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Nonlocal string theories on AdS3ÃS3 and stable nonsupersymmetric backgrounds
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We exhibit a simple class of exactly marginal ‘‘double-trace’’ deformations of two-dimensional conformal
field theories~CFTs! which have AdS3 duals, in which the deformation is given by a product of left- and
right-moving U~1! currents. In this special case the deformation on AdS3 is generated by a local boundary term
in three dimensions, which changes the physics also in the bulk via bulk-boundary propagators. However, the
deformation is nonlocal in six dimensions and on the string world sheet, as in generic nonlocal string theories.
Because of the simplicity of the deformation we can explicitly make computations in the nonlocal string theory
and compare them to CFT computations, and we obtain precise agreement. We discuss the effect of the
deformation on closed strings and on D branes. The examples we analyze include a supersymmetry-breaking
but exactly marginal ‘‘double-trace’’ deformation, which is dual to a string theory in which no destabilizing
tadpoles are generated for moduli nonperturbatively in all couplings, despite the absence of supersymmetry. We
explain how this cancellation works on the gravity side in string perturbation theory, and also nonperturbatively
at leading order in the deformation parameter. We also discuss possible flat space limits of our construction.
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I. INTRODUCTION

One interesting direction of research in string or M theo
concerns the novel phases of the theory. Examples inc
noncommutative Yang-Mills theory and nongeometric
phases of string compactifications. Although such pha
may appear to be exotic, in some cases they are gener
the sense that returning to more conventional backgrou
requires tuning a superselection parameter to a special v
These novel backgrounds are very much worth study
both because of their intrinsic interest and because of
hope that their unconventional physics may play a role
solving open problems that remain in formulating and app
ing the theory~such as the cosmological constant problem!.

In Ref. @1# we found strong evidence for a new type
perturbative string theory, nonlocal string theory~NLST!,
arising on the gravity side of AdS conformal field theo
~CFT! @2–5# dual pairs whose field theory side is deform
by a ‘‘multitrace’’ operator.1 In such theories, the ‘‘exotic’’
phase is generic, since it is obvious on the field theory sid

*Email address: Ofer.Aharony@weizmann.ac.il
†Email address: Micha.Berkooz@weizmann.ac.il
‡Email address: evas@slac.stanford.edu
1We will use the names ‘‘single-trace’’ and ‘‘multitrace’’ operato

for any CFT which has a weakly curved AdS dual, though
operators can only be represented in terms of traces in the ca
four-dimensional gauge theories. By a ‘‘single-trace’’ operator
will mean an operator which is dual to a single particle in stri
theory ~for example, a KK mode of the graviton!, while ‘‘multi-
trace’’ operators will appear in the operator product expans
~OPE! of such operators. The distinction between these classe
operators is not always clear~see, e.g., Ref.@6#!, but it can be made
in an obvious way for operators of low dimension when the ba
ground is weakly curved~such ‘‘single-trace’’ operators correspon
simply to supergravity fields! and this is all that we will use here.
0556-2821/2002/65~10!/106007~18!/$20.00 65 1060
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the duality that one has to tune parameters in order to
back to the conventional theory, so the conventional str
theory occupies a set of measure zero in the space of t
ries. These theories are gravitational, and have many intr
ing features outlined in Ref.@1#. In a perturbative string de
scription, the perturbative expansion in the deformation
reproduced by shifting the world sheet action by a bilo
term of the general form

dSws5(
I ,J

h̃IJE d2z1V~ I !@y~z1!#E d2z2V~J!@y~z2!#,

~1.1!

where V(I ) are some vertex operators in the string theo
each including a factor of the string couplinggs ~in the ex-
amples of Ref.@1# the indexI was continuous!, andy(z) are
the embedding coordinates of the string world sheet~or any
other fields on the world sheet!. In Ref. @1# examples of
double-trace deformations which were relevant or margi
in the dual CFT were exhibited. It was shown that the
deformations could not be accounted for by local te
dimensional supergravity, and that, in perturbation theory
the strengthh̃ of the deformation, the changes in CFT co
elators are formally reproduced by the shift~1.1! in the world
sheet action. This leads to a new type of diagrammatic
pansion encoding the perturbation theory in bothh̃ and gs
which has many interesting novel features. In particular, a
given ordern in the gs expansion, one has contributing dia
grams which do not have the modular properties of genun
Riemann surfaces.

In these theories, some sectors are affected by the de
mation at leading order ings ~classically on the gravity side!,
while other sectors are not. For instance, exclusive grav
scattering along the AdS directions remains the same at
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level on the gravity side@1#. This parametric hierarchy be
tween an approximately local sector and a completely n
local sector for small string coupling on the gravity side m
potentially render these theories more viable as phys
models than they would be otherwise.

The examples of Ref.@1# involved string theory in
Ramond-Ramond~RR! backgrounds, so it was difficult to
make the formal expression~1.1! more explicit, due to the
current limitations on our understanding of RR backgroun
in string theory. It is important to study more explicitly th
conformal perturbation expansion around the undeform
background, in order to understand how divergences ari
in conformal perturbation theory are regularized from t
point of view of both sides of the duality, and in order
make progress on the larger questions regarding the co
tency, degree of nonlocality, and applications of the n
theories.

In this paper, we present a rather explicit example of
interesting ‘‘double-trace’’ deformation in the Neveu
Schwarz version of AdS3 /CFT2 arising from the low energy
near horizon limit of a system ofQ1 fundamental strings and
Q5 Neveu-Schwarz~NS! 5-branes@2#. In the dual CFT this
deformation is of the form dSCFT

.(h̃/Q1Q5)*d2xJ(x) J̃( x̄), whereJ and J̃ are left and right
moving global symmetry currents in the dual CFT. By usi
the explicit string theory description of undeforme
AdS3 /CFT2 that has been developed in recent years~see, for
example, the comprehensive analysis in Ref.@7#, and refer-
ences therein!—in particular the formalism of Refs.@8,9# for
vertex operators and correlation functions and the semic
sical analysis of Ref.@10#—we are able to analyze explicitl
many aspects of this deformation. In particular, we che
explicitly the absorption of divergences in conformal pert
bation theory.

This deformation has an interesting physical property. I
exactly marginal but at the same time, ifJ and J̃ are U~1!
currents in theR-symmetry group, it breaks supersymmet
Applying the basic relation between conformal invarian
and AdS isometries@2# to nonsupersymmetric systems lea
to an interesting element in the duality dictionary@11#.
Namely, when there is a nonsupersymmetric hypersurfac
renormalization group~RG! fixed points, a destabilizing po
tential for moduli is not generated along this hypersurfa
despite the absence of supersymmetry.

Our model provides for the first time an example realizi
this possibility where the fixed surface exists for finite valu
of the string coupling. The price of this~which may end up
being a positive feature! is that the fixed surface includes
‘‘double-trace’’ deformation which controls the strength
supersymmetry breaking. Perturbatively in the string c
pling gs , and also nonperturbatively ings at first order inh̃,
we find a simple cancellation mechanism that reproduces
cancellation of the moduli potential directly on the grav
side. For higher orders inh̃ we do not yet understand directl
the way the cancellation occurs beyond string perturba
theory on the gravity side; this is a very intriguing predicti
of the duality. The supersymmetry breaking in this mode
‘‘hard,’’ in that the supersymmetry-breaking splittings of th
10600
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masses~which are related to the splittings between the
mensions of corresponding operators in the dual CFT! grow
with the masses. Unfortunately, the supersymmetry break
effects are small—they disappear when we take the flat sp
limit, so that this does not yet provide a basis for a realis
theory of supersymmetry breaking. However, the cance
tion of tadpoles for moduli is nontrivial in our model fo
finite AdS radius, since the~vanishing! moduli tadpoles are
hierarchically smaller than the scale of supersymme
breaking. Given this prediction for stability after supersym
metry breaking, and more generally in the interest of cla
fying the physics of NLSTs, it is important to study the e
fects of the deformation on bulk physics on the gravity s
of the correspondence.

The deformation has interesting effects on both the p
turbative and nonperturbative sectors of the theory. The
mensions of operators corresponding to charged parti
propagating in AdS are changed by the deformation. As
as the perturbative sector is concerned, because the ‘‘dou
trace’’ deformation in this specific case involves vertex o
erators which are total derivatives on the world sheet,
find semiclassically in Euclidean space that this causes
deformation of closed string diagrams to be localized n
the boundary of AdS space. In Lorentzian space we do
expect this to be the case, and we present some ind
evidence~coming from the behavior of amplitudes in the fl
space limit! that in Lorentzian space closed string amplitud
are affected in the bulk.

We also study explicitly the dynamics of D branes. Di
grams involving D branes have explicit bulk effects whi
are evident semiclassically in Euclidean space, and we
plicitly compute the contribution of the deformation to bu
forces between D branes.

We also discuss the deformation in the language of
low-energy effective theory. The deformation we perform
by a product of currents, each of which is dual to a gau
field in the bulk with a Chern-Simons coupling at leadin
order in the low-energy expansion~see, for instance, Ref
@12#!. The deformation of the dual CFT action by a produ
of chiral and antichiral currents can be identified with a loc
deformation of the boundary~surface! terms in the gravity-
side (211)-dimensional Chern-Simons theory in a standa
way @13–15#. This description is equivalent in this case
our description~1.1! ~both descriptions lead to the same pe
turbation expansion involving insertions of bulk-bounda
propagators!, and leads equivalently to interesting bulk phy
ics such as novel contributions to forces between D brane
is also worth emphasizing that even though the surface t
is local in the 3D action on AdS3, it is nonlocal in the 6D
action on AdS33S3, with a nonlocality scale given by the
AdS curvature radius. We will mostly use the formalis
~1.1! which generalizes to other cases of NLSTs a
‘‘double-trace’’ deformations. It is interesting that in th
simple case the NLST results obtained from a nonlocal s
in the world sheet action can be reproduced by a chang
the 3D local action involving boundary terms in spacetim

The construction of a stable nonsupersymmetric ba
ground in perturbative string theory~with flat moduli and
maximal symmetry in the noncompact dimensions! provides
7-2
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NONLOCAL STRING THEORIES ON AdS33S3 . . . PHYSICAL REVIEW D 65 106007
one potential application of these theories. More generall
is important to articulate the conditions for consistency
this type of theory directly in string theory language, in ord
to understand whether this phenomenon goes beyond the
cinating but somewhat esoteric realm of AdS spacetimes
this work, we find that a particular scaling of the deformati
leaves interesting effects in the flat space limit. It is not cl
if this limit defines a consistent theory or not, but if it do
then this may provide an avenue towards understand
more general realizations of NLSTs.2

The 3D boundary term which generates our deformat
affects the bulk in AdS in two ways. One has to do with t
analogy between AdS and a finite box—it takes some mo
a finite time to reach the boundary. Another way in which t
boundary can affect the bulk is via the fact that the bound
deformation existed for an infinite time in the past. The lat
effect survives in the flat limit, along with severe nonlocal
felt by modes with momentum along the dimensions
scending from the S3.

This paper is organized as follows. In Sec. II, we intr
duce the basic deformation on the field theory side and t
translate it to the gravity side using the vertex operators
Ref. @9#. In Sec. III, we study the effects of the deformatio
on closed string correlators. In Sec. IV the description of
deformation in the low-energy effective theory in three
mensions is discussed. As mentioned above, this is sim
given by a local boundary term in this case. Then, in Sec
we calculate corrections to forces between D branes~and to
the instanton action of D instantons! induced by the NLST
deformation. Finally, in Sec. VI we exhibit a scaling of th
deformation parameter in which these effects survive in
flat space limit.

II. THE DEFORMATION

In this section we introduce the ‘‘double-trace’’ deform
tion we are turning on and calculate its effects on correla
on the CFT side. We then translate the deformation to
gravity side language using the vertex operators of Ref.@9#.
In the subsequent sections we will calculate the effects of
deformation on physical quantities directly on the grav
side.

A. Field theory side

Consider an AdS3 background of superstring theor
which is dual to a two-dimensional~superconformal! CFT
containing holomorphic and antiholomorphic U~1! affine Lie
algebras of levelk generated by currentsJ(x) and J̃( x̄)
@obeyingJ(x)J(0);k/x2#. For example, in cases where th
dual CFT hasN5(4,4) supersymmetry, there is an SU(2
3SU(2) R symmetry and we will be interested in a U(1
3U(1) subgroup of this. The dual CFT could also inclu

2In a companion project@16#, we are investigating the role o
NLSTs in describing squeezed states, such as those that occ
particle production processes in time dependent background
perturbative string theory.
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sigma-models on circles„there are eight such circles in th
CFT which is dual to string theory on AdS33S33T4, which
is related by marginal deformations to the sigma model

@(T4)N/SN3T4# @17#…, in which case we can chooseJ and J̃
to be the generators of the corresponding isometries.

Our main interest is in the deformation of the dual CFT

dSCFT5hE d2xJ~x!J̃~ x̄!, ~2.1!

whereh will be normalized shortly. This deformation is ex
actly marginal~as can be seen for example by bosonizing
currents!. In the case thatJ andJ̃ are part of theR-symmetry
group of a superconformal theory, this deformation co
pletely breaks the supersymmetry. This combination of ex
marginality and SUSY breaking is very interesting, as
means, for example, that no destabilizing potential
moduli is generated in the dual string theory at all orders a
nonperturbatively.

Many aspects of the effect of the deformation on the d
CFT can be calculated exactly, since the currents involve
the deformation~2.1! can be bosonized. It will be convenien
to use such a bosonized description, in which we iden
J(x)5A2k]xh(x,x̄) and J̃( x̄)5A2k] x̄h̃(x,x̄), whereh and
h̃ are canonically normalized scalar fields.

In the case of the CFT dual to the near horizon lim
AdS33S33T4, of Q1 fundamental strings andQ5 NS5
branes on aT4, the parameters of the CFT and those of t
background are related as follows.3 The central charge of the
dual N5(4,4) SCFT isc56Q1Q5 ~up to a correction of
order one which we will ignore, since we will be intereste
in the perturbative weakly curved limit ofQ1@Q5@1!, and
the level of its SU~2! affine Lie algebra isk52Q1Q5 . The
gravity side AdS radius in string units isAQ5, and the six-
dimensional string coupling on AdS33S3 is g65AQ5 /Q1.
Therefore powers ofg6 correspond to powers of 1/AQ1; this
will be important in comparing gravity side diagrams to t
expansion of correlation functions on the field theory side

Let us proceed with the analysis for the U~1! currents
coming from the SU~2! R symmetry, for definiteness. In thi
case we have

J~x!J~0!;
2Q1Q5

x2 . ~2.2!

This scales as 1/g6
2, which is appropriate since it is related b

the duality to a classical kinetic term for bulk gauge fields.
the bosonized language we can write our deformation in
case as

in
in

3In this case it was argued in Ref.@17# that the CFT which is dual
to the perturbative string theory actually includes some spec
terms of the form~2.1!. So, in this case our discussion will refer t
adding additional terms of this type beyond the terms which
already present in the ‘‘standard’’ string theory.
7-3
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h̃~Q5!

Q1Q5
E d2xJ~x!J̃~ x̄!54h̃~Q5!E d2x]h]̄h̃, ~2.3!

where we normalized the coefficient using the fact@1# that
the deformation should scale asgs

2 in order to get a reason

able perturbation expansion4 and we definedh[h̃/Q1Q5 ,
wherea priori h̃ can have an arbitrary dependence onQ5

;LAdS
2 / l s

2. This normalization is natural from the dual CF
point of view, since at a generic point of the field theo
moduli spaceQ5 /Q1 plays no special role, but the centr
charge is always proportional toQ1Q5 . On the string theory
side a more natural choice might beh[h̃8g6

25h̃8Q5 /Q1

which differs from the choice above byQ5
2; we will see that

indeed this choice will be more natural when we discuss
flat space limit in Sec. VI.

The operators of the dual CFT are of the form

OI5ei ~pIh1 p̃I h̃ !PI~]nh,]̄ ñh̃ !ÔI , ~2.4!

where PI(]
nh,]̄ ñh̃) denotes a polynomial in arbitrary de

rivatives of h, h̃, and whereÔI is an operator in the cose
obtained after dividing by the U(1)3U(1) bosonized byh,
h̃. It is important to emphasize that there is a particu
correlation between the coset partÔI and the free part
ei (pIh1 p̃I h̃)PI(]

nh,]̄ ñh̃) encoded in the set of operato
which exist in the CFT. In our main example, whereJ and J̃
are part of theR symmetry of the dual CFT, different com
ponents of the spacetime supermultiplets in the undeform
theory have differentR chargesq, q̃. The deformation~2.3!
breaks supersymmetry as it couples to these different c
ponents according to their charges. TheseR charges are
SU~2! charges: we thus haveJ(x)eiph(0);qeiph(0)/x
whereq is the SU~2! weight ~integer or half integer! of the
operator. This means that the chargesp, p̃ which exist in the
theory scale as

p;q/A4Q1Q5, p̃;q̃/A4Q1Q5. ~2.5!

The simplicity of our deformation~2.1! allows us to de-
termine explicitly the effect of the deformation on correlati
functions of theOI , starting from the basic Ward identitie

J~x!J~0!;
2Q1Q5

x2 ,

J~x!eiph~0!;
A4Q1Q5p

x
eiph~0!. ~2.6!

One basic effect of the deformation is a shift in the
mension of charged operators of the formYp,p̃

4As just discussed, in AdS33S3 with NS charges the only plac
Q1 appears is in the string coupling, so counting powers ofQ1 is
the same as counting powers ofg6 .
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[AQ1ei (ph1 p̃h̃) ~for which we chose an arbitrary normaliza
tion such that the two-point function scales as 1/gs

2!. A
simple computation gives

d h̃^Yp,p̃~x,x̄!Y2p,2 p̃~0!&

5Q1 (
n51

`
~4h̃!n

n! E )
i 51

n

d2xi

3K eiph~x!)
i 51

n

]h~xi !e
2 iph~0!L

3K eip̃h̃~ x̄!)
i 51

n

]̄ h̃~ x̄i !e
2 i p̃h̃~0!L . ~2.7!

This expression is a power series in the ‘‘double-trace’’ c
efficient h̃ and in the string couplingg6

2;1/Q1 @the latter
statement follows from the form of Eq.~2.7! combined with
the scaling~2.5! of the charges#. The corresponding diagram
on the gravity side are of effective genus>1, with the first
contribution arising atO(h̃g6

0) as depicted in Fig. 1.

Let us evaluate this explicitly at orderh̃. Working out the
correlators this reduces to

4Q1h̃pp̃

xp2/2x̄p̃2/2 E d2x1U 1

x12x
2

1

x1
U2

. ~2.8!

This integral is logarithmically divergent whenx1 ap-
proaches the other operatorsY at x and at 0@the log diver-
gence for largex1 cancels among the different terms in E
~2.8!#. Let us include a UV cutoffa, which cuts off the inte-
grals such that for any other operator insertion atx0 , the
range ofx1 is bounded byux12x0u>a. Doing the integral in
Eq. ~2.8!, one then finds

FIG. 1. The leading contribution, at orderh̃g6
0, to the renormal-

ization of the dimension of charged operatorsY6q,6q̃ ~denoted by

straight lines! by the ‘‘double-trace’’ deformationJJ̃ ~denoted by
the slashed lines meeting at a boundary pointx!.
7-4
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d h̃^Yp,p̃~x,x̄!Y2p,2 p̃~0!&58pQ1h̃
pp̃

xp2/2x̄p̃2/2
log

uxu2

uau2
.

~2.9!

The loguau2 piece must be absorbed in a redefinition of t
operatorsYp,p̃ as is standard in conformal perturbatio
theory @18# ~see also the discussion of this in Sec. III A!.
Namely, here

Yp,p̃→Yp,p̃1~8ph̃pp̃ loga!Yp,p̃ . ~2.10!

What remains amounts to a shift in the dimension ofY by

~28ph̃pp̃,28ph̃pp̃! ~2.11!

to first order inh̃. Taking into account the scaling~2.5! of the
charges, this shift is of orderh̃g6

2 ~for small charges!. It is
easy to generalize this to general correlation functions.

One can similarly work out changes to correlators invo
ing currents~and their descendants! arising from our defor-
mation. For example,

d h̃^J~x!J~0!&5 (
n51

` S h̃

Q1Q5
D n

1

n!

3E )
i 51

n

d2xi K J~x!)
i 51

n

J~xi !J~0!L
3K )

i 51

n

J̃~ x̄i !L . ~2.12!

Here only evenn contributions survive. All these contribu
tions are~since they involven11 contractions ofJ’s! at
orderQ1;gs

22, the same order as tree-level diagrams. T
agrees with the set of diagrams that contribute to Eq.~2.12!
on the gravity side, which involven11 disconnected
spheres~connected by insertions of the deformation!. The
first contribution, at orderh̃2, is given by

4Q1Q5h̃2E d2x1d2x2

1

~ x̄12 x̄2!2 F 1

~x2x1!2

1

x2
2

1
1

~x2x2!2

1

x1
2 1

1

~x22x1!2

1

x2G . ~2.13!

The last term here is related to a divergence in the vacu
amplitude

d h̃^1&5 (
n51

` S h̃

Q1Q5
D n

1

n! E )
i 51

n

d2xi K )
i 51

n

J~xi !L
3K )

i 51

n

J̃~ x̄i !L
52h̃2E d2x1d2x2

1

ux12x2u2
1¯, ~2.14!
10600
-

s

m

so it will cancel when we compute the properly normaliz
correlation function which involves dividing bŷ1&.

The first two terms in Eq.~2.13! give identical finite re-
sults, adding up to

234Q1Q5h̃2E d2x1d2x2

1

~ x̄12 x̄2!2

1

~x2x2!2

1

x1
2

58Q1Q5h̃2E d2x1d2x2

]

] x̄2
S 1

x̄12 x̄2
D ]

]x2
S 1

x2x2
D 1

x1
2

58Q1Q5h̃2E d2x1d2x2

]

]x2
S 1

x̄12 x̄2
D ]

] x̄2
S 1

x2x2
D 1

x1
2

532p2Q1Q5h̃2E d2x1d2x2d~2!~x12x2!d~2!~x2x2!
1

x1
2

5
32p2Q1Q5h̃2

x2 . ~2.15!

If desired, one can always renormalizeJ by a multiplicative
constant~depending onh̃! which will cancel this correction
and keep the same form of^J(x)J(0)&.

Another example is

d h̃^J~x!J̃~0!&5 (
n51

` S h̃

Q1Q5
D n

1

n!

3E )
i 51

n

d2xi K J~x!)
i 51

n

J~xi !L
3K J̃~0!)

i 51

n

J̃~ x̄i !L . ~2.16!

Here only odd values ofn contribute. Forn51, this is

4Q1Q5h̃E d2x1

1

~x2x1!2

1

x̄1
2

524Q1Q5h̃E d2x1

]

]x1
S 1

x2x1
D ]

] x̄1
S 1

x̄1
D

524Q1Q5h̃E d2x1

]

] x̄1
S 1

x2x1
D ]

]x1
S 1

x̄1
D

516p2Q1Q5h̃E d2x1d~2!~x2x1!d~2!~x!

516p2Q1Q5h̃d~2!~x!, ~2.17!

which is just a shift in the contact term betweenJ andJ̃. We
can swallow this by redefining the original contact term~the
same will be true at higher orders as well!.

By using exact formulas for correlators involvingh and
h̃, we can in principle calculate explicitly the effects of th
deformation on all operators~2.4! of the theory, including the
parts involving complicated descendants. It is worth emp
sizing, however, that the set of operators~2.4! has a lot of
structure. The AdS/CFT correspondence maps all state
7-5
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global AdS to operators in the CFT, so operators of this fo
describe all possible bulk excitations on the gravity side. T
CFT chargeq maps to the charge under the correspond
gauge field on AdS3 ~given by the integral of the gauge fiel
around the boundary of AdS3 at fixed time in global coordi-
nates!. Clearly, there are many configurations with to
chargesq, q̃; the information about the distribution of thi
charge in the bulk of the spacetime is encoded in the de
of the PÔ factors in the operator. It is interesting that th
formula ~2.11! implies that the change in the dimension
operators~and, therefore, the change in the energy of
corresponding states in global AdS! depends only on thei
charge. However, in order to understand the effects of
deformation on the dynamics of nontrivial distributions
charge in the bulk of the space, one needs to keep trac
the ‘‘fine structure’’ in the operators.

In particular, in Sec. V, we will be interested in force
between separated D branes in the bulk of AdS33S3. Pairs
of D0-branes in the bulk of AdS3 are not quite in stationary
states, as there are forces between them~which are small for
large LAdS!. Such a pair is therefore described by a com
nation of operators~2.4! which does not form an eigensta
of the dilatation operator in the dual CFT. This can be mo
eled by a sum of an operator of particular dimension p
1/LAdS times an operator or sum of operators of differe
dimension. After the deformation, the correlation functio
of the different terms scale in different ways determined
their correlators withJ, J̃ as in the simple examples worke
out above. The force term is still multiplied by a small coe
ficient 1/LAdS, but its magnitude will in general receive co
rections. We will calculate this effect explicitly for some
branes in Sec. V, and reproduce this general structure
dicted by the dual CFT.

B. The gravity side

The general formalism described in Ref.@1# implies that
deforming the CFT by a ‘‘double-trace’’ operator of the for
h*d2xO1(x)O2(x) is described in string theory, at least
leading order inh, by deforming the world sheet action b
the nonlocal term h*d2x*d2z1V1(z1 ;x)*d2z2V2(z2 ;x),
whereV1,2(z;x) are the vertex operators forO1,2(x). In our
case, as described in Ref.@9#, the affine Lie algebra gener
ated by J(x) in the dual CFT is related to an affine Li
algebra generated byk(z) on the world sheet. An insertion o
J(x) into a CFT correlation function is equivalent to an i
sertion ofK(x) defined by

K~x!52
1

p E d2zk~z!] z̄L~z,z̄;x,x̄! ~2.18!

in the string world sheet, whereL is a particular operato
such that] z̄L(z,z̄;x,x̄) is a primary operator of the world
sheet conformal algebra with dimension~0, 1!, and also a
primary of the space-time conformal algebra with scal
dimension~1, 0!. We wrote down the vertex operator for th
bosonic string; in the case of the superstring~which is the
case we are interested in! there will be some additional term
in the expression above, but they do not change our dis
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sion and our semiclassical computations below so we
not write them down explicitly.

If we choose coordinates on AdS3 such that the string-
frame metric is of the formds25Q5(df21e2fdgdḡ)
~where the curvature in string units is22/Q5!, then we can
write an expression forL in terms of the world sheet field
f(z,z̄), g(z,z̄), andḡ(z,z̄), in the semiclassical approxima
tion, of the form

L~z,z̄;x,x̄!52
~ ḡ2 x̄!e2f

11ug2xu2e2f . ~2.19!

The deformation of the world sheet Lagrangian cor
sponding to Eq.~2.3! is given by

dSworld sheet5
h̃

Q1Q5p2 E d2xE d2z1E d2z2k~z1!

3] z̄1
L~z1 ,z̄1 ;x,x̄!k̃~ z̄2!]z2

L̄~z2 ,z̄2 ;x,x̄!.

~2.20!

The vertices~2.18! have many interesting properties th
were analyzed in Ref.@9# and used there to derive the Wa
identities for the currentJ(x). Since] z̄k(z)50 except for
delta function contributions at the locations of other vertic
we can integrate by parts and write Eq.~2.18! as a contour
integral of kL on contours surrounding the insertion poin
of vertex operators, and~if they exist! on boundaries of the
worldsheet@note that there are no singularities when the v
tex operators inK(x) and K̃( x̄) approach each other#. In
particular, the vertex operatorK(x) ~2.18! can be written in
the form

K~x!5 (
insertions,boundaries

R dz

2p i
k~z!L~z,z̄;x,x̄!.

~2.21!

This leads@9# to the Ward identity for correlators ofK with
charged fields. LetWq(x) be the integrated vertex operato
corresponding to a primary of theJ affine Lie algebra with
chargeq, so that correspondingly it is a primary of the co
responding worldsheet affine Lie algebra with chargeq.
Then, one finds@9#

K K~x!)
i

Wqi
~xi ,x̄i !L 5(

i

qi

x2xi
K)

i
Wqi

~xi ,x̄i !L
~2.22!

for closed string world sheet correlation functions, reprod
ing the Ward identities of the dual CFT. Many interestin
operators@including J(x) itself# will not have this property
of being primaries of chargeq and then we will have more
complicated expressions for their correlation functions,
discussed in Sec. II A.
7-6
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III. EFFECT OF THE DEFORMATION ON CLOSED
STRING AMPLITUDES

Now, let us take some correlation function of closed str
vertex operators in the theory before the deformation,
consider the effect of the deformation on the correlat
function. In perturbation theory the effect of the deformati
is given by the insertion of some number ofK(xi) andK̃( x̄i)
vertex operators into the correlation function, and integ
tions overxi . If the correlation function involves only pri
mary fields we can then easily compute it on the world sh
using Eq.~2.22!, and it is obvious that we reproduce the CF
computations of the same correlation functions~2.7!–~2.17!
described in Sec. II A.

Our deformation is exactly marginal and affects physics
all scales on the field theory side, and we have introdu
various changes to correlation functions of closed string
AdS3, so we might expect the bulk physics to be affected
the deformation, and perhaps to become nonlocal~with a
nonlocality scale much bigger than the string scale!. For the
case of a double-trace deformation in AdS5 various argu-
ments for bulk nonlocality were given in Ref.@1#. However,
in our case we need to be more careful because, as discu
above, the vertex operators we deform by are total der
tives on the world sheet, so it is not clear that the deform
tion is really felt all over the world sheet. Semiclassic
world sheets in Euclidean AdS3 stretch all the way to the
boundary, where the vertex operators describing exte
states in the Feynman diagrams are inserted@10#. It is
straightforward to check, using the methods of Ref.@10#, that
the insertion ofK(x) does not change the shape of the sad
point configuration of the world sheet near the vertex ope
tor insertions at the boundary. The world sheet path inte
of course involves integration over all world sheet shap
but from Ref.@10# we see that the dominant~saddle point!
contribution is one in which theWq insertions are at the
boundary. As discussed above, further insertions ofK(x) lo-
calize at the same points on the world sheet. Thus, in
special case where the vertex operators we deform by
total derivatives, it seems that the only effect evident se
classically on Euclidean closed-string amplitudes is locali
at the boundary of AdS space.

The case of more physical interest on the gravity side
the Lorentzian case, where scattering events can take pla
the bulk of the space. For the Lorentzian case we will p
vide an indirect argument in Sec. VI, based on features of
flat space limit, that the effects of our deformation are f
also in the bulk of the space and not just near the bound

The existence of nonsupersymmetric shifts of charg
closed string masses obtained from the shifted dimens
~2.11!, combined with the exact stability of the model, rais
the fascinating question of how to see the cancellation of
moduli potential directly on the gravity side of the corr
spondence. We will return to this question in Sec. III B af
considering the divergence structure of the deformation
the gravity side.

A. Regularization of divergences

In studying marginal deformations of CFTs in conform
perturbation theory, one encounters divergences in calcu
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ing corrections to correlation functions, which can be cons
tently regularized and absorbed in rescalings of the opera
~see, e.g., Ref.@18#!. The cutoffa we introduced in Eq.~2.9!
and the rescaling Eq.~2.10! are an example of this procedur
in our case on the field theory side. We would now like
illustrate how this regularization is described on the grav
side. This can be deduced by using the UV/IR corresp
dence.

On the gravity side, the first-order correction in a co
relator such as Eq.~2.7! is of the form

h̃

Q1Q5
E d2x1^Wq,q̃~x,x̄!W2q,2q̃~0!K~x1!K̃~ x̄1!&.

~3.1!

Anticipating that the result will be divergent, let us put an
cutoff in space-time at a finite value off, leaving the region
f,fc , and use the semiclassical analysis of the world sh
and ofL. Taking into account the localization ofK at theW
insertions~2.21! and the fact thatrk(z)(dz/2p i ) measures
the charge, this becomes

d h̃^WW&5
h̃

Q1Q5
E d2x1qq̃uL1~x1!2L2~x1!u2^WW&,

~3.2!

whereL1 andL2 refer to the semiclassical value ofL at the
positions of the twoW insertions~cut off atfc!. For largefc
we find

L1~x1!52
~ x̄2 x̄1!

e22fc1ux2x1u2
,

L2~x1!52
~2 x̄1!

e22fc1ux1u2
, ~3.3!

where we have replaced theg coordinate of each insertion b
its boundary value~x or 0, respectively! since the corrections
to this value are subleading at largefc to thee22fc contri-
bution we have included. Plugging Eq.~3.3! into Eq. ~3.2!
gives anx integral whose log divergence at largex1 cancels
among the various terms in Eq.~3.2! @just as in Eq.~2.8!#.
The leading divergent behavior whenx1 approaches the
other insertions atx and 0, and asfc→`, is

E d2w
uwu2

~e22fc1uwu2!2 ;22p log~e22fc!54pfc .

~3.4!

Now that we have expressed the cutoff divergence in te
of gravity side quantities, we can absorb this divergence i
a rescaling of the vertex operatorsWq,q̃ , corresponding to
the rescaling~2.10! we had on the field theory side. In strin
theory, we can further translate this cutoff into a sho
distance cutoff on the world sheet using Ref.@10#. The IR
cutoff fc in the target space geometry corresponds to a
off

aworld sheet~h!5e2fc/4h ~3.5!

on the world sheet near an insertion of a vertex opera
corresponding to a scalar operator of dimensionh(5h̄) in
7-7
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the dual CFT.
There are also formal divergences in contributions to

vacuum amplitude in the bulk. For example, the diagram
Fig. 2 has a logarithmic divergence@given by Eq.~2.14!#.
These diagrams by themselves are not physic
observable—they map tô1& in the CFT which we should
always choose to equal 1. However, the ratio between
other diagram and the sum of vacuum diagrams is obs
able. For example, we can look at the same diagram pro
by an external line as depicted in Fig. 3. This will be releva
for the moduli potential, which we turn to next.

B. The moduli potential in string perturbation theory

As discussed above, when we deform the CFT which
dual to string theory on~say! AdS33S33T4 by a deforma-
tion ~2.1! involving U(1)R currents, we explicitly break the
space-time supersymmetry. From the space-time poin
view we would naively expect to generate a moduli poten
in such a case, such that not every point in the origi
moduli space would still give a stable background after
supersymmetry breaking. However, we know that this d
not happen in our case since the deformation in the CF
exactly marginal~independently of any of the other param
eters of the CFT!, so we expect to have an exact nonsup
symmetric background after the deformation with the iso
etries of AdS3 for any value of the other moduli of th
theory. We are using a slight abuse of terminology he
since in general NLSTs do not have a local effective acti
the notion of amoduli potentialmay not persist. However
we can still ask whether all the moduli of the original theo
remain, and do not develop tadpoles even after we add
supersymmetry breaking deformation. We have moduli
eratorsOmodulus

(I ) (x,x̄) which are of dimension~1, 1!, and the
vanishing of a term of orderm in the fields in the original
‘‘moduli potential’’ is manifested in the vanishing of the in
tegrated correlation function ofm of these operators in th
CFT.5 From the dual CFT it is clear that this must still be t
case also after the deformation, and in this section we

5The casem52 actually does not vanish; it is related to the prop
gator on the gravity side, and diverges after we integrate overx. The
vanishing of the quadratic term in the ‘‘moduli potential’’ is a
counted for by the dimension of the modulus operator, which c
responds to a massless field on the gravity side.

FIG. 2. Vacuum diagram at orderh̃2gs
0. The insertions of the

vertex operators in the ‘‘double-trace’’ deformation are indicated
the pair of lines with slashes joined at the boundary.
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see how this happens from the point of view of string p
turbation theory in the bulk~which gives part of the contri-
bution to the correlation functions in the full dual CFT!.

In usual flat-space string theory, when we break sup
symmetry we would expect to have a nonzero torus vacu
amplitude. There, this amplitude is proportional to the to
diagram with an insertion of the zero momentum dilatio
which is the world sheet manifestation of the fact that t
vacuum energy in perturbative string theory is really a p
tential for the dilaton. Our situation is different since th
dilaton is a fixed scalar and therefore massive. Thus,
would expect to generate a potential only for the oth
moduli which actually correspond to massless fields
AdS3. In any case the vacuum diagram by itself has
physical meaning, so we cannot use it to learn about su
symmetry breaking in the bulk; the physical effects of t
vacuum energy are encoded in the diagrams with an exte
graviton or moduli line, which determine the curvature a
moduli dynamics generated by the vacuum energy.

In the case we are interested in here, the moduli invo
the T4 part of the world sheet CFT; for most of the modu
the vertex operator corresponding to*d2xOmodulus(x,x̄) is
simply *d2z]Xi ]̄Xj ~the others come from the RR sector a
our argument in the next paragraph will apply to them
well!. The leading correction to the moduli tadpole after t
deformation comes from Fig. 3. It is easy to see that t
vanishes, because the world sheet correlation function on
of the spheres factorizes into a correlation function involvi
theT4 directions and one involving the AdS33S3 directions.
The first factor is just of the form̂:]Xi ]̄Xj :& where theXi

are embedding coordinates of the string in theT4 directions.
This vanishes.

Next, let us consider arbitrary diagrams contributing
the ‘‘moduli potential,’’ at a general order in the perturbatio
theory in gs and h̃. Such a diagram would have variou
connected components, which are genusg surfaces with
some numbern of insertions ofJ, ñ insertions ofJ̃, andm
insertions of*d2xOmodulus

(I ) (x,x̄) ~where I labels the various
moduli fields!. This subdiagram is a correlator in the origin
undeformed theory, of the form

K J~x1!¯J~xn!J̃~ x̄n11!¯ J̃~ x̄n1ñ!E d2xOmodulus
~1!

¯

3E d2xOmodulus
~m! L

genus g

. ~3.6!

-

r-

y
FIG. 3. Modulus tadpole at orderh̃2gs

0. The insertion of the
vertex operator for the modulus field is indicated by the plain lin
7-8
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If n5ñ50, the diagram is identical to a contribution to th
‘‘moduli potential’’ in the undeformed supersymmetr
theory, which cancels.6 For the other diagrams which fee
the deformation and therefore the supersymmetry break
we note that the moduli of the torus~which are the scala
fields on AdS3 we are discussing here! are uncharged unde

the U~1! isometries generated byJ and J̃, and have a nons
ingular OPE with the current operators. As discussed ab

the vertex operators forJ and J̃ are total derivatives on the
world sheet which can be written as integrals around
other insertion points, and~as in Ref.@9#! these integrals ge
no contributions near the moduli operators. Thus, ignor
the picture changing operators inserted on the Riemann
face at higher genus, which include terms from all sectors
the world sheet CFT and can lead to additional singularit
one would find that the correlation function~3.6! factorizes

into the part involvingJ and J̃ times the part involving the
moduli, and the latter vanishes as argued above. This ca
lation of the (n1ñ1m)-point function can be done equiva
lently in the dual CFT description of the original theor
where it cancels by an exact factorization argument, and
therefore deduces that the full calculation of the diagr
including the picture changing operators still leads to a c
cellation. Thus we see also on the string theory side that
do not produce a ‘‘moduli potential,’’ despite the absence
supersymmetry.

One might worry that there could be moduli which have
singular OPE with the currentsJ or J̃. If we bosonize the
currents as in Sec. II, then because theOmodulus

(I ) are dimen-
sion ~1, 1! operators in the dual CFT and they are uncharg
underJ, J̃, they could only depend onh, h̃ by a factor of]h
or ]̄ h̃. So, we can write these operators generally
Omodulus

(I ) 5O01]h(x)ÔR( x̄)1ÔL(x) ]̄ h̃( x̄) whereO0 has a

nonsingular OPE with the currents,ÔR is a dimension~0, 1!
operator andÔL is a dimension~1, 0! operator. Note that the
last two terms are actually ‘‘double-trace’’ operators, sin
]h is simply proportional toJ, and they do not correspond t
scalar fields on AdS3. However, even for moduli of this
‘‘double-trace’’ form we can argue that no tadpoles are g
erated after our deformation. The same arguments ab
show that the effect of the deformation on the tadpole
these operators must be proportional to the value of^ÔR( x̄)&
or ^ÔL(x)& in the original theory, which obviously vanishe

We can also give a direct space-time argument for
vanishing of the ‘‘moduli potential’’ after the deformation
On the gravity side, the vanishing of the ‘‘moduli potentia
after our deformation corresponds to the statement that in
original theory before the deformation, the coupling
Chern-Simons gauge fields~which are the fields dual toJ, J̃!
to the moduli remains zero quantum mechanically. This f

6More precisely, this subdiagram is a particular term in the exp
sion of the CFT ‘‘moduli potential’’ in powers ofgs

25Q5 /Q1 , but
since the full correlation function vanishes every term in its exp
sion must vanish as well.
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lows by gauge invariance from the fact that the pure ga
modesA5dL ~whose field strength vanishes! do not couple
only to each other or to the uncharged moduli fields at a
order in perturbation theory in the original background.

In any case, the result is that in our diagrammatic exp

sion, in perturbation theory inh̃, the diagrams contributing
potentially destabilizing contributions to the ‘‘moduli poten
tial’’ cancel by virtue of the vanishing of corresponding di
grams in the original theory, which appear as subdiagram
the deformed theory. It would be nice to gain a more intuiti
understanding in the bulk spacetime of how the loop d
grams involving closed strings in the bulk, which have Bos
Fermi splitting @using Eq.~2.11!, since the bosons and fe
mions have different charges under U(1)R#, manage to
cancel in this theory. We will return to this in Sec. V B aft
studying some bulk effects, including supersymmetry bre
ing effects, of D branes in our theory in Sec. V.

IV. EFFECT OF THE DEFORMATION
ON THE LOW-ENERGY ACTION

In Sec. III we saw indications that when computing t
n-point function in Euclidean space of any set of vertex o
erators on the worldsheet, the contribution of the ‘‘doub
trace’’ deformation is localized at the boundaries of AdS.
this section we would like to discuss this in the context of t
low-energy effective description, and to clarify from th
point of view where boundary terms arise. In the next sect
we will return to our analysis of the effects of the deform
tion in string theory and the stable supersymmetry break
mechanism encoded in this model.

In general in a NLST, one would not expect alocal grav-
ity or supergravity action in the infrared. In our present ca
which is based on Chern-Simons gauge fields in 211 di-
mensions, some simplifications arise if we focus on the Ad3

part of the geometry.7 In particular, from Refs.@13–15# it
follows that if we bosonize the currents as in Sec. II, then
bulk Chern-Simons gauge fields which are dual to the C

operatorsJ and J̃ are given by A5A4Q1Q5dh and Ã
5A4Q1Q5dh̃ away from sources~whereh and h̃ are de-
fined on all of AdS3 and their boundary value is given by th
objects defined in Sec. II!. Then, one can realize our defo

mation 4h̃*d2x]h]̄h̃ by a boundary term in the Chern
Simons~CS! theory

dSSUGRA5
h̃

Q1Q5
E

]AdS3

A∧Ã. ~4.1!

This prescription reproduces our perturbation expans
in h̃, as can be seen by regarding Eq.~4.1! as part of the-

-
7We thank J. Maldacena for emphasizing this aspect.
7-9
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interaction Lagrangian in the gravity-side theory. Bringi
down powers of Eq.~4.1! in the path integral and contractin

the boundary fieldsA] , Ã] in Eq. ~4.1! with bulk fieldsAb ,
Ãb coming from insertions of interaction vertices from th
bulk Lagrangian, one obtains the bulk-boundary propaga
implicit in the vertex operators in Eq.~2.20!. In particular, as
we will see further in Sec. V, we find significant effects
the deformation in the bulk arising from this. These com
from the fact that the AdS3 acts similar to a finite box for
some modes, and more generally from the fact that
boundary term~4.1! is present throughout time. Note that E
~4.1! is not a local term in six dimensions, as each of t
fields appearing in Eq.~4.1! is actually in a particular spheri
cal harmonic on the S3, so writing this term down in the
six-dimensional action entails performing two integratio
over the S3. Thus, in the full theory this term is manifestl
nonlocal at the AdS curvature scale.

In fact, writing the deformation in the form~4.1! is a
special case of something we can do in general to desc
deformations in AdS/CFT. Let us work in Euclidean Ad
space with the standard coordinate systemds25(dr2

1dxmdxm)/r 2. In conformal perturbation theory, if we de
form the Lagrangian by a ‘‘single-trace’’ operatorO of di-
mensionD which is dual to a supergravity~SUGRA! field
f(x,r ), dSCFT5h*ddxO(x), then we need to insert into th
dual supergravity picture any number of boundary-to-b
propagators of the fieldf, each with a coefficienth. One way
to do this is to deform the SUGRA action by a bounda
term of the form dSSUGRA5 limr→0h*ddxf(x,r )r d2D,
which reproduces the same perturbation expansion bec
of the relation between the bulk-to-boundary and bulk-
bulk propagators, if we add this term without changing t
boundary conditions on the fields. However, usually this
scription is not very useful since the limitr→0 is singular so
we do not get a local deformation of the action, except in
caseD5d of marginal deformations. For marginal deform
tions the effect of the added term at first order inh is simply
to change the bulk value off by a constant amount propo
tional toh, as in the usual description. However, this violat
the usual boundary condition for a massless field~which sets
its boundary value to a particular constant!, so this formalism
breaks down also in this case~leading to singular configura
tions!. In any case, this illustrates that writing the deform
tion as a local boundary term does not preclude having la
effects of the deformation in the bulk.

Similarly, also for ‘‘double-trace’’ deformations by
product of two scalar operators, of the formdSCFT

5h̃*ddxO1(x)O2(x), we can reproduce the perturbatio
theory in h̃ by adding to the supergravity actiondSSUGRA

5 limr→0h̃*ddxf1(x,r )f2(x,r )r 2d2D12D2. Again, this is
not very useful since the added term generally has no g
r→0 limit, and in particular this happens in the margin
case ofD11D25d. However, if we deform by vector field
instead of scalar fields, we get a power ofr 2d222D12D2 in-
stead of the power we wrote above. In the case we are
cussing in this paper~for which d52, D15D251! this
power vanishes, so we simply reproduce the deforma
~4.1!, which is perfectly well behaved. Note that, as d
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scribed for instance in the discussion around Eq.~A19! of
Ref. @15#, we do not need to impose any boundary conditio
on the fieldsA, Ã, since by adding appropriate bounda
terms we can set the relevant currents to be chiral and a
chiral by the equations of motion@the Euclidean action is o
the form

~k/2p!*AdS3
~A∧dA2Ã∧dÃ!2~ ik/4p!*]AdS3

~A∧* A

1Ã∧* Ã!,

where the* ’s are taken in the boundary of AdS space#. Thus,
it is not necessary to change the boundary conditions a
deforming by Eq.~4.1!, and this term automatically repro
duces the perturbation expansion in the CFT which we
scribed in Sec. II.

V. D BRANES: BULK EFFECTS AND SUSY STRUCTURE

In Sec. III we studied closed string amplitudes in whi
the operatorsK(x), K̃( x̄) involved in our deformation local-
ized to the boundary of AdS3 ~semiclassically!. When the
world sheet has boundaries on D branes,K(x) gets addi-
tional contributions from these boundaries, and these do
have to be at the boundary of AdS3 . Thus, it seems tha
D-brane physics in the bulk could be manifestly differe
after the deformation, even in Euclidean space. Such phy
could involve, for instance, D-instanton corrections to cor
lation functions, D branes localized in the bulk, or D3 bran
wrapping an AdS23S2 cycle in AdS33S3. D branes in AdS3
have been studied, for example, in Refs.@19–30#.

Studying this requires us to be able to calculate corre
tion functions with Eq.~2.21! inserted along the boundary. I
general we do not know how to treatk(z) and L near the
boundaries of the world sheet. However, in certain circu
stances,L approaches anx-dependent constant near th
boundary, and we can calculate the effect of the deforma
explicitly. One such circumstance involves world she
which can be treated semiclassically. In such a case we
simply replaceL by the value of Eq.~2.19! at the locus in
the target space where the boundary of the world shee
mapped. Another involves D branes which preserve a d
onal subgroup of the SL(2)3SL(2)3SU(2)3SU(2) chiral
algebra. In these cases the symmetries determine the be
ior of L near the world sheet boundaries. A third situation
which we have control is that of D instantons on AdS3,
which freeze the world sheet boundaries in all directio
Here again we can replace the world sheet fieldsg, ḡ, f
appearing in Eq.~2.19! by their boundary values. We believ
that a similar situation may also occur for D0 branes
AdS3, at least with regard to emission of massless clo
strings whose worldsheets intersect the D branes at a p
~up to string scale fluctuations, which may be canceled
ghosts, since they are just along the longitudinal time dir
tion!.

Our goal is to understand the effect of our deformation
the physics of the D branes. This requires studying wo
sheets with boundaries and insertions of Eq.~2.20!. From the
localization ofK to a contour integral around each bounda
7-10
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we see that in the above cases whereL approaches som
constantL i(x,x̄) at the i th boundary, the expression forK
reduces toS iL ir i(dz/2p i )k(z), where the sum goes ove
the disconnected boundaries of the world sheet. The con
integral produces the chargeqi of the closed string channe
state emitted by the D brane. Thus, the effect of the de
mation on a diagram with particular chargesqi floating
through it is to multiply the diagram by

expS h̃

Q1Q5
E d2x(

i , j
qiL i~x,x̄!q̃ jL̄ j~x,x̄!D . ~5.1!

Using the fact that the closed string vertices depend onqi
simply through a factor ofeiqiu ~if we chooseu to be an
angular variable along the isometry generated byJ! and onq̃i

similarly through a factor ofeiq̃i ũ, one can show that~in the
case of constantL! all string diagrams involving D brane
sitting at positions (uk ,ũk) are multiplied by an insertion o
the form

expS 2
h̃

Q1Q5
E d2x(

k,l
Lk~x,x̄!L̄ l~x,x̄!

]

]uk

]

]ũ l

D ,

~5.2!

where here the sum goes over the different D branes in
background and we are assuming that none of the D bra
lie at fixed points of the isometries~since theu’s are ill
defined there!.

For disk diagrams, with no charged closed string ins
tions, the deformation has no effect since no charge can
emitted by the boundary state~nothing can absorb it, and th
contour integral above can be shrunk to zero size!. There-
fore, the leading contribution in all our calculable cases
D-brane interactions could arise from diagrams at ordergs

2h̃.
One such contribution is the annulus with one insertion
the deformation operator, as depicted in Fig. 4. Other con
butions at the same order come from diagrams where

FIG. 4. Annulus contribution to the force between D branes

order h̃gs
2.
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‘‘double-trace’’ wedge connects two otherwise disconnec
annuli. We can calculate all these diagrams equivalently
ing Eq. ~2.20! or ~4.1!.8

In some cases this contribution will vanish. For examp
whenL takes the same value on both boundaries of the
nulus, then the sum overi ~or overj! in Eq. ~5.1! vanishes by
charge conservation. This cancellation occurs for each clo
string charge sector separately. The path integral involve
sum over all closed strings propagating between the
boundaries, and in particular a sum over all the poss
closed string charges. Thus, another source of cancella
can arise~for example! when we deform by the U~1! currents
inside the SU(2)3SU(2), if the Dbranes are not separate
on the S3, since then the sum over positive and negativeqi
~and/or q̃ j ! cancels~for a generic position of the D brane
which is not a fixed point of the isometries!. If we separate
the D branes on the S3 this cancellation is avoided by havin
differentqi- andq̃ j -dependent spherical harmonics appear
in the closed string wave functions emanating from the se
rated branes. However, when these separated D branes
tribute to instanton effects, one integrates in spacetime o
their positions on the S3, yielding a cancellation again. In
particular, this cancellation would occur in calculating i
stanton corrections to the ‘‘moduli potential’’ which w
know from the dual CFT must cancel. We will discuss th
further in Sec. V B.

We will mostly be interested in studying the effects
supersymmetry breaking on the bulk D branes. In the or
nal background, there are D branes which break all the
persymmetry and therefore have 16 fermionic zero modes
their world volume from the broken supercharges, and th
are other branes which break half the supersymmetry
have eight fermionic zero modes. We find that all these z
modes can be~and presumably are! lifted at orderh̃gs

2 from
the diagram of Fig. 4. This is a local bulk signal of supe
symmetry breaking, in contrast to the closed string sec
where no such effect arose semiclassically in the Euclid
case. We will also study vacuum annulus diagrams, wh
indicate the effect of the deformation on forces between

8For example, we can use Eq.~4.1! to calculate the diagram in
Fig. 4 as follows. Let us denote byQ(y) the charged field propa
gating in the closed string channel, with chargesq and q̃ under our
two U~1!’s. The amplitude is

^B1u*d3yq:AmQ]mQ~y!:*d3y8:q̃ÃnQ

3]nQ~y8!:~h̃/Q1Q5!*] :A∧Ã:uB2&, ~5.3!

whereuB1& and uB2& are boundary states corresponding to the t
D branes, projected onto the sector with chargesq andq̃, and where
we have pulled down from the action three interaction terms: t
cubic couplings between charged fields and the Chern-Sim
gauge field, and the boundary term~4.1!. All of the fields here can
be contracted with each other~or in the case of two of theQ’s, with
the boundary states!. The contraction between the bulkAm(y)
and the boundaryA] gives the bulk-boundary propagator encod

in the vertex operator~2.18!, and similarly forÃ. This yields the
diagram in Fig. 4.

t
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branes. The picture that emerges~at least at leading order in
h̃! is that the D branes do not sit in supermultiplets after
deformation, but because of the integration over spacet
collective coordinates, they do not contribute destabiliz
instanton effects.

A. Localized bulk D branes

The AdS33S33T4 background arises as the near-horiz
limit of fundamental strings parallel to NS five-bran
wrapped on T4. We can imagine putting in additional pa
ticlelike D branes in this background—say, in type-IIB, D
branes or D3 branes wrapped around the one and th
cycles of the T4. Before we took the near-horizon limit, thes
D branes were attracted to the F1-NS5 system, and
could form a bound state whose energy was the square
of the sum of the energies squared of the separate sys
~which is the BPS bound; the bound state is supersymm
ric!. If the F1-NS5 system is wrapped on a circle, the ad
tional D branes have a finite contribution to its energy, wh
if it is on a line they do not contribute to it. Thus, after takin
the near-horizon limit, we find@17# that in Poincare´ coordi-
nates there is no lower bound on the mass of D branes,
there is such a bound in global coordinates. This bou
which is proportional to the number of D branes squar
appears even though the D branes break all the supersym
try; it is related to the original supersymmetries of the F
NS5 system which are nonlinearly realized. In any case
weak coupling it is easy to see that such D branes in A3
3S33T4 have a mass which is much larger than the low
bound ~this is fortunate since, for small D-brane numb
when we can ignore back reaction, the mass grows line
with the number of D branes!, they break supersymmetr
completely, and one expects to have generic forces betw
them in the bulk~which at large distances arise from th
exchange of massless particles!. Moreover, these branes a
not static in the bulk of AdS3 , but rather follow the geode
sics for massive particles. In our coordinate system
means they are attracted towards smaller values off. This
motion is insignificant at time scales much smaller th
LAdS, and in our discussion we will assume we are deal
with such time scales and we will ignore it. In addition
such branes which are D0 branes on AdS3, we could also
consider D instantons on AdS3, such as the type-IIB D in-
stanton or Euclidean D branes wrapped on cycles of the4.
These also completely break the supersymmetry.

Let us consider the annulus contribution of Fig. 4 in t
case that the two boundaries are localized on AdS3. We
place the D branes, or the boundaries of the annulus, at
sitionsyi5$g i ,ḡ i ,f i% on AdS3 andu i , ũ i on the two circles
on the S3 corresponding toJ and J̃, wherei 51, 2 labels the
two branes. We will use the semiclassical equation forL,

L i5L i ,semiclassical52
~ ḡ i2 x̄!e2f i

11ug i2xu2e2f i
. ~5.4!

For D instantons, the boundary of the world sheet can
fluctuate since there are Dirichlet conditions in all directio
In this case we also find that the semiclassical expres
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~5.4! agrees with the expression forL in Ref. @24#, where it
was found for a particular boundary condition that near
boundary an operatorF1 , which is related to the operatorL
by ] x̄L5pF1 , goes to a constant times 1/(11uxu2)2 as we
approach the boundary.9 This leads to L→ x̄/(11uxu2),
which exactly agrees with our expression above for an
stanton positioned atg5ḡ5f50, which is the instanton
corresponding to the boundary conditions discussed in R
@24# @other instantons can be generated from this by SL~2!
transformations#. In the case of D0 branes, the boundary
the world sheet can fluctuate in at most one~timelike! direc-
tion. We expect this longitudinal fluctuation to be cancel
by ghosts~and in the case of heavy winding mode exchan
to be suppressed regardless!.

For simplicity let us take the two boundaries atg i5ḡ i
50 and place the D branes at points on S3 which are not
fixed points of the isometries corresponding toJ andJ̃. Note
that by charge conservation along the diagram,q152q2

5q, q̃152q̃25q̃. Working at first order inh̃, plugging Eq.
~5.4! into Eq. ~5.1!, we obtain a contribution of the form

Aq,q̃5
h̃

Q1Q5
E d2xqq̃U x̄e2f1

11uxu2e2f1
2

x̄e2f2

11uxu2e2f2U2

3Gq,q̃
~0! ~u i ,yi ! ~5.5!

to the annulus amplitude arising from closed strings
changed with particular U(1)3U(1) charges (q,q̃), where
G(0) gives the annulus contribution without our ‘‘double
trace’’ insertion. The angular dependence of this contribut
is of the form

ei ~q1u11q̃1ũ1!ei ~q2u21q̃2ũ2!5eiq~u12u2!eiq̃~ ũ12 ũ2!, ~5.6!

due to the wave functions of the closed strings at the t
ends of the annulus. These contributions~5.6! explicitly
break the symmetry which would otherwise exist betwe
positive and negative values of (q,q̃). Note that in the ab-
sence of these contributions~for instance, ifu15u2 or ũ1

5 ũ2!, the contributions from positive and negativeq,q̃ in
Eq. ~5.5! would cancel when we sum over the differe
charge sectors.

Thex integral in Eq.~5.5! can be performed, yielding the
result

Aq,q̃5
h̃Gq,q̃

~0!

Q1Q5
qq̃@2212~f12f2!coth~f12f2!#.

~5.7!

9In fact, in Ref. @24# various different possible boundary cond
tions were discussed, which give somewhat different behavior
F1 near the boundary. From an analysis of the symmetries of
problem it seems clear that the form ofF1 above must be the one
corresponding to D instantons, though this is not what is claime
Ref. @24#.
7-12
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For fixed nonzero separationsu12,ũ12, this contribution sur-
vives the sum overq,q̃. This result constitutes a contributio
to the force between D branes~or in the D instanton case, t
the instanton action! which is present in the bulk of AdS
Because of the power of 1/LAdS implicit in the f12 contribu-
tions, with our current scalings this force disappears in
flat space limitLAdS→`, which is the same limit in which
the AdS3-induced tadpoles for the positions of the D bran
disappear. It therefore agrees nicely with the type of con
bution expected from the CFT side. In the next section
will discuss another scaling forh̃ in which these contribu-
tions in fact survive in the flat space limit.

We can similarly calculate contributions from the oth
diagrams at orderh̃gs

2, involving two annuli connected by
the deformation. For the D-instanton case, this leads t
similar contribution to Eq.~5.7!; now we have four charge
characterizing the diagram, (q,q̃) flowing through one annu
lus and (q8,q̃8) flowing through the other, and the result i

Aq,q̄,q8,q̃85
h̃Gq,q̃

~0!Gq8,q̃8
~0!

Q1Q5
~qq̃81q8q̃!@2212~f12f2!

3coth~f12f2!#. ~5.8!

FIG. 5. Annulus contribution to the mass of D-brane world v

ume fermions at orderh̃gs
2.
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These contributions thus give differentf, g, ḡ, u, ũ depen-
dence than the one we calculated above.

A very similar calculation predicts the lifting of the worl
volume fermion zero modes~Goldstinos! of the pair of D
branes. Before our ‘‘double-trace’’ deformation is turned o
space-time supersymmetry~in the absence of D branes! is
unbroken and the system of D branes sits in a long multip
and has 16 fermionic zero modes which are responsible
creating its superpartners. Let us denote the fermion z
modes on thei th branex i , x̄ i . Before the ‘‘double-trace’’
deformation, the quadratic terms for these fields on the wo
volume of the pair of branes are of the form

~ x̄12x̄2!~x12x2!, ~5.9!

so that the overall combinationsx11x2 are massless.10 The
issue is then whether the contributions in Fig. 5, which
the leading corrections to the fermion masses, produce
same combination of quadratic terms, preserving the m
lessness ofx11x2 , or not. It is easy to convince oneself th
there is no reason why the orderh̃ amplitude should produce
a result proportional to the combination~5.9!. This is be-
cause the charges propagating in the closed string chann
the diagram are different for diagrams with one fermion
each boundary~which contribute massesx̄1x2 ,x̄2x1! rela-
tive to those with two fermions on a single boundary~which
contribute massesx̄1x1 ,x̄2x2!. The first two diagrams in
Fig. 5, with two fermions inserted at a single boundary of t
annulus, yield a contribution of the form~5.5! with a sum
over integerq, q̃. The last two, with fermions on differen
boundaries, have fermionic closed strings propagating in
diagram, so@when the deformation involves the U(1)R cur-
rents# they involve a sum over half-integerq, q̃. Therefore,
we do not expect the combination~5.9! where the two types
of diagrams are weighted the same to persist at orderh̃, and
we expect all fermion zero modes to be lifted.

Thus, we have determined a bulk supersymmetry bre
ing effect of our NLST deformation in this system, at th
level of forces between D branes in the theory and th
world volume action.

B. Nonperturbative nonrenormalization in nonsupersymmetric
nonlocal string theory

As we explained above, an interesting feature of our
formation is that it breaks supersymmetry without introdu
ing destabilizing tadpoles for moduli. From the field theo
side, this is an exact statement. It is interesting therefore
explore how this phenomenon arises on the gravity s
given that we have just manifested bulk SUSY breaking
fects in the D-brane sector.

In order to do this, there is a step remaining in the cal
lation. D branes contribute to the ‘‘moduli potential’’ via vir
tual loops and instanton effects, which require a seco

10We are being schematic here, and ignoring the various indice
the fermions and the dependence of the massless combination
the positions of the D branes.
7-13
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quantized spacetime description. In such a calculation,
~5.7! can represent a correction to the instanton action.
effect of the instanton on physical quantities in spacetim
obtained by a spacetime path integral including integr
over all the fermionic and bosonic zero modes. The fer
onic zero modes, which before the deformation caused
amplitude to vanish, are now lifted. However, the boso
zero modes, including the positionsu i ,ũ i , remain. Although
we get a contribution for each value ofu i ,ũ i as discussed
above, the integral over these zero modes of Eq.~5.7! can-
cels due to the phases~5.6!. Similarly, the diagrams we com
puted in Eq.~5.8! cancel after integration over the position
unlessq52q8 and q̃52q̃8, and the remaining amplitude
cancel when we sum over the possible values ofq because of
a cancellation between positive and negativeq’s.

At this order, this provides a satisfying resolution to t
problem of how the gravity side manages to avoid genera
a ‘‘moduli potential’’ despite the supersymmetry breaki
introduced by the deformation~and the absence of fermio
zero modes!. The D branes experience nonlocal SUS
breaking forces in the bulk, but these effects cancel in co
puting their virtual and instantonic contributions to oth
physical observables via a cancellation in the integrat
over bosonic zero modesu, ũ.

We can apply this result from the D-brane sector to
more intuition, at least heuristically, for the cancellation
the ‘‘moduli potential’’ in the closed string sector discuss
in Sec. III B. A diagram with charged closed strings runni
in loops would naively seem to contribute to the ‘‘modu
potential’’ once the deformation which splits their mass
according to Eq.~2.11! is turned on. However, at the worl
sheet level we have seen that semiclassically~in Euclidean
space! the vertex operatorsK, K̃ localize on boundaries an
charged vertex operator insertions, introducing factors of
form ~5.1! into the contributions of individual world shee
with chargesq, q̃ propagating from boundaries or vertex o
erator insertions. The moduli are uncharged, so from
world sheet point of view it is clear that the closed stri
‘‘moduli potential’’ still cancels also after the deformation.

However, we can dissect the closed string diagrams
way that provides a little more intuition for how the naiv
spacetime intuition fails in this nonlocal theory. Conside
Riemann surfaceS which has degenerated into separate R
mann surfacesS i connected by a set of thin tubes, as in F

FIG. 6. Degenerating Riemann surface contributing cancel
contributions to the ‘‘moduli potential.’’
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6. The ends of the tubes can be approximated by local
erator insertionsTi j (z,z̄) on theS i . TheK andK̃ insertions
on eachS i then localize on the insertionsTi j , and for dia-
grams in which the closed strings propagating in the lo
thin tubes are charged, one gets a contribution from this

Semiclassically, at orderh̃, one therefore gets an insertio
of the form~5.1! where theL i , L̄ j ’s are the values ofL, L̄
at the positions of the ends of the long thin tubes. Gen
cally, a semiclassical analysis will not be valid, but in som
circumstances~such as when the strings propagating in t
S i are very heavy from say winding or momentum along t
T4! it will be. In any case it gives a useful heuristic picture
how cancellations might occur in spacetime similarly to t
case of D branes. Namely, the contribution to the ‘‘mod
potential’’ again involves integrating over the positionsu, ũ
of the insertion points of the tubes, giving a cancellation
order h̃.

It is not obvious from the point of view described in th
section what happens to the D-brane corrections to
‘‘moduli potential’’ on the gravity side at higher orders inh̃
or in gs . The field theory side again predicts no contributio
to the ‘‘moduli potential.’’ There are several diagrams at o
der h̃2 which must therefore cancel if the duality is correc
These cancellations may be nontrivial, analogous to two
higher loop cancellations of protected quantities in sup
symmetric theories which do not follow from any simp
counting of Bose-Fermi degeneracies. In our case, the o
symmetry principle we have so far identified to enforce t
cancellation is the duality~namely, the exact marginality o
the deformation on the field theory side!, and it would be
nice to obtain a more direct argument applicable for arbitr
h̃ on the gravity side.

VI. THE FLAT SPACE LIMIT

It is interesting to contemplate NLSTs arising in bac
grounds other than AdS. One way to try to construct su
backgrounds is to consider the flat space limit of the A
realizations we have so far. It seems that we should not
pect such a limit to make sense, since our deformation
maximally nonlocal on the S3, and induces correlations a
distances of the order of the AdS scale that go to infinity
the flat limit, leading to failure of the standard conditions f
unitarity. This is related to the fact that in taking the flat lim
one focuses on one small region of the S3, and the other
regions which are correlated with it in the original theory
off to infinity. In this section we will show that there is
scaling ofh̃ which gives finite contributions when one take
the LAdS/ l s→` flat space limit of the results derived in th
previous section, and also gives a finite nonlocal deforma
of the worldsheet action in the same limit. However, we ha
not been able to find sensible vertex operators in the res
ing theory, so it is not clear if the flat space limit defines
sensible~unitary! NLST or not.

A. Definition of the flat space limit

The flat space limit of AdS3 backgrounds with NS-NS
charges involves takingQ1 and Q5 to infinity with a fixed

g
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ratio Q5 /Q15g6
2. Since the AdS3 string metric goes asds2

5Q5(df21e2fdgdḡ), the relation betweenf and a flat
space coordinateXf is of the formf.Xf /AQ5. Thus, if we
wish to keepXf constant~which is the simplest possibility!
we need to takef→0 when we take the flat space limi
Similarly, when we expand around some particular gene
point on AdS33S3, the angular coordinates on the S3 are
related to flat space coordinates byu.Xu /AQ5, ũ
.Xũ /AQ5, and the chargesq, q̃ become momentap, p̃ in
the Xu , Xũ directions, wherep5q/AQ5, p̃5q̃/AQ5.

Consider, for example, Eq.~5.7!. In the flat space limit
this result reduces to

h̃

Q1Q5
q1q̃1G0

4

3
~f12f2!25

h̃

Q1Q5
p1p̃1G0

4

3
~Xf12Xf2!2.

~6.1!

Therefore ifh̃ is constant, independent ofQ5 , then this ef-
fect disappears in the limit~we are assuming that the amp
tudeG0 before the deformation has a finite flat-space lim!.
We want the effect to actually depend in the flat space li
only on g6

25Q5 /Q1 . Thus, we need to takeh̃→` as

h̃5h̃0Q5
2, ~6.2!

whereh̃0 is constant, and then we get a finite surviving co
tribution in this limit.

Let us denote the position of one brane byX and the other
by Y. Then, because of the factors~5.6! and~6.1!, the orderh̃
contribution to the annulus diagram for a particular clos
string s exchanged in the flat space limit is proportional t

]Xu
]Xũ

Ds~X2Y!, ~6.3!

whereDs(X2Y) is the contribution of this mode to the ex
change force and we only wrote down the dependence
Xu , Xũ ~for a graviton exchange diagramDs is the position-
space propagator between the D branes!. In the flat space
limit, the sum over chargesq, q̃ turns into a continuous in
tegral over momentap, p̃ in the Xu , Xũ directions. This
washes out the supersymmetry breaking effects, which a
from the distinction between sums overq, q̃PZ and sums
over q, q̃PZ11/2. So the force between flat spa
Bogomol’nyi-Prasad-Sommerfield~BPS! branes will cancel
when all the contributions are added in~since the added con
tributions will still be supersymmetric!, but for branes and
antibranes the force discussed above will persist in the lim

It is instructive to spell out more explicitly the form of th
vertex K(x) appearing in the deformation~2.20! in the flat
space limit. Taking the limit as in Eq.~6.2!, with h̃ scaling as
Q5

2, the deformation is

dSws5h̃0g6
2E d2xK~x!K̃~ x̄!. ~6.4!

Taking the limit as above, one finds@from Eqs.~2.18! and
~2.19!#
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K~x!→ 1

p E d2z]zXuF 22x̄

~11uxu2!2 ] z̄Xf1
1

~11uxu2!2 ] z̄Xḡ

2
x̄2

~11uxu2!2 ] z̄XgG , ~6.5!

where Xf5AQ5f, Xg5AQ5g, Xḡ5AQ5ḡ are the flat
space coordinates descending from the AdS3 coordinates as
discussed above, and similarly forK̃( x̄). This linear combi-
nation of] z̄X

m descends from a longitudinal~formally pure
gauge! vector potential in AdS3 , and does not have fermi
onic pieces as a result.11 In the flat space limit,K(x) is an
integrated physical vertex operator for a tensor field in spa
time at zero momentum.

Plugging Eq.~6.5! into Eq. ~6.4! and performing the inte-
gral overx, we obtain

dSws}h̃0g6
2E d2z1E d2z2@2~]z1

Xu] z̄1
Xf!~] z̄2

Xũ]z2
Xf!

1~]z1
Xu] z̄1

Xḡ !~] z̄2
Xũ]z2

Xg!

1~]z1
Xu] z̄1

Xg!~] z̄2
Xũ]z2

Xḡ !#. ~6.6!

Note that the coefficients in front of the three terms are
actly those which give an SO~3! rotational invariance in the
Xf , Xg , Xḡ directions, as expected in the flat space limit@in
the Lorentzian case this will become SO~1, 2!#.

Thus we obtain a deformation of the general form~1.1!
which persists in flat space. The deformation we have d
covered is very simple: it consists of a sum of bilocal pro
ucts of linear combinations of zero-momentum off-diagon
graviton and NSB-field vertex operators. Since they are tot
derivatives, these vertex operators localize to the bounda
of the world sheet or to other operator insertions. The NSB
field decouples from closed strings, and the off-diago
metric couples to modes with momentum along theXu and
Xũ directions.

B. Observables in the flat space limit?

We would like to study whether the theory we obtain
this limit is sensible. To do so it is important to formulate a
study the behavior of physical observables in this theo
Because of the relative simplicity of the theory~6.6!, we can
investigate this question rather explicitly. We will consid
two types of candidate observables, using two techniques
analyzing the deformed theory. The first arises by consid
ing familiar flat space vertex operators inserted into the p
integral with the bilocal contribution to the action~6.6!. The
second, described in Sec. VI C, arises by considering a
ferent but equivalent presentation of the theory, in terms o
Lagrange multiplier which renders the action Gaussian,
considering a particular set of nonlocal insertions in the p
integral which are natural in this formalism. In both cas
because of the nonlocality of the underlying theory, we w

11We thank D. Kutasov for a discussion on this point.
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find in the end no separately renormalizable constituents
given amplitude; instead we will be left with a rather unpr
dictive situation in which each amplitude must be indep
dently renormalized. This is presumably related to the pr
lems one expects with unitarity when taking a limit whic
keeps only a region much smaller than the nonlocality sc

In the first approach we calculate correlation functions
vertex operators in the flat space limit by inserting powers
Eq. ~6.6! to obtain the effect of our deformation, and we fin
that this leads to divergences. Consider, for example, a
relator ofn vertex operatorsVpj

;eip j •X. Let us compute the

order h̃0 correction to this correlator coming from the fir
term of our deformation~6.6!. It is given by

h̃0E )
k51

n

d2wkd
2z1d2z2

3K )
j 51

n

eip j •X~wj ,w̄j !]Xu]̄Xf~z1 ,z̄1!]Xf]̄Xũ~z2 ,z̄2!L
;h̃0E )

k51

n

d2wkd
2z1d2z2 )

i , j 51

n

uwi j upi•pj /2

3F(
i 51

n pi
u

z12wi
GF(

i 51

n pi
f

z̄12w̄i
G

3F(
i 51

n pi
f

z22wi
GF(

i 51

n pi
ũ

z̄22w̄i
G . ~6.7!

The last four factors come from contractions of the ze
momentum vertex operators in the deformation with those
then vertex operators whose correlation function we are c
culating. The integrals overz1 andz2 diverge when a zero
momentum vertex operator hits aneipX on the world sheet.
In ordinary flat space string theory, this divergence is a st
dard pole in theS matrix arising from the fact that when
zero-momentum particle combines with a momentump par-
ticle to produce a momentump particle, the latter is still on
shell and gives a pole~this can be seen explicitly by continu
ing the zero momentum vertex operators to nonzero mom
tum q and expanding in smallq!. We would like to under-
stand the meaning of this divergence in our applicati
where this correlator describes the shift of the correlat
function of vertex operatorsVpi

under the NLST deforma
tion.

Let us first regularize this divergence. If we put a sho
distance cutoff on the world sheet analogous to Eq.~3.5! in
the AdS case, namely, letting other operators approach
to a distanceaj from Vj , we find that we need to redefine

F)
j
E d2wjVj~wj !G

→F)
j
E d2wjVj~wj !G

3S 12(
l ,k

h̃0g6
2pl

upl
f loguãl u2pk

ũpk
f loguãku2D , ~6.8!
10600
a
-
-
-

e.
f
f

r-

-
f

l-

n-

n-

,
n

-

ly

where ã is proportional toa and absorbs some subleadin
contributions. This shift cancels the divergence above

leading order inh̃0 . Note that the shift we need for th
product of vertex operators is not equal to the product of
shifts we need for each vertex operator separately. T
would not occur in a local world sheet string theory. How
ever, since in a NLST the world sheet Lagrangian is non
cal, it may be necessary to consider as observables the
set of multilocal excitations of the theory, since attempting
consider only local vertex operators would generically f
under quantum corrections.

Unfortunately, this prescription appears to render
theory unpredictive as far as these observables go, since
must renormalize separately each physical process ra
than obtaining predictions for physical processes aris
from a finite number of renormalizations of constituent fiel
and couplings. It is therefore unclear whether the theory
renormalizable in the appropriate sense, because each
bination of vertex operators is a new multilocal operator
the theory and one therefore has to input an infinite amo
of information to define the set of observables. Because
this issue, our results on the flat space limit are inconclus
~through we think intriguing! and we hope to improve ou
understanding of the proper physical constraints on this
of theory in general backgrounds in future work.

We started with a theory in which the non-locality scale
of the order of the AdS curvature radiusLAdS, and this goes
to infinity in the flat space limit. It would be very interestin
to figure out what~if any! are the appropriate observables
such a nonlocal theory, that can give meaningful physi
amplitudes. Of course it is worth emphasizing that withh̃
scaling independently ofQ5 , we would obtain conventiona
flat space string theory in the limit. In usual flat space str
theory we can define observables byS-matrix elements de-
scribing particles which are much farther from each oth
than the characteristic nonlocality scale. These observa
give well-defined correlation functions. In the flat spa
NLSTs we constructed in this section we have seen that
fails, so some other types of observables are needed in o
to get physical predictions. In the AdS case the consiste
of our NLST constructions was guaranteed by the con
tency of the dual conformal field theory, but it is not cle
what are the consistency conditions for flat space NLS
Thus, in the absence of predictions for physical observab
we cannot say if the theories we constructed in this sec
are consistent~e.g., if they are unitary! or not.

Although they may render the question of the existence
a useful flat space limit questionable, the above divergen
do teach us something significant about the AdS3 model that
is our main focus in this paper. In Sec. III we saw that t
vertex operators involved in Euclidean closed string am
tudes localize to the boundary of AdS. The nontrivial~diver-
gent! answers we find in the closed string sector after tak
the flat space limit here indicate that there was bulk phys
in the closed string sector in AdS. In particular, as we ha
seen in some detail, the flat space limit does not leave
with a consistentS matrix, which should have been the ca
if all of the effects of the deformation were at the bounda
7-16
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This provides evidence that the effects of the deformati
and in particular the nonlocality of the theory, permeate
bulk of AdS space, as expected from the marginality of
deformation, despite the fact that we can write the deform
tion as a boundary term~4.1!.

Note from Eq.~6.7! that we see the nonlocal effects in th
flat space limit only for correlators including vertex oper
tors with nonzero momentum along what used to be the3

directionspuÞ0Þpũ. This is consistent with our expecta
tions from the form of the deformation~4.1! that the 6D
theory is nonlocal even though the effect on the 3D actio
a local boundary term.

C. Another set of non-local operators in NLST

Despite the above complications, one might hope that
physics simplifies in terms of some other natural subse
observables. There is a way of presenting the theory~6.6!
@and more generally the theories~1.1!# which simplifies the
analysis considerably, and which suggests another se
multilocal operators in the theory.

Consider the world sheet path integral for the theory~6.6!,
written as a Gaussian using Lagrange multipliersl ~and ig-
noring the fermionic fields which play no role!:

ZSLST5E dlE @DX#e2*d2z]XmGmn~l!]̄Xn

3e2~1/2H̃ !luflũf2~1/H̃ !~luḡlũg1luglũḡ!, ~6.9!

whereH̃}h̃0g6
2 and where

Gmn~l!dxmdxn5hmndxmdxn1lufdxudxf1¯,
~6.10!

where¯ are other similar terms involving the otherl’s. By
integrating overl one can see that Eq.~6.9! gives a descrip-
tion of the theory equivalent to the bilocal description of E
~6.6!, but now the world sheet path integral is Gaussian. T
is similar to what arises in wormhole physics@31–33# and it
would be interesting to explore further the conceptual int
pretation of this mathematical trick.

This method seems potentially useful, particularly in o
flat space limit where it renders the partition function Gau
ian. As discussed in Sec. V of Ref.@1# one can also employ
this method in the AdS/CFT case, but generically in Ad
CFT it is not trivial to implement either on the gravity side
on the field theory side of the correspondence. Naively
simplifies the analysis to one involving only ‘‘single-trace
deformations, but in fact this is complicated on both sides
the duality. On the field theory side, the ‘‘single-trace’’ o
erators in question are relevant operators, and one woul
attempting to integrate over the corresponding sca
dependent couplings. This involves a sum over field theo
with different parameters, whose physical interpretation
unclear. On the gravity side, these relevant perturbations
form the geometry dramatically. In terms of the world she
string theory, the Becchi-Rouet-Stora-Tyutin-~BRST! invari-
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ance condition for vertex operators changes as a functio
l, an issue we will also encounter in our flat space analy
here.

Considering just the closed string sector, which feels o
the symmetric part ofGmn , we can change variables t
Ym(z,z̄)[En

m(l)Xn(z,z̄), where the matrixE is defined by
Em

r (l)hrsEn
s(l)5Gmn(l). Then, the path integral become

E dlE @DY#)
z

@detE~l!#21

3e2~1/2H̃ !luflũf2~1/H̃ !~luḡlũg1luglũḡ!

3e2*d2z]Ymhmn]̄Yn
. ~6.11!

Here thel dependence is only in the Jacobian~and in the
Gaussian!, which is in this flat space situation independent
the embedding coordinatesY(z,z̄).

Now let us consider observables~correlation functions of
vertex operators!. A new set of multilocal operators in theX
variables are the simple operators

Vk@Y#[eik•Y. ~6.12!

In terms ofX, these vertex operators vary withl so as to
preserve conformal invariance in the path integral for ar
trary l. We can insert these into the integrand of Eq.~6.11!,
and divide by the vacuum path integral~6.11! to normalize.
This reproduces the correlators of momentum modes for
dinary flat space string theory.

These momentum modes~6.12! of Y are highly nonlocal
when expressed in terms ofX ~in the original formulation of
the theory withoutl!. In general, when we map a product
the Vk@Y# operators to theX variables it will not map into
the product of the maps of these operators. So in termsX
there is still noS matrix with amplitudes determined b
renormalizations of operators describing separated exc
tions. However, it is true here that there is a set of multilo
amplitudes@insertions of products of operators~6.12!# which
are naturally determined by the standard renormalization
Eq. ~6.12! in the Y variables, and which produce results is
morphic to the flat spaceS matrix.

A similar analysis using the prescription of Eq.~6.9! can
be performed in AdS33S33T4, with similar results arising
at leading order inh̃. The observables analogous to E
~6.12! there reproduce the standard AdS correlators in
original undeformed supersymmetric background. Ag
they are nonlocal and nonlocally renormalized in terms
the physical variablesf, g, ḡ, u, ũ. The meaning of these
observables is unclear, since the physics of the CFT d
seem to depend onh̃. It is tempting to speculate that thes
objects could realize a hidden nonlocal supersymmetry in
system which explains the vanishing of the ‘‘moduli pote
tial,’’ while as we have seen the physics in terms of t
ordinary variables exhibits broken supersymmetry.

In general, it is important to clarify what are the cond
tions for physically consistent NLST models, both for co
ceptual interest and with regard to the potential for appli
tions. In particular, it would be very interesting to develo
7-17
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more realistic models that have the exact stability after
persymmetry breaking that we have found in the AdS3 back-
grounds studied in this paper.
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