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Isotropic representation of the noncommutative 2D harmonic oscillator
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We show that a 2D noncommutative harmonic oscillator has an isotropic representation in terms of com-
mutative coordinates. The noncommutativity in the new mode induces energy level splitting and is equivalent
to an external magnetic field effect. The equivalence of the spectra of the isotropic and anisotropic represen-
tation is traced back to the existence of the SU~2! invariance of the noncommutative model.
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Recent results obtained in the framework of nonpertur
tive string theory@1,2#, have boosted interest in a deep
understanding of the role played by noncommutative geo
etry in different sectors of theoretical physics@3#. The inclu-
sion of noncommutativity in quantum field theory can
achieved in two different ways: via a Moyal * product on th
space of ordinary functions, or by defining the field theory
a coordinate operator space that is intrinsically noncomm
tative@4,5#. The equivalence between the two approaches
been nicely described in@6#. While formally well defined,
the operator approach is hard to implement in explicit cal
lations. The analysis of the noncommutative effects is u
ally performed by expanding the Moyal * product perturb
tively, and taking into account additional vertices. In order
get a deeper understanding of the way in which noncom
tativity affects quantum field theory one tries to understa
these effects first in exactly solvable models of noncomm
tative quantum mechanics@7#.

The difficulty of performing explicit calculations encoun
tered in the operator space formulation of quantum fi
theory corresponds, in quantum mechanics, to the problem
formulating a Schro¨dinger equation directly in terms of non
commutative coordinates. The path to follow is to introdu
the noncommutativity of coordinates and momenta throu
the Moyal * product@9#. It turns out that the effect of intro
ducing the * product can be described by suitable shifts
the argument of the wave function@10#, or of the Hamil-
tonian @11#. In order to properly treat the noncommutativ
variables one needs two commuting Heisenberg alge
@8,12#.

In this paper we shall follow an approach where the se
noncommutative coordinatesxi ,pi is expressed as a linea
combination of the canonical variables of quantum mech
ics a i ,b i .

As an explicit example we shall study the case of a
noncommutative harmonic oscillator. The main result of o
work is the description of a the noncommutative system
terms ofnewset of transformations among noncommutat
and canonical variables, which we shall name theisotropic
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representation. In this mode, the noncommutative 2D ha
monic oscillator has a simple and clear physical interpre
tion. This representation also exhibits rotational symme
and leads, in a simple way, to the form of the generator
rotations for the noncommutative representation. Finally,
shall explain the equivalence of the spectra in the two diff
ent representations in terms of an SU~2! symmetry.

In order to illustrate the general procedure we start w
the set of coordinates and momenta satisfying extended c
mutators as@13,14#

@xk ,xj #5 iQk j , ~1!

@pk ,pj #5 iBk j , ~2!

@xk,pj #5 idk
j , ~3!

with Qk j andBk j antisymmetric matrices characterizing th
generalized noncommutativity of the phase space geome

We are going to define linear transformations from t
noncommutative set of coordinates (xi ,pi) to acommutative
set of canonically conjugate coordinates (a i ,b i). The rela-
tion of noncommutative coordinates to conjugate ones
given by

xi5ai j a j1bi j b j , ~4!

pi5ci j b j1di j a j , ~5!

wherea,b,c,d areN3N transformation matrices. Before go
ing into details of a particular model one needs to determ
the conditions that the transformation matrices should sati
The resulting conditions from~1!,~2!,~3! written in matrix
form are

abT2baT5Q, ~6!

cdT2dcT52B, ~7!

caT2bdT5I . ~8!

Equations~6!,~7!,~8! determine the structure of the tran
formation matrices. Let us apply the above procedure in t
dimensions. As a model we choose a noncommutative
monic oscillator described by the Hamiltonian
©2002 The American Physical Society01-1
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H[ 1
2 @~pi !

21~xi !
2#. ~9!

For simplicity, we have chosen the oscillator mass and
quency to be unity. The 2D representation forQ and B is
Q i j [ue i j , Bi j [Be i j . Let us assume diagonality ofa and
c as ai j [a( i )d i j , ci j [c( i )d i j . With these assumptions, Eq
~8! imposes the requirement that diagonal elements of
matricesb and d must be zero. We are left with eight un
known parameters and six equations. Additional equati
can be obtained by requiring that themixed term in the
Hamiltonian be zero. This leads to

aTb1dTc50, ~10!

which gives two more equations than we need.
The complete set of solutions turns out to be

c115
1

u
~na111a22Antk!, ~11!

c2252
1

u
~ ta221a11Antk!, ~12!

a11
2 5

u

2nF11
1

A124ntA2G , ~13!

a22
2 5

u

2t F211
1

A124ntA2G , ~14!

A[2
Antk

nt~11k1u2!
, k[12Bu, ~15!

tp521, nq521. ~16!

Inserting Eqs.~11!,~12!,~13!, and~14! in the Hamiltonian,
one finds

H5 1
2 V1@~a1!21~b1!2#1 1

2 V2@~a2!21~b2!2#, ~17!

V1[ ~2n!21@u1B1ntA41~u2B!2#, ~18!

V2[2 ~2t !21@u1B2ntA41~u2B!2#. ~19!

The Hamiltonian~17! is the representation of a noncomm
tative 2D harmonic oscillator in terms of two 1D commut
tive, anisotropic, harmonic oscillators. We shall call this d
scription theanisotropic representation. The introduction of
the parametersn,t,p,q permits us to consider the comple
range of values of the noncommutative parameterB, assum-
ing u.0. In fact, the square root in Eq.~11! requiresnt(1
2Bu).0, which leads to two different ranges: one whe
n5t51, B,1/u, and the other wheren52t51, B.1/u.
Our result agrees with@8# where the two different regions ar
described ask.0 andk,0. At this point, we shall prove
the existence of a different set of solutions for Eqs.~6!,
~7!,~8! which give a particularly nice representation of t
2D noncommutative harmonic oscillator in terms of aniso-
tropic oscillator. Let us choose the matricesa andc diagonal,
10770
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but with asingleeigenvalue each. In order to maintain una
tered the total number of free parameters, the matricesb and
d will be chosenantisymmetric:

ai j [ad i j , ci j [cd i j , ~20!

bi j [be i j , di j [de i j . ~21!

The set of Eqs.~6!,~7!,~8! enables us to solve for three out o
the four parameters as

b52 u/2a , ~22!

c5 ~2a!21~16Ak!, k[12uB, ~23!

d5 ~a/u!~17Ak!. ~24!

The above solutions turn Eq.~8! into

~u1B!50. ~25!

Thus, Eq.~8! cannot be used to determine the remaini
parametera. At most it can impose a relation between p
rametersB andu. Our intention is to work in full generality
and, therefore, we shall assumeu1BÞ0 and drop the con-
dition ~10!. Thus, the Hamiltonian~9! reads

H5h1~a i !
21h2~b i !

22
u1B

2
e i j a ib j , ~26!

h1[
a2

2 F11
1

u2~17Ak!2G , ~27!

h2[
u2

8a2 F11
1

u2~16Ak!2G . ~28!

One can recognize Eq.~26! as the Hamiltonian for the
commutative, isotropic, 2D harmonic oscillator with anad-
ditional term proportional to the two-dimensional angul
momentumL5e i j a ib j . Thus, we shall name this represe
tation of the noncommutative 2D harmonic oscillator theiso-
tropic representation. The term linear in the angular momen
tum remains from the noncommutativity and thus it
important for understanding noncommutative effects. A sim
lar term, in quantum mechanics, results from the coupling
the angular momentum with an external magnetic field.

To complete the solution it is appropriate to work in pol
coordinates where the Schro¨dinger equation reads

Fh2S 1

r

]

]r
r

]

]r
1

1

r 2

]2

]f2D2h2r 21
i

2
~u1B!

]

]fGc~r ,f!

5Ec~r ,f!. ~29!

Equation~29! admits solutions in terms of generalized L
guerre polynomials as

cnrm
~z,f!5Nzumu/2Lnr

umu~z!exp~2 1
2 z1 imf!,

z[A~h1/h2!r 2 , ~30!
1-2
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Ln
s~z!5z2sexp~z!

dn

dzn@zn1sexp~2z!#, ~31!

whereN is the proper normalization constant,nr is the radial
quantum number, andm is the magnetic quantum numbe
The spectrum of the system is

Enrm
52Ah1h2~2nr1umu11!1 1

2 m ~u1B! ~32!

with the quantum numbers taking valuesnr50,1,2, . . . , m
50,61,62, . . . . Thespectrum~32!, in the special caseB
50, was studied in@10#.

Using the definitions~27!,~28! one finds the frequency in
the isotropic case to be

v[2Ah1h25 1
2 A41~u2B!2. ~33!

Equation~33! shows thatv is independent of the paramet
a. This parameter simply induces a harmless~global! rescal-
ing of the radial coordinate.

We point out that the spectrum~32! clearly displays the
fact that the noncommutativity parameters play the same
as an external magnetic fieldH[u1B. The result explains
the choice made in@9# as corresponding to the absence of t
magnetic field and thus to energy level degeneracy.

As we have shown, solutions~22!,~23!,~24! and
~11!,~12!,~13!,~14! lead to two representations of the no
commutative harmonic oscillator. We would like to show th
the spectra of the two modes are identical. Let us rewrite
~32! in the following way:

En1n2
5@v1~u1B!/2#~n11 1

2 !1@v2~u1B!/2#

3~n21 1
2 !, ~34!

nr[n1 ~m2umu!/2, m[m12n2 . ~35!

The energy spectrum~34! matches that of the Hamiltonia
~26!, provided one identifies the parameters as

v5 1
2 ~V11V2!, u1B5V12V2 . ~36!

The advantage of the representation in terms of the isotr
oscillator is that it offers a clear identification of the nonco
mutativity as a magnetic field effect. On the other hand,
equivalence to the anisotropic representation shows tha
magnetic field can be simulated by the frequency differe
of the anisotropic oscillators. A similar conclusion in a d
ferent context and in terms of chiral oscillators was found
@15,16#.

The equivalence of the spectra displays that the two
scriptions of the noncommutative harmonic oscillator a
equivalent, in spite of the asymmetry with respect to ro
tions. The generator of rotations, i.e., angular momentum
defined by the commutators

@L,ak#5 i ek ja j , @L,bk#5 i ek jb j . ~37!

Therefore, our definition of the isotropic representation
motivated by the fact that the Hamiltonian~29! commutes
with L. Let us express the angular momentum operato
10770
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terms of the noncommutative coordinates (x,p) with the
help of Eqs.~22!,~23!,~24!. One finds that the noncommuta
tive form of L, call it J, is

J5
1

k S e i j xipj1
u

2
pi

21
B

2
xi

2D . ~38!

The additional terms take into account the noncommutativ
in u andB. Equation~38! has the form found in@8#. J is the
representation of the angular momentum in the space of n
commutative coordinates. In fact, it satisfies

@J,xk#5 i eklxl , @J,pk#5 i eklpl . ~39!

In both representations the angular momentum comm
with the Hamiltonian. Thus, both commutative~in terms ofa
andb) and noncommutative~in terms ofx andp) represen-
tations are isotropic.

Let us return, now, to the anisotropic representation.
shall call the canonical coordinates of this representa
Qi ,Pi for easier distinction from other representations. R
tations are still generated by the angular momentum oper
given byL5e i j Qi Pj . On the other hand, one can verify th
@H,L#Þ0 implies the absence of rotational symmetry. T
isotropic and anisotropic representations have different s
metry properties with respect to rotations. Therefore, ro
tional symmetry cannot cause the equivalence of their sp
tra. We would like to identify the symmetry which leaves th
spectra unchanged. For this purpose, let us express the a
lar momentum operator of the isotropic representation
terms of the coordinatesQi and Pi . We write down the
relations among the coordinates of the two representatio

a15
1

A2
S h2

h1
D 1/4

~Q12P2!, a252
1

A2
S h2

h1
D 1/4

~Q22P1!,

~40!

b15
1

A2
S h1

h2
D 1/4

~Q21P1!, b252
1

A2
S h1

h2
D 1/4

~Q11P2!.

~41!

Transforming the angular momentum operator of the i
tropic representation into the coordinate system (Qi ,Pi), and
renaming itL̂, we get

L̂5 1
2 ~Q2

21P2
22Q1

22P1
2!. ~42!

Furthermore, one can define additional operatorL̄ as

L̄52~Q1Q21P1P2!. ~43!

One can verify that the operatorsL,L̂,L̄ form an SU~2!
algebra@12#. The equivalence of the spectra in the anis
tropic and isotropic representations must, therefore, be
result of the invariance of the Hamiltonian with respect
the above SU~2! group. To show the SU~2! invariance of the
1-3
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BRIEF REPORTS PHYSICAL REVIEW D 65 107701
Hamiltonian let us calculate the sum of the squares of
three operatorsL,L̂,L̄ in the anisotropic representation. On
finds

L21L̂21L̄25 1
4 @Qi

21Pi
2#221[C221. ~44!

The result shows the existence of the operatorC which per-
mits the following expression of the Hamiltonian:

H5 1
2 ~V11V2!C2 1

2 ~V12V2!L̂. ~45!

The expression~45! shows that the set of commuting oper
tors needed to describe the spectrum isH,C,L̂. Equation
~45! exhibits the representation invariant SU~2! symmetry of
the Hamiltonian. The eigenvalues of these operators ca
described in terms of two quantum numbersn2 and n1 ,
associated with the operatorsQ2

21P2
2 and Q1

21P1
2, respec-

tively. Choosing a representation corresponds to writing
operatorsC andL̂ in terms of the appropriate coordinates.
doing so,L̂ is the angular momentum operator in the isot
pic representation assuring rotational symmetry. One
verify that Eq.~45! reproduces Eqs.~26! and ~9!.

In this paper we have shown the existence of an isotro
representation of the noncommutative harmonic oscilla
which goes hand in hand with the already known anisotro
representation. These two representations are differen
seen from the point of view of rotational symmetry. Th
reason for this symmetry breaking can be traced back to
choice of the ansatz for the transformation matrices conn
,’’

d.

d.

r-

10770
e

be

e

-
n

ic
r

ic
if

e
t-

ing commutative and noncommutative coordinates. Differ
eigenvalues of the transformation matrices break rotatio
symmetry explicitly. Nonetheless, the two representatio
describe the same physical system, as the equivalence o
spectra shows. The symmetry of the spectrum, for any ch
of the ansatz, is the SU~2! symmetry described in the discus
sion above. The isotropic representation has the advantag
giving clear physical meaning to the effect of noncommu
tivity as being equivalent to an external magnetic field. Th
may be other representations of the noncommutative sys
corresponding to different solutions for the transformati
matrices, but they should all be equivalent to one of the t
forms of the Hamiltonian described in this paper.

Finally, we would like to correct the generally accepte
but not completely appropriate, use of the term magne
field when referringonly to the noncommutative paramete
B. This is motivated by the fact that the noncommutati
momentum turns into a covariant one in terms of canon
coordinates. However, the role of coordinates and mome
is equivalent in phase space, and thus it is clear that
parameteru plays the same role asB. This is displayed in
Eq. ~26!. Therefore, the parameteru equally deserves the
name of ‘‘magnetic field’’@16#.

We would like to thank Professor A. Jellal and Profess
R. Banerjee for useful discussions, and Professor M. Cre
manno for providing us a copy of the original paper by Fo
where the 2D harmonic oscillator coupled to a magnetic fi
was quantized@17#.
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