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Nonlocal string theories on AdSX S® and stable nonsupersymmetric backgrounds
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We exhibit a simple class of exactly marginal “double-trace” deformations of two-dimensional conformal
field theories(CFT9 which have Ad$ duals, in which the deformation is given by a product of left- and
right-moving U1) currents. In this special case the deformation on-Aid$enerated by a local boundary term
in three dimensions, which changes the physics also in the bulk via bulk-boundary propagators. However, the
deformation is nonlocal in six dimensions and on the string world sheet, as in generic nonlocal string theories.
Because of the simplicity of the deformation we can explicitly make computations in the nonlocal string theory
and compare them to CFT computations, and we obtain precise agreement. We discuss the effect of the
deformation on closed strings and on D branes. The examples we analyze include a supersymmetry-breaking
but exactly marginal “double-trace” deformation, which is dual to a string theory in which no destabilizing
tadpoles are generated for moduli nonperturbatively in all couplings, despite the absence of supersymmetry. We
explain how this cancellation works on the gravity side in string perturbation theory, and also nonperturbatively
at leading order in the deformation parameter. We also discuss possible flat space limits of our construction.
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I. INTRODUCTION the duality that one has to tune parameters in order to get
) _ o ) ) back to the conventional theory, so the conventional string
One interesting direction of research in string or M theOWtheory occupies a set of measure zero in the space of theo-
concerns the novel phases of the theory. Examples includges. These theories are gravitational, and have many intrigu-
noncommutative Yang-Mills theory and nongeometricaling features outlined in Refl]. In a perturbative string de-
phases of string compactifications. Although such phasescription, the perturbative expansion in the deformation is

may appear to be exotic, in some cases they are generic, f@produced by shifting the world sheet action by a bilocal
the sense that returning to more conventional backgroundgrm of the general form

requires tuning a superselection parameter to a special value.

These novel backgrounds are very much worth studying,

both because of their intrinsic interest and because of the ~

hope that their unconventional physics may play a role in 5SWS=|§; hIJJ dzzlv(”[y(zl)]J 4?2Vl (2)],

solving open problems that remain in formulating and apply- ' (1.

ing the theory(such as the cosmological constant problem

In Ref. [1] we found strong evidence for a new type of

perturbative string theory, nonlocal string thediyLST), where V() are some vertex operators in the string theory

arising on the gravity side of AdS conformal field theory each including a factor of the string coupligg (in the ex-

(CFT) [2-5] dual pairs whose field theory side is deformedamples of Ref[1] the indexI was continuous andy(z) are

by a “multitrace” operatott In such theories, the “exotic” the embedding coordinates of the string world sieetany

phase is generic, since it is obvious on the field theory side ofther fields on the world sheéetin Ref. [1] examples of
double-trace deformations which were relevant or marginal
in the dual CFT were exhibited. It was shown that these

*Email address: Ofer.Aharony@weizmann.ac.il deformations could not be accounted for by local ten-
"Email address: Micha.Berkooz@weizmann.ac.il dimensional supergravity, and that, in perturbation theory in
fEmai . - . .

Email address: evas@slac.stanford.edu the strengtth of the deformation, the changes in CFT corr-

"We will use the names “single-trace” and “multitrace” operators gjators are formally reproduced by the sliift1) in the world

for any CFT which has a weakly curved AdS dual, though thegheet action. This leads to a new type of diagrammatic ex-
operators can only be represented in terms of traces in the case of . . . L
four-dimensional gauge theories. By a “single-trace” operator wepar.]Slon enCOdm.g the p?rturbatlon theory in bbt}a}nd s

will mean an operator which is dual to a single particle in stringW_hICh has many interesting npvel features. In p,art'C,UIar’ ,at a
theory (for example, a KK mode of the gravithnwhile “multi- given orde_rn in the g expansion, one has Con'_[rlbutlng dia-
trace” operators will appear in the operator product expansiord"@ms which do not have the modular properties of genus

(OPB of such operators. The distinction between these classes dfiemann surface_s.
operators is not always cleésee, e.g., Ref6]), but it can be made In these theories, some sectors are affected by the defor-

in an obvious way for operators of low dimension when the back-mation at leading order ig; (classically on the gravity side
ground is weakly curvegsuch “single-trace” operators correspond While other sectors are not. For instance, exclusive graviton
simply to supergravity fieldsand this is all that we will use here. scattering along the AdS directions remains the same at tree
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level on the gravity sid¢1]. This parametric hierarchy be- massegwhich are related to the splittings between the di-
tween an approximately local sector and a completely nonmensions of corresponding operators in the dual agFow
local sector for small string coupling on the gravity side maywith the masses. Unfortunately, the supersymmetry breaking
potentially render these theories more viable as physicatffects are small—they disappear when we take the flat space
models than they would be otherwise. limit, so that this does not yet provide a basis for a realistic
The examples of Ref[1] involved string theory in theory of supersymmetry breaking. However, the cancella-
Ramond-RamondRR) backgrounds, so it was difficult to tion of tadpoles for moduli is nontrivial in our model for
make the formal expressiafl.1) more explicit, due to the finite AdS radius, since thévanishing moduli tadpoles are
current limitations on our understanding of RR backgroundsierarchically smaller than the scale of supersymmetry
in string theory. It is important to study more explicitly the breaking. Given this prediction for stability after supersym-
conformal perturbation expansion around the undeformednetry breaking, and more generally in the interest of clari-
background, in order to understand how divergences arisinfying the physics of NLSTs, it is important to study the ef-
in conformal perturbation theory are regularized from thefects of the deformation on bulk physics on the gravity side
point of view of both sides of the duality, and in order to of the correspondence.
make progress on the larger questions regarding the consis- The deformation has interesting effects on both the per-
tency, degree of nonlocality, and applications of the newturbative and nonperturbative sectors of the theory. The di-
theories. mensions of operators corresponding to charged particles
In this paper, we present a rather explicit example of arpropagating in AdS are changed by the deformation. As far
interesting “double-trace” deformation in the Neveu- as the perturbative sector is concerned, because the “double-
Schwarz version of Adg CFT, arising from the low energy/ trace” deformation in this specific case involves vertex op-
near horizon limit of a system @, fundamental strings and €rators which are total derivatives on the world sheet, we

Qs Neveu-SchwarzNS) 5-braneq2]. In the dual CFT this find semiclassically in Euclidean space that this causes the
deformation is of the form 5Scer  deformation of closed string diagrams to be localized near

= (RF/Q,Qs) fd?xI(x)I(X), whered and3 are left and right the boundary of AdS space. In Lorentzian space we do not

moving global symmetry currents in the dual CFT. By usingex_peCt this to be the case, anq we present some indirect
the explicit string theory description of undeformed evidence(coming from the behavior of amplitudes in the flat

AdS,/CFT, that has been developed in recent ydaes, for space limi} that in Lorentzian space closed string amplitudes

example, the comprehensive analysis in R&f, and refer- are affected in the bu'.k'. . .
ences therejp—in particular the formalism of Ref$8,9] for we qlso s’;udy explicitly the dy”a”_“‘?s of D branes. D_|a-
vertex operators and correlation functions and the semicla@rams_InVOIVIng .D bra_nes h_ave ex_pI|C|t bulk effects which
sical analysis of Ref.10]—we are able to analyze explicitly ar.e.ewdent sem|c|aSS|ca[Iy In Euclidean space, and we ex-
many aspects of this deformation. In particular, we chec licitly compute the contribution of the deformation to bulk

explicitly the absorption of divergences in conformal pertur-'°"¢€S be“Ne‘?” D branes. N
ba?ion t)r/1eory P g P We also discuss the deformation in the language of the

This deformation has an interesting physical property. It igt;)w-energy effective theory. The deformation we perform is

| inal b h . itand 3 1 y a product of currents, each of which is dual to a gauge
exactly marginal but at the same time,JifandJ are U1) a4 in the bulk with a Chern-Simons coupling at leading
currents in theR-symmetr_y group, it breaks supersymmetry. o qer in the low-energy expansidisee, for instance, Ref.
Applying the basic relation between conformal invariancery ) The deformation of the dual CFT action by a product
and Ad_S |som§tr|e§2] to nonsupersymmetric systems Ieadsof chiral and antichiral currents can be identified with a local
to an interesting elgment in the duallty.d|ct|ona[r§(1]. eformation of the boundarfsurface terms in the gravity-
Namely, when there is a nonsupersymmedtric hypersurface ‘ﬂide (2+1)-dimensional Chern-Simons theory in a standard
renormalization grougRG) fixed points, a destabilizing po-

X 7 i way [13—-15. This description is equivalent in this case to
tential for moduli is not generated along this hypersurfaceOur description(1.1) (both descriptions lead to the same per-
despite the absence of supersymmetry.

) : . .. turbation expansion involving insertions of bulk-boundar
Our model provides for the first time an example realizing P g y

propagatorg and leads equivalently to interesting bulk phys-

this possi_bility whe_re the fixed_ surface_ exi_sts for finite valueslcs such as novel contributions to forces between D branes. It
of the string coupling. The price of thisvhich may end up

h o . . ) is also worth emphasizing that even though the surface term
being a positive featujes that the fixed surface includes a P g g

“double-t > def i hich trols the st th fis local in the 3D action on Ads it is nonlocal in the 6D
ouble-trace” deformation which controls the strength ot iy o Ad$x S%, with a nonlocality scale given by the
supersymmetry breaking. Perturbatively in the string cou

2 ‘AdS curvature radius. We will mostly use the formalism
pling gs, and also nonperturbatively oy at first order inh, ~ (1.1) which generalizes to other cases of NLSTs and
we find a simple cancellation mechanism that reproduces thgjouple-trace” deformations. It is interesting that in this
cancellation of the moduli potential directly on the gravity simple case the NLST results obtained from a nonlocal shift
side. For higher orders im we do not yet understand directly in the world sheet action can be reproduced by a change in
the way the cancellation occurs beyond string perturbatiothe 3D local action involving boundary terms in spacetime.
theory on the gravity side; this is a very intriguing prediction  The construction of a stable nonsupersymmetric back-
of the duality. The supersymmetry breaking in this model isground in perturbative string theorfwith flat moduli and
“hard,” in that the supersymmetry-breaking splittings of the maximal symmetry in the noncompact dimensiopsovides
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one potential application of these theories. More generally, isigma-models on circle@here are eight such circles in the
is important to articulate the conditions for consistency ofCFT which is dual to string theory on A¢gS S*x T4, which
this type of theory directly in string theory language, in orderis related by marginal deformations to the sigma model on

to understand whether this phenomenon goes beyond the fag-14)N/s, x T4] [17]), in which case we can chooseandJ
Cinating but somewhat esoteric realm of AdS Spacetimes. |[b be the generators of the Corresponding isometries.

this work, we find that a particular scaling of the deformation  Qur main interest is in the deformation of the dual CFT by
leaves interesting effects in the flat space limit. It is not clear

if this limit defines a consistent theory or not, but if it does ) ~
then this may provide an avenue towards understanding OScrr= hj d*xI(x)I(), (2.)
more general realizations of NLSTs.
The 3D boundary term which generates our deformation
affects the bulk in AdS in two ways. One has to do with thewhereh will be normalized shortly. This deformation is ex-
analogy between AdS and a finite box—it takes some mode&ctly marginal(as can be seen for example by bosonizing the
a finite time to reach the boundary. Another way in which thecurrents. In the case that andJ are part of theR-symmetry
boundary can affect the bulk is via the fact that the boundaryroup of a superconformal theory, this deformation com-
deformation existed for an infinite time in the past. The latterpletely breaks the supersymmetry. This combination of exact
effect survives in the flat limit, along with severe nonlocality marginality and SUSY breaking is very interesting, as it
felt by modes with momentum along the dimensions demeans, for example, that no destabilizing potential for
scending from the 5 moduli is generated in the dual string theory at all orders and
This paper is organized as follows. In Sec. Il, we intro- nonperturbatively.
duce the basic deformation on the field theory side and then Many aspects of the effect of the deformation on the dual
translate it to the gravity side using the vertex operators oCFT can be calculated exactly, since the currents involved in
Ref.[9]. In Sec. Ill, we study the effects of the deformation the deformatior(2.1) can be bosonized. It will be convenient
on closed string correlators. In Sec. IV the description of theo use such a bosonized description, in which we identify

deformation in the low-energy effective theory in three di- 3= \2kg, 5(x,X) and3I(X) = V2ka:7(x,X), wherey and
mensions is discussed. As mentioned above, this is simply7 are canonically normalized scalar fields.

given by a local boundary term in this case. Then, in Sec. V," | the case of the CFT dual to the near horizon limit,
we calculate corrections to forces between D brdaesl to AdS; X S*X T4, of Q, fundamental strings an®s NS5
the instanton action of D instantonmduced by the NLST  pyranes on g4, the parameters of the CFT and those of the
deformation. Finally, in Sec. VI we exhibit a scaling of the \,,ckground are related as follok@he central charge of the
deformation parameter in which these effects survive in they o, N=(4,4) SCFT isc=6Q,Qs (up to a correction of
flat space limit. order one which we will ignore, since we will be interested
in the perturbative weakly curved limit @,>Qs>1), and
Il. THE DEFORMATION the level of its SW2) affine Lie algebra ik=2Q,Qs. The
. _ . gravity side AdS radius in string units i§Qs, and the six-
In this section we introduce the “double-trace” deforma- 4imensional string coupling on AdS S° is gg=VQs/0Q;.
tion we are turning on and calculate its effects on Corrs"'atorﬁ'herefore powers afis correspond to powers of {0 ; this

on the C.ngs'de‘ We th(_en trre]mslate the deformanfon t}? t&yill be important in comparing gravity side diagrams to the
gravity side language using the vertex operators o Feaf. expansion of correlation functions on the field theory side.
In the subsequent sections we will calculate the effects of the Let us proceed with the analysis for the(ll) currents

d_eformation on physical quantities directly on the gravitycoming from the S(R) R symmetry, for definiteness. In this
side. case we have

A. Field theory side
2Q;Qs

X2

Consider an Ad$ background of superstring theory J(x)J(0)~ : 2.2
which is dual to a two-dimensiondbuperconformal CFT

containing holomorphic and antiholomorphi¢1) affine Lie

algebras of levek generated by currentd(x) and J(X) This scales as @, which is appropriate since it is related by
[obeyingJ(x)J(0)~k/x?]. For example, in cases where the the duality to a classical kinetic term for bulk gauge fields. In
dual CFT has\N=(4,4) supersymmetry, there is an SU(2) the bosonized language we can write our deformation in this
X SU(2) R symmetry and we will be interested in a U(1) case as

X U(1) subgroup of this. The dual CFT could also include

3In this case it was argued in R¢17] that the CFT which is dual
2In a companion projecf16], we are investigating the role of to the perturbative string theory actually includes some specific
NLSTs in describing squeezed states, such as those that occur ierms of the form(2.1). So, in this case our discussion will refer to
particle production processes in time dependent backgrounds, iadding additional terms of this type beyond the terms which are
perturbative string theory. already present in the “standard” string theory.
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h(Qs)
Q:Qs

f d?xJ(x)I(x)=4h(Qs) J d*>and7, (2.9 .
where we normalized the coefficient using the ek that 16
the deformation should scale g$ in order to get a reason-

able perturbation expansidrand we definech=nh/Q,Qs,

wherea priori h can have an arbitrary dependence @g
~L3%,d12. This normalization is natural from the dual CFT
point of view, since at a generic point of the field theory
moduli spaceQs/Q, plays no special role, but the central
charge is always proportional ©,Qs. On the string theory
side a more natural choice might e=h’g3=h'Qs/Q;
which differs from the choice above l@é; we will see that Y o~
indeed this choice will be more natural when we discuss the a4
flat space limit in Sec. VI.

The operators of the dual CFT are of the form FIG. 1. The leading contribution, at ordegg, to the renormal-

ization of the dimension of charged operatdfs, .5 (denoted by
_ i) N TR A straight line$ by the “double-trace” deformatiodJ (denoted by
Oy =& TP, (9"9,0"9)O) (24 the slashed lines meeting at a boundary pajnt

where P, (9" 7,d"7) denotesAa polynomial in arbitrary de- =/Q,€/P7*¥7) (for which we chose an arbitrary normaliza-
rivatives of 7, 7, and whereO, is an operator in the coset tijon such that the two-point function scales ag?l/ A
obtained after dividing by the U(®U(1) bosonized byy,  simple computation gives
7. It is important to emphasize that there is a particular
;o(:iqptll%r; E);‘fwe_eﬁrl the coset pe@:, and the free part (Yo 5(x XYy _5(0)

1(d"n,d"7) encoded in the set of operators B
which exist in the CFT. In our main example, wherandJ 3 i (4h)" ﬁ )
are part of theR symmetry of the dual CFT, different com- =Q “ nl f =y d*;
ponents of the spacetime supermultiplets in the undeformed
theory have differenR chargesy, §. The deformation2.3) , n .
breaks supersymmetry as it couples to these different com- X < e'p”(x)_]:[l (?ﬂ(Xi)e_'p"(O)>
ponents according to their charges. Thésecharges are .
SU(2) charges: we thus have(x)e'®7(0)~qgeP”(0)/x o .
whereq is the SU2) weight (integer or half integerof the X < e'p”(Y)H a%(?i)e'p’?(O)> . (2.7
operator. This means that the charge® which exist in the =1
theory scale as

This expression is a power series in the “double-trace” co-
pP~a/\V4Q:Qs, P~T/V4Q41Qs. (2.5  efficienth and in the string couplingjz~1/Q, [the latter
statement follows from the form of E¢2.7) combined with
The simplicity of our deformatiori2.1) allows us to de- the scaling2.5) of the chargef The corresponding diagrams

termine explicitly the effect of the deformation on correlation on the gravity side are of effective gengsl, with the first
functions of theO, , starting from the basic Ward identities contribution arising at’(hg?) as depicted in Fig. 1.

Let us evaluate this explicitly at ordar Working out the

J(x)J(0)~ 2_?(1& correlators this reduces to
J 4Q;hpp 1 12
: 4 . ! 2 _ = .
J(x)e'P7(0)~ %em"m). (2.6) xPI25p%2 ™ X1—X  Xp 2.8

One basic effect of the deformation is a shift in the di- This integral is logarithmically divergent wher; ap-
mension of charged operators of the fornY,z  proaches the other operatofsat x and at O[the log diver-
gence for largex; cancels among the different terms in Eq.
(2.8)]. Let us include a UV cutoff, which cuts off the inte-
“As just discussed, in AdX S* with NS charges the only place grals such that for any other operator insertionxgt the
Q, appears is in the string coupling, so counting powerQefis  range ofx, is bounded byx; —X,|=a. Doing the integral in
the same as counting powers @f. Eq. (2.8), one then finds
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pp x| so it will cancel when we compute the properly normalized
S(Ypp(XX)Y_p _5(0))=87Q;h 2,2_p2,2|09| 7 correlation function which involves dividing b§t).
2.9 The first two terms in Eq(2.13 give identical finite re-
: sults, adding up to

The lodal? piece must be absorbed in a redefinition of the
operatorsY, 3 as is standard in conformal perturbation 2><4Q1Q5h2f d?x,0%x,
theory [18] (see also the discussion of this in Sec. IJ)IA (
Namely, here

1 1 1

SERY 22
X1—X3)" (X—=X3)* X7

- 0 1 J 1 1
~80,04 [ o :(— —)—( X2)7

- X2 — _
Yp5— Y5t (87hpPloga)Y,s. (2.10 Xz | X1~ Xa] 9%z | X X1
- 0 1 J 1 1
What remains amounts to a shift in the dimensiory = 2| d2x,d%x— | =—— | — —
oty 8Q:Qsh fd X1d X25X2<X1_X2)(9x2 X_Xz)xi
(—8whpp,—87hpp) (2.11)

:32772Q1Q5F12f d2x10%X, 8% (X1 = X2) 82 (X —X,) i2
to first order inh. Taking into account the scaling.5) of the X1
charges, this shift is of orddrg? (for small chargek It is 32m2Q, Q.2
easy to generalize this to general correlation functions. =Yz - (2.19

One can similarly work out changes to correlators involv-
ing currents(and their descendantarising from our defor-  |f desired, one can always renormalizéy a multiplicative
mation. For example, constant(depending orh) which will cancel this correction
~ )n and keep the same form ¢3(x)J(0)).

X

h Another example is

Sr(I(x)3(0))y= E ( 0.0

" n S(I(x)3I(0)=> ( )
Xle dzxi<J(x)Hl J(xi)J(O)> " i=1 1 Q1Qs/ n!

n x| 11 d2xi<J(x)H J(xi)>
><<H13(7i)>. (2.12 fi:l L

Here only evem contributions survive. All these contribu- X<J(0)£[1 ‘](Xi)>' (219
tions are(since they involven+1 contractions ofl’s) at

orderQ1~g;2, the same order as tree-level diagrams. ThisHere only odd values af contribute. Fom=1, this is
agrees with the set of diagrams that contribute to (BdL2
on the gravity side, which involven+1 disconnected
spheres(connected by insertions of the deformajioifhe

first contribution, at ordeh?, is given by J 1 J
= — R 2 —_— e —
1 1 4Q1Q5hj d Xl&xl(x—x )a? (

(x—x1)? % 4qqﬁfd2 a( 1 )a(
= — X: [
1 1 1 1 tes 19x1 \ X=X/ d
(2.13

+ 1 :
(X_Xz)z ;f (x2—xl)2 x2

- ) 1 1
4Q1Q5hf d Xl—(X_X]_)ZXq
1

><|| =

1

The last term here is related to a divergence in the vacuum B
amplitude =1672Q;Qshs?(x), (2.17

1
4 hzj d?x,d%x
Q1Q5 1 2( _X )

><|| =

=1672Q;Qsh f d2x; 8P (x—x,) 62 (x)

>

1M s
—
=]
ol
p=l
|

=

o

N

X

—

[

~_~~

x

SN

(1)= can swallow this by redefining the original contact te(tive

n < n > which is just a shift in the contact term betwekandd. We
same will be true at higher orders as well
no_ By using exact formulas for correlators involvingand
X < H J(Yi)> 7, we can in principle calculate explicitly the effects of the
deformation on all operatof2.4) of the theory, including the
parts involving complicated descendants. It is worth empha-
:2~2J' d2x. d2x 1 4. (2.14 sizing, however, that the set of operatg®s4) has a lot of _
22— x,? ' structure. The AdS/CFT correspondence maps all states in
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global AdS to operators in the CFT, so operators of this formsion and our semiclassical computations below so we will
describe all possible bulk excitations on the gravity side. Thawot write them down explicitly.

CFT chargeq maps to the charge under the corresponding If we choose coordinates on AgSuch that the string-
gauge field on Ad$(given by the integral of the gauge field frame metric is of the formds?>=Qs(d¢2+e??dydy)
around the boundary of AdSt fixed time in global coordi- (where the curvature in string units is2/Qs), then we can
nates. Clearly, there are many configurations with total write an expression fo\ in terms of the world sheet fields
chargesqg, G; the information about the distribution of this ¢(z,2), v(z,z), andy(z,z), in the semiclassical approxima-
charge in the bulk of the spacetime is encoded in the detailson, of the form

of the PO factors in the operator. It is interesting that the
formula (2.11) implies that the change in the dimension of _ (y—x)e??
operators(and, therefore, the change in the energy of the A(ZvZ;X’EZ_W- (219
corresponding states in global Ad8epends only on their
charge. However, in order to understand the effects of our
deformation on the dynamics of nontrivial distributions of
charge in the bulk of the space, one needs to keep track
the “fine structure” in the operators. .
In particular, in Sec. V, we will be interested in forces B 2 2 5
between separated D branes in the bulk of AdS°. Pairs OSworld sheel™ QleﬂzJ d XJ d Zlf d°22k(z4)
of DO-branes in the bulk of AdSare not quite in stationary

The deformation of the world sheet Lagrangian corre-
Osiponding to Eq(2.3) is given by

states, as there are forces between twhich are small for X az—lA( 2,,2, ;X,Y)Ti(?z)azzx(zz Z5 %, X).
large L pq5). Such a pair is therefore described by a combi-
nation of operator$2.4) which does not form an eigenstate (2.20

of the dilatation operator in the dual CFT. This can be mod- ) ) ) )
eled by a sum of an operator of particular dimension plus'ne vertices(2.18 have many interesting properties that
1/Lpgs times an operator or sum of operators of differentWere analyzed in Ref9] and used there to derive the Ward
dimension. After the deformation, the correlation functionsidentities for the currend(x). Sincedzk(z)=0 except for
of the different terms scale in different ways determined bydelta function contributions at the locations of other vertices,
their correlators with), J as in the simple examples worked we can integrate by parts and write HG.18 as a contour
out above. The force term is still multiplied by a small coef- integral ofkA on contours surroqndlng the msernon points
ficient 1L 545, but its magnitude will in general receive cor- of vertex operators, andf they emsi) on qu_Jndarles of the
rections. We will calculate this effect explicitly for some D worldshee{note that there are no singularities when the ver-
branes in Sec. V, and reproduce this general structure pré€x operators inK(x) and K(x) approach each othprin
dicted by the dual CFT. particular, the vertex operatdf(x) (2.18 can be written in
the form

B. The gravity side

dz
The general formalism described in REL] implies that K(x)= A fﬁrk(z)/\(z,?;x,?).
deforming the CFT by a “double-trace” operator of the form insertions, boundaries.) £ 1!
hfd?x0,(x)O,(x) is described in string theory, at least to (2.23)

leading order inh, by deforming the world sheet action by _ ) )

the nonlocal term hfd?xfd%z;,V,(z1;X) [d?z,Vx(2,;x),  This Iead§[9] to the Ward identity for correlators d¢ with
whereV, (z;x) are the vertex operators f@; (x). In our ~ charged fields. Let,(x) be the integrated vertex operator
case, as described in R¢g], the affine Lie algebra gener- corresponding to a primary of theaffine Lie algebra with
ated byJ(x) in the dual CFT is related to an affine Lie chargeq, so that correspondingly it is a primary of the cor-
algebra generated Ik(z) on the world sheet. An insertion of "esponding worldsheet affine Lie algebra with chamge
J(x) into a CFT correlation function is equivalent to an in- Then, one find$9]

sertion ofK(x) defined by

KOOLT Wq (x x>>=2 A <H Wy (X x>>

K(x)=—%fdzzk(z)az—/\(z,?;x,ﬂ (2.18 = X—X

in the string world sheet, wher& is a particular operator (2.22
such thatd;A (z,z;x,X) is a primary operator of the world-

sheet conformal algebra with dimensi¢®d, 1), and also a for closed string world sheet correlation functions, reproduc-
primary of the space-time conformal algebra with scalinging the Ward identities of the dual CFT. Many interesting
dimension(1, 0. We wrote down the vertex operator for the operatorgincluding J(x) itself] will not have this property
bosonic string; in the case of the superstrim¢hich is the  of being primaries of chargg and then we will have more
case we are interested itihere will be some additional terms complicated expressions for their correlation functions, as
in the expression above, but they do not change our discushiscussed in Sec. Il A.
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lll. EFFECT OF THE DEFORMATION ON CLOSED ing corrections to correlation functions, which can be consis-
STRING AMPLITUDES tently regularized and absorbed in rescalings of the operators

Now, let us take some correlation function of closed string(see’ e.g., Ref18]). The cutoffa we introduced in Eq(2.9)

vertex operators in the theory before the deformation, anéfllnd the rescaling E(Q?.lO) are an gxample of this procgdure
consider the effect of the deformation on the correlation? OUr case on the field theory side. We would now like to
function. In perturbation theory the effect of the deformation!!lustrate how this regularization is described on the gravity
is given by the insertion of some numberiofx) andR(Yi) side. This can be deduced by using the UV/IR correspon-
vertex operators into the correlation function, and integra—dence' . . ) N
tions overy; . If the correlation function involves only pri- On the gravity S'de’. the first-order correction in a cor-
mary fields we can then easily compute it on the world sheef€!ator such as Eq2.7) is of the form
using Eq.(2.22), and it is obvious that we reproduce the CFT T 5
computations of the same correlation functid@s?)—(2.17) —f d2x1<qua(x,ﬂW_q,_a(O)K(xl)K(xl».
described in Sec. Il A. Q1Qs

Our deformation is exactly marginal and affects physics at

all scales on the field theory side, and we have 'ntrqducgs&nticipating that the result will be divergent, let us put an IR

AdS,, so we might expect the bulk physics to be affected b)?:utoff in space-time at a finite value @f leaving the region

the deformation, and perhaps to become nonldeath a $< ¢, and use the semiclassical analysis of the world sheet

nonlocality scale much bigger than the string sgaf@r the gnd O.fA' Tglgng |an0 ﬁcc?unt thhe :?calléezl};on' o at thew
case of a double-trace deformation in Ad@arious argu- n;ser'ﬂons( .hj') atl)n the fact thagk(z)( mi) measures
ments for bulk nonlocality were given in Réfl]. However, the charge, this becomes

in our case we need to be more careful because, as discussed h

above, the vertex operators we deform by are total deriva- Sr(WW)= —f d?x, GG A 1(Xq) — Ao(Xq)|2(WW,
tives on the world sheet, so it is not clear that the deforma- QuQs 3.2
tion is really felt all over the world sheet. Semiclassical |
world sheets in Euclidean AdSstretch all the way to the whereA ; and A, refer to the semiclassical value Afat the

boundary, where the vertex operators describing externgjositions of the twaV insertions(cut off at ¢). For larges,
states in the Feynman diagrams are inseftéd]. It is  we find

straightforward to check, using the methods of R&@), that

(3.9

the insertion oK (x) does not change the shape of the saddle Aq(X)=— %,

point configuration of the world sheet near the vertex opera- e “Pet |x—xq|

tor insertions at the boundary. The world sheet path integral (—%7)

of course involves integration over all world sheet shapes, Ao(X) =~ =25 1v 12 3.3

— (/) y
. . e %+ |x
but from Ref.[10] we see that the dominag$addle point x4l
contribution is one in which th&V, insertions are at the where we have replaced thecoordinate of each insertion by
boundary. As discussed above, further insertionk @) lo- its boundary valuéx or 0, respectivelysince the corrections
calize at the same points on the world sheet. Thus, in thig this value are subleading at large to thee™ 2% contri-
special case where the vertex operators we deform by afigution we have included. Plugging E€.3) into Eq. (3.2)
total derivatives, it seems that the only effect evident semigives anx integral whose log divergence at large cancels
classically on Euclidean closed-string amplitudes is localizeggmong the various terms in E¢3.2) [just as in Eq.(2.8)].
at the boundary of AdS space. __ _The leading divergent behavior when approaches the

The case of more physical interest on the gravity side ither insertions at and 0, and ag.—, is
the Lorentzian case, where scattering events can take place in

2
the bulk of the space. For the Lorentzian case we will pro- 2 |wi —2¢\ —
. L . W—— ~—2mlog(e “%c)=4 .
vide an indirect argument in Sec. VI, based on features of the (e 2%c+|w|?)? mlog( )=4m e
flat space limit, that the effects of our deformation are felt (3.4

also in the bulk of the space and not just near the boundary. ) )
The existence of nonsupersymmetric shifts of charged\OW that we have expressed the cutoff divergence in terms

closed string masses obtained from the shifted dimensiorid 9ravity side quantities, we can absorb this divergence into
(2.11), combined with the exact stability of the model, raises® 'escaling of the vertex operatov, 3, corresponding to
the fascinating question of how to see the cancellation of thd€ rescaling2.10 we had on the field theory side. In string

moduli potential directly on the gravity side of the corre- the€ory, we can further translate this cutoff into a short-
spondence. We will return to this question in Sec. Il B afterdistance cutoff on the world sheet using Rgf0]. The IR

considering the divergence structure of the deformation oifUtoff éc in the target space geometry corresponds to a cut-
the gravity side. off

a h)=e™ %/ (3.5
A. Regularization of divergences wortd shet)

In studying marginal deformations of CFTs in conformal ©n the world sheet near an insertion of a vertex operator
perturbation theory, one encounters divergences in calculatorresponding to a scalar operator of dimendigr h) in
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FIG. 2. Vacuqm diagram at ordé‘rzgg. The .insertiops .of the FIG. 3. Modulus tadpole at ordeﬁzgg. The insertion of the
vertex operators in the “double-trace” deformation are indicated byyertex operator for the modulus field is indicated by the plain line.
the pair of lines with slashes joined at the boundary.

see how this happens from the point of view of string per-
the dual CFT. turbation theory in the bulkwhich gives part of the contri-

There are also formal divergences in contributions to thébution to the correlation functions in the full dual CET
vacuum amplitude in the bulk. For example, the diagram in In usual flat-space string theory, when we break super-
Fig. 2 has a logarithmic divergenggiven by Eq.(2.14].  symmetry we would expect to have a nonzero torus vacuum
These diagrams by themselves are not physicallamplitude. There, this amplitude is proportional to the torus
observable—they map tl) in the CFT which we should diagram with an insertion of the zero momentum dilation,
always choose to equal 1. However, the ratio between anwhich is the world sheet manifestation of the fact that the
other diagram and the sum of vacuum diagrams is obserwacuum energy in perturbative string theory is really a po-
able. For example, we can look at the same diagram probe@ntial for the dilaton. Our situation is different since the
by an external line as depicted in Fig. 3. This will be relevantdilaton is a fixed scalar and therefore massive. Thus, we
for the moduli potential, which we turn to next. would expect to generate a potential only for the other
moduli which actually correspond to massless fields on
AdS;. In any case the vacuum diagram by itself has no
physical meaning, so we cannot use it to learn about super-

As discussed above, when we deform the CFT which isymmetry breaking in the bulk; the physical effects of the
dual to string theory orisay) AdS;x S®X T# by a deforma-  vacuum energy are encoded in the diagrams with an external
tion (2.1) involving U(1)g currents, we explicitly break the graviton or moduli line, which determine the curvature and
space-time supersymmetry. From the space-time point ahoduli dynamics generated by the vacuum energy.
view we would naively expect to generate a moduli potential In the case we are interested in here, the moduli involve
in such a case, such that not every point in the originathe T# part of the world sheet CFT; for most of the moduli
moduli space would still give a stable background after thethe vertex operator corresponding fal?xOmoquiudX,X) is

supersymmetry breaking. However, we know that this doegjmply [d2zgx'9X! (the others come from the RR sector and
not happen in our case since the deformation in the CFT igy argument in the next paragraph will apply to them as
exactly marginalindependently of any of the other param- well). The leading correction to the moduli tadpole after the
eters of the CFJ, so we expect to have an exact nonsupergeformation comes from Fig. 3. It is easy to see that this
symmetric background after the deformation with the isom-anishes, because the world sheet correlation function on one
etries of Ad§ for any value of the other moduli of the of the spheres factorizes into a correlation function involving
theory. We are using a slight abuse of terminology herethe T4 directions and one involving the AdS 2 directions.
since in general NLSTs do not have a local effective action,l.he first factor is just of the forn@:axigxiﬁ where thexi

the notion of amoduli potentialmay not persist. However, are embedding coordinates of the string in Tedirections.
we can still ask whether all the moduli of the original theory This vanishes

rema:n, ri?r? tdro Erm ?(?r\l/elgpft?gqpci:ei e\\//Venhaf\t/er r\:]ve da(ljid th_e Next, let us consider arbitrary diagrams contributing to
supersymmetry breaking detormation. We have Moaull 0Py «moqyli potential,” at a general order in the perturbation

(1) i imensi A
eratorsOmogu{X,X) which are of dimensioiil, 1), and the theory in gs and h. Such a diagram would have various

vanishing of a term of ordem in the fields in the original nnected components. which ar " with
“moduli potential” is manifested in the vanishing of the in- connected components, ch are gergisuriaces

tegrated correlation function of of these operators in the Some numben of insertions ofJ, T insertions ofJ, andm

CFT5 From the dual CFT it is clear that this must still be the insertions of fd?xO{),,{x,X) (wherel labels the various

case also after the deformation, and in this section we wilmoduli fields. This subdiagram is a correlator in the original
undeformed theory, of the form

B. The moduli potential in string perturbation theory

*The casen=2 actually does not vanish; it is related to the propa- <J(Xl). = J(Xp)I(Xpys 1) - ‘j(7n+ﬁ)f d2xO0 s
gator on the gravity side, and diverges after we integrate xavEne

vanishing of the quadratic term in the “moduli potential” is ac-

counted for by the dimension of the modulus operator, which cor- xf d2x(9§nmo>dulus> . (3.6

responds to a massless field on the gravity side. genusg
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If n=T=0, the diagram is identical to a contribution to the lows by gauge invariance from the fact that the pure gauge
“moduli potential” in the undeformed supersymmetric modesA=dA (whose field strength vanishedo not couple
theory, which cancel®. For the other diagrams which feel only to each other or to the uncharged moduli fields at any
the deformation and therefore the supersymmetry breakingyrder in perturbation theory in the original background.

we note that the moduli of the torusvhich are the scalar In any case, the result is that in our diagrammatic expan-

fields on Adg we are discussing herare uncharged under sion, in perturbation theory ih, the diagrams contributing
the U(1) isometries generated hiyandJ, and have a nons- potentially destabilizing contributions to the “moduli poten-
ingular OPE with the current operators. As discussed aboveial” cancel by virtue of the vanishing of corresponding dia-

the vertex operators faf andJ are total derivatives on the grams in the original theory, which appear as subdiagrams in
world sheet which can be written as integrals around thdhe deformed theory. It would be nice to gain a more intuitive
other insertion points, angs in Ref[9]) these integrals get understanding in the bulk spacetime of how the loop dia-
no contributions near the moduli operators. Thus, ignoringdfams involving closed strings in the bulk, which have Bose-
the picture changing operators inserted on the Riemann sufermi splitting[using Eq.(2.11), since the bosons and fer-
face at higher genus, which include terms from all sectors ofnions have different charges under Ugl) manage to
the world sheet CFT and can lead to additional singularitiescancel in this theory. We will return to this in Sec. VB after

one would find that the correlation functidB.6) factorizes ~ studying some bulk effects, including supersymmetry break-

into the part involvingd andJ times the part involving the ing effects, of D branes in our theory in Sec. V.

moduli, and the latter vanishes as argued above. This calcu-

lation of the f1+T+ m)-point function can be done equiva-

lently in the dual CFT description of the original theory, IV. EFFECT OF THE DEFORMATION
where it cancels by an exact factorization argument, and one ON THE LOW-ENERGY ACTION
f[herefpre dedupes that thg full calculatlon of the diagram In Sec. lll we saw indications that when computing the
including the picture changing operators still leads to a can-

cellation. Thus we see also on the string theory side that Wg-pomt function in Euclidean space of any set of vertex op-

do not produce a “moduli potential,” despite the absence offrato,fsd OP thetyvorl.dslheelt., tr:je Ctotﬂmgu“og OT thef:ngl:e—
supersymmetry. race” deformation is localized at the boundaries o .In

One might worry that there could be moduli which have athls section we would like to discuss this in the context of the

. . ~ . low-energy effective description, and to clarify from this
singular OPE with the current$ or J. If we bosonize the . 9y P . fy .
. . point of view where boundary terms arise. In the next section
currents as in Sec. II, then because @), sare dimen-

. . e will return to our analysis of the effects of the deforma-
sion (1, 1) operators in the dual CFT and they are uncharge%von in string theory and the stable supersymmetry breaking

underJ, J, they could only depend on, % by a factor ofiy mechanism encoded in this model.
or d77. So, we can write these operators generally as |n general in a NLST, one would not expecloaal grav-

(’)%dum: Oo+ d7(X) Or(X) + (A’)L(X);‘ﬁ(Y) where Oy has a ity or supergravity action in the infrared. In our present case,

nonsingular OPE with the curren®, is a dimensior(0, 1) ~ Which is based on Chern-Simons gauge fields 12di-

operator and), is a dimensior(1, 0) operator. Note that the MeNSions, some 3|mpI|f|cat|0_ns arise if we focus on the_gAdS

last two terms are actually “double-trace” operators, sincePart of the _geometrf/.ln_ particular, from Refs[13-19 it

dmis simply proportional ta, and they do not correspond to follows that |fyve bosonize the currents as in Sec. Il then the

scalar fields on Ad§ However, even for moduli of this bulk Chern-Simons gauge fields which are dual to the CFT

“double-trace” form we can argue that no tadpoles are genoperatorsJ and J are given byA=.4Q;Qsd» and A

erated after our deformation. The same arguments above \/4Q,Q.d% away from sourceswhere  and % are de-

show that the effect of the deformation on the tadpole foffined on all of Ad§ and their boundary value is given by the

these operators must be proportional to the valu@hf(x)) objects defined in Sec.)lIThen, one can realize our defor-

or (O_(x)) in the original theory, which obviously vanishes. mation 4hfd?xd5d% by a boundary term in the Chern-
We can also give a direct space-time argument for thesimons(CS) theory

vanishing of the “moduli potential” after the deformation.

On the gravity side, the vanishing of the “moduli potential”

after our deformation corresponds to the statement that in the F

original theory before the deformation, the coupling of 5SSUGRA:—J AA. 4.2

Chern-Simons gauge fieldhich are the fields dual td, J) Q1Qs Jnas,

to the moduli remains zero quantum mechanically. This fol-

This prescription reproduces our perturbation expansion

SMore precisely, this subdiagram is a particular term in the expanin h, as can be seen by regarding E4.1) as part of the
sion of the CFT “moduli potential” in powers og§=Q5/Q1, but
since the full correlation function vanishes every term in its expan-
sion must vanish as well. "We thank J. Maldacena for emphasizing this aspect.
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interaction Lagrangian in the gravity-side theory. Bringing scribed for instance in the discussion around E9) of
down powers of Eq(4.1) in the path integral and contracting Ref.[15], we do not need to impose any boundary conditions

the boundary field\,, A, in Eq. (4.1) with bulk fieldsA,,  on the fieldsA, A, since by adding appropriate boundary
A, coming from insertions of interaction vertices from the €rmMS we can set the relevant currents to be chiral and anti-

bulk Lagrangian, one obtains the bulk-boundary propagatorgh'ral by the equations of motidithe Euclidean action is of
implicit in the vertex operators in E2.20. In particular, as  the form
we will see further in Sec. V, we find significant effects of - o~ )
the deformation in the bulk arising from this. These come (k/ZW)fAdss(ADdA_ADdA)_('k/477)faAdS3(AD*A
from the fact that the Ad$acts similar to a finite box for -~
some modes, and more generally from the fact that the TAL*A),
boundary tern{4.1) is present throughout time. Note that Eq. ,
where the"’s are taken in the boundary of AdS sp&cEhus,

(4.1) is not a local term in six dimensions, as each of the'" -
fields appearing in Eq4.1) is actually in a particular spheri- it is not necessary to change the boundary conditions after

cal harmonic on the 5 so writing this term down in the d&forming by Eq.(4.1), and this term automatically repro-
six-dimensional action entails performing two integrationsduces the perturbation expansion in the CFT which we de-
over the §. Thus, in the full theory this term is manifestly Scribed in Sec. II.

nonlocal at the AdS curvature scale.

In fact, writing the deformation in the forn4.1) is a V. D BRANES: BULK EFFECTS AND SUSY STRUCTURE
special case of something we can do in general to describe
deformations in AAS/CFT. Let us work in Euclidean AdS
space with the standard coordinate systete®=(dr?
+dx“dx#)/r2. In conformal perturbation theory, if we de- . ;
form the Lagrangian by a “single-trace” operatét of di- ~ World sheet has boundaries on D brankigx) gets addi-
mensionA which is dual to a supergravitgSUGRA) field tional contributions from these boundaries, {and these do not
B(x,1), 8Scer=h[d%O(x), then we need to insert into the have to be a; tht=T boundary of AgSThus, |f[ seems that
dual supergravity picture any number of boundary-to-bulkP-Prane physics in the bulk could be manifestly different
propagators of the fiele, each with a coefficierti. One way after the deformation, even in Euclidean space. Such physics

to do this is to deform the SUGRA action by a boundaryC°U|d involve, for instance, D-instanton corrections to corre-

term of the form 8Ssyara=Ilim, oh/doe(x,r)rd=4 lation functions, D branes localized in the bulk, or D3 branes
— L L . 2 . .

which reproduces the same perturbation expansion becau%&@PpPing an Adgx S” cycle in Ad$ X S°. D branes in Adg

of the relation between the bulk-to-boundary and bulk-to-N2ve been studied, for example, in R¢f9-30.

bulk propagators, if we add this term without changing the Studying this requires us to be able to calculate correla-
boundary conditions on the fields. However, usually this defion functions with Eq(2.21) inserted along the boundary. In

scription is not very useful since the limit-0 is singular so  9éneral we do not know how to trek{z) and A near the
we do not get a local deformation of the action, except in thdoundaries of the world sheet. However, in certain circum-

caseA =d of marginal deformations. For marginal deforma- Stances, A approaches an-dependent constant near the
tions the effect of the added term at first ordehiis simply boundary, and we can calculate the effect of the deformation

to change the bulk value af by a constant amount propor- explicitly. One such circumstance involves world sheets
tional toh, as in the usual description. However, this violates"WNich can be treated semiclassically. In such a case we can

the usual boundary condition for a massless fieltiich sets ~ SIMPly replaceA by the value of Eq(2.19 at the locus in
its boundary value to a particular constaso this formalism 1€ target space where the boundary of the world sheet is

breaks down also in this cageading to singular configura- Mapped. Another involves D branes which preserve a diag-
tions). In any case, this illustrates that writing the deforma-©nal subgroup of the SL(2)SL(2)x SU(2)x SU(2) chiral

tion as a local boundary term does not preclude having largg/9ePra. In these cases the symmetries determine the behav-
effects of the deformation in the bulk. ior of A near the world sheet boundaries. A third situation in

Similarly, also for “double-trace” deformations by a Which we have control is that of D instantons on AdS
product of two scalar operators, of the formiSeer which freeze the world sheet boundaries in all directions.

= . Here again we can replace the world sheet fiejdsy, ¢
=hfd ),(OE(X)OZ(X),’ we can reproducg the 'perturbatlon appearing in Eq(2.19 by their boundary values. We believe
theory inh by adding to the supergravity actiofSsycra  that a similar situation may also occur for DO branes on
=lim,_oh S %1 (X,r) o(x,r)r24174%2. Again, this is AdS,, at least with regard to emission of massless closed
not very useful since the added term generally has no goostrings whose worldsheets intersect the D branes at a point
r—0 limit, and in particular this happens in the marginal (up to string scale fluctuations, which may be canceled by
case ofA;+ A,=d. However, if we deform by vector fields ghosts, since they are just along the longitudinal time direc-
instead of scalar fields, we get a powerrdf 221742 in-  tjon).

stead of the power we wrote above. In the case we are dis- Our goal is to understand the effect of our deformation on
cussing in this papeffor which d=2, A;=A,=1) this the physics of the D branes. This requires studying world
power vanishes, so we simply reproduce the deformatiosheets with boundaries and insertions of €320. From the
(4.2), which is perfectly well behaved. Note that, as de-localization ofK to a contour integral around each boundary,

In Sec. Il we studied closed string amplitudes in which

the operator& (x), K(x) involved in our deformation local-
ized to the boundary of AdS(semiclassically When the
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“double-trace” wedge connects two otherwise disconnected
annuli. We can calculate all these diagrams equivalently us-
ing Eq. (2.20 or (4.1).8
In some cases this contribution will vanish. For example,
when A takes the same value on both boundaries of the an-
nulus, then the sum ovéKor overj) in Eq. (5.1) vanishes by
charge conservation. This cancellation occurs for each closed
string charge sector separately. The path integral involves a
sum over all closed strings propagating between the two
boundaries, and in particular a sum over all the possible
closed string charges. Thus, another source of cancellation
01 0 can arisgfor example when we deform by the (1) currents
N inside the SU(2X SU(2), if the Dbranes are not separated
on the S, since then the sum over positive and negative
FIG. 4. Annulus contribution to the force between D branes at(@nd/ord;) cancels(for a generic position of the D branes
orderhgZ. which is not a fixed point of the isometrjedf we separate
the D branes on the®Shis cancellation is avoided by having
differentq;- andd;-dependent spherical harmonics appearing
in the closed string wave functions emanating from the sepa-

. rated branes. However, when these separated D branes con-
reduces toxA;§;(dz2zi)k(z), where the sum goes Over .y oo instanton effects, one integrates in spacetime over

the disconnected boundaries of the world sheet. The contoL{I[] . - P . .

. ) eir positions on the % yielding a cancellation again. In
integral produces the chargg of the closed string channel articular, this cancellation would occur in calculating in-
state emitted by the D brane. Thus, the effect of the defor? ' 9

: 4 : . ; stanton corrections to the “moduli potential” which we
mation on a diagram with particular charges floating know from the dual CFT must cancel. We will discuss this
through it is to multiply the diagram by '

further in Sec. VB.
We will mostly be interested in studying the effects of
h _ supersymmetry breaking on the bulk D branes. In the origi-
exp( f dzxz aiAi(x,X)GjAj(x,x) |. (5.1  nal background, there are D branes which break all the su-
Q:Qs h persymmetry and therefore have 16 fermionic zero modes on
their world volume from the broken supercharges, and there

Using the fact that the closed string vertices dependyon are other branes which break half the supersymmetry and
simply through a factor o€'%? (if we choosed to be an have eight fermionic zero modes. We find that all these zero

angular variable along the isometry generated)mnd ord; modes can béand presumably aJdifted at orderhg? from
similarly through a factor o€’ one can show thdin the the diagram of Fig. 4. This is a local bulk signal of super-

case of constand) all string diagrams involving D branes Symmetry breaking, in contrast to the closed string sector

- . ~ . . : where no such effect arose semiclassically in the Euclidean
sitting at positions €, fi) are multiplied by an insertion of - . < “\ve will also study vacuum annulus diagrams, which

01 64 By 69

we see that in the above cases whdrepproaches some
constantA;(x,x) at theith boundary, the expression f&r

the form indicate the effect of the deformation on forces between D
h — J d 6 : .
exp — dzxz ACX)A (XX) — — |, For example, we can use E@.1) to calculate the diagram in
Q1Qs kil JOy a6, Fig. 4 as follows. Let us denote Y(y) the charged field propa-
(5.2 gating in the closed string channel, with chargesndq under our
two U(1)’s. The amplitude is
where here the sum goes over the different D branes in the (BilfdyqrA,Q#Qly): Sy TAQ
background and we are assuming that none of the D branes % 3OV ): (T ACAIB 5.3
lie at fixed points of the isometrietsince the@s are il QY (WQuQs)f 5 ATAIB,) ©3
defined therg where|B;) and|B,) are boundary states corresponding to the two

For disk diagrams, with no charged closed string inserp branes, projected onto the sector with chaigaadd, and where
tions, the deformation has no effect since no charge can bge have pulled down from the action three interaction terms: two
emitted by the boundary stateothing can absorb it, and the cubic couplings between charged fields and the Chern-Simons
contour integral above can be shrunk to zero)siZénere-  gauge field, and the boundary tefeh1). All of the fields here can
fore, the leading contribution in all our calculable cases ofbe contracted with each oth@r in the case of two of th@'s, with
D-brane interactions could arise from diagrams at ongr the boundary stat@sThe contraction between the bulk,(y)

One such contribution is the annulus with one insertion ofand the boundar@; gives the bulk-boundary propagator encoded

the deformation operator, as depicted in Fig. 4. Other contrim the vertex operato(2.18, and similarly forA. This yields the
butions at the same order come from diagrams where theiagram in Fig. 4.
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branes. The picture that emerdges least at leading order in (5.4) agrees with the expression fdrin Ref.[24], where it

h) is that the D branes do not sit in supermultiplets after thevas found for a particular boundary condition that near the
deformation, but because of the integration over spacetimgoundary an operatepb,, which is related to the operatdr
collective coordinates, they do not contribute destabilizingdy dxA=m®;, goes to a constant times 1/1x|?)* as we
instanton effects. approach the boundafyThis leads to A—X/(1+|x|?),
which exactly agrees with our expression above for an in-
stanton positioned ay="y=¢=0, which is the instanton
} ~ corresponding to the boundary conditions discussed in Ref.
The Ad$ x S*X T* background arises as the near-horizon[24] [other instantons can be generated from this by25L
limit of fundamental strings parallel to NS five-branes transformationk In the case of DO branes, the boundary of
wrapped on f. We can imagine putting in additional par- the world sheet can fluctuate in at most dtimelike) direc-
ticlelike D branes in this background—say, in type-IiB, D1 tion. We expect this longitudinal fluctuation to be canceled

branes or D3 branes wrapped around the one and thregy ghostgand in the case of heavy winding mode exchange,
cycles of the . Before we took the near-horizon limit, these tg pe suppressed regardless

D branes were attracted to the F1-NS5 system, and they For simplicity let us take the two boundaries at=y;
could form a bound state whose energy was the square roatg and place the D branes at points ohghich are not

of the sum of the energies squared of the separate syste ; ; ; ; &
(which is the BPS bound: the bound state is supersymme _§ed points of the isometries correspondingltandJ. Note

ric). If the F1-NS5 system is wrapped on a circle, the addi-hat Py chirge~conseryat|on _along the_ ~d|agram_,— 92

tional D branes have a finite contribution to its energy, while =% d1=—T2=0. Working at first order irh, plugging Eg.

if it is on a line they do not contribute to it. Thus, after taking (°-4 int0 Eq. (5.1), we obtain a contribution of the form

the near-horizon limit, we findi17] that in Poincarecoordi-

nates there is no lower bound on the mass of D branes, but h o xe2¢1 xe2¢2 ‘2

there is such a bound in global coordinates. This bound, Aq,a=WJ d qu’1+|x|2e2"’1_ 1+|x|2e2"’2\

which is proportional to the number of D branes squared, 1

appears even though the'D_ branes break all the supersymme- X G;‘,%( 6.,y (5.5

try; it is related to the original supersymmetries of the F1-

NS5 system which are nonlinearly realized. In any case, att h | litud ising f losed stri

weak coupling it is easy to see that such D branes in;AdS 0 the annulus amplitude arising from closec strings ex-
4 S changed with particular U(2yU(1) charges ,q), where

x S¥x T4 have a mass which is much larger than the lower (0) i h | buti ith “double-

bound (this is fortunate since, for small D-brane number O gives the annulus contribution without our “double

when we can ignore back reaction, the mass grows Iinearlt ace” insertion. The angular dependence of this contribution

with the number of D brangsthey break supersymmetry s of the form

completely, and one expects to have generic forces between 5 - o

them in the bulk(which at large distances arise from the g/ (A10170101) gl (d205+T202) — gid(01-02)gd(01=02) - (5 @)

exchange of massless partigleSloreover, these branes are

not static in the bulk of Adg, but rather follow the geode- g0 5 the wave functions of the closed strings at the two
sics for massive particles. In our coordinate system th'%nds of the annulus. These contributiof&6) explicitly
means they are attracted towards smaller valueg.ofhis o1 the symmetry which would otherwise exist between

motion Is !n3|gn|f|9ant at time sc;ales much smaller th.an ositive and negative values of},j). Note that in the ab-
L ags, and in our discussion we will assume we are dealin f th tributior€or inst 0. o %
with such time scales and we will ignore it. In addition to seénce of these contribu lorifor instance, if6,= 6, or 6,

such branes which are DO branes on Ad8/e could also = ¢2), the contributions from positive and negatigeq in

consider D instantons on A¢Ssuch as the type-1IB D in- Ed. (5.5 would cancel when we sum over the different

stanton or Euclidean D branes wrapped on cycles of the T charge sectors. o

These also completely break the supersymmetry. Thex integral in Eq.(5.5) can be performed, yielding the
Let us consider the annulus contribution of Fig. 4 in theresult

case that the two boundaries are localized on Ad®/e

A. Localized bulk D branes

place the D branes, or the boundaries of the annulus, at po- F]Gg‘%
sitionsy;={vi, 7 ,¢;} on AdS; and#é;, 6, on the two circles Aq,a:mqfl[ —2+2(¢p1— ¢o)coth(p1— 7).
on the $ corresponding td andJ, wherei =1, 2 labels the (5.7

two branes. We will use the semiclassical equationXor

— 2%
A=A semiclassica® — (%——Y)ezﬁf’uz (5.4) %In fact, in Ref.[24] various different possible boundary condi-
semiciassied 1+ | Vi—X| e?? tions were discussed, which give somewhat different behaviors of
@, near the boundary. From an analysis of the symmetries of the
For D instantons, the boundary of the world sheet cannoproblem it seems clear that the form ®f, above must be the one

fluctuate since there are Dirichlet conditions in all directions.corresponding to D instantons, though this is not what is claimed in
In this case we also find that the semiclassical expressioRef.[24].

106007-12



NONLOCAL STRING THEORIES ON AdgxS®. .. PHYSICAL REVIEW D 65 106007

These contributions thus give differedt y, y, 6, 6 depen-
dence than the one we calculated above.

A very similar calculation predicts the lifting of the world
volume fermion zero modegGoldstinog of the pair of D
branes. Before our “double-trace” deformation is turned on,
space-time supersymmetfin the absence of D branes
unbroken and the system of D branes sits in a long multiplet
and has 16 fermionic zero modes which are responsible for

creating its superpartners. Let us denote the fermion zero

o o modes on theth braney;, x;. Before the “double-trace”

1 2 . 1 2 . deformation, the quadratic terms for these fields on the world
o1 8 b2 92 o1 81 2. 92 volume of the pair of branes are of the form
Ly Xy Xy Xy (=X = x2), (5.9
so that the overall combinationg + x, are massles¥. The
issue is then whether the contributions in Fig. 5, which are
the leading corrections to the fermion masses, produce the
same combination of quadratic terms, preserving the mass-
lessness of,+ x», or not. It is easy to convince oneself that

there is no reason why the ordemmplitude should produce
a result proportional to the combinatidb.9). This is be-
cause the charges propagating in the closed string channel of
the diagram are different for diagrams with one fermion on
0 o each boundar;_(which contribute mas_se§1X2 JX2X1) rela-
0, 6 0, 0, o1 03 _ tive to those with two fermions on a single boundamhich
81 81 6y 6, contribute massegixi,x2x2)- The first two diagrams in
Fig. 5, with two fermions inserted at a single boundary of the
annulus, yield a contribution of the forifs.5 with a sum
over integerq, §. The last two, with fermions on different
boundaries, have fermionic closed strings propagating in the
diagram, sdwhen the deformation involves the U tur-
rentd they involve a sum over half-integeg §. Therefore,
~ we do not expect the combinatidf.9) where the two types
For fixed nonzero separatioms,, 6,5, this contribution sur-  of diagrams are weighted the same to persist at digdand
vives the sum oveq,q. This result constitutes a contribution we expect all fermion zero modes to be lifted.
to the force between D branésr in the D instanton case, to Thus, we have determined a bulk supersymmetry break-
the instanton actionwhich is present in the bulk of AdS. ing effect of our NLST deformation in this system, at the
Because of the power of l1{y4s implicit in the ¢,, contribu-  |evel of forces between D branes in the theory and their
tions, with our current scalings this force disappears in th&yorld volume action.
flat space limitL ,qs— 20, which is the same limit in which
the AdSrinduced tadpoles for th_e posmons of the D brane_SB. Nonperturbative nonrenormalization in nonsupersymmetric
disappear. It therefore agrees nicely with the type of contri- nonlocal string theory
bution expected from the CFT side. In the next section we

will discuss another scaling fdr in which these contribu-
tions in fact survive in the flat space limit.

i X o) X 1 X 2

1

FIG. 5. Annulus contribution to the mass of D-brane world vol-
ume fermions at ordeng?.

As we explained above, an interesting feature of our de-
formation is that it breaks supersymmetry without introduc-
We can similarly calculate contributions from the other'"Y des.tat.nllzmg tadpoles for modu_||. _From the field theory
gi t ordefa. involving two annuli connected b side, this is an exact statement. It is interesting therefore to

lagrams at ordengs, 9 Y explore how this phenomenon arises on the gravity side,

the_deforma.tion.. For the D-instanton case, this leads to given that we have just manifested bulk SUSY breaking ef-
similar contribution to Eq(5.7); now we have four charges facts in the D-brane sector.

characteri’zi~ng the diagramq (@) flowing through one annu- In order to do this, there is a step remaining in the calcu-
lus and @',q’) flowing through the other, and the resultis |4tion. D branes contribute to the “moduli potential” via vir-

tual loops and instanton effects, which require a second

T =(0) - (0)
hGq5Cq ' e
Agg.a 3 :W(qq +q4'9)[—2+2(d1— ¢2) 1%e are being schematic here, and ignoring the various indices of
the fermions and the dependence of the massless combinations on
X coth p1— ) ]. (5.8)  the positions of the D branes.
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6. The ends of the tubes can be approximated by local op-

erator insertiondj;(z,z) on theX;. TheK andK insertions

on eachZ; then localize on the insertiong;, and for dia-

grams in which the closed strings propagating in the long

thin tubes are charged, one gets a contribution from this.

Semiclassically, at ordér, one therefore gets an insertion

of the form(5.1) where theA;, Aj’s are the values o\, A

at the positions of the ends of the long thin tubes. Generi-

cally, a semiclassical analysis will not be valid, but in some

circumstancegsuch as when the strings propagating in the

3,; are very heavy from say winding or momentum along the

4 . . . . . . .

FIG. 6. Degenerating Riemann surface contributing cancellingl ) itwill be. In any case it gives a useful 'heur|$t|(': picture of
- “ - - ow cancellations might occur in spacetime similarly to the

contributions to the “moduli potential. o 2 ;

case of D branes. Namely, the contribution to the “moduli

quantized spacetime description. In such a calculation, EdPotential” again involves integrating over the positiofjs¢
(5.7) can represent a correction to the instanton action. Théf the insertion points of the tubes, giving a cancellation at
effect of the instanton on physical quantities in spacetime irderh.

obtained by a spacetime path integral including integrals It is not obvious from the point of view described in this
over all the fermionic and bosonic zero modes. The fermisection what happens to the D-brane corrections to the
onic zero modes, which before the deformation caused thenoduli potential” on the gravity side at higher orders m

amplitude to vanish, are now lifted. However, the bosonicor in g, . The field theory side again predicts no contributions
zero modes, including the positiods, 8;, remain. Although  to the “moduli potential.” There are several diagrams at or-

we get a contribution for each value 6f, 6, as discussed derh? which must therefore cancel if the duality is correct.
above, the integral over these zero modes of (Bgf) can-  These cancellations may be nontrivial, analogous to two and
cels due to the phas€s.6). Similarly, the diagrams we com- higher loop cancellations of protected quantities in super-
puted in Eq.(5.8 cancel after integration over the positions symmetric theories which do not follow from any simple
unlessq=—q’ andf=—7’, and the remaining amplitudes counting of Bose-Fermi degeneracies. In our case, the only
cancel when we sum over the possible valueg bécause of symmetry principle we have so far identified to enforce the
a cancellation between positive and negatige cancellation is the dualitynamely, the exact marginality of
At this order, this provides a satisfying resolution to thethe deformation on the field theory sideand it would be
problem of how the gravity side manages to avoid generatingice to obtain a more direct argument applicable for arbitrary
a “moduli potential” despite the supersymmetry breakingh on the gravity side.
introduced by the deformatioand the absence of fermion
zero .mode)s The D branes experience nonlocal .SUSY VI. THE FLAT SPACE LIMIT
breaking forces in the bulk, but these effects cancel in com-
puting their virtual and instantonic contributions to other It is interesting to contemplate NLSTs arising in back-
physical observables via a cancellation in the integratiorgrounds other than AdS. One way to try to construct such
over bosonic zero mode . backgrounds is to consider the flat space limit of the AdS
We can apply this result from the D-brane sector to gef€alizations we have so far. It seems that we should not ex-
more intuition, at least heuristically, for the cancellation of PECt such a limit to make sense, since our deformation is
the “moduli potential” in the closed string sector discussedmaximally nonlocal on the % and induces correlations at
in Sec. Il B. A diagram with charged closed strings runningdistances of the order of the AdS scale that go to infinity in
in loops would naively seem to contribute to the “moduli the flat limit, leading to failure of the standard conditions for
potential” once the deformation which splits their massesunitarity. This is related to the fact that in taking the flat limit
according to Eq(2.11) is turned on. However, at the world one focuses on one small region of thé @&nd the other
sheet level we have seen that semiclassicatfyEuclidean ~ regions which are correlated with it in the original theory go

spacé the vertex operatork, K localize on boundaries and off t_o infirlity. '_n thi§ sec_tiqn we W_i" S_hOW that there is a
charged vertex operator insertions, introducing factors of thécaling ofh which gives finite contributions when one takes
form (5.1) into the contributions of individual world sheets the Lags/ls— flat space limit of the results derived in the
with chargesy, § propagating from boundaries or vertex op- Previous section, and also gives a finite nonlocal deformation
erator insertions. The moduli are uncharged, so from th®f the worldsheet action in the same limit. However, we have
W0r|d Sheet point Of VieW |t is C|ear that the C|Osed String not been able to find sensible vertex OperatorS in the result-
“moduli potential” still cancels also after the deformation. ing theory, so it is not clear if the flat space limit defines a
However, we can dissect the closed string diagrams in &ensible(unitary) NLST or not.

way that provides a little more intuition for how the naive
spacetime intuition fails in this nonlocal theory. Consider a
Riemann surfac& which has degenerated into separate Rie- The flat space limit of Ad$ backgrounds with NS-NS
mann surface&; connected by a set of thin tubes, as in Fig.charges involves takin@, and Qs to infinity with a fixed

A. Definition of the flat space limit
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ratio Q5/Q1=g§. Since the Ad$ string metric goes ads’
=Qg(dp?+e??dydy), the relation betweerp and a flat
space coordinat¥ , is of the form¢zx¢/\/Q_5. Thus, if we
wish to keepX, constant(which is the simplest possibility
we need to takep— 0 when we take the flat space limit.

PHYSICAL REVIEW D 65 106007

1 X 1
_ 2 _
K(x)awf d<zd, X, —2_2(1+|x| ) Xyt —2_2(1+|X| ) ST

X2

T @

: (6.5

Similarly, when we expand around some particular generic

point on AdSx S®, the angular coordinates on thé Sre
related to flat space coordinates b§=X,/\Qs, @
=~X3/\J/Qs, and the chargeg, § become momenta, P in
the X,, X; directions, whergp=q//Qs, P=T//Qs.

Consider, for example, Ed5.7). In the flat space limit
this result reduces to

" ~G4(</> $2)?= n ~G4(x X 40)?
Qleqlql o3 (P12 =54, P1P1G073 (Ag17Xg2)"
(6.
Therefore ifh is constant, independent @5, then this ef-

fect disappears in the limiive are assuming that the ampli-
tude G, before the deformation has a finite flat-space limit

We want the effect to actually depend in the flat space limit

only ong3=Qs/Q;. Thus, we need to take— as

h=h,QZ, (6.2

where X,=Qs¢, X,=yQsy, X;=\Qsy are the flat
space coordinates descending from the Ad&ordinates as
discussed above, and similarly fi(X). This linear combi-
nation of 3;X* descends from a longitudinélormally pure
gauge vector potential in Adg, and does not have fermi-
onic pieces as a resuft.In the flat space limitK(x) is an
integrated physical vertex operator for a tensor field in space-
time at zero momentum.

Plugging Eq.(6.5 into Eq.(6.4) and performing the inte-
gral overx, we obtain

3SuFiodh | P2, [ 20200, X005 X 05,30, X,)
(X075 X5) (72.X30, X,)
(8, X g 07X ) (9K X . 6.6

Note that the coefficients in front of the three terms are ex-
actly those which give an S0) rotational invariance in the

whereh, is constant, and then we get a finite surviving con-X,, X,, X;, directions, as expected in the flat space lifiit

tribution in this limit.
Let us denote the position of one braneXwnd the other

by Y. Then, because of the factd6) and(6.1), the ordeth

the Lorentzian case this will become 802)].
Thus we obtain a deformation of the general fofinl)
which persists in flat space. The deformation we have dis-

contribution to the annulus diagram for a particular closedfOvered is very simple: it consists of a sum of bilocal prod-

string s exchanged in the flat space limit is proportional to
axgax’éDS(X_ Y), (63)

whereDy(X—Y) is the contribution of this mode to the ex-

change force and we only wrote down the dependence off

Xy, X3 (for a graviton exchange diagraby is the position-
space propagator between the D branés the flat space
limit, the sum over chargeg, § turns into a continuous in-
tegral over momentg, P in the X4, X3 directions. This

ucts of linear combinations of zero-momentum off-diagonal
graviton and NB-field vertex operators. Since they are total
derivatives, these vertex operators localize to the boundaries
of the world sheet or to other operator insertions. TheBNS
field decouples from closed strings, and the off-diagonal
etric couples to modes with momentum along ¥eand

X7 directions.

B. Observables in the flat space limit?

We would like to study whether the theory we obtain in

washes out the supersymmetry breaking effects, which arisgis jimit is sensible. To do so it is important to formulate and

from the distinction between sums ovgrgeZ and sums

study the behavior of physical observables in this theory.

over q, GeZ+1/2. So the force between flat space gecayse of the relative simplicity of the thed6), we can

Bogomol'nyi-Prasad-SommerfielBPS branes will cancel
when all the contributions are added(gince the added con-
tributions will still be supersymmetrjc but for branes and

investigate this question rather explicitly. We will consider
two types of candidate observables, using two techniques for
analyzing the deformed theory. The first arises by consider-

antibranes the force discussed above will persist in the limiting familiar flat space vertex operators inserted into the path

It is instructive to spell out more explicitly the form of the
vertex K(x) appearing in the deformatiof2.20 in the flat

space limit. Taking the limit as in E@6.2), with h scaling as
Q2, the deformation is

8Sus=hod3 f d’xK()K(X). (6.4

Taking the limit as above, one findfrom Egs.(2.18 and
(2.19]

integral with the bilocal contribution to the actid6.6). The
second, described in Sec. VIC, arises by considering a dif-
ferent but equivalent presentation of the theory, in terms of a
Lagrange multiplier which renders the action Gaussian, and
considering a particular set of nonlocal insertions in the path
integral which are natural in this formalism. In both cases,
because of the nonlocality of the underlying theory, we will

e thank D. Kutasov for a discussion on this point.
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find in the end no separately renormalizable constituents in eherea is proportional toa and absorbs some subleading
given amplitude; instead we will be left with a rather unpre-contributions. This shift cancels the divergence above at

e Stato, n Wi e2ch ampltude 1t b8 OGP teading order i, Note tht the it we need for he
lems one expects with unitarity when taking a limit which product of vertex operators is not equal to the product of the

keeps only a region much smaller than the nonlocality scale>!ftS We need for each vertex operator separately. This
In the first approach we calculate correlation functions of¥vould not occur in a local world sheet string theory. How-
vertex operators in the flat space limit by inserting powers offVel: since in a NLST the world sheet Lagrangian is nonlo-
Eq. (6.6) to obtain the effect of our deformation, and we find ¢al. it may be necessary to consider as observables the full
that this leads to divergences. Consider, for example, a coget of multilocal excitations of the theory, since attempting to
relator ofn vertex operatoryp_weipj'x_ Let us compute the consider only local vertex operators would generically fail
' under quantum corrections.
Unfortunately, this prescription appears to render the
theory unpredictive as far as these observables go, since one
n must renormalize separately each physical process rather
F‘of 1T d?w,d?z,d%z, than obtaining predictions for physical processes arising
k=1 from a finite number of renormalizations of constituent fields
n B and couplings. It is therefore unclear whether the theory is
X < [T €PiXWiw) X ,0X 4(21,21) 9X 30X3(Zo ,?2)> renormalizable in the appropriate sense, because each com-
=1 bination of vertex operators is a new multilocal operator in
n n the theory and one therefore has to input an infinite amount
N”ﬁoj H d?w,d?z,d%z, H |Wij|pi-pj/2 of information to define the set of observables. Because of
k=1 ij=1 this issue, our results on the flat space limit are inconclusive

order h, correction to this correlator coming from the first
term of our deformatiorni6.6). It is given by

n o n p (through we think intriguinyand we hope to improve our
2 Pi 2 _pi_ understanding of the proper physical constraints on this sort
i=1 Zl_Wi =1z _Wi

% of theory in general backgrounds in future work.
- We started with a theory in which the non-locality scale is
A A of the order of the AdS curvature radiligys, and this goes
X “z-w || S -w, 6.7 o infinity in the flat space limit. It would be very interesting

to figure out whatif any) are the appropriate observables in
The last four factors come from contractions of the zero-such a nonlocal theory, that can give meaningful physical
momentum vertex operators in the deformation with those ogmplitudes. Of course it is worth emphasizing that with

then vertex operators whose correlation function we are calscaling independently d®s, we would obtain conventional
culating. The integrals over; andz, diverge when a zero- flat space string theory in the limit. In usual flat space string
momentum vertex operator hits @P* on the world sheet. theory we can define observables $ynatrix elements de-

In ordinary flat space string theory, this divergence is a stanscribing particles which are much farther from each other
dard pole in theS matrix arising from the fact that when a than the characteristic nonlocality scale. These observables
zero-momentum particle combines with a momentupar-  give well-defined correlation functions. In the flat space
ticle to produce a momentum particle, the latter is still on  NLSTs we constructed in this section we have seen that this
shell and gives a polghis can be seen explicitly by continu- fails, so some other types of observables are needed in order
ing the zero momentum vertex operators to nonzero momeno get physical predictions. In the AdS case the consistency
tum g and expanding in smatf). We would like to under-  of our NLST constructions was guaranteed by the consis-
stand the meaning of this divergence in our applicationtency of the dual conformal field theory, but it is not clear
where this correlator describes the shift of the correlationyhat are the consistency conditions for flat space NLSTSs.
function of vertex operator¥,, under the NLST deforma- Thus, in the absence of predictions for physical observables

tion. we cannot say if the theories we constructed in this section
Let us first regularize this divergence. If we put a short-are consistente.g., if they are unitafyor not.
distance cutoff on the world sheet analogous to Bcp) in Although they may render the question of the existence of

the AdS case, namely, letting other operators approach onlg useful flat space limit questionable, the above divergences
to a distancey; from V;, we find that we need to redefine do teach us something significant about the Adfedel that
is our main focus in this paper. In Sec. lll we saw that the
H f d2w Vi (w;) vertex operators involved in Euclidean closed string ampli-
i R tudes localize to the boundary of AdS. The nontriviiver-
gen) answers we find in the closed string sector after taking
the flat space limit here indicate that there was bulk physics
in the closed string sector in AdS. In particular, as we have
seen in some detail, the flat space limit does not leave us
N T 200 b || (290 |l (2 with a consistent matrix, which should have been the case
! % NogsPr Pi” logfa|pepicloglad® | (6.8 if all of the effects of the deformation were at the boundary.

_>[]'_[ f d?w;V;(w;)
J

X
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This provides evidence that the effects of the deformationance condition for vertex operators changes as a function of

and in particular the nonlocality of the theory, permeate the\, an issue we will also encounter in our flat space analysis

bulk of AdS space, as expected from the marginality of thehere.

deformation, despite the fact that we can write the deforma- Considering just the closed string sector, which feels only

tion as a boundary terr#.1). the symmetric part ofG,,, we can change variables to
Note from Eq.(6.7) that we see the nonlocal effects in the Y#(z,Z)=E*(\)X"(z,Z), where the matrixE is defined by

flat space limit only for correlators including vertex opera- EZ()\)%UE;’()\):GW()\)_ Then, the path integral becomes
tors with nonzero momentum along what used to be the S

directionsp?+# 0+ p?. This is consistent with our expecta- f d)‘f DY deE(\)1-L
tions from the form of the deformatiof4.1) that the 6D [ ]l_z[ [ (M)
theory is nonlocal even though the effect on the 3D action is

a local boundary term. X @~ (W2 gy gy = (WH gyh oy X gy gy)

x @A 2,0 (6.11)
C. Another set of non-local operators in NLST
Despite the above complications, one might hope that th&lere thex dependence is only in the Jacobiend in the
physics simplifies in terms of some other natural subset offaussian which is in this flat space situation independent of
observables. There is a way of presenting the théérg)  the embedding coordinateqz,z).

[and more generally the theori¢s.1)] which simplifies the Now let us consider observabl(ag)rrelation functions of
analysis considerably, and which suggests another set §€rtex operatoss A new set of multilocal operators in the
multilocal operators in the theory. variables are the simple operators

Consider the world sheet path integral for the the@ry),
written as a Gaussian using Lagrange multiplier&@nd ig-
noring the fermionic fields which play no role

Vi [Y]=ek". (6.12

In terms of X, these vertex operators vary withso as to
o - preserve conformal invariance in the path integral for arbi-
ZSLSFJ d)\J [DX]e Jd2X"G (N axX trary A. We can insert these into the integrand of E&11),
and divide by the vacuum path integi@l.11) to normalize.
Xe—(l/zﬁ)xed,x;w—(l/ﬁ)(xmgyﬂgm,;)' (6.9 This reproduces the correlators of momentum modes for or-
dinary flat space string theory.
These momentum modé€6.12 of Y are highly nonlocal

whereH <h,gZ and where when expressed in terms ¥f(in the original formulation of
the theory withou®). In general, when we map a product of
G,,(\)dx“dx'= nwdxﬂdxv+)\0¢dxodx¢+,,,’ the V| [ Y] operators to theX variables it will not map into

(6.10 the product of the maps of these operators. So in termé of
there is still noS matrix with amplitudes determined by
renormalizations of operators describing separated excita-
tions. However, it is true here that there is a set of multilocal
amplitudeqinsertions of products of operata®.12] which

are naturally determined by the standard renormalizations of

where: - - are other similar terms involving the othk’s. By
integrating ovem one can see that E(6.9) gives a descrip-
tion of the theory equivalent to the bilocal description of Eq.

(6.6), but now the world sheet path integral is Gaussian. Thi%q_ (6.12 in the Y variables, and which produce results iso-
is similar to what arises in wormhole physi&l—-33 and it morphic to the flat spacs matrix.

would be interesting to explore further the conceptual inter- A similar analysis using the prescription of E§.9) can

pretation of this mathematical trick. . . be performed in Ad$x S*x T4, with similar results arising
This method seems potentially useful, particularly in our ) o~
at leading order inh. The observables analogous to Eq.

flat space limit where it renders the partition function Gauss- .
ian A?s discussed in Sec. V of R@';L]pone can also employ (6.12 there reproduce the standard AdS correlators in the

this method in the AdS/CFT case, but generically in AdS/Origin"’II undeformed supersymmetric baqurognd. Again
CFT itis not trivial to implement either on the gravity side or they are nonlocal and norlocallzl renormalized in terms of
on the field theory side of the correspondence. Naively ithe physical variables, y, y, 6, 6. The meaning of these
simplifies the analysis to one involving only “single-trace” Observables is unclear, since the physics of the CFT does
deformations, but in fact this is complicated on both sides oseem to depend oh. It is tempting to speculate that these
the duality. On the field theory side, the “single-trace” op- objects could realize a hidden nonlocal supersymmetry in the
erators in question are relevant operators, and one would &ystem which explains the vanishing of the “moduli poten-
attempting to integrate over the corresponding scaletial,” while as we have seen the physics in terms of the
dependent couplings. This involves a sum over field theoriesrdinary variables exhibits broken supersymmetry.

with different parameters, whose physical interpretation is In general, it is important to clarify what are the condi-
unclear. On the gravity side, these relevant perturbations deions for physically consistent NLST models, both for con-
form the geometry dramatically. In terms of the world sheetceptual interest and with regard to the potential for applica-
string theory, the Becchi-Rouet-Stora-TyutiBRST) invari-  tions. In particular, it would be very interesting to develop
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