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Semileptonic decays oD mesons into scalar hadronic states are investigated. Two extreme cases are
consideredia) the meson decays directly into an uncorrelated scalar state of two meso(is) ahe decay
proceeds via resonance formation. QCD sum rules including instanton contributions are used to calculate total
and differential decay rates under the two assumptions.
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[. INTRODUCTION cays can play a similarly important role. In a recent paper by
the FOCUS Collaboratiof4] clear evidence was found that
Low lying scalar mesons are an old problem in hadronin the semileptonic decap " —K~ 7" u"v the D meson

physics; see the review by Spanier andrtvist on scalar does not decay exclusively into the hadronic vector channel,
mesons in[1] and the literature quoted there. In a recentbut that there is interference with a scalar contribution. In
analysis[2,3] of D- and D;-meson nonleptonic decays dis- this paper we estimate the decay rates of semileptdnic
tinct signals for strong enhancementsSwave w7 andK«  decays into the scald= and =7 channels. We use the
channels have been observed, reviving the interest in theseethod of QCD sum rulef5] which has been successfully
states. In the following we shall refer to the signal in the applied to several semileptonic decay processes. For a recent
channel agr and in theK 7w channel ak. The enhancements review se€6] and the literature quoted there.
can be well described by a Breit-Wigner-type resonance Even if(broad resonances in the hadronic decay channels

form, with the correct threshold behavior exist, it is not clear whether they are due to interactions on
the quark level, or if they are rather an effect of interactions

I'x(s)ymy in the purely hadronic channel, see for instafitke Here a
Px,BW(S) = (D theoretical analysis can be very helpful. The semileptonic

_ m2)\2 2 2’
(S=M5)™+ MyI'x(s) decay is supposed to occur on the quark level and therefore

where the subscripX stands fora or «. The correct thresh- the decay rate should depend crucially on the direct coupling
old behavior is guaranteed through thdependent width of the resonances to the quark currents. We consider two

limiting cases:
AYs,m2,m2) m2 The observed two-meson final state couples to the corre-
v Hasttlp X . .
I'«(s)= FOXW —. (2 sponding quark-antiquark state only through #her « reso-
NYA(mg,mZ,mg) S nance.

The quark antiquark state couples to uncorrelated final

Herem, andm, are the masses of the mesons in the deca¥nesons in ars wave

channel and (x,y,z) =x?+y?+z?—2xy—2xz— 2y z In[3]
the following parameters were found: Since the signals we investigate in this paper are very broad
the finite width has to be taken into account. Otherwise our

(1) for the Swave w7 channelm;=my=m_, e o ;
analysis is based on the same principles and assumptions as

m,=0.478+0.024+0.017 GeV; those used in the sum-rule analysis of other semileptbnic
decays[8]. We therefore refer to this paper for details and
I'p,=0.324+0.042+0.021 GeV; (3) clarifications.

(2) for the Swave K7 channelm,=my, my=m_, Il KINEMATICS
m,=0.797:0.0190.042 GeV; We investigate the semileptonic decays
I'y,=0.410+0.043+0.085 GeV. 4 —

0 (4) D— X, (5

The semileptoni® decays offer, in principle, much cleaner

samples than the nonleptonic decays since there occur nghereX might be theo, x or an uncorrelatedrm or Ko pair
problems connected with the presence of a third stronglyn the Sstate, as depicted in Fig. 1.

interacting particle. In the nonstrange channel important ex- The semileptonic decay ofla meson with momentumpp
perimental information comes indeed from the analysis ofnto a scalar state with total momentupy and invariant
the final state interaction of the pions from leptoiicde-  massys= \/Ei is described by the two form factors of the
cays. For the case of strange mesons, the analydlsad-  matrix element of the weak current
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In order to select the semileptonic decay rates into the lowest

Ju lying hadrons we insert intermediate states and obtain the
following double dispersion relation in the phenomenologi-
¢ g2 a cal side:
D qi X b

l . -
T2 58 % ) = = [ do dsu(0lio(@)D)(DIIO)X)
FIG. 1. Schematic picture of the semileptonic vertex of a

D-meson decayc,q; ,q, are quark linesj,, denotes the weak cur- ) 1
rent. X might be either gbroad resonance or represent an uncor- X(X|jx(0)|0)x > 5 %
related two-meson state of mesanandb. D~ Pp Sx— My

] + contributions of higher resonances.
<X|IM|D>:(DD+ Px) uf 4 x(O)+ (Pp—Px) .f-x(1), (6)

(13
wheret=(pp— px)2. In the decay rate the form factér y is )
multiplied by the difference of the lepton masses and hencdtroducing
is negligible for bothe and . decays. . _ : 2 _
The differential semileptonic decay rate is given by (0lio(0)[D)=Aopo(sp)i  Po=Sp, (14
2 (X|ix(0)]0)=Axpx(sx);  PX=5x., (15

dZF(S,t) _ Gl2:|ch2
dsdt  1927°m3

)\3’2(m2D,s,t)fiX(t)px—7(TS), (7

and using Eq(6) we obtain

po(Sp) px(Sx)
So—Pp Sx— PX
X (f e x(t,5p,Sx) (Pp+ Px)

2 =2 2
_ [ (mp— 32, d°T(s,1) +f_y(t,Sp,S —
r f(mamb)zdsfo dt dsdt - (8) ~x(t,8p,8x)(Pp—Px) 1)

where Gg is the Fermi coupling constant an‘tzlcqz the

Cabibbo-Kobayashi-MaskawgCKM) transition element
from the charmed quark to the quagk. The total width is

1
Tzr)](ertp% vpg( vt) = ?J’ dSD dSXADAX

+ contributions of higher resonances.

The spectral distribution in the invariant mags of the had- (16)

ronic final state is given by
In the following we concentrate on the relevant form factor

d_F_ (mp- 32 d’T(s,1) f, and introduce the factor, which multiplies the vector
=2\s dt————. (9)
dv/s 0 ds dt (Po+Px)
1 S S
ll. SUM RULES T’i@f”(p%,piyt):—zf dSDdSXADAXpD( Dz) px( xi
The D meson in the initial state is interpolated by the 7T S0~ Po Sx7Px
pseudoscalar current X f o x(t,Sp,Sx)
ip(X)=Cc(X)i y501(X), (10) + contributions of higher resonances.

wherec is the field of the charmed quark agg that of an up (17
or down quark, summation over spinor and color indicesror theD meson the densityp(sp) introduced in Eq(14) is
being understood but not indicated explicitly. The final had-gjven by

ronic stateX is interpolated by the scalar current

o po(Sp)=md(Sp—mp), (18)
Ix(X)=d1(x)q2(x), (11
and we obtain
where g, represents a light quark field fok=0, and a
strange quark field foX= «. The semileptonic decay rate is Ap= fDm%/mc, (29

obtained from the time ordered product of the two interpo- _ ) .
lating fields in Eqs(10) and (11) and the weak currerjt‘l’)’ fp being theD-meson decay constant in the conventional

=027,(1—ys)c: notation. _ ”
: For the densitypy we use the two extrem&nsaze men-

tioned above:

T,.x(P5.P%.1) =i2J d*xd*y(0| T[jp(x)j}(0)jx(y)]|0) The quark-antiquark curreiy in theJ=0" state couples
_ to the o or k resonance described by the Breit-Wigner dis-
X e (PD-X=Px-Y), (12)  tribution (1)
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px(S)=px,swS). (20) — . m A
X X,B f+x(t1m2D-SX)fDFDe_m2D/Mé_X

The quark-antiquark currerjty couples to an uncorrelated ¢ T
meson pair, the density being described by the density of ><Fox q (50 sy M2
; sxpx(Sx)e X
two-particle phase space S XPX\Sx
7 A(s,m2,md)2 1 (s Sox
pX(S): ) (21) = dSD dSXO'+X(SD,Sx,t)
167 S ? D, th SX,th
; . —s2/M2 sy IM2 | 13 2 \g2
wherem,, m, are the masses of the mesons in the final state. X e ' Mpe X' Mx+ K, «(Mp,M%,t)
The three-point function can be evaluated by perturbative . .
QCD if the external momenta are in the deep Euclidean re- +K4 (Mg, M5,1), (26)

gion
where sy is some value belovgyy . In the zero width ap-

proximation we have of coursg= mi. R+X are the Borel
transforms of the nonperturbative expressions due to the con-

In order to approach the not-so-deep-Euclidean region and t@ensates ant, is an approximation to the instanton contri-
get more information on the nearest physical singularitiesPutions, which might be important in the scalar charj9¢|

nonperturbative power corrections are added to the perturba- The decay constanf; and the couplingAy defined in
tive contribution Egs.(14), (15), and(19) can also be determined by sum rules

obtained from the appropriate two-point functions. Using the
same procedure as described above we arrive at

pi<(mg+my)?, pi<(mi+my)2,  t<(mg+my)2.
(22)

TR Pk = izf dst XS,
T Jsp th SX th (Sp—Pp)(sx—P%) mé 2 5 Sob 2 A
—Z (50 (M?))%e oM = fmz dsop(s)e ¥ +Kp(M?),
+> 0. < :
¥ ey 9 @)
. T . . and
The perturbative contribution is contained in the double
spectral functionr, x . The Wilson coefficient€;; multiply- 1 s
ing the power corrections can be evaluated in perturbative (Aweor(Mz)y(_J' oX dspx(s)efs/Mz
QCD. The operator®;; occur in the operator expansion of T J (my+mp)?
the time ordered product EL2); their vacuum expectation
values, the condensat{®;;), are introduced as phenomeno- - j
logical parameters.
In order to suppress the condensates of higher dimension

and at the same time reduce the influence of higher reserne analysis of the two-point function for the scalar mesons,
nances, the series in E(3) is Borel improved, leading 0 5 the explicit expressions for the functions occurring in

S ~ ~
mzxdwx(s)e_S/M2+ Ry(M2)+K,(M2). (28)

92

the mapping Egs. (26), (27) and (28) are given in Appendixes A and B
P respectiyely. _ _
f(p9)—f(M?), The final sum rule for the form factor is obtained from Eq.
(26) by inserting forfy and Ay the expression$!'®®" and
1 (—1)" e MM o Al of Egs.(27) and (28)

— .

(p?=m?" (=L (m3)" )

. ot 0= T2 A M S

Furthermore, we make the usual assumption that the contri- ~*X*" 7D =X me DD X
butions of higher resonances are well approximated by the

: : -1
erturbative expression Sox 2
g b Xf dePx(Sx)eSX/MX)
(

ma-%—mb)2
o x(Sp,sx,t)

1 J‘oc 0
— dsDj dsy , (29
w2 Jsop sox  (Sp— pZD)(Sx_ p>2<) X

with appropriate continuum thresholdgy, and spx. By

equating the Borel transforms of the phenomenological ex-
pression in Eq(17) and that of the “theoretical expression,” R
Eq. (23), we obtain the sum rule +K (M3 ,M2,1)

S S
J’ ” dsp ” dsxo . x(Sp,Sx,t)

SD th SX,th

2 2 2 ~
X e o/Mbe~Sx/Mx+ K (M3 ,M% 1)

. (29
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The radiative corrections for the scalar and pseudoscalar 15 - - . . -
channels are known to be larffi0]. They are expected to be
large in the three-point function too. By inserting the sum
rule expressions for the two-point functions, E¢&7) and
(28), in the denominator of the sum rule for the three-point
function, Eqg.(29), we expect, at least, a partial cancellation
of these correctiongl1,12.

f ©

IV. EVALUATION OF THE SUM RULES AND RESULTS

The sum rule Eq(29) is evaluated in the same way as
described i8], and we only sketch the main steps of this O o T o 0 e .5
evaluation. In the complete theory, the right-hand side of Eq.
(29) should not depend on the Borel variabM$. However,
in a truncated treatment there will always be some depen-
dence left. Therefore, one has to work in a region wherethe 53— % % 9 1 13 15
approximations made are supposedly acceptable and wher M, (GeV?)
the result depends only moderately on the Borel variables. To
decrease the dependence of the results on the Borel variables FIG: 2. Dependence of the form factbr, att=0 on the Borel
le we take them in the two-point functions at half the Va|uevar|abIeMD. Here the decay is assumed to proceed through reso-

of the corresponding variables in the three-point sum ruleg}@nce formation and the state density is given by @G). Solid
i.e., in Eq.(29) we put curve: total contribution; long-dashed: perturbative; dashed: quark

condensate; dot-dashed: mixed condensate; dotted: instanton contri-

Mp2=M2/2 and Mi’=M2/2. (3p ~ bution.
We furthermore choose using the continuum threshokg,.= 1.6 Ge\#. As the lower
limit for the fiducial region inM3 we take that value o3
M2 m2 where the perturbative contribution is one-half of the total
— = 5 (31)  contribution. As an upper limit we take the valuda

=15 Ge\?, which is motivated in Appendix A. For such a
high value of the Borel parameter the result is very stable but
ft is largely determined by the choice of the continuum
model. The instanton contribution in the fiducial region is
completely negligible; the five dimensional mixed conden-
sate is strongly suppressed compared to the three dimen-
SLional qguark condensate. In the Borel variable ofXhehan-
nel the fiducial region corresponds approximately to the
range 1.7 Ge¥%<M2<5 Ge\’.
In the range 8t<0.5 Ge\ no non-Landau singularities

) ) o . occur for our choices of the continuum thresholds. The mo-

Since we do not take into account radiative corrections w

. . entum dependence 6f . can, in thist range, be very well
cpocse e QCD fametes o fred enormalzaon scalproxmate by mondpol expression
=0.16 GeV, m.=1.3 GeV, the up and down quark
masses are put to zero. We take for the nonstrange quark fo ()=
condensatdqq)=—(0.24 Ge\?, for the strange quark
condensatess)=0.8qq), and for the mixed quark-gluon

condensatéqoGa)(qq)=ma(qq) with m3=0.8 Ge\’.

For the continuum threshold in the channel we take
from [8] s,p=6 Ge\2. The standard value in thé chan-
nel would be soyxy~(my+0.5 GeVy, vyielding sp,
~1 GeV andsy,,~1.6 Ge\. As an additional condi-
tion we use the mass constraint from the two-point function,
as described in Appendix A.

We start with the deca — «lv; and first consider the
case where the scalar quark currétit) couples directly to 1.9 Ge\sMp=2.2 GeV. (34
the k signal through a Breit-Wigner distributig0). In Fig.

2 we show the different contributions to the form factor The pole mass is considerably smaller than the mass of the
f. .(0) in Eq.(29), as a function of the Borel variabM 2, charmed pseudovector-mes@h;(2536) which would fit

We have checked that the results do not depend crucially o
this particular choice. If the momentum transteo the lep-
ton pair is larger than a critical valug,, non-Landau sin-
gularities have to be taken into accouBi. Since anyhow
we have to stay away from the physical region, i.e., we mu
havet<(m.+m,)?, we limit our calculation to the region
0<t<t . In this range tha dependence can be obtained
from the sum rulg29) directly. It can be fitted by a mono-
pole, and extrapolated to the full kinematical region.

f+K(0)
1 L
ME

(32

and extrapolated to the full physical region.
For 1.4 GeVt<s,,<1.8 Ge\f and for values oMé dis-
cussed above, we find, for the form factortatO,

0.48<f, (0)<0.55, (33

and, for the pole mass,
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FIG. 3. Invariant mass distributiodil’(\/s)/d+/s of the hadronic
final state in the decalp — (K )t v. Solid: resonance formation;
dots: uncorrelate® 7.

FIG. 4. Dependence of the form factbr, att=0 on the Borel
variable MZD. Here the decay is assumed to proceed through an
uncorrelatedrK-meson pair in arb state; the density is given by
Eq. (21). Solid curve: total contribution; long-dashed: perturbative;

into thet channel. In theD — Kl v decay the pole mass also gashed: quark condensate; dot-dashed: mixed condensate; dotted:
came out to be small¢8] than the mass of the strange vector jnstanton contribution.

mesonDZ (2114).

In the limits of the Borel variables and the continuum the mass of thex, which is an effect of the decrease of the
thresholds discussed above we obtain for the total semilepotal phase space near the kinematical limits.

tonic decay width The evaluation of the decdy— o€ v follows exactly the
s same lines. Here the fiducial rangeMg, is chosen accord-
I'(D—ktv)=(55£1.0xX10 > GeV, (39  ing to the same criteria as before and goes approximately

) ~ from M2D=8 GeV? to 18 GeV corresponding approxi-
where we have uséd.;=0.97. The same calculation done in mately to a range 1 GEM2<2.3 Ge\2. The continuum

an—unjustified—zero width approximation would yield a to- |imt 5. was chosen between 1 and 1.6 GeVhe resulting
tal semileptonic decay width which is about 20% larger. o factors and total decay width are, in the case of a reso-

The spectral distributiodI'/d s, Eq. (9), wherey'sis the  pance formation with a Breit-Wigner width
invariant mass of therK state, is given in Fig. 3, solid line.

Next we investigate the same decay under the assumption 0.42<f,,(0)<0.57, (39
that the scalar current in EL1) does not couple to a reso- -
nance, but to an uncorrelaterK pair in anS state; i.e., we I'(D—ofv,)=(8.02.5x10"1% GeV, (39

use theAnsatz(21) for p.(s) entering the sum rules. In Fig.
4 we show the dependence on the Borel variab@ ofthe and for the case of two uncorrelatedmesons in arg state
decay form factoff . .(0) for sp,=1.6 Ge\’. Note that now

1 1
the density(21) describes a two-particle phase space and 5 GeVi<f.,(0)<6 GeV' (40
therefore the dimension df, . is different from the previous 5,9
case.
The masses of the pole fit to thelependence are practi- [(D—(mm)stv,)=(4551.00x1071° GeV. (41)

cally the same as for the resonance case; for the form factor

‘ The spectral distributions for botAngatze are shown in
att=0 we obtain

Fig. 5.
.0 GeV *f <7.1GeV'
50Ge +x(0) Ge (36) V. SUMMARY AND CONCLUSIONS
The total width comes out for the case of an uncorrelatid The semileptonic decays & mesons into scalar hadrons
pair in anS state as are very similar to those into pseudoscalars. The same role

. played by the vector part in the pseudoscalar case is played
I'(D—(Km)slv,)=(3.71.1)x10 ¥ GeV. (37) by the weak pseudovector for the decay into scalars. There-

fore, the theoretical expressions are very similar, only terms

The spectral distribution for this case is also shown in Fig. 3proportional to the mass of the strange quark change sign.
with a dotted line. Although there is no resonance formationThis leads to a small reduction of the form factors compared
the resulting distribution shows a maximum at approximatelyto the decay into a pseudoscalar state. The main difference of
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FIG. 6. Borel mass dependenceAf. Solid curve: total contri-

FIG. 5. The ipvariant mass distribution O_f the hadronic final bution; long-dashed: perturbative; dashed: quark condensate; dot-
state of the rate in the decdy— (7 m)sfv. Solid: resonance for- dashed: mixed condensate; dotted: instanton contribution.
mation; dots: uncorrelateld 7.

the semileptonic decay rates intoand « is due to the dif- @ function of the Borel variabl# /> using theAnsatzin Eq.
ferent phase space. The decay intanesons is suppressed (20) for p,(s) andsy,= 1.4 GeV:. As expected the instanton
by the small value of the weakc(d) matrix elementV,y  contribution is particularly important for small values of the
~0.225. The spectral distributions of the invariant masses oBorel variable. In spite of the weak dependence of the sum
the K7 and ror sytems are given in Figs. 3 and 5. Their rule results onV ,’f, it is well known that radiative correc-
maxima are well below the masses of theand thes, and  tions could be large in this case. Therefore, we do not attach
also the forms are quite different from Breit-Wigner distri- great significance to the high stability of our results.
butions. The increase of the spectral ditributions is steeper In the zero width approximation one can obtain a sum rule
and the fall-off substantially faster than for the correspondingor the mass by performing the logarithmic derivative of the
Breit-Wigner forms. This is an effect of the total phase spacdight- and left-hand sides of E¢27) with respect toM ~2,
in the semileptonic decay. assuming thafp is independent oM ~2. In Fig. 7 we dis-

If the scalar current does not couple directly to the resoplay the logarithmic derivative of the left- and right-hand
nance but only to an uncorrelated meson pair, the decay ragides of the sum rul€28), again assuming thak, is inde-
is reduced by a factor two compared with the decay intgpendent of the Borel variable.
resonances, but nevertheless an enhancement near 0.8 andror s,.=1.4 GeV? there is a reasonable overlap be-
0.5 GeV is visible due to the total final state phase spsee
Figs. 3 and b With good statistics a discrimination between 2
the two extreme cases should be possible. This would adc
valuable information on the nature of the intriguing low ly-
ing scalar resonances. In reality things might be complicatec 16 |
by a coupling of the interpolating current 11 on the quark
level to a resonance as well as to an uncorrelated meson pai
In this case one has to construct a new densityand use it
instead of the densities in ERO) or (21), in order to calcu-
late the form factorgy(t). The procedure that follows is the
same.

in units of GeV’
[
T

=)

o
T
/
\

\
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APPENDIX A: EVALUATION OF THE TWO-POINT SUM )
RULES FIG. 7. Borel mass dependence of the Rtd&shed ling and
the LHS (solid line) of the sum rule generated by the logarithmic
In Fig. 6 we display the different contributions 9., as  derivative of Eq.(28) with respect toM ~2 for the case of the.
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0.086 T T

- Eq. (28) with respect toM 2, as a function of the Borel
mass, using theAnsatzin Eq. (200 for p,(s) and sy,
=1.2 Ge\?. We see that there is again a good overlap be-
0.04 - | tween the two sides of the sum rule in the Borel window
1.0=M?2<2.5 Ge\,. Since the mass of the particle is related
,,,,,,,,, with the square root of the LHS of this sum rule, from this
=7 figure we see that our result is compatible with,
0.02 | -7 . =0.5 GeV found in[2].

2 4
A% (GeV")

APPENDIX B: PERTURBATIVE AND NONPERTURBATIVE
CONTRIBUTIONS TO THE TWO- AND THREE-
POINT FUNCTIONS

In all this work we take into account the mass of the
-0.02 , , , strange quark at most squared and neglect the mass of the
o

1 L2 3 4 light quarks. For the scalar mesof) we consider the par-
M (GeV?)

ticular case ofx, since theo can be easily obtained from it
FIG. 8. Borel mass dependence Af . Solid curve: total con- by ne_glecting the strange quark_mass. 'I_'he perturbative con-
tribution; long-dashed: perturbative; dashed: quark condensate; doTtliIbutlons for the two-point functions defined in Sec. lll are
dashed: mixed condensate; dotted: instanton contribution. 3 (s— m2)2
C
oo(S)=g 29 (B1)
tween the two sides of the sum rule in the Borel window
0.9<M?<2 Ge\?, and this defines the range for the Borel and
variableM )’(2 in Eq. (29). Since all Borel variables are related 3
by Egs.(30) and(31), we obtain from the above range ap- _ o2
proximately 5<M2<15 Ge\2, 7(S) = gz (S—2my). (B2)
In the case ofr, similar results are obtained and in Fig. 8 ) o . )
we show[for s,,=1.2 Ge\? and the ansatz in E420) for The nonperturbative contributions including the quark and
p.(s)] that the instanton contributiofdotted ling is even ~ Mixed condensates are
more important in this case, giving a very stable result as a - m2 m2
function of the Bo_rel mass. The quark conden'sate and mixed K, (M?)=—mqq)e "M 1+ ﬁz( 1— ﬁz”
condensate contributioridashed lingare zero since they are
now proportional to the light quark mass, which we take (B3)
equal to zero. and
In Fig. 9 we show the left-hand sideHS) and the RHS
of the sum rule generated by the logarithmic derivative of

e 2
. o200 —  (SS)y Mg —
K(M?)=mge™ MM ((qq>+ — W(QQ>) ,
0.8 . . ' (B4)
/// where we have define@gso- Gg)=ma(qq). The instanton
06 - e ) induced contribution is given by
) /
\ / J—
N \ / . n > x? 2 2
> \ 4 K M2 - MZZZJ dx e X I(x—2 /4)7
8 \ /// (M%) 2mgm,, 2 (Xx=2°14)
2 04T \ / ] (B5)
2 \ //
5 I — _ _
£ \\ , wherez=M p, and we have introduced the average instanton
oz b AN / | size,p, and the instanton number density,given by[9]
. \\_//
=t mt, o= B6
n=5 fm™%, p=3 fm (B6)
o 1 1 1 _ _ . )
0 1 i G2V2 3 4 In Eq. (B5) ms andm, are the effective quark masses which
GV we take to beng;=400 MeV andm,=300 MeV.
FIG. 9. Borel mass dependence of the Rf8shed ling and The perturbative double spectral function is obtained by
the LHS (solid line) of the sum rule generated by the logarithmic using the Cutkosky rules and, in the case of the mesas
derivative of Eq.(28) with respect taM ~2 for the case of ther. given by
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P4 (Sp,Sx, )= 82—)\3’2[ — 25p Syt + M2y (Sp— Sy +1) + M2Sp(Sx—Sp+ 1) + MM X (M2(Sp— Sy —t) + M2(sx—Sp—t)
an

—(Sp—Sx) 2+ t(Sp %)) ] X O (Sp— MZ) O (Sy — Symin) O (Sxmax—Sx). (B7)
where
m2(—m2+m2+sp+1t) +mZsp— Spt+ (M2—sp) VA (M3, m2 ,t)
Sxmin= 2 (B8)
2mg
and

m2(—mZ+m2+sp+1t) +m2sp—spt— (M2—sp) YN (mZ,mZ 1)

2
c

(B9)

Sxmax— om
The nonperturbative contributions, including the quark and mixed condensates, which survive the double Borel transformation
; 2 2
in pp andpk are

me—ms me—mg  2me—mg (4m2+mmg— 2t)(my— my)  me—2mg

% 2 2 qa) e MM m2| m2 +
-
K+ (Mp,My.)=(qgje "o °< ¢ 8Mp 6M3 24MEM% 6M3

(mcms_Zt)(mc_ms)) ’ (BlO)

2np2
24M2ZM2

and the instanton induced contribution is given by
. 8p*t n (= (YyMZ—1)M}
K (MZ,MZ,t)z—__f drdsdu
AMo M D= o ) Y T a9y ME— 4ME 552

ru - 2 — 2
X e P (r+u)ef'ymcefaop eftAO/SMD, B11
NN w (BLY

where
p= Mo Mp—1) B12
O 1+4sy (B12)
and
(s+(1+4sy)t)M3
o= ANy (B13)
S+ (1+4sy)t—4Mxg
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