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Isotropic representation of the noncommutative 2D harmonic oscillator
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We show that a 2D noncommutative harmonic oscillator has an isotropic representation in terms of com-
mutative coordinates. The noncommutativity in the new mode induces energy level splitting and is equivalent
to an external magnetic field effect. The equivalence of the spectra of the isotropic and anisotropic represen-
tation is traced back to the existence of the(3Unvariance of the noncommutative model.
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Recent results obtained in the framework of nonperturbarepresentation In this mode, the noncommutative 2D har-
tive string theory[1,2], have boosted interest in a deeper monic oscillator has a simple and clear physical interpreta-
understanding of the role played by noncommutative geomtion. This representation also exhibits rotational symmetry
etry in different sectors of theoretical phys{@&. The inclu- and leads, in a simple way, to the form of the generator of
sion of noncommutativity in quantum field theory can berotations for the noncommutative representation. Finally, we
achieved in two different ways: via a Moyal * product on the shall explain the equivalence of the spectra in the two differ-
space of ordinary functions, or by defining the field theory onent representations in terms of an @WUsymmetry.

a coordinate operator space that is intrinsically noncommu- In order to illustrate the general procedure we start with
tative[4,5]. The equivalence between the two approaches haie set of coordinates and momenta satisfying extended com-
been nicely described if6]. While formally well defined, mutators a13,14
the operator approach is hard to implement in explicit calcu- .
lations. The analysis of the noncommutative effects is usu- [Xi:Xj1=10, @)
ally performed by expanding the Moyal * product perturba- .

tively, and taking into account additional vertices. In order to [Pw.P]=1By, 2
get a deeper understanding of the way in which noncommu- [XK,pi]=i &% &)
tativity affects quantum field theory one tries to understand Bl I

these effects first in exactly solvable models of noncommuyith 0,; and B, antisymmetric matrices characterizing the
tative quantum mechani¢g]. generalized noncommutativity of the phase space geometry.
The difficulty of performing explicit calculations encoun- ~ \we are going to define linear transformations from the
tered in the operator space formulation of quantum fielchoncommutative set of coordinates (p;) to acommutative
theory corresponds, in quantum mechanics, to the problem @fet of canonically conjugate coordinates; (B)). The rela-

formulating a Schrdinger equation directly in terms of non- tion of noncommutative coordinates to conjugate ones is
commutative coordinates. The path to follow is to introducegiven py

the noncommutativity of coordinates and momenta through

the Moyal * product9]. It turns out that the effect of intro- Xi=ajja;+ by B, (4)
ducing the * product can be described by suitable shifts of
the argument of the wave functidid0], or of the Hamil- Pi=CijBj+dije;, )

tonian [11]. In order to properly treat the noncommutative

variables one needs two commuting Heisenberg algebra¥herea,b,c,d areNxN transformation matrices. Before go-
[8,12. ing into details of a particular model one needs to determine

In this paper we shall follow an approach where the set othe conditions that the transformation matrices should satisfy.
noncommutative coordinates ,p; is expressed as a linear |N€ resulting conditions front1),(2),(3) written in matrix

combination of the canonical variables of quantum mechan{Orm are

ics a;, B . ab’-ba'=0@ 6
As an explicit example we shall study the case of a 2D ' ©

noncommutative harmonic oscillator. The main result of our cd™—dcd’™=—-B )

work is the description of a the noncommutative system in ’

terms ofnewset of transformations among noncommutative ca —bdT=1. (8)

and canonical variables, which we shall name ig@ropic
Equations(6),(7),(8) determine the structure of the trans-
formation matrices. Let us apply the above procedure in two
*Electronic address: anais@ictp.trieste.it dimensions. As a model we choose a noncommutative har-
Electronic address: spallucci@trieste.infn.it monic oscillator described by the Hamiltonian
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H=1[(p))2+(x)?]. (9) but with asingleeigenvalue each. In order to maintain unal-
' ' tered the total number of free parameters, the mathcasd

For simplicity, we have chosen the oscillator mass and fred Will be chosenantisymmetric
quency to be unity. The 2D representation fdrand B is
0Oi;=0€;, Bjj=Bg;. Letus assume diagonality afand

C asa;;=ay)djj, Cij=cC(;)d;j . With these assumptions, Eq.
(8) imposes the requirement that diagonal elements of the
matricesb andd must be zero. We are left with eight un- ¢ set of Egs(6),(7),(8) enables us to solve for three out of
known parameters and six _equations. Addmonal_equatlonﬁm four parameters as

can be obtained by requiring that thmixed term in the

aianéij s Cijzcéij , (20)

biijéij , d”EdE” (21)

Hamiltonian be zero. This leads to b=— 6/2a, (22
T Ta_
a'b+d'c=0, (10 c=(2a) Y1+ Vx), x=1—0B, 23
which gives two more equations than we need. _
The complete set of solutions turns out to be d=(a/6)(1% k). (24)
1 The above solutions turn E¢B) into
C11= Tg(nall"' axntx), (13)
(6+B)=0. (25)
1 — Thus, Eg.(8) cannot be used to determine the remaining
Co2= "~ T9<ta22+ auVnte), (12 parametera. At most it can impose a relation between pa-
rametersB and #. Our intention is to work in full generality
5 1 and, therefore, we shall assumie-B#0 and drop the con-
as,=—|1+ ——|, 13 " _ oo
1= 55 i (13)  dition (10). Thus, the Hamiltoniart9) reads
) 5 6+B
1 H=hi(aj)*+hy(B8) — —5—&j@iBj, (26)
aoy= 5| — 1+ ——5|, (14) 2
2t V1—4ntA2
a2 1
— hi=— 1+EZ(1:&)2, 27)
A=—————1, k=1-B9, (15)
nt(1+ «+ 69) 2
h,=~— 1+i(1+&)2 (29
tp=—1, ng=-1. (16) 2 8a’® 6> " '
Inserting Egs(11),(12),(13), and(14) in the Hamiltonian, One can recognize Eq26) as the Hamiltonian for the
one finds commutative, isotropic, 2D harmonic oscillator with ad-

ditional term proportional to the two-dimensional angular
H= 3 Qq[(a1)?+(B1)?]+ 3 Qo[ (22)?+(B2)%], (17)  momentuml = ;@ 3;. Thus, we shall name this represen-
tation of the noncommutative 2D harmonic oscillator ibe

Q;=(2n) " 6+B+nty4+(6—B)7], (18)  tropic representationThe term linear in the angular momen-
tum remains from the noncommutativity and thus it is
Q,=—(2t) [ 6+B—nty4+(6—B)?]. (19 important for understanding noncommutative effects. A simi-

lar term, in quantum mechanics, results from the coupling of
The Hamiltonian(17) is the representation of a noncommu- the angular momentum with an external magnetic field.
tative 2D harmonic oscillator in terms of two 1D commuta-  To complete the solution it is appropriate to work in polar
tive, anisotropic, harmonic oscillators. We shall call this de-coordinates where the Sclidinger equation reads
scription theanisotropic representationThe introduction of
the parameters,t,p,q permits us to consider the complete d
range of values of the noncommutative paramstesissum- ip
ing 6>0. In fact, the square root in EqL1) requiresnt(1
—B#)>0, which leads to two different ranges: one where =Ey(r,¢). (29
n=t=1, B<1/6, and the other whera=—t=1, B>1/6. . . . . .
Our result agrees witf8] where the two different regions are Equation(29) ad_m|ts solutions in terms of generalized La-
described asc>0 and k<0. At this point, we shall prove 9U€rre polynomials as
the existence of a different set of solutions for E¢B),

i
—h,r?+ 5(6+B)

19 9 1 92
2

T wr.é)

. . . ) . = 2y |m| _ Ll
(7),(8) which give a particularly nice representation of the Yn,m(2,¢) =NZ™ Lo (2)exp(— 2z+imd),
2D noncommutative harmonic oscillator in terms ofiiao-
tropic oscillator. Let us choose the matriceandc diagonal z=+/(hy/hy)r?, (30
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. - d, . terms of the noncommutative coordinatesp) with the
La(2)=2z %exp(2) ﬁ[z“ *exp(—2)], (3)  help of Eqs.(22),(23),(24). One finds that the noncommuta-
tive form of L, call it J, is
whereN is the proper normalization constant, is the radial 1 ) B
quantum number, anth is the magnetic quantum number. ooy 82 P2
The spectrum of the system is J PR Pt 2P * 25| (38)

Enm=2vVhiha(2n,+|m|+1)+;m(6+B) (320  The additional terms take into account the noncommutativity
in # andB. Equation(38) has the form found if8]. J is the

with the quantum numbers taking values=0,1,2 ..., m  representation of the angular momentum in the space of non-
=0,£1,+2,... . Thespectrum(32), in the special casB  commutative coordinates. In fact, it satisfies
=0, was studied if10].

Using the definition$27),(28) one finds the frequency in [Ix=ieqX, [J,pl=Ii€eqp - (39

the isotropic case to be
In both representations the angular momentum commutes
w=2hih,=3\4+(6-B)° (33 with the Hamiltonian. Thus, both commutatitia terms ofa
and ) and noncommutativén terms ofx andp) represen-
tations are isotropic.
Let us return, now, to the anisotropic representation. We
shall call the canonical coordinates of this representation
i, P, for easier distinction from other representations. Ro-
tions are still generated by the angular momentum operator
given byL = €;;Q;P; . On the other hand, one can verify that
[H,L]#0 implies the absence of rotational symmetry. The
isotropic and anisotropic representations have different sym-
metry properties with respect to rotations. Therefore, rota-
tional symmetry cannot cause the equivalence of their spec-
tra. We would like to identify the symmetry which leaves the
0'spectra unchanged. For this purpose, let us express the angu-
lar momentum operator of the isotropic representation in
E, o =[w+(6+B)/2](n.+3)+[w—(6+B)/2] terms of the coordinate®; and P;. We write down the
S relations among the coordinates of the two representations:

Equation(33) shows thatw is independent of the parameter
a. This parameter simply induces a harmlég®bal) rescal-
ing of the radial coordinate.

We point out that the spectruii®2) clearly displays the
fact that the noncommutativity parameters play the same rol
as an external magnetic field= 6+ B. The result explains
the choice made if9] as corresponding to the absence of the
magnetic field and thus to energy level degeneracy.

As we have shown, solutions(22),(23),(24) and
(11),(12),(13),(14) lead to two representations of the non-
commutative harmonic oscillator. We would like to show that
the spectra of the two modes are identical. Let us rewrite E
(32) in the following way:

X(n_+3), (34)
1 /h 1/4 1 (h 1/4
n=n,(m—[m)/2, m=m,—-n_. (35 011:E<h—i> (Q1—Py), az=—ﬁ(h—j> (Q2—Py),
The energy spectrur84) matches that of the Hamiltonian (40
(26), provided one identifies the parameters as
—1(04+0Q,), 6+B=0;-0 (36) 1 [(hy) 1 [(hy)™
0=yt ), 6+B={lam ), = 55lh,) QPO B=— 5[] QP
2 2
The advantage of the representation in terms of the isotropic (41)

oscillator is that it offers a clear identification of the noncom-

mutativity as a magnetic field effect. On the other hand, the Transforming the angular momentum operator of the iso-

equivalence to the anisotropic representation shows that theopic representation into the coordinate syst&n,p;), and

magnetic field can be simulated by the frequency diﬁerenc‘?enaming itt we get

of the anisotropic oscillators. A similar conclusion in a dif- '

ferent context and in terms of chiral oscillators was found in P,

[15,16]. L=3(Q3+P3—Q1—P1). (42)
The equivalence of the spectra displays that the two de- o

scriptions of the noncommutative harmonic oscillator areFurthermore, one can define additional operatas

equivalent, in spite of the asymmetry with respect to rota-

tions. The generator of rotations, i.e., angular momentum, is T

defined by the commutators =~ (QuQa*P1P2). (43

[Lowl=iega;, [L.Bul=ieB;- (37 One can verify that the operatotsI:,L form an SU2)
algebra[12]. The equivalence of the spectra in the aniso-
Therefore, our definition of the isotropic representation istropic and isotropic representations must, therefore, be the
motivated by the fact that the Hamiltonid®9) commutes result of the invariance of the Hamiltonian with respect to
with L. Let us express the angular momentum operator irthe above S(2) group. To show the S@) invariance of the
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Hamiltonian let us calculate the sum of the squares of théng commutative and noncommutative coordinates. Different
three operatorh,li,fin the anisotropic representation. One €igenvalues of the transformation matrices break rotational
finds symmetry explicitly. Nonetheless, the two representations
describe the same physical system, as the equivalence of the
spectra shows. The symmetry of the spectrum, for any choice
of the ansatz, is the SB) symmetry described in the discus-
sion above. The isotropic representation has the advantage of
giving clear physical meaning to the effect of noncommuta-
tivity as being equivalent to an external magnetic field. There
may be other representations of the noncommutative system
) . corresponding to different solutions for the transformation
The expressioii45) shows that the set of commuting opera- matrices, but they should all be equivalent to one of the two
tors needed to describe the spectrumHiC,L. Equation  forms of the Hamiltonian described in this paper.
(45) exhibits the representation invariant @Jsymmetry of Finally, we would like to correct the generally accepted,
the Hamiltonian. The eigenvalues of these Operators can qﬁ]t not Comp|ete|y appropriate, use of the term magnetic
described in terms of two quantum numbers andn.,  field when referringonly to the noncommutative parameter
associated with the operato@;+P3 and Qi+ P}, respec- B This is motivated by the fact that the noncommutative
tively. Choosing a representation corresponds to writing thgnomentum turns into a covariant one in terms of canonical
operatorLC andL in terms of the appropriate coordinates. In coordinates. However, the role of coordinates and momenta
doing so,L is the angular momentum operator in the isotro-is equivalent in phase space, and thus it is clear that the
pic representation assuring rotational symmetry. One caparameterd plays the same role &@. This is displayed in
verify that Eq.(45) reproduces Eqg26) and (9). Eqg. (26). Therefore, the parametet equally deserves the

In this paper we have shown the existence of an isotropifhame of “magnetic field[16].
representation of the noncommutative harmonic oscillator
which goes hand in hand with the a|ready known anisotropic We would like to thank Professor A. Jellal and Professor
representa’[ion_ These two representations are different R. Banerjee for useful discussions, and Professor M. Cresci-
seen from the point of view of rotational symmetry. The manno for providing us a copy of the original paper by Fock
reason for this symmetry breaking can be traced back to theshere the 2D harmonic oscillator coupled to a magnetic field
choice of the ansatz for the transformation matrices connectwas quantized17].

L2+ L2+ L2=3[Q?+P?2-1=C?-1. (44

The result shows the existence of the oper&@avhich per-
mits the following expression of the Hamiltonian:

H=3(Q;+Q,)C—3(Q,—Qy)L. (45)
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