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Collinear effective theory at subleading order and its application to heavy-light currents

Junegone Chay* and Chul Kim
Department of Physics, Korea University, Seoul 136-701, Korea

~Received 22 January 2002; published 21 June 2002!

We consider a collinear effective theory of highly energetic quarks with energyE, interacting with collinear
and soft gluons by integrating out collinear degrees of freedom to subleading order. The collinear effective
theory offers a systematic expansion in power series of a small parameterl;p' /E, wherep' is the transverse
momentum of a collinear particle. We construct the effective Lagrangian to first order inl and discuss its
features, including additional symmetries such as collinear gauge invariance and reparametrization invariance.
Heavy-light currents can be matched from the full theory onto the operators in the collinear effective theory at
one loop and to orderl. We obtain heavy-light current operators in the effective theory, calculate their Wilson
coefficients at this order, and the renormalization group equations for the Wilson coefficients are solved. As an
application, we calculate the form factors for decays ofB mesons to light energetic mesons to orderl and at
leading-logarithmic order inas .
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I. INTRODUCTION

When aB meson decays into light mesons we can expl
different kinematic regions, depending on the momenta
ried by the light mesons. When a light meson is emitted fr
a heavy quark with momentum of orderLQCD, this decay
can be successfully described by the heavy quark effec
theory~HQET! @1#. The momentum of a heavy quark can
decomposed aspb5mbv1k, wherek is the residual momen
tum of orderLQCD. The leading contribution to the deca
corresponds to the partonic result, and the corrections ca
systematically expanded in power series of 1/mb and as .
Inclusive decays of heavy mesons with large moment
transfer can be treated in the HQET with the operator pr
uct expansion@2#. Exclusive decays with heavy-heavy cu
rents and heavy-light currents can also be treated in the
text of the HQET@3,4#.

If a light meson fromB decays carries a large energ
HQET alone is no longer useful since the large energy o
light meson can be as large asmb . Then an expansion in
1/mb alone is not appropriate. In this case, however, we
construct a different type of an effective theory by taking t
energyE of the energetic light quark to infinity. In this limit
nonperturbative effects can also be systematically obtain
In fact, this effective theory is more complicated than t
HQET and the naive power counting in 1/E should be modi-
fied since the system involves several energy scales.

Another complication arises in decays of a heavy qu
with an energetic light quark due to a Sudakov logarith
since there are both collinear and infrared divergences@5#.
There has been some discussion of summing Sudakov l
rithms using effective field theories@6–9#. Such an approach
has an advantage over conventional methods since effe
theories are valid beyond perturbation theory, and it
straightforward to go beyond the leading approximation
including higher-dimensional operators. The main advant
of using effective theories in this case is that we can rep
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duce the Sudakov logarithm easily without dividing all th
kinematic regions@10#, and the calculation is manifest in th
calculational procedure. However, we need an effect
theory in which logarithms arising at one loop in the effe
tive theory should match logarithms arising at one loop
QCD for any matching scalem in the minimal subtraction
scheme. Only in this case, these logarithms may be sum
using the renormalization group equations. The large-ene
effective theory suggested by Dugan and Grinstein@11# does
not satisfy this criterion since it does not include the effe
of collinear gluons properly.

Recently Bauer et al.@12# have proposed a new effectiv
theory called the ‘‘collinear-soft effective theory.’’ If a ligh
quark moves with a large energy, the momentum has th
distinct scales. The momentum component in the light co
directionnm is the largest, of the order of the energy of th
quark,E. The transverse momentum is smaller thanE, and
the momentum component opposite to the light cone dir
tion is the smallest. In order to disentangle the three sc
conveniently, a small parameterl is introduced. The larges
component has the momentum of orderE. The transverse
component is of orderEl, and the smallest component is o
orderEl2.

BetweenE and El, we have collinear modes and so
modes for the light quark. Here we integrate out all the c
linear modes above some scalem, and the result is the effec
tive theory consisting of collinear quarks and soft quar
The effective theory at this stage is called the collinear-s
effective theory, which we will call the ‘‘collinear effective
theory’’ for brevity. Below the scaleEl and aboveEl2, we
integrate out all the collinear modes, and there remain o
soft modes in the final soft effective theory. This actua
corresponds to the large-energy effective theory suggeste
Dugan and Grinstein@11#, in which there are only soft
modes. In Ref.@12# they show that at each stage of the e
fective theories, the infrared behavior of the full theory
correctly reproduced by including the effects of colline
gluons. Therefore heavy-light currents in the full theory
nally can be matched onto operators in the effective theor
their Wilson coefficients are calculable and the renormali
©2002 The American Physical Society16-1
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tion group equation can be solved.
If we consider exclusiveB decays via heavy-light current

in the scheme of effective theories, it is sufficient to consi
the collinear effective theory between the scaleE and El
and integrate out all the degrees of freedom above s
scalem. At this scale, we describe a heavy quark in terms
HQET, and treat an energetic light quark in the colline
effective theory. This limit corresponds tomb ,E→` with
E/mb fixed. We can calculate the Wilson coefficients of va
ous operators in the effective theory by matching to the
theory and can obtain anomalous dimensions of various
erators. In this paper we extend further the idea of the c
linear effective theory and derive the effective Lagrangian
subleading order inl and renormalize the effective theory
one loop. Also we consider the correction to heavy-light c
rents to orderl and to leading-logarithmic order inas .

In Sec. II we briefly review the collinear effective theor
and derive the effective Lagrangian to orderl. We also dis-
cuss a collinear gauge invariance in the effective theory
Sec. III we discuss reparametrization invariance in the c
linear effective theory. The reparametrization invariance
sures that the kinetic energy term is not renormalized to
orders inas . It is also useful in deriving high-dimensiona
operators for heavy-light currents in the collinear effect
theory and in obtaining the Wilson coefficients and the ren
malization behavior of these high-dimensional operators
Sec. IV we match heavy-light currents between the full QC
and the collinear effective theory, and consider the effect
radiative corrections at one loop. In Sec. V, we compute
anomalous dimensions of various heavy-to-light operator
order l at one loop, and solve the renormalization gro
equation for the Wilson coefficients in the collinear effecti
theory. In Sec. VI we consider form factors of heavy-lig
currents for the vector and the axial vector currents to or
l. In Sec. VII we present a conclusion and perspectives
the collinear effective theory. In the Appendix we present
explicit calculation to show that the effective Lagrangian
orderl is not renormalized at one loop.

II. COLLINEAR EFFECTIVE THEORY

We construct an effective theory which describes the
namics of energetic light quarks. A detailed derivation of t
effective theory at leading order inl is described in Refs
@12–15#, and we will briefly review the idea. Then we con
struct the effective theory to orderl. Let us consider a ref-
erence frame in which a light quark carries a large energyE.
If we neglect the quark mass, the only large parameter in
system is the energyE itself. Since we are interested in de
cays of heavy mesons to energetic light hadrons, we
conveniently choose a reference frame as the rest frame
heavy meson, in which the energy of light hadrons is inde
large in the heavy quark limit. In this reference frame, lig
particles lie close on the light-cone directionnm, and we
describe their dynamics using the light-cone variablesp

5(p1,p2,p'), wherep15n•p, and p25n̄•p. We choose
the axis such thatnm5(1,0,0,1), n̄m5(1,0,0,21) with n•n̄
52.
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For the energetic quark, there are three distinct ene
scales, withp2;2E being large, whilep' andp1 are small.
If we take a small parameter asl;p' /p2, we can write

pm5n̄•p
nm

2
1~p'!m1n•p

n̄m

2

5O~l0!1O~l1!1O~l2!, ~1!

sincep1p2;p'
2 ;l2. Therefore we have three distinct en

ergy scalesE, El andEl2, making the effective theory more
complicated than the HQET. It is similar to the case of no
relativistic QCD~NRQCD! for quarkonium states, in which
there are also three distinct scalesm, mb andmb2, wherem
is the heavy quark mass andb is the typical velocity of a
quark inside a quarkonium@16#. The collinear quark can emi
either a soft gluon with momentumks5E(l2,l2,l2) or a
collinear gluon withkc5E(l2,1,l) to the large momentum
direction and can still be on its mass shell. Due to the inf
red sensitivity with collinear loop momentum, the effectiv
theory is more complicated, and the relevant scales mus
treated separately to obtain a consistent power coun
method. In the collinear effective theory, the power count
in 1/E is troublesome, but the expansion in the small para
eter l offers a consistent power counting and there is
mixing of operators with different powers ofl. This will be
discussed in detail in Sec. V.

The Lagrangian in the collinear effective theory can
obtained from the full QCD Lagrangian at tree level by e
panding it in powers ofl. The full QCD Lagrangian for
massless quarks and gluons is given by

LQCD5q̄iD” q2
1

4
Gmn

a Gmna, ~2!

where the covariant derivative isDm5]m1 igTaAm
a , and

Gmn
a is the gluon field strength tensor. We remove large m

menta from the Lagrangian, similar to the method employ
in the HQET. The quark momentum is split as

p5 p̃1k, p̃[~ n̄•p!
n

2
1p' . ~3!

The large part of the quark momentumn̄•p andp' , denoted
by p̃, will be removed by defining a new field as

q~x!5(
p̃

e2 i p̃•xqn,p~x!. ~4!

A label p in qn,p refers to only the componentsn̄•p andp' .
The derivative]m on the fieldqn,p gives O(l2) contribu-
tions.

Now we introduce projection operators which project o
large componentsjn,p and small componentsj n̄,p in the di-
rectionnm as

jn,p5
n”n”̄

4
qn,p , j n̄,p5

n”̄n”

4
qn,p . ~5!
6-2
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TABLE I. Power counting for the effective theory fields.

Heavy quark Collinear quark Soft gluon Collinear gluon

Field hv jn,p As
m

n̄•An,q
n•An,q An,q

'

Scaling l3 l l2 l0 l2 l
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The fieldsjn,p , j n̄,p satisfy

n”n”̄

4
jn,p5jn,p ,

n”̄n”

4
j n̄,p5j n̄,p , ~6!

and

n” jn,p50, n”̄ j n̄,p50. ~7!

We can eliminate the small componentj n̄,p at tree level by
using the equation of motion

~ n̄•p1n̄• iD !j n̄,p5~p”'1 iD”'!
n”̄

2
jn,p , ~8!

and the Lagrangian can be written in terms ofjn,p . It is
convenient to separate the collinear and soft parts in gl
modes asAm5Ac

m1As
m in the covariant derivativeDm, such

that the covariant derivative involves only soft gluons. T
typical scale for the collinear gluons isq2;l2, while the
typical scale for the soft gluons isk2;l4. Since the collinear
gluon carries a large momentumq̃[(n̄•q,q'), derivatives
on this field can yield orderl0 and l1 contributions. To
make this explicit, we extract the large momentum part c
taining q̃ by redefining the fieldAc

m(x)5( q̃e2 i q̃•xAn,q
m (x).

Then the Lagrangian can be written as

L5 j̄n,p8Fn• iD 2gn•An,q1~p”'1 iD”'2gA” n,q
' !

3
1

n̄•p1n̄• iD 2gn̄•An,q

3~p”'1 iD”'2gA” n,q
' !G n”̄

2
jn,p . ~9!

Here the summation over the labelsp̃ and p̃8 and the phase
factors for each collinear field are suppressed. From now
in order to simplify the notation further, we suppress t
label momenta for the collinear fields when there can be
confusion. It should be understood that, whenjn and An

m

appear, the summation on the label momentump, q, the large
phases, and the conservation of the label momenta are
plied. The method to insert all the summations, the pha
and the label momenta are nicely summarized in Ref.@15#.

In order to obtain the effective Lagrangian, we expand
~9! in powers ofl. In the power counting of the fields inl,
we follow the procedure of moving all the dependence onl
into the interaction terms to make the kinetic terms of or
11401
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l0. This is done by assigning al scaling to the fields in the
effective theory, as given in Table I@15#.

Bauer and Stewart@15# suggested a closed form to in
clude the effects of collinear gluons to all orders. We defi
an operatorP̄ which acts on products of effective theor
fields. When acting on collinear fields,P̄ gives the sum of
large momentum labels on fields minus the sum of la
momentum labels on conjugate fields. Then, for any funct
f, we have

f ~P̄!~fq1

†
•••fqm

† fp1
•••fpn

!

5 f ~ n̄•p1•••1n̄•pn2n̄•q12•••2n̄•qm!

3~fq1

†
•••fqm

† fp1
•••fpn

!. ~10!

The operatorP̄ has mass dimension 1, but power counti
dimensionl0. The conjugate operatorP̄† acts only to its left
and gives the sum of large momenta on conjugate fields
nus the sum of large momenta on fields.

Let us consider gauge symmetries of the effective theo
Since there are several gluon modes, there are pos
SU(3) color gauge transformations for each mode. We c
sider gauge symmetries that have support over collinear
menta. The collinear effective theory is invariant under
collinear non-Abelian gauge transformation of the for
U(x)5exp@iaa(x)Ta#. A set of these collinear gauge transfo
mations is a subset of all the gauge transformations, wh
satisfies]mU;E(l2,1,l). It is useful to decompose this co
linear transformation into a sum over the collinear mome

U~x!5(
Q

e2 iQ•xUQ , ~11!

where]mU Q;l2. When we expand the gauge transform
tion, we obtain simple transformation rules for collinear fe
mions and gluons. The transformation for collinear fermio
and gluons are given by

jn→Ujn ,

An
m→UAn

mU †2
1

g
UF S P̄nm

2
1P'

m1~ in•]!
n̄m

2
DU †G . ~12!

HereP'
m produces a sum of momenta of orderl, and the last

term produces a momentum of orderl2. And the soft modes
transform asAs

m→UAs
mU † under a collinear gauge transfo

mation.
6-3
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JUNEGONE CHAY AND CHUL KIM PHYSICAL REVIEW D 65 114016
Let us define a functionW of n̄•An such thatW†jn is
invariant under the transformation in Eq.~12!. The operators
W andW† are defined as

W5FexpS 1

P̄gn̄•AnD G , W†5FexpS gn̄•An*
1

P̄†D G ,

~13!

which satisfyW†W51. In the expansion of the exponentia
the 1/P̄ acts to the right on all gluon fields in the squa
bracket. Under a collinear gauge transformation,W trans-
forms as@15#

W→UW, ~14!

which makesW†jn invariant under a collinear gauge tran
formation. When we expand the exponential inW, we have
an infinite series of collinear gluons. But all of them are
orderl0 and should be included. The operatorP” '2gA” n

' of
orderl transforms as

P”'2gA” n
'→U~P” '2gA” n

'!U † ~15!

under a collinear gauge transformation.
With these transformation properties, we can write

LagrangianL5L01L1 in a closed form, including an infi-
nite number of collinear gluons as

L05 j̄nH n•~ iD 2gAn!

1~P” '2gA” n
'!W

1

P̄W†~P” '2gA” n
'!J n”̄

2
jn ,

~16!

L15 j̄nH iD”'W
1

P̄W†~P” '2gA” n
'!

1~P” '2gA” n
'!W

1

P̄W†iD”'J n”̄

2
jn ,

whereLn (n50,1) is the Lagrangian at orderln. The ex-
pression in Eq.~16! is manifestly invariant under a collinea
gauge transformation, and we use the fact that for any fu
tion f, W f(P̄)W†5 f (P̄2gn̄•An).

The Feynman rules for the propagator of a collinear qu
and the interaction vertices fromL0 are shown in Fig. 1.
Hereg'

m is defined as

g'
m5gm2

n”

2
n̄m2

n”̄

2
nm. ~17!

There are other interaction vertices such as the one with
collinear quark fields and two gluons, and those with trip
gluons. We omit them here since they do not contribute
one-loop corrections to orderl in dimensional regulariza
tion.
11401
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For a heavy quark, we employ HQET for the heavy qua
field hv . The effective Lagrangian for HQET is given by

LHQET5h̄vv• iDhv . ~18!

The covariant derivative in Eq.~18! contains only soft glu-
ons because the heavy quark field does not couple to co
ear gluons. According to the power counting in Table I, t
corrections in 1/mb in the HQET Lagrangian are suppress
by l2 compared to the leading Lagrangian, and we will n
consider them here.

III. REPARAMETRIZATION INVARIANCE

When we decompose a quantity into a large part an
small part, the decomposition is not unique. We can alw
shift the large part such that a change in the small part c
pensates this change to make the total quantity unchan
The physics should be invariant under such a change.
invariance under this shift is called the reparametrization
variance. In HQET, there is a reparameterization invaria
@17#. It means that the decomposition of the heavy qu
momentumpb into mbv and the residual momentumk is not
unique. Typicallyk is of the order ofLQCD, which is much
smaller thanmb . A small change in the four velocity of the
order of LQCD/mb can be compensated by a change in
residual momentum. The physics of heavy quarks should
invariant under different decomposition of momenta. A co
sequence of this reparametrization invariance is that the
netic energy term in HQET is not renormalized to all orde
Besides, we can obtain higher-dimensional operators
heavy-light currents using the reparametrization invarian
And we can easily obtain the Wilson coefficients and t
anomalous dimensions of higher-dimensional operators w
out any explicit calculation.

A similar reparametrization invariance occurs in the c
linear effective theory. The energetic light quark momentu
p is given by

pm5
n̄•p

2
nm1p'

m1km. ~19!

FIG. 1. Feynman rules forL0 to orderg in the collinear effective

theory: ~a! collinear quark propagator with labelp̃ and residual
momentumk, ~b! collinear quark interaction with one soft gluon
and~c! collinear quark interaction with one collinear gluon, respe
tively.
6-4
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From now on, we will consider a small change of orderl,
neglecting terms of orderl2, which can be included in a
straightforward way. As in HQET, the decomposition ofp
into n, p' is not unique. A small change innm of orderl can
be compensated by a change inp'

m ,

n→n1
2e

n̄•p
, p'→p'2e, ~20!

wheree is of orderl. And the physics for collinear quark
should be invariant under different decompositions of m
menta.

Since n satisfiesn250, the parametere must satisfy
n•e50, neglecting terms of order (e/n̄•p)2. The light quark
spinor jn must also change to preserve the constraintn” jn
50. Consequently, ifjn changes asjn→jn1djn , djn sat-
isfies

S n”1
2e”

n̄•p
D ~jn1djn!50. ~21!

To first order ine/n̄•p, one finds

n”djn52
2e”

n̄•p
jn . ~22!

Therefore a suitable choice for the change injn is

djn52
1

n̄•p

n”̄

2
e”jn . ~23!

The Lagrangian in Eq.~16! must be invariant under th
combined changes

n→n1
2e

n̄•p
, jn→ei e•xS 12

1

n̄•p

n”̄ e”

2 D jn , ~24!

where the prefactorei e•x causes a shiftp'→p'2e. In order
to prove the reparametrization invariance, it is convenien
write the LagrangianL as

L5 j̄nH n•~ iD 1P2gAn!1~P” '2gA” n
'1 iD”'!

3W
1

P̄W†~P” '2gA” n
'1 iD”'!J n”̄

2
jn , ~25!

where we includedn•P which does not affect the Lagrang
ian, but the addition makes the Lagrangian manifestly inv
ant under a collinear gauge transformation.

The change of the Lagrangian is given by
11401
-
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i-

dL5 j̄nF 2e

n̄•p
•~P'2gA'1 iD'!2e”W

1

P̄W†~P” '2gA”'

1 iD”'!

2~P” '2gA”'1 iD”'!W
1

P̄W†e”Gn”̄

2
jn . ~26!

The changedL vanishes, which can be easily seen when
disregard gauge fields. Then the first line in Eq.~26! exactly
cancels the second line. Therefore we have proved that
Lagrangian is reparametrization invariant under a shift
orderl. As a result, the kinetic energy terms appearing b
in L0 andL1 are not renormalized. The explicit calculatio
to show that the kinetic energy term at orderl is not renor-
malized at one loop is given in Appendix.

We can make a stronger statement by combining the
parametrization invariance and the collinear gauge inv
ance of the collinear effective theory. In the LagrangianL1 at
orderl, the kinetic energy part is given by

j̄n

2p'• i ]'

n̄•p

n”̄

2
jn , ~27!

which is not renormalized due to the reparametrization
variance. However, in order to make this part collinear gau
invariant,P' should be replaced byP'2gA' . There is no
constraint from the collinear gauge invariance on whet
we should replace the derivative operator with a covari
derivative including a soft gluon. However, if we requi
the invariance under ultrasoft gauge transformations@15#, the
derivative operator should be replaced by the covariant
rivative. Therefore the extension of the kinetic energy te
which is invariant under the collinear and the ultrasoft gau
transformation is given by

j̄nH ~ iD'!mW
1

P̄W†~P'
m2gAn

'm!

1~P'
m2gAn

'm!W
1

P̄W†~ iD'!mJ n”̄

2
jn . ~28!

This is not renormalized to all orders inas due to the rep-
arametrization invariance and the gauge invariance. And
remaining part inL1 is not renormalized at one loop, henc
the whole LagrangianL1 is not renormalized at leading
logarithmic accuracy.

We can fix the form of some corrections at orderl from
the operators atl0 using the reparametrization invarianc
For example, the vector currentq̄gmb in the full theory is
written as

q̄gmb→ j̄nS 11
n”̄

2

p”'

n̄•p
D gmhv

5 j̄ngmhv1 j̄n

n”̄

2

p”'

n̄•p
gmhv , ~29!
6-5
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JUNEGONE CHAY AND CHUL KIM PHYSICAL REVIEW D 65 114016
in the collinear effective theory to orderl. The collinear
gauge-invariant form of this operator is given by

j̄nS 11
n”̄

2
~P” '2gA” n

'!W
1

P̄†D Ghv , ~30!

where the second term is an operator for heavy-light curre
at orderl in the effective theory.

IV. MATCHING HEAVY-LIGHT CURRENTS

We consider the matching of heavy-light currents of t
form J5q̄Gb, whereG denotesgm or gmg5. Below the scale
n̄•p, the hadronic current is matched onto currents in
collinear effective theory and the HQET. This introduces
new set of Wilson coefficients. We will match the curre
operators in the full theory with the current operators in
collinear effective theory and the HQET in a single step
glecting the sum of logarithms of order ln(mb /n̄•p), which is
quite small sincemb;n̄•p.

The vector-current operatorVm5q̄gmb in the full theory
can be matched to the effective theory as

Vm→(
i

Ci~m!Ji
m1(

j
BjOj

m1(
k

AkTk
m . ~31!

The operatorsJi are the operators at leading order inl, and
there are three such operators, which are given as

J1
m5 j̄nWgmhv , J2

m5 j̄nWvmhv , J3
m5 j̄nWnmhv .

~32!

Similarly, $Oj
m% are a complete set of operators at orderl.

There are four such operators and a convenient basis
these operators is given by

O1
m5 j̄n

n”̄

2
~P” '2gA”'!W

1

P̄†
gmhv ,

O2
m5 j̄n

n”̄

2
~P” '2gA”'!W

1

P̄†
vmhv ,

~33!

O3
m5 j̄n

n”̄

2
~P” '2gA”'!W

1

P̄†
nmhv ,

O4
m5 j̄n~P” '

m2gA'
m!W

1

P̄†
hv .

The operators in Eqs.~32! and~33! are written in such a way
that they are manifestly invariant under a collinear gau
transformation. We also include the nonlocal operatorsTk

m

arising from an insertion of the orderl correction to the
effective Lagrangian into matrix elements of the leadin
order currents, which are defined as
11401
ts

e
a
t
e
-

or

e

-

Tk
m5 i E d4yT$Jk

m~0!,L1~y!% ~k51,2,3!. ~34!

Our goal is to calculate the Wilson coefficientsCi(m),
Bj (m) andAk(m) in the leading-logarithmic approximation
The Wilson coefficients are defined by requiring that mat
elements of the vector current in the full theory are the sa
to any order inl, as matrix elements calculated in the effe
tive theory. Before we proceed to explicit calculation, no
that there are nontrivial relations between the coefficie
Bj (m) and Cj (m) imposed by the reparametrization invar
ance. This is because operators of orderl acting on a col-
linear quark field must always appear in certain combi
tions with operators of orderl0. In our case, there is a
unique way in which the operatorsOi

m can be combined with
Ji

m in a reparametrization invariant way, that is,

K j̄nS 11
n”̄

2

p”'

n̄•p
D gmhvL 1•••5^J1

m&1^O1
m&1•••,

K j̄nS 11
n”̄

2

p”'

n̄•p
D vmhvL 1•••5^J2

m&1^O2
m&1•••,

~35!

K j̄nS 11
n”̄

2

p”'

n̄•p
D S nm1

2p'
m

n̄•p
D hvL 1•••

5^J3
m&1^O3

m&12^O4
m&1•••.

This implies that, to all orders in perturbation theory,

Bi~m!5Ci~m! ~ i 51,2,3!, B4~m!52C3~m!, ~36!

and the coefficientsCi(m) have been calculated at leadin
logarithmic order in Ref.@13#. This is our new result and i
imposes an important constraint on the theory, which mus
obeyed by an explicit calculation.

The operator product expansion of the axial vector curr
Am5q̄gmg5b can be simply obtained from Eq.~31! by re-
placing q̄→2q̄g5 if we perform the calculation using th
dimensional regularization with modified minimal subtra
tion (MS) and the naive dimensional reduction~NDR!
scheme with anticommutingg5. We can rewrite the axia
current asAm52q̄g5gmb. The g5 matrix acting on the
massless quarkq becomes61 depending on the chirality o
the quark. Chirality is conserved by the QCD interactions,
the calculation of matching conditions proceeds just as in
vector current case, except thatq̄ is replaced everywhere b
q̄g5. At the end of the calculation, theg5 is moved back next
to hv , producing a compensating minus sign forgmg5, but
neither forvmg5 nor for nmg5. Thus, for axial vector cur-
rents, all the coefficients are the same in magnitude, and
C1 , B1, andA1 do not change sign, while all the remainin
coefficients change sign.

Bauer et al.@12,13# have explicitly showed that the col
linear effective theory, indeed, reproduces the infrared
havior of the full theory by including the effects of collinea
6-6
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COLLINEAR EFFECTIVE THEORY AT SUBLEADING . . . PHYSICAL REVIEW D65 114016
gluons. Once we know that the effective theory reprodu
the long-distance physics of the full theory, the match
procedure is independent of any long-distance physics, s
as infrared singularities, nonperturbative effects and
choice of external states. Thus there is a freedom in choo
the external states and the infrared regularization scheme
find it most convenient to perform the matching of QC
onto the collinear and the heavy quark effective theory us
on-shell external quark states and dimensional regulariza
for both the ultraviolet and infrared divergences encounte
in calculating loop diagrams. This scheme has the great
vantage that all loop diagrams in the effective theory van
since there is no mass scale other than the renormaliza
scalem. It means that matrix elements in the effective theo
are given by their tree-level expressions. We assign mom
tum such that the incoming heavy quark has momentumpb
5mbv1k ~with 2v•k1k2/mb50), while the outgoing light
energetic quark carries momentump5En1p'1k8 ~with
2En•k81p'

2 50).
The matrix elements of operators can be written as

^J1
m&5ūe~n,s!gmuh~v,sb!,

~37!

^O1
m&5ūe~n,s!

n”̄

2

p”'

n̄•p
gmuh~v,sb!,

whereue(n,s) anduh(v,sb) are on-shell spinors for a mas
less, energetic quark fieldjn in the collinear effective theory
and a heavy quark fieldhv in the HQET, respectively. They
satisfyn”ue(n,s)50 andv”uh(v,sb)5uh(v,sb). We compute,
in the full theory, the vector current matrix element betwe
on-shell quark states at one-loop order in order to do
matching. The relations of the heavy quark spinors and
light quark spinors between QCD and the effective the
are given by

ub~pb ,sb!5S 11
k”

2mb
Duh~v,sb!1O~1/mb

2!,

~38!

uq~p,s!5S 12
n”̄

2

p”'

n̄•p
D ue~n,s!1O~l2!.

The correction to the heavy quark field, which involvesk” , is
suppressed byl2, and it is discarded in our matching at o
der l.

We match the coefficients at one loop by employing
dimensional regularization inD5422e dimensions. In the
full theory, there is no ultraviolet divergence due to curre
conservation. The residue at the physical mass pole in
propagator is infrared in nature, and it should be added to
vertex correction. The residue at the physical mass pole
the heavy quark in theMS scheme at orderas is given by
@18#

Rb
(1)52

asCF

4p S 2

e
1426 ln

mb

m D , ~39!

and in the HQET, the residue at orderas is given as
11401
s
g
ch
e
ng

e

g
n
d
d-
,
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n
e
e
y

e

t
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e

or

Rh
(1)52

asCF

4p

2

e
. ~40!

The residue for the light quark at orderas in the collinear
effective theory is the same as the residue in the full theo
and it is given as

Rq
(1)5Rjn

(1)5
asCF

4p

1

e
. ~41!

Since the residues for the light quarks are the same, t
cancel each other when we match both theories.

The matrix element of the vector current between fr
quark states with the residues of the external quarks in
full theory can be expressed in terms of the matrix eleme
in the collinear and the heavy quark effective theory as

^q̄gmb&5H 12
asCF

4p F 1

e2
1

5

2e
2

2

e
ln

xmb

m
12 ln2

xmb

m

1
3x22

12x
ln x1Li 2~12x!1

p2

12
16G J

3^J1
m1O1

m&1
asCF

4p F 2

12x
1

2x

~12x!2
ln xG

3^J2
m1O2

m&1
asCF

4p F2
x

12x
1

x~122x!

~12x!2
ln xG

3^J3
m1O3

m12O4
m&, ~42!

wherex5n̄•p/mb52E/mb and Li 2(x) is the dilogarithmic
function. Here we have confirmed the consequence of
reparametrization invariance at one loop explicitly. The
frared behavior of the full QCD is reproduced in the colline
effective theory, and the infrared divergences in both theo
cancel in matching.

The Wilson coefficientsCi for Ji
m at the renormalization

scalem are given by

C1~m!512
asCF

4p F2 ln2S xmb

m D25 ln
mb

m

1
3x22

12x
ln x12Li 2~12x!1

p2

12
16G ,

C2~m!5
asCF

4p F 2

12x
1

2x

~12x!2
ln xG , ~43!

C3~m!5
asCF

4p F2
x

12x
1

x~122x!

~12x!2
ln xG ,

and the coefficientsBj are given as
6-7
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Bi~m!5Ci~m! ~ i 51,2,3!, B4~m!52C3~m!. ~44!

This relation is expected from the reparametrization inva
ance, and the operatorsOi

m have the same anomalous dime
sion as those of the leading operatorsJi

m . The explicit cal-
culation that the operatorsO1 to O4 have the same
ultraviolet behavior as their corresponding leading opera
is shown in Sec. V.

The coefficientsAi are given by the product of those fo
Ji

m andL1, and they are given by

Ai~m!5Ci~m!. ~45!

The fact that the Wilson coefficientsAi are the same asCi is
because the effective LagrangianL1 at orderl is not renor-
malized at leading-logarithmic order.

V. RENORMALIZATION GROUP IMPROVEMENT

The perturbative expansion of the Wilson coefficien
contains large logarithms of the type@asln(2E/m)#n, which
should be summed to all orders. We employ the renormal
tion group to improve one-loop results. The reason why
choosel as the small parameter is because various opera
with different orders ofl do not mix in this power counting
If we choose to expand in powers of 1/E, when we renor-
malize operators, a factorE in the numerator could be in
duced from loop calculations. This is expected since
propagator of a collinear quark explicitly involvesE in the
1/E expansion. Therefore higher-dimensional operators
1/E can mix with those operators with one less power ofmb
or E, and a power counting in 1/E is inappropriate. However
if we expand the effective Lagrangian in powers ofl, such
mixing never occurs, and we can do the power counting il
consistently.

In general, the coefficients of the operators with the sa
power ofl mix into themselves and satisfy a renormalizati
group equation of the form

m
d

dm
C~m!5g~m!C~m!. ~46!

Since Eq.~46! is homogeneous, we can reproduce the ex
nentiation of Sudakov logarithm.

The renormalization of the operatorsJi
m at orderl0 was

performed in Ref.@13#. The counterterm for the operatorsJi
m

in the effective theory using the Feynman gauge is given

Zi511
asCF

4p F 1

e2
2

2

e
ln

2E

m
1

5

2eG . ~47!

This counterterm is the same for allJi
m , and is independen

of the Dirac structure of the operators since the propaga
and the vertices in the collinear effective theory do not a
the Dirac structure of the operators. Furthermore, there is
operator mixing. The anomalous dimensions are given b

g i5Zi
21S m

]

]m
1b

]

]gDZi , ~48!
11401
i-

rs

a-
e
rs

e

in

e

-

y

rs
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o

where

m
]

]m
Zi5

as~m!CF

2pe
,

~49!

b
]

]g
Zi52

asCF

2p S 1

e
22 ln

2E

m
1

5

2D .

Here we have usedb52ge1O(g3). This gives the anoma
lous dimension

g i52
as~m!CF

2p S 5

2
22 ln

2E

m D . ~50!

The divergence in Eq.~49! is cancelled, and solving the
renormalization group equation Eq.~46!, we obtain

Ci~m!5S as~m!

as~2E! D
(CF/2b0)(528p/b0as)S 2E

m D 2CF /b0

Ci~2E!,

~51!

where b051122nf /3, and Ci(2E) are the Wilson coeffi-
cients atm5n̄•p52E, as given in Eq.~43!.

At orderl, we need to renormalize the operatorsOi
m . Let

us first consider the renormalization ofO1
m to O3

m . The Feyn-
man rules for the vertex from these operators with a collin
gluon are given in Fig. 2. The Feynman diagrams to ren
malize the operatorsOi

m ( i 51,2,3) at orderas are shown in
Fig. 3. Since the loop calculation does not alter the Di
structure, we can treat the renormalization of these opera
in the same way for all the three operators. The Feynm
diagrams in Fig. 3 give the amplitude

Mi
(1)m52

asCF

4p
Oi

mF 1

e2
1S 222 ln

n̄•p

m
D 1

e G . ~52!

Note that there is no mixing for the operatorsOi
m . If we add

the residues from the propagators of a heavy quark an
collinear quark, we have the counterterm

FIG. 2. Feynman rules for the operatorOi
m ( i 51,2,3) contain-

ing a collinear gluon at orderl. Here G i
m5gm, vm and nm for i

51,2,3, respectively. The momentum of the gluon is outgoing.

FIG. 3. Feynman diagrams for the renormalization ofOi
m ( i

51,2,3) at one loop.
6-8
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COLLINEAR EFFECTIVE THEORY AT SUBLEADING . . . PHYSICAL REVIEW D65 114016
Zi
(1)511

asCF

4p F 1

e2
2

2

e
ln

2E

m
1

5

2eG ~ i 51,2,3!, ~53!

which is identical to the counterterm for the leading ope
torsJi

m . We can do the same calculation for the operatorO4
m

and it turns out that the operatorO4
m has the same depen

dence one asJ3
m . And the counterterm is also given by E

~53!. Therefore the operatorsOi
m ( i 51, . . . ,4) have the

same anomalous dimensions as the leading operators. T
the explicit proof of the reparametrization invariance at o
loop and orderl.

For the time-ordered productsTk
m , the anomalous dimen

sions are the same as those ofJk
m because the LagrangianL1

in definingTk
m is not renormalized at one loop. Here we s

that the reparametrization invariance and the gauge inv
ance influence the structure of the theory. Furthermore, s
there is no mixing, the perturbative corrections to heavy-li
currents take a simple form to orderl.

VI. APPLICATION TO FORM FACTORS

As an application of the collinear effective theory, we c
consider the form factors forB mesons into light mesons. W
consider the kinematic region in which the energyE of the
light quark is large,

E5
mb

22q2

2mb
;

mb

2
, q5pb2pq , ~54!

which equivalently means that the momentum trans
squared through the weak current is smallq2!mb

2 . In this
case, the off-shellness of the light quark ispq

252Ek1 ,
wherek1;LQCD, thus l;ALQCD/mb. Therefore our for-
mulation to orderl gives the correction to the form factors
orderALQCD/mb. For simplicity, we will consider the form
factors for the vector and the axial vector currents.

The form factors forB̄ decays into light pseudoscalar an
vector mesons from the vector currentVm5q̄gmb, and the
axial vector currentAm5q̄gmg5b are defined as

^P~p8!uVmuB̄~p!&5 f 1~q2!F pm1p8m2
M22mP

2

q2
qmG

1 f 0~q2!
M22mP

2

q2
qm,

^V~p8,e* !uVmuB̄~p!&5
2V~q2!

M1mV
i emnaben* pa8pb , ~55!
11401
-

s is
e

ri-
ce
t

r

^V~p8,e* !uAmuB̄~p!&

52mVA0~q2!
e* •q

q2
qm1~M1mV!

3A1~q2!F e* m2
e* •q

q2
qmG2A2~q2!

e* •q

M1mV

3F pm1p8m2
M22mV

2

q2
qmG ,

whereq5p2p8, mP (mV) is the mass of the pseudoscal
~vector! meson,em* is the polarization vector of the vecto

meson, andM is the mass of aB̄ meson. We use the sig
conventione0123521.

We can calculate these form factors systematically
powers of l in the collinear effective theory. The matri
elements in the full theory are matched to the matrix e
ments in the collinear effective theory using Eq.~31!. How-
ever, here we do not include interactions where a collin
gluon is exchanged with the spectator quarks inside aB me-
son. In Ref.@19# it was argued that these spectator effe
could be of the same order inl and 1/mb as the soft contri-
butions, but they are suppressed by a power
as(AmbLQCD). They are therefore just as important as t
one-loop corrections to the matching coefficients such
Ci(m). Here we apply the collinear effective theory to th
soft contributions only. It means that the effective theo
applies to light mesons produced in an asymmetric confi
ration, in which a single quark from theb decay carries al-
most all the momentum.

If we consider this process as light-cone dominated, thi
not a typical configuration. A typical configuration is for bo
a quark and antiquark that have nearly equal moment
And spectator interactions can play an important role in t
configuration. In heavy-to-heavy transitions such asB→D in
the heavy quark limit, the interactions of a heavy quark w
the soft degrees of freedom around the heavy quark do
change even when there is a transition. On the contrary
heavy-to-light transitions, the soft degrees of freedom aro
the heavy quark experience an abrupt change. If an energ
quark and the soft degrees of freedom move somehow e
tically with almost the same velocity, we can safely consid
the interaction of an energetic quark with the soft degrees
freedom in terms of the collinear effective theory. This co
responds to the soft contribution to form factors. If only
energetic quark is pushed to the light-cone direction, the
degrees of freedom around the heavy quark should arra
themselves to follow the energetic quark to form light m
sons. In this process, hard gluons should be exchanged
tween the energetic quark and the previous soft degree
freedom in the heavy quark. This corresponds to the h
spectator interaction. This hard spectator interaction sho
be considered separately, and we leave the hard spec
contributions for future study.

A convenient way to evaluate hadronic matrix elements
the effective theory is to associate the spin wave functio
6-9
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M~v !5AM
11v”

2

3S 2g5

e” D pseudoscalar mesonP,

vector mesonV,
~56!

with the eigenstates of the effective Lagrangian, whereM is
the mass of the meson. The form factors in the effect
theory can be written as

^L~n!u j̄nGhvuB̄~v !&5tr@AL~E!M̄LGMB#, ~L5P,V! ~57!

whereG denotes a Dirac structure, and

M̄L5S 2g5

e”* D n”̄n”

4
, whereL5P,V,

~58!

MB5
11v”

2
~2g5!

are the spin wave functions associated with a light me
and aB̄ meson, respectively. The normalization factorAM
appearing inM is absorbed inAL(E). The functionAL(E)
contains the long-distance dynamics, and it is independen
the Dirac structureG in the current. The most general form
for AL(E) is given by

JL~E!5j1L~E!1j2L~E!v”1j3L~E!n”1j4Ln”v” , ~59!

but due to the properties of the projection operators inM̄L
andMB , not all of them are independent. ForL5P, there is
one independent term, and forL5V, there are two indepen
dent terms.

Charles et al.@20# have shown that there are only thre
independent matrix elements in heavy-to-light transitions
employing the HQET and the large-energy effective the
to obtain the leading result in 1/E. However, this is not suf-
ficient to describe heavy-to-light decays because interact
with collinear gluons should be included. Though the arg
ment is different, there are also three independent ma
elements in the collinear effective theory.

At order l, we have the form factors of the form

^L~n!u j̄np'
mGhvuB̄~v !&5tr @AL

m~E!M̄LGMB#, ~60!

whereAL
m(E) contains the long-distance dynamics and th

are independent of the Dirac structureG of the current. Since
the operator is proportional top'

m , the only allowed vector
component forAL

m is g'
m . Therefore the most general form

for AL
m is given by

AL
m~E!5g'

m@a1L~E!1a2L~E!v”1a3L~E!n”1a4Ln”v” #.
~61!

As in the case ofJL(E), all the terms are not independe
due to the projection operators inM̄L andMB . For L5P
there is only one independent term, and forL5V there are
two independent terms. Similarly, the matrix elements of
time-ordered productsTi can be written as
11401
e

n

of

y
y
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-
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y

e

^L~n!u i E d4y T$Ji
m~0!,L1~y!%uB̄~v !&

5tr @BL
m~E!M̄LGMB#, ~62!

and the most general form forBL
m(E) is written as

BL
m~E!5g'

m@b1L~E!1b2L~E!v”1b3L~E!n”1b4Ln”v” #,
~63!

becauseL1 is of order l and it typically depends onp'
m .

Here also we have one independent term forL5P, and two
independent terms forL5V.

In summary, we can write the parameters describing
long-distance physics as

JP~E!52EjP , JV~E!5En” S j'2
v”
2

j i D ,

AP
m~E!5

aP

2
g'

m , AV
m~E!5g'

m n”

2 S aV11
v”
2

aV2D ,

~64!

BP
m~E!5bPg'

m , BV
m~E!5g'

m n”

2 S bV12
v”
2

bV2D .

Note that the convention for the longitudinal form factorj i is
the same as that of Ref.@19#, and is related to the corre
sponding form factorz i defined in Ref. @20# by j i(E)
5(mV /M )z i(E). The matrix elements of all the operato
can be expressed in terms of these nonperturbative pa
eters. At orderl0, the matrix elements for pseudoscal
bosons are given by

^Pu j̄ngmhvuB̄&52EjPnm, ^Pu j̄ngmg5hvuB̄&50,

^Pu j̄nvmhvuB̄&52E jPvm, ^Pu j̄nvmg5hvuB̄&50,
~65!

^Pu j̄nnmhvuB̄&52E jPnm, ^Pu j̄nnmg5hvuB̄&50.

For vector mesons, the matrix elements are written as

^Vu j̄ngmhvuB̄&52E j'i emnaben* navb ,

^Vu j̄nvmhvuB̄&5^Vu j̄nnmhvuB̄&50,

^Vu j̄ngmg5hvuB̄&52E j'„e* m2~e* •v !nm
…

12E j i~e* •v !nm, ~66!

^Vu j̄nvmg5hvuB̄&522E j i~e* •v !vm,

^Vu j̄nnmg5hvuB̄&522E j i~e* •v !nm.

Using the above relations, we can determine the hea
to-light form factors at leading order inl andas ,
6-10
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f 1~q2!5
f 0~q2!

X
5jP~E!,

2m̂V

X
A0~q2!5j i~E!,

11m̂V

X
A1~q2!5

V~q2!

11m̂V

5j'~E!, ~67!

A2~q2!

11m̂V

5j'~E!2j i ,

whereX52E/M , m̂V5mV /M . From the results in Sec. IV
we can include the perturbative corrections, which cha
the relation between form factors. We find that, at lead
order inl and at leading logarithmic order inas ,

f 15jP~E!FC11
X

2
C21C3G ,

f 0

X
5jP~E!FC11S 12

X

2 DC21C3G ,
V

11m̂V

5C1j'~E!,

2m̂V

X
A05j i~E!FC11S 12

X

2 DC21C3G , ~68!

11m̂V

X
A15C1j'~E!,

A2

11m̂V

5C1j'~E!2S C11
X

2
C21C3D j i~E!.

These results are the same as those derived by Bauer
@13#, though our basis is different from theirs. In Ref.@19#
Beneke and Feldmann have calculated the soft contribu
to the form factors using the large-energy effective theory.
we have stressed, the matching to the full theory is imp
sible in this case. However, they judiciously absorbed
infrared divergences into the nonperturbative parame
such asjP , j' or j i by observing the Dirac structure of th
matrix elements. In the process, the nonperturbative par
eters are defined at each order inas . Since we can match th
collinear effective theory to the full theory, we can che
their calculations. We find that their perturbative correctio
in Eqs.~30!, ~32! and ~33! in Ref. @19# are correct when we
compare them with the exact results in the collinear effec
theory. Now we include the nonperturbative corrections
orderl, along with the perturbative correction.

At order l, the matrix elements ofOi
m for pseudoscalar

mesons are given as
11401
e
g

al.

n
s
s-
e
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-

s

e
t

K PU j̄n

n”̄

2
p”'gmhvUB̄L 5aP~2vm2nm!,

K PU j̄n

n”̄

2
p”'gmg5hvUB̄L 50,

K PU j̄n

n”̄

2
p”'vmhvUB̄L 5aPvm,

K PU j̄n

n”̄

2
p”'vmg5hvUB̄L 50, ~69!

K PU j̄n

n”̄

2
p”'nmhvUB̄L 5aPnm,

K PU j̄n

n”̄

2
p”'nmg5hvUB̄L 50,

^Pu j̄np'
mhvuB̄&5^Pu j̄np'

mg5hvuB̄&50,

and for vector mesons we have

K VU j̄n

n”̄

2
p”'gmg5hvUB̄L 5aV2e* •v~2vm2nm!,

K VU j̄n

n”̄

2
p”'gmhvUB̄L 50,

K VU j̄n

n”̄

2
p”'vmg5hvUB̄L 52aV2e* •vvm,

K VU j̄n

n”̄

2
p”'vmhvUB̄L 50, ~70!

K VU j̄n

n”̄

2
p”'nmg5hvUB̄L 52aV2e* •vnm,

K VU j̄n

n”̄

2
p”'nmhvUB̄L 50,

^Vu j̄np'
mg5hvuB̄&52aV1@e* m2~e* •v !nm#,

^Vu j̄np'
mhvuB̄&5aV1i emnaben* navb .

Finally, for the time-ordered products, we have

^Pu i E d4yT$j̄ngmhv~0! L1~y!%uB̄&5bPnm,

^Pu i E d4yT$j̄nvmhv~0! L1~y!%uB̄&5bPvm,

~71!
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^Pu i E d4yT$j̄nnmhv~0! L1~y!%uB̄&5bPnm,

and the time-ordered products involving the heavy-light c
rents withg5 vanish. For the matrix elements of the tim
ordered products for vector mesons, we find

^Vu i E d4yT$j̄ngmhv~0! L1~y!%uB̄&5bV1i emnaben* navb ,

^Vu i E d4yT$j̄ngmg5hv~0! L1~y!%uB̄&5bV1@e* m

2~e* •v !nm#1bV2e* •vnm,
d

11401
-

^Vu i E d4yT$j̄nvmhv~0! L1~y!%uB̄&50,

^Vu i E d4yT$j̄nnmhv~0! L1~y!%uB̄&50, ~72!

^Vu i E d4yT$j̄nvmg5hv~0! L1~y!%uB̄&52bV2e* •vvm,

^Vu i E d4yT$j̄nnmg5hv~0! L1~y!%uB̄&52bV2e* •vnm.

Combining all these form factors, we obtain in the colli
ear effective theory
^PuVmuB̄&52EnmF ~C11C3!jP1
1

2E
@aP~2B11B3!1bP~A11A3!#G12EvmFC2jP1

1

2E
@aP~2B11B2!1bPA2#G ,

^VuVmuB̄&52Eiemnaben* navbFC1j'1
1

2E
~B4aV11A1bV1!G , ~73!

^VuAmuB̄&52Ee* mFC1j'1
1

2E
~B4aV11A1bV1!G22E~e* •v !nmFC1j'2~C11C3!j i1

1

2E
@~B12B3!aV21B4aV1

1A1bV12~A11A3!bV2#G12E~e* •v !vmFC2j i1
1

2E
@~2B11B2!aV21A2bV2#G .
are

ry.
ass

sult

r-

in
fer
t in

rs:

, for
From these relations we can obtain the form factors to or
l and to leading-logarithmic order inas as

f 15FC11
X

2
C21C3GFjP1

1

2E
~aP1bP!G

2~22X!C1

aP

2E
,

f 0

X
5FC11S 12

X

2 DC21C3GFjP1
1

2E
~aP1bP!G

2XC1

aP

2E
,

2m̂V

X
A05FC11S 12

X

2 DC21C3GFj i1
1

2E
~aV21bV2!G

2XC1

aV2

2E
, ~74!

11m̂V

X
A15

V

11m̂V

5C1S j'1
bV1

2E D1C3

aV1

E
,

er A2

11m̂V

5C1S j'1
bV1

2E D1C3

aV1

E

2FC11
X

2
C21C3GFj i1

1

2E
~aV21bV2!G

1~22X!C1

aV2

2E
.

Here we keepm̂V explicitly even thoughm̂V;LQCD/mb
;l2 in our power counting. It is because meson masses
inserted in the definition of form factors in Eq.~55! without
regard to the power counting in the collinear effective theo
However, we neglect the terms proportional to the m
squared of the light meson compared toM2. And we use the
relations among the Wilson coefficients to express the re
in terms ofCi only.

At leading order inl, there are three unknown nonpertu
bative parametersjP(E), j'(E), and j i(E). These are di-
mensionless functions. While the Isgur-Wise function
HQET is normalized to one at maximal momentum trans
due to the heavy quark symmetry, there is no constrain
the normalization of these unknown parameters@19#. At or-
der l, there are six additional nonperturbative paramete
aP(E), aV1(E), aV2(E), bP(E), bV1(E), andbV2(E). In our
convention, all these parameters have mass dimension
example,
6-12
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FIG. 4. Feynman rules for the effective La
grangianL1 to orderg: ~a! collinear quark with-
out an external gluon,~b! collinear quark interac-
tion with a soft gluon, and~c! collinear quark
interaction with a collinear gluon, andkm denotes
residual momentum of orderl2.
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67,

a-
aP

E
;l;ALQCD

mb
, ~75!

where the last relation comes from the kinematics. The
maining five unknown parameters are of the same order il.
Therefore Eq.~74! is our result for the form factors to orde
ALQCD/mb.

There are interesting relations among the form factors
the effective theory. At zeroth order inl andas , those rela-
tions are given by

f 15
f 0

X
~5jP!,

V

11m̂V

5
11m̂V

X
A1~5j'!,

~76!
2m̂V

X
A05

11m̂V

X
A12~12m̂V!A2~5j i!.

These relations are modified at orderl and at leading-
logarithmic order inas as

f 12
f 0

X
52~12X!FC2S jP1

1

2E
~aP1bP! D1

1

E
C1aPG ,

V

11m̂V

5
11m̂V

X
A1 , ~77!

2m̂V

X
A05

11m̂V

X
A12~12m̂V!A2

1~12X!C2Fj i1
1

2E
~aV21bV2!G

1~12X!C1

aV2

E
.

Note that the second relation in Eq.~76! still holds to orderl
and at leading-logarithmic order inas . And the tree-level
results hold only in the limitX→1.

VII. CONCLUSION

We have shown that heavy meson decays in which li
mesons are emitted with large energy can be consiste
described by the collinear effective theory combined with
HQET. And we can obtain a systematic expansion of
effective Lagrangian in powers ofl. Heavy-light currents
11401
-

n

t
tly
e
e

can also be expanded consistently in powers ofl, and the
Wilson coefficients of various operators in the effecti
theory can be computed by matching the effective theory
the full theory. It is crucial to note that the collinear effectiv
theory reproduces the infrared behavior of the full theory
including the effects of collinear gluons.

There is a reparametrization invariance in the colline
effective theory, in which a slight change of the light-co
directionnm can be compensated by a change ofp' to make
the physics invariant under this transformation. If we a
require that the theory be invariant under collinear gau
transformations, we can prove that the effective Lagrang
L1 at orderl is not renormalized. This reparametrizatio
invariance is also useful in deriving the operators of ordel
from the operators of orderl0. The Wilson coefficients and
the anomalous dimensions can be obtained from the op
tors which are related by the reparametrization invarian
The reparametrization invariance and the collinear gauge
variance put a serious constraint in the structure of hea
light currents in the collinear effective theory.

The development of the collinear effective theory cast
renewed view on heavy quark decays in which light qua
are emitted with large energy. Bauer et al.@21# have consid-
ered nonleptonic decays using the collinear effective the
and found that the decayB→Dp is factorized in the heavy
quark limit to all orders inas . It will be interesting to look
into nonleptonic decays ofB mesons in the context of th
collinear effective theory including higher-order correctio
in l.

What we have not considered here is hard spectator
fects, in which spectator quarks interact with the energe
quark through hard gluons. As Beneke and Feldmann@19#
pointed out, this contribution can be as important as the
contribution to the form factors. If we can analyze the ha
spectator contribution also in the scheme of the collin
effective theory, we will have a better understanding of fo
factors in this kinematic region. This is the next subject to
developed.

ACKNOWLEDGMENTS

The authors are supported by the Ministry of Educat
Grants KRF-99-042-D00034 and KRF-2000-015-DP00
and Hacksim BK21 Project.

APPENDIX: RENORMALIZATION OF L1 AT ORDER as

In this appendix we show explicitly that the effective L
grangianL1 at orderl in Eq. ~16! is not renormalized at one
6-13



.

th
o
e

.

on
m
n

up
by

t-

en

m-
ma-
at

ain-
d
on

JUNEGONE CHAY AND CHUL KIM PHYSICAL REVIEW D 65 114016
loop. The Feynman rules for the LagrangianL1 to orderg is
shown in Fig. 4. The derivative is of orderl2, and it is
replaced by the residual momentumk in momentum space
We will concentrate on the first term inL1, which is of the
form

O15 j̄n

p”'i ]”'1 i ]”'p”'

n̄•p

n”̄

2
jn , ~A1!

which is shown in Fig. 4~a!. Other terms inL1 contribute to
the renormalization ofO1 at orderl along with the radiative
corrections ofO1. In order to show thatL1 is not renormal-
ized, we have to consider all the radiative corrections for
operators shown in Fig. 4. However, we will concentrate
the renormalization ofO1, since other terms have the sam
renormalization behavior asO1 at leading-logarithmic order

The Feynman diagrams to renormalizeO1 are shown in
Fig. 5. And the corresponding diagrams with a soft glu
exchange vanish due to the vertex structure. All the diagra
in Fig. 5 are zero using dimensional regularization for o
shell external states, and the coefficient ofO1 is given by the

FIG. 5. Feynman diagrams for the renormalization ofL1 at one
loop.
-

s.

A

11401
e
n

s
-

tree-level value. In order to see the renormalization gro
behavior, we have to extract the ultraviolet divergent part
putting the external quark off the mass shell byp25p'

2 . We
will show only the ultraviolet divergent parts here. Calcula
ing the Feynman diagram in Figs. 5~a!, 5~b!, and 5~c!, we
obtain

Ma5
asCF

4p

1

e
O1 , Mb52

asCF

4p

3

e
O1 , Mc5

asCF

4p

3

e
O1 ,

~A2!

respectively. Therefore the sum of all the diagrams is giv
by

M5Ma1Mb1Mc5
asCF

4p

1

e
O1 . ~A3!

When we add the wave function renormalization to this a
plitude, the ultraviolet divergences cancel, and the ano
lous dimension ofO1 is zero. Therefore we have shown th
the operatorO1 is not renormalized at orderas explicitly. In
fact, we have to consider one-loop corrections to the rem
ing operators inL1. But no other operators are renormalize
though we do not show them here. As a result, the Wils
coefficientsAk of the time-ordered products in Eq.~45! come
from the Wilson coefficients of the operatorsJi

m alone and
not from L1.
s.
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