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Lattice extraction of K— a7 amplitudes to O(p*) in chiral perturbation theory
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We show that the lattice calculation Kf— 7 ande’/e amplitudes for(8,1) and(27,1) operators td(p*)
in chiral perturbation theory is feasible when one uses 777w computations at the two unphysical kinematics
allowed by the Maiani-Testa theorem, along with the usigaimputableé two- and three-point functions,
namely K—0, K— (with momentum, and K-K. Explicit expressions for the finite logarithms emerging
from our O(p*) analysis to the above amplitudes are also given.
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[. INTRODUCTION AND MOTIVATION the measured phases for the 0 and 2 final states as an
additional testing ground of the calculational apparatus. Un-
Recent lattice QCD calculations done by the CP-PACS fortunately, at higher orders in ChPT the number of free
and RBC[2] Collaborations using domain wall fermions parameters that enters the thedgand must be determined
have made significant progress in explaining thé=1/2  from first-principles methods like the latticproliferates rap-
rule in the decayXk — 7, though their results for the direct idly. It has been shown by Cirigliano and Golowif®)] that
CP violation parametrized by Re(/¢) differ rather drasti- the dominant electroweak penguin contributi¢(8, ,8g)’s]
cally from experiment. Recall that measurements at CERNo K— 7r7r can be recovered at next-to-leading ord&LO)
[3] and Fermilab[4] have yielded an experimental grand from K— 7 amplitudes using momentum insertion. Bijnens
average of Re{'/€)=(17.2+1.8)x 10" 4. On the theoretical et al [10] showed how to obtain most of the low-energy
side, both lattice collaborations find a value of Ré€)= constant§LEC's) relevant for the case of the (8g)’s and
—5X10"4, anegativevalue, though both groups have made (27,,1g)’s using off-shellK — 7 Green’s functions; not all
rather severéuncontrolled approximations. Given that large LEC'’s could be determined, however.
cancellations occur between contributions of the strong and On the lattice, though, not onl{ —|0) andK— 7 with
the electroweak penguins towards$/e (cancellations that momentum insertion are calculable, but s&is- 77 at the
are not relevant in the calculation of tl@P-conservingk two values of unphysical kinematics for which the Maiani-
—a amplitude$, and given the serious approximations, Testa theorem can be bypassed. To recapitulate, despite
the disagreement with experiment fef/e should not be Maiani-Testa restrictions, direct calculation Kf— 77 on
totally unexpecteds,6]. the lattice is accessible ) mi2"c®=m'a% where the weak
One of these uncontrolled approximations was the use afperator inserts enerdyt1] and (i) m'g“icezsz“ice, i.e., at

the quenched approximation, where the fermion determinanhreshold 12]. We will refer to these two special locations as
in the path integral is set to 1 in order to make the problemynphysical kinematics point {UK1) and point 2(UK2),

tractable on current computers. Another was the use ofaspectively. In this work, we therefore focus on usiig
leading-order chiral perturbation theory to relate unphysical

K ) . —]0), K—a with momentum insertion an&-K, along
—a andK—|0) amplitudes to the physicdd — == am- o . .

plitudes. This method was first proposed by Bernardil. with |nforma}t|on frc.)mK_).T”T at these t\.NO unphysical val-
[7]. Because of the difficulty of extracting multihadron decay Y€S ©f the kinematics which are accessible to the Ia&ﬁ(iﬁe
amplitudes from the lattice, as expressed by the Maiani-Testan€reby, we are able to show that all the relevarp®)
theorem(8], it is much easier to compute the two- and three-LEC’S can be recovered fdt— 7 in t?e physical (8,1g)
point functions(i.e., K—|0) and K— 1, respectively and ~ @nd (27,1g) cases. Expressions fQr(p”) finite logarithmic

use chiral perturbation theoChPT) to extrapolate to the contributions to all the processes that may be needed for
physical matrix elements. fitting the lattice data are then given.

It is likely, however, that next-to-leading-order ChPT will ~ The content of the paper is as follows. Section Il very
introduce significant corrections~30% or mor¢ to the briefly recapitulates the formalism of effective four-fermion
leading-order amplitudes. Furthermore, since final-stat@perators in a standard model calculation. Section Il reviews
(strong phases cannot arise at tree level in the chiral ampli-ChPT and the realization of the effective four-quark opera-
tudes, chiral-loop corrections are essential to enable us to users in terms of ChPT operators for weak processes. Section

VI presents the results of this paper, showing how to obtain

the low-energy constants necessary for phydcal =7 am-
*Email address: jlaiho@viper.princeton.edu plitudes atO(p*) from quantities which can, in principle, be
"Email address: soni@bnl.gov computed on the lattice. Section V presents the conclusion.
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Finally, the finite logarithmic contributions to the relevant tive expansion about small quark masses and small momen-

amplitudes are presented in a set of Appendixes. tum of the low mass pseudoscalars. The effective Lagrangian
is made up of complicated nonlinear functions of the pseu-
Il. EFFECTIVE FOUR-QUARK OPERATORS doscalar fields, and is nonrenormalizable, making it neces-

o ) sary to introduce arbitrary constants at each order in pertur-
In the standard model, the nonleptonic interactions can bgation theory. In such an expansion, operators of higher
expressed in terms of an effecti®S=1 Hamiltonian using  order in the momentuniterms with increasing numbers of
the operator product expansifiv, 19, derivative$ or mass appear at higher order in the perturba-
G tive expansion. The most general set of operators at a given
_OF order can be constructed out of the unitary chiral matrix field
<W7T|HAS=1|K>—EVudV332 Ci(ﬂ)<7T7T|Qi|K>p.1 S, given by
1

2i A2
wherec;(u) are the Wilson coefficients containing the short- 3= exp{ qi } (12)
distance perturbative physics, and the matrix elements
(m7|Qi|K), must be calculated nonperturbatively. The four
quark operators are

where\? are proportional to the Gell-Mann matrices with
tr(Ag\p) = Sap, @2 are the real pseudoscalar-meson fields,
andf is the meson decay constant in the chiral limit, with

< 5V _ .5
Q1=8a¥u(1= 7" Uallpy*(1=¥7)db, (@ equal to 130 MeV in our convention.
— — At leading ordef O(p?)] in ChPT, the strong Lagrangian
Q2=5a7,(1— ¥*)Uplpy*(1— ¥°)d,, (3 s given by
oy .5 - .5 f2 2B
Q3=Sayu(l—vy )da% Ap (1= "), 4 ﬁg)zgtr[aﬂzﬁf‘i]+Totr[XTE+ETx], (13
Q=57 (1= V)b > Gy (1=97)da, (5  WHErex=(my.My,Mq)iaq aNd
q
B mi+ _ miJr _ mio
Qs=57,(1-¥)da> Uy (1+7°)dp,  (6) omytmg - mytmg s mgkmg
q

The leading-order weak chiral Lagrangian is given[by]

=§a 1—+°)d ap Y™ 1+9° as 7
Q6=Savu(1—7) b% apy*(1+v7)q (7 L= aggt S Q3]

+ap N, S 0" ST+ a2Bo A g(x T2 +27))]

Q7= 3527,(1-¥")da €Uy (1+ 7%y, (8 )
q +apt(39,3N(S ST +H.c,, (14)
Qazggayﬂ(l_)ﬁ)dbz e Y(1+ 99, (9 wheret)), is symmetric ini, j, andk,| are traceless on any
q pair of upper and lower indices with nonzero elemaﬁ%
=1, t5=1/2, andt3=—3. Also, Q is the quark charge
_3a _ .5 . _ .5 matrix, Q=1/3(2,~1,— 1)4iaq, and i =0i30i5.
Qo=2Sayu(l—y )daé €Oy (1= 770, (10 The terms i(n the we?ﬁiagLagrangig)rlll carll3 bJe2 classified ac-
cording to their chiral transformation properties under
= 5 — 5 SU(3), XSU(3)g. The first term in Eq(14) transforms as
Qu0= $Sa¥u(1- ¥t €y (1= 7)0a. (1D 8, X 8x under chiral rotations and corresponds to the elec-
K troweak penguin operatofd; andQg. The next two terms in

In the effective theoryQ, andQ, are the current-current EQ. (14) transform as 8x 1, while the last transforms as
weak operatorQS_Qe are the Operators arising from QCD 27|_>< 1R under chiral rotations. All ten of the four'quark op-

penguin diagrams, whil®,— Q,, are the operators arising €rators of the effective weak Lagrangian have a realization in
from electroweak penguin diagrams. the chiral Lagrangian differing only in their transformation

properties and the values of the low-energy constants which
contain the nonperturbative dynamics of the theory.

For the transition of interesK— 7, the operators can
Chiral perturbation theor¢ChPT) is an effective quantum induce a change in isospin éfor 3 depending on the final
field theory where the quark and gluon degrees of freedonsospin state of the pions. We can then classify the isospin
have been integrated out, and is expressed only in terms ebmponents of the four-quark operators according to their

the lowest mass pseudoscalar megdie. It is a perturba- transformation propertiedl,2]:

Ill. CHIRAL PERTURBATION THEORY
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TABLE I. The divergences in the wea®(p*) counterterms,

e’'s andd,’s, for the (8,1)'s and(27,1)’s, respectively.

312 3/2 3/2
15 Q1 127 X 1R;

1/2 1/2 ~1/2 1/2 & o 8|/ di i
37Qa%Q5% Q678 X 1r; 1 1/4 5/6 1 —-1/6
V2 012 532 332:8 g, 2 —13/18 11/18 2 0
3 5/12 0 4 3
Note thatQ;— Qg are pure isospig operators. This paper 4 —5/36 0 5 1
deals only with the 27X 1 and § X 1i operators. For the 5 0 5/12 6 —-3/2
treatment of the 8x 8 operators tdO(p?) NLO, see Ref. 10 19/24 3/4 7 1
[9]. At NLO, the strong Lagrangian involves 12 additional 11 3/4 0 20 1/2
operators with undetermined coefficients. These were introt2 1/8 0 24 1/8
duced by Gasser and Leutwyler [ib8]. The complete basis 13 —7/8 1/2
of counterterm operators for the weak interactions with 15 23/24 —3/4
=1,2 was treated by Kambor, Missimer, and Wylef{18] 35 —3/8 0
and[20]. A minimal set of counterterm operators contribut- 3q —3/16 0

ing to K— 7 andK— 77 for the (8 ,1z) and (27,15) cases

is given by[17], with the effective Lagrangian

absorbed into linear combinations of the above minimal set

L= e0®V+2X do#, (15)

OPBV=treS], 0P V=t (9)k9)!,

0(28,1):”[)\63]”[5], 0(227'1):t:(j|(P)=((P)} )
OPI—u{AgP?), OFI=g(L (LA S,

OLI=tNPIP], OFD=th(L, (L P,

can be defined as

OPV=tIN[SPIl, O V=th(IN(L?)],

for all amplitudes considered in this paper.

The AS=2 operators are components of the same irre-
ducible tensof21] under SU(3) X SU(3)z, and so thed,
are the same for both thAS=1 and AS=2 cases. The
operators governing S=2 transitions are obtained from the
above (27,1g)’s, only with t33=t32=1t,=0 otherwise.
This is important since some of our mformatlon comes from
the KO- K amplitude.

The divergences associated with the counterterms have
been obtained i119] and [10]. The subtraction procedure

__ 1 1 1
OBD=t\{S,L2}], (9(727'1)2IH|(LM):((L”)|1tr[S]v e+ To212 a—a’ 2(yE 1- In47r)}
O P=tneL, ST, O P=th(L)f (@, W), ,(16) X2(aiei+ azef), (17)
OGV=trneL JU{L*,SH,  O% P=th(W,, )i (W), 1 .1
12 r[ 6 ,u] r[{ }] 24 kl( ,l,LV)I( )] + 1677-21:2 9=z E(’YE 1— |n47T) 26!27%,

0BD=t\eSI[L2],

(18

OEM=t\e[ P,L7]],
0 g%l): tr[)\G{L;L ,&VWMV}],

O G =t xeW,,, WH],

with the divergent pieces; &/ ,7; given in Table I.

It is also necessary for the method of this paper to con-
sider theO(p*) strong Lagrangian, which was first given by
Gasser and Leutwylet; {P=3L,0(.

The strongO(p*) operators relevant for this calculation
are the following[18]:

with  S=2Bo(x"2+3"y), P=2By(x'2-3"y), L,
=ix9,3 , andW*'=2(g,L,+a,L ).

This list is identical to that of Bijnenst al. [10] except
for the inclusion of® &3,and© &'5%, which contain surface
terms, and so cannot be absorbed into the other constants for
processes which do not conserve 4-momentum at the weak
vertex. Since we must use 4-momentum insertion in a num-
ber of our amplitudes, these counterterms must be consid-
ered, and they are left explicit even in the physical ampli-
tudes. There are additional operators containing surface
terms, but it was checked that these counterterms can be
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TABLE II. The divergences in the stron@(p*) counterterms, O
I, [18]. & — ) ®
i I
Al A2 Bl B2
1 3/32
2 3/16 )
3 0 —®< \CZ
4 1/8
5 3/8 B3 C1
6 11/144
8

C2 C3
ool Al
0V=t[S]?, C4 cs s DI
(st) 1 2 2
OF=> ]S —P?]. (19 ji}< ( K
D2 D3 D4 D5

The Gasser-Leuytwyler counterterms also contribute to the
cancellation of divergencies in the expressions relevant to
this paper. The subtraction is defined similarly to that of the
weak counterterms,

1 1
m+z(‘yE_l_|n47T) Fi, (20) D6
FIG. 1. O(p*) corrections include tree-level diagrams with in-

with the divergent parts of the counterterm coefficients giversertion of theO(p®) weak Verﬁces(crossed circles tree-level dia-
in Table 11[18]. grams with insertion ofO(p®) strong vertices(lightly shaded

circles, one-loop diagrams with insertions of tp?) weak ver-
4 tices(small filled circles, and theO(p?) strong verticesbig filled
IV. K—arar AMPLITUDES AT O(P®) circles. Al and A2 are forK—|0). B1-B3 are forkK—m andK

As mentioned before, in this work we will include both —K. C1-C6 and D1-D6 are fdf— 7.
K— o with momentum insertion an&— 77 at the two

unphysical kinematics. The complete list of necessary ingrependent combinations was discovered to be stfair), and
dients consists of the two-point functiokS—|0), the three  thys the method was not invalidated. Also, this method re-
point functions K°—K® and K—, all with m#my  quires the computation dk — 77 matrix elements at un-
=m,, and the four-point functions — 7 at the two values  physical kinematics because there are LEC’s which appear in

of unphysical kinematicsme=m;, (requiring energy inser- K _, 7= put do not appear iK—  at all. These arels, €;3,
tion) and mg=2m_. . These two threshold values of the ki- 5 ess.

nematics bypass the Miani-Testa theorem, which states that The diagrams which must be evaluated for B¢p?)
multihadron final states are not accessible on the lattice gt .o tions are shown in Fig. 1. The diagrams to be evalu-

any other kinematics aside from the thresh8d At these . . i
kinematics, the strong phases are 0, and the effects of fina‘?—teOI fork—|0) are A1 and A2. The diagrams to be evalu

state interactions vanish. However, these amplitudes at urited forK—m andK—K are B1-B3. C1-C6 and D1-D6
physical kinematics do contain information on t@gp%  Must be evaluated fd— 7. D1-D6 contain the tadpole
low-energy constants, and when combined with informatiorvertex of the weak mas®(p?), (8,1) operator. Also, the
from the other two- and three-point functions mentionedrenormalization of the external legs via the strong interaction
above, all of theO(p*) low-energy constants necessary for must be taken into account.
K—a can be obtained. The phases of the amplitude are
introduced in ChPT via the one-loop unitarity corrections of
the O(p?) operators. A (27.,1R), AlI=32

Because theK— 7 amplitudes do not conserve four-
momentum formg# my, it is necessary to allow the weak  The counterterms necessary to reconstruct the
operator to transfer a four-momentuge px—p.., as in[9].  O(p*)(27.,1r),A1 =3/2K— mm amplitudes can be obtained
This is also necessary for the casekofs wm,me=m, [11].  from K°—K% K*—7* Al1=3/2; andK— mm,Al1=3/2 at
At O(p*), this requires the inclusion dpotentially many  eithervalue of the unphysical kinematics. The expression for
surface terms in our minimal counterterm operator basis. Th&°—K? is given by(all masses and decay constants are the
number of such additional terms appearing in linearly inde-bare oneps

Li:Lr+

1672
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e 8y, 8 termining these coefficients. For exampld,—d,,, d,
<K°|O&2§;1%|K°>ct=f—2mﬁ— f—2[4(drl+ db+ dho— 4dy, —ds, d, ... occur in several of Eq$21)—(24) [22].
—dj—dj)my —2(4d} +dj) mgm?2 (m* 7|0 ETDRKO)
+4dim?]. (22) 4i aryy 4i
=—W(mﬁ_mi)u-mowrﬁ(mi—mi)
Equation (21), as well as all the following amplitudes, Kl Klm
include only the tree leveD(p?) and O(p*) weak counter- T(—d"+d-— 4d"ym2 + (4d’ + 4d"
term contributions. For brevity, the logarithmic terms as well [(=dads—4d7)mic + (4da+4dy
as the Gasser-Leutwylér, counterterms have been omitted —16d5,— 4d§1—2df7)m37]_ (25)

in the body of the paper, but are included in a set of Appen-
dixes. It was verified that the divergences in the logarithmic I
terms cancel those of the counterterms, providing a strong. Th.e Iogarltrr:mlc and Gassgr-Lﬁutwyler counterterm con-
check on the calculation. Note also that for the application Ogrlbutlons to the expressions in this subsection are given in

this method most of the Gasser-Leutwyler counterterms mu&ppendix C. Note, also, that for the cases of physial

be known, and that an improved determination of the rel-, ™™ amplitudes, Eqs(25), (34), and(39), the pseud_oscalar
evant ones could be obtained from a lattice calculation O]decay constants and masses are the phﬁmrma“ze_d to.
observables in the purely strong sector, e.g., most can b%ne-loop orderones. For all cher .amplltL.Jdes given in this
obtained from the pseudoscalar masses and decay constarit@Per excepK— 7 at physical k|nemat|c§ ' _the' formulas
From the abovek?— K0 amplitude, one can extract the are in terms of the bare constants. The distinction between

values ofd" andd". from a fit to terms quadratic in the quark bare and renormalized constants is made only in tree-level
- 7 que d amplitudes, since making this distinction in t@¥p*) ex-
masses. The other relevant expressions Kor 7, Al

pressions introduces corrections at higher orfl@(p®)]

=3/2 are than is considered in this paper.
<7T+|(’)(27'1)'(3/21K+> =—ia ) +E[2drm2m2
ct 2 27Pk " Px r2 02y B. (8,,1r)+(27.,1g), Al=1/2
. . - The counterterms necessary to reconstruct the
+(dyo—dy—2d7) Mk Px - P O(pY [(8..1r)+(27,,1)], Al=1/2, K— 7o amplitudes,
2 ; :
+(dby— dZ—dS)mipK-pw re]evant _for operators such é}} , can be obtz_ilned using
d;’s obtained from thg (27,1);A1 =3/2] case given above
—8024(Px - Px)°], (220 along with information fromK%—|0);K*— 7", Al=1/2;
and K— 7, Al =1/2 at both unphysical kinematics. For
(w7 | O@TDER)KO) K°—|0), we have
8ia27 5 16|m4 r r r : <0|O(8'1)|KO> :4ia2(m2_m2)_8_i[2(_el'_er+er)m4
=— P m*+ 3 (d5g—2d,+d5—3d7) otT T f k= M) =% 17 €21 €)Mk
23) +(2e] +e,—2eh)ymzm3+eym?],  (26)

for K—=mm,mg=m_=m, and

4 (0|0 TDIKO) = — 4Tad;(m§— m2)2, (27)
_ a7
(" O ET R — =2 (-
. Given the previously obtained value df from the Al
mg . ; ; =3 case, we can obtaie, andej—ef from K°—|0). The
+ 23 (2d3+ 2050~ 802 other relevant expressions are

—4d}+2dc—9d?b), 24
4 5 7) (24 (mH| 0@y
for K— 7T7T,mK(1_|OOp)=2m77(1_|00p) . 4 38
From Eq. (22 we get the additional combinations of =~ — Pk Pr——[6dimyg —2(3d}+dy)mgm?2
countertermad}, d5,, and d},—d5,. From either expression f f
for K— o at unphysical kinematics we can then obtain

+(—db+d—3dL+2d5)m2 py -
d},—dg . Along with the tree-level LECg,;, these five lin- (~ g+ dy—3dg+207)Mipic- Pr

ear combinationgd},d’,d} —ds,d}, — d5,,d5,] are sufficient + (—d5+dy+ 3dg+db)
to determineK — 77 at the physical kinematics as given in ) . 5
Eq. (25). Notice that there is considerable redundancy in de- XMZPk - Prt8da4(Pk- PA) 7], (28)

114020-5



JACK LAIHO AND AMARJIT SONI

<7T+ | 0(8,1),(1/21 K+>ct

_i _i Z_E 2 I’+ r_ Af
_fzalpK'pTr fzame f2[ (eyte;—es)
4 r r r 2.2

Xmy+(ey+ 2e3+ 2e5)mems

+(2e35— 2€]) mipK' P~

+(2e55— €l M2 Pk P85y Pr- P,

(29
as well as
(77*77‘|(9(27'1)’(1’2] Ko>Ct

4

Ao7 . m
—m?+16i f—3(d’20— 2d,+dg—3d}),

——8i—3
(30

4
_ el L a2 .m
ar |(’)(8'1)'(1’21K°>Ct=8l§m2+4lf—3m2+8|f—3(2erl

+4€),+2e],+4e]s+ 3€)
—4eq— 2€l), (32)
for K— 7 ,mg=m_=m, and
_ a7 3i mg
(mra”|0CTD.W2KO) = —4i f—3(mﬁ— m2)+ 25

X (6d}+2d5+ 2d5,— 8d5,
—4d}+2d5+12dg—9d?),
(32)

o
(ma|0BDWAKO) = 4i f_l(mi_ A

X (—2e]+6e,t+ej;—4el;
r I I r r
+4e5—4e,—2e;— 4egst 8eyg)

(33

for K— 77, M (1-100p)= 2Mz(1-100p) -
From expressiong28) and (29), one can obtain the

leading-order LEC'sx; and «,, as well as the linear combi-

nations e5q,€}+ej5,e,— 5+ 3dg, and &j,—e};+6dj.
From Egs.(30) and (31), for UK1 one can then obtaig},

+2€’5— 3dg . Making use of all the input thus obtained into

Egs.(32) and(33) for UK2 yieldse};— 3d§ . These 14 linear
combinations(namelyd; ,d5,d,d}—dg,d,— d5,,d5,,€5,€}
r r r I r r 3qr I I r r r
—€5,6;+ 63,639,610~ €35+ 505, 2819~ €11+ 6dg, €1, + 2€45

—3dg,el;— 3d§) are sufficient to reconstruct the physical

1/2

K— Al =% amplitudes for operators such @'2,Q3?,

etc.,

PHYSICAL REVIEW D 65 114020

<7T+ — | 0(27,1),(1/21 KO)CI

. Qg7 1
=—4i 2(mﬁ_quT)(l-|OOp)+4|_Z(mﬁ_mi)
fefs fefs

X [(—df+d5+9d§— 4dh)mz + 2(6d + 2d, + 2dY,

—8dj,—2d;— 6dg—dp)m2], (34)
<7T+ - | 0(8,1),(1/21 K0>ct
=4i f:—flimi— M%) (1-100p + 8 %(mﬁ— m2)
X[ (€}~ 2€}5t+ejgmg
+(—2€|+2€e] e, +4el,—4€)
—2e5— 4el.+ 8efym3]. (35

The logarithmic and Gasser-Leutwyler counterterm con-
tributions to the amplitudes presented in this subsection are
given in Appendix D.

C.(8..1r), Al=12

The case of pur¢8,1) operators, i.e.Q3 456 IS Simpler
than the previous case of mixéd = 1/2 operators; note also
that phenomenologically, puf8,1)’s are the most important.
This is clearly a special case of the previous one for which
(27,,1g) contributions are irrelevant. For the physiddl
— arar reaction atO(p?), Eq. (35), eight new linear combi-
nations are needed: €},e]—ef,e5+eg,ef— €]y, 2€55
— 11,639,611 2€75,€]5.

The terms quadratic in quark mass 0, Eq. (26),
yield €}, ande]—e; . A similar fit to K™ — 7", Eg.(29), then
leads toe§+ eg,e55— €}, 2655~ €7, andesy. Using this for
K—mm at UKL, Eq.(31), yields€’;+ 2e}; andK— 77 at
UK2, Eq. (33), may be fitted to gives};. While determining
these coefficients is expected to be quite demanding, it is
useful to note that several of them are obtained via more than
one measurement. Note, in particular, that the term linear in
quark massg,, originating from operator mixing occurs in
K—0, in K-, and also inK— w7 at UK1 where the
operator injects energy.

The logarithmic and Gasser-Leutwyler counterterm con-
tributions to the amplitudes presented in this subsection are a
subset of those given in Appendix D.

V. CONCLUSION

This paper presents all of the counterterm and finite loga-
rithm contributions tok°®—|0), K°—K?, and K— 7 with
momentum insertion, and— 77 (at two values of unphysi-
cal kinematics to O(p*) in ChPT for the (27,13) and
(8.,1g) operators. It demonstrates that these quantities are
sufficient to fully determiné — 77 to O(p*) at the physi-
cal kinematics. It should be emphasized that this calculation
was done in full ChPT, and that these arguments do not nec-
essarily apply to the quenched theory. In fact, it is quite
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likely that some of th&K — 7w matrix elements suffer from where
large corrections due to the quenched approximation; this
possibilty has recently been raised in Hef3] for the case of
Qs. Indeed, we have done a fit to the quenched RBC [dta _ 1 1 1
for Q32 and Q3 using the next-to-leading order ChPT pre- N=——lgmg pn4m—yet 1) (A3)
diction of Cirigliano and Golowich9] and have found a 16m
poor fit (y?/d.o.f~2). Thus, the data tend to disfavor a large
coefficient for the chiral log term that is predicted by full
ChPT. A simple quadratic fit with the coefficient of the log APPENDIX B
term set to 0 yielded a much better fjt¥d.o.f~0.1). These
arguments suggest that an unquenched lattice calculation is At 0ne-loop order, the pseudoscalar decay constants and
probably necessary in order to correctly extract @gp®) ~ Masses are renormalized such “ﬁﬁtK fl1+(Af7k/f)]
counterterms from the lattice. It is clearly important to seeand M2,k (1-100p)= Mz k[ 1+ (AmZ  /mZ )]. The corrections
whether this extraction procedure, especially includig are given by
—arr at the two unphysical kinematics, can be extended to
the case oD(p*) quenched ChPT.
In closing, we briefly want to remind the reader that two
other interesting methods have been proposed recentlnf 8 8
[24,25 for lattice extraction oK — 7 amplitudes. We be-  ——=—2A(M2) —A(Mg) + — (2mg +m2)Ls+ —m2Ls,
lieve it is important to use all the methods in order to obtain f f (B1)
reliable information on this important process.
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APPENDIX A
Appendixes B—D contain the finite logarithm and Gasser- Am2 1 16
Leutwyler countertermO(p*) contributions to the ampli- 5 =AM2) = ZA(M) +—[(—Ls+2Le)2mg
tudes presented in this paper. They were calculated using the Mz 3 f

FEYNCALC package[28] written for the MATHEMATICA [29] )
system. These expressions involve the regularized Veltman- +(=Lsg—Ls+2Le+2Lg)m7], (B3)
Passarino basis integraésand B [30]:

2
1 m? ﬂ=EA(m2)+£3[(—2|_ —Ls+4Lg+2Lg)m3
(mz) m2| o m2 3 7 f2 4 5 6 8 K
16m72f2 u? K
+(—Ls+2Lg)m2]. (B4)
1 ddl 1 =
=lim — ,u“‘df S5 t2imA\ |,
dog | (2m) 94 12—m?

(A1) For degenerate quark masses at one-loop orrdé(1 -loop)
M2 (1100p)= ML+ (AMZMP)], f=f=F[1+(AF/T)],

B(g%m3,m3)

1 ddl 1 Am? 2A( 2)+16mz( 3L,—Ls+6Lg+2Ly)
R —_—m— m [— — ,
= lim+ ,ﬁ*df - - +2i\ m? 3 v e
d—a! (2m)° [(I+g)*=mi](1°=m3) (BS)
! 1 2 2 2
=f dx {1+In[—x(1—-x)g"+xmi+ (1—x)m3]
o (4m)? f ,. . 8m?
—=-3A(m?)+ ——(3L,+Ls). B6
Cin g2, (A2) - (m?) 2 (3L4+Ls) (B6)
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APPENDIX C <7T+|O(27,1),(3/21K+>|og
The logarithmic corrections for the quantities relevant for _ Aday 2 B2 m2 m?
the determination of thé€27,1), Al =3/2K— 77 amplitudes Y Pk Pl = 2Pk PLB(G% mic,m7)
in this paper are given by
3 ) TAl? 15A Afe  Af.
(C2
701~ (27.1) ] 10 0 8ayy 2 4 2 2 1 (27,1),(32) 1 O
(KPlOFsm3|K >Iog:f_2 _16W2f2mK_8mKA(mK) (m 7 |OETDEAKO)
—3m? m?
1 13 7 — gt 2
[ 3me- S Ay - RS r=rl R
3Af Am?
1 Af = .-
—Emi)A(mi)—ZTKmﬁJrAmﬁ : R 3

(cy) for K—mm, mg=m_=m, and

2 2

— Mk My
—— ———(114In—+31In5-148In2— 16 cof 12+ 46
12 16722 u?

Afe 2Af,
f f

_ . o7
<Tr+ﬂ_ |O(27’1)'(3/21K0>|og= —3j f_smﬁ

(C4

+i2(Am§—Am2)
3mi K

for K—arar, Mg (1-100p)= 2Mr(1-100p)- The logarithmic corrections to the physical =3/2K— mm amplitude (included for
completenegsare given by

2

4
_ . Qo7 1 My 5 my
<’7T+’7T |O(27’1)'(3/21K0>|og:—4|1:K7|: 12 K(l—m—) B(m mK,m )+mK(Z—2—

13

Zmﬁ+2mi)

X B(mZ,m2 ,m2)+ (mi—3m2mz+2m?)B(m2 ,m? m2)—1m (mK+3)
o UK K ' K T Ko Wity 4Km

w

2 4 S ﬁ 45 2 2 2
XA(mM;) + —4mK+4m A(mZ)+ Z_Z_ZmK+ 12mZ | A(m2) |, (CH
where the imaginary part of expressigbb) is given by
m(i (7" |©@TD. G2 KOy = — 2a27i\ / 1—4m—’27(m2—m2)(m2—2m2). (C6)
f 2 16mf2 mg T

APPENDIX D

The logarithmic corrections for the quantities relevant for the determination ¢f8hB+ (27,11, Al =1/2K— 77 ampli-
tudes[as well as the puré8,1) amplitudes, neglecting th7,1) expressionkare given by
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dia 5 3 Afy
(010 BIIKO)pq=— (Mg~ mi)[ — 5AME) = 3A(mY) — S A(m?) T}
diail1 3
- g(mi_‘lmi)A(mi)—miA(mi)"'EmiA(mi)} (D1)
6ia
(010 BT KO oq = [(M?, — 4m)A(M?) + MR A(mig) ~m2 A(m?)], (D2)

(|0 @rD.072) K+ og= — 4LZ7

f2 +7m§_6mim§r—mi_3&prw)2

1( (7mZ—m?2)(mZ—m?2)?

8 q?

—3(mg—m?2)?

1 3(m2+m?)(mz—m?2)?
—6(3m§—5mi)p|<~pw)B(qz,mi,mf,Hg( : =
q

3 [ 7mi—8mzm3+m?
+2(prpw)2_6(mﬁ+mi)prw) B(qz,mﬁ,mi)+§( < l;

q
+9mZ —m?2—10px - P, A(mi)—(m+3mﬁ+10pwp#)
><A<mi)+g(mﬁ;mi—m%mi—epk-pw A(mi)—(%+%)pwpﬂ], (D3)

(77+|(9(8’1)‘(1/2)|K+>|og:% 7%(Umﬁ_mi;imﬁ_mi)z—7m§+6mﬁmf,+mf,+36(p,(~pﬂ)2+6(3mﬁ—5mi)pK«pw>
><B<q2,mi,m37)+%(S(mim?gmi—mi)z—3<mi—mi>2+20(pK~pﬂ>2

1 [ —7mg+8mim2—m?
( — —9m +m’— 30D,

2 2 2 2 2
_G(mK—'_qu)pK'pﬂ') B(q !mK!mﬂn')_Fﬂ q2

, 1 [mg+4amgm?—5m] ) X
XA(M) = = +11my +5m: +30pk- P,
12 q2 &
3 mg—m? Af  Af;
X A(Mg) + g(T—mﬁmei—WK'pw A(m2)— 5 t /P Pa
day L[ 1 [(mg—m3)?
—Fmﬁ I T—mﬁ—miJerK'pw B(q? mi ,m3)
1(3(mz—m?2)2 1 [3(mi—m?)
+Z<T—3(mi+mi)+10PK'Pw B(g? mg.m2 12 e 7
1/ m2-m? 3[mi—m? Af,  Af_]
XA(mE,)—E( 7 +5 A(mﬁ)-i—z 7 -3 A(mf,—T— = (D4
|0 @7D.(12) KO - 8% —3m2 1 5 m2+1 _3;Af+A_mz (D5)
(' g8 | o s e - S

for K= mm, mg=m_=m,
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1
_Im2 - = =
6m 16772f2<50|n,u2 37 : + 3 +

_ L Qg
<7T+7T |O(8,1),(1/24 KO>Iog: 8i f_sz

m? ) 3Af  Am?

16722

101 m? 47| 3Af Am* 32m?
for K=, mg=m_=m,
2 2
_ . Qo7 -mg 1 M
(m |0 WAKO) = —3i f—amﬁ 1 M(%e In;? —20(5+In16)—7 In5+232 coflz)
Afy 2Af, 4 ) )
_T_T+ 3—m2—(AmK—Amﬂ) , (D7)
K
fOI’ K— T, mK(l_|00p): 2m1.,(1_|00p), and
2 2
16 m 1 m
(mt | 0@D-WAKO), =3 f—;mﬁ 7—; 16772f2( ~518In— — 209 In 5+ 700 In 2+ 184 cof 2+ 80
o
AfK ZAfﬂ. 4 2 2 ] 4
- + ——(Amg—Am?) |+ 12 —my(4L,—Ls+8Lg+4Lg) (D8)
f f3amz f5

for K— arar, Mg (1-100p)= 2Mz(1-100p)- 1€ logarithmic corrections to the physical =3, K— r amplitude are given by

4

2
_ . Qg7 2 Mk mg 5
(wtar |O(27,1),(1/21K0>|0g:—4|fo2 _§mﬁ(ﬁ_l B(mi,mﬁ,mf]ﬁmﬁ(ﬁ—Emﬁ+2mi)8(mi,mﬁ,mi)

4 2.2 4 2 2 2 202 _ 2 2 2 2
+ (= 2my+3migm7 —m7) B(mi ,mZ,m7) +mz(mig—m7) B(mic ,m3,,m;)

2mg 15 9
R Tm A2 T2
+ mi ZmK+2m7T

—5my 11
A(m§)+( ; ZK—7mﬁ+10m§,)
m

ks

4
m 3
><A(m§)+(2—‘<2—3mﬁ+§m§, A(m2) |, (D9)
m"IT

4

2
1 m
K K
gmﬁ(—mz —1)B(mi,mﬁ,mf,ﬁEmﬁ(ﬁ—5mﬁ+4mi) B(m. . )

ag
fi f2

w

<7T+1T—|O(8,1),(l/21 KO>|0g:4i

1
— (2mi = 3mgm?+m7)B(mi, mZ m?) — o mZ (mi—m7)B(my ,m;,m?)

4 4

1(mg m

2 K 2 2

—E(—Z‘Fmﬂ. _2_6mK+3mﬂ.
m m_

1
A(m3)+ (5m? = 3mi) A(mg) + > A(m?)

w

6_4i 2 _ A2 2 _ _ 2
+ f5 az(mK mﬂ.)[meL4+( 4L4 L5+8L6+4L8)mﬂ_] (DlO)

The imaginary parts of expressiof39) and(D10) are given by
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2ay; 1 m?2
Im(i(77*77’|(’)(27'1)'(1’21K0>)=f—f227 P \/ 1—4F<mi—mi><2m§—mi), (D1D)
Kt

K

2a; 1 m2
Im(i {7 7| OG- A2 KoYy = — f fz o2 / 1—4F(mﬁ— m2)(2m2—m2). (D12)
K'#m

K
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