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logarithmic approximation

J. Bartels
Il.Institut f. Theoretische Physik, Universitelamburg, D-20355 Hamburg, Germany

M. G. Ryskin
Petersburg Nuclear Physics Institute, Gatchina, S.-Petersburg 188300, Russia
(Received 20 February 2002; published 20 June 2002

The smallx behavior of the singlet contributions to the polarized structure fungigr,Q?) is calculated
in the double-logarithmic approximation of perturbative QCD. The dominant contribution is due to the gluons
which, in contrast with the unpolarized case, mix with the fermions also in the sntidain. We find a
powerlike growth in ¥ in the odd-signature parts of the amplitude with the same power as in the singlet
function g;(x,Q?) atx<1.
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[. INTRODUCTION [13], and the asymptotic behavior gf(x,Q?) in the region
1—x<1 has been derived.
. o ) Next, in the region of smalk g, has to be decomposed
The investigation of the structure functios and g,  jnto pieces with different signatures. Whereas unpolarized

provides the basis for the theoretical description of polarizastrycture functions and the polarized structure functign
tion effects in deep inelastic lepton nucleon scattering. Théyave a definite signatur@.g.,g; is the energy discontinuity
Q? evolution of the spin dependent functiayy is well  of an odd-signature scattering amplitiidg, contains both
known: atx~0(1) one can use theriginal Altarelli-Parisi  even and odd signatufé7,18, and an important part of the
equations[1], whereas in the region of very smatlthe smallx analysis ofg, is the separation of the two signature
double logarithmic approximatiof2,3] has to be used and structures. Because of the different contents of signagire,
predicts a stronger growth in Xi/than the Altarelli-Parisi and g are expected to have a different behavior neai0
equations. The situation with the other polarized structurdi-€- different powers of ¥ see, for examplg17,19).

function g, is more complicated. Compared t, several _Fmalllyz in tﬁ‘i reglor;] of hsmallx anotger_ nev¥ feature
new features appedd]. arises. It is well known that the strong ordering of transverse

. . 2 2
First, there exists a twist-3 contributiongg, g&¥, which ~ Momenta is violated2,19-21. Instead ofk >k, one

2 > . . 2 i LY.
is not suppressed even for lar@e [5]. Part of the function haSki’t>§X' /?('*1) Ki—q, (With X'<)2('*1)r; Asa result,. double
g, may be obtained from the known structure functionIog contributions of the formdIn“1/x)" appear which can-
2 2y with the helo of th d “Wilezek relati not be summed up in the framework of the conventional
91(x,Q%) with the help of the Wandzura-Wilczek relation log Q? evolution. This feature holds for boty andg,, and
[6], and from another integral relatidid] which relates the 2

. . . for g, it has been discussed in detail [i2,3]. In particular,
2102 1
twist-3 piece ofg; to the (m”/Q” suppressedwist-3 correc- the infrared evolution equatiohREE) [19] has been used to

tions tog,. However these relations are not enough to restorg ;m up all the leading perturbative QCIPQCD double
the whole spin dependent functiagn(x,Q?). This can be logarithms(DL) of the form a"In*1/x IN"Q? with m=<n and
seen from the explicit one loop calculationgy‘(x,Qz) ona  k+m=2n-1. In[4] similar tsechniques have been used to
quark targef8,9]" and also from the smai-behavior of the  pyestigate the smalt- behavior of the polarized structure
nonsinglet component af,(x,Q?), calculated in the double fynction g,: so far only the nonsinglet case has been ana-
logarithmic approximatiofDLA) in [4]. lyzed. In this paper we present the study of the singlet part of
Another distinct feature and difference from the standardy, and we find its asymptotic behaviorxt-0. In analogy
leading-twist evolution equations is the fact that the numbeith our study of the nonsinglet part of, we consider the
of operators which contribute to the twist-3 component ofscattering amplitude of a virtual photon and a quark. We will
92(x,Q?), g5, is not fixed but increases with the moment not (yet) address the question of how our calculations can be
indexn (see, e.g[11,17)). Nevertheless, in the two limitsi,) used for the polarized structure functigp of the proton, i.e.
n—o [wheren denote thex) moments and (i) number of  how to set up the initial conditions coming from the confine-
colorsN.— o, it has been shown that the quark-gluon operadment region.
tors decouple from the quark operator evolution equation

2See alsd14] for a recent study of the twist-3>) evolution in
the N.—oo limit, [15] for the QCD evolution of twist three opera-
The one loop functiory,(x,Q?) on the gluon target was calcu- tors beyond the larghl, limit, and[16] for a possibility to study the
lated in[10]. scale dependence gi(x,Q?) beyond theN,— o limit.
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state tog, is suppressed by an extra power 0®%1/ needed

to compensate the dimension of the transverse monkgpta

k,: (of the gluong which saturate the antisymmetric tensor
e#v*B and reflecting the orbital momentum in the three
gluon state. For these reasons, contributions from diagrams
with more than two gluons will not be considered in this
paper.

The outline of the paper is as follows. In Sec. Il we con-
sider the kinematics of the process and outline our strategy.
In Sec. Il we calculate the DL smaX-contribution of the
simplest singlet diagrams shown in Fig. 1. It turns out that
the DL asymptotics of Fig. 1 is proportional to the singlet
structure functiorg,(x,Q?). Based on this general property

a b we consider in Secs. Il and IV the smallbehavior of the
i ) _ spin dependent functiog,(x,Q?). Sections V and VI con-

FIG. 1. The lowest order Feynman diagrams which contain g5, the evolution equations and their solutions. In a conclud-

gluont-channel state. ing section we present a brief summary.

In [4] we have shown that, for the even signature part of
the nonsinglety,, the only double logarithmic contributions
come from the ladder-type Feynman diagrams withannel Let us begin with a brief summary of previous results and
intermediate states consisting of two quarks only. For thevith an outline of our future strategy. The spin dependent
odd-signature part of the amplitude one has to consider alspart of the hadronic tensdwﬁv of the deep inelastic scat-
nonladder graphs where an additional “sofithannel gluon  tering (DIS) lepton-quark scattering amplitude has the form
“embraces” a part of the ladder diagram, in which the trans-
verse momenta of all partorigluons and quarksare larger
than the transverse momentum of this “embracing” soft Tﬁv=
gluon. The DL contribution of such a graph can be summed
up by the IREE, using the method proposed 18]. In [4] (sq) )
we have analyzed all one and two loop diagrams, contribut- +Qa(sﬁ_@pﬁ)T2(XvQ )
ing to the nonsinglet component g, and we extracted the
double logarithms. In the singlet part @f, whose analysis is
the goal of the present paper, there are only two new 2_|005vhereM P ands, denote the mass, the four mpmentum
diagrams, shown in Fig. 1. Figurdal has the same ladder and the spin(pseudgvector of the target, respectively. As

structure but with the two-gluotichannel intermediate state usual, (sp)zo and 32.: —1,and the spn"n-d.e'pendent struc-
while the crossed box diagram of Fig(bl, as usual, loses ture functions are defined as the discontinuitie3 p&ndT,:
the logarithm. The analysis of these graphs, together with the
results of[4], will enable us to find the smaX-behavior of
the singletg, structure function.

A comment is in order about the contributionteéhannel
states with more than two gluons. For unpolarized structurerhroughout this paper we work in the Feynman gauge and

functions at very smalk, diagrams with any number of yse the Sudakov representation of the momenta of quarks
t-channel gluons contribute to the smallbehavior of the and gluons:

scattering amplitude~1/x (modulo powers of InX). For

the polarized casghothg,; andg,) the antisymmetric tensor ki=—a;q’ + Bip+ki. 3
structure(see below requires, for the two gluon state, the
polarization of the-channel gluons to be different from each
other; as a result, the amplitude behaves-a¢’ (modulo andq’ are the two lightlike reference vectors. The Jacobian
powers of In 1X). Consequently, even at smaill quark and can be written as

gluon t-channel states mix, quite in contrast to the unpolar-

ized case. However, also in the polarized case, there exist S

t-channel states of gluons which lead to a smakiehavior d%k; == da;d 3, d%K,; (4)
~1/x. The simplest on¢22] consists of three gluons, has 2

positive C parity, and is dual to the odderon solution dis-

cussed in[23]. This three gluon contribution, however, is Here S=2q’'p denotes the center of mass energy, and we
beyond the DL approximation used in this paper. First, theassume that the quark target mass is smafl<Q?= —q>.
coupling of this state to the virtual photon is suppressed by &0 one may neglect the value of this madseverywhere,

few extra powers ofxs which are not accompanied by the except for the mass term in the target density matrix. This
maximal number of logarithms. Next, the contribution of this mass term is needed in order to obtain a nonzero spin trace

II. KINEMATICS AND DEFINITIONS

jghraf

9aSpT1(%,Q%)

(pa)

: ()

1
010=— %Im Tio. (2

The photon four momentum is written gs=q’ —xp, andp

114012-2



SMALL-x BEHAVIOR OF THE SINGLET POLARIZED ... PHYSICAL REVIEW D 65 114012

________ “k branch.” The latter continues withK” structures only,
- until at the upper end of the diagram it ends with the cou-
o ] pling to the photon. There is no return from & branch” to
TEEEY an “s branch.” Moreover, the k branch” contains only odd
signature, and its evolution is the same aginwhereas the
. “s branch” contains both even and odd signature and has
s I slightly modified evolution equations. Nonladder structures
& cancel for even signature branches, whereas for odd signa-
k ture they lead to an additional term in the evolution equation.
: What is new in the present singlet case is the two-gluon
intermediate state. We first note that this intermediate state
must have the same antisymmetric structuvéh respect to
the gluon polarizationg.’ andv’) as thes polarization ten-
sor. Thus we cannot assign to both gluons the same longitu-

i
B .. dinal polarizations which would lead to the smalbehavior
v : ~1/x. The best one can do for retaining the largest power of
1/x is to assign the longitudinal polarizatiorel(,ocql;,) to
p : one of the two gluons and the transverse polarizatien (

=e, ;) to the other gluon. Therefore, as mentioned before, in
contrast to the unpolarized structure functidg(x,Q?)

FIG. 2. A generic Feynman diagram for the scattering of a Vir'~1/x, the prediction for the smak-behavior of the polar-
tual photon on a quark target. ized distributions goes as

proportional to the first power dfl [see Eq.(1)].2 Finally, g1 A%, Q2)~ constk F(adn Q2In 1/x,adn?1/x),  (8)
we recall from[4] that, in order to obtain in Eq1) a non- '
zero contribution ta,, we need a transverse polarization of where the functior denotes the leadin@L) corrections to
the target §,=s,,): longitudinal polarization of the target the asymptotics of the Born singlet spin dependent structure
s#=pl’L/m contributes to the structure functiog, only, function:glyz(x,Q2)~const asx—0. Speaking in terms of
while the transverses(,=s;,) polarization gives the sum the complex angular momenturp plane, both the two
g,=9:+0s. t-channel quark and two gluon exchange lead to the right-

Let us briefly recapitulate our previous analysis of themost singularity aj = w =0, and even at very smatlfor the
polarized structure function. Consider a generic ladder diasinglet spin dependent structure functions we have to ac-
gram(Fig. 2) and begin at the bottom. Since the spin depencount for the transitions between the quark and gluciman-
dent part of the hadronic tensw/,,, is antisymmetriqpro-  nel states. Continuing with the spin structure of ttehannel
portional to thee tensoj, in the target density matrix we two gluon state we have to recall that the longitudinal gluon
have to start from theyss part: polarizatione,,, is contained in the terrq/’i,pl’t,,/(q’p’) in

the spin part of the gluon propagator

1. -
_(p+m)(1_755)' (5) ror roor
2 _ erunH-"_q,u/pMH
. . o . = Q= QT
When calculating the trace, thig; matrix gives the antisym- (p'q")
metric tensoe#"“#. As we have said before, for the present ) L, ] ]
analysis we chose transverse polarization of the target quarkhere the vectog ,, (p,.) is contracted with the spin struc-
Moving upwards inside the ladder diagrams, we encounture at the lower(uppe) end of thet-channel gluon. The
ter t-channel intermediate states which consist of a quarktransverse polarization is contained g'g o - AL first sight
antiquark pair of two gluons. For the quarichannel state, there are two antisymmetric spin structures with one longi-
we have found inf4] two different polarization structures tudinal gluon:
which we will denote by’'s’ and 'k’:

d, = =g, 9

. @ e**Psip; (10
's'=ysS;, (6)
A and
"k’ =(2sKk)- ysk, (7)
(b)  s,p,—p,s, .
wherek , is thet-channel quark momentum. At the target we
begin with the ‘s” structure, but at any gluon rung above we However, the last structure has unnatural parisy, (s a
have both possibilities: either to continue wite™or start a  pseudovectgrand never contributes to our amplitude Eq.
(1). So it is enough to consider the first structure, Ed),
only. Since this structure is the same as in the cagg ofve
3Hence we may pup®=p’'2=0. can make use of the results [&].
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It will be the central task of this paper to compute the [ll. SINGLET TWO-LOOP DIAGRAM
evolution kernels of the differentchannel states and the
transitions from one to another. Altogether, we have three
different states: the two spin structures of quark-antiquar
states, Eq96) and(7), and the two gluon state. As usual, the
DL contribution comes from the kinematical region of

We start with the amplitude Fig.(d and use the trans-
erse vectoss;, The spin dependent lower part of Figal
akes the form

1 “ “ A a
B, , =— =Ty, (p+m)ysSy, (p—k+m
1585 8,5 - >x o =" 5Ty (P M) ¥5Sy, (P )]

and = —2jen v Pslky, (14)

R <<k <. (1)  where in order to obtain the leadirign 1/x) contribution we
have to keep the longitudinal component of the gluon mo-
The contour of they; loop integration will be closed around mentumkﬁ:,Bp,g.
the pole of the propagator of theth s-channel(horizontal Next, to simplify the calculation of the trace of the upper
line) particle. Thus all thes-channel particles lie on mass quark loop we make use of gauge invariance. The amplitude
shell, and the-channel propagators can be approximated by« \yhich corresponds to the upper block and includes

14

2 2 2 ; i
1ki=/ki;, asa;Bis<ki; . So thei-th loop integral takes the 5tk the box[Fig. 1a)] and crossed bofFig. 1(b)] dia-

form grams, satisfies the properties
2 14
cs dp; dkq X numerator. (12) Ul 8, =0 (15)
2w B ki
and
The logarithmicg; integration is written explicitly, while, in
order to obtain the second logarithifinom the integral over Uﬁy"ku":Uﬁgw(kﬁﬁp’— aq’) »=0. (16)

dk3), we need to select the term proportionalkip in the

numerator, coming from the spin part of the diagram. AsBased on the gluon gauge invariand®) one may replace
discussed before, the gluergﬂluon case we ;take frof8];  the momentump’, in the longitudinal gluon polarization
the evolution of_thes_branch and_1_< branch” quark struc-  \actor [i.e. the spin part of the gluon propagatt®] by
tures were obtained if4], the transition from % branch” to —Keu/B; the contribution of the term- aq;,, does not con-

o« 1 1 doutle ogartm an ay b rlected witin th
) 9 kinematical domair(11). We contract the tensor in E¢L4)

e e e S i th gluon mersio) nd ke use of 1 relce-
P ment. The polarization of théchannel gluons is then de-

sition, we have for the numerator in E4.2) scribed by the tensor structure

gg kg s 4 -1 7 ~ ~
e ”ktV"_kt "eVU
gk kk skl=[2 1 o0]. (13) TM,,V”oc%
gs ks s ? -1 1
C(ksh)

Here the labelsd, k, s) refer to the spin structures of the - Tsu”v”
gluon, the ‘k” structure of the quark and thes” structure of
the quark, respectively Thex22 block matrix in the upper _ (ks") .
left corner coincides witlg; and has been taken frof]; _(p/q/)ﬁsﬂ"”/’“ﬁp“qﬁ’

the 2x2 block matrix in the lower left corner, on the other
hand, is the same as in the nonsingjgtcase and has been \yheres* is the two dimensional antisymmetric tensor, and
derived in[4]. What still needs to be computed are the matrix
elements denoted by “?”: in the two following sections we
will show that both elements vanish.

The color factorsC are the same as in the unpolarized

the polarization vector has the forﬁrh,,zst,,asﬁ. In this
way the expressiofiLl4) can be rewritten as

scattering: for the gluor-gluon it is equal toCa=N. (N, B, ,=2i BV ®p’ st = 2] (ks") ghV" B! gt
=3 is the number of colojs for the quark— gluon and wr “ETT (p'g") P
quark— quark splitting we hav€g=(NZ—1)/2N,,, and for a7

the gluon— quark transition the color factor isT2 =ng (ng _ _ _
is the number of light quark flavorsCombining these color ~Since the transverse spin vectg), corresponds to the spin-
factors with the elements of the numerators matrix inflip amplitude from the photon side we choose one transverse

Eqg. (13), we have all ingredients to the infrared evolution and one longitudinal photon polarization vectéy,= Et and
equations. E,=El=(1//Q%(q' +xp’). With the help of the photon
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gauge invarianc¢lb) the last vector can be replaced Eﬂ'[
=2xp’/\/Q?. Thus, finally, in the case of Fig.(d) we have
to calculate the trace

a:2|(kSL) ,u,”l/"aﬁp/qﬁ
(p'a’)
X[y TEl@+DE Ty (T-k)]. (18)
Using the identity
YVRYM: _is;LV)\O'k)\ Ys5Yeo
+ (the term symmetric undep=v) (19)
we obtain
4(kst
Trﬁeﬁ{(p (I=k)N T ysq TEl(q+T)ET]
—@ (I-k)Tysp TEl@@+DET. (20

Putting in Eq.(20) El=2xp’/\/Q?, it is easy to see that the

largest(and the only DL contribution (whereq’ is multi-
plied by the momenturk, andp’ by momenturi’; note that

PHYSICAL REVIEW D 65 114012

The last term has unnatural parity and may be neglected,

while the vectorcs= 2 TI[TE* (q+1) ys]. Using this fact and
the identity(19) we get

Trb=ﬁ{Tr[p TELG+1)]

( ’ r)
X T Q' (+1— KBl —k)1-Tq TE (g+1)]
XTilysp’ (q+T -k El(T -k}, (25

The second trace in the first term on the right-hand side
(RHS) of Eq. (25) vanishes as it contains only one transverse
vector (—Kk);, while the last term in E¢(25) is zero since in
the second tracEULoc P,Q- Therefore we neglect the crossed
box contribution(after the trick based on the gauge invari-
ance was appliedand the whole DL result, given by the
ladder-type Fig. 1 diagrams, reads

Gl Rl el s

(heree, is the electric charge of the quarkn Eq. (26), the
limits of integration follow from Eq(11) and the discussion

9l (x)= (26)

a>ay and B> B)) comes from the second term and readsafter Eq.(11).

4(ks")
Tri~ ——(q'k)(2p' ) TH y<ElqE*17.

(p'a")
As the s-channel quark with momentunk{1) is on mass
shell, the productq’k)(2p'l)/(q'p’)= —Bka|s:(k—l)t2.
So after the azimuthal angular integration we get

(21)

4(ks") (k=17 =2k17s;,
that is

:2kf|fTr[y5éié"a§i]:>iswﬁqasg(zakﬂf),( )
22

where the first factor is exactly the structure we are looking

for in the hadronic tensofl), and the last factor I§I? is
needed to keep the leading logarithms in the¢ and dI?
integrations, as was discussed at the end of Sec. Il.

Finally, let us consider the trace corresponding to th

crossed box diagram of Fig(l):

(23

The product of the three-matrices[1E*(q+1)] may be
decomposed as

TEL(q+T)=csystds¥s7ys. (24)

We have to note that, within the DL approximation, the
result (26) for g, =g;+g, coincides with the lowest order
singlet functiong$ . In other words, to this order of accuracy
we obtain the singleg3(x) =0. This is the consequence of
the fact that in the lower part of the Fig. 1 graph the Born
structure functiong3=0. For the one loop approximation
(orderay) it is known[8] that at smallx the one loop result
is given by

2
e Cra
2y a~F
92(x, Q)= —5— xlnmzx,

i.e. is much smaller than

01(x,Q%)~ b <

2 mx

So it is only at the two loop levelor above that the nons-

8@nglet structure functiongy> becomes comparable to the

value ofg]® atx<1. Thus one expects a nonzero DL con-
tribution to the smalk behavior of the singleg, component

at earliest at two loops. Our resuift6), however, shows that
at the two loop level it still vanishes. We therefore have to
turn to three or more loops. On the other hand, we know
already from the argument given in Sec. Il that in the DL
approximation the gluon contributions both ¢o =g;+49,
and tog; are driven by the same spin structi®). There-
fore we may expect that the distributiog$ andg3 will have

the same asymptotic smadlbehavior. In the following sec-
tion we will show that this is indeed the case.
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IV. HIGHER ORDER CONTRIBUTIONS

We now turn to higher order corrections to Figsa)land

1(b). As a generic diagram, we consider Fig. 2. Beginning

PHYSICAL REVIEW D65 114012

As a result, in DL we have no transition from the™struc-
ture to gluon states: in the lower left elemegs vanishes.
In summary, the DL singlet contributions start from the

with the quark target at the bottom, we first have the samé’sK’ quark structure, and the gluon evolution is the same as

evolution as in the nonsinglet case. After the fgsthannel

gluon the initial quark density matrid(p+m)(1— yss)
gives

(27)

N| =

; Ya(P+M)(— ¥58) ya=MysS,

in g3 . It therefore may be written as the convolution of the
nonsinglet structure functiogy, with the singlet functiorg? .
Note that we have to use not the whole DL nonsinglet func-
tion g5, but only its partgg which corresponds to the
structurey;,R’. This part can be easily extracted from Ref.
[4], while the DL singlet functiorg$ needed in the convolu-
tion can be taken frorh3].

where we omit the terms which do not depend on the quark This value ofws is considerably larger than the value of

spin vectors, . In this way we obtain the structuress.

corresponding “intercept” of the nonsinglet functia}*,

At the next step this spin structure, together with thewherew,s=wo=(2Cras)/m (the ratio of the two values

t-channel quark propagatokd, produces the second stru
ture (2K) - ysk:

C_

K" yssk”=(K'§ yss— (25K') - ysK". (28)

Consequently, starting from twechannel gluons, the quark
density matrix in the uppeik() cell of the block contains the

two structuresyss and (k') ysk’. So our diagram splits

into two branches, and we have to follow each branch sepa; o gluon state communicates only with th&™

wslwg is about 2.6. Therefore the asymptotic behavior of
the spin dependent singlet structure functigix,Q?) is al-
most completely driven by the DL behavior of the singlet
g5(x,Q?) distribution.

Let us return to the signature question. As we have men-
tioned in Sec. Il, the analysis of the nonsinglet cagglirhas
shown that the 8" branch of the quark state contains con-
tributions to both signatures, whereas thk’ branch has
negative signature only. Since in our DL approximation the
branch, it

rately. The latter oneysk’, is equivalent to the density ma- connects to negative signature only. The only place where

trix of a longitudinally polarized quark with the momentum
kl’L. So this spin dependent part of the heavy photon-gkark

even signature can appear is thg' Structure of the quark
state which is the same as in the nonsinglet funcgri .

amplitude is described by the photon-quark structure func- The negative signature in the glubghannel state can be

tion g1(v*q)
i guveB
(k'q)

with ImTj=—2mg,(y*q) and x’=Q?%2(k’q). The inte-
gration over the azimuthal direction of the vectéf
(fd(p(ZSJ‘kJ‘)kl;=kt28t) replaces the tensar**“#q kj by
s”mﬂanE and gives the factokt’2 needed to save the DL
structure of thenlk{2 integral. As a result, the branch @
which originates from the K” quark structure, 2¢-k’) ysk’,
is proportional tog; . So we can make use of our resyis§
for g3 : we know the transitions from the gludgrchannel to
the quarkt-channel(and vice versg and we also know the
latter never contains thes” spin structure. In other words,
we have shown that in Eq13) the upper right elemensg,
vanishes.

Following the other branch, which starts from the

structure,y5§, at the upper end of the lower block, we note

Ty )= Ga-kp T1(X",Q?) (29

that it does not lead to any double logarithm at all. To show
this we again make use of the gauge invariance, that is th

condition analogous to E@16) but with respect to the lower
block: B, k, =0. Based on this condition we replace the
vectorq’ by —ki,//ay. After this, the polarization of the
only t-channel gluon state which may give the DL's is de-
scribed by the pure transverse ten§gr,,/ocat,v, -(ksh)/ a.

On the other hand, th@@& quark structure produces the
tensorB,, ., = —4i""" *Ps, (k' ~K) ; orthogonal toe,, . .

seen rather directly. Indeed, as it was discussedijnone
obtains the negative signature term keeping the ph@bon
gluon momentum in the trace over the quark loop. In the
quark—gluon transition the trace reads
TH9=Tr[ ysk' 7, (k' =K) /], (30

where the gluon momentukgives the only nonzero contri-
bution. The same can be seen in the gluon to quark transi-
tion. Recall our two loop calculation of Sec.lll. Here the
leading DL contributions come from the second term on the
right-hand sidgRHS) of Eq. (20). In this term we have to
keep the productq’k), which includes the gluon momentum
k and the photon momentumin the trace[see Eq(21)] in
order to obtain the double logarithms.

Let us finally comment on a point which, at first sight,
might look dangerous. Namely, starting from the spin struc-
ture

(sk)

M
(pk) (pk)

f the lower nonsinglet part of Fig. 2, where the gluon mo-
mentumk,, plays the role of the photon momentugin Eq.
(2), it looks as if one might get a much larger smalbehav-
ior, g,~1/x, than obtained in the previous discussions. In
comparison with Eq.(14) this term 2g'k) -is’”“ﬁkapﬁ

= ktz- ighvabPs . pg is enhanced by the factordy as the lon-
gitudinal component of gluon momentuky= B,p. . How-
ever an extra factor Bj destroys the logarithmic structure of

ie"*PK,pg (31
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the dB, /By integral. Even more, we will show that such a

contribution vanishes. Indeed, the integration in Fig. 2 over

the rapidity of the upper horizontal quark line of the lower

block dBy /By may be written in terms of thex’

=k2/2(pk)zkt2/2(pk) variable. This last quark with mo-

mentum k' —Kk) is on mass shell. So, keeping the transverselﬁi2 = uziz
momentak; andk; fixed, we have o I

[k —K[f |k —k[?
Pr= oS  2p'k

and thereforad By, / By, =dx'/x".
On the other hand, we invoke the argument which leads to
the Burkhardt-Cottingham sum ruj@4|

FIG. 3. Structure of the infrared evolution equati¢HREE).

whereR(w,Yy) is a three-component vector, defined in anal-

1 S ogy with Eq. (34), and w=| denotes angular momentum.
JO dx'gy(x',Q%)=0. (32)  The signature factog(w)= has the form
; . : : e '™-1 —irw
This sum rule can be derived from an unsubtracted disperi- = ~ ’ (36)
son relation for the photon-proton forward scattering ampli- 2 2

tude. For the very special helicity structure which contributes
to g5, this amplitude leads to a cross section which falls with@"

energy faster than &/ therefore, the integrafds’g,(s’) is 2

finite, and from the largs-behavior of the dispersion rela- y=|n<Q_>_ (37)

tion one finds Eq(32). The same large-g/condition applies w2

to our starting functiong)® (shown in[4]), therefore we

conclude that The structure functioy? is obtained from the discontinuity
(2), and we have to take into account both DL contributions

dx’ o kf S andi« terms. Before we can write down the IREE, we have
j —02(x" K )(p_k):J dx'g(x",k%)=0. (33  to introduce further auxiliary quantities: scattering ampli-
X tudesF;; (with i,j=g,0,qs) which describe the scattering

Thus the term which looked so dangerous, in fact, does nd?f quark or gluon with spin structuiieon a target with struc-
contribute to double logarithmic structure functign turej (loosely speaking, these scattering amplitudes are ob-
tained if, in Fig. 2, we remove the coupling to the photon at

the upper end We write them as Mellin transforms, i.e. the
Fi; are partial waves and depend upon angular momentum

With results of the previous sections we now turn to thew. By Fy we denote the 33 matrix composed of th&;;
infrared evolution equationdREE). We are interested in the (the subscript refers to the color singlet quantum number
scattering of a virtual photon on a transversely polarized

V. INFRARED EVOLUTION EQUATIONS

quark target.T>=T,+T,, and we will concentrate on the Fog Frg Fsg

odd signature part. In order to formulate our coupled evolu- Fo=| Fok Fik Fsk (38
tion equations, we first have to generalize to different target E E E

structures. As outlined in Sec. Il, inside our diagrams we gs Tks Tss

have to consider two different spin structures in the quar
t-channel stat€6),(7), labeled agjs andq,, and the gluon
spin structurg(10). Correspondingly we introduce the three
component vector:

Kit is the exact analogue B, in [3] and tof{ ) in [2]).

We now turn to the evolution equations. The IREHs-
trated in Fig. 3 describes the variation of the amplitude with
respect to the infrared cutoff?:

-
T ng)> (34) 2 R + i R (39
= k . - M —2: w W .

T(yds) o

For our scattering of a virtual photon on transversel olar_This differential operator stands on the the left-hand side of
: 9 . 1 P : Y POlalhe |REE forT, which is illustrated in Fig. 3. The right-hand
ized quark target we will be interested in thg component.

We write T as a Mellin transform: side of the IREE is derived from the observation that the
: dependence upon the cutgéf resides in the intermediate
e do [ S\° state_with lowest virtualit;(l_:ig. 3): the u derivatives of the
T= _(_) Ew)R(w,Y), (35) amplitudes are equal t® times quark or gluon scattering
—iw2mi | 42 amplitudesF;; with the external legs having transverse mo-
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menta close tqu. In terms of the matrix-,, the evolution 2C,  —Tg 0
equation for the vectoR becomes
q Mg=| Ca —1/2N. 0 . (45
P 1 0 /2N, —1/2N¢
w+ v R= —2FOR. (40
Y 8m VI. SOLUTION OF THE EVOLUTION EQUATION
The matrixF, satisfies a nonlinear evolution equaticfig. The solution forg$ , that is our vectofT [Eq. (34) and
3): (35)], is obtained by solving Eq$44) for Fg, then Eq.(41)
for Fy and Eq.(40) for R (the latter makes use of the Born
92 g2 approximationRg, as an initial condition foR), and finally
Fo(w)=—Mo— ——GoFg(w)+ —; Fo(w)?2. insertingRinto Eq.(35). The final answer for the three com-
@ 27w 87w ponent vectofT will have the form
(41)
2
. . . de (1@ Q2 Fo/8m
Here the matrixM, contains the evolution kernel&l3) T= J il fw)| — ————Rg, (49
which we have computed in the previous section or collected X M w—Fo/8m
from earlier studies:
where
4CA - 2T|: O 0
0 —Cg C 2
F F 2e;

As we have discussed before, for the gluon stafper left  Let us go through these steps in somewhat more detail.
corne) the infrared evolution is described by the same split- We begin with the equation fdfg. We first diagonalize
ting function as the singlet structure functigh. For the two  the Born term, i.e. the matrillg. Thanks to the vanishing of
quark system in the lower right two by two block matrix we the off-diagonal elementsMg)sq=(Mg)s=0 the two(larg-
can use the results ¢#]. The remaining matrix elements esb eigenvalues\= coincide with the analogue eigenvalues
describe transitions from quark to gluon states, they ar¢or the DL evolution of the singlet functiog;. They are
taken from the previous section. The second term on thgiven by

RHS of Eq.(41) belongs to the gluon bremsstrahlung dia-

. The matrixG, has the f L, 2CA—1U2N 1
grams e matriXsg has the rtorm )\3(37): A2 iz\/(ZCA"' 1/2N)2—4CAT;: (48)
Ca 0 O .
an
1
0 0 G A= — . (49

2N,
In analogy to the matri¥, which carries color zero in the (+) a(o) © .
channel we define the matrig of color octet amplitudes. Lete™’.e'”’ ande™ denote the eigenvectors Mag:
Due to the antisymmetric color structure the elementB pf

are even signature amplitudes. They satisfy evolution equa- 1 NE Y
tions [19] similar to Eq.(41): e=| x| xn="0 T
y(H) M1z
2 Cp d 1
F8=%M8+§W—2:}d—wF8(m)+%F8(w)2, (44) . N Ox(+) .
NN (50
The color factorC, in front of the second term on the RHS
is the analogue of the matri®, in Eq. (41). The difference and
betweenC, in Eq. (44) andG, in Eqg. (41) is due to the fact )
that for the positive signature amplitudigy the sum of the X NG Y
two bremsstrahlung diagrams is independent of the type of e=(1 , x(= z
the incoming partons, and the matrix of color fact@g y) M21
become<L, times the unit matrix. Finally, the matrid g is
the analogue of the matrid  in Eq. (41), but for color octet NG
quantum numbers in thiechannel instead of color singlet. It y )=, (51)
reads AE ()

114012-8
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The last eigenvector corresponds to the pure quark eigen- 1

valuer=\$ and reads

0
e®=(0]. (52)
1

Denote by Eg=(e("),e(7) el®) the matrix composed of
these eigenvectors. For the diagonalization we also need i

inverseEg :
1 —xO 0

1
— X(+) 1 0 (53)

El=————
+ — 1
R N NS TN G N

where

b =y(OIx(D_y() ) =y(Iy() _y() . (54)

Then we can diagonalize the matiikg

Mg=EgMgEg*, (55)

where Mg=diag(\ 4 ,\g ,\YY). Consequently, Eq(44) be-
comes diagonal if we transform oy

Fg=EgFgEs®. (56)
Using the ansatg L=
nents ofF g

~ Jd >
Fg=Ncg?——Ine”" D, (2), (57)

whereD, denotes the parabolic cylinder function with

N
Di:N—C (i=+,—,s) (58
and
zzwﬂ, wo= VN g%/87°. (59
0

With this solution forFg we return to the evolution equa-

tion (41) for F, which is solved by thématrix-valued ex-
pression:

N.9%(d/ dw)In U (w) for the nonlinear

Riccati equatior(43), one finds second order linear differen-
tial equations for thau'. Their solutions are given by para-
bolic cylinder functions. As a result we find for the compo-

PHYSICAL REVIEW D 65 114012

Fo=1— \/1— g’ Mo+ g’ GoF
4720 ° 2(mw)? 0 Am(mw)d o
(60)

We will need the right-most singularity in the plane of the
matrix Fy. Similar to the case dj,, this singularity is due to
the vanishing of the square root in E§0), i.e. we need to
determine the zeros of the eigenvalues of the matrix under
the square root. The diagonalization of this matrix is done in
@actly the same way as fdfg: again, the matrix elements
“sg’and “ sk’ are zero, and the two largest eigenvalues are
the same as for the singlet functigp. The diagonalization is
done through the matridE, which consists of the corre-
sponding three eigenvectoe§”’, ef ) ande® [analogous

to Egs.(50)—(52)]. As was discussed if3], the largest ei-
genvaluer(™) is not too far from the value obtained in the
pure gluonic case, neglecting the quark contribution. The ac-
curate values have to be found from a numerical computation
of the parabolic cylinder functions. For the casenpt=4 we
found in[3] the rightmost singularityns= 3.450 (the pure
gluonic case would have given 3.66 instead of 3.45, or even
4 if one neglects the nonladder DL contributiolVith wq
from Eq. (59) and as=0.18 we find for the leading term in
Eq. (46)

ws=1.01. (61)

Two other singularities correspon@for ng=4) to z(7)
=1.81 andz®*=1.39.

Having found the matriX-,, we return to Eq(40) and
find the matrixR:

R= R(w) (62

( Qz) F0/87727 %)

where the matrix valued functid?a(w) has to be determined
from the initial conditions of the evolution equation from the
energy dependence Bfat the pointy=0, i.e. atQ?= u?. At
this point the matrixR satisfies another evolution equation
which has been discussed in detail [ig,21] [after Eq.
(3.14)], and its solution has the form

R(w)=E, Rg. (63)

—E; !
(l)_FO/8772 0

Retaining inIAZO only the leading upper component we find
for the behavior ofR near the square root branch point at
W= wg

1
—2e2.x(7) 2 Q2|
Rlwy)~—-= | X7 || (64)

TRV W) y) @l
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with x(*)=0.29, x(7)=0.43, y(")=-0.052, andy()= Y= w42 (67)
—1.40. Without the nonladder contributi¢ne. putting Fg
=0)] we would havex(*)=0.28 andy(™) = —0.039. and
Finally, to obtain the structure functiog; we have to
subtract the known functiog$ [3] (g>=9, —9g;), and add 0= 3.45(aNT2n 69)

the positive signature part{g-/2) given by the same pure

ladder DL evolution as in the nonsinglet cdge:
g deg (the latter result holds fang=4). In contrast to the unpolar-

ized case, at smak the gluons mix with the quarks. As in

9.=01%0 the singlet polarized structure functiay;, the dominant
® 2\ Fo/8m? contribution comes from thechannel two gluon states. This
— f d_“’(}) & w) Q_ is mainly due to the color charge of the gluon which is much
2mi | x wu? larger than that of the quark. Numerically the valuewqfis

rather largew¢=1.01 for «g=0.18. This value ofvg is con-
siderably larger than the value of corresponding “intercept”
of the nonsinglet functiog’* . It is also larger than the even
signature part—g/2 of the singletg3, where w, s =wq
=(2Crag)/ 7 (the ratio of the two values/wq is about
2.6). Therefore the asymptotic behavior of the spin depen-
In this paper we have studied the smalbehavior of the dent singlet structure functiog3(x,Q?) is almost com-
singlet polarized structure functiog,, using the double pletely driven by the DL behavior of the singlgf(x,Q?)
logarithmic approximation. Our analysis is based upondistribution.
ladder-type Feynman diagrams, but in order to make our From the formal point of view, the double logarithmic
DLA study complete, we had to take into account also theapproximation(DL) that we have been using hefiee., the
bremsstrahlung of soft gluons. We have shown that, at smalieglect of nonlogarithmic contributionsan be justified only
x, the leading contribution tg3(x,Q?) is given by the con- for the case of a very small QCD coupling<1, in which
volution of the nonsinglet spin dependent distributioarre-  case alsav, is small. The experience from the LO and NLO
sponding to the quark density matris'(k) 75R] with the  Balitskii-Fadin-Kuraev-Lipatov (BFKL) calculations sup-
singlet functiong. As a novel featureg, contains pieces Ports the belief that, whenever the leading approximation
with different signature, both for the nonsinglet and for theturns out to be large, one has to expect also large NLO cor-
Singlet case. At Smau’ we therefore have to decompose therections. Thus one should be careful in Using the DL results
Feyman diagrams] in Order to Separate even and Odd Sign&r the Singlet structure funCtion for the numerical applica—
ture. The smalk asymptotic behavior of the structure func- tions. Nevertheless, our findings indicate that the singlet spin
tion g3 comes from the odd-signature part of the amplitudedependent structure functi@} grows steeply ak—0.
and is driven by the asymptotics of the singlet spin depen-

X Eq E, 'Rg—gb/2. (65

w— ﬁo/8’772

VII. CONCLUSIONS
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