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SemileptonicD decay into scalar mesons: A QCD sum rule approach
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Semileptonic decays ofD mesons into scalar hadronic states are investigated. Two extreme cases are
considered:~a! the meson decays directly into an uncorrelated scalar state of two mesons and~b! the decay
proceeds via resonance formation. QCD sum rules including instanton contributions are used to calculate total
and differential decay rates under the two assumptions.
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I. INTRODUCTION

Low lying scalar mesons are an old problem in hadr
physics; see the review by Spanier and To¨rnqvist on scalar
mesons in@1# and the literature quoted there. In a rece
analysis@2,3# of D- and Ds-meson nonleptonic decays di
tinct signals for strong enhancements inS-wavepp andKp
channels have been observed, reviving the interest in th
states. In the following we shall refer to the signal in thepp
channel ass and in theKp channel ask. The enhancement
can be well described by a Breit-Wigner-type resona
form, with the correct threshold behavior

rX,BW~s!5
GX~s!mX

~s2mX
2 !21mX

2GX~s!2
, ~1!

where the subscriptX stands fors or k. The correct thresh-
old behavior is guaranteed through thes-dependent width

GX~s!5G0X

l1/2~s,ma
2 ,mb

2!

l1/2~mX
2 ,ma

2 ,mb
2!

mX
2

s
. ~2!

Herema andmb are the masses of the mesons in the de
channel andl(x,y,z)5x21y21z222xy22xz22yz. In @3#
the following parameters were found:

~1! for the S-wavepp channel,ma5mb5mp ,

ms50.47860.02460.017 GeV;

G0s50.32460.04260.021 GeV; ~3!

~2! for the S-waveKp channel,ma5mK , mb5mp ,

mk50.79760.01960.042 GeV;

G0k50.41060.04360.085 GeV. ~4!

The semileptonicD decays offer, in principle, much cleane
samples than the nonleptonic decays since there occu
problems connected with the presence of a third stron
interacting particle. In the nonstrange channel important
perimental information comes indeed from the analysis
the final state interaction of the pions from leptonicK de-
cays. For the case of strange mesons, the analysis ofD de-
0556-2821/2002/65~11!/114002~8!/$20.00 65 1140
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cays can play a similarly important role. In a recent paper
the FOCUS Collaboration@4# clear evidence was found tha
in the semileptonic decayD1→K2p1m1n the D meson
does not decay exclusively into the hadronic vector chan
but that there is interference with a scalar contribution.
this paper we estimate the decay rates of semileptoniD
decays into the scalarKp and pp channels. We use the
method of QCD sum rules@5# which has been successfull
applied to several semileptonic decay processes. For a re
review see@6# and the literature quoted there.

Even if ~broad! resonances in the hadronic decay chann
exist, it is not clear whether they are due to interactions
the quark level, or if they are rather an effect of interactio
in the purely hadronic channel, see for instance@7#. Here a
theoretical analysis can be very helpful. The semilepto
decay is supposed to occur on the quark level and there
the decay rate should depend crucially on the direct coup
of the resonances to the quark currents. We consider
limiting cases:

The observed two-meson final state couples to the co
sponding quark-antiquark state only through thes or k reso-
nance.

The quark antiquark state couples to uncorrelated fi
mesons in anS wave.

Since the signals we investigate in this paper are very br
the finite width has to be taken into account. Otherwise
analysis is based on the same principles and assumption
those used in the sum-rule analysis of other semileptoniD
decays@8#. We therefore refer to this paper for details a
clarifications.

II. KINEMATICS

We investigate the semileptonic decays

D→X, n̄,, ~5!

whereX might be thes,k or an uncorrelatedpp or Kp pair
in the S state, as depicted in Fig. 1.

The semileptonic decay of aD meson with momentumpD
into a scalar state with total momentumpX and invariant
massAs5ApX

2 is described by the two form factors of th
matrix element of the weak current
©2002 The American Physical Society02-1
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^Xu j muD&5~pD1pX!m f 1X~ t !1~pD2pX!m f 2X~ t !, ~6!

wheret5(pD2pX)2. In the decay rate the form factorf 2X is
multiplied by the difference of the lepton masses and he
is negligible for bothe andm decays.

The differential semileptonic decay rate is given by

d2G~s,t !

ds dt
5

GF
2 uVcq2

u2

192p3mD
3

l3/2~mD
2 ,s,t ! f 1X

2 ~ t !
rX~s!

p
, ~7!

where GF is the Fermi coupling constant andVcq2
the

Cabibbo-Kobayashi-Maskawa~CKM! transition element
from the charmed quark to the quarkq2. The total width is

G5E
(ma1mb)2

mD
2

dsE
0

(mD2As)2

dt
d2G~s,t !

ds dt
. ~8!

The spectral distribution in the invariant massAs of the had-
ronic final state is given by

dG

dAs
52AsE

0

(mD2As)2

dt
d2G~s,t !

ds dt
. ~9!

III. SUM RULES

The D meson in the initial state is interpolated by th
pseudoscalar current

j D~x!5 c̄~x!ig5q1~x!, ~10!

wherec is the field of the charmed quark andq1 that of an up
or down quark, summation over spinor and color indic
being understood but not indicated explicitly. The final ha
ronic stateX is interpolated by the scalar current

j X~x!5q̄1~x!q2~x!, ~11!

where q2 represents a light quark field forX5s, and a
strange quark field forX5k. The semileptonic decay rate
obtained from the time ordered product of the two interp
lating fields in Eqs.~10! and ~11! and the weak currentj m

W

5q̄2gm(12g5)c:

TmX~pD
2 ,pX

2 ,t !5 i 2E d4xd4y^0uT@ j D~x! j m
W~0! j X~y!#u0&

3ei (pD•x2pX•y). ~12!

FIG. 1. Schematic picture of the semileptonic vertex of
D-meson decay.c,q1 ,q2 are quark lines,j m denotes the weak cur
rent. X might be either a~broad! resonance or represent an unco
related two-meson state of mesonsa andb.
11400
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In order to select the semileptonic decay rates into the low
lying hadrons we insert intermediate states and obtain
following double dispersion relation in the phenomenolo
cal side:

TmX
phen~pD

2 ,pX
2 ,t !5

1

p2E dsD dsX^0u j D~0!uD&^Du j m
W~0!uX&

3^Xu j X~0!u0&3
1

sD2pD
2

1

sX
22mX

2

1contributions of higher resonances.

~13!

Introducing

^0u j D~0!uD&5ADrD~sD!; pD
2 5sD , ~14!

^Xu j X~0!u0&5AXrX~sX!; pX
25sX , ~15!

and using Eq.~6! we obtain

TmX
phen~pD

2 ,pX
2 ,t !5

1

p2E dsD dsXADAX

rD~sD!

sD2pD
2

rX~sX!

sX2pX
2

3„f 1X~ t,sD ,sX!~pD1pX!m

1 f 2X~ t,sD ,sX!~pD2pX!m…

1contributions of higher resonances.

~16!

In the following we concentrate on the relevant form fac
f 1 and introduce the factorT1 which multiplies the vector
(pD1pX)m

T1X
phen~pD

2 ,pX
2 ,t !5

1

p2E dsDdsXADAX

rD~sD!

sD2pD
2

rX~sX!

sX2pX
2

3 f 1X~ t,sD ,sX!

1contributions of higher resonances.

~17!

For theD meson the densityrD(sD) introduced in Eq.~14! is
given by

rD~sD!5pd~sD2mD
2 !, ~18!

and we obtain

AD5 f DmD
2 /mc , ~19!

f D being theD-meson decay constant in the convention
notation.

For the densityrX we use the two extremeAnsätzemen-
tioned above:

The quark-antiquark currentj X in theJ501 state couples
to thes or k resonance described by the Breit-Wigner d
tribution ~1!
2-2
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SEMILEPTONICD DECAY INTO SCALAR MESONS: A . . . PHYSICAL REVIEW D65 114002
rX~s!5rX,BW~s!. ~20!

The quark-antiquark currentj X couples to an uncorrelate
meson pair, the density being described by the density
two-particle phase space

rX~s!5
p

16p2

l~s,ma
2 ,mb

2!1/2

s
, ~21!

wherema , mb are the masses of the mesons in the final st
The three-point function can be evaluated by perturba

QCD if the external momenta are in the deep Euclidean
gion

pD
2 !~mc1m1!2, pX

2!~m11m2!2, t!~mc1m2!2.
~22!

In order to approach the not-so-deep-Euclidean region an
get more information on the nearest physical singularit
nonperturbative power corrections are added to the pertu
tive contribution

T1X
theor~pD

2 ,pX
2 ,t !5

1

p2E
sD,th

dsDE
sX,th

dsX

s1X~sD ,sX ,t !

~sD2pD
2 !~sX2pX

2 !

1(
i j

Ci j

~pD
2 ! i~pX

2 ! j
^Oi j &. ~23!

The perturbative contribution is contained in the dou
spectral functions1X . The Wilson coefficientsCi j multiply-
ing the power corrections can be evaluated in perturba
QCD. The operatorsOi j occur in the operator expansion o
the time ordered product Eq.~12!; their vacuum expectation
values, the condensates^Oi j &, are introduced as phenomen
logical parameters.

In order to suppress the condensates of higher dimen
and at the same time reduce the influence of higher re
nances, the series in Eq.~23! is Borel improved, leading to
the mapping

f ~p2!→ f̂ ~M2!,

1

~p22m2!n
→ ~21!n

~n21!!

e2m2/M2

~M2!n
. ~24!

Furthermore, we make the usual assumption that the co
butions of higher resonances are well approximated by
perturbative expression

1

p2Es0D

`

dsDE
s0X

`

dsX

s1X~sD ,sX ,t !

~sD2pD
2 !~sX2pX

2 !
, ~25!

with appropriate continuum thresholdss0D and s0X . By
equating the Borel transforms of the phenomenological
pression in Eq.~17! and that of the ‘‘theoretical expression
Eq. ~23!, we obtain the sum rule
11400
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f 1X~ t,mD
2 ,s̄X! f D

mD
2

mc
e2mD

2 /MD
2 AX

p

3E
(ma1mb)2

s0X
dsXrX~sX!e2sX /MX

2

5
1

p2EsD,th

s0D
dsDE

sX,th

s0X
dsXs1X~sD ,sX ,t !

3e2sD
2 /MD

2
e2sX /MX

2
1K̂1X~MD

2 ,MX
2 ,t !

1K̂1I~MD
2 ,MX

2 ,t !, ~26!

where s̄X is some value belows0X . In the zero width ap-
proximation we have of courses̄X5mX

2 . K̂1X are the Borel
transforms of the nonperturbative expressions due to the
densates andK̂ I is an approximation to the instanton contr
butions, which might be important in the scalar channel@9#.

The decay constantf D and the couplingAX defined in
Eqs.~14!, ~15!, and~19! can also be determined by sum rul
obtained from the appropriate two-point functions. Using t
same procedure as described above we arrive at

mD
4

mc
2 „f D

theor~M2!…2e2mD
2 /M2

5E
mc

2

s0D
dssD~s!e2s/M2

1K̂D~M2!,

~27!

and

„AX
theor~M2!…2S 1

pE(ma1mb)2

s0X
dsrX~s!e2s/M2D

5E
mq2

2

s0X
dssX~s!e2s/M2

1K̂X~M2!1K̂ I~M2!. ~28!

The analysis of the two-point function for the scalar meso
and the explicit expressions for the functions occurring
Eqs. ~26!, ~27! and ~28! are given in Appendixes A and B
respectively.

The final sum rule for the form factor is obtained from E
~26! by inserting for f D and AX the expressionsf D

theor and
AX

theor of Eqs.~27! and ~28!

f 1X~ t,mD
2 ,s̄X!5emD

2 /MD
2 S mD

2

mc
f D~MD8

2!AX~MX8
2!

1

p

3E
(ma1mb)2

s0X
dsXrX~sX!e2sX /MX

2 D 21

3S E
sD,th

s0D
dsDE

sX,th

s0X
dsXs1X~sD ,sX ,t !

3e2sD
2 /MD

2
e2sX /MX

2
1K̂1X~MD

2 ,MX
2 ,t !

1K̂1I~MD
2 ,MX

2 ,t ! D . ~29!
2-3
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DOSCH, FERREIRA, NAVARRA, AND NIELSEN PHYSICAL REVIEW D65 114002
The radiative corrections for the scalar and pseudosc
channels are known to be large@10#. They are expected to b
large in the three-point function too. By inserting the su
rule expressions for the two-point functions, Eqs.~27! and
~28!, in the denominator of the sum rule for the three-po
function, Eq.~29!, we expect, at least, a partial cancellati
of these corrections@11,12#.

IV. EVALUATION OF THE SUM RULES AND RESULTS

The sum rule Eq.~29! is evaluated in the same way a
described in@8#, and we only sketch the main steps of th
evaluation. In the complete theory, the right-hand side of
~29! should not depend on the Borel variablesM2. However,
in a truncated treatment there will always be some dep
dence left. Therefore, one has to work in a region where
approximations made are supposedly acceptable and w
the result depends only moderately on the Borel variables
decrease the dependence of the results on the Borel vari
M2, we take them in the two-point functions at half the val
of the corresponding variables in the three-point sum ru
i.e., in Eq.~29! we put

MD8
25MD

2 /2 and MX8
25MX

2/2. ~30!

We furthermore choose

MX
2

MD
2

5
mX

2

mD
2 2mc

2
. ~31!

We have checked that the results do not depend crucially
this particular choice. If the momentum transfert to the lep-
ton pair is larger than a critical valuetcr , non-Landau sin-
gularities have to be taken into account@8#. Since anyhow
we have to stay away from the physical region, i.e., we m
have t!(mc1m1)2, we limit our calculation to the region
0,t,tcr . In this range thet dependence can be obtaine
from the sum rule~29! directly. It can be fitted by a mono
pole, and extrapolated to the full kinematical region.

Since we do not take into account radiative corrections
choose the QCD parameters at a fixed renormalizaton s
of about 1 GeV2: the strange and charm massms
50.16 GeV, mc51.3 GeV, the up and down quar
masses are put to zero. We take for the nonstrange q
condensatê q̄q&52(0.24)3 GeV3, for the strange quark
condensatê s̄s&50.8̂ q̄q&, and for the mixed quark-gluon
condensatêq̄sGq&^q̄q&5m0

2^q̄q& with m0
250.8 GeV2.

For the continuum threshold in theD channel we take
from @8# s0D56 GeV2. The standard value in theX chan-
nel would be s0X'(mX10.5 GeV)2, yielding s0s

'1 GeV2 and s0k'1.6 GeV2. As an additional condi-
tion we use the mass constraint from the two-point functi
as described in Appendix A.

We start with the decayD→k l n̄ l and first consider the
case where the scalar quark current~11! couples directly to
thek signal through a Breit-Wigner distribution~20!. In Fig.
2 we show the different contributions to the form fact
f 1k(0) in Eq. ~29!, as a function of the Borel variableMD

2 ,
11400
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using the continuum thresholds0k51.6 GeV2. As the lower
limit for the fiducial region inMD

2 we take that value ofMD
2

where the perturbative contribution is one-half of the to
contribution. As an upper limit we take the valueMD

2

515 GeV2, which is motivated in Appendix A. For such
high value of the Borel parameter the result is very stable
it is largely determined by the choice of the continuu
model. The instanton contribution in the fiducial region
completely negligible; the five dimensional mixed conde
sate is strongly suppressed compared to the three dim
sional quark condensate. In the Borel variable of theX chan-
nel the fiducial region corresponds approximately to
range 1.7 GeV2<MX

2<5 GeV2.
In the range 0<t<0.5 GeV2 no non-Landau singularities

occur for our choices of the continuum thresholds. The m
mentum dependence off 1k can, in thist range, be very well
approximated by a monopole expression

f 1k~ t !5
f 1k~0!

12
t

M P
2

, ~32!

and extrapolated to the full physical region.
For 1.4 GeV2<s0k<1.8 GeV2 and for values ofMD

2 dis-
cussed above, we find, for the form factor att50,

0.48< f 1k~0!<0.55, ~33!

and, for the pole mass,

1.9 GeV<M P<2.2 GeV. ~34!

The pole mass is considerably smaller than the mass of
charmed pseudovector-mesonDs1(2536) which would fit

FIG. 2. Dependence of the form factorf 1k at t50 on the Borel
variableMD

2 . Here the decay is assumed to proceed through re
nance formation and the state density is given by Eq.~20!. Solid
curve: total contribution; long-dashed: perturbative; dashed: qu
condensate; dot-dashed: mixed condensate; dotted: instanton c
bution.
2-4
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SEMILEPTONICD DECAY INTO SCALAR MESONS: A . . . PHYSICAL REVIEW D65 114002
into the t channel. In theD→Kln decay the pole mass als
came out to be smaller@8# than the mass of the strange vect
mesonDs* (2114).

In the limits of the Borel variables and the continuu
thresholds discussed above we obtain for the total sem
tonic decay width

G~D→k,n!5~5.561.0!310215 GeV, ~35!

where we have usedVcs50.97. The same calculation done
an—unjustified—zero width approximation would yield a t
tal semileptonic decay width which is about 20% larger.

The spectral distributiondG/dAs, Eq.~9!, whereAs is the
invariant mass of thepK state, is given in Fig. 3, solid line

Next we investigate the same decay under the assump
that the scalar current in Eq.~11! does not couple to a reso
nance, but to an uncorrelatedpK pair in anS state; i.e., we
use theAnsatz~21! for rk(s) entering the sum rules. In Fig
4 we show the dependence on the Borel variableMD

2 of the
decay form factorf 1k(0) for s0k51.6 GeV2. Note that now
the density~21! describes a two-particle phase space a
therefore the dimension off 1k is different from the previous
case.

The masses of the pole fit to thet dependence are pract
cally the same as for the resonance case; for the form fa
at t50 we obtain

5.0 GeV21f 1k~0!<7.1 GeV21. ~36!

The total width comes out for the case of an uncorrelatedpK
pair in anS state as

G„D→~Kp!S, n̄,…5~3.761.1!310215 GeV. ~37!

The spectral distribution for this case is also shown in Fig
with a dotted line. Although there is no resonance format
the resulting distribution shows a maximum at approximat

FIG. 3. Invariant mass distributiondG(As)/dAs of the hadronic
final state in the decayD→(Kp)S,n. Solid: resonance formation
dots: uncorrelatedKp.
11400
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the mass of thek, which is an effect of the decrease of th
total phase space near the kinematical limits.

The evaluation of the decayD→s,n follows exactly the
same lines. Here the fiducial range inMD

2 is chosen accord-
ing to the same criteria as before and goes approxima
from MD

2 58 GeV2 to 18 GeV2 corresponding approxi-
mately to a range 1 GeV2<Ms

2<2.3 GeV2. The continuum
limit s0s was chosen between 1 and 1.6 GeV2. The resulting
form factors and total decay width are, in the case of a re
nance formation with a Breit-Wigner width

0.42< f 1s~0!<0.57, ~38!

G~D→s, n̄,!5~8.062.5!310216 GeV, ~39!

and for the case of two uncorrelatedp mesons in anS state

5 GeV21< f 1s~0!<6 GeV21 ~40!

and

G„D→~pp!S, n̄,…5~4.561.0!310216 GeV. ~41!

The spectral distributions for bothAns̈atzeare shown in
Fig. 5.

V. SUMMARY AND CONCLUSIONS

The semileptonic decays ofD mesons into scalar hadron
are very similar to those into pseudoscalars. The same
played by the vector part in the pseudoscalar case is pla
by the weak pseudovector for the decay into scalars. Th
fore, the theoretical expressions are very similar, only ter
proportional to the mass of the strange quark change s
This leads to a small reduction of the form factors compa
to the decay into a pseudoscalar state. The main differenc

FIG. 4. Dependence of the form factorf 1k at t50 on the Borel
variable MD

2 . Here the decay is assumed to proceed through
uncorrelatedpK-meson pair in anS state; the density is given by
Eq. ~21!. Solid curve: total contribution; long-dashed: perturbativ
dashed: quark condensate; dot-dashed: mixed condensate; d
instanton contribution.
2-5
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DOSCH, FERREIRA, NAVARRA, AND NIELSEN PHYSICAL REVIEW D65 114002
the semileptonic decay rates intoK andk is due to the dif-
ferent phase space. The decay intos mesons is suppresse
by the small value of the weak (c,d) matrix elementVcd
'0.225. The spectral distributions of the invariant masse
the Kp and pp sytems are given in Figs. 3 and 5. The
maxima are well below the masses of thek and thes, and
also the forms are quite different from Breit-Wigner dist
butions. The increase of the spectral ditributions is stee
and the fall-off substantially faster than for the correspond
Breit-Wigner forms. This is an effect of the total phase spa
in the semileptonic decay.

If the scalar current does not couple directly to the re
nance but only to an uncorrelated meson pair, the decay
is reduced by a factor two compared with the decay i
resonances, but nevertheless an enhancement near 0.
0.5 GeV is visible due to the total final state phase space~see
Figs. 3 and 5!. With good statistics a discrimination betwee
the two extreme cases should be possible. This would
valuable information on the nature of the intriguing low l
ing scalar resonances. In reality things might be complica
by a coupling of the interpolating current 11 on the qua
level to a resonance as well as to an uncorrelated meson
In this case one has to construct a new densityrX and use it
instead of the densities in Eq.~20! or ~21!, in order to calcu-
late the form factorsf X(t). The procedure that follows is th
same.
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APPENDIX A: EVALUATION OF THE TWO-POINT SUM
RULES

In Fig. 6 we display the different contributions toAk , as

FIG. 5. The invariant mass distribution of the hadronic fin
state of the rate in the decayD→(pp)S,n. Solid: resonance for-
mation; dots: uncorrelatedKp.
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a function of the Borel variableMk8
2 using theAnsatzin Eq.

~20! for rk(s) ands0k51.4 GeV2. As expected the instanto
contribution is particularly important for small values of th
Borel variable. In spite of the weak dependence of the s
rule results onMk8

2, it is well known that radiative correc
tions could be large in this case. Therefore, we do not att
great significance to the high stability of our results.

In the zero width approximation one can obtain a sum r
for the mass by performing the logarithmic derivative of t
right- and left-hand sides of Eq.~27! with respect toM 22,
assuming thatf D is independent ofM 22. In Fig. 7 we dis-
play the logarithmic derivative of the left- and right-han
sides of the sum rule~28!, again assuming thatAk is inde-
pendent of the Borel variable.

For s0k51.4 GeV2 there is a reasonable overlap b

l
FIG. 6. Borel mass dependence ofAk

2 . Solid curve: total contri-
bution; long-dashed: perturbative; dashed: quark condensate;
dashed: mixed condensate; dotted: instanton contribution.

FIG. 7. Borel mass dependence of the RHS~dashed line! and
the LHS ~solid line! of the sum rule generated by the logarithm
derivative of Eq.~28! with respect toM 22 for the case of thek.
2-6
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tween the two sides of the sum rule in the Borel windo
0.9<M2<2 GeV2, and this defines the range for the Bor
variableMX8

2 in Eq. ~29!. Since all Borel variables are relate
by Eqs.~30! and ~31!, we obtain from the above range a
proximately 5<MD

2 <15 GeV2.
In the case ofs, similar results are obtained and in Fig.

we show@for s0s51.2 GeV2 and the ansatz in Eq.~20! for
rs(s)# that the instanton contribution~dotted line! is even
more important in this case, giving a very stable result a
function of the Borel mass. The quark condensate and m
condensate contributions~dashed line! are zero since they ar
now proportional to the light quark mass, which we ta
equal to zero.

In Fig. 9 we show the left-hand side~LHS! and the RHS
of the sum rule generated by the logarithmic derivative

FIG. 8. Borel mass dependence ofAs
2 . Solid curve: total con-

tribution; long-dashed: perturbative; dashed: quark condensate;
dashed: mixed condensate; dotted: instanton contribution.

FIG. 9. Borel mass dependence of the RHS~dashed line! and
the LHS ~solid line! of the sum rule generated by the logarithm
derivative of Eq.~28! with respect toM 22 for the case of thes.
11400
l

a
d

f

Eq. ~28! with respect toM 22, as a function of the Bore
mass, using theAnsatz in Eq. ~20! for rs(s) and s0s

51.2 GeV2. We see that there is again a good overlap
tween the two sides of the sum rule in the Borel windo
1.0<M2<2.5 GeV2. Since the mass of the particle is relate
with the square root of the LHS of this sum rule, from th
figure we see that our result is compatible withms

50.5 GeV found in@2#.

APPENDIX B: PERTURBATIVE AND NONPERTURBATIVE
CONTRIBUTIONS TO THE TWO- AND THREE-

POINT FUNCTIONS

In all this work we take into account the mass of t
strange quark at most squared and neglect the mass o
light quarks. For the scalar mesonX, we consider the par-
ticular case ofk, since thes can be easily obtained from i
by neglecting the strange quark mass. The perturbative c
tributions for the two-point functions defined in Sec. III ar

sD~s!5
3

8p2

~s2mc
2!2

s
~B1!

and

sk~s!5
3

8p2 ~s22ms
2!. ~B2!

The nonperturbative contributions including the quark a
mixed condensates are

K̂D~M2!52mc^q̄q&e2mc
2/M2F11

m0
2

2M2 S 12
mc

2

2M2D G
~B3!

and

K̂k~M2!5mse
2ms

2/M2S ^q̄q&1
^ s̄s&

2
1

m0
2

2M2 ^q̄q& D ,

~B4!

where we have defined̂q̄gss•Gq&5m0
2^q̄q&. The instanton

induced contribution is given by

K̂ I~M2!5
n̄

2m̄sm̄q

M2z2E
z2/4

`

dx
x2

~x2z2/4!2e2x2/(x2z2/4),

~B5!

wherez5M r̄, and we have introduced the average instan
size, r̄, and the instanton number density,n̄, given by@9#

n̄.
1

2
fm24, r̄.

1

3
fm. ~B6!

In Eq. ~B5! m̄s andm̄q are the effective quark masses whic
we take to bem̄s5400 MeV andm̄q5300 MeV.

The perturbative double spectral function is obtained
using the Cutkosky rules and, in the case of the mesonk, is
given by

ot-
2-7
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r1k~sD ,sX ,t !5
23

8p2l3/2
@22sDsXt1mc

2sX~sD2sX1t !1ms
2sD~sX2sD1t !1mcms3„mc

2~sD2sX2t !1ms
2~sX2sD2t !

2~sD2sX!21t~sD1sX!…#3Q~sD2mc
2!Q~sX2sXmin!Q~sXmax2sX!, ~B7!

where

sXmin5
mc

2~2mc
21ms

21sD1t !1ms
2sD2sDt1~mc

22sD!Al~mc
2 ,ms

2 ,t !

2mc
2

~B8!

and

sXmax5
mc

2~2mc
21ms

21sD1t !1ms
2sD2sDt2~mc

22sD!Al~mc
2 ,ms

2 ,t !

2mc
2

. ~B9!

The nonperturbative contributions, including the quark and mixed condensates, which survive the double Borel transfo
in pD

2 andpX
2 are

K̂1k~MD
2 ,MX

2 ,t !5^q̄q&e2mc
2/MD

2 Fmc2ms

2
2m0

2S mc
2 mc2ms

8MD
4 2

2mc2ms

6MD
2 1

~4mc
21mcms22t !~mc2ms!

24MD
2 MX

2 2
mc22ms

6MD
2

1
~mcms22t !~mc2ms!

24MD
2 MX

2 D G , ~B10!

and the instanton induced contribution is given by

K̂1I~MD
2 ,MX

2 ,t !5
8r̄4t

p2

n̄

m̄sm̄q
E

0

`

dr ds du dg
~gMD

2 21!MX
4

~114gs!2~gsMD
2 24MX

2 !2gs2

3A ru

~s2r !~A02u!
e2 r̄2(r 1u)e2gmc

2
e2a0r̄2

e2tA0 /sMD
2
, ~B11!

where

A05
s~gMD

2 21!

114sg
~B12!

and

a05
~s1~114sg!t !MX

2

s1~114sg!t24MX
2 . ~B13!
s.
d.
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