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We consider a collinear effective theory of highly energetic quarks with erfgrgyteracting with collinear
and soft gluons by integrating out collinear degrees of freedom to subleading order. The collinear effective
theory offers a systematic expansion in power series of a small paraxmefer/E, wherep, is the transverse
momentum of a collinear particle. We construct the effective Lagrangian to first orderaimd discuss its
features, including additional symmetries such as collinear gauge invariance and reparametrization invariance.
Heavy-light currents can be matched from the full theory onto the operators in the collinear effective theory at
one loop and to ordex. We obtain heavy-light current operators in the effective theory, calculate their Wilson
coefficients at this order, and the renormalization group equations for the Wilson coefficients are solved. As an
application, we calculate the form factors for decay8afiesons to light energetic mesons to ordesind at
leading-logarithmic order in;.
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[. INTRODUCTION duce the Sudakov logarithm easily without dividing all the
kinematic region$10], and the calculation is manifest in the
When aB meson decays into light mesons we can explorecalculational procedure. However, we need an effective
different kinematic regions, depending on the momenta cartheory in which logarithms arising at one loop in the effec-
ried by the light mesons. When a light meson is emitted fromtive theory should match logarithms arising at one loop in
a heavy quark with momentum of ordérgcp, this decay QCD for any matching scalg in the minimal subtraction
can be successfully described by the heavy quark effectivecheme. Only in this case, these logarithms may be summed
theory(HQET) [1]. The momentum of a heavy quark can be using the renormalization group equations. The large-energy
decomposed as,= myv + Kk, wherek is the residual momen- effective theory suggested by Dugan and Grinsféitj does
tum of orderAqcp. The leading contribution to the decay not satisfy this criterion since it does not include the effects
corresponds to the partonic result, and the corrections can g collinear gluons properly.
systematically expanded in power series ahgd/and «as. Recently Bauer et a[12] have proposed a new effective
Inclusive decays of heavy mesons with large momentuntheory called the “collinear-soft effective theory.” If a light
transfer can be treated in the HQET with the operator prodgquark moves with a large energy, the momentum has three
uct expansior2]. Exclusive decays with heavy-heavy cur- distinct scales. The momentum component in the light cone
rents and heavy-light currents can also be treated in the comlirectionn* is the largest, of the order of the energy of the
text of the HQET[3,4]. quark, E. The transverse momentum is smaller tignand
If a light meson fromB decays carries a large energy, the momentum component opposite to the light cone direc-
HQET alone is no longer useful since the large energy of dion is the smallest. In order to disentangle the three scales
light meson can be as large ag,. Then an expansion in conveniently, a small parametgris introduced. The largest
1/m,, alone is not appropriate. In this case, however, we cacomponent has the momentum of order The transverse
construct a different type of an effective theory by taking thecomponent is of ordeE\, and the smallest component is of
energyE of the energetic light quark to infinity. In this limit, orderEA2.
nonperturbative effects can also be systematically obtained. BetweenE and EA, we have collinear modes and soft
In fact, this effective theory is more complicated than themodes for the light quark. Here we integrate out all the col-
HQET and the naive power counting inELshould be modi- linear modes above some scaleand the result is the effec-
fied since the system involves several energy scales. tive theory consisting of collinear quarks and soft quarks.
Another complication arises in decays of a heavy quarkThe effective theory at this stage is called the collinear-soft
with an energetic light quark due to a Sudakov logarithmeffective theory, which we will call the “collinear effective
since there are both collinear and infrared divergen&és theory” for brevity. Below the scal&\ and aboveEA?, we
There has been some discussion of summing Sudakov logitegrate out all the collinear modes, and there remain only
rithms using effective field theori¢§—9]. Such an approach soft modes in the final soft effective theory. This actually
has an advantage over conventional methods since effectiwrresponds to the large-energy effective theory suggested by
theories are valid beyond perturbation theory, and it isDugan and Grinsteif1l], in which there are only soft
straightforward to go beyond the leading approximation bymodes. In Ref[12] they show that at each stage of the ef-
including higher-dimensional operators. The main advantagéective theories, the infrared behavior of the full theory is
of using effective theories in this case is that we can reproeorrectly reproduced by including the effects of collinear
gluons. Therefore heavy-light currents in the full theory fi-
nally can be matched onto operators in the effective theories,
*Email address: chay@korea.ac.kr their Wilson coefficients are calculable and the renormaliza-
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tion group equation can be solved. For the energetic quark, there are three distinct energy
If we consider exclusiv® decays via heavy-light currents scales, withp~ ~ 2E being large, whilgp, andp™ are small.

in the scheme of effective theories, it is sufficient to considelf we take a small parameter as-p, /p~, we can write

the collinear effective theory between the scBlend EX

and integrate out all the degrees of freedom above some — n# n#

scaleu. At this scale, we describe a heavy quark in terms of p“=n- PH+ (po)*+n- P

HQET, and treat an energetic light quark in the collinear

effective theory. This limit corresponds to,,E—o with =0(\%+0\hH+00\?), (1)

E/m, fixed. We can calculate the Wilson coefficients of vari-
ous operators in the effective theory by matching to the fullsincep”p~~p? ~\2. Therefore we have three distinct en-
theory and can obtain anomalous dimensions of various opergy scale€, Ex andEN?, making the effective theory more
erators. In this paper we extend further the idea of the colcomplicated than the HQET. It is similar to the case of non-
linear effective theory and derive the effective Lagrangian toelativistic QCD(NRQCD) for quarkonium states, in which
subleading order in and renormalize the effective theory at there are also three distinct scafesms andmp?, wherem
one loop. Also we consider the correction to heavy-light cur-s the heavy quark mass arglis the typical velocity of a
rents to orden and to leading-logarithmic order in,. quark inside a quarkoniufii6]. The collinear quark can emit

In Sec. Il we briefly review the collinear effective theory, either a soft gluon with momenturks=E(A? X% \?) or a
and derive the effective Lagrangian to orderWe also dis- ~ collinear gluon withk,=E(A?,1\) to the large momentum
cuss a collinear gauge invariance in the effective theory. Irdlirection and can still be on its mass shell. Due to the infra-
Sec. Il we discuss reparametrization invariance in the col¥ed sensitivity with collinear loop momentum, the effective
linear effective theory. The reparametrization invariance entheory is more complicated, and the relevant scales must be
sures that the kinetic energy term is not renormalized to allreated separately to obtain a consistent power counting
orders inas. It is also useful in deriving high-dimensional method. In the collinear effective theory, the power counting
operators for heavy-light currents in the collinear effectivein 1/E is troublesome, but the expansion in the small param-
theory and in obtaining the Wilson coefficients and the renoreter A offers a consistent power counting and there is no
malization behavior of these high-dimensional operators. Inmixing of operators with different powers &f. This will be
Sec. IV we match heavy-light currents between the full QCDdiscussed in detail in Sec. V.
and the collinear effective theory, and consider the effects of The Lagrangian in the collinear effective theory can be
radiative corrections at one loop. In Sec. V, we compute th@btained from the full QCD Lagrangian at tree level by ex-
anomalous dimensions of various heavy-to-light operators tpanding it in powers ofr. The full QCD Lagrangian for
order A at one loop, and solve the renormalization groupmassless quarks and gluons is given by
equation for the Wilson coefficients in the collinear effective
theory. In Sec. VI we consider form factors of heavy-light
currents for the vector and the axial vector currents to order
\. In Sec. VII we present a conclusion and perspectives of
the collinear effective theory. In the Appendix we present arwhere the covariant derivative iB,=4,+igT*A?%, and
explicit calculation to show that the effective Lagrangian athw is the gluon field strength tensor. We remove large mo-
order\ is not renormalized at one loop. menta from the Lagrangian, similar to the method employed

in the HQET. The quark momentum is split as

— 1
EQCD:C“DQ_ ZG;VGMVa, (2)

II. COLLINEAR EFFECTIVE THEORY ~ ~ n
p=p+Kk, pE(n-p)§+pL- ©)

We construct an effective theory which describes the dy-
namics of energetic light quarks. A detailed derivation of the. —
effective theory at leading order ik is described in Refs. Th‘i"”“ge part of the quark m.0|jnentump ahdpb denoted
[12-15, and we will briefly review the idea. Then we con- Py P, will be removed by defining a new field as
struct the effective theory to ordar. Let us consider a ref-
erence frame in which a light quark carries a large en&rgy q(x) = E e—iBqu (x). (4)

If we neglect the quark mass, the only large parameter in this b mP

system is the energk itself. Since we are interested in de- .

cays of heavy mesons to energetic light hadrons, we can labelp in Qn,p refers to only the components p andp, .
conveniently choose a reference frame as the rest frame of he derivatived, on the fieldq, , gives O(\?) contribu-
heavy meson, in which the energy of light hadrons is indeedions.

large in the heavy quark limit. In this reference frame, light Now we introduce projection operators which project out
particles lie close on the light-cone directior, and we  large components, , and small component, , in the di-
describe their dynamics using the light-cone variabyles rectionn* as

=(p*,p~,p,), wherep*=n-p, andp~ =n-p. We choose

- pe = _ 1) withn-n. An A
tlmzlaxs such thav#=(1,0,0,1),n*=(1,0,0,-1) with n-n gn,p:an,pa §Ep=TQn,p- )
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TABLE |. Power counting for the effective theory fields.

Heavy quark Collinear quark Soft gluon Collinear gluon
Field h, énp AX n-Ang n-Angq Anq
Scaling A3 A A2 A° A2 A
The fieldsé, ,, & p satisfy \C. This is done by assigninglascaling to the fields in the
- - effective theory, as given in Tablg[15].
hh hih Bauer and Stewarftl5] suggested a closed form to in-
Tgn,ngn,pu ZfﬁpZEF,p, (6)  clude the effects of collinear gluons to all orders. We define
an operatorP which acts on producti of effective theory
and fields. When acting on collinear field®, gives the sum of
o large momentum labels on fields minus the sum of large
hénp=0,né, ,=0. (7)  momentum labels on conjugate fields. Then, for any function
f, we have
We can eliminate the small componefft,, at tree level by
using the equation of motion Yo t
g the eq F(P)(bd,: - ba oy bo)
(n-p+n-iD)&y = Ibﬁrlﬂh) 5 &np> (8 =f(n-p+---+n-py=N-Qy—---—N-qpy)
X(Bg, - by dp, - bp,)- (10)

and the Lagrangian can be written in terms &f,. It is
convenient to separate the collinear and soft parts in gluon
modes a#*=Ak+ A% in the covariant derivativ®*, such ~ The operatorP has mass dimension 1, but power counting
that the covariant derivative involves only soft gluons. Thedimension\°. The conjugate operatd®' acts only to its left
typical scale for the collinear gluons & ~\?, while the  and gives the sum of large momenta on conjugate fields mi-
typical scale for the soft gluons i€~ \4. Since the collinear nus the sum of large momenta on fields.

gluon carries a large momentug= (ﬁ. q,q,), derivatives Let us consider gauge symmetries of the effective theory.
on this field can yield orden® and A* contributions. To  Since there are several gluon modes, there are possible
make this explicit, we extract the large momentum part conSU(3) color gauge transformations for each mode. We con-

taining § by redefining the fieldA#(x) =3z e—.q AR (X). sider gauge symmetries that have support over collinear mo-
: LS 4 menta. The collinear effective theory is invariant under a
Then the Lagrangian can be written as

collinear non-Abelian gauge transformation of the form
U(x) =exdia?(X)T?]. A set of these collinear gauge transfor-

L=§&, o[ niD—gn-A, o+ (P, +iD, —gAL ) mations is a subset of all the gauge transformations, which
’ ’ 4 satisfies?*U~E(N?,1\). It is useful to decompose this col-
linear transformation into a sum over the collinear momenta
1
X =

n-p+n-iD—gn-A, U(x)=2> e %y, 1y
Q

"
Egn,p- (9)

X(p,+iD, —gA; )
. . e where a#uQ~>\2. When we expand the gauge transforma-

tion, we obtain simple transformation rules for collinear fer-
Here the summation over the Iabeasandf)’ and the phase mions and gluons. The transformation for collinear fermions
factors for each collinear field are suppressed. From now ornd gluons are given by
in order to simplify the notation further, we suppress the

label momenta for the collinear fields when there can be no &—UE,,

confusion. It should be understood that, whgnand A%

appear, the summation on the label momengjigy the large 1 [{_n» Py

phases, and the conservation of the label momenta are im- A% yA“yt —U[(P?+Pf+(in~a)?)u’r] (12

plied. The method to insert all the summations, the phases,
and the label momenta are nicely summarized in RES].

In order to obtain the effective Lagrangian, we expand EqHereP/ produces a sum of momenta of orderand the last
(9) in powers of\. In the power counting of the fields in, term produces a momentum of ordet. And the soft modes
we follow the procedure of moving all the dependencexon transform asAg—MAg‘uT under a collinear gauge transfor-
into the interaction terms to make the kinetic terms of ordemation.
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Let us define a functioW of n-A, such thatW'¢, is  (s) ——— = i”%#
invariant under the transformation in Ed=2). The operators (5, k) APty e
W andW' are defined as pa

(b) = —ignuT“%
1 — — 1 . §|
W=|exp =gn-A,||, W'= exp(gn~A*— 1
p(P ) "pt "o

N T TR % N /Y T
—_— el - —_  — = =
T 2(nﬂ+ﬁ.p+ﬁ.pl ﬁ.pﬁ.p/n")

13 g
which satisfyW'W=1. In the expansion of the exponential, P 4

the 1/P acts to the right on all gluon fields in the square kG, 1. Feynman rules fof, to orderg in the collinear effective
bracket. Under a collinear gauge transformativ trans-

theory: (a) collinear quark propagator with lab@ and residual
forms ag[15] y: @ d propas #

momentumk, (b) collinear quark interaction with one soft gluon,
and(c) collinear quark interaction with one collinear gluon, respec-

W—UW, (14) tively.

which makesw'¢, invariant under a collinear gauge trans-
formation. When we expand the exponentialif) we have

an infinite series of collinear gluons. But all of them are of
order\® and should be included. The operafr —gA;, of o
order\ transforms as Lyger=h,v-iDh,. (18

For a heavy quark, we employ HQET for the heavy quark
field h, . The effective Lagrangian for HQET is given by

AL ALyt
PL—9h—UPL—9A)U (19 The covariant derivative in Eq18) contains only soft glu-

ons because the heavy quark field does not couple to collin-

unc\z}s_;ha t(;]ollme?r gafuge trtz_insformatlgn. ite th ear gluons. According to the power counting in Table |, the
Ith these ltranstormation properties, we can wit€ € octions in Ih, in the HQET Lagrangian are suppressed
LagrangianL= Ly+ L, in a closed form, including an infi-

it ber of coll I by A% compared to the leading Lagrangian, and we will not
nite number of collinear gluons as consider them here.

Lo= fn‘ n-(iD—gA,) 1. REPARAMETRIZATION INVARIANCE

1 T When we decompose a quantity into a large part and a
n + n small part, the decomposition is not unique. We can always
T(PL=gA)W=W (?L—gAn)} 25 shift the large part such that a change in the small part com-
(16) pensates this change to make the total quantity unchanged.
1 The physics should be invariant under such a change. The
£1=En[ iD, W=W'(P, —gA) invariance under this shift is called the reparametrization in-
P variance. In HQET, there is a reparameterization invariance
[17]. It means that the decomposition of the heavy quark
momentumpy, into myv and the residual momentukis not
unique. Typicallyk is of the order ofA ocp, which is much
smaller tharm,,. A small change in the four velocity of the

where £, (n=0,1) is the Lagrangian at orda. The ex-  order of Aqcp/m, can be compensated by a change in the
pression in Eq(16) is manifestly invariant under a collinear residual momentum. The physics of heavy quarks should be

gauge transformation, and we use the fact that for any fundnvariant under different decompOSition of momenta. A con-
tion f Wf(g)wfzf(g_ gﬁ-A ) sequence of this reparametrization invariance is that the ki-
1 n .

etic energy term in HQET is not renormalized to all orders.

esides, we can obtain higher-dimensional operators for
heavy-light currents using the reparametrization invariance.
And we can easily obtain the Wilson coefficients and the
4 ; anomalous dimensions of higher-dimensional operators with-

M— Bl —nk out any explicit calculation.
YITY n ne. (17) e . . .

2 2 A similar reparametrization invariance occurs in the col-

linear effective theory. The energetic light quark momentum
There are other interaction vertices such as the one with twp is given by

collinear quark fields and two gluons, and those with triple
gluons. We omit them here since they do not contribute to
one-loop corrections to ordex in dimensional regulariza-
tion.

P S
(P —gAIWSWID, | 56y,

The Feynman rules for the propagator of a collinear quar
and the interaction vertices fromi, are shown in Fig. 1.
Here y/" is defined as

p/*:'T'Onfur pit K-, (19
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From now on, we will consider a small change of order [ 2¢ 1

neglecting terms of ordex?, which can be included in a SL=&, = (P,—gA +iD,)— EW=W'(P —gA,
straightforward way. As in HQET, the decomposition pf n-p P

into n, p, is not unique. A small change m* of order\ can D))

be compensated by a changepif, +

1 "

o —(7PL—gAL+iDL)W7—?WTé Sén- (26)
N—Nn+=—, p,—pP, —¢ (20)

n-p The changeSL vanishes, which can be easily seen when we
disregard gauge fields. Then the first line in E26) exactly
wheree is of orderh. And the physics for collinear quarks cancels the second line. Therefore we have proved that the
should be invariant under different decompositions of mo- agrangian is reparametrization invariant under a shift of
menta. order\. As a result, the kinetic energy terms appearing both

Since n satisfiesn®=0, the paramete must satisfy in £, and £, are not renormalized. The explicit calculation
n-e=0, neglecting terms of ordeg(n- p)2. The light quark  to show that the kinetic energy term at ordeis not renor-
spinor &, must also change to preserve the constréi§f  malized at one loop is given in Appendix.
=0. Consequently, i€, changes ag,— &,+ 6&,, 8¢, sat- We can make a stronger statement by combining the re-
isfies parametrization invariance and the collinear gauge invari-
ance of the collinear effective theory. In the Lagrangiarat
24 order\, the kinetic energy part is given by
(vﬁ+_—)(§n+ 8&,)=0. (21) S
n-p —2p,-id, n
n~ — E fn ’ (27)
_ n-p

To first order ine/n- p, one finds

which is not renormalized due to the reparametrization in-

variance. However, in order to make this part collinear gauge
22) invariant,P, should be replaced b$, —gA, . There is no

constraint from the collinear gauge invariance on whether

we should replace the derivative operator with a covariant

derivative including a soft gluon. However, if we require

the invariance under ultrasoft gauge transformat|dss, the

derivative operator should be replaced by the covariant de-

2£
hoé=—=—¢&,.
n-p

Therefore a suitable choice for the changejns

B 1 h rivative. Therefore the extension of the kinetic energy term
6én=— F_p Eéfn' (23 which is invariant under the collinear and the ultrasoft gauge
transformation is given by
The Lagrangian in Eq(16) must be invariant under the _ 1
combined changes én (iDL)MW%WT(Pf_QA#M)
N 2¢€ ex| 1 1 W 04 u W 1 ‘o "
n—nte, fie e CIC HPLgAIW=WI(ID,), 560 (28

This is not renormalized to all orders i, due to the rep-
@rametrization invariance and the gauge invariance. And the
remaining part inZ, is not renormalized at one loop, hence
the whole LagrangianC, is not renormalized at leading-
logarithmic accuracy.

We can fix the form of some corrections at ordefrom
the operators ak® using the reparametrization invariance.

For example, the vector curreaty“b in the full theory is
written as

where the prefactog's * causes a shifp, —p, — e. In order
to prove the reparametrization invariance, it is convenient t
write the LagrangiarC as

L’:En[n-(iD+7?—gAn)+(7Pl—gAﬁ+iDL)

1 )W
XW%WTUPL—QA#HDL) 5éns (25

qy*b— &,

1+ g_—) ’y’uhv
where we includeah- P which does not affect the Lagrang-
ian, but the addition makes the Lagrangian manifestly invari- ry
ant under a collinear gauge transformation. =& y*h, + & = = y*h, (29)
The change of the Lagrangian is given by 2n.
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in the collinear effective theory to order. The collinear o
gauge-invariant form of this operator is given by Tff:'f d*yT{J((0),L1(y)} (k=1,23. (39
_ h N 1 Our goal is to calculate the Wilson coefficien@(u),
&n| 1+ E(?L_gAn)Wﬁ I'h,, B0 B;(u) andA(x) in the leading-logarithmic approximation.
The Wilson coefficients are defined by requiring that matrix
. , elements of the vector current in the full theory are the same,
where the second term is an operator for heavy-light currentts . . .
. . 0 any order in\, as matrix elements calculated in the effec-
at orderh in the effective theory. . o .
tive theory. Before we proceed to explicit calculation, note
that there are nontrivial relations between the coefficients
IV. MATCHING HEAVY-LIGHT CURRENTS B;(x) andC;(u) imposed by the reparametrization invari-
ance. This is because operators of ordeacting on a col-
linear quark field must always appear in certain combina-
tions with operators of ordek®. In our case, there is a

Rp, the hadronic current is matched onto currents in theunique way in which the operato@* can be combined with
collinear effective theory and the HQET. This introduces ayu

, . © X #'in a reparametrization invariant way, that is,

new set of Wilson coefficients. We will match the current
operators in the full theory with the current operators in the o "
gn( 1+ E

We cglsider the matching of heavy-light currents of the
form J=qI'b, wherel" denotesy* or v*ys. Below the scale

collinear effective theory and the HQET in a single step ne-

a ——)v"hv>+-~-=<J’1‘>+<O’f>+~-~-
glecting the sum of logarithms of order in{/n-p), which is ‘

quite small sincen,~n-p. o - 76
The vector-current operatd*=qy*b in the full theory ol 1+ 5= |v*h, )+ - =(05H+(O5H+ -,

can be matched to the effective theory as 2n-p

VE D Ci(p)I+2 BOM+ X ATE. (3D - 2pk

: I k én 1+§_— n*+ — hU + -
n-p n-p

The operatord; are the operators at leading orderipand B B "
there are three such operators, which are given as =(J5) +(05) +2(0f) + -

J’fZEWV“hv, J‘2‘=5Wv“hv, J/g:awm. This implies that, to all orders in perturbation theory,

(32) Bi(u)=Ci(n) (i=12,3), Bs(p)=2C4(n), (36)

Similarly, {0} are a complete set of operators at order and the coefficient€;(x) have been calculated at leading-
There are four such operators and a convenient basis faegarithmic order in Ref[13]. This is our new result and it
these operators is given by imposes an important constraint on the theory, which must be
obeyed by an explicit calculation.

The operator product expansion of the axial vector current
A*=qy*ysb can be simply obtained from E¢31) by re-
placing g— —qys if we perform the calculation using the

e 1 dimensional regularization with modified minimal subtrac-
nggn_(,]PL_gAL)W:UMhUv tion (MS) and the naive dimensional reductigflDR)
2 a scheme with anticommutings. We can rewrite the axial
(33 current asA*=—qysy*b. The ys matrix acting on the
—n 1 massless quar§g becomest 1 depending on the chirality of
O3=én5 (P _gAL)WE n“h,, the quark. Chirality is conserved by the QCD interactions, so
the calculation of matching conditions proceeds just as in the
vector current case, except theis replaced everywhere by

Of=&n(P 1~ gAf)wé h, . qys. At the end of the calculation, thg; is moved back next
P to h,, producing a compensating minus sign fgtys, but
neither forv#ys nor for n*ys. Thus, for axial vector cur-
The operators in Eq$32) and(33) are written in such away rents, all the coefficients are the same in magnitude, and only
that they are manifestly invariant under a collinear gaugec,, B;, andA; do not change sign, while all the remaining
transformation. We also include the nonlocal operaffffs coefficients change sign.

—n 1
Of =&15 (P, ~gA W= "N,

arising from an insertion of the order correction to the Bauer et al[12,13 have explicitly showed that the col-
effective Lagrangian into matrix elements of the leading-linear effective theory, indeed, reproduces the infrared be-
order currents, which are defined as havior of the full theory by including the effects of collinear
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gluons. Once we know that the effective theory reproduces aCr 2

the long-distance physics of the full theory, the matching R{M=— yp— (40)
procedure is independent of any long-distance physics, such

as infrared singularities, nonperturbative effects and the . . _ .

choice of external states. Thus there is a freedom in choosing'€ residue for the light quark at ordes in the collinear
the external states and the infrared regularization scheme. Wifective theory is the same as the residue in the full theory,
find it most convenient to perform the matching of QCD and itis given as

onto the collinear and the heavy quark effective theory using

on-shell external quark states and dimensional regularization 1)_ o1y ¥Cr 1
for both the ultraviolet and infrared divergences encountered Ry'= an T Am €
in calculating loop diagrams. This scheme has the great ad-

vantage that all loop diagrams in the effective theory VaniShSince the residues for the light quarks are the same, they

since there is no mass scale other than the renormalizatio&mcel each other when we match both theories

scalew. It means that matrix elements in the effective theory The matrix element of the vector current between free

;are glveﬂ 33/ Ehtilr t_ree-leyel (re]xpressmnsk. \r/1ve assign momerb’uark states with the residues of the external quarks in the
um such that the incoming heavy quark has momenpym ¢, theory can be expressed in terms of the matrix elements

_ : 2 — : A
=mpv + Kk (with 2v - k+k*/m,=0), while the outgoing light i the collinear and the heavy quark effective theory as
energetic quark carries momentup=En+p, +k’ (with

2En-k’'+p%=0).

(41)

i i — aCel1l 5 2 xm Xm
The matrix elements of operators can be written as (qy*by=1 1— SUFl = L S o 2
. 47 |2 2€¢ € u M
(I1)=ue(n,s) y*un(v,Sp),
(37) 3x—2 _ 2
o W[b + T—x Inx+L|2(1—x)+E+6
<O’1L>:Ue(n,5)§ﬁy”uh(vysb),
w(Ihsomyy 2CE 22X
whereug(n,s) andug(v,sp) are on-shell spinors for a mass- (J1 1) 47 |1-X (1-x)2 X
less, energetic quark fielg}, in the collinear effective theory,
and a heavy quark fieltl, in the HQET, respectively. They aC X x(1—2x)
’ “ “ s“F
satisfyiug(n,s)=0 anddup(v,S,) =Uun(v,S,). We compute, X(J5+05)+ ax | T1x " 122 Inx
in the full theory, the vector current matrix element between (1=x)
on-shell quark states at one-loop order in order to do the X (JE+ 0L+ 204, (42)

matching. The relations of the heavy quark spinors and the
light quark spinors between QCD and the effective theory — _ _ _ o
are given by wherex=n-p/my=2E/my andLi,(x) is the dilogarithmic
function. Here we have confirmed the consequence of the
k ) reparametrization invariance at one loop explicitly. The in-
1+ 2_mb> Un(v,Sp) + O(1/mp), frared behavior of the full QCD is reproduced in the collinear
(39) effective theory, and the infrared divergences in both theories
Wb cancel in matching.
Ug(p,s)= ( 1- E_—l) Ue(n,s)+O(N\?). The Wilson coefficient<C; for J/* at the renormalization
n-p scaleu are given by

Up(Pb»Sh) =

The correction to the heavy quark field, which involess

suppressed by?, and it is discarded in our matching at or- Cyp)=1— O‘SCF[Z W(ﬂ) -5 In%
der . Am M Iz
We match the coefficients at one loop by employing the B 2
dimensional regularization iD =4—2e dimensions. In the + INX+2Li5(1—x)+ 1+6 ,
full theory, there is no ultraviolet divergence due to current —X 12
conservation. The residue at the physical mass pole in the
propagator is infrared in nature, and it should be added to the a.Cr ) 2%
vertex correction. The residue at the physical mass pole for Co(p)= 7 = + 5Inx|, (43
the heavy quark in tht1S scheme at ordedg is given by AT (1-x)
[18]
C X X(1-2x)
asCf (2 My Calp)= F| - + In x]
(D= — g (;+4—6In7>, (39 3(w) Am | 1-x  (1-x)?
and in the HQET, the residue at ordey is given as and the coefficient8; are given as

114016-7
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Bi(n)=Ci(n) (1=1,2,3), Ba(pn)=2Cz(n). (44 »a
. o o . R P
This relation is expected from the reparametrization invari- q = —9T°§ [ﬁ (pl_l_ ) + = (piq)ﬁ.q] ¥
ance, and the operato@y* have the same anomalous dimen-
sion as those of the leading operatdfs. The explicit cal- IV

culation that the operator©, to O, have the same ) _

ultraviolet behavior as their corresponding leading operators FIG. 2. Feynman rules for the operaof* (i=1,2,3) contain-

is shown in Sec. V. ing a collinear gluon at ordex. HereI'=y*, v* and n* for i
The coefficientsA; are given by the product of those for =1,2,3, respectively. The momentum of the gluon is outgoing.

Ji and £,, and they are given by

where
Ai(u)=Ci(p). (45)
T 7 _as(wCe
The fact that the Wilson coefficients are the same &S; is “@Zi_ 2me '
because the effective Lagrangidn at order\ is not renor- (49)
malized at leading-logarithmic order. P aCr (1 2E 5
,G%Zi:— . (Z—Zln7+§ .

V. RENORMALIZATION GROUP IMPROVEMENT

The perturbative expansion of the Wilson coefficientsHere we have used=—ge+0(g®). This gives the anoma-
contains large logarithms of the typerIn(2E/u)]", which  lous dimension
should be summed to all orders. We employ the renormaliza-
tion group to improve one-loop results. The reason why we _ a(u)Ce (ﬁ_
2

choose\ as the small parameter is because various operators = 2
with different orders ok do not mix in this power counting.

If we choose to expand in powers ofEl/when we renor- The divergence in Eq(49) is cancelled, and solving the
malize operators, a factdg in the numerator could be in- renormalization group equation E@t6), we obtain

duced from loop calculations. This is expected since the

2E
2 In—) (50)
7’

propagator of a collinear quark explicitly involvésin the ag( ) (CEl2B0) (587 Boas) [ 2\ 2CF /8o
1/E expansion. Therefore higher-dimensional operators in Ci(x)=|~ (2E) — Ci(2E),
1/E can mix with those operators with one less powemgf ° (51)

or E, and a power counting in B/is inappropriate. However,

if we expand the effective Lagrangian in powershofsuch  \yhere g,=11-2n,/3, and C;(2E) are the Wilson coeffi-
mixing never occurs, and we can do the power counting in cients at,u:F- p=2E, as given in Eq(43)
consistently. ’ . '

In general, the coefficients of the operators with the same Atorder\, we need to renormalize the operatars. Let

) . — P i
power ofA mix into themselves and satisfy a renormalization Us first consider the renormalization@f to Of'. T_he Feyn_
group equation of the form man rules for the vertex from these operators with a collinear

gluon are given in Fig. 2. The Feynman diagrams to renor-
d malize the operator®/ (i=1,2,3) at ordew are shown in
M@C(ﬂ)ZV(M)C(M)- (46)  Fig. 3. Since the loop calculation does not alter the Dirac
structure, we can treat the renormalization of these operators
Since Eq.(46) is homogeneous, we can reproduce the expom the same way for all the three operators. The Feynman
nentiation of Sudakov logarithm. diagrams in Fig. 3 give the amplitude
The renormalization of the operatadé at order\® was

performed in Ref[13]. The counterterm for the operatal% e 4Cr 11 B n-p 1
in the effective theory using the Feynman gauge is given by M= 47 O 52+ 2-21 u el (52
Z =1+ aCel1 2 2B 5 47y Note that there is no mixing for the operat@$ . If we add
' Am |2 € u  Z2e the residues from the propagators of a heavy quark and a

collinear quark, we have the counterterm
This counterterm is the same for dff, and is independent
of the Dirac structure of the operators since the propagator:
and the vertices in the collinear effective theory do not alter,

7 7

O e E ) —p
the Dirac structure of the operators. Furthermore, there is nc - X
operator mixing. The anomalous dimensions are given by RaAns

d d . - .
=z Y u—+B8—|z . 48 FIG. 3. Feynman diagrams for the renormalization@jf (i
YiT=4 (M& ng) I (48 =1,2,3) at one loop.
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Cell 2 2E V(p',e* ALY,
Z_y,@Ce[1 228 S| oy sy (VPRINIER)
2 € u 2e
~ 2myAg( )L g (M
which is identical to the counterterm for the leading opera- =2myAq(Q°) 9 q“+(M+my)

tors J¥. We can do the same calculation for the oper&@gr
and it turns out that the operat@’ has the same depen- 5 € -q
dence ore asJ4 . And the counterterm is also given by Eq. XAL(g9)| €~ ——a*
(53). Therefore the operator®! (i=1,...,4) have the a
same anomalous dimensions as the leading operators. This is
the explicit proof of the reparametrization invariance at one X
loop and orden.

For the time-ordered productg’, the anomalous dimen-

€ -q
M +my,

—Ay(g?)

, M2—mZ
Pt

sions are the same as thoselfifbecause the Lagrangiafy whereq=p—p’, Mp (my) is the mass of the pseudoscalar
(vectop meson,e? is the polarization vector of the vector

in defining T{ is not renormalized at one loop. Here we see DR = _
that the reparametrization invariance and the gauge invarfnéson, -andz)/l12|3$_th6 mass of & meson. We use the sign
ance influence the structure of the theory. Furthermore, sincgonventione === —1.

there is no mixing, the perturbative corrections to heavy-light We can calculate these form factors systematically in
currents take a simple form to order powers of A in the collinear effective theory. The matrix

elements in the full theory are matched to the matrix ele-
ments in the collinear effective theory using Eg§1). How-
ever, here we do not include interactions where a collinear
gluon is exchanged with the spectator quarks insiéenae-

As an application of the collinear effective theory, we canson. In Ref.[19] it was argued that these spectator effects
consider the form factors fd@ mesons into light mesons. We could be of the same order lnand 1f, as the soft contri-
consider the kinematic region in which the enefgyf the  butions, but they are suppressed by a power of
light quark is large, as(VmyAqcp). They are therefore just as important as the

one-loop corrections to the matching coefficients such as
Ci(u). Here we apply the collinear effective theory to the
mg_qZ my, soft contributions only. It means that the effective theory
= om 5 q=pPp—Pq- (549 applies to light mesons produced in an asymmetric configu-
b ration, in which a single quark from the decay carries al-
most all the momentum.
. . If we consider this process as light-cone dominated, this is
which equivalently means that the mome”ﬁ“m tr"_inSfernot a typical configuration. A typical configuration is for both
squared through the weak current is s My N this 3 quark and antiquark that have nearly equal momentum.
case, the off-shellness of the light quark p§=2Ek.,  And spectator interactions can play an important role in this
wherek, ~Aqcp, thus A~ yAqcp/My,. Therefore our for-  configuration. In heavy-to-heavy transitions suctBasD in
mulation to orden gives the correction to the form factors at the heavy quark limit, the interactions of a heavy quark with
order VA qcp/my,. For simplicity, we will consider the form  the soft degrees of freedom around the heavy quark do not
factors for the vector and the axial vector currents. change even when there is a transition. On the contrary, in

The form factors foB decays into light pseudoscalar and heavy-to-light transitions, the soft degrees of freedom around
vector mesons from the vector curreit=gqy“b, and the the heavy quark experience an abrupt change. If an energetic
quark and the soft degrees of freedom move somehow elas-
tically with almost the same velocity, we can safely consider
the interaction of an energetic quark with the soft degrees of
freedom in terms of the collinear effective theory. This cor-
M2 respond_s to thke‘soft cr?néribut;]onl.tohform fag.tors._ If or;:y anﬁ

, = , —Mp energetic quark is pushed to the light-cone direction, the so
(P(p")|V¥[B(p))=f.(q®)| p*+p'*~ o " degrges o? freedor% around the hgeavy quark should arrange
themselves to follow the energetic quark to form light me-
— sons. In this process, hard gluons should be exchanged be-
2 M*—mp u tween the energetic quark and the previous soft degrees of
+1o(q%) 9 ar freedom in the heavy quark. This corresponds to the hard
spectator interaction. This hard spectator interaction should
be considered separately, and we leave the hard spectator
2 contributions for future study.
2V(a’) ierr*Berp! p (55) A convenient way to evaluate hadronic matrix elements in
M+m v el the effective theory is to associate the spin wave function

VI. APPLICATION TO FORM FACTORS

axial vector currenA":Ey"ySb are defined as

(V(p',e*)|V¥[B(p))=

114016-9
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1+9¢ _
M(v)=\M —— <L<n)|ij dy T{J((0), L2(y)}|B(v))
( - 75> pseudoscalar mesdp, =tr [B’L‘(E)MLFMB], (62
(56)
£ vector mesonV,

and the most general form f@{*(E) is written as
with the eigenstates of the effective Lagrangian, whdris
the mass of the meson. The form factors in the effective B{(E)=v{[by (E)+ by (E)d+bg (E)A+Dby Hé],
theory can be written as (63

(L(n)lal“hvﬁ(v)}=tr[AL(E)MLFMB], (L=P,V) (57) becausel; is of order\ and it typically depends op/".
Here also we have one independent termlferP, and two
wherel” denotes a Dirac structure, and independent terms fdr=V.
In summary, we can write the parameters describing the
long-distance physics as

— =S| hn
M= o T,whereLzP,V,

. e w
Lid (58) Ep(E)=2Eép, =V(E>=En(§i—§§|),
Me="—5—(~7s)
. . . . . ap h v
are thgspln wave functions associated with a light meson ABE)= 77‘1, A(j(E)=yf§ ay;+ Eavz ,
and aB meson, respectively. The normalization factivi (64)

appearing inM is absorbed imA (E). The functionA (E)

contains the long-distance dynamics, and it is independent of "
the Dirac structurd’ in the current. The most general form BE(E)=bpy!, BU(E)= sz( byi— Ebvz
for A (E) is given by

= _ Note that the convention for the longitudinal form facgpiis
2.(E)= E)+ E)d+ E)n+ , (B9 A
LE) =& (B)+ & (B + &5 (B)A+Eq A0, (59) the same as that of Reff19], and is related to the corre-

sponding form factor{; defined in Ref.[20] by ¢/(E)
=(my /M) (E). The matrix elements of all the operators
can be expressed in terms of these nonperturbative param-
eters. At order\®, the matrix elements for pseudoscalar
bosons are given by

but due to the properties of the projection operatorgvin
and Mg, not all of them are independent. Ho# P, there is
one independent term, and fore=V, there are two indepen-
dent terms.

Charles et al[20] have shown that there are only three
independent matrix elements in heavy-to-light transitions by — — — —
employing the HQET and the large-energy effective theory (P[&ny"h,[B)=2E&pn*, (P|&yy"ysh,|B)=0,
to obtain the leading result in B/ However, this is not suf- _ _ o o
ficient to describe heavy-to-light decays because interactions  (P|&w*h,|B)=2E &pv*, (P|&v*ysh,|BY=0,
with collinear gluons should be included. Though the argu- (65
ment is different, there are also three independent matrix
elements in the collinear effective theory. (P|Enn“hv|§>=2E £pnH, <p|€r]nﬂy5hv|§>=ol

At order A, we have the form factors of the form

_ _ _ For vector mesons, the matrix elements are written as

(L(M[&ptTh,[B(v))=tr [AH(E)M T Mg], (60) o

M = i ehvaPB ox
where A/“(E) contains the long-distance dynamics and they (Vlgny*h,[B)=2E ¢, ie"* e navy,
are independent of the Dirac structdteof the current. Since
the operator is proportional tpf*, the only allowed vector
component forAf* is y/*. Therefore the most general form
for A" is given by

(V[€q#h,|B)y=(V[£,n*h,|B)=0,

(V[Eny ysh,|By=2E &, (¢*“—(&* -v)n¥)
At(E)=v{Ta, (E)+ay (E)d+ag (E)h+a, hd]. t2E Gy -vn, (66

61) _ _
(V[€q*ysh,|B)=—2E &(e* -v)v*,

As in the case o (E), all the terms are not independent

due to the projection operators jif, and Mg. ForL=P (V[€nn*ysh,|By=—2E &|(€* -v)n*.

there is only one independent term, and forV there are

two independent terms. Similarly, the matrix elements of the Using the above relations, we can determine the heavy-
time-ordered product§; can be written as to-light form factors at leading order ik and «g,

114016-10
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) R _
o(q ) 2m —h
fo(0)= " =&p(E), — Ao(a?)=§/(E), < Enz b7, |B ) =ap(20#—n"),
‘HAn (qz) pgﬁp tveh IB) =0
Aul@)= = =£.(B), (67) g PL 7 Y8 B =0,
Vv
—_h
Z(qz) Epj_v h —apl)ﬂ,
—=&(B) ¢,
1+my .
< ﬁp h > =0 (69
—b.v ,
whereX=2E/M, my=my/M. From the results in Sec. IV 2 LS,
we can include the perturbative corrections, which change .
the relation between form factors. We find that, at leading —n
order in\ and at leading logarithmic order im, Emnﬁh B)=apn”,
X —h
fe=£p(B)| Cit 5 Co+ Cyl, Epln ysh,|B ) =0,
fo X (Pl&p!h,|B)=(P[&.pt ysh,[B) =0,
% = &r(E) C1+(1_§ C,+Csl, e e
and for vector mesons we have
W *
14m =C.&.(B), EI{M?’ 7’5h =ayz€* -v(2v#—nH),
\
2my X ﬁp #h,|B) =0
¢ Po=§(E)| C1+| 1- 5| Co+Ca), (68) EnzbLy :
] —h .
1+my Emv 75h =—aye vk,
A1=C1& . (B),
X
Y _
, X \% fnzmv”hv B/)=0, (70
—=C1&,(BE)— C1+§C2+C3)§||(E)-
1+my o
En=p n*ysh, > —ay€* -vn#,
These results are the same as those derived by Bauer et al. < "2t ° Ve

[13], though our basis is different from theirs. In REL9]

Beneke and Feldmann have calculated the soft contribution
to the form factors using the large-energy effective theory. As
we have stressed, the matching to the full theory is impos-
sible in this case. However, they judiciously absorbed the

—_n
\ gnszthv

)-o

£ pt By=— XU (F .
infrared divergences into the nonperturbative parameters (VI€npt ysh,[B) = —ayi[ e~ (" -v)n“],
such asfp, §, or by observing the Dirac structure of the
matrix elements. In the process, the nonperturbative param- (V[&,p"h,|BY=ay,ie*"*Fe*n V-

eters are defined at each orderi. Since we can match the
collinear effective theory to the full theory, we can check Finally, for the time-ordered products, we have
their calculations. We find that their perturbative corrections
in Egs.(30), (32) and(33) in Ref.[19] are correct when we . b =
compare them with the exact results in the collinear effective (Pl f dyT{€ny*h,(0) £1(y)}[B) =bpn*,
theory. Now we include the nonperturbative corrections at
order)\, along with the perturbative correction. ) P —
At order \, the matrix elements o®# for pseudoscalar <P|'f d*yT{émw*h,(0) L(y)}[B)=bpv*,
mesons are given as (77

114016-11
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(Pl [ Y TEnN,(0) £1(y)}[B)=bprv Vi [ ayTiE w0, (0) 41} B) =0,

and the time-ordered products involving the heavy-light cur- . P —
rents with ys vanish. For the matrix elements of the time- (V[i | d*yT{&.nh,(0) L1(y)}[B)=0, (72
ordered products for vector mesons, we find

_ _ V[i [ d*yT{&w*ysh,(0) L1(y)}IB)= —byye* -vv,
<V|iJ'd4yT{§n7“hu(0) ﬁl(Y)}|B>:bv1iE“Va’gftnavﬁa < |If YT e (01 LB v e

_ _ <V|if dy T{£,n*y5h,(0) L1(y)}|B)=—by,€e* -vn~.
<V|if dy T{&,v*v5h,(0) L1(y)}B) =Dy €*#

Combining all these form factors, we obtain in the collin-
—(e*-v)n*]+Dby,€e* -vn*, ear effective theory

— 1
<P|V“|B>=2En"‘ +2Ev# Cz§p+ E[ap(ZBl'f' Bz)+pr2:| f

1
(C1+Cy)épt+ E[ap(_ B1+B3)+bp(A;+Az)]

: (73

1
Cié + E(thavf“ Aiby1)

(V|VHB)=2Eie""*FeXn, v,

1
—2E(e*-v)n#| C1€, —(C1+Cy) ¢+ E[(Bl_Bs)avz"‘ Bsay:

1
Cié + E(B4av1+A1bv1)

(V|A|B)=2Ee*#

+Alel_ (A1+A3)bvz] + ZE(G* . U)U’u

1
Cy¢+ E[(ZBH‘ Ba)ay,+Azbys]

From these relations we can obtain the form factors to order A,

. L . B byy avi
\ and to leading-logarithmic order ing as —=Cq| &, + 5= | +C3—=
1+my 2E E
X ! —|Cyt+ XC +C + ! +b
fi,=|Cyt §C2+C3 ot E(a,ﬁ— bp) 1T 52T hs g E(avz v2)
ap ay2
_(Z_X)Clﬁv +(2—X)C1E.
Here we keepm, explicitly even thoughmy~ A gcp/my
0 X 1 ~\2in our power counting. It is because meson masses are
x| C1t| 175 |CatCs| Ept 5z (aptDbp) inserted in the definition of form factors in E55) without
regard to the power counting in the collinear effective theory.
ap However, we neglect the terms proportional to the mass
_Xclﬁ’ squared of the light meson comparedvd. And we use the
relations among the Wilson coefficients to express the result
in terms ofC; only.
2my X 1 At leading order in\, there are three unknown nonpertur-
— Ao=|C1t | 1-5|Cot Ca|| §+ s=(avatby) bative parameter§s(E), &, (E), and &(E). These are di-
X 2 2E . i ) . L
mensionless functions. While the Isgur-Wise function in
ays HQET is normalized to one at maximal momentum transfer
—XCi5g, (74 due to the heavy quark symmetry, there is no constraint in
the normalization of these unknown paramefdsg]. At or-
der A, there are six additional nonperturbative parameters:
1+my v by, ay; ap(E), a}v1(E), av2(E), bp(E), byi(E), andbvz(E)- In our
Al=———=Cy| £ +==|+Cy—, convention, all these parameters have mass dimension, for
X 1+my 2E E example,
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pL-kL
—_——— =
@ - e
. H @ o FIG. 4. Feynman rules for the effective La-
(b) = —gT“%W% grangianZ; to orderg: (a) collinear quark with-
P out an external gluor(p) collinear quark interac-
P tion with a soft gluon, andc) collinear quark
a - " interaction with a collinear gluon, ard* denotes
7 , i 2
© § = gTa% [ﬁ.pﬁ-p' (zpl kL + (P —h)h) - #4‘; - %_pﬂ residual momentum of order=.
p 7
ap Agep can also be expanded consistently in powersa. paind the
E~)\~ o (75 Wilson coefficients of various operators in the effective
b

theory can be computed by matching the effective theory to

where the last relation comes from the kinematics. The rethe full theory. Itis crucial to note that the collinear effective
maining five unknown parameters are of the same ordr in theory reproduces the infrared behavior of the full theory by

Therefore Eq(74) is our result for the form factors to order ncluding the effects of collinear gluons. _
m_ There is a reparametrization invariance in the collinear

r{aﬁective theory, in which a slight change of the light-cone
directionn# can be compensated by a change pfto make
the physics invariant under this transformation. If we also
require that the theory be invariant under collinear gauge
fo V 1+my transformations, we can prove that the effective Lagrangian
fi=2(=6p), —=—= A(=¢)), L, at order\ is not renormalized. This reparametrization
X 1+my X invariance is also useful in deriving the operators of oider
R R (76)  from the operators of ordex®. The Wilson coefficients and
2my, 1+my - the anomalous dimensions can be obtained from the opera-
Ty o7 TAl_(l_mv)Az(:fll)- tors which are related by the reparametrization invariance.
The reparametrization invariance and the collinear gauge in-
These relations are modified at orderand at leading- variance put a serious constraint in the structure of heavy-
logarithmic order inag as light currents in the collinear effective theory.
The development of the collinear effective theory casts a

There are interesting relations among the form factors i
the effective theory. At zeroth order nand «ag, those rela-
tions are given by

fo 1 1 renewed view on heavy quark decays in which light quarks
fe X —(1=X)| Cyf £t E(a,ﬁ be) |+ EClaP : are emitted with large energy. Bauer et[&@1] have consid-
ered nonleptonic decays using the collinear effective theory,
Vv 1+m and found that the decay— D 7 is factorized in the heavy
Vv . A . . .
—= Ay, (77 quark limit to all orders inxg. It will be interesting to look
1+my X into nonleptonic decays d8 mesons in the context of the
R R collinear effective theory including higher-order corrections
2my 1+my - in \.
T MT Tx A~ (1-my)A; What we have not considered here is hard spectator ef-

fects, in which spectator quarks interact with the energetic
quark through hard gluons. As Beneke and Feldmfd)
pointed out, this contribution can be as important as the soft
contribution to the form factors. If we can analyze the hard
spectator contribution also in the scheme of the collinear
effective theory, we will have a better understanding of form
factors in this kinematic region. This is the next subject to be
Note that the second relation in E6) still holds to ordei developed.

and at leading-logarithmic order iag. And the tree-level

results hold only in the limiX— 1. ACKNOWLEDGMENTS
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(b) 2

(a) % o ;9 6 ;3 O] Q 3
FIG. 5. Feynman diagrams for the renormalizationCgfat one
loop.

loop. The Feynman rules for the Lagrangiénto orderg is
shown in Fig. 4. The derivative is of ordex?, and it is
replaced by the residual momentuain momentum space.
We will concentrate on the first term if;, which is of the
form

_pib +ibph
01=§n;§§n,
n-p

(A1)

which is shown in Fig. ). Other terms in; contribute to
the renormalization o®, at order\ along with the radiative
corrections ofO4. In order to show that’; is not renormal-

PHYSICAL REVIEW D 65 114016

tree-level value. In order to see the renormalization group
behavior, we have to extract the ultraviolet divergent part by
putting the external quark off the mass shell = pf . We

will show only the ultraviolet divergent parts here. Calculat-
ing the Feynman diagram in Figs(ap, 5(b), and Fc), we
obtain

. aSCF 1

T 47 €

CKSCFS _CYSCFS
5=~ am O Mem g O
(A2)

Ma 1

respectively. Therefore the sum of all the diagrams is given
by

asC,: 1

M:Ma+Mb+Mc:?EOl' (A3)

When we add the wave function renormalization to this am-

ized, we have to consider all the radiative corrections for thedlitude, the ultraviolet divergences cancel, and the anoma-
operators shown in Fig. 4. However, we will concentrate orlous dimension 0D, is zero. Therefore we have shown that
the renormalization 00, since other terms have the same the operatoO; is not renormalized at orders explicitly. In

renormalization behavior &3, at leading-logarithmic order.
The Feynman diagrams to renormali@g are shown in

fact, we have to consider one-loop corrections to the remain-
ing operators inC,. But no other operators are renormalized

Fig. 5. And the corresponding diagrams with a soft gluonthough we do not show them here. As a result, the Wilson
exchange vanish due to the vertex structure. All the diagrameoefficientsA, of the time-ordered products in E@5) come
in Fig. 5 are zero using dimensional regularization for on-from the Wilson coefficients of the operataj$ alone and

shell external states, and the coefficienOgfis given by the

not from £;.
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