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Search for lepton-flavor-violating decays ofB mesons
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We have searched a sample of 9.6 milliBB events for the lepton-flavor-violating decaBs—he*u™,
B*—h"e'e", B"—h e"u™, andB"—h " u"u™, whereh is 7, K, p, andK*(892), a total of sixteen
modes. We find no evidence for these decays, and place 90% confidence level upper limits on their branching
fractions that range from 1.0 to 8310 ©.

DOI: 10.1103/PhysRevD.6511102 PACS numbés): 13.20.He, 11.30.Hv, 14.40.Nd

The standard model predicts that the branching fractionsearches for those inclusive decd{$ and also for the ex-
for the decayd—se"e” andb—su™ ™ will be small but  clusive decay8—KI*"l~ andB—K*(892) "I~ [2,3] that
nonzero, of order 10°. We have previously conducted would result from the quark-level processes. OtHers 6|
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have also searched for the exclusive decays. Upper limits are For those decay modes involving a charged kaon, we use
now close to the standard model predictions, and there ispecific ionization  E/dx) and time-of-flight information to
evidence foB—KI "I~ [6]. identify the kaon, cutting loosely3 standard deviationsf

In contrast, the standard model predicts that the topologithose variables deviate from the mean for kaons in the direc-
cally similar, but lepton-flavor-violating decays—se* u™* tion away from the mean for pions, and cutting hardeb to
and b—de“u™ vanish identically, as do the deca®® 2.2 standard deviations, depending on mydfiéhey deviate
—Xg 171" andB*— X 1717, These decays are predicted to on the side toward the pions.
occur in many theories “beyond the standard model,” for There are three main sources of backgroting
example multi-Higgs-boson extensidif, theories with lep-  —K®)y() y{)—|*1~ and otherB— y{)X decays;BB de-
toquarks[8], and theories with Majorana neutrinf@]. The  ¢ays other thaB— (X, with two apparent leptong@ither
recent evidencg¢lQ] that neutrinos mix, and therefore have reg| |eptons or hadrons misidentified as lepipmsid con-
mass, while not leading to predictions of observable rates fofinuum processes with two apparent leptons.
lepton-flavor-violating decays involving charged leptons, |n our previous search3], for B—~K®*)eTe™ and B
nonetheless heightens interest in them, as does the recentk *),,* ;= the backgrounds frony and ' were severe.
claim [11] of neutrinoless double beta decay. In the searches reported here they are much less of a prob-

While the underlying physics of lepton-flavor-violating lem, appearing only when particles are misidentified. Ex-
decays is very different from that of those decays mentionedmples ar8™ — K~ ¢, y—ete ™, with theK ™ misidentified
in the first paragraph, the experimental approach in searchings ax~, and thee™ misidentified as &~ ; B"—K™ ¢, ¢
for them is quite similar. We have therefore used the tech-—u* 1™, with the K~ misidentified asx™, and theu™
niques described in Ref3] to search forB—Ke*x™, B misidentified asr™; B~ —K™ ¢, y—e"e", with one of the
—K*e*u*, Bme*u”, andB—pe*u*, and also foB* e identified asu. To reduce these backgrounds, we re-
—h~efe*, h"e"u™, andh u*u*, whereh™ is K™, quired that a lepton candidate that passes identification crite-

K*~, 7, andp~. We have previously1] searched for the ria both fore™ and ™ only be considered as an electron
inclusive decayb—se*u~, obtaining a 90% confidence candidate. Also, we discarded a candidate reconstruction if

level upper limit B(b—se'u )+ B(b—se pt)<2.2 aW oppositely charged hadron-lepton pair, if interpreted as a

X 107°. The BaBar collaboration has also searched for, anéept(?n-lepton pair, hfi‘d 2 pair mass within 30 Mev Ef tPe
reported[5] limits on, the related exclusive decay§(B*  ©F ¥’ Mass, or if thee™ o™ pair, if interpreted either as” e
L KteTu)<0.8X107°, B(B'—K%*uT)<4.1X 1078, or ,u,, IO had a pair mass within 50 MeV af or 40 Me\I/
B(B*—K**e* 1 *)<8.0x10°%, and B(BO— K*%* 1) of ¢'. With these requirements, backgrounds frgnand ¢
<3.3x10°. werde rendered negligible, less than 0.1 event per decay
ode.

We discriminate between signal events and the remaining
two background sources using an unbinned maximum likeli-
region. The data sample consists of 9.2 ¥t the reso- hood method, including four variables in the likelihood func-

tion. (We select events for consideration by first applying

nance, corresponding to 9.6 milli@B events, and 4.5 ' o566 cuts in those variablgsTo help distinguish between
at a center-of-mass energy 60 MeV below the resonance. The | and the back d froBB. ieptonic d
sample below the resonance provides information on thg'gna and the background 1robis semileptonic decays, we

back d f . . - = use the event missing enerdmiss; Since events with lep-
ackground from continuum  processes” e —qd,d  gns from semileptoni® or D decay contain neutrinos, and

—u,d,s,c, and was used as a check on our Monte Carlgy, s il have missing energy. We apply loose cuts2.0
simulation of this ba+cquound. o <Emiss<+2.0 GeV. To help distinguish between signal and

Summ_mg overe’u  and e Ko, We search forB continuum events, we use a Fisher discriminant, a linear
—Ke*u* in both the K* and K° modes, and forB  combination ofR, (the ratio of second and zeroth Fox-
—K*e*u" intheK*°—K* 7~ andK®7° modes and in the  Wolfram moment§13] of the everlt, coss, (the cosine of the
K**—K*7° andK°7* modes, a total of 6 experimentally angle between the thrust axis of the candidBtand the
distinct final states(Throughout this article, charge conju- thrust axis of the rest of the evens (the sphericity, and
gate modes are implied.Similarly, we search forB  cosg (the cosine of the production angle of the candidate
—me"u* in both the 7* and #° modes, and forB  relative to the beam direction In particular, F=R,
—pe“u” inboth thep™ — 7 7° andp®— 7" 7w~ modes, 4  40.117cos|+0.779(1—S) +0.104coshg|, with values
distinct final states. In the like-sign seaBh —h~1"1", we  ranging from 0.0 to+2.0. The coefficients of all terms but
search for five hadronic final statee (=K™; 7 ; K*~ R, were determined by the standard Fisher discriminant pro-
—K™ 7% K°r7; and p~—m #°) for each ofe’e”,  cedurd14]. The relative weight given t&, was determined
e"u’, andu” ™, 15 distinct modes. Th® candidates are  visually, from a scatter plot oR, vs the Fisher discriminant
detected via th&K’—K2— 7+ 7~ decay chain;z’ candi- from the other three variables. This Fisher discriminant is
dates viar®— y7y.

The data used in this analysis were taken with the cLed"
detectof12] at the Cornell Electron Storage Ri(GESR), a
symmetrice”e™ collider operating in thé' (4S) resonance

2Throughout this article, the symbolg and ¢’ meanJ/¢(1S)
Throughout this article, the symb#l* meansK* (892). and (2S), respectively.
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=0.58(B —m e“u™), and similarly for thep®,p~ pair.
Again, we impose those constraints in the maximum likeli-
hood procedure, using information from both™ and 7°
modes but quoting the “average” branching fracti¢iiB
—me*uT)=09B(B —7m e u*)+2B(B°— 7l u™)],
and similarly with thep®p~ pair. In all cases, byB(B
—he*u®) we mean the sum B(B—he'u )+ B(B
—he u™).

Our search is thus for four different lepton-flavor-
violating final statese™u ™, ete™, e u™, andu™ u™; with
four different hadronic final statek, K*, , p; a total of 16
decays. For each of the 16 decays, we maximize the likeli-
hood £, as a function of signal branching fraction, by vary-
ing the yields of the two backgroundd$n so doing, we con-
strain both backgrounds to be non-negajivEhe central
value obtained for the signal is that giving the largest likeli-
hood. The statistical significance of the signal is the square
root of the difference in 218 between the maximund and
Py R el - the £ with signal branching fraction set to zero. If the largest
Emlsso(Gev) . likelihood corresponds to a negative signal, we assign a sig-

nificance of zero. We find no compelling evidence for any of

FIG. 1. Distributions in(@) Mg (b) AE, (c) F, and(d) E,;es  the decays. All buB—K*e™ ™ have a statistical signifi-
for Monte Carlo samples of signal ever{lid), BB background ~cance of less than 1.2 standard deviations, wtide
events(dotted, and continuum background everttished) for the ~ —K*e™ ™ has a statistical significance of 2.0 standard de-
search foB—K®)e* ™. The vertical scale is arbitrary. viations. In 16 searches, the probability that one of the 16

will fluctuate up by at least 2 standard deviations-i$/3, so

identical to the one we used in R¢B]. We apply loose cuts, our result is consistent with all branching fractions being
0.0<F<1.08. Our third and fourth variables used in the zero, and no claim for a signal is being made.
likelihood function are the signal-candideBereconstruction We obtain 90% confidence level upper limits on the 16
variables conventionally used for decays from Mé4S): branching fractions by integrating the likelihoods, as a func-
beam-constrained masM cun= VEZeari~ P2ang @nd AE  tion of the assumed branching fraction, from zero to that
=Eand— Epeam OUr resolution inM .,nqis 2.5 MeV, and in  value which gives 90% of the integral from zero to infinity.
AE, 20 MeV. We apply loose cuts, 52WM., Ve increase the upper limit so found by 1.28 times the esti-
<5.30 GeV and-0.25<AE<+0.25 GeV. mated systematic error, which includes contributions from

We thus have a likelihood function that depends on fouruncertainty in efficiency for detecting the signal and uncer-
variables:M .ung AE, Emiss, andF. We vary the branching tainty in the PDFs. The upper limits are increased by typi-
fraction for the signal and the yields for the two back-cally 12% from these systematic error considerations. Re-
grounds, to maximize the likelihood. Probability density Sults are given in Table I. The limits on decaysitK range
functions(PDF9 are obtained from Monte Carlo samples of from 1.0 to 2.0< 10" °, while those on decays {o,K* range

J— — 6
continuum eventsBB events, and signal events. For signal from 2.6 t0 8.3<10"". _
events, lacking a compelling theoretical model, we use As a check on the correctness of our continuum back-

3-body phase space, with final-state radiation as given by th@ound PDFs, obtained from Monte Carlo, we have analyzed
CERNLIB subroutinePHOTOS[15]. the off-resonance data, both alone and with 4 randomly cho-

Correlations among the four variables are weak, both fos€n Signal Monte Carlo events added. We found no evidence

signal and backgrounds, and we ignore them. Distribution§f "Signal” in the off-resonance data, and the correct amount
in the four variables, for signal and the two backgrounds, ar@f Signal(average of 4.25, in 100 “toy experiments” for each
shown forB—K®)e* 1 in Fig. 1. Distributions forB* of the 16 modeswhen Monte Carlo signal events were
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—hI*I" are similar. added.
For the decays whose quark-level procesb-isse” ™, _We have performed two checks on the correctness of our
we assume the branching fraction relations(B~ BB background PDFs. In the first, we added 4 randomly

—at TV R(RO_.KOat , T - ket T chosen signal Monte Carlo events to the on-resonance data,
jK—% ’M—ZO lf(BI _).K © ’u ) and B(B. ._)K € n ). and reanalyzed the data, performing 100 such “toy experi-
=B(B"—K*"e" "), imposing the equalities as constraints ments” on each of the 16 decay modes. We found an average
in the maximum likelihood progedure. T_hus our reful'gs hereof 4.0 signal events, in agreement with the number added.
are for the average branching fractiogB(B—Ke“n™)  1his check shows that whatever bias is present in our analy-
=0.9B(B"—K e*u")+B(B°—K% 17)], and simi- sjs approximately cancels whatever real signal is present, an
larly with K* replacingK. For the decays whose quark-level ynlikely coincidence unless both are small. In the second
process is b—de“u*, we assumeB(B°—7le*u™) check, we summed the on-resonance data sample for the 16
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TABLE I. For each of 16 decay modes, the statistical signifi- 900F T T b| i
cance of the signal, and the 90% confidence level upper limit on the swf )
branching fraction, including systematic error. In the modes 700 =
—he"u™, the limit quoted is on thesum B(B—he" u ™)+ B(B 600 f E
—he u™). 500 f E

aof E
Decay mode Significance Upper limit a0 f E
of signal (10°9) 200F =
_ @ 100 =
B—Ke*u™ 0.00 1.6 5 ok . o l Levenloninl L,
K*er,ui 2 0o 6.2 5 5.20 Mc,if(?:ew 530 -02 -0. AE(()GeV) 01 02
metpu” 0.00 1.6 £ rof (o) |
pe“u”* 0.60 3.2 sooE-
B*—K ete® 0.00 1.0 500:
K* ete" 0.00 2.8 :
mete’ 0.00 1.6 wwr
pete’ 110 2.6 300 -
Bf"—K etu" 0.00 2.0 200
K* 7e+lud+ 0.00 4.4 100 ;_ .
aetu” 0.00 1.3 L AT - ST
o+ 4 [1] 035 0.50 0.75 1.00 -1
p e u 0.30 3.3 ¥ Eniss (GeV)
B" =K u*tu* 0.00 1.8 )
K* 't p* 0.50 8.3 FIG. 2. Results of the fit to the on-resonance data for the sum of
ot 0.0(7 1'4 the 16 modes with no signal allowed and the continuum background
_ 'u+ ’u+ 1'00 5'0 constrained to the scaled off-resonance vyield. Distribution&jin
[Ty . .

decay modes, and fitted it, with no signal allowed in the fit,
and with the continuum background constrained to the scale
off-resonance yield. In Fig. 2 we show the results of the fitI

for the distributions ilM ¢5ng, AE, F, andEss. Agreement

is good. If instead we allowed signal in the fit and left the

continuum background unconstraingd in our actual analy-
sis), we found 4.0573 signal events for the sum over 16
modes. From these checks we conclude that any bias

M cana: (B) AE, (¢) F, and(d) E,ss. Points are on-resonance data;
solid histogram is the fit.

pton-flavor-violating decays of the forB—hll. We find

o evidence for any such decay, and place 90% confidence
evel upper limits on the branching fractions that range from
1.0 to 8.3<10° 8. BaBar has limits on two of these decays
[5], a factor of two more restrictive than ours.
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