong Lagrangia

is given by

L st
(2)5

f 2

8
tr@]mS]mS#1

f 2B0

4
tr@x†S1S†x#, ~13!

wherex5(mu ,md ,ms)diag and

B05
mp1

2

mu1md
5

mK1
2

mu1ms
5

mK0
2

md1ms
.

The leading-order weak chiral Lagrangian is given by@17#

L W
(2)5a88 tr@l6SQS†#

1a1 tr@l6]mS]mS†#1a22B0 tr@l6~x†S1S†x!#

1a27tkl
i j ~S]mS†! i

k~S]mS†! j
l 1H.c., ~14!

where tkl
i j is symmetric ini, j, andk,l are traceless on an

pair of upper and lower indices with nonzero elementst12
13

51, t22
2351/2, and t32

3352 3
2 . Also, Q is the quark charge

matrix, Q51/3(2,21,21)diag, and (l6) i j 5d i3d j 2.
The terms in the weak Lagrangian can be classified

cording to their chiral transformation properties und
SU(3)L3SU(3)R . The first term in Eq.~14! transforms as
8L38R under chiral rotations and corresponds to the el
troweak penguin operatorsQ7 andQ8. The next two terms in
Eq. ~14! transform as 8L31R , while the last transforms a
27L31R under chiral rotations. All ten of the four-quark op
erators of the effective weak Lagrangian have a realizatio
the chiral Lagrangian differing only in their transformatio
properties and the values of the low-energy constants wh
contain the nonperturbative dynamics of the theory.

For the transition of interest,K→pp, the operators can
induce a change in isospin of1

2 or 3
2 depending on the fina

isospin state of the pions. We can then classify the isos
components of the four-quark operators according to th
transformation properties@1,2#:
0-2
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Q1
1/2,Q2

1/2,Q9
1/2,Q10

1/2:8L31R% 27L31R ;

Q1
3/2,Q2

3/2,Q9
3/2,Q10

3/2:27L31R ;

Q3
1/2,Q4

1/2,Q5
1/2,Q6

1/2:8L31R ;

Q7
1/2,Q8

1/2,Q7
3/2,Q8

3/2:8L38R .

Note thatQ32Q6 are pure isospin12 operators. This pape
deals only with the 27L31R and 8L31R operators. For the
treatment of the 8L38R operators toO(p2) NLO, see Ref.
@9#. At NLO, the strong Lagrangian involves 12 addition
operators with undetermined coefficients. These were in
duced by Gasser and Leutwyler in@18#. The complete basis
of counterterm operators for the weak interactions withDS
51,2 was treated by Kambor, Missimer, and Wyler in@19#
and @20#. A minimal set of counterterm operators contribu
ing to K→p andK→pp for the (8L,1R) and (27L,1R) cases
is given by@17#, with the effective Lagrangian

L W
(4)5( eiO i

(8,1)1( diO i
(27,1), ~15!

O 1
(8,1)5tr@l6S2#, O 1

(27,1)5tkl
i j ~S! i

k~S! j
l ,

O 2
(8,1)5tr@l6S#tr@S#, O 2

(27,1)5tkl
i j ~P! i

k~P! j
l ,

O 3
(8,1)5tr@l6P2#, O 4

(27,1)5tkl
i j ~Lm! i

k~$Lm,S%! j
l ,

O 4
(8,1)5tr@l6P#tr@P#, O 5

(27,1)5tkl
i j ~Lm! i

k~@Lm,P# ! j
l ,

O 5
(8,1)5tr@l6@S,P##, O 6

(27,1)5tkl
i j ~S! i

k~L2! j
l ,

O 10
(8,1)5tr@l6$S,L2%#, O 7

(27,1)5tkl
i j ~Lm! i

k~Lm! j
l tr @S#,

O 11
(8,1)5tr@l6LmSLm#, O 20

(27,1)5tkl
i j ~Lm! i

k~]nWmn! j
l ,

~16!

O 12
(8,1)5tr@l6Lm#tr@$Lm,S%#, O 24

(27,1)5tkl
i j ~Wmn! i

k~Wmn! j
l ,

O 13
(8,1)5tr@l6S#@L2#,

O 15
(8,1)5tr@l6@P,L2##,

O 35
(8,1)5tr@l6$Lm ,]nWmn%#,

O 39
(8,1)5tr@l6WmnWmn#,

with S52B0(x†S1S†x), P52B0(x†S2S†x), Lm
5 iS†]mS , andWmn52(]mLn1]nLm).

This list is identical to that of Bijnenset al. @10# except
for the inclusion ofO 35,39

(8,1) andO 20,24
(27,1), which contain surface

terms, and so cannot be absorbed into the other constan
processes which do not conserve 4-momentum at the w
vertex. Since we must use 4-momentum insertion in a nu
ber of our amplitudes, these counterterms must be con
ered, and they are left explicit even in the physical amp
tudes. There are additional operators containing surf
terms, but it was checked that these counterterms can
11402
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absorbed into linear combinations of the above minimal
for all amplitudes considered in this paper.

The DS52 operators are components of the same ir
ducible tensor@21# under SU(3)L3SU(3)R , and so thedi
are the same for both theDS51 and DS52 cases. The
operators governingDS52 transitions are obtained from th
above (27L,1R)’s, only with t22

335t33
2251,tkl

i j 50 otherwise.
This is important since some of our information comes fro
the K0→K0 amplitude.

The divergences associated with the counterterms h
been obtained in@19# and @10#. The subtraction procedur
can be defined as

ei5ei
r1

1

16p2f 2 F 1

d24
1

1

2
~gE212 ln 4p!G

32~a1« i1a2« i8!, ~17!

di5di
r1

1

16p2f 2 F 1

d24
1

1

2
~gE212 ln 4p!G2a27g i ,

~18!

with the divergent pieces« i ,« i8 ,g i given in Table I.
It is also necessary for the method of this paper to c

sider theO(p4) strong Lagrangian, which was first given b
Gasser and Leutwyler,L st

(4)5(LiO i
(st) .

The strongO(p4) operators relevant for this calculatio
are the following@18#:

O 1
(st)5tr@L2#2,

O 2
(st)5tr@LmLn#tr@LmLn#,

O 3
(st)5tr@L2L2#,

O 4
(st)5tr@L2#tr@S#,

O 5
(st)5tr@L2S#,

TABLE I. The divergences in the weakO(p4) counterterms,
ei ’s anddi ’s, for the ~8,1!’s and ~27,1!’s, respectively.

ei « i « i8 di g i

1 1/4 5/6 1 21/6
2 213/18 11/18 2 0
3 5/12 0 4 3
4 25/36 0 5 1
5 0 5/12 6 23/2
10 19/24 3/4 7 1
11 3/4 0 20 1/2
12 1/8 0 24 1/8
13 27/8 1/2
15 23/24 23/4
35 23/8 0
39 23/16 0
0-3
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O 6
(st)5tr@S#2,

O 8
(st)5

1

2
tr@S22P2#. ~19!

The Gasser-Leuytwyler counterterms also contribute to
cancellation of divergencies in the expressions relevan
this paper. The subtraction is defined similarly to that of
weak counterterms,

Li5Li
r1

1

16p2 F 1

d24
1

1

2
~gE212 ln 4p!GG i , ~20!

with the divergent parts of the counterterm coefficients giv
in Table II @18#.

IV. K\pp AMPLITUDES AT O„P4
…

As mentioned before, in this work we will include bot
K→p with momentum insertion andK→pp at the two
unphysical kinematics. The complete list of necessary ing
dients consists of the two-point functionsK0→u0&, the three
point functions K0→K0, and K→p, all with ms5” md
5mu , and the four-point functionsK→pp at the two values
of unphysical kinematics,mK5mp ~requiring energy inser-
tion! and mK52mp . These two threshold values of the k
nematics bypass the Miani-Testa theorem, which states
multihadron final states are not accessible on the lattic
any other kinematics aside from the threshold@8#. At these
kinematics, the strong phases are 0, and the effects of fi
state interactions vanish. However, these amplitudes at
physical kinematics do contain information on theO(p4)
low-energy constants, and when combined with informat
from the other two- and three-point functions mention
above, all of theO(p4) low-energy constants necessary f
K→pp can be obtained. The phases of the amplitude
introduced in ChPT via the one-loop unitarity corrections
the O(p2) operators.

Because theK→p amplitudes do not conserve fou
momentum forms5” md , it is necessary to allow the wea
operator to transfer a four-momentumq[pK2pp, as in@9#.
This is also necessary for the case ofK→pp,mK5mp @11#.
At O(p4), this requires the inclusion of~potentially many!
surface terms in our minimal counterterm operator basis.
number of such additional terms appearing in linearly in

TABLE II. The divergences in the strongO(p4) counterterms,
G i @18#.

i G i

1 3/32
2 3/16
3 0
4 1/8
5 3/8
6 11/144
8 5/48
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pendent combinations was discovered to be small~four!, and
thus the method was not invalidated. Also, this method
quires the computation ofK→pp matrix elements at un-
physical kinematics because there are LEC’s which appea
K→pp but do not appear inK→p at all. These ared5 , e13,
ande15.

The diagrams which must be evaluated for theO(p4)
corrections are shown in Fig. 1. The diagrams to be eva
ated forK→u0& are A1 and A2. The diagrams to be eval

ated forK→p andK→K̄ are B1–B3. C1–C6 and D1–D6
must be evaluated forK→pp. D1–D6 contain the tadpole
vertex of the weak massO(p2), ~8,1! operator. Also, the
renormalization of the external legs via the strong interact
must be taken into account.

A. „27L ,1R…, DIÄ3Õ2

The counterterms necessary to reconstruct
O(p4)(27L,1R),DI 53/2,K→pp amplitudes can be obtaine
from K0→K0; K1→p1,DI 53/2; andK→pp,DI 53/2 at
eithervalue of the unphysical kinematics. The expression
K0→K0 is given by~all masses and decay constants are
bare ones!

FIG. 1. O(p4) corrections include tree-level diagrams with in
sertion of theO(p4) weak vertices~crossed circles!, tree-level dia-
grams with insertion ofO(p4) strong vertices~lightly shaded
circles!, one-loop diagrams with insertions of theO(p2) weak ver-
tices~small filled circles!, and theO(p2) strong vertices~big filled
circles!. A1 and A2 are forK→u0&. B1–B3 are forK→p and K

→K̄. C1–C6 and D1–D6 are forK→pp.
0-4
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^K0uO DS52
(27,1) uK0&ct5

8a27

f 2
mK

2 2
8

f 2
@4~d1

r 1d2
r 1d20

r 24d24
r

2d4
r 2d7

r !mK
4 22~4d1

r 1d7
r !mK

2 mp
2

14d1
r mp

4 #. ~21!

Equation ~21!, as well as all the following amplitudes
include only the tree levelO(p2) andO(p4) weak counter-
term contributions. For brevity, the logarithmic terms as w
as the Gasser-LeutwylerLi counterterms have been omitte
in the body of the paper, but are included in a set of App
dixes. It was verified that the divergences in the logarithm
terms cancel those of the counterterms, providing a str
check on the calculation. Note also that for the application
this method most of the Gasser-Leutwyler counterterms m
be known, and that an improved determination of the r
evant ones could be obtained from a lattice calculation
observables in the purely strong sector, e.g., most can
obtained from the pseudoscalar masses and decay cons

From the aboveK0→K0 amplitude, one can extract th
values ofd1

r andd7
r from a fit to terms quadratic in the quar

masses. The other relevant expressions forK→pp,DI
53/2 are

^p1uO (27,1),(3/2)uK1&ct52
4

f 2
a27pK•pp1

8

f 2
@2d2

r mK
2 mp

2

1~d20
r 2d4

r 22d7
r !mK

2 pK•pp

1~d20
r 2d4

r 2d7
r !mp

2 pK•pp

28d24
r ~pK•pp!2#, ~22!

^p1p2uO (27,1),(3/2)uK0&ct

52
8ia27

f 3
m21

16im4

f 3
~d20

r 22d4
r 1d5

r 23d7
r !

~23!

for K→pp,mK5mp5m, and

^p1p2uO (27,1),(3/2)uK0&ct52
4ia27

f 3
~mK

2 2mp
2 !

1
3imK

4

2 f 3
~2d2

r 12d20
r 28d24

r

24d4
r 12d5

r 29d7
r !, ~24!

for K→pp,mK(1-loop)52mp(1-loop! .
From Eq. ~22! we get the additional combinations o

countertermsd2
r ,d24

r , and d4
r 2d20

r . From either expression
for K→pp at unphysical kinematics we can then obta
d4

r 2d5
r . Along with the tree-level LEC,a27, these five lin-

ear combinations@d2
r ,d7

r ,d4
r 2d5

r ,d4
r 2d20

r ,d24
r # are sufficient

to determineK→pp at the physical kinematics as given
Eq. ~25!. Notice that there is considerable redundancy in
11402
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termining these coefficients. For example,d42d20, d4
2d5 , d2 . . . occur in several of Eqs.~21!–~24! @22#.

^p1p2uO (27,1),(3/2)uK0&ct

52
4ia27

f K f p
2 ~mK

2 2mp
2 !~1-loop!1

4i

f K f p
2 ~mK

2 2mp
2 !

3@~2d4
r 1d5

r 24d7
r !mK

2 1~4d2
r 14d20

r

216d24
r 24d4

r 22d7
r !mp

2 #. ~25!

The logarithmic and Gasser-Leutwyler counterterm co
tributions to the expressions in this subsection are given
Appendix C. Note, also, that for the cases of physicalK
→pp amplitudes, Eqs.~25!, ~34!, and~35!, the pseudoscala
decay constants and masses are the physical~renormalized to
one-loop order! ones. For all other amplitudes given in th
paper exceptK→pp at physical kinematics, the formula
are in terms of the bare constants. The distinction betw
bare and renormalized constants is made only in tree-le
amplitudes, since making this distinction in theO(p4) ex-
pressions introduces corrections at higher order@O(p6)#
than is considered in this paper.

B. „8L ,1R…¿„27L ,1R…, DIÄ1Õ2

The counterterms necessary to reconstruct
O(p4) @(8L,1R)1(27L,1R)#, DI 51/2, K→pp amplitudes,
relevant for operators such asQ2

1/2, can be obtained using
di ’s obtained from the@(27,1);DI 53/2# case given above
along with information fromK0→u0&;K1→p1,DI 51/2;
and K→pp,DI 51/2 at both unphysical kinematics. Fo
K0→u0&, we have

^0uO (8,1)uK0&ct5
4ia2

f
~mK

2 2mp
2 !2

8i

f
@2~2e1

r 2e2
r 1e5

r !mK
4

1~2e1
r 1e2

r 22e5
r !mK

2 mp
2 1e2

r mp
4 #, ~26!

^0uO (27,1)uK0&ct52
48i

f
d1

r ~mK
2 2mp

2 !2. ~27!

Given the previously obtained value ofd1
r from the DI

5 3
2 case, we can obtaine2

r and e1
r 2e5

r from K0→u0&. The
other relevant expressions are

^p1uO (27,1),(1/2)uK1&ct

52
4

f 2
a27pK•pp2

8

f 2
@6d1

r mK
4 22~3d1

r 1d2
r !mK

2 mp
2

1~2d20
r 1d4

r 23d6
r 12d7

r !mK
2 pK•pp

1~2d20
r 1d4

r 13d6
r 1d7

r !

3mp
2 pK•pp18d24

r ~pK•pp!2#, ~28!
0-5
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^p1uO (8,1),(1/2)uK1&ct

5
4

f 2
a1pK•pp2

4

f 2
a2mK

2 2
8

f 2
@2~e1

r 1e2
r 2e5

r !

3mK
4 1~e2

r 12e3
r 12e5

r !mK
2 mp

2

1~2e35
r 22e10

r !mK
2 pK•pp

1~2e35
r 2e11

r !mp
2 pK•pp28e39

r ~pK•pp!2#,

~29!

as well as

^p1p2uO (27,1),(1/2)uK0&ct

528i
a27

f 3
m2116i

m4

f 3
~d20

r 22d4
r 1d5

r 23d7
r !,

~30!

^p1p2uO (8,1),(1/2)uK0&ct58i
a1

f 3
m214i

a2

f 3
m218i

m4

f 3
~2e1

r

14e10
r 12e11

r 14e15
r 13e2

r

24e35
r 22e5

r !, ~31!

for K→pp,mK5mp5m, and

^p1p2uO (27,1),(1/2)uK0&ct524i
a27

f 3
~mK

2 2mp
2 !1

3i

2

mK
4

f 3

3~6d1
r 12d2

r 12d20
r 28d24

r

24d4
r 12d5

r 112d6
r 29d7

r !,

~32!

^p1p2uO (8,1),(1/2)uK0&ct54i
a1

f 3
~mK

2 2mp
2 !1

3i

2

mK
4

f 3

3~22e1
r 16e10

r 1e11
r 24e13

r

14e15
r 24e2

r 22e3
r 24e35

r 18e39
r !

~33!

for K→pp,mK(1-loop)52mp(1-loop) .
From expressions~28! and ~29!, one can obtain the

leading-order LEC’sa1 anda2, as well as the linear combi
nations e39

r ,e1
r 1e3

r ,e10
r 2e35

r 1 3
2 d6

r , and 2e10
r 2e11

r 16d6
r .

From Eqs.~30! and ~31!, for UK1 one can then obtaine11
r

12e15
r 23d6

r . Making use of all the input thus obtained in
Eqs.~32! and~33! for UK2 yieldse13

r 2 3
2 d6

r . These 14 linear
combinations~namelyd1

r ,d2
r ,d7

r ,d4
r 2d5

r ,d4
r 2d20

r ,d24
r ,e2

r ,e1
r

2e5
r ,e1

r 1e3
r ,e39

r ,e10
r 2e35

r 1 3
2 d6

r ,2e10
r 2e11

r 16d6
r ,e11

r 12e15
r

23d6
r ,e13

r 2 3
2 d6

r ) are sufficient to reconstruct the physic
K→pp,DI 5 1

2 amplitudes for operators such asQ1
1/2,Q2

1/2,
etc.,
11402
^p1p2uO (27,1),(1/2)uK0&ct

524i
a27

f K f p
2 ~mK

2 2mp
2 !~1-loop!14i

1

f K f p
2 ~mK

2 2mp
2 !

3@~2d4
r 1d5

r 19d6
r 24d7

r !mK
2 12~6d1

r 12d2
r 12d20

r

28d24
r 22d4

r 26d6
r 2d7

r !mp
2 #, ~34!

^p1p2uO (8,1),(1/2)uK0&ct

54i
a1

f K f p
2 ~mK

2 2mp
2 !~1-loop!18i

1

f K f p
2 ~mK

2 2mp
2 !

3@~e10
r 22e13

r 1e15
r !mK

2

1~22e1
r 12e10

r 1e11
r 14e13

r 24e2
r

22e3
r 24e35

r 18e39
r !mp

2 #. ~35!

The logarithmic and Gasser-Leutwyler counterterm co
tributions to the amplitudes presented in this subsection
given in Appendix D.

C. „8L ,1R…, DIÄ1Õ2

The case of pure~8,1! operators, i.e.,Q3,4,5,6, is simpler
than the previous case of mixedDI 51/2 operators; note also
that phenomenologically, pure~8,1!’s are the most important
This is clearly a special case of the previous one for wh
(27L,1R) contributions are irrelevant. For the physicalK
→pp reaction atO(p4), Eq. ~35!, eight new linear combi-
nations are needed: e2

r ,e1
r 2e5

r ,e3
r 1e5

r ,e35
r 2e10

r ,2e35
r

2e11
r ,e39

r ,e11
r 12e15

r ,e13
r .

The terms quadratic in quark mass forK→0, Eq. ~26!,
yield e2

r ande1
r –e5

r . A similar fit to K1→p1, Eq. ~29!, then
leads toe3

r 1e5
r ,e35

r 2e10
r ,2e35

r 2e11
r , ande39

r . Using this for
K→pp at UK1, Eq.~31!, yields e11

r 12e15
r andK→pp at

UK2, Eq. ~33!, may be fitted to givee13
r . While determining

these coefficients is expected to be quite demanding,
useful to note that several of them are obtained via more t
one measurement. Note, in particular, that the term linea
quark mass,a2, originating from operator mixing occurs in
K→0, in K→p, and also inK→pp at UK1 where the
operator injects energy.

The logarithmic and Gasser-Leutwyler counterterm co
tributions to the amplitudes presented in this subsection a
subset of those given in Appendix D.

V. CONCLUSION

This paper presents all of the counterterm and finite lo
rithm contributions toK0→u0&, K0→K0, and K→p with
momentum insertion, andK→pp ~at two values of unphysi-
cal kinematics! to O(p4) in ChPT for the (27L,1R) and
(8L,1R) operators. It demonstrates that these quantities
sufficient to fully determineK→pp to O(p4) at the physi-
cal kinematics. It should be emphasized that this calcula
was done in full ChPT, and that these arguments do not n
essarily apply to the quenched theory. In fact, it is qu
0-6
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likely that some of theK→pp matrix elements suffer from
large corrections due to the quenched approximation;
possibilty has recently been raised in Ref.@23# for the case of
Q6. Indeed, we have done a fit to the quenched RBC data@2#
for Q7

3/2 andQ8
3/2 using the next-to-leading order ChPT pr

diction of Cirigliano and Golowich@9# and have found a
poor fit (x2/d.o.f.'2). Thus, the data tend to disfavor a lar
coefficient for the chiral log term that is predicted by fu
ChPT. A simple quadratic fit with the coefficient of the lo
term set to 0 yielded a much better fit (x2/d.o.f.'0.1). These
arguments suggest that an unquenched lattice calculatio
probably necessary in order to correctly extract theO(p4)
counterterms from the lattice. It is clearly important to s
whether this extraction procedure, especially includingK
→pp at the two unphysical kinematics, can be extended
the case ofO(p4) quenched ChPT.

In closing, we briefly want to remind the reader that tw
other interesting methods have been proposed rece
@24,25# for lattice extraction ofK→pp amplitudes. We be-
lieve it is important to use all the methods in order to obt
reliable information on this important process.
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APPENDIX A

Appendixes B–D contain the finite logarithm and Gass
Leutwyler countertermO(p4) contributions to the ampli-
tudes presented in this paper. They were calculated using
FEYNCALC package@28# written for theMATHEMATICA @29#
system. These expressions involve the regularized Veltm
Passarino basis integralsA andB @30#:

A~m2!5
1

16p2f 2
m2 ln

m2

m2

5 lim
d→4

1

i Fm42dE ddl

~2p!d

1

l 22m2
12im2l̄G ,

~A1!

B~q2,m1
2 ,m2

2!

5 lim
d→4

1

i Fm42dE ddl

~2p!d

1

@~ l 1q!22m1
2#~ l 22m2

2!
12i l̄G

5E
0

1

dx
1

~4p!2
$11 ln@2x~12x!q21xm1

21~12x!m2
2#

2 ln m2%, ~A2!
11402
is

is

e

o

tly

-
r
s
,
a

r-

he

n-

where

l̄5
1

16p2 F 1

d24
2

1

2
~ ln 4p2gE11!G . ~A3!

APPENDIX B

At one-loop order, the pseudoscalar decay constants
masses are renormalized such thatf p,K5 f @11(D f p,K / f )#
andmp,K(1-loop)

2 5mp,K
2 @11(Dmp,K

2 /mp,K
2 )#. The corrections

are given by

D f p

f
522A~mp

2 !2A~mK
2 !1

8

f 2
~2mK

2 1mp
2 !L41

8

f 2
mp

2 L5 ,

~B1!

D f K

f
52

3

4
A~mp

2 !2
3

2
A~mK

2 !2
3

4
A~mh

2 !

1
8

f 2
~2mK

2 1mp
2 !L41

8

f 2
mK

2 L5 . ~B2!

Dmp
2

mp
2

5A~mp
2 !2

1

3
A~mh

2 !1
16

f 2
@~2L412L6!2mK

2

1~2L42L512L612L8!mp
2 #, ~B3!

DmK
2

mK
2

5
2

3
A~mh

2 !1
16

f 2
@~22L42L514L612L8!mK

2

1~2L412L6!mp
2 #. ~B4!

For degenerate quark masses at one-loop order,mK(1-loop)
2

5mp(1-loop)
2 5m2@11(Dm2/m2)#, f p5 f K5 f @11(D f / f )#,

Dm2

m2
5

2

3
A~m2!1

16m2

f 2
~23L42L516L612L8!,

~B5!

D f

f
523A~m2!1

8m2

f 2
~3L41L5!. ~B6!
0-7
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APPENDIX C

The logarithmic corrections for the quantities relevant
the determination of the~27,1!, DI 53/2K→pp amplitudes
in this paper are given by

^K̄0uO DS52
(27,1) uK0& log5

8a27

f 2 F2
2

16p2f 2
mK

4 28mK
2 A~mK

2 !

1S 1

2
mp

2 2
13

2
mK

2 DA~mh
2 !1S 2

7

2
mK

2

2
1

2
mp

2 DA~mp
2 !22

D f K

f
mK

2 1DmK
2 G ,

~C1!
11402
r

^p1uO (27,1),(3/2)uK1& log

52
4a27

f 2
pK•ppF22pK•ppB~q2,mK

2 ,mp
2 !

2
3

2
A~mh

2 !27A~mK
2 !2

15

2
A~mp

2 !2
D f K

f
2

D f p

f G ,
~C2!

^p1p2uO (27,1),(3/2)uK0& log

528i
a27

f 3
m2F 23m2

16p2f 2 S 5 ln
m2

m2
11D

2
3D f

f
1

Dm2

m2 G ~C3!

for K→pp, mK5mp5m, and
^p1p2uO (27,1),(3/2)uK0& log523i
a27

f 3
mK

2 F2mK
2

12

1

16p2f 2 S 114 ln
mK

2

m2
131 ln 52148 ln 2216 cot212146D

2
D f K

f
2

2D f p

f
1

4

3mK
2 ~DmK

2 2Dmp
2 !G ~C4!

for K→pp, mK(1-loop)52mp(1-loop) . The logarithmic corrections to the physicalDI 53/2K→pp amplitude~included for
completeness! are given by

^p1p2uO (27,1),(3/2)uK0& log524i
a27

f K f p
2 F2

1

12
mK

4 S 12
mK

2

mp
2 D B~mp

2 ,mK
2 ,mh

2 !1mK
2 S 5

4

mK
4

mp
2

2
13

4
mK

2 12mp
2 D

3B~mp
2 ,mK

2 ,mp
2 !1~mK

4 23mp
2 mK

2 12mp
4 !B~mK

2 ,mp
2 ,mp

2 !2
1

4
mK

2 S mK
2

mp
2

13D
3A~mh

2 !1S 2mK
4

mp
2

24mK
2 14mp

2 D A~mK
2 !1S 5

4

mK
4

mp
2

2
45

4
mK

2 112mp
2 D A~mp

2 !G , ~C5!

where the imaginary part of expression~C5! is given by

Im~ i ^p1p2uO (27,1),(3/2)uK0&!52
2a27

f K f p
2

1

16p f 2A124
mp

2

mK
2 ~mK

2 2mp
2 !~mK

2 22mp
2 !. ~C6!

APPENDIX D

The logarithmic corrections for the quantities relevant for the determination of the@~8,1!1~27,1!#, DI 51/2K→pp ampli-
tudes@as well as the pure~8,1! amplitudes, neglecting the~27,1! expressions# are given by
0-8
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^0uO (8,1)uK0& log5
4ia2

f
~mK

2 2mp
2 !F2

5

6
A~mh

2 !23A~mK
2 !2

3

2
A~mp

2 !2
D f K

f G
2

4ia1

f F1

6
~mp

2 24mK
2 !A~mh

2 !2mK
2 A~mK

2 !1
3

2
mp

2 A~mp
2 !G , ~D1!

^0uO (27,1)uK0& log5
6ia27

f
@~mp

2 24mK
2 !A~mh

2 !14mK
2 A~mK

2 !2mp
2 A~mp

2 !#, ~D2!

^p1uO (27,1),(1/2)uK1& log52
4a27

f 2 F1

8 S 2
~7mK

2 2mp
2 !~mK

2 2mp
2 !2

q2
17mK

4 26mK
2 mp

2 2mp
4 236~pK•pp!2

26~3mK
2 25mp

2 !pK•ppD B~q2,mK
2 ,mh

2 !1
1

8 S 3~mK
2 1mp

2 !~mK
2 2mp

2 !2

q2
23~mK

2 2mp
2 !2

120~pK•pp!226~mK
2 1mp

2 !pK•ppD B~q2,mK
2 ,mp

2 !1
3

8 S 7mK
4 28mK

2 mp
2 1mp

4

q2

19mK
2 2mp

2 210pK•ppD A~mh
2 !2S 3mK

2 ~mK
2 2mp

2 !

q2
13mK

2 110pK•ppD
3A~mK

2 !1
3

8 S mK
4 2mp

4

q2
2mK

2 1mp
2 26pk•ppD A~mp

2 !2S D f K

f
1

D f p

f D pK•ppG , ~D3!

^p1uO (8,1),(1/2)uK1& log5
4a1

f 2 F 1

72S ~7mK
2 2mp

2 !~mK
2 2mp

2 !2

q2
27mK

4 16mK
2 mp

2 1mp
4 136~pK•pp!216~3mK

2 25mp
2 !pK•ppD

3B~q2,mK
2 ,mh

2 !1
1

8 S 3~mK
2 1mp

2 !~mk
22mp

2 !2

q2
23~mK

2 2mp
2 !2120~pK•pp!2

26~mK
2 1mp

2 !pK•ppD B~q2,mK
2 ,mp

2 !1
1

24S 27mK
4 18mK

2 mp
2 2mp

4

q2
29mK

2 1mp
2 230pK•ppD

3A~mh
2 !2

1

12S mK
4 14mK

2 mp
2 25mp

4

q2
111mK

2 15mp
2 130pK•ppD

3A~mK
2 !1

3

8 S mK
4 2mp

4

q2
2mK

2 1mp
2 26pK•ppD A~mp

2 !2S D f K

f
1

D f p

f D pK•ppG
2

4a2

f 2
mK

2 F 1

12S ~mK
2 2mp

2 !2

q2
2mK

2 2mp
2 16pK•ppD B~q2,mK

2 ,mh
2 !

1
1

4 S 3~mK
2 2mp

2 !2

q2
23~mK

2 1mp
2 !110pK•ppD B~q2,mK

2 ,mp
2 !2

1

12S 3~mK
2 2mp

2 !

q2
17D

3A~mh
2 !2

1

2 S mK
2 2mp

2

q2
15D A~mK

2 !1
3

4 S mK
2 2mp

2

q2
23D A~mp

2 !2
D f k

f
2

D f p

f G , ~D4!

^p1p2uO (27,1),(1/2)uK0& log528i
a27

f 3
m2F23m2

1

16p2f 2 S 5 ln
m2

m2
11D 2

3D f

f
1

Dm2

m2 G ~D5!

for K→pp, mK5mp5m,
114020-9
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^p1p2uO (8,1),(1/2)uK0& log58i
a1

f 3
m2F2

1

6
m2

1

16p2f 2 S 50 ln
m2

m2
237D 2

3D f

f
1

Dm2

m2 G14i
a2

f 3
m2F22m2

1

16p2f 2

3S 101

9
ln

m2

m2
2

47

9 D 2
3D f

f
1

Dm2

m2
1

32m2

f 2 ~2L112L21L312L412L61L8!G ~D6!

for K→pp, mK5mp5m,

^p1p2uO (27,1),(1/2)uK0& log523i
a27

f 3
mK

2 F2mK
2

24

1

16p2f 2 S 456 ln
mK

2

m2
220~51 ln 16!27 ln 51232 cot212D

2
D f K

f
2

2D f p

f
1

4

3mK
2 ~DmK

2 2Dmp
2 !G , ~D7!

for K→pp, mK(1-loop)52mp(1-loop) , and

^p1p2uO (8,1),(1/2)uK0& log53i
a1

f 3
mK

2 FmK
2

72

1

16p2f 2 S 2518 ln
mK

2

m2
2209 ln 51700 ln 21184 cot212180D

2
D f K

f
2

2D f p

f
1

4

3mK
2 ~Dmk

22Dmp
2 !G112i

a2

f 5
mK

4 ~4L42L518L614L8! ~D8!

for K→pp, mK(1-loop)52mp(1-loop) . The logarithmic corrections to the physicalDI 5 1
2 , K→pp amplitude are given by

^p1p2uO (27,1),(1/2)uK0& log524i
a27

f K f p
2 F2

2

3
mK

4 S mK
2

mp
2

21D B~mp
2 ,mK

2 ,mh
2 !1mK

2 S mK
4

2mp
2

2
5

2
mK

2 12mp
2 D B~mp

2 ,mK
2 ,mp

2 !

1~22mK
4 13mK

2 mp
2 2mp

4 !B~mK
2 ,mp

2 ,mp
2 !1mp

2 ~mK
2 2mp

2 !B~mK
2 ,mh

2 ,mh
2 !

1S 2mK
4

mp
2

2
15

2
mK

2 1
9

2
mp

2 D A~mh
2 !1S 25mK

4

2mp
2

2
11

2
mK

2 110mp
2 D

3A~mK
2 !1S mK

4

2mp
2

23mK
2 1

3

2
mp

2 D A~mp
2 !G , ~D9!

^p1p2uO (8,1),(1/2)uK0& log54i
a1

f K f p
2 F1

6
mK

4 S mK
2

mp
2

21D B~mp
2 ,mK

2 ,mh
2 !1

1

2
mK

2 S mK
4

mp
2

25mK
2 14mp

2 D B~mp
2 ,mK

2 ,mp
2 !

2~2mK
4 23mK

2 mp
2 1mp

4 !B~mK
2 ,mp

2 ,mp
2 !2

1

9
mp

2 ~mK
2 2mp

2 !B~mK
2 ,mh

2 ,mh
2 !

2
1

2 S mK
4

mp
2

1mp
2 D A~mh

2 !1~5mp
2 23mK

2 !A~mK
2 !1

1

2 S mK
4

mp
2

26mK
2 13mp

2 D A~mp
2 !G

1
64i

f 5
a2~mK

2 2mp
2 !@2mK

2 L41~24L42L518L614L8!mp
2 #. ~D10!

The imaginary parts of expressions~D9! and ~D10! are given by
114020-10
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Im~ i ^p1p2uO (27,1),(1/2)uK0&!5
2a27

f K f p
2

1

16p f 2A124
mp

2

mK
2 ~mK

2 2mp
2 !~2mK

2 2mp
2 !, ~D11!

Im~ i ^p1p2uO (8,1),(1/2)uK0&!52
2a1

f K f p
2

1

16p f 2A124
mp

2

mK
2 ~mK

2 2mp
2 !~2mK

2 2mp
2 !. ~D12!
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