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Small-x behavior of the singlet polarized structure function g2 in the double
logarithmic approximation
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The small-x behavior of the singlet contributions to the polarized structure functiong2(x,Q2) is calculated
in the double-logarithmic approximation of perturbative QCD. The dominant contribution is due to the gluons
which, in contrast with the unpolarized case, mix with the fermions also in the small-x domain. We find a
powerlike growth in 1/x in the odd-signature parts of the amplitude with the same power as in the singlet
function g1(x,Q2) at x!1.

DOI: 10.1103/PhysRevD.65.114012 PACS number~s!: 12.38.Bx, 13.60.Hb, 14.20.Dh
za
h

d

ur

on
n

o

ar
be
o
nt

ra
io

d
ed

re
,

rse

nal

to
e
na-
t of

ill
be

e-

-
-

I. INTRODUCTION

The investigation of the structure functionsg1 and g2

provides the basis for the theoretical description of polari
tion effects in deep inelastic lepton nucleon scattering. T
Q2 evolution of the spin dependent functiong1 is well
known: atx;0(1) one can use theoriginal Altarelli-Parisi
equations@1#, whereas in the region of very smallx the
double logarithmic approximation@2,3# has to be used an
predicts a stronger growth in 1/x than the Altarelli-Parisi
equations. The situation with the other polarized struct
function g2 is more complicated. Compared tog1, several
new features appear@4#.

First, there exists a twist-3 contribution tog2 , g2
(3) , which

is not suppressed even for largeQ2 @5#. Part of the function
g2 may be obtained from the known structure functi
g1(x,Q2) with the help of the Wandzura-Wilczek relatio
@6#, and from another integral relation@7# which relates the
twist-3 piece ofg2 to the (m2/Q2 suppressed! twist-3 correc-
tions tog1. However these relations are not enough to rest
the whole spin dependent functiong2(x,Q2). This can be
seen from the explicit one loop calculation ofg2(x,Q2) on a
quark target@8,9#1 and also from the small-x behavior of the
nonsinglet component ofg2(x,Q2), calculated in the double
logarithmic approximation~DLA ! in @4#.

Another distinct feature and difference from the stand
leading-twist evolution equations is the fact that the num
of operators which contribute to the twist-3 component
g2(x,Q2), g2

(3) , is not fixed but increases with the mome
indexn ~see, e.g.@11,12#!. Nevertheless, in the two limits,~i!
n→` @wheren denote the~x! moments# and ~ii ! number of
colorsNc→`, it has been shown that the quark-gluon ope
tors decouple from the quark operator evolution equat

1The one loop functiong2(x,Q2) on the gluon target was calcu
lated in @10#.
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@13#, and the asymptotic behavior ofg2(x,Q2) in the region
12x!1 has been derived.2

Next, in the region of smallx g2 has to be decompose
into pieces with different signatures. Whereas unpolariz
structure functions and the polarized structure functiong1
have a definite signature~e.g.,g1 is the energy discontinuity
of an odd-signature scattering amplitude!, g2 contains both
even and odd signature@17,18#, and an important part of the
small-x analysis ofg2 is the separation of the two signatu
structures. Because of the different contents of signatureg1
andg2 are expected to have a different behavior nearx50
~i.e. different powers of 1/x; see, for example,@17,19#!.

Finally, in the region of smallx another new feature
arises. It is well known that the strong ordering of transve
momenta is violated@2,19–21#. Instead ofki ,t

2 @ki 21,t
2 one

haski ,t
2 @(xi /xi 21)ki 21,t

2 ~with xi!xi 21). As a result, double
log contributions of the form (asln

21/x)n appear which can-
not be summed up in the framework of the conventio
logQ2 evolution. This feature holds for bothg1 andg2, and
for g1 it has been discussed in detail in@2,3#. In particular,
the infrared evolution equation~IREE! @19# has been used to
sum up all the leading perturbative QCD~PQCD! double
logarithms~DL! of the formas

nlnk1/x lnmQ2 with m<n and
k1m52n21. In @4# similar techniques have been used
investigate the small-x behavior of the polarized structur
function g2: so far only the nonsinglet case has been a
lyzed. In this paper we present the study of the singlet par
g2, and we find its asymptotic behavior atx→0. In analogy
with our study of the nonsinglet part ofg2 we consider the
scattering amplitude of a virtual photon and a quark. We w
not ~yet! address the question of how our calculations can
used for the polarized structure functiong2 of the proton, i.e.
how to set up the initial conditions coming from the confin
ment region.

2See also@14# for a recent study of the twist-3 (g2
(3)) evolution in

the Nc→` limit, @15# for the QCD evolution of twist three opera
tors beyond the large-Nc limit, and @16# for a possibility to study the
scale dependence ofg2(x,Q2) beyond theNc→` limit.
©2002 The American Physical Society12-1
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J. BARTELS AND M. G. RYSKIN PHYSICAL REVIEW D65 114012
In @4# we have shown that, for the even signature part
the nonsingletg2, the only double logarithmic contribution
come from the ladder-type Feynman diagrams witht-channel
intermediate states consisting of two quarks only. For
odd-signature part of the amplitude one has to consider
nonladder graphs where an additional ‘‘soft’’t-channel gluon
‘‘embraces’’ a part of the ladder diagram, in which the tran
verse momenta of all partons~gluons and quarks! are larger
than the transverse momentum of this ‘‘embracing’’ s
gluon. The DL contribution of such a graph can be summ
up by the IREE, using the method proposed in@19#. In @4#
we have analyzed all one and two loop diagrams, contrib
ing to the nonsinglet component ofg2, and we extracted the
double logarithms. In the singlet part ofg2, whose analysis is
the goal of the present paper, there are only two new 2-l
diagrams, shown in Fig. 1. Figure 1~a! has the same ladde
structure but with the two-gluont-channel intermediate stat
while the crossed box diagram of Fig. 1~b!, as usual, loses
the logarithm. The analysis of these graphs, together with
results of@4#, will enable us to find the small-x behavior of
the singletg2 structure function.

A comment is in order about the contribution oft-channel
states with more than two gluons. For unpolarized struct
functions at very smallx, diagrams with any number o
t-channel gluons contribute to the small-x behavior of the
scattering amplitude;1/x ~modulo powers of ln 1/x). For
the polarized case~bothg1 andg2) the antisymmetric tenso
structure~see below! requires, for the two gluon state, th
polarization of thet-channel gluons to be different from eac
other; as a result, the amplitude behaves as;x0 ~modulo
powers of ln 1/x). Consequently, even at smallx, quark and
gluon t-channel states mix, quite in contrast to the unpo
ized case. However, also in the polarized case, there e
t-channel states of gluons which lead to a small-x behavior
;1/x. The simplest one@22# consists of three gluons, ha
positive C parity, and is dual to the odderon solution di
cussed in@23#. This three gluon contribution, however,
beyond the DL approximation used in this paper. First,
coupling of this state to the virtual photon is suppressed b
few extra powers ofas which are not accompanied by th
maximal number of logarithms. Next, the contribution of th

FIG. 1. The lowest order Feynman diagrams which contai
gluon t-channel state.
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state tog2 is suppressed by an extra power of 1/Q2, needed
to compensate the dimension of the transverse momentak1t ,
k2t ~of the gluons! which saturate the antisymmetric tens
«mnab, and reflecting the orbital momentum in the thr
gluon state. For these reasons, contributions from diagr
with more than two gluons will not be considered in th
paper.

The outline of the paper is as follows. In Sec. II we co
sider the kinematics of the process and outline our strate
In Sec. III we calculate the DL small-x contribution of the
simplest singlet diagrams shown in Fig. 1. It turns out th
the DL asymptotics of Fig. 1 is proportional to the singl
structure functiong1(x,Q2). Based on this general propert
we consider in Secs. III and IV the small-x behavior of the
spin dependent functiong2(x,Q2). Sections V and VI con-
tain the evolution equations and their solutions. In a concl
ing section we present a brief summary.

II. KINEMATICS AND DEFINITIONS

Let us begin with a brief summary of previous results a
with an outline of our future strategy. The spin depend
part of the hadronic tensoriWmn

A of the deep inelastic scat
tering ~DIS! lepton-quark scattering amplitude has the for

Tmn
A 5

M

~pq!
i«mnabFqasbT1~x,Q2!

1qaS sb2
~sq!

~pq!
pbDT2~x,Q2!G , ~1!

where M ,pm and sm denote the mass, the four momentu
and the spin~pseudo!vector of the target, respectively. A
usual, (sp)50 ands2521, and the spin-dependent stru
ture functions are defined as the discontinuities ofT1 andT2:

g1,252
1

2p
Im T1,2. ~2!

Throughout this paper we work in the Feynman gauge
use the Sudakov representation of the momenta of qu
and gluons:

ki52a iq81b i p1kti . ~3!

The photon four momentum is written asq5q82xp, andp
andq8 are the two lightlike reference vectors. The Jacob
can be written as

d4ki5
S

2
da idb id

2kti . ~4!

Here S52q8p denotes the center of mass energy, and
assume that the quark target mass is small:M2!Q252q2.
So one may neglect the value of this massM everywhere,
except for the mass term in the target density matrix. T
mass term is needed in order to obtain a nonzero spin t

a

2-2
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SMALL-x BEHAVIOR OF THE SINGLET POLARIZED . . . PHYSICAL REVIEW D 65 114012
proportional to the first power ofM @see Eq.~1!#.3 Finally,
we recall from@4# that, in order to obtain in Eq.~1! a non-
zero contribution tog2, we need a transverse polarization
the target (sm5smt): longitudinal polarization of the targe
sm5pm8 /m contributes to the structure functiong1 only,
while the transverse (sm5stm) polarization gives the sum
g'5g11g2.

Let us briefly recapitulate our previous analysis of t
polarized structure function. Consider a generic ladder d
gram~Fig. 2! and begin at the bottom. Since the spin dep
dent part of the hadronic tensorWmn is antisymmetric~pro-
portional to the« tensor!, in the target density matrix we
have to start from theg5ŝ part:

1

2
~ p̂1m!~12g5ŝ!. ~5!

When calculating the trace, thisg5 matrix gives the antisym-
metric tensor«mnab. As we have said before, for the prese
analysis we chose transverse polarization of the target qu

Moving upwards inside the ladder diagrams, we enco
ter t-channel intermediate states which consist of a qua
antiquark pair of two gluons. For the quarkt-channel state,
we have found in@4# two different polarization structure
which we will denote by8s8 and 8k8:

8s8⇒g5ŝt , ~6!

8k8⇒~2sk!•g5k̂, ~7!

wherekm is thet-channel quark momentum. At the target w
begin with the ‘‘s’’ structure, but at any gluon rung above w
have both possibilities: either to continue with ‘‘s’’ or start a

3Hence we may putp2.p8250.

FIG. 2. A generic Feynman diagram for the scattering of a v
tual photon on a quark target.
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‘‘ k branch.’’ The latter continues with ‘‘k’’ structures only,
until at the upper end of the diagram it ends with the co
pling to the photon. There is no return from a ‘‘k branch’’ to
an ‘‘s branch.’’ Moreover, the ‘‘k branch’’ contains only odd
signature, and its evolution is the same as ing1, whereas the
‘‘ s branch’’ contains both even and odd signature and
slightly modified evolution equations. Nonladder structur
cancel for even signature branches, whereas for odd si
ture they lead to an additional term in the evolution equati

What is new in the present singlet case is the two-glu
intermediate state. We first note that this intermediate s
must have the same antisymmetric structure~with respect to
the gluon polarizationsm8 andn8) as the« polarization ten-
sor. Thus we cannot assign to both gluons the same long
dinal polarizations which would lead to the small-x behavior
;1/x. The best one can do for retaining the largest powe
1/x is to assign the longitudinal polarization (em8}qm8

8 ) to
one of the two gluons and the transverse polarization (en8
5en8t) to the other gluon. Therefore, as mentioned before
contrast to the unpolarized structure functionf 1(x,Q2)
;1/x, the prediction for the small-x behavior of the polar-
ized distributions goes as

g1,2~x,Q2!;const3F~asln Q2ln 1/x,asln
21/x!, ~8!

where the functionF denotes the leading~DL! corrections to
the asymptotics of the Born singlet spin dependent struc
function: g1,2(x,Q2);const asx→0. Speaking in terms of
the complex angular momentumj plane, both the two
t-channel quark and two gluon exchange lead to the rig
most singularity atj 5v50, and even at very smallx for the
singlet spin dependent structure functions we have to
count for the transitions between the quark and gluont chan-
nel states. Continuing with the spin structure of thet-channel
two gluon state we have to recall that the longitudinal glu
polarizationem8 is contained in the termqm8

8 pm9
8 /(q8p8) in

the spin part of the gluon propagator

dm8m95gm8m95gm8m9
'

1
pm8
8 qm9

8 1qm8
8 pm9

8

~p8q8!
, ~9!

where the vectorqm8
8 (pm9

8 ) is contracted with the spin struc
ture at the lower~upper! end of thet-channel gluon. The
transverse polarization is contained ingm8m9

' . At first sight
there are two antisymmetric spin structures with one lon
tudinal gluon:

~a! «mnabsa
'pb8 ~10!

and

~b! sm
'pn82pm8 sn

' .

However, the last structure has unnatural parity (sm is a
pseudovector! and never contributes to our amplitude E
~1!. So it is enough to consider the first structure, Eq.~10!,
only. Since this structure is the same as in the case ofg1, we
can make use of the results of@3#.

-
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J. BARTELS AND M. G. RYSKIN PHYSICAL REVIEW D65 114012
It will be the central task of this paper to compute t
evolution kernels of the differentt-channel states and th
transitions from one to another. Altogether, we have th
different states: the two spin structures of quark-antiqu
states, Eqs.~6! and~7!, and the two gluon state. As usual, th
DL contribution comes from the kinematical region of

1@b1@b2@•••.x

and

•••!a1!a2!•••!1. ~11!

The contour of thea i loop integration will be closed aroun
the pole of the propagator of thei-th s-channel~horizontal
line! particle. Thus all thes-channel particles lie on mas
shell, and thet-channel propagators can be approximated
1/ki

2./kit
2 , asa ib is!kit

2 . So thei-th loop integral takes the
form

C
as

2p

db i

b i

dkit
2

kit
4

3numerator. ~12!

The logarithmicb i integration is written explicitly, while, in
order to obtain the second logarithm~from the integral over
dkit

2 ), we need to select the term proportional tokit
2 in the

numerator, coming from the spin part of the diagram.
discussed before, the gluon→gluon case we take from@3#;
the evolution of the ‘‘s branch’’ and ‘‘k branch’’ quark struc-
tures were obtained in@4#, the transition from ‘‘s branch’’ to
‘‘ k branch’’ is also contained in@4#, and the transition from ‘‘
k branch’’ to ‘‘s branch’’ vanishes. Collecting these results
terms of a matrix whose columns~rows! are labeled by the
spins structure of thet-channel states below~above! the tran-
sition, we have for the numerator in Eq.~12!

S gg kg sg

gk kk sk

gs ks ss
D 5S 4 21 ?

2 1 0

? 21 1
D . ~13!

Here the labels (g, k, s) refer to the spin structures of th
gluon, the ‘‘k’’ structure of the quark and the ‘‘s’’ structure of
the quark, respectively The 232 block matrix in the upper
left corner coincides withg1

s and has been taken from@3#;
the 232 block matrix in the lower left corner, on the othe
hand, is the same as in the nonsingletg2 case and has bee
derived in@4#. What still needs to be computed are the mat
elements denoted by ‘‘?’’: in the two following sections w
will show that both elements vanish.

The color factorsC are the same as in the unpolariz
scattering: for the gluon→gluon it is equal toCA5Nc (Nc
53 is the number of colors!, for the quark→ gluon and
quark→ quark splitting we haveCF5(Nc

221)/2Nc , and for
the gluon→ quark transition the color factor is 2TF5nF (nF
is the number of light quark flavors!. Combining these color
factors with the elements of the numerators matrix
Eq. ~13!, we have all ingredients to the infrared evolutio
equations.
11401
e
k

y

s

III. SINGLET TWO-LOOP DIAGRAM

We start with the amplitude Fig. 1~a! and use the trans
verse vectorstm The spin dependent lower part of Fig. 1~a!
takes the form

Bm8n852
1

2
Tr@gn8~ p̂1m!g5ŝgm8~ p̂2 k̂1m!#

522i«m8n8absa
'kb , ~14!

where in order to obtain the leading~in 1/x) contribution we
have to keep the longitudinal component of the gluon m
mentumkb.bpb8 .

Next, to simplify the calculation of the trace of the upp
quark loop we make use of gauge invariance. The amplit
Um9n9

mn , which corresponds to the upper block and includ
both the box@Fig. 1~a!# and crossed box@Fig. 1~b!# dia-
grams, satisfies the properties

Um9n9
mn

•qm50 ~15!

and

Um9n9
mn km95Um9n9

mn
~kt1bp82aq8!m950. ~16!

Based on the gluon gauge invariance~16! one may replace
the momentumpm9

8 in the longitudinal gluon polarization
vector @i.e. the spin part of the gluon propagator~9!# by
2ktm9 /b; the contribution of the term2aqm9

8 does not con-
tain the double logarithm and may be neglected within
kinematical domain~11!. We contract the tensor in Eq.~14!
with the gluon numerators~9! and make use of this replace
ment. The polarization of thet-channel gluons is then de
scribed by the tensor structure

Tm9n9}
ẽm9ktn92ktm9ẽn9

b

5
~ks'!

b
«m9n9

'

5
~ks'!

~p8q8!b
«m9n9abpa8qb8 ,

where«mn
' is the two dimensional antisymmetric tensor, a

the polarization vector has the formẽm95«m9a
' sa

' . In this
way the expression~14! can be rewritten as

Bm9n9.2ib«m9n9abpa8sb
'⇒2i

~ks'!

~p8q8!
«m9n9abpa8qb8 .

~17!

Since the transverse spin vectorstm corresponds to the spin
flip amplitude from the photon side we choose one transve
and one longitudinal photon polarization vector,Em5Em

' and
En5En

i 5(1/AQ2)(q81xp8). With the help of the photon
2-4
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gauge invariance~15! the last vector can be replaced byEn
i

52xp8/AQ2. Thus, finally, in the case of Fig. 1~a! we have
to calculate the trace

Tra5
2i ~ks'!

~p8q8!
«m9n9abpa8qb8

3@gn9 l̂ Êi~ q̂1 l̂ !Ê' l̂ gm9 ~ l̂ 2 k̂!#. ~18!

Using the identity

gnk̂gm52 i«mnlsklg5gs

1~ the term symmetric underm
n! ~19!

we obtain

Tra5
4~ks'!

~p8q8!
$„p8~ l 2k!…Tr@g5q̂8 l̂ Êi~ q̂1 l̂ !Ê' l̂ #

2„q8~ l 2k!…Tr@g5p̂8 l̂ Êi~ q̂1 l̂ !Ê' l̂ #%. ~20!

Putting in Eq.~20! Ei52xp8/AQ2, it is easy to see that th
largest~and the only DL! contribution ~whereq8 is multi-
plied by the momentumk, andp8 by momentuml 8; note that
a l@ak andbk@b l) comes from the second term and rea

Tra'
4~ks'!

~p8q8!
~q8k!~2p8l !Tr@g5Êiq̂Ê' l̂ #. ~21!

As the s-channel quark with momentum (k2 l ) is on mass
shell, the product (q8k)(2p8l )/(q8p8)52bka ls.(k2 l ) t

2 .
So after the azimuthal angular integration we get

4~ks'!~k2 l ! t
2l m52kt

2l t
2sm

' ,

that is

Tra.2kt
2l t

2Tr@g5Ê'Êiq̂ŝ'#⇒ i«mnabqasb
'~8kt

2l t
2!,

~22!

where the first factor is exactly the structure we are look
for in the hadronic tensor~1!, and the last factor 8kt

2l t
2 is

needed to keep the leading logarithms in thedkt
2 and dlt

2

integrations, as was discussed at the end of Sec. II.
Finally, let us consider the trace corresponding to

crossed box diagram of Fig. 1~b!:

Trb52i
~ks'!

~p8q8!
«mnabpa8qb8Tr@gn~ q̂1 l̂ 2 k̂!

3Êi~ l̂ 2 k̂!gm l̂ Ê'~ q̂1 l̂ !#. ~23!

The product of the threeg-matrices@ l̂ Ê'(q̂1 l̂ )# may be
decomposed as

l̂ Ê'~ q̂1 l̂ !5cdgd1ddg5gd . ~24!
11401
s
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The last term has unnatural parity and may be neglec
while the vectorcd5 1

4 Tr@ l̂ Ê'(q̂1 l̂ )gd#. Using this fact and
the identity~19! we get

Trb5
~ks'!

~p8q8!
$Tr@ p̂8 l̂ Ê'~ q̂1 l̂ !#

3Tr@g5q̂8~ q̂1 l̂ 2 k̂!Êi~ l̂ 2 k̂!#2Tr@ q̂8 l̂ Ê'~ q̂1 l̂ !#

3Tr@g5p̂8~ q̂1 l̂ 2 k̂!Êi~ l̂ 2 k̂!#%. ~25!

The second trace in the first term on the right-hand s
~RHS! of Eq. ~25! vanishes as it contains only one transve
vector (l 2k) t , while the last term in Eq.~25! is zero since in
the second traceEm

i }pm8 . Therefore we neglect the crosse
box contribution~after the trick based on the gauge inva
ance was applied! and the whole DL result, given by th
ladder-type Fig. 1 diagrams, reads

g'
s ~x!52eq

2
•2cFS as

2p D 2E dbk

bk
E dkt

2

kt
2 E dlt

2

l t
2

~26!

~hereeq is the electric charge of the quark!. In Eq. ~26!, the
limits of integration follow from Eq.~11! and the discussion
after Eq.~11!.

We have to note that, within the DL approximation, th
result ~26! for g'5g11g2 coincides with the lowest orde
singlet functiong1

s . In other words, to this order of accurac
we obtain the singletg2

s(x)50. This is the consequence o
the fact that in the lower part of the Fig. 1 graph the Bo
structure functiong2

B50. For the one loop approximatio
~orderas) it is known @8# that at smallx the one loop result
is given by

g2~x,Q2!.
eq

2CFas

2p
x ln

Q2

m2x
,

i.e. is much smaller than

g1~x,Q2!;
eq

2CFas

2p
ln

Q2

m2x
.

So it is only at the two loop level~or above! that the nons-
inglet structure functiong2

n.s. becomes comparable to th
value ofg1

n.s. at x!1. Thus one expects a nonzero DL co
tribution to the small-x behavior of the singletg2 component
at earliest at two loops. Our result~26!, however, shows tha
at the two loop level it still vanishes. We therefore have
turn to three or more loops. On the other hand, we kn
already from the argument given in Sec. II that in the D
approximation the gluon contributions both tog'5g11g2
and tog1 are driven by the same spin structure~10!. There-
fore we may expect that the distributionsg2

s andg1
s will have

the same asymptotic small-x behavior. In the following sec-
tion we will show that this is indeed the case.
2-5
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IV. HIGHER ORDER CONTRIBUTIONS

We now turn to higher order corrections to Figs. 1~a! and
1~b!. As a generic diagram, we consider Fig. 2. Beginn
with the quark target at the bottom, we first have the sa
evolution as in the nonsinglet case. After the firsts-channel
gluon the initial quark density matrix12 ( p̂1m)(12g5ŝ)
gives

1

2 (
a

ga~ p̂1m!~2g5ŝ!ga5mg5ŝ, ~27!

where we omit the terms which do not depend on the qu
spin vectorsm . In this way we obtain the structureg5ŝ.
At the next step this spin structure, together with t
t-channel quark propagatorsk̂9, produces the second stru
ture (2sk)•g5k̂:

k̂9g5ŝk̂95~k92!g5ŝ2~2sk9!•g5k̂9. ~28!

Consequently, starting from twos-channel gluons, the quar
density matrix in the upper (k8) cell of the block contains the
two structuresg5ŝ and (2s'k8)g5k̂8. So our diagram splits
into two branches, and we have to follow each branch se
rately. The latter one,g5k̂8, is equivalent to the density ma
trix of a longitudinally polarized quark with the momentu
km8 . So this spin dependent part of the heavy photon-quark8
amplitude is described by the photon-quark structure fu
tion g1(g* q)

Tmn~g* q!5
i«mnab

~k8q!
qa•kb8•T18~x8,Q2! ~29!

with Im T18522pg1(g* q) and x85Q2/2(k8q). The inte-
gration over the azimuthal direction of the vectorkt8
„*dw(2s'k'

…km8 5kt
2sm

') replaces the tensor«mnabqakb8 by
«mnabqasb

' and gives the factorkt8
2 needed to save the DL

structure of thedkt8
2 integral. As a result, the branch ing'

which originates from the ‘‘k’’ quark structure, 2(s'k8)g5k̂8,
is proportional tog1

s . So we can make use of our results@3#
for g1

s : we know the transitions from the gluont-channel to
the quarkt-channel~and vice versa!, and we also know the
latter never contains the ‘‘s’’ spin structure. In other words
we have shown that in Eq.~13! the upper right element,sg,
vanishes.

Following the other branch, which starts from the ‘‘s’’
structure,g5ŝ', at the upper end of the lower block, we no
that it does not lead to any double logarithm at all. To sh
this we again make use of the gauge invariance, that is
condition analogous to Eq.~16! but with respect to the lowe
block: Bm8n8km850. Based on this condition we replace th
vector q8 by 2ktm8 /ak . After this, the polarization of the
only t-channel gluon state which may give the DL’s is d
scribed by the pure transverse tensorTm8n8}«m8n8

'
•(ks')/a.

On the other hand, theg5ŝ' quark structure produces th
tensorBm8n8524i«m8n8absa

'(k82k)b orthogonal to«m8n8
' .
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As a result, in DL we have no transition from the ‘‘s’’ struc-
ture to gluon states: in the lower left element,gs vanishes.

In summary, the DL singlet contributions start from th
g5k̂8 quark structure, and the gluon evolution is the same
in g1

s . It therefore may be written as the convolution of th
nonsinglet structure functiong2 with the singlet functiong1

s .
Note that we have to use not the whole DL nonsinglet fu
tion g2

n.s. , but only its partg2
k which corresponds to the

structureg5k̂8. This part can be easily extracted from Re
@4#, while the DL singlet functiong1

s needed in the convolu
tion can be taken from@3#.

This value ofvs is considerably larger than the value
corresponding ‘‘intercept’’ of the nonsinglet functiong2

n.s. ,
wherevn.s.5v05A(2CFas)/p ~the ratio of the two values
vs /v0 is about 2.6!. Therefore the asymptotic behavior o
the spin dependent singlet structure functiong2

s(x,Q2) is al-
most completely driven by the DL behavior of the sing
g1

s(x,Q2) distribution.
Let us return to the signature question. As we have m

tioned in Sec. II, the analysis of the nonsinglet case in@4# has
shown that the ‘‘s’’ branch of the quark state contains con
tributions to both signatures, whereas the ‘‘k’ branch has
negative signature only. Since in our DL approximation t
two gluon state communicates only with the ‘‘k’’ branch, it
connects to negative signature only. The only place wh
even signature can appear is the ‘‘s’’ structure of the quark
state which is the same as in the nonsinglet functiong2

n.s. .
The negative signature in the gluont-channel state can b

seen rather directly. Indeed, as it was discussed in@4#, one
obtains the negative signature term keeping the photon~or
gluon! momentum in the trace over the quark loop. In t
quark→gluon transition the trace reads

Trgq5Tr@g5k̂8gn8~ k̂82 k̂!gm8#, ~30!

where the gluon momentumk gives the only nonzero contri
bution. The same can be seen in the gluon to quark tra
tion. Recall our two loop calculation of Sec.III. Here th
leading DL contributions come from the second term on
right-hand side~RHS! of Eq. ~20!. In this term we have to
keep the product (q8k), which includes the gluon momentum
k and the photon momentumq̂ in the trace@see Eq.~21!# in
order to obtain the double logarithms.

Let us finally comment on a point which, at first sigh
might look dangerous. Namely, starting from the spin str
ture

2
M

~pk!
i«mnabkapb

~sk!

~pk!
~31!

in the lower nonsinglet part of Fig. 2, where the gluon m
mentumka plays the role of the photon momentumq in Eq.
~1!, it looks as if one might get a much larger small-x behav-
ior, g2;1/x, than obtained in the previous discussions.
comparison with Eq.~14! this term 2(s'k)• i«mnabkapb

.kt
2
• i«mnabsa•pb is enhanced by the factor 1/bk as the lon-

gitudinal component of gluon momentumka.bkpa8 . How-
ever an extra factor 1/bk destroys the logarithmic structure o
2-6
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the dbk /bk integral. Even more, we will show that such
contribution vanishes. Indeed, the integration in Fig. 2 o
the rapidity of the upper horizontal quark line of the low
block dbk8 /bk8 may be written in terms of thex8
5k2/2(pk).kt

2/2(pk) variable. This last quark with mo
mentum (k82k) is on mass shell. So, keeping the transve
momentakt8 andkt fixed, we have

bk85
uk82ku t

2

akS
5

uk82ku t
2

2p8k

and thereforedbk8 /bk85dx8/x8.
On the other hand, we invoke the argument which lead

the Burkhardt-Cottingham sum rule@24#

E
0

1

dx8g2~x8,Q2!50. ~32!

This sum rule can be derived from an unsubtracted disp
son relation for the photon-proton forward scattering am
tude. For the very special helicity structure which contribu
to g2, this amplitude leads to a cross section which falls w
energy faster than 1/s; therefore, the integral*ds8g2(s8) is
finite, and from the large-s behavior of the dispersion rela
tion one finds Eq.~32!. The same large-1/x condition applies
to our starting functiong2

n.s. ~shown in @4#!, therefore we
conclude that

E dx8

x8
g2~x8,k2!

kt
2

~pk!
5E dx8g~x8,k2!50. ~33!

Thus the term which looked so dangerous, in fact, does
contribute to double logarithmic structure functiong2.

V. INFRARED EVOLUTION EQUATIONS

With results of the previous sections we now turn to t
infrared evolution equations~IREE!. We are interested in the
scattering of a virtual photon on a transversely polariz
quark target:Ts5T11T2, and we will concentrate on th
odd signature part. In order to formulate our coupled evo
tion equations, we first have to generalize to different tar
structures. As outlined in Sec. II, inside our diagrams
have to consider two different spin structures in the qu
t-channel state~6!,~7!, labeled asqs and qk , and the gluon
spin structure~10!. Correspondingly we introduce the thre
component vector:

T5S T~gg!

T~gqk!

T~gqs!
D . ~34!

For our scattering of a virtual photon on transversely po
ized quark target we will be interested in theqk component.
We write T as a Mellin transform:

T5E
2 i`

i` dv

2p i S S

m2D v

j~v!R~v,y!, ~35!
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whereR(v,y) is a three-component vector, defined in an
ogy with Eq. ~34!, and v5 j denotes angular momentum
The signature factorj(v)5 has the form

5
e2 ipv21

2
'

2 ipv

2
, ~36!

and

y5 lnS Q2

m2D . ~37!

The structure functiong'
s is obtained from the discontinuity

~2!, and we have to take into account both DL contributio
and ip terms. Before we can write down the IREE, we ha
to introduce further auxiliary quantities: scattering amp
tudesFi j ~with i , j 5g,qk ,qs) which describe the scatterin
of quark or gluon with spin structurei on a target with struc-
ture j ~loosely speaking, these scattering amplitudes are
tained if, in Fig. 2, we remove the coupling to the photon
the upper end!. We write them as Mellin transforms, i.e. th
Fi j are partial waves and depend upon angular momen
v. By F0 we denote the 333 matrix composed of theFi j
~the subscript refers to the color singlet quantum numbe!:

F05S Fgg Fkg Fsg

Fgk Fkk Fsk

Fgs Fks Fss

D ~38!

~it is the exact analogue toF0 in @3# and to f 0
(2) in @2#!.

We now turn to the evolution equations. The IREE~illus-
trated in Fig. 3! describes the variation of the amplitude wi
respect to the infrared cutoffm2:

2m2
]R

]m2
5S v1

]

]yDR . ~39!

This differential operator stands on the the left-hand side
the IREE forT, which is illustrated in Fig. 3. The right-han
side of the IREE is derived from the observation that t
dependence upon the cutoffm resides in the intermediat
state with lowest virtuality~Fig. 3!: the m derivatives of the
amplitudes are equal toR times quark or gluon scatterin
amplitudesFi j with the external legs having transverse m

FIG. 3. Structure of the infrared evolution equations~IREE!.
2-7
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menta close tom. In terms of the matrixF0, the evolution
equation for the vectorR becomes

S v1
]

]yDR5
1

8p2
F0R. ~40!

The matrixF0 satisfies a nonlinear evolution equation~Fig.
3!:

F0~v!5
g2

v
M02

g2

2p2v2
G0F8~v!1

1

8p2v
F0~v!2.

~41!

Here the matrixM0 contains the evolution kernels~13!
which we have computed in the previous section or collec
from earlier studies:

M05S 4CA 22TF 0

2CF CF 0

0 2CF CF

D . ~42!

As we have discussed before, for the gluon state~upper left
corner! the infrared evolution is described by the same sp
ting function as the singlet structure functiong1

s . For the two
quark system in the lower right two by two block matrix w
can use the results of@4#. The remaining matrix element
describe transitions from quark to gluon states, they
taken from the previous section. The second term on
RHS of Eq. ~41! belongs to the gluon bremsstrahlung d
grams. The matrixG0 has the form

G05S CA 0 0

0 CF 0

0 0 CF

D . ~43!

In analogy to the matrixF0 which carries color zero in thet
channel we define the matrixF8 of color octet amplitudes
Due to the antisymmetric color structure the elements ofF8
are even signature amplitudes. They satisfy evolution eq
tions @19# similar to Eq.~41!:

F85
g2

v
M81

g2CA

8p2v

d

dv
F8~v!1

1

8p2v
F8~v!2. ~44!

The color factorCA in front of the second term on the RH
is the analogue of the matrixG0 in Eq. ~41!. The difference
betweenCA in Eq. ~44! andG0 in Eq. ~41! is due to the fact
that for the positive signature amplitudeF8 the sum of the
two bremsstrahlung diagrams is independent of the type
the incoming partons, and the matrix of color factorsG8
becomesCA times the unit matrix. Finally, the matrixM8 is
the analogue of the matrixM0 in Eq. ~41!, but for color octet
quantum numbers in thet channel instead of color singlet.
reads
11401
d
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M85S 2CA 2TF 0

CA 21/2Nc 0

0 1/2Nc 21/2NC

D . ~45!

VI. SOLUTION OF THE EVOLUTION EQUATION

The solution forg'
s , that is our vectorT @Eq. ~34! and

~35!#, is obtained by solving Eqs.~44! for F8, then Eq.~41!
for F0 and Eq.~40! for R ~the latter makes use of the Bor
approximation,RB , as an initial condition forR!, and finally
insertingR into Eq.~35!. The final answer for the three com
ponent vectorT will have the form

T5E dv

2p i S 1

xD v

j~v!S Q2

m2D F0/8p2

1

v2F0/8p2
RB , ~46!

where

RB5S 0

2eq
2

2eq
2
D . ~47!

Let us go through these steps in somewhat more detail.
We begin with the equation forF8. We first diagonalize

the Born term, i.e. the matrixM8. Thanks to the vanishing o
the off-diagonal elements (M8)sg5(M8)sk50 the two~larg-
est! eigenvaluesl6 coincide with the analogue eigenvalue
for the DL evolution of the singlet functiong1

s . They are
given by

l8
(6)5

2CA21/2N

2
6

1

2
A~2CA11/2N!224CATF ~48!

and

l8
(s)52

1

2Nc
. ~49!

Let e(1),e(2) ande(s) denote the eigenvectors ofM8:

e(1)5S 1

x(1)

y(1)
D , x(1)5

l (1)2M11

M12
,

y(1)5
l (s)x(1)

l (s)2l (1)
~50!

and

e(2)5S x(2)

1

y(2)
D , x(2)5

l (2)2M22

M21
,

y(2)5
l (s)

l (s)2l (2)
. ~51!
2-8
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The last eigenvector corresponds to the pure quark eig
valuel5l8

(s) and reads

e(s)5S 0

0

1
D . ~52!

Denote by E85(e(1),e(2),e(s)) the matrix composed o
these eigenvectors. For the diagonalization we also nee
inverseE8

21:

E215
1

12x(1)x(2)S 1 2x(2) 0

2x(1) 1 0

b(1) b(2) 12x(1)x(2)
D , ~53!

where

b(1)5y(2)x(1)2y(1), b(2)5y(1)x(2)2y(2). ~54!

Then we can diagonalize the matrixM8

M85E8M̂8E8
21 , ~55!

where M̂85diag(l8
1 ,l8

2 ,l8
(s)). Consequently, Eq.~44! be-

comes diagonal if we transform toF̂8:

F85E8F̂8E8
21 . ~56!

Using the ansatzF̂8
i 5 Ncg

2(]/]v)ln ui(v) for the nonlinear
Riccati equation~43!, one finds second order linear differe
tial equations for theui . Their solutions are given by para
bolic cylinder functions. As a result we find for the comp
nents ofF̂8

F̂8
i 5Ncg

2
]

]v
ln ez2/4Dpi

~z!, ~57!

whereDp denotes the parabolic cylinder function with

pi5
l8

( i )

Nc
~ i 51,2,s! ~58!

and

z5
v

v0
, v05ANcg

2/8p2. ~59!

With this solution forF8 we return to the evolution equa
tion ~41! for F0 which is solved by the~matrix-valued! ex-
pression:
11401
n-

its

1

4p2v
F0512A12

g2

2~pv!2
M01

g2

4p~pv!3
G0F8.

~60!

We will need the right-most singularity in thev plane of the
matrix F0. Similar to the case ofg1, this singularity is due to
the vanishing of the square root in Eq.~60!, i.e. we need to
determine the zeros of the eigenvalues of the matrix un
the square root. The diagonalization of this matrix is done
exactly the same way as forM8: again, the matrix element
‘‘ sg’’ and ‘‘ sk’’ are zero, and the two largest eigenvalues a
the same as for the singlet functiong1. The diagonalization is
done through the matrixE0 which consists of the corre
sponding three eigenvectorse0

(1) , e0
(2) and e0

(s) @analogous
to Eqs.~50!–~52!#. As was discussed in@3#, the largest ei-
genvaluel (1) is not too far from the value obtained in th
pure gluonic case, neglecting the quark contribution. The
curate values have to be found from a numerical computa
of the parabolic cylinder functions. For the case ofnF54 we
found in @3# the rightmost singularityvs53.45v0 ~the pure
gluonic case would have given 3.66 instead of 3.45, or e
4 if one neglects the nonladder DL contribution!. With v0
from Eq. ~59! andas50.18 we find for the leading term in
Eq. ~46!

vs51.01. ~61!

Two other singularities correspond~for nF54) to z(2)

51.81 andzs51.39.
Having found the matrixF0, we return to Eq.~40! and

find the matrixR:

R5S Q2

m2D F0/8p22v

R̂~v! ~62!

where the matrix valued functionR̂(v) has to be determined
from the initial conditions of the evolution equation from th
energy dependence ofR at the pointy50, i.e. atQ25m2. At
this point the matrixR satisfies another evolution equatio
which has been discussed in detail in@2,21# @after Eq.
~3.14!#, and its solution has the form

R̂~v!5E0

1

v2F̂0/8p2
E0

21RB . ~63!

Retaining inF̂0 only the leading upper component we fin
for the behavior ofR near the square root branch point
v5vs

R~v,y!;
22eq

2
•x(2)

12x(1)x(2) S 1

x(1)

y(1)
D 2

vs
S Q2

m2D vs/2

~64!
2-9
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with x(1)50.29, x(2)50.43, y(1)520.052, andy(2)5
21.40. Without the nonladder contribution@i.e. putting (F8
50)# we would havex(1)50.28 andy(1)520.039.

Finally, to obtain the structure functiong2
s we have to

subtract the known functiong1
s @3# (g25g'2g1), and add

the positive signature part (2gL/2) given by the same pur
ladder DL evolution as in the nonsinglet case@4#:

g'5g11g2

5E dv

2p i S 1

xD v

j~v!S Q2

m2D F̂0/8p2

3E0

1

v2F̂0/8p2
E0

21RB2gL/2. ~65!

VII. CONCLUSIONS

In this paper we have studied the small-x behavior of the
singlet polarized structure functiong2, using the double
logarithmic approximation. Our analysis is based up
ladder-type Feynman diagrams, but in order to make
DLA study complete, we had to take into account also
bremsstrahlung of soft gluons. We have shown that, at sm
x, the leading contribution tog2

s(x,Q2) is given by the con-
volution of the nonsinglet spin dependent distribution@corre-
sponding to the quark density matrix (s'k)g5k̂# with the
singlet functiong1

s . As a novel feature,g2 contains pieces
with different signature, both for the nonsinglet and for t
singlet case. At smallx, we therefore have to decompose t
Feyman diagrams, in order to separate even and odd si
ture. The small-x asymptotic behavior of the structure fun
tion g2

s comes from the odd-signature part of the amplitu
and is driven by the asymptotics of the singlet spin dep
dent functiong1

s . At 1/x→` we have found

g2}S 1

xD vsS Q2

m2D g

, ~66!

where the anomalous dimensiong has the value
,

B
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g5vs/2 ~67!

and

vs.3.45AasNc/2p ~68!

~the latter result holds fornF54). In contrast to the unpolar
ized case, at smallx the gluons mix with the quarks. As in
the singlet polarized structure functiong1

s , the dominant
contribution comes from thet-channel two gluon states. Thi
is mainly due to the color charge of the gluon which is mu
larger than that of the quark. Numerically the value ofvs is
rather large:vs.1.01 foras50.18. This value ofvs is con-
siderably larger than the value of corresponding ‘‘interce
of the nonsinglet functiong2

n.s. . It is also larger than the eve
signature part2gL/2 of the singletg2

s , where vn.s.5v0

5A(2CFas)/p ~the ratio of the two valuesvs /v0 is about
2.6!. Therefore the asymptotic behavior of the spin dep
dent singlet structure functiong2

s(x,Q2) is almost com-
pletely driven by the DL behavior of the singletg1

s(x,Q2)
distribution.

From the formal point of view, the double logarithm
approximation~DL! that we have been using here~i.e., the
neglect of nonlogarithmic contributions! can be justified only
for the case of a very small QCD couplingas!1, in which
case alsovs is small. The experience from the LO and NL
Balitskiı̆-Fadin-Kuraev-Lipatov ~BFKL! calculations sup-
ports the belief that, whenever the leading approximat
turns out to be large, one has to expect also large NLO
rections. Thus one should be careful in using the DL res
for the singlet structure function for the numerical applic
tions. Nevertheless, our findings indicate that the singlet s
dependent structure functiong2

s grows steeply atx→0.
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