
PHYSICAL REVIEW D, VOLUME 65, 106006
Strings in AdS3 and the SL„2,R… WZW model. III. Correlation functions
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We consider correlation functions for string theory on AdS3 . We analyze their singularities and we provide
a physical interpretation for them. We explain which worldsheet correlation functions have a sensible physical
interpretation in terms of the boundary theory. We consider the operator product expansion of the four-point
function and we find that it factorizes only if a certain condition is obeyed. We explain that this is the correct
physical result. We compute correlation functions involving spectral flowed operators and we derive a con-
straint on the amount of winding violation.
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I. INTRODUCTION

This is the third installment of our series of papers on
SL(2,R) Wess-Zumino-Witten~WZW! model and its rela-
tion to string theory in AdS3, three-dimensional anti–de Si
ter space. In the first two papers@1,2#, we determined the
structure of the Hilbert space of the WZW model, compu
the spectrum of physical states of the string theory, and s
ied the one-loop amplitude. In this paper, we will discuss
correlation functions of the model.

The SL(2,R) WZW model has many important applica
tions in string theory and related subjects. It has close c
nections to the Liouville theory of two-dimensional gravi
~for a review, see, for example,@3#! and three-dimensiona
Einstein gravity@4#. It is used to describe string theory i
two-dimensional black-hole geometries@5#. Its quotients are
an important ingredient in understanding string theory in
background of Neveu-Schwarz~NS! 5-branes@6#, and they
capture aspects of strings propagating near singularitie
Calabi-Yau spaces@7–9#. One can also construct a blac
hole geometry in three dimensions by taking a quotient
the SL(2,R) group manifold@10#. Moreover, sigma models
with noncompact target spaces such as SL(2,R) have various
applications to condensed-matter physics@11#. For these rea-
sons, the model has been studied extensively for more th
decade.1 Recently the model has becomes particularly imp
tant in connection with the AdS conformal field theory~CFT!
correspondence@12,13# since it describes the worldsheet of
string propagating in AdS3 with a background NS-NSB
field. According to the correspondence, type IIB superstr
theory on AdS33S33M4 is dual to the supersymmetric non
linear sigma model in two dimensions whose target spac
the moduli space of Yang-Mills instantons onM4 @13,14#.
Here M4 is a four-dimensional Ricci flat Ka¨hler manifold,
which can be either a torusT4 or a K3 surface. So far this

1For a list of historical references, see the bibliography in@1#.
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has been the only case in which we have been able to exp
the correspondence beyond the supergravity approxima
with complete control over the worldsheet theory.

Besides the AdS/CFT correspondence, understand
string theory in AdS3 is interesting since AdS3 is the sim-
plest example of a curved spacetime where the metric c
ponentg00 is nontrivial. Using this model, one can discu
various questions which involve the concept of time in stri
theory. This will give us important lessons on how to de
with string theory in geometries which involve time in mo
complicated ways. In this connection, there had been a lo
standing puzzle, first raised in@15,16#, about whether the
no-ghost theorem holds for string in AdS3. The proof of the
no-ghost theorem in this case is more involved than
Minkowski space since the time variable in AdS3 does not
decouple from the rest of the degrees of freedom on
worldsheet. The task was further complicated by the fact t
AdS3 is a noncompact space and the worldsheet CFT is
rational. Thus it was difficult to decipher the spectrum of t
worldsheet theory.

This problem was solved in@1,2#. In @1#, we proposed the
spectrum of the WZW model and gave a complete proof
the no-ghost theorem base on the proposed spectrum.
proposal itself was verified in@2# by exact computation of
the one-loop free energy for a string on AdS33M, where
M is a compact space represented by a unitary confor
field theory on the worldsheet. Although the one-loop fr
energy receives contributions only from physical states of
string theory, we can deduce the full spectrum of t
SL(2,R) WZW model from the dependence of the partitio
function on the spectrum of the internal CFT represent
M, which can be arbitrary as far as it has the appropri
central charge. Thus the result of@2# can be regarded as
string theory proof of the full spectrum proposed in@1#.

The spectrum of the SL(2,R) WZW model established in
@1,2# is as follows. Since the model has the symmetry g
erated by the SL(2,R)3SL(2,R) current algebra, the Hilber
spaceH is decomposed into its representations as
©2002 The American Physical Society06-1
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H5 % w52`
` F S E

1/2

~k21!/2
d j Dj

w
^ Dj

wD
% S E

~1/2!1 iR
d jE

0

1

da Cj ,a
w

^ Cj ,a
w D G . ~1.1!

HereDj
w is an irreducible representation of the SL(2,R) cur-

rent algebra generated from the highest weight stateu j ;w&
defined by

Jn12
1 u j ;w&50, Jn2w21

2 u j ;w&50,

Jn
3u j ;w&50 ~n51,2,...!

~1.2!

J0
3u j ;w&5S j 1

k

2
wD u j ;w&,

F2S J0
32

k

2
wD 2

1
1

2
~Jw

1J2w
2 1J2w

2 Jw
1!G u j ;w&

52 j ~ j 21!u j ;w&,

andCj
w is generated from the stateu j ,a;w& obeying

Jn6w
1 u j ,a;w&50, Jn

3u j ,a;w&50 ~n51,2,...!

J0
3u j ,a;w&5S a1

k

2
wD u j ,a;w&, ~1.3!

F2S J0
32

k

2
wD 2

1
1

2
~Jw

1J2w
2 1J2w

2 Jw
1!G u j ,a;w&

52 j ~ j 21!u j ,a;w&.

The representations withw50 are conventional ones, wher
u j ;0& and u j ,a;0& are annihilated by the positive frequenc
modes of the currentsJn

6,3 (n>1). These representationsDj
0

and Cj ,a
0 are called the discrete and continuous represe

tions, respectively.2 The representations withwÞ0 are re-
lated to the ones withw50 by the spectral flow automor
phism of the current algebra,Jn

3,6→ J̃n
3,6 , defined by

J̃n
65Jn6w

1 ,
~1.4!

J̃n
35Jn

32
k

2
wdn,0 .

2We callDj
0 a discrete representation even though the spectrum

j in the Hilbert space~1.1! of the WZW model is continuous. I
would have been discrete if the target space were the single cov
the SL(2,R) group manifold. In order to avoid closed timelik
curves, we take the target space to be the universal cove
SL(2,R), in which case the spectrum ofj is continuous. We still call
these representations discrete since theirJ0

3 eigenvalues are relate
to the values of the Casimir operator,2 j ( j 21), while theJ0

3 ei-
genvalue for continuous representations is not related to their va
of the Casimir operator.
10600
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In the standard WZW model, based on a compact Lie gro
spectral flow does not generate new types of representat
it simply maps a conventional representation into anoth
where the highest weight state of one representation tu
into a current algebra descendant of another. In the cas
SL(2,R), representations with different amounts ofw are not
equivalent.

In @1#, it was shown that Eq.~1.1! leads to the physica
spectrum of string in AdS3 without ghosts and that the spe
trum agrees with various aspects of the dual two-dimensio
CFT (CFT2) on the boundary of the target space. In partic
lar, it is shown that the spectral flow images of the contin
ous representations lead to physical states with continu
energy spectrum of the form

J0
35

k

4
w1

1

w
S s21 1

4

k22
1N1h21D , ~1.5!

where s is a continuous parameter for the states,N is the
amount of the current algebra excitations before we take
spectral flow, andh is the conformal weight of the state i
the internal CFT representing the compact directions in
target space. These states are called ‘‘long strings’’ w
winding numberw, and their continuous spectrum is relate
to the presence of noncompact directions in the target sp
of the dual CFT2 @17,18#. The continuous parameters is
identified with the momentum in the noncompact directio
The continuous representations withw50 give no physical
states except for the tachyon, which is projected out in
perstring. On the other hand, the discrete representations
their spectral flow images give the so-called ‘‘short string
whose physical spectra are discrete.

In this paper, we compute amplitudes of these phys
states of the string theory and interpret them as correla
functions of the dual CFT2 . We show that the string theor
amplitudes satisfy various properties expected for correla
functions of the dual CFT2 .

The dual CFT2 is unitary with a Hamiltonian of positive-
definite spectrum, and the density of states grows m
slower than the exponential of the energy.3 Therefore, one
should be able to analytically continue the time variable
CFT2 to Euclidean time. Correspondingly, the AdS3 geom-
etry can be analytically continued to the three-dimensio
hyperbolic spaceH3 , whose boundary isS2. The worldsheet
of the string onH3 is described by the SL(2,C)/SU(2) coset
model. We would like to stress that the SL(2,R) WZW
model and the SL(2,C)/SU(2) coset model are quite distinc
even though their actions are formally related by analyti
continuations of field variables. For example, the Hilb
spaces of the two models are completely different since
the states in the Hilbert space~1.1! of the SL(2,R) WZW
model, except for the continuous representations w

of

of

of

es

3The Cardy formula states that the density of states of confor
field theory on a unit circle grows as exp(2pAcE/6), whereE is the
energy andc is the central charge of the theory.
6-2
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STRINGS IN AdS3 AND THE . . . . III. . . . PHYSICAL REVIEW D 65 106006
w50, correspond to non-normalizable states in
SL(2,C)/SU(2) model. This means that all the physic
states in string theory, except for the tachyon, are represe
by non-normalizable states in the SL(2,C)/SU(2) model. It
is in the context of string theory computations of physic
observables that one can establish connections betwee
two worldsheet models. We will discuss in detail how th
connection works when we use string theory to compute c
relation functions of the dual CFT2 on the boundary of the
target space.

Correlation functions of the SL(2,C)/SU(2) model have
been derived in@19–21# for operators corresponding to no
malizable states and some non-normalizable states sim
related to them by analytic continuation. Although the cor
lation functions for normalizable states are completely n
mal, those for non-normalizable states contain singulari
of various kinds. Thus we need to understand the origins
these singularities and learn how to deal with them.

For clarity, we separate our discussion into two parts. F
we will discuss the origins of these singularities purely fro
the point of view of the worldsheet theory. We will sho
how functional integrals of the SL(2,C)/SU(2) model gen-
erate these singularities. We find that some of these sin
larities can be understood in the point-particle limit wh
others come from large ‘‘worldsheet instantons.’’

After explaining all the singularities from the worldshe
point of view, we turn to string theory computations a
interpret these singularities from the point of view of t
target spacetime physics. Some of the singularities are in
preted as due to operator mixings, and others originate f
the existence of the noncompact directions in the target sp
of the dual CFT2 . In addition to the singularities in the
worldsheet correlation functions, the integral over the mod
space of string worldsheets can generate additional singu
ties of a stringy nature. In Minkowski space, singularities
all at boundaries of moduli spaces~e.g., when two vertex
operators collide with each other or when the worldsh
degenerates! and divergences coming from them are inte
preted as due to the propagation of intermediate phys
states. For strings in AdS3, we find that amplitudes can hav
singularities in the middle of moduli space. We have alrea
encountered such phenomena in a one-loop free-energy
putation in@2#, and they are attributed to the existence of t
long string states in the physical spectrum. We will find
lated singularities in our computation of four-point corre
tion functions.

By taking into account these singularities on the wor
sheet moduli space, we prove the factorization of four-po
correlation functions in the target space. We show that
four-point correlation function, obtained by integrating ov
the moduli space of the worldsheet, is expressed as a su
products of three-point functions summed over possible
termediate physical states. The structure of the factoriza
agrees with the physical Hilbert space of a string given
@1,2#. We also check that normalization factors for interm
diate states come out precisely as expected. The resu
factorization formula shows a partial conservation of the
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tal ‘‘winding number’’ w of a string.4 We will explain its
origin from the worldsheet SL(2,R) current algebra symme
try and the structure of the two- and three-point functions.
the course of this, we will clarify various issues about t
analytic continuation relating the SL(2,C)/SU(2) model and
the SL~2,R) model.

We find that, in certain situations, the four-point functio
fail to factorize into a sum of products of three-point fun
tions with physical intermediate states. We show that t
failure of the factorization happens exactly when it is e
pected from the point of view of the boundary CFT2 .
Namely, the four-point functions factorize only when the
should.

This paper is organized as follows. In Sec. II, we revie
correlation functions of the SL(2,C)/SU(2) coset model de
rived in @19,20# and explain the worldsheet origin of the
singularities. In Sec. III, we turn to the string theory comp
tation and discuss the target space interpretation of the
gularities in two- and three-point correlation functions.
Sec. IV, we give a detailed treatment of four-point correlati
functions. On the worldsheet, a four-point function of t
SL(2,C)/SU(2) model is expressed as an integral over so
tions to the Knizhnik-Zamolodchikov equation@21#. We in-
tegrate the amplitude over the worldsheet moduli, which
this case is the cross ratio of the four points onS2, and
obtain the target space four-point correlation function. W
examine factorization properties of the resulting correlat
function. We explain when it factorizes and why it som
times fails to factorize. In Sec. V, we compute two- a
three-point functions of states with nonzero winding nu
bers. We also explain the origin of the constraint on t
winding number violation. In Sec. VI, we use the result
Sec. V to show that the factorization of the four-point fun
tion works with precisely the correct coefficients.

In Appendix A, we derive the target space two-point fun
tion of a short string withw50. The normalization of the
target space two-point function is different from that of t
worldsheet two-point function. The target space normali
tion is precisely the one that shows up in the factorization
the four-point amplitudes. In Appendix B, we derive som
properties of conformal blocks of four-point functions.
Appendix C, we derive a formula for integrals of hyperge
metric functions used in Sec. IV. In Appendix D, we derive
constraint on winding number violation from the SL(2,R)
current algebra symmetry of the theory. In Appendix E,
introduce another definition of the spectral flowed opera
working directly in the coordinate basis~rather than in the
momentum basis! on the boundary of the target space. W
compute two- and three-point functions containing the sp
tral flowed operators using this definition.

Some aspects of correlation functions of t
SL(2,C)/SU(2) model have also been discussed in@22–27#.

4As explained in@1#, w is in general a label of the type of repre
sentation and is not the actual winding number of the string,
though, for some states, it could coincide with the winding num
of the string in the angular direction of AdS3 .
6-3
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II. GENERAL REMARKS ABOUT THE SL „2,C…ÕSU„2…
MODEL

In this section, we study properties of the sigma mo
whose target space is Euclidean AdS3 or three-dimensiona
hyperbolic space, which is denoted byH3 . This sigma model
is a building block for the construction of string theory
H33M, whereM is an internal space represented by so
unitary conformal field theory. It is also used to compu
string amplitudes for the Lorentzian signature AdS3. A pre-
cise prescription for computing string amplitudes will b
given in Sec. III. Before discussing the string-theory int
pretation, let us clarify some properties of the sigma mo
itself.

The hyperbolic spaceH3 can be realized as a right-cos
space SL(2,C)/SU(2) @28#. Accordingly, the conformal field
theory with the target spaceH3 and a nonzero NS-NS two
form field Bmn can be constructed as a coset of the SL(2,C)
WZW model by the right action of SU~2!. The action of the
SL(2,C)/SU(2) model can be expressed in terms of
Poincare´ coordinates (f,g,ḡ) and the global coordinate
~r,u,w! of H3 as

S5
k

p E d2z~]f]̄f1e2f]ḡ]̄g!

5
k

p E d2z@]r]̄r1sinh2 r~]u]̄u

1sin2 u]w]̄w!1 i ~ 1
2 sinh 2r2r!

3sinu~]u]̄w2 ]̄u]w!#. ~2.1!

We are considering the Euclidean worldsheet with]5]z ,
etc. Near the boundary,r→`, the action becomes

S;
k

p E d2z@]r]̄r1 1
4 e2r~]u2 i sinu]w!

3~ ]̄u1 i sinu]̄w!2 ir sinu~]u]̄w2 ]̄u]w!#.

~2.2!

Because of the second term on the right-hand side, contr
tions from large values ofr are suppressed in the function
integral as ;exp(2ae2r); the coefficient a is positive
semidefinite, and it vanishes only when~u,w! is a holomor-
phic map from the worldsheet toS2 obeying

]̄u1 i sinu]̄w50. ~2.3!

Even fora50, if the map is nontrivial, the last term in Eq
~2.2! may grow linearly inr. For constantr and~u,w! obey-
ing Eq. ~2.3!, the action goes asS;2knr, wheren is the
number of times the worldsheet wraps theS2.

The action on the Euclidean worldsheet is real-valu
10600
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since theB field is pure imaginary.5 The action is positive
definite, and all normalizable operators have positive con
mal weights. Thus one expects Euclidean functional integ
to behave reasonably well in this model. The only novelty
the fact that the target spaceH3 of this sigma model is non-
compact, but it is just as in the case of a free scalar fi
taking values inR, which is also noncompact.

The interpretation of this model on a Lorentzian worl
sheet is more subtle. Because of theB field, the action~2.1!
is not invariant under reflection of the Euclidean time, and
becomes complex-valued after analytically continuing to
Lorentzian worldsheet. Thus the Hilbert space of t
SL(2,C)/SU(2) model on the Lorentzian worldsheet m
not have a positive-definite inner product; in fact, an act
of the SL(2,C) currentJ2n

3 generates negative norm state
As we mentioned in the above paragraph, the model on
Euclidean worldsheet appears to be completely normal,
cept that it does not have an analytic continuation to a n
mal field theory on a Lorentzian worldsheet.6

What is the space of states of this conformal field theo
In the semiclassical approximation, which is valid whenk in
the action~2.2! is large, states are given by normalizab
functions on the target space. More precisely, since the ta
space H3 is noncompact, we allow functions to b
continuum-normalizable. Because of the SL(2,C) isometry
of H3 , the space of continuum-normalizable functions is d
composed into a sum of irreducible unitary representati
of SL(2,C). The representations are parameterized byj 5 1

2

1 is with s being a real number, and the Casimir operator
each representation is given by2 j ( j 21). The Casimir op-
erator is proportional to the eigenvalue of the Laplacian
H3 . Corresponding to each of these states, there is an op
tor in the SL(2,C)/SU(2) model, which is also called nor
malizable. They can be conveniently written as@30,19#

F j~x,x̄;z,z̄!5
122 j

p
~e2f1ug2xu2ef!22 j . ~2.4!

The labelsx,x̄ are introduced to keep track of the SL(2,C)
quantum numbers@31#.7 The SL(2,C) currents act on it as

Ja~z!F j~x,x̄;w,w̄!;
Da

z2w
F j~x,x̄;w,w̄!, a56,3,

~2.5!

5This is so that theB field becomes real-valued after analytical
continuing the target space to the Lorentzian signature AdS3 .

6This is somewhat of a reflection of the situation of the SL(2,R)
WZW model. The SL(2,R) model makes sense in the Lorentzia
worldsheet as discussed in@29,1#. However, we cannot analytically
continue to the Euclidean worldsheet since the Hamiltonian of
model is not positive definite. Note that here we are talking ab
analytically continuing the worldsheet without analytically contin
ing the spacetime.

7In the string theory interpretation discussed in Sec. III, (x,x̄) is
identified as the location of the operator in the dual CFT onS2 on
the boundary ofH3 @32#.
6-4
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whereDa are differential operators with respect tox defined
by

D15
]

]x
, D35x

]

]x
1 j , D25x2

]

]x
12 jx. ~2.6!

By using this and the Sugawara construction of the ene
momentum tensor,

T~z!5
1

k22
@J1~z!J2~z!2J3~z!J3~z!#, ~2.7!

we find the precise expression for the conformal weights
these operators as

D~ j !52
j ~ j 21!

k22
5

s21 1
4

k22
. ~2.8!

Operators withj 5 1
2 1 is have positive conformal weight, a

we expect for normalizable operators in a well-defin
theory with Euclidean target space. It was shown in@28# that
states corresponding to these operators and their curren
gebra descendants make the complete Hilbert space o
SL(2,C)/SU(2) model.

The vacuum state of the SL(2,C)/SU(2) model is not
normalizable. This again is not unfamiliar; the vacuum st
for the free scalar field onR is also non-normalizable sinc
its norm is proportional to vol(R)5`. In this case, we do
not consider the vacuum in isolation. The vacuum state
ways appears with an operator, such as ineipX(0)u0&. Simi-
larly, onH3 , the vacuum stateu0& is not normalizable, but we
10600
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can consider a state given by operators of the form~2.4! with
j 5 1

2 1 is acting on it.8

The two- and three-point functions of operators like E
~2.4! were computed in@19–21#. The two-point function has
the form

^F j~x1 ,x̄1 ;z1 ,z̄1!F j 8~x2 ,x̄2 ;z2 ,z̄2!&

5
1

uz12u4D~ j ! Fd2~x12x2!d~ j 1 j 821!

1
B~ j !

ux12u4 j d~ j 2 j 8!G . ~2.9!

The coefficientB( j ) is given by

B~ j !5
k22

p

n122 j

gS 2 j 21

k22 D , ~2.10!

where

g~x![
G~x!

G~12x!
. ~2.11!

The choice of the constantn will not affect the discussion in
the rest of this paper. In@21#, it is set to be

n5p

GS 12
1

k22D
GS 11

1

k22D , ~2.12!

by requiring a certain consistency between the two- a
three-point functions.

The three-point function is expressed as
ient

-
t

^F j 1
~x1 ,x̄1 ;z1 ,z̄1!F j 2

~x2 ,x̄2 ;z2 ,z̄2!F j 3
~x3 ,x̄3 ;z3 ,z̄3!&

5C~ j 1 , j 2 , j 3!
1

uz12u2~D11D22D3!uz23u2~D21D32D1!uz31u2~D31D12D2!

1

ux12u2~ j 11 j 22 j 3!ux23u2~ j 21 j 32 j 1!ux31u2~ j 31 j 12 j 2! . ~2.13!

The z and x dependence is determined by SL(2,C) invariance of the worldsheet and the target space. The coeffic
C( j 1 , j 2 , j 3) is given by

C~ j 1 , j 2 , j 3!52
G~12 j 12 j 22 j 3!G~ j 32 j 12 j 2!G~ j 22 j 32 j 1!G~ j 12 j 22 j 3!

2p2n j 11 j 21 j 321gS k21

k22DG~21!G~122 j 1!G~122 j 2!G~122 j 3!

, ~2.14!

where

8In the flat space case, the vacuumu0& can be regarded as thep→0 limit of eipX(0)u0&, and therefore it is a part of the continuum
normalizable states. Such an interpretation is not possible in the case ofH3 since there is a gap of 1/@4(k22)# between the conformal weigh
~2.8! of the normalizable states and that of the vacuum.
6-5
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G~ j !5~k22!@ j ~k212 j !#/@2~k22!#G2~2 j u1,k22!

3G2~k211 j u1,k22! ~2.15!

andG2(xu1,v) is the Barnes double gamma function defin
by9

log„G2~xu1,v!…5 lim
e→0

]

]e F (
n,m50

`

~x1n1mv!2e

2 (
n,m50

~n,m!Þ~0,0!

~n1mv!2eG . ~2.16!

This shows thatG2 has poles atx52n2mv with n,m
50,1,2,... . The functionG( j ) defined by Eq.~2.15! then has
poles at

j 5n1m~k22!, 2~n11!2~m11!~k22!

~n,m50,1,2,...!. ~2.17!

These will play an important role in the following discu
sion.

Another important fact aboutG( j ) is that it obeys the
functional relations

G~ j 11!5gS 2
j 11

k22DG~ j !,

~2.18!

G~ j 2k12!5
1

~k22!2 j 11 g~ j 11!G~ j !.

For example, one can use the first of these relations to s
that

lim
e→0

G~ j 12 j 21e!G~ j 22 j 11e!

G~21!G~122e!

5~k22!gS k21

k22D lim
e→0

2e

~ j 12 j 2!22e2

522p~k22!gS k21

k22D d~s12s2!, ~2.19!

when j 15 1
2 1 is1 and j 25 1

2 1 is2 . From this, it follows that

C~ j 1 , j 2,0!5B~ j 1!d~ j 12 j 2!, ~2.20!

verifying that the three-point function including the identi
operatorF j 50 is in fact equal to the two-point function
Similarly, by using the second of Eqs.~2.18!, we can show

9The sums overn, m in the right-hand side are defined by analy
regularization. Namely, the sums are defined for Re(e).2, where
they are convergent, and the result is analytically continued te
→0.
10600
w

CS j 1 , j 2 ,
k

2D5~k-dependent coefficient!

3d~ j 11 j 22k/2!. ~2.21!

Unlike the case of Eq.~2.20!, the proportionality factor de-
pends only onk and not onj 1 , j 2 . This identity is used in
later sections when we evaluate correlation functions invo
ing spectral flowed states.

These two- and three-point functions are perfectly w
behaved and finite for normalizable operators withj 5 1

2

1 is. Similarly, one expects the four-point function of suc
states to be given by summing over intermediate norma
able states@21,33#.10 The four-point function will be dis-
cussed in detail in Sec. IV. These properties are familiar
happen in all conformal field theories. The noncompactn
of the target space does not pose a problem; we deal wi
as in the case of a free noncompact scalar field.

A. Analytic continuation and singularities

Life would be relatively simple if all we were intereste
in were operators like Eq.~2.4! with j 5 1

2 1 is.
The complications in our case show up because the

erators we are going to be interested in are non-normaliz
operators@35,3#. This is also familiar in standard flat spac
computations in string theory. There, we are interested

vertex operators which go asep0XEuclid
0

, wherep0 is the en-
ergy carried by the operator and is real, andXEuclid

0 is the
scalar field representing the Euclidean time coordinate. I
sometimes said that we compute amplitudes in Euclid
signature space~with pure imaginaryp0! and then we ana-
lytically continue the results inp0 . This analytic continua-
tion is possible if correlation functions with non

normalizable operators of the formep0XEuclid
0

make sense in
the model with Euclidean target space. There might be
gularities for complex values ofp0 , but we should be able to
go around them to arrive at real values ofp0 . Original cor-
relators with pure imaginaryp0 are well defined in the Eu-
clidean theory and never infinite since these operators co
spond to normalizable states of the theory. When
analytically continue to real~or complex! p0 , there can be
singularities where the amplitudes diverge. In flat spa
string theory, these singularities arise when we integrate o
the positions of the operators on the worldsheet. The in
grated four-point function can become singular as a funct
of the momenta. The interpretation of these singularities is
course well known in flat target spacetime; they correspo

10Recently, it was shown in@34# that the four-point function of the
SL(2,C)/SU(2) model has the same form as that of the five-po
function of the Liouville model where the cross ratio of fourxi ’s in
the SL(2,C)/SU(2) model is related to the location of the fift
vertex operator in the Liouville model. This in particular shows th
the four-point function obeys the crossing symmetry, the mo
dromy invariance, and so on, assuming that Liouville correlat
functions also satisfy these properties. The monodromy invaria
of the four-point function is proven explicitly in Sec. IV B.
6-6
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to poles in theS matrix and they are due to the propagati
of an intermediate on-shell state. The lesson from the
space case is that we should be able to interpret any si
larity that appears in the physical computation of string a
plitudes. Part of the definition of the physical theory is t
choice of operators we consider. In the fact space casep0

has to be pure imaginary in order for the vertex opera

ep0XEuclid
0

to be normalizable. These are the operators that
most natural~i.e., normalizable! from the point of view of
the Euclidean worldsheet theory. On the other hand, for
plications to string theory, we need to consider the case
which p0 is real as these are the ones that correspond
physical states in target space.

In our case, we can define non-normalizable operators
taking j away from the linej 5 1

2 1 is. In the string theory
application, we will be interested in the case in whichj is
real. One can define correlation functions of these opera
by analytically continuing the well-defined expressions t
were found forj 5 1

2 1 is. In fact, the expressions for com
plex j were derived in@19# by using special properties o
operators at particular real values ofj, so analyticity inj was
an input to the calculation. A feature of this analytic contin
ation is that correlation functions that were perfectly fin
and well behaved can develop singularities for particular v
ues of j. In the following subsections, we will explain th
origin of these singularities in the SL(2,C)/SU(2) model.
We will also explain that there are other non-normaliza
operators that are necessary for the string theory applica
which arenot obtained by analytic continuation inj of Eq.
~2.4!. In Sec. V, we will discuss how to compute correlatio
functions of these operators.

B. Singularities in two-point functions

The first thing we need to understand is how the opera
~2.4! with real j are defined. It seems that all we need to do
to insert the vertex operators~2.4! in the path integral. As
usual, we need to remove short-distance singularities in
worldsheet theory when we insert these operators. This is
standard renormalization procedure we need to use to de
vertex operators. In this case, however, we also need to
careful with singularities on the worldsheet theory that ar
due to the fact that the sigma model is noncompact. T
vertex operatorF j (z,x) defined by Eq.~2.4! has the property
that, depending on whetherg(z)5x or Þx, it behaves as
F j;e2 j f or ;e22 j f for largef. For Re(j),1

2, we see that,
once we take into account the measure factore2f, the two-
point function will have a divergence. This divergence com
from the region wheregÞx and f→`, and therefore it is
not localized nearx in target space; it is spread all over thex
space. On the other hand, if Re(j).1

2, this divergence is lo-
calized atg5x. This distinction between these two cas
will be very important for the string theory application di
cussed in the next section. From the worldsheet point
view, operators of the form Re(j)Þ1

2 are not normalizable
Analytic continuation is defining these operators in so
way. We also get a divergence in the two-point function co
ing from the delta functiond( j 2 j 8) in Eq. ~2.9!. This comes
from the volume of the subgroup of target space glo
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SL(2,C) transformations that leave two points fixed~the two
pointsx1 andx2 where the operators are inserted!.

The analytically continued expression~2.10! has other di-
vergences. It has poles at

j 5
n

2
~k22!1

1

2
, n51,2,... . ~2.22!

Let us understand these poles whenk is large. Before we
continue, let us note that we know the exact expression~2.9!,
and there is no need to reevaluate it approximately. The
pose of this exercise is to understand the origin of th
singularities. This will help us to interpret them in the co
text of string theory later. It may also be useful in analyzi
similar singularities in situations in which we do not kno
exact answers.

Let us start with then51 case. Sincej ;k and the semi-
classical limit corresponds tok→`, these poles can be
thought of as arising from nonperturbative effects on
worldsheet. The nonperturbative effect we have in mind
due to a worldsheet instanton. The target space has a bo
ary that is anS2, and our worldsheet instanton approache
while wrapping on thisS2 once. These are sometime calle
‘‘long strings’’ @36#, which are related to the long strings i
the spectrum of the SL(2,R) WZW model. To evaluate ef-
fects of the instanton, it is useful to use global coordinates
H3 . As we discussed earlier, the worldsheet action~2.2!
grows exponentially large toward the boundaryr→` unless
the worldsheet obeys the holomorphicity condition~2.3!. For
a holomorphic worldsheet, the action grows linearly asS
;2kr for larger. The effect is of the ordere22kr, which is
indeed nonperturbative if we identifyk;1/g2, whereg is the
coupling constant on the worldsheet. These worldsheet
stanton effects are similar to the ones which appear in
computation of the Yukawa coupling of the type II strin
compactification, where the instantons wrap topologica
nontrivial 2-cycles in a Calabi-Yau threefold~a complex
three-dimensional manifold!. In our case, however, theS2 is
contractible inH3 . In fact, the instanton action;2kr is not
a topological invariant, but it depends on the sizer of the
worldsheet. Thus the instanton configuration is not topolo
cally stable, and it is continuously connected to t
vacuum.11 Without additional effects, the factore22kr tends
to suppress large instantons.

This observation can be used to explain the poles in
two-point function at 2j ;k in the following way. As we
noted, depending on whetherg(z)5x or g(z)Þx, the vertex
operator behaves asF j (z,x);e2 j f or ;e22 j f for large f.
On the worldsheetS2 with the two vertex operators inserted
one can always find a holomorphic map such thatg(zi)
5xi ( i 51,2). In fact, there is a one-complex parameter fa
ily of instantons, generated by dilatation and rotation wh

11In several respects, these instantons are similar to instanton
ordinary Yang-Mills theory in four dimensions. In this latter cas
their action depends logarithmically on the size of the instan
~analogous toe2r0 in our case! and if we are in a given theta
vacuum, the instanton can dissolve into the vacuum.
6-7
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keep fixed the two points, and the integral over the family
responsible for the delta functiond( j 2 j 8) in the two-point
function. On such instantons, the vertex operator is evalu
as F j (zi ,xi)5e2 j f in Poincare´ coordinates. In the globa
coordinates, it behaves asF j;e2 j r for larger. Therefore, in
the two-point function, the integral over the zero moder0 of
the instanton size is of the form

E dr0e22kr0e2 j r0e2 j r0, ~2.23!

where the first factor is the instanton action and the last
factors come from the vertex operator insertions. We see
the integral~2.23! converges at larger0 only for j ,k/2 @the
exact answer~2.10! is finite only for j ,(k21)/2#.12 Thus
the instanton effect explains the origin of the singularity
due to the noncompact direction in field space which can
explored with finite cost in the action. Since this divergen
is coming from the larger region, it does not matter that th
instanton is not topologically stable in the full space of t
worldsheet fields. What is important is that the larger region
gives a dominant contribution to the functional integral. W
can therefore say that this divergence is an IR effect in
target space. It is interesting that the divergence is not lo
ized on the worldsheet and therefore cannot be considere
an UV effect there. The standard lore about the corresp
dence between IR effects in the target space and UV eff
on the worldsheet does not hold in this case.

Thus we have shown that there is a divergence for Rj)
>(k21)/2 due to large worldsheet instantons. In the analy
regularization, the divergence is converted into a pole aj
5(k21)/2. Of course, the formula~2.9! is precisely the re-
sult of such analytic continuation. These poles were also
cussed in@24# in the context of the SL(2,R)/U(1) coset
model using a dual description@20#. Similarly, by consider-
ing an instanton which wrapsn times theS2, we can explain
the pole at 2j ;nk in the two-point function.

C. Singularities in the three-point function

The three-point function~2.13! has various poles which
come from the poles inG( j ) @Eq. ~2.17!#. One finds that
C( j 1 , j 2 , j 3) has poles at

j 5n1m~k22!, 2~n11!2~m11!~k22!

~n,m50,1,2,...!,

where

12In principle, we expect the computation in~2.23! to give us
only the leading order ink behavior. By being a bit more carefu
about the integral over quadratic fluctuations, we can
that the amplitude can be better approximated
*dr0e2r0e22(k22)r0e2( j 21)r0e2( j 21)r0, where the first factor come
from the measure of ther0 integral, the shift ink comes from the
determinants, and the shift inj comes from the integral overg,ḡ.
This gives the exact boundj ,(k21)/2.
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j 512 j 12 j 22 j 3 , j 32 j 12 j 2 ,

j 22 j 32 j 1 , or j 12 j 22 j 3 . ~2.24!

Our first task is to understand the origin of these singulari
from the point of view of the SL(2,C)/SU(2) sigma model
on the worldsheet.

Let us first consider the poles at

j 32 j 12 j 25n ~n50,1,2,...!. ~2.25!

Here we use the standard largek approximation treatingf
and g, ḡ as constant on the worldsheet~this is the point-
particle approximation!. The vertex operator~2.4! goes like
e2 j f at g5x and it decays likee22 j f for gÞx. When j 3
. j 11 j 2 , a divergence in the three-point amplitude aris
from the integral region whereg5x3 ~and thereforeg
Þx1 ,x2! so that F j 3

(x3);e2 j 3f and F j 1
,F j 2

;e22 j 1f,e22 j 2f. The integral overf then takes the form

E df e2~ j 32 j 12 j 2!f, ~2.26!

where the measure factore2f is canceled by the integral ove
g, ḡ. The amplitude is divergent forj 3> j 11 j 2 , and analytic
regularization gives a pole atj 35 j 11 j 2 . This explains the
pole with n50 in Eq. ~2.25!. To reproduce the other pole
with n51,2,..., we just have to expandF j 3

(z3 ,x3) in powers

of ug(z3)2x3u2 and repeat the above exercise. Thus we h
interpreted the poles~2.25! in the exact expression~2.14!
from the point of view of the worldsheet theory. There a
also poles when (j 22 j 32 j 1) and (j 12 j 22 j 3) are non-
negative integers and they are explained in a similar way
Sec. III, we will discuss how these divergences are dealt w
in string theory. We will see that these are very analogou
poles in theS matrix in the flat space computation.

The other poles in Eq.~2.24! can be explained by the
worldsheet instanton effects. Since one can always fin
holomorphic map from the worldsheet to the target sp
such thatg(zi)5xi ( i 51,2,3), the worldsheet instanton ca
grow large whenever Re(j11j21j3) exceeds;k. This ex-
plains the first pole in Eq.~2.24! with (n,m)5(0,1). As in
the case of the two-point function, this divergence is non
cal in target space. The remaining poles in Eq.~2.24! can be
interpreted in similar ways.

D. Singularities in four-point functions

Let us now move on to the four-point function. By world
sheet conformal invariance and target space isometrie
depends nontrivially only on the cross ratios ofzi ’s andxi ’s
( i 51,...,4),

z5
~z12z2!~z42z3!

~z12z3!~z42z2!
, x5

~x12x2!~x42x3!

~x12x3!~x42x2!
.

~2.27!

For special values ofj i , the labels of the four operators, th
dependence of the four-point function ofz andx can be de-

e
s
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termined by differential equations. These values ofj i are
outside the range which leads to physical operators in
string theory.

For generic values ofj i , one very useful piece of infor
mation is that it obeys the Knizhnik-Zamolodchikov~KZ!
equation, which follows from the Sugawara construction
the stress tensor ~2.7!. The idea is to compute
^T(w)F j 1

(z1 ,x1)¯F j 4
(z4 ,x4)& in two different ways. One

is to convertT(z) into derivatives with respect tozi ’s using
the conformal Ward identity. Another is to use Eq.~2.7! to
expressT(z) in terms of the currentsJa and to turn them into
differential operators onx by the SL(2,C) Ward identities
~2.5!. Combining these two expressions together and go
over to the cross ratios~2.27!, one finds@21# that the four-
point functionFSL(2)5^F j 1

¯F j 4
& obeys

]

]z
FSL~2!5

1

k22 S P

z
1

Q

z21DFSL~2! , ~2.28!

whereP and Q are differential operators with respect tox
defined by

P5x2~x21!
]2

]x2 1@~2k11!x222 j 1

22 j 2x~12x!#
]

]x
22k j 2x22 j 1 j 2 ,

~2.29!

Q52~12x!2x
]2

]x2 1@~k21!~12x!2

12 j 3~12x!12 j 2x~12x!#
]

]x

22k j 2~12x!22 j 2 j 3 ,

with

k5 j 42 j 12 j 22 j 3 . ~2.30!

Because of the factorz21 and (z21)21 on the right-hand
side of the KZ equation~2.28!, the amplitudeFSL(2)(z,x) has
singularities atz50, 1, and̀ . Such singularities are familia
in conformal field theory and appear when locations of t
operators coincide on the worldsheet. This leads to the
erator product expansion, which will be discussed ext
sively in Sec. IV.

Quite unexpectedly, the equation also implies a singu
ity at z5x. This is because the coefficients in front of]2/]x2

in P and Q cancel each other out atz5x. Substituting the
ansatzFSL(2);(z2x)d into Eq.~2.28! and solving the equa
tion to the leading order in (z2x), the exponentd is deter-
mined as

d50 or k2 j 12 j 22 j 32 j 4 . ~2.31!

The solution withd50 is regular atz5x. However, as we
will see in Sec. IV, monodromy invariance of the amplitu
FSL(2) aroundz50,1,̀ as well as aroundz5x requires that
10600
e
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g
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we include the other solution withd5k2 j 12 j 22 j 32 j 4 .
Therefore,FSL(2) has to have a singularity of the form

FSL~2!uz2xu2~k2 j 12 j 22 j 32 j 4!. ~2.32!

Here we combined holomorphic and antiholomorphic pa
so that the amplitude is monodromy-invariant aroundz5x.

The presence of the singularity atz5x is very surprising
from the point of view of the worldsheet theory since this
a point in the middle of moduli space. In a standard conf
mal field theory, amplitudes become singular only at bou
aries of moduli spaces. A very closely related divergen
appears in the one-loop diagram@2#.13 The interpretation of
this singularity is again associated with instanton effects
the case of the four-point function, worldsheet instantons
grow large if and only ifz5x since there has to be a holo
morphic map from the worldsheet to the boundaryS2 of the
target space such thatg(zi)5xi ( i 51,...,4). Such a map ex
ists only when the worldsheet modulusz coincides with the
target space modulusx. The instanton approximation als
explains the value ofd in the following way. Ifz is not equal
to x but close to it, there is a harmonic map~u,f! for which

E ~]u2 i sinu]f!~ ]̄u1 i sinū]f!;uz2xu2.

~2.33!

We can then insert this into Eq.~2.2! to estimate the action
for larger as

S;2kr01ae2r0uz2xu2 ~2.34!

for some positive constanta. Here we only show the depen
dence on the zero moder0 of r. The functional integral for
the four-point function is then approximated as

E dr0e2r0e22~k22!r01aux2zu2e2r0e2( i ~ j i21!r0

;uz2xu2~k2 j 12 j 22 j 32 j 4!, ~2.35!

reproducing the singularity~2.32!. This is related to the re-
mark in @18# that the dynamics of long strings is approx
mated by the Liouville theory; here,ux2zu2 plays the role of
the cosmological constant. By a simple extension of this
gument, we expect thatn-point amplitudes have singularitie
when the worldsheet moduli coincide with the target spa
moduli. For n.4, there can also be singularities when
subset of the worldsheet moduli coincides with a subse

13In @2#, we considered the finite-temperature situation in wh
we periodically identify the target space Euclidean time, and co
puted a partition function on a worldsheet torus. We found that
addition to the divergence at the boundary of the worldsheet mo
spacet→ i`, there are singularities whent is related to the peri-
odicity of the target space Euclidean time. These singularities
interpreted as due to worldsheet instantons from the worlds
torus to the finite-temperature target space~i.e., the Euclidean black
hole in AdS3!.
6-9
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JUAN MALDACENA AND HIROSI OOGURI PHYSICAL REVIEW D65 106006
the target space moduli. In this case, only the correspon
part of the worldsheet grows large.

E. Correlation functions of spectral flowed states

So far, we have discussed some general propertie
~analytically continued! correlation functions of the opera
tors ~2.4! in the SL(2,C)/SU(2) model, and we have ex
plained the origin of various singularities in the correlati
functions. It turns out that there are other non-normaliza
operators we will need to consider for the string theory
plication.

The operatorsF j and their descendents by the SL(2,C)
current algebra are not the only operators we will be int
ested in. The current generatorsJa(z) act onF j as Eq.~2.5!,
which means thatF j and their analytic continuations als
obey the conditions

Jn
6uF&50, Jn

3uF&50 ~n51,2,...!. ~2.36!

These lead to the conventional representations of the cu
algebra. In WZW models based on compact Lie grou
these are all the operators we need to consider; other op
tors are just current algebra descendents of these. In
SL(2,R) WZW model, there are other states one needs
take into account. These are states in spectral flowed re
sentations of the types described in Eqs.~1.2! and~1.3!. Cor-
respondingly, there are non-normalizable operators in
SL(2,C)/SU(2) model that are different from the ones o
tained by analytic continuation ofF j . In fact, by taking
worldsheet operator product expansion OPE of operator
the form ~2.4!, which obey Eq.~2.36!, we can produce op
erators which are not in the conventional representati
obeying Eq.~2.5!. For example, we shall see in detail in Se
V B that we can construct an operator which generates s
tral flow from the operator in Eq.~2.4! with j 5k/2; the
spectral flowed representations are generated by the w
sheet OPE’s with this operator.

In the remainder of this section, we will argue from
semiclassical point of view that these are natural operator
consider. In particular, we will build operators that are no
normalizable, but such that their ‘‘non-normalizability’’ i
concentrated at a pointx on target space.

To formulate the problem, let us consider a vertex ope
tor C j (z0 ,x0) defined so that it imposes the boundary co
dition

f~z!;2
j

k
loguz2z0u2,

~2.37!
g~z!;x01o~ uz2z0u2 j /k!.

The reason that the subleading term in the second line
Eqs. ~2.37! has to be smaller thanuz2z0u2 j /k will become
clear below. We will also show that, when12 ,Re(j),(k
21)/2, the operatorC j coincides to the operatorF j . What
happens whenj is outside of this range? Let us expressj as
j 5 ̃1(k/2)w with 1

2 ,Re(̃),(k21)/2. The semiclassica
analysis that follows shows that the operatorC j defined by
Eqs. ~2.37! is identified asF j

w , which is defined by acting
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approximation, the spinj̃ will actually be found to be in the
range 0,Re(j̃ ),k/2. In the exact computation, this be
comes1

2 ,Re(j̃),(k21)/2.
To explain this, let us consider the two-point function

the vertex operatorsC j at (z,x)5(0,0) and~`,`!. We con-
sider the case in whichj is real. It was shown in@32# that a
general solution to the classical equation of motion for E
~2.1! is given by

f5r~z!1 r̄~ z̄!1 log@11b~z!b̄~ z̄!#,

g5a~z!1
e22r~z!b̄~ z̄!

11b~z!b̄~ z̄!
, ~2.38!

ḡ5ā~ z̄!1
e22r̄~ z̄!b~z!

11b~z!b̄~ z̄!
,

for some holomorphic functionsr,a,b of z. The simplest
solution obeying the boundary conditions~2.37! is

f52
j

k
loguzu2,

~2.39!
g50.

This solution corresponds tor52( j /k)logz anda5b50 in
Eqs.~2.38!. This clearly satisfies the boundary conditions
z50. To see that it also obeys the boundary conditions az
5`, we use the inversion of Poincare´ coordinates as

ef85e2f~11e2fugu2!,

g852
e2fḡ

11e2fugu2 , ~2.40!

ḡ852
e2fg

11e2fugu2 .

Note that, atf→`, this corresponds to the inversiong85
21/g of the complex coordinates onS2. We then find

f852
j

k
loguz8u2,

~2.41!
g850,

where z8 is the worldsheet coordinate appropriate neaz
5`,

z852
1

z
. ~2.42!

Thus the solution~2.39! obeys the boundary conditions bo
at z50 and`. This solution describes a cylindrical world
sheet of zero radius, connectingx50 and`.

Now let us examine what type of perturbations are
lowed to this solution. The simplest ones are of the form
6-10
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f52
j

k
loguzu2.

~2.43!
g5ezn

for small «. We claim that this deformation corresponds
the action of the current algebra generatorJn

1 on the solution
~2.39!. To see this, we note that the pointg in the coset
SL(2,C)/SU(2) is parametrized by the coordinates~f,g,ḡ)
as

g5S e2f1gḡef efg

efḡ ef D , ~2.44!

and the action ofJn
1 is given by

Jn
1 :g→g1S 0 ezn

0 0 D g. ~2.45!

One can easily verify that~2.45! indeed maps Eqs.~2.39!–
~2.43!.

One should ask whether this perturbation is normaliza
or not. The norm of worldsheet fluctuations is defined us
the target space metric as14

i~df,dg,dḡ!i25E d2z

uzu2 ~df21e2fdgdḡ!. ~2.46!

Therefore, the perturbation~2.43! is normalizable~at smallz!
if

n5w11,w12,w13, . . . , ~2.47!

and non-normalizable if

n5w,w21,w22, . . . . ~2.48!

Normalizable perturbations should be integrated out w
we perform the functional integral over the worldsheet a
therefore do not change the boundary conditions. This
plains why we require that the subleading term in the sec
line of Eqs. ~2.37! has to be smaller thanuz2z0u2 j /k since
any perturbation equal to or greater than that term is n
normalizable. Non-normalizable perturbations chan
boundary conditions and correspond to inserting differ
operators on the worldsheet. Since these perturbations c
spond to the action ofJn

1 on the worldsheet as in~2.45!, one
can say that the vertex operatorC j is annihilated byJn

1

which generates normalizable perturbations, i.e.,

Jn
1C j50, n5w11,w12,w13, . . . . ~2.49!

One can repeat this analysis for the action ofJn
2 . This

gives a perturbed solution of the form

14Here the worldsheet metric is set touzu22dz dz̄, which is appro-
priate when the worldsheet is an infinite cylinder, since we will u
this computation to identify the state corresponding to the ve
operatorC j .
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f52
j

k
loguzu2,

~2.50!
g5euzu4 j /kz̄ n.

A similar analysis shows that this perturbation
normalizable15 for

n52w,2w11,2w12, . . . ~2.51!

and is non-normalizable for

n52w21,2w,2w11, . . . . ~2.52!

This meansC j is annihilated byJn
2 as

Jn
2C j50, n52w,2w11,2w12, . . . . ~2.53!

Combining Eqs.~2.49! and~2.53!, we find thatC j corre-
sponds to the highest weight state of a discrete represent
with w amount of spectral flow. By evaluatingJ3 for the
solution ~2.39!, one finds that it carries theJ3 chargej. Ac-
cording to the rule of the spectral flow~1.4!, this means that
the Casimir operator of the representation before the spe
flow is given by2 j̃ ( j̃ 21), where j̃ 5 j 2(k/2)w.

Something special must happen when 2j /k is an integer
since the amountw of spectral flow jumps there. What hap
pens is that the solution~2.43! with n5w coincides with the
solution ~2.50! with n52w and both are non-normalizable
This means that we have a new type of state, not annihila
by J2w

2 andJw
1 . It is in the continuous representation withw

amount of spectral flow. The fact that the two solutions c
incide means that there is a new solution. In fact, wh
2 j /k5w, there is a new solution,

f52
w

2
loguzu2,

~2.54!
g5ezw loguzu2.

One can think ofe as the radial momentum carried by th
long string. This is a Euclidean version of the phenomen
discussed in Sec. 3 of@1# in the context of string theory in
the Lorentzian AdS3.

Here we have explained how to define the vertex ope
tors U j (z,x) for the spectral flowed representations. In S
V, we will give exact expressions for correlation functions
these operators.

III. SPACETIME INTERPRETATION OF THE
SINGULARITIES IN TWO- AND THREE-POINT

FUNCTIONS

In the previous section, we have discussed propertie
non-normalizable operators in the SL(2,C)/SU(2) model in
general. In this section, we will discuss which subset of th

e
x 15Here we assume 2j /k is not an integer. See the discussion b
low.
6-11
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JUAN MALDACENA AND HIROSI OOGURI PHYSICAL REVIEW D65 106006
operators we will consider as physical operators. The ph
cal theory we have in mind is string theory onH33M,
where M is a compact target space represented by so
standard unitary CFT. We will interpret singularities in th
amplitudes discussed in the previous section from the p
of view of this string theory. According to the AdS/CFT co
jecture, the string theory is dual to a boundary conform
field theory ~BCFT! on S2 @13#. The observables of BCFT
are local normalizable operators on the boundary of the
get space. In string perturbation theory, they are represe
on the worldsheet by products of non-normalizable opera
in the SL(2,C)/SU(2) theory times normalizable operato
in the unitary CFT forM.16 The same is true in flat spac
computations where normalizable plane waves in the ta
space theory are represented by non-normalizable oper

of the formepL
0XE

0
times normalizable operators in the inte

nal CFT in the Euclidean worldsheet theory.~In this discus-
sion we have neglected the tachyon which could be b
normalizable in the Euclidean worldsheet theory and ph
cal in the string theory; it is projected out in superstrin!
Notice that in the AdS3 case the Euclidean worldsheet com
putations are directly related to the Euclidean BCFT com
tations. We will concentrate on the interpretation of the str
theory as a Euclidean field theory. The rotation to Lorentz
target space then should be the standard rotation of the B
to Lorentzian signature.

A. Two-point functions

Our first task will be to pick a set of non-normalizab
operators in the SL(2,C)/SU(2) model which we will use to
construct physical observables. The BCFT is a unitary C
and it makes sense to analytically continue the target spac
AdS3 with a Lorentzian signature metric. By the standa
state-operator correspondence, a normalizable operator o
BCFT corresponds to a normalizable state in the BCFT in
Lorentzian signature space. In the regime where perturba
string theory is applicable, these states correspond to sin
particle states and multiparticle states of string theory
Lorentzian AdS33M. The worldsheet theory of the strin
on the Lorentzian AdS3 is the SL(2,R) WZW model. The
spectrum of the WZW model was proposed in@1# based on a
semiclassical analysis, and the proposal was verified by
exact computation of one-loop free energy in@2#. The spec-
trum of the WZW model is decomposed into a sum of ir
ducible representations of the SL(2,R)3SL(2,R) current al-
gebra. As shown in Eq.~1.1!, it contains the discrete
representationsDj

0
^ Dj

0 with 1
2 , j ,(k21)/2 and their spec-

tral flow images corresponding to short strings, and the c
tinuous representationsCj ,a

0
^ Cj ,a

0 with j 5 1
2 1 is for real s

and their spectral flow images corresponding to long strin
Going back to the SL(2,C)/SU(2) model, these state

correspond to the operators with

j 5 1
2 1 is ~3.1!

16More precisely, these are what ‘‘single-particle’’ operators c
respond to@13#.
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, j ,

k21

2
~3.2!

and all their spectral flow images. Though operators witj
5 1

2 1 is are normalizable in the worldsheet theory, the
spectral flow images are not. After imposing the physi
state conditions, the only states withj 5 1

2 1 is andw50 are
tachyons. Neglecting the tachyons, we see that all the op
tors of interest are non-normalizable on the worldsh
theory.

Though we just argued for the conditions~3.1! and ~3.2!
on the basis of the Lorentzian theory, we can make a sim
argument purely in the Euclidean theory. The operators
the worldsheet that can correspond to good spacetime B
operators are those non-normalizable operators for which
divergences are localized at the pointx which we want to
interpret as the point where the BCFT operator is inserted
other words, the ‘‘non-normalizability’’ of the worldshee
vertex operator should be concentrated aroundg;x in target
space. Indeed, we saw in Sec. II that ifj is outside the range
~3.2!, there are divergences on the worldsheet theory that
not localized on the boundaryS2. For j , 1

2 , these can be
interpreted in the usual point-particle limit, while forj .(k
21)/2 the divergences came from worldsheet instantons.
us clarify the target space implication of the latter. Instead
the analytic regularization, one may choose to compute
two-point function by using an explicit target space cuto
regularization by limiting the functional integral to be ov
r,r0 for some large value ofr0 . From the discussion in
Sec. II B, we expect that, ifj is in the range~3.2!, the world-
sheet never grows large for genericg and all cutoff depen-
dence is localized nearg;xi . On the other hand, ifj ex-
ceeds the upper bound, the amplitude depends onr0 since
the worldsheet can grow larger thanr0 . So the larger0
dominates the functional integral and the two-point functi
is divergent. The divergence is not localized in target sp
around the pointsxi , but it is spread all over target space,
shown in Fig. 1. Thus the two-point function of the opera
F j in the Euclidean theory makes sense as a local operat
x,x̄ only in the region~3.2!. One can nevertheless define th
worldsheet operatorsF j outside the range~3.2!, via analytic

-

FIG. 1. If Re(j).(k21)/2, the worldsheet for the two-poin
function grows uniformly onS2 toward the boundary.
6-12
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STRINGS IN AdS3 AND THE . . . . III. . . . PHYSICAL REVIEW D 65 106006
continuation. In this definition, one is implicitly subtractin
counterterms that are not localized inx. From the point of
view of the worldsheet theory, there seems to be noth
wrong with this. In fact, operators outside~3.2! are very
useful for computing correlation functions on the worldsh
@19–21#. However, worldsheet operators outside~3.2! cannot
be identified with local operators in the BCFT. In fact, o
analysis in Sec. II E shows that, if one tries to exceed
upper bound in the Euclidean worldsheet theory, one is n
rally led to operators in spectral flowed representations.

The coefficientB( j ) in the worldsheet two-point function
~2.9! given by Eq.~2.10! is well defined and positive forj
belonging to the range~3.2!. In the string theory computa
tion, we need to divide the amplitude by the volume of t
conformal groupVconf which keeps the two points fixed. I
cancels the divergence coming from evaluating the d
function d( j 2 j 8) in Eq. ~2.9! at j 5 j 8, leaving a finite an-
swer, as explained in@29#.17 The cancellation of the two
divergent factors requires some care since it may leave s
finite j-dependent factor. In Sec. V, we will given a heuris
argument to say that the target space two-point func
comes with an extra factor of (2j 21) as

^F j~x1!F j~x2!& target5
1

Vconf
^F j~x1 ;z150!

3F j~x2 ;z250!&worldsheet

5
~2 j 21!B~ j !

ux12u4 j . ~3.3!

A more rigorous derivation of the extra factor (2j 21) is
given in Appendix A, where we show that this is required
10600
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the consistency with the target space Ward identities. T
target space two-point function~3.3! is also well behaved in
the physical range~3.2!.

We can also compute target space two-point functions
any spectral flowed states; this will be done explicitly in Se
V. We will find that they are all regular and have positiv
definite two-point functions in the region~3.2!. The extra
factor (2j 21) mentioned in the above paragraph is gene
ized to u2 j 211(k22)wu whenwÞ0.

As shown in @1#, the spectral flowed continuous stat
( j 5 1

2 1 is) correspond to operators in the BCFT which ha
continuous dimensions. We conclude from this that
BCFT has a noncompact target space~at least it is noncom-
pact in the leading order in string perturbation theory!. The
nature of this noncompactness was discussed in@18# in the
case of AdS33S33M4 , where M45K3 or T4. In these
cases, BCFT is the supersymmetric sigma model whose
get space is the moduli space of the Yang-Mills instantons
M4 . The noncompact directions are related to the lim
where instantons become small. The relation between
existence of the continuous spectrum in CFT and the n
compact directions in its target space is familiar in the c
of a free noncompact scalar. We would like to stress t
there is nothing particularly nonlocal about the sigma mo
with a continuous spectrum. The operators correspondin
these states are local on the space where the BCFT is
fined. This is for the same reason that an operator likeeikX is
local on the worldsheet of the free scalar fieldX(z,z̄). In our
case, these operators are the spectral flowed versionsj
5 1

2 1 is. Their target space two-point function will be com
puted in Sec. V and is given by
to be
int
on

ight, the
^F̂JJ̄

jw
~x1!F̂

JJ̄

j 8w
~x2!& target;F d~s1s8!1d~s2s8!

pB~ j !

g~2 j !

GS j 2
k

2
w1JD

GS 12 j 2
k

2
w1JD

GS j 1
k

2
w2 J̄D

GS 12 j 1
k

2
w2 J̄D G 1

x12
2Jx̄12

2J̄
. ~3.4!

Here j 5 1
2 1 is, j 85 1

2 1 is8, the spacetime conformal weight of the operatorJ is given by

J5
k

4
w1

1

w
S s21 1

4

k22
1h21D , ~3.5!

and h is the conformal weight of the vertex operator for the internal CFT, whose two-point function we assumed
unit-normalized in Eq.~3.4!. Equation~3.5! comes from theL051 condition. Unlike the case of short strings, the two-po
function of long strings does not receive the extra factor ofu2 j 211(k22)wu when we transform the worldsheet computati
into the target space computation. Note that the term multiplying the secondd function in Eq.~3.4! is a pure phase as

17The target space two-point function receives contribution from the internal CFT. Since this part is diagonal in the conformal we
physical state condition for the short string implies that we need to setj 5 j 8 to have a nonzero two-point function in the target space.
6-13
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eid~s![
pB~ j !

g~2 j !

GS j 2
k

2
w1JD

GS 12 j 2
k

2
w1JD

GS j 1
k

2
w2 J̄D

GS 12 j 1
k

2
w2 J̄D

5n22is

GS 2
2is

k22D
GS 1

2is

k22D
G~22is!

G~12is!

GS 1

2
1 is2

k

2
w1JD

S 1

2
2 is2

k

2
w1JD

3

GS 1

1
1 is1

k

2
w2 J̄D

GS 1

2
2 is1

k

2
w1 ̄ D . ~3.6!

This is the phase shift that occurs when a long string com
from the boundary and back, which in terms of the BCFT
a small instanton becoming large and small again.

In summary, the singularities in the two-point function a
outside of the range~3.2! of our choice of operators. Now w
can ask whether this choice removes all singularities in
n-point functions. The answer isno. We will see, however,
that the singularities can be interpreted physically and
will give a prescription for how to deal with them. In othe
words, all singularities that appear are interpretable in
BCFT.

B. Three- and four-point functions

The three-point function has poles atj 35 j 11 j 21n and
their permutations inj 1 , j 2 , j 3 . These poles are standa
and easy to understand. They appear in all AdSd11 /CFTd
examples@37,38#. These poles are due to mixing with two
particle states. The string perturbation expansion in AdS
responds to a 1/N expansion in the boundary theory. To lea
ing order in 1/N the operators are single particles a
multiparticle states in AdS. When we compute 1/N correc-
tions, these operators can mix. The mixing is generica
small, of order 1/N, but if two operators have the same co
formal weight at leading order in 1/N, then the mixing can
be of order 1, since we are doing degenerate perturba
theory. If j 35 j 11 j 21n, then we have two operators wit
the same conformal weight, namelyOj 3

and: ]12
n Oj 1

Oj 2
:,

where theOj 1
are single-particle operators and the deriv

tives act on both operators in such a way that the result
primary operator under SL(2,R)3SL(2,R) symmetry at
largeN. These two operators can mix in the subleading or
in 1/N, and the divergence in the three-point function is ca
celed if we take into account this mixing effect.

It is instructive to look at the semiclassical description
this divergence. Supposej i are large, then correlation func
tions can be computed by considering a particle of mas
proportional toj i with trajectories that intersect the bounda
at the points where the operators are inserted@39#. If j 3
, j 11 j 2 ~and the same holds for other permutations of 12!,
the dominant contribution is given in Fig. 2~a!. On the other
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hand, if j 3. j 11 j 2 , we cannot find a configuration wher
the interaction point is in the interior; the interaction poi
moves to the boundary as shown in Fig. 2~b!. In the semi-
classical approximation,n.0 becomes a continuous var
able. If we quantize the fields, we see thatn is an integer.
This divergence is eliminated by a redefinition of the ope
tor Oj 3

which mixes the single-particle operator with th
two-particle operator. That a local redefinition of the opera
can cancel the divergence is related to the fact that the di
gence is coming from the region close to the point on
boundary whereOj 3

is inserted.

The three-point function has also a divergence at( i j i
5k. This divergence appears even if allj i ’s are within the
range~3.2!. From the point of view of the worldsheet theor
this divergence is due to instanton corrections as we saw
Sec. II. This means that the divergence appears becaus
worldsheet can be very close to the boundary of AdS with
cost in action; see Fig. 3.

One might think that this is a nonlocal effect in the BCF
In order to remove it, it seems that we need counterte
which are spread all over theS2 where the BCFT is defined
We would like to propose a different interpretation. Th
BCFT is local and this divergence is simply due to the no
compactness of the BCFT target space. In other words,
do not remove the divergence. The origin of this divergen
which we will explain below, suggests that only three-po
functions with( j i,k make sense in the BCFT.

In order to clarify this point, let us consider a quantum
mechanical example which has a phenomenon very an
gous to what we are dealing with. Suppose that we have

FIG. 2. Here we see the change in behavior of the semiclass
geodesics when we go from the case ofj 3, j 11 j 2 in ~a! to the case
j 3. j 11 j 2 in ~b!.

FIG. 3. Change in behavior of the classical worldsheet wh
( j i,k in ~a! to the case where( j i.k in ~b!. In ~b!, the worldsheet
is driven to the boundary of AdS.
6-14
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quantum mechanics of a particle in a potential well, wh
the potential asymptotes to zero at infinity and it is negat
at the origin, so that the system has a normalizable grou
state wave functionc(x) which for largex decays asc(x)
;e2kx/2. In this system, we can consider operators of
form Ol5elx. The expectation value on the ground state
the product of two of these operators is well defined as lo
asl,k/2. If we insert several operators and we try to co
pute^cuOl1

(t1)¯Oln
(tn)uc&, we will find that we can only

do the computation if(l i,k. In other words, there seem
to be a nonlocal constraint~in time! on the operators whos
correlators we can compute. The theory is perfectly loc
and the divergence is just an IR effect in the target sp
coming from the noncompactness of the target space. It
well-known fact that there are operators in quantum mech
ics that have a domain and a range, and some operators
take a state out of the Hilbert space.18 In this quantum-
mechanical model, there are other operators, of the f
eikx, for example, which are perfectly well defined for an
real value ofk.

Our BCFT is very similar to this quantum-mechanical e
ample. It has a normalizable ground state, and the vac
expectation value of discrete states with( j i.k is not de-
fined. There are other operators, the ones in the spe
flowed continuous representations, which we can consi
These operators are analogous toeikx in the quantum-
mechanical model. Correlation functions of these are w
defined without any additional constraint. Notice that the t
get space BCFT has a normalizable ground state, des
having a noncompact target space since there is a gap
tween the ground-state energy and the threshold where
continuum starts due to the noncompactness.

Based on these observations, we claim that correla
functions of discrete states are only well defined if( j i,k.
The expression~2.13! can be defined for( j i.k by analytic
continuation, but it does not make physical sense as it d
not represent a well-defined computation in the BCFT.
order to define it, we need to add counterterms that
spread overS2 in target space.

For the four-point function, the singularity atz5x ~2.32!
implies, after integrating overz, that there is a divergence i
the four-point function if( i j i5k11.19 So a four-point func-
tion makes sense only for( j i,k11. It might be possible to
extend the four-point function to( j i.k11 by analytic con-
tinuation, but it does not have any immediate physical in
pretation.

Note that we are not saying that there is a bound on
spacetime conformal weight of the operators we add.
using spectral flowed operators, we can compute correla
functions of operators whose conformal weights are as h
as we like. These spectral flowed operators were defined
cisely to avoid the divergences associated to long string

18As a trivial example, consider a harmonic oscillator and imag
the Hamiltonian acting on the stateuc&5((1/n)un&.

19In an n-point function, we expect a divergence when( j i5k
1n23.
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In order to stress once again that these divergences
nothing to do with nonlocal behavior of the BCFT, let u
consider an example withN54 super Yang-Mills~SYM!
theory in d54 where this feature appears. ConsiderN54
SYM theory onT23S13(time) with antiperiodic boundary
conditions for the fermions onS1 and periodic onT2. The
supergravity solution describing the ground state of t
theory was described in@40#. It is the near-extremal black
three brane doubly Wick rotated. It is a nonsingular geome
with topologyT23D2, whereD2 is a disk whose boundary
is the S1 ~we concentrate on the geometry of the radial
rection and the three spatial dimensions of the brane!. This
theory has finite-energy excitations which correspond
placing a D3 brane at some radial position and winding
T23S1. These are analogous to the long strings descri
above. They lead to divergences in computations of cer
correlation functions, in a very similar fashion to how lon
strings lead to divergences in the AdS3 case. These diver
gences come from the fact that there is a Coulomb bra
that we can explore with finite cost in energy.

Finally let us note that, both in the AdS3 case and in the
N54 SYM example we have given above, we can remo
the noncompact direction in field space by deforming
Lagrangian of the theory. In the AdS3 case we can add som
Ramond-Ramond~RR! fields, which in the BCFT has the
effect of making the target space compact. In theN54 ex-
ample, we can add mass terms for all scalar fields.

In AdS3 with RR backgrounds, the continuum states b
come discrete and we can compute the correlation funct
of any number of operators. If we take the limit of RR field
going to zero, we will find that states with high conform
weight with j .(k21)/2 will lead to operators in the SL~2!/
SU~2! model which are spectral flowed. Similarly, we expe
that if we compute a three-point function for three discre
states with( j i,k, the result will go over smoothly to Eq
~2.13! as we take the RR fields to zero. On the other ha
there is no reason why the correlation function of states w
( j i.k should go over smoothly to Eq.~2.13! when we re-
move the RR fields; in fact, we expect that the correlat
function diverges in the limit.

IV. FOUR-POINT FUNCTION

In this section, we compute four-point functions in targ
space by performing the integration over the moduli space
the string worldsheet. A four-point amplitude depends no
trivially on the cross ratiox of the four points on the bound
ary of AdS3 where the operatorsO1 ,...,O4 are inserted. In
other words, we can use conformal invariance to fix the
erators as

Ftarget~x,x̄!5^O1~0!O2~x!O3~1!O4~`!&. ~4.1!

Our main objective is to derive the operator product exp
sion by evaluating the small-x expansion ofFtarget. If the
amplitudeFtarget(x,x̄) in the BCFT obeys the factorizatio
condition, we should be able to expand it foruxu,1 in pow-
ers ofx as

e
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Ftarget~x,x̄!5(
J,J̄

xJ2J12J2x̄J̄2 J̄12 J̄2Ctarget~J,J̄!, ~4.2!

where (J,J̄) are the target space conformal weights a
Ctarget(J,J̄) is given in terms of three- and two-point func
tions as

Ctarget~J,J̄!5^O1~0!O2~1!OJ,J̄~`!&

3
1

^OJ,J̄~`!OJ,J̄~0!&

3^OJ,J̄~0!O3~1!O4~`!& ~4.3!

and$OJ,J̄% is a complete set of operators in BCFT.
Before we start the detailed computation, let us summ

rize our result. We will focus on the case in which the o
eratorsO1 ,...,O4 correspond to short strings withw50, i.e.,
they correspond to states in discrete representationsDj

0

^ Dj
0 of the current algebra SL(2,R)3SL(2,R). We find that,

if their conformal weightsj 1 ,...,j 4 obey the inequalities

j 11 j 2,
k11

2
, j 31 j 4,

k11

2
, ~4.4!

the string amplitude~4.1! can indeed be expanded in powe
of x as Eq.~4.3!, and the intermediate statesOJ,J̄ are either
short strings withw50 and in the range~3.2!, long strings
with w51, or two-particle states of short strings. All oth
physical states do not appear. In Sec. V, we will show t
this is because the three-point functions in Eq.~4.3! vanish
for the other cases. If~4.4! is not obeyed, then there ar
terms in thex expansion that cannot be interpreted as com
from the exchange of physical states. We explain at the
of this section that this is due to the noncompactness of
target space of BCFT, and it is the physically correct beh
ior. For CFT’s with compact target spaces, the operator pr
uct expansion~4.3! should always be valid. In our case, w
expect it to hold only if~4.4! is obeyed. Now we proceed t
explain these statements in more detail.

A. The four-point function in the SL „2,C…ÕSU„2… coset model

Each spacetime operator is associated to a worldsheet
tex operatorOi(x,x̄)→*d2z F i(x,x̄;z,z̄;). If we want to cal-
culate the spacetime four-point functionFtarget, we should
calculate the four-point functionFworldsheetof the correspond-
ing worldsheet vertex operators and integrate it over th
positions. Using worldsheet conformal invariance, we can
the worldsheet position of three of them, and the worldsh
correlator depends only on the cross ratioz. So we need to
compute

Ftarget~x,x̄!5E d2zFworldsheet~z,z̄;x,x̄!. ~4.5!

There are two factors that contribute to the worldsheet c
relation function as
10600
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Fworldsheet~z,z̄;x,x̄!5FSL~2!~z,z̄;x,x̄!Finternal~z,z̄!,
~4.6!

where FSL(2) is the correlation function of the
SL(2,C)/SU(2) coset model andFinternal is that of the inter-
nal CFT.20

A closed-form expression ofFSL(2) is not known for ge-
neric values ofj 1 ,...,j 4 for the external states. We will us
an expression for it given in@21#, which involves an integral
over a continuous family of solutions to the KZ equatio
~2.28!. Let us review the derivation. The KZ equation~2.28!
has an infinite number of solutions reflecting the fact that
Hilbert space of the SL(2,C)/SU(2) model is decompose
into infinitely many representations of SL(2,C). It turns out
that there is a unique combination of these solutions t
satisfies the factorization properties on the worldsheet,
the z expansion of the amplitude should be expressed a
sum over normalizable states when all four external ope
tors, labeled byj 1 ,...,j 4 , are also normalizable~or close
enough to normalizable!. It was shown in@28# that the Hil-
bert space of the SL(2,C)/SU(2) coset theory is a sum of th
representations withj 5 1

2 1 is ~s: real, .0! with the con-
formal weightD( j ). Therefore, it is reasonable to expect th
the four-point function is a sum of products of the conform
block Fj (z,x) of the form

Fj~z,x!5zD~ j !2D~ j 1!2D~ j 2!x~ j 2 j 12 j 2! (
n50

`

f n~x!zn.

~4.7!

Substituting this into the KZ equation, one finds thatf 0(x)
has to obey the hypergeometric equation inx with two lin-
early independent solutions

F~ j 2 j 11 j 2 , j 1 j 32 j 4,2j ;x!,
~4.8!

x122 jF~12 j 2 j 11 j 2,12 j 1 j 32 j 4222 j ;x!.

As we will discuss below, we need both solutions to co
struct a monodromy-invariant four-point function. Takin
into account the factorxj 2 j 12 j 2 in Eq. ~4.7!, one sees that the
two solutions in~4.8! are related to each other by the refle
tion j→12 j , or s→2s if we write j 5 1

2 1 is. Therefore,
instead of requirings.0 and using both solutions, we ca
allow s to be any real number and always pick the first s
lution in ~4.8!.

It was shown by Teschner that, for generic values ofj, all
other f n(x) (n51,2,...) are determined iteratively by the K
equation once we fixf 0(x) as the initial condition atz→0.
They take the form

f n~x!5 (
m52n

`

cnmxm. ~4.9!

Therefore, by demanding thatf 0(x) be given by the first
solution in~4.8!, we can uniquely determineFj as a solution

20In general,Fworldsheetcould be a sum of such products.
6-16
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to the KZ equation. Note that, unlikej 1 ,...,j 4 , the parameter
j does not appear in the KZ equation~2.28!, but it is used as
a label of the solution of the KZ equation whose smalz
behavior is as in Eq.~4.7!.

The full four-point functionFSL(2)(z,x) is then given by
the worldsheet factorization ansatz@21# as

FSL~2!~z,z̄;x,x̄!5E
~1/2!1 iR

d j C~ j !uFj~z,z̄;x,x̄!u2,

~4.10!

where the normalization factorC( j ) is given by

C~ j !5C~ j 1 , j 2 , j !
1

B~ j !
C~ j , j 3 , j 4!, ~4.11!

whereC( j 1 , j 2 , j 3) and B( j ) are defined in Eqs.~2.14! and
~2.10!. The integral is overj 5 1

2 1 is with sPR. As we men-
tioned, thej integral covers both solutions~4.8! because of
the reflection symmetryj→12 j of the integration region.
As shown in@21#, including both solutions is necessary
order for the four-point function to be monodromy-invaria
aroundx51 and`. In Appendix B we argue that the integra
over j in Eq. ~4.10! is convergent.

The expression~4.10! is valid if all external labels
j 1 ,...,j 4 are close to the linej 5 1

2 1 is. The expression for
other values ofj 1 ,...,j 4 is defined by analytic continuation
When we do this, some poles in the integrand cross the
tegration contour. The four-point function is then Eq.~4.10!
plus the contribution of all poles that have crossed the in
gration contour. We need to know the pole structure ofC( j )
andFj (z,x). As we discussed in earlier sections, the thr
point functionC( j 1 , j 2 , j ) in Eq. ~4.11! has poles at

j 512 j 12 j 22 j p , j 11 j 21 j p , 6~ j 12 j 2!2 j p

~4.12!
~see Fig. 4! where

j p5n1m~k22!, 2~n11!2~m11!~k22!

~n,m>0!.

FIG. 4. The solid line indicates the integration contour for E
~4.10! in the j complex plane. We highlighted the location of som
poles inC( j ). Here all externalj i are of the formj i5

1
2 1 isi . There

are similar poles withj 1 , j 2→ j 3 , j 4 ; there are also some other pole
that will not be important for our purposes.
10600
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To compute the correlation function of short strings withw
50, we need to analytically continuej 1 ,...,j 4 from the line
j i5

1
2 1 is to the interval 1

2 , j i,(k21)/2 on the real axis.
The poles that cross the contour of thej integral in Eq.~4.10!
are of the form

j 5u j 12 j 2u2n, n50,1,2, . . . , ~4.13!

with j . 1
2 . There are similar poles inC( j , j 3 , j 4) at

j 5u j 32 j 4u2n, n50,1,2, . . . . ~4.14!

There are no poles inB( j )21 andFj that cross the contou
when we do the analytic continuation. Therefore, after
analytic continuation inj 1 ,...,j 4 , the correlation function
FSL(2) is defined by the integral~4.10! plus the contribution
from the poles at Eqs.~4.13! and ~4.14!. Stated in another
way, the contour of thej integral is deformed from the line
j 5 1

2 1 is to avoid these poles. See Fig. 5.
This completes the specification ofFSL(2)(z,x). The next

task is to multiply the factorFinternal(z,z̄) coming from the
internal CFT and integrate the resulting expression over thz
plane as in Eq.~4.5!. We will find it useful to deform the
contour of thej integral. We will deform the contour of thej
integration in Eq.~4.10! within the region

1

2
<Re j <

k21

2
. ~4.15!

In this process, we will pick up poles inC( j ) andFj , so it is
useful to list them here. Among the poles~4.12! in
C( j , j 1 , j 2), the relevant ones in the region~4.15! are of the
form

Poles1 : j 5 j 11 j 21n,

Poles2 : j 5k2 j 12 j 21n, ~4.16!

n50,1,2,... .

. FIG. 5. The solid line indicates the integration contour after
analytically continue Eq.~4.10! in the externalj i . Some poles of
the form u j 12 j 2u2n have crossed the integration contour so w
should include their residues. There are similar poles withj 3 , j 4 .
We separated the poles along the imaginary direction for cla
although they are all along the real axis whenj i are real.
6-17
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Here we are assuming thatj 1 , j 2 are in the physical range
1
2 , j 1 , j 2,(k21)/2. Note that~4.15! imposes a constrain
on allowed values ofn in Eqs. ~4.16!. The poles~4.13! are
also in the region~4.15!, but the contour of thej integral is
defined to avoid these poles, as we discussed in the prev
paragraph; see Fig. 6. There are similar poles inC( j , j 3 , j 4)
given by exchangingj 1 , j 2→ j 3 , j 4 . From Eq.~2.10!, we can
see that 1/B( j ) has no poles in the region~4.15!.

One may also ask if there is a pole coming from t
conformal blockFj . It turns out that there is no such pole
the region~4.15!. This has been shown in@21# using proper-
ties of the Kac-Kazhdan determinant. To see this explicitly
is useful to rearrange the expansion~4.7! as

Fj~z,x!5xD~ j !2D~ j 1!2D~ j 2!1 j 2 j 12 j 2

3uD~ j !2D~ j 1!2D~ j 2! (
m50

`

gm~u!xm, ~4.17!

whereu5z/x. This expansion will also be used in the ne
subsection to evaluate thez integral in the region whereuzu
,1. If we substitute this expansion in the KZ equation,
find that the first termg0(u) in the expansion should obe
the hypergeometric equation inu. The solution which agree
with the initial condition~4.7! for small z is

g0~u!5F~ j 11 j 22 j , j 31 j 42 j ,k22 j ;u!. ~4.18!

By looking at the standard formula for the Taylor expans
of the hypergeometric function, one can check explicitly th
g0(u) has no poles in the region~4.15!. Given thatg0(u) has
no poles, we can prove inductively that the same is true
all gm(u), m>1. The proof of this statement is given i
Appendix B.

In the following subsections, we consider the caseuxu
,1 and expand the expression~4.10! in powers ofx. We will
then integrate it overz. We will not impose a restriction onz
since we must integrate overz to obtain the physical string
amplitude. We will divide the range ofz into two regions:

region I: uzu,1,

FIG. 6. We shifted the integration contour toj 5(k/2)2 1
2 1 is.

We picked up contributions from Poles1 and Poles2 . This figure
represents the case in whichj 11 j 2,k/2 and j 31 j 4.k/2.
10600
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region II: uzu.1.

SinceFSL(2)(z,x) has the singularity~2.32! at z5x, one may
consider dividing the region I further into two regions whe
0,uzu,uxu and uxu,uzu,1, but it turns out to be unneces
sary to do so, as we shall see below.

B. Integral over the region I

To integrate the four-point function over the region I, it
useful to define the variableu5z/x and use the expansio
~4.17!. We will mostly concentrate on the first termg0(u) of
the expansion. As we mentioned, the KZ equation impl
that the first termg0(u) obeys the hypergeometric equatio
whose solutions areF j (u) andFk212 j (u), whereF j is de-
fined by

F j~u![F~a,b,c;u!,
~4.19!

a5 j 11 j 22 j , b5 j 31 j 42 j ,

c5k22 j .

At u51, these solutions behave asc11c2(u21)k2S j i,
where the coefficientsc1 ,c2 are both nonzero for generi
values ofj 1 ,...,j 4 . It is therefore clear that the first solutio
~4.19! on its own is not monodromy-invariant atu51. For a
given j, there is a unique monodromy-invariant combinati
given by21

Gj ,0~u,x!5uxD~ j !2D~ j 1!2D~ j 2!1 j 2 j 12 j 2uD~ j !2D~ j 1!2D~ j 2!u2

3@ uF j~u!u21luu12cFk212 j~u!u2#, ~4.20!

where

l52
g~c!2g~a2c11!g~b2c11!

~12c!2g~a!g~b!
, ~4.21!

and g(x) is given in Eq.~2.11!. The subindex 0 is there to
remind us that we are examining the first term in thex ex-
pansion in Eq.~4.17!. It is useful to note that we can write i
as

C~ j !Gj ,0~u!5C~ j !uFj ,0~u,x!u2

1C~k212 j !uFk212 j ,0~u,x!u2, ~4.22!

where

Fj ,0~u,x![xD~ j !2D~ j 1!2D~ j 2!1 j 2 j 12 j 2

3uD~ j !2D~ j 1!2D~ j 2!F j~u! ~4.23!

is the first term in thex expansion ofFj in Eq. ~4.17!. We
can show Eq.~4.22! by using the identities

C~k212 j !5lC~ j !,

21Note thatj is not complex conjugated in this expression. In oth
words,ua( j )xf ( j )u2[a2( j )uxu2 f ( j ).
6-18
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D~k212 j !1~k212 j !5D~ j !1 j , ~4.24!

D~k212 j !5D~ j !112c.

The problem with the monodromy-invariant combinati
~4.20! is that it does not satisfy the small-z expansion condi-
tion ~4.7! because of the factoru12c in the second term in
the parentheses. On the other hand, the solution~4.19! satis-
fies the expansion~4.7! but is not monodromy-invarian
aroundz5x. This puzzle is resolved by performing thej
integral. We can show that, after thej integral, the amplitude
~4.10! is monodromy-invariant. To see this, we need to d
form the contour fromj 5 1

2 1 is to j 5 1
2 1 is1@(k22)/2#;

see Fig. 6. The new contour is such that, if in includes
he
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e
t e
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w
o
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point j, it also includes the pointk212 j . Therefore, we
write the integral of the solution~4.19! as 1

2 of the integral of
the monodromy-invariant combinationGj ,0(u,x). As we de-
form the contour, we pick up some residue contributio
from the poles at Eq.~4.16!. It turns out that each of thos
contributions is monodromy-invariant by itself. This can
seen by noting that, for the values ofj in Eq. ~4.16!, the
coefficient l in Eq. ~4.20! vanishes. More specifically, we
find that the contributions from Poles1 in Eq. ~4.16! are non-
singular atu51, while those of Poles2 in Eq. ~4.16! contain
only the singular solution atu51, and therefore both are
monodromy-invariant by themselves. We can now expr
Eq. ~4.10! in the manifestly monodromy-invariant form as
E
~1/2!1 iR

d j C~ j !Fj~z,x!5E
@~k21!/2#1 iR

C~ j !Fj~z,x!1~contribution from Poles1 and Poles2!

5
1

2E@~k21!/2#1 iR
d j C~ j !@Gj ,0~u,x!1¯#1~contribution from Poles1 and Poles2!, ~4.25!
s

at
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where the dots represent higher-order terms in thex expan-
sion. It is convenient to combine the integrand into t
monodromy-invariant formGj ,0(u,x) given by Eq. ~4.20!
because, in the following, we will perform thez integral
before thej integral.~We will be careful about justifying the
exchange of thej integral and thez integral by regularizing
the z integral.! In conclusion, we have shown that after int
grating overj, Teschner’s expression~4.10! for the four-point
function is monodromy-invariant aroundz5x.

The contribution from Poles1 is of the form
xj 2 j 12 j 2f (z,z̄) with j 5 j 11 j 21n. Since the integral of
f (z,z̄) times Finternal(z,z̄) is independent ofx, we conclude
that the conformal weight of the intermediate states isJ5 j
5 j 11 j 21n. These conformal weights can be identified w
the conformal weights of two-particle contributions. In oth
words, when we compute the spacetime operator produc
pansion, the intermediate operators could be two-particle
erators. There can be other contributions with these quan
numbers in the intermediate channel which come from t
disconnected sphere diagrams in string perturbation the
The z integral of this contribution contains divergences
small z. They are canceled by another contribution whi
will be discussed later.

If Eq. ~4.4! is satisfied, Eq.~4.25! does not receive any
contributions from Poles2 in Eq. ~4.16!.

Before we perform the integral over thez plane, we need
to multiply FSL(2)(z,x) by a four-point functionFinternal(z,z̄)
of the internal CFT. In region I, i.e.,uzu,1, we can expand
Finternal as

Finternal~z,z̄!5(
h,h̄

z~h2h12h2!z̄h̄2h12h2

3Cinternal~h,h̄!, ~4.26!
r
x-
p-
m
o
ry.
t

where the coefficient is given by

Cinternal~h,h̄!5Cinternal~h1 ,h2 ,h!
1

Binternal~hh̄!

3Cinternal~h,h3 ,h4!, ~4.27!

andB andC are given by the two- and three-point function
of the internal CFT.

Now we are ready to integrateFworldsheet5FSL(2)
3Finternal over z in region I, namely over the regionuuu
<uxu21. One problem is that this integral might diverge
u50. This would not be a problem if we were actually int
grating Fworldsheet since we can remove the divergence
analytic continuation, which is the standard procedure
string theory computation. The problem arises if we try to
the z integral before thej integral in Eq.~4.10! since these
two integrals may not commute if there are divergences
fact, it is necessary to keep track of these possible div
gences and to be careful about the exchange of thez and j
integrals in order to recover the correct pole structure. T
two integrals commute if we regularize thez integral by in-
troducing a cutoffe and integrate overe<uuu<uxu21. We
will keep track of thee dependence and sende→0 after we
perform thej integral. In practice, what we do is first inte
grate over the wholeu plane and define the integral by an
lytic continuation. We then subtract the contributions fro
uuu,e and uxu21,uuu. If we use the same analytic continu
ation technique to evaluate the integrals over these three
gions, the result after the subtraction of the two contributio
gives the regularized integral overe,uuu,uxu21.
6-19
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1. Integral over the whole u plane

Let us start with the integral over the wholeu plane:

R1[E dz2FSL~2!Finternal

5(
hh̄

E d j C~ j !Cinternal~h,h̄!

3 (
m,m̄50

`

xmx̄m̄I j ;m,m̄
h,h̄ ~x!. ~4.28!

The first term in thex expansion is given by

I j ,0,0
h,h̄ ~x!5xD~ j !1h211 j 2 j 12 j 2x̄D~ j !1h̄211 j 2 j 12 j 2

3
1

2E d2u ud21ūd̄21~ uF j u21luu12cFk212 j u2!,

~4.29!

where

d5D~ j !1h21, d̄5D~ j !1h̄21. ~4.30!

This integral can be done using the formula~C1! in Appen-
dix C. We find

R15Cinternal~h,h̄!E
@~k21/2!#1 iR

d j C~ j !xd1 j 2 j 12 j 2x̄d̄1 j 2 j 12 j 2

3
p

2

G~d!G~a2d̄!G~b2d̄!G~12c1d!

G~12d̄!G~12a1d!G~12b1d!G~c2d̄!

3
g~c!

g~a!g~b!
1¯ , ~4.31!

where the dots indicate terms with higher integer powers
x,x̄. By looking at the powers ofx,x̄, we can read off the
conformal weight of the intermediate states as

J5d1 j 5D~ j !1 j 1h21

5
k

4
1

s21 1
4

k22
1h21, ~4.32!

where j 5@(k21)/2#1 is and a similar expression forJ̄ ob-
tained by replacingh→h̄ in Eq. ~4.32!. We conclude that Eq
~4.31! represents the contribution of long strings with win
ing numberw51 in the intermediate channel. In Sec. V, w
will show that the coefficient in Eq.~4.31! is precisely what
we expect from Eqs.~4.2! and ~4.3!.
10600
f

The subleading termsI j ;m,m̄
h,h̄ with (m,m̄)Þ(0,0) in thex

expansion~4.28!, represented by the the dots in Eq.~4.31!,
are identified as coming from the global SL(2,R)
3SL(2,R) descendents of the long strings considered abo
Indeed theirJ0

3 and J̄0
3 eigenvalues are

J0
35J1m, J̄0

35 J̄1m̄ ~4.33!

with J as in Eq. ~4.32!. In principle, there could be new
contributions from conformal primary fields with these qua
tum numbers, but they seem hard to disentangle from
descendent contributions.

2. Integral overzuzËe

From the integral~4.28! that we just computed, we nee
to subtract contributions fromuuu,e and from uxu21,uuu.
Here we will evaluate the integral overuuu,e. As in the case
of R1 @Eq. ~4.28!#, let us focus on the leading term in thex
expansion in Eq.~4.17!. The integral we need to evaluate

2(
hh̄

E
@~k21!/2#1 iR

d j C~ j !Cint~h,h̄!xd1 j 2 j 12 j 2x̄d̄1 j 2 j 12 j 2

3E
uuu,e

d2u ud21ūd̄21uF~a,b,c;u!u2. ~4.34!

Here we used the reflection symmetryj→k212 j of the
contour at@(k21)/2#1 is ~s real! to combine the two terms
in Eq. ~4.20! into one. We can carry out theu integral by
expandingF(a,b,c;u) in powers ofu,

E
uuu,e

ud21ūd̄21uF~a,b,c;u!u2

5 (
n,n̄50

`
p

d1n
e2~d1n!dn1h,n̄1h̄

3
G~a1n!G~b1n!G~a1n̄!G~b1n̄!G~c!2

G~a!2G~b!2G~c1n!G~c1n̄!
.

~4.35!

Note that the conditionh1n5h̄1n̄ is imposed by the angu
lar integral overu. In order to take the limite→0, we move
the contour toj 5 1

2 1 is with s real. There the exponentd
1n of e is positive~if we ignore the tachyon! since

d1n5
s21 1

4

k22
1h1n21. ~4.36!

Thus the contribution from the contour integral alongj 5 1
2

1 is vanishes in the limite→0. This does not mean that th
original integral~4.34! vanishes in the limite→0. As we are
going see, the integral picks up pole residues as we move
contour fromj 5@(k21)/2#1 is to j 5 1

2 1 is.
There are four types of poles that contribute when

deform the contour of thej integral in Eq. ~4.34! from j
6-20
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5@(k21)/2#1 is to 1
2 1 is. The first type of poles comes from

the zeros ofd1n in Eq. ~4.35!. At the pole, we have

d1n52
j ~ j 21!

k22
1h1n2150. ~4.37!

The x dependence of the pole contribution isxj 2n2 j 12 j 2 so
that the spacetime conformal weight of the correspond
operator isJ5 j 2n. We can identify this state as comin
from a particular current algebra descendent of aw50 short
string representation of the form

~J21
2 !n~ J̄21

2 ! n̄u j , j & ~4.38!

in the SL(2,R) WZW model times an operator of dimensio
h,h̄ in the the internal CFT. In fact Eq.~4.37! is theL051
condition for such an intermediate state. TheL05L̄0 condi-
tion follows from the conditionh1n5h̄1n̄ in Eq. ~4.35!. In
Sec. V, we will check that the coefficient in Eqs.~4.34! and
~4.35! evaluated at the pole~4.37! exactly agrees with wha
we expect from the operator product expansion~4.2! and
~4.3!. The states in~4.38! are global SL(2,R)3SL(2,R) pri-
maries, although those withn>1 are descendents of the cu
rent algebra. Higher-order terms in thex expansion~4.28!
produce terms which have the quantum number of des
dents of the states in~4.38! under the global SL(2,R)
3SL(2,R). Note that due to the fact that we only shifted t
contour within the range~4.15!, the values ofj of these dis-
crete state contributions to the OPE are naturally bounde
~4.15!. This reproduces the constraint on the spectrum of
short string found in@1,2#.
-
I
le

at
Z
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The second type of poles is atj 5 j 11 j 21n (n
50,1,2, . . . ). These cancel thee dependence of the contri
bution from Poles1 that emerged when we originally move
the contour fromj 5 1

2 1 is to @(k21)/2#1 is. Thus the net
result is that we can compute thez integral for the contribu-
tion from Poles1 by the standard analytic continuatio
method. The resulting contribution can be interpreted a
contribution to the OPE from two-particle operators.

Similarly, the third type of poles is atj 5k2 j 12 j 21n
(n50,1,2, . . . ). These cancel thee dependence of the con
tributions from Poles2 . These poles do not appear if~4.4! is
obeyed.

Finally, the fourth type of poles is atj 5u j 12 j 2u2n. In
the original contour of Eq.~4.10!, we avoided these pole
since they crossed the contour when we performed the
lytic continuation inj 1 ,...,j 4 . We now pick up contributions
from these poles since we have to move the contour all
way to the line atj 5 1

2 1 is. The contributions from these
poles have explicite dependence. We believe that the
should be explicitly subtracted.

All that we said regardingj 1 , j 2 should be repeated fo
j 3 , j 4 .

To summarize, the integral overuuu,e reproduces the
exchange of short string states withw50 and mixing with
two-particle states. These are the only contributions to
integral as long as~4.4! is satisfied.

3. Integral overzuzÌzxzÀ1

Finally, let us evaluate the integral overuuu.uxu21 and
subtract it fromR1 . It is convenient to use the expansion
Eq. ~4.20! for largeu. It is given by
Gj ,05uxD~ j !2D~ j 1!2D~ j 2!1 j 2 j 12 j 2uD~ j !2D~ j 1!2D~ j 2!u2H FC~ j !
G~ j 11 j 22 j 32 j 4!2G~k22 j !2

G~ j 31 j 42 j !2G~k2 j 2 j 12 j 2!2 1~ j→k212 j !G
3US z

xD j 2 j 12 j 2

FS j 11 j 22 j , j 11 j 22k1 j 11,j 11 j 22 j 32 j 411;
x

zD U
2

1@~ j 1 , j 2!↔~ j 3 , j 4!#J . ~4.39!
Note that this is the large-u expansion of the leading term
~4.20! in the x expansion in region I~4.17!. The large-u ex-
pansion of the full KZ solution is different and will be dis
cussed later when we study the integral in the region II.
Eq. ~4.28!, we integrated this leading term over the who
plane. Thus we need to subtract the integral overuuu
.uxu21 using the same integrand to obtain an approxim
expression for the integral of the full solution of the K
equation overuuu,uxu21. Using Eq.~4.39!, we find that the
integral gives terms of the form
n

e

xD~ j !1h211 j 2 j 12 j 2x̄D~ j !1h̄211 j 2 j 12 j 2

3E
uuu.uxu2y

du2ud21ūd̄21~ann̄u
nūn̄uuu2~ j 2 j 12 j 2!

1bnn̄u
nūn̄uuu2~ j 2 j 32 j 4!!

;ãnn̄x
nx̄n̄1b̃nn̄x

j 31 j 42 j 12 j 21nx̄j 31 j 42 j 12 j 21n̄,

~4.40!
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for somean,n̄ , bn,n̄ , ãn,n̄ , andb̃n,n̄ . From the exponents o
x, we see that these terms all have the form of two-part
contributions. It seems possible that we could shift the c
tour of integration inj to a region where it becomes conve
gent. This shift might produce extra contributions, but th
all have these powers ofx and therefore will be of the form
of two-particle exchanges.

This completes the evaluation of thez integral in region I.

C. Integral over region II

It remains now to do the integral over the region II. In th
region, we can expand any solution of the KZ equation a

F~z,x!;xa (
m50

`

g̃m~z!xm. ~4.41!

Substituting this into the KZ equation, we find thata50 or
a5 j 31 j 42 j 12 j 2 . This means that the full contributio
from this region is interpreted as two-particle contribution
In this region, we also have to expand the internal part i
different way. But in any case, thex dependence is just tha
of the two-particle contributions.

Thus we have completed the computation of the integ
over thez plane with the results summarized at the beginn
of the section. The intermediate states in the small-x expan-
sion are identified and are found to be consistent with
operator product expansion in BCFT interpreted in the st
dard way as in Eq.~4.2!, provided~4.4! is satisfied. Note tha
as long as~4.4! is satisfied, the three-point functions th
appear in the factorization on intermediate discrete states
tomatically obey the constraint( j i,k. This is consistent
with our previous statement that only those three-point fu
tions make sense in the theory.

D. When the OPE does not factorize

Let us now discuss what happens when~4.4! is not satis-
fied. In this case, besides the terms we discussed above
get contributions from the residues of Poles2 in Eq. ~4.16!. If
we were to read off naively the dimensionJ of an interme-
diate operator from the power ofx appearing in these contri
butions, we would findJ5k2 j 12 j 21n ~or a similar ex-
pression withj 3 , j 4!. For generic values ofk, j 1 ,...,j 4 , there
is no physical operator with this value ofJ. Therefore, these
contributions do not have an interpretation as exchange
intermediate physical states as in Eq.~4.2!. Their presence
signals a breakdown in the operator product expansion.

One may naively interpret this as saying that we need
include more physical states in the theory. We claim this
not the correct interpretation. Instead we propose that, in
case, the operator product expansion is not well define
the target space theory. This is due to the noncompactne
the target space of BCFT. To clarify this issue, it is useful
go back to the simple quantum mechanics example we g
in Sec. III B, i.e., that of a quantum particle moving in
one-dimensional space with coordinatex under a potential
that is zero foruxu@1 such that the wave function of th
ground state decays as^xu0&5c(x);e2(k/2)x for largex. In
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these circumstances, we consider the operatorsOi(t)
5el i x(t) and try to evaluate their correlato
^0uO4(t4)O3(t3)O2(t2)O1(t1)u0&. This correlation function
is well defined ifSl i,k. Now we can try to perform the
OPE whent1→t2 and t3→t4 . Naively one may expect to
find normalizable~and also continuum-normalizable! states
running in the intermediate channel. It is easy to see that
will be the case only ifl11l2,k/2 and l31l4,k/2.
These conditions are analogous to~4.4!. If these conditions
are not obeyed, the intermediate state is not in the Hilb
space of the theory. In other words, the productO1O2 maps
the stateu0& outside the Hilbert space. This is effect is not
UV divergence; rather it is an IR divergence in the targ
space of the quantum-mechanical system.

These contributions from Poles2 that we are discussing
are important for reproducing the general properties of
amplitude that we explained in Sec. III. The four-point fun
tion should have a pole at( j i2k51. This pole is absen
from all the terms in the amplitude that can be written as E
~4.3!. But it is present in the term coming from Poles2 , as
can be checked explicitly by performing the integral ovez
for the Poles2 contribution. Note that~4.4! cannot be obeyed
if we are at the pole at( j i2k51, so we definitely have
Poles2 contributions in this region.

Note that we have assumed that all thej’s involved in the
computation of the OPE are generic enough so that there
no coincident poles. Coincident poles can produce terms
volving logx. These were studied in@37,38#, and they have
the same interpretation here as they had in their case.

V. TWO- AND THREE-POINT FUNCTIONS WITH
SPECTRAL FLOWED STATES

In the preceding section, we showed that the four-po
function of short strings withw50 is factorized into a sum
of products of three-point functions. We found that the int
mediate states are long strings withw51, short strings with
w50, and two-particle states. These intermediate states
identified by evaluating thex expansion of the amplitude an
by comparing exponents ofx with the spectrum of physica
states of the short and long strings. One of the purpose
this and the next sections is to prove that the coefficient
thex expansion are what we expect from the factorization
BCFT. To this end, we need to compute two- and three-po
functions involving spectral flowed states. We will also e
plain the origin of the constraint on the winding numb
violation. In Appendix D, we will use the representatio
theory of the SL(2,R) current algebra to show that two sho
strings withw50 can only be mixed with short strings wit
w50,1 or long strings withw51. This almost accounts fo
the winding number violation rule we saw in the factoriz
tion of the four-point function, but leaves out the question
why short strings withw51 do not appear in the intermed
ate channel. In this section, we will show that, if we norm
ize the vertex operators so that their target space two-p
functions are finite, the three-point function of two sho
strings withw50 and one short string withw51 vanishes
identically, thereby explaining the additional constraint
the winding number violation. We will also discuss oth
6-22



or
o

er

ut
we

e
,
d

eb

e
p
ba

s

d

y
p-

k-

r

rm

u-

s
ch
on

ent

f
o

f

he

STRINGS IN AdS3 AND THE . . . . III. . . . PHYSICAL REVIEW D 65 106006
aspects of these correlation functions.
In @1#, it is shown how to construct vertex operators f

the spectral flowed representations. This can be done m
easily in them basis, where the generators (J0

3,J̄0
3) of the

global SL(2,C) isometry are diagonalized. On the oth
hand, in Eqs.~2.9! and~2.13!, we used thex basis to express
the two- and three-point functions. Therefore, to comp
correlation functions involving spectral flowed states,
first have to convert Eqs.~2.9! and ~2.13! into the m basis,
perform the spectral flow operation as described in@1#, and
then transform the result back in thex basis.

One thing we need to be careful about in this procedur
that the spectral flow changes the way the global SL(2C)
isometry acts on states since the currents are transforme

J0
65 J̃7w

6 , J0
35 J̃0

31
k

2
w. ~5.1!

For example, consider a representation of the current alg
whose worldsheet energyL̃0 is bounded from below.@Dj

w50

and Cj ,a
w50 are an example of such representations, but h

we do not assume that the lowest-energy states of the re
sentation make a unitary representation of the glo
SL(2,R).# We then pick one of the lowest-energy (L̃0) states
uc&, satisfying22

J̃n
6,3uc&50, n51,2,3, . . . ,

J̃0
3uc&5muc&@2 J̃0

3J̃0
31 1

2 ~ J̃0
1J̃0

21 J̃0
2J̃0

1!#uc&

52 j ~ j 21!uc&. ~5.2!

If m56( j 1n) for a nonzero integern, the stateuc& belongs
to the discrete representationdj

6 with respect to the SL(2,R)

algebra generated byJ̃0
a . Otherwise it is in the continuou

representationcj ,a , where m5a ~mod integer!.23 If w is
positive, the same stateuc& is seen in the spectral flowe
frame ~5.1! as obeying

J0
2uc&50, J0

3uc&5S m1
k

2
wD uc&. ~5.3!

With respect to the global SL(2,R) algebra generated b
J0

a , the stateuc& is the lowest weight state of a discrete re
resentation dJ

1 with J5m1(k/2)w, independently of
whetheruc& was indj

6 or cj ,a of the SL(2,R) algebra gener-

ated byJ̃0
a . Similarly, spectral flow withw,0 turnsuc& into

the highest weight state ofdJ
2 with J52m1(k/2)uwu. In

our physical application, we identify the SL(2,R) algebra
generated byJ0

a with the spacetime isometries of the bac
ground and the global SL~2! symmetries of the BCFT. In

22Here j is what we calledj̃ in @1#.
23We are using the symbolsdj

6 andcj ,a to label representations o
an SL(2,R) algebra, to distinguish them from the representations
the full current algebra.
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what follows, we will indicate byJ andM the global SL~2!
spin andJ0

3 eigenvalue, respectively~see Fig. 7!.
The transformation between thex basis and them basis is

carried out as follows. Consider an operatorFJ,J̄(x,x̄) in the
x basis, with the spacetime conformal weights (J,J̄). In gen-
eral, the difference (J2 J̄) has to be an integer in order fo
their correlation functions to be single-valued in thex space,
and we will consider such cases only. The integral transfo

FJ,M ; J̄,M̄5E d2x

uxu2
xJ2Mx̄J̄2M̄FJ,J̄~x,x̄! ~5.4!

turns the operator into theM basis whereM and M̄ are ei-
genvalues ofJ0

3 andJ̄0
3, respectively.24 Note that (M̄ ,M̄ ) are

not necessarily a complex conjugate of~J,M!. Since (J2 J̄)
is an integer, the integral vanishes unless (M2M̄ ) is also an
integer and we will assume this in the following.

In practice, thex integral in Eq.~5.4! is carried out after
computing correlation functions and using analytic contin
ation in the variables,J,M . . . . WhenJ is real, we have to
keep in mind that thex integral gives poles atM5J1n and
M̄5 J̄1n̄, with non-negative integersn,n̄. We will see this
explicitly in the two- and three-point function computation
in the following.25 These are precisely the values at whi
the operatorFJ,M ; J̄,M̄ belongs to a discrete representati
dJ

1
^ dJ

1 of the global SL(2,R)3SL(2,R) symmetry. In such
cases, we have to keep track of this additional diverg
factor. There are also similar poles whenM52J2n,M̄5

2 J̄2n̄ with non-negative integersn,n̄ and they formdJ
2

^ dJ
2 . We will call the poles with positiveM as ‘‘incoming

states’’ and the poles with negativeM as ‘‘outgoing states.’’
In this way, we see that the single operatorFJ,J̄ in thex basis

f

24We reserve the small case lettersm,m̄ to denote eigenvalues o

J0
3,J̄0

3 in the w50 sector, i.e., for states before we perform t
spectral flow.

25Although there are two conditions onM andM̄ , the pole is only

in one variable of the form (M1M̄2J2 J̄2n2n̄)21. The second
condition is imposed by the angular integral in thex space.

FIG. 7. Under the spectral flow, a global SL(2,C) descendant
uc& of spinJ0

35m among the lowest energy states inDj
w50 or Cj ,a

w50

turns into the lowest weight state of the discrete representationdj
1

with J5m1(k/2)w. The figure shows the flow ofDj
w50. The re-

sulting operator is denoted byF
J,J̄

w, j
(x,z).
6-23
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gives rise to bothdJ
1 anddJ

2 , depending on the value ofM
we choose in evaluating the integral transform~5.4!.

Correlation functions of spectral flowed operators are th
evaluated as follows. We start withn-point correlation func-
tions in thew50 sector, which are known forn52, 3, and 4.
We perform the integral transform~5.4! to turn them into
expressions in them basis. We then use the spectral flo
operator to find expressions forwÞ0 ~as described in detai
in the following subsections!. Finally, we use Eq.~5.4! to
transform the expressions back into thex basis.

Alternatively, one can perform the spectral flow operati
directly in the x basis. In the case ofw51, the spectral
flowed operatorF̂

J,J̄

w51,j
(x,z) is constructed fromF j (x,z) in

the w50 sector as

F̂
J,J̄

w51,j
~x,z![ lim

e→0
emēm̄E d2y yj 2m21ȳ j 2m̄21

3F j~x1y,z1e!Fk/2~x,z!. ~5.5!

Here we put a caret on the spectral flowed operator sinc
normalization is different from the one naturally defined
going through them basis as described in the above pa
graph. In Appendix E, we will prove that Eq.~5.5! in fact
defines the spectral flowed operator by showing that it
the correct operator product expansions with the curre
J3,6. We will then use Eq.~5.5! to compute their two- and
three-point functions.

In this section, we will use the spectral flowed opera
defined through them basis. This approach has an advanta
of being able to treat all values ofw simultaneously.

A. Two-point functions

Let us start with a two-point function inx space for ge-
neric values ofJ, J̄. The two-point functions in the following
typically take the form

^FJ,J̄~x1!FJ,J̄~x2!&5
D~J,J̄!

x12
2Jx̄12

2J̄
, ~5.6!

where we have suppressed a possiblez dependence. Perform
ing the integral using the formula~C5! in Appendix C, we
find

^FJ,M ; J̄,M̄FJ,M ; J̄,M̄8&

5d2~M1M 8!
pG~122J̄!G~J1M !G~ J̄2M̄ !

G~2J!G~12J1M !G~12 J̄2M̄ !
D~J,J̄!.

~5.7!

The delta functiond2(M ) is the standard delta function fo
the sum (M1M̄ ) and the Kronecker delta for the differenc
(M2M̄ ), which is an integer. Using the formulaG(x)G(1
10600
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2x)5p/sinpx and the fact that (J2 J̄) and (M2M̄ ) are
both integers, one can check that the expression~5.7! is sym-
metric under exchange of~J,M! and (J̄,M̄ ).

Conversely, if we are given the expression~5.7!, we can
turn it back into the form~5.6! in thex basis. To do this, it is
not necessary to know the expression for all possible va
of M, M̄ . For example, the expression~5.7! has a pole at
M5J andM̄5 J̄, and the residue is equal toD(J,J̄) times a
simple factor. Thus it is sufficient to know the pole resid
there in order to recover thex space expression~5.6!. Simi-
larly, we can reconstruct Eq.~5.6! from the residue of the
pole atM52J and M̄52 J̄. In the following, we will en-
counter such situations.

We now consider the two-point function ofw50 states
given by Eq.~2.9! and convert it into a two-point function
with wÞ0 states. As we mentioned, we first turn the expr
sion into them basis, perform the spectral flow, and the
transform this back into thex basis. In transforming the sec
ond term~2.9! into the m basis, we can use Eq.~5.7! with
D( j , j )5d( j 2 j 8)B( j ); thex integral of the first term is easy
to do directly. In them basis, it is straightforward to apply
the spectral flow. As explained in@1#, the only change in the
two-point function is that the power ofz is modified in an
m-dependent fashion reflecting the change in the worldsh
conformal weight,

D~ j !→D~ j !2wm2
k

4
w2, ~5.8!

without any modification to the coefficient. We should al
remember that the assignment of the global SL(2,C) charges
is changed according to the discussion after Eq.~5.1!. To
perform the spectral flow explicitly, we bosonize theJ3 cur-
rent asJ35 iA(k/2)]w and write an operator withJ3 charge
m as

F j ,m;eimA2/kwc j ,m . ~5.9!

The operatorc j ,m carries noJ3 charge and is analogous t
the parafermion field in the SU~2! WZW model. We then
make the replacement

eimA~2/k!w→ei @m1w~k/2!#A~2/k!w, ~5.10!

and similarly form̄. As explained in@1#, the operator we find
in this way hasJ5M5m1(k/2)w, J̄5M̄5m̄1(k/2)w,
namely, it is the lowest weight state in the representat
dJ

1
^ d

J̄

1
of the global SL(2,C) isometry. Including the modi-

fied z dependence that comes from applying the spectral fl
operator, we obtain the two-point function@1#
6-24
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^FJ,M ; J̄,M̄

w, j
~z1!F

J,M8; J̄,M̄8

2w, j 8
~z2!&5

1

z12
2@D~ j !2wM1~k/4!w2#z̄12

2@D~ j !2wM̄1~k/4!w2#
d2~M1M 8!Fd~ j 1 j 821!1d~ j 2 j 8!

3
pB~ j !

g~2 j !

G~ j 1m!

G~12 j 1m!

G~ j 2m̄!

G~12 j 2m̄!G , ~5.11!
tr
r

s

b

th
a

it

t

where J5M5m1(k/2)w and J̄5M̄5m̄1(k/2)w. Note
that j is the spacetime conformal weight of the originalw

50 operator and it should be distinguished fromJ,J̄ for the
operator we get after spectral flow. The amount of spec
flow of the second operator is2w; this is necessary in orde
to preserve the totalJ0

3 charge. Ifw,m.0, we can interpret
the first operator as an incoming state and the second a
outgoing state.

We would like to convert Eq.~5.11! back to thex basis.
According to our previous discussion, this can be done
evaluating the pole residue atJ5M and J̄5M̄ . Unlike a
generic two-point function such as Eqs.~5.6! and ~5.7!, the
expression~5.11! is finite at this location.26 The pole that we
are missing here comes from the divergent integral of
form *d2z/uzu2. We recognize that it has the same form
g

it

th

f
e

w
e

t

.
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the volumeVconf of the conformal group ofS2 with the two-
point fixed function,

E d2z

uzu2 5

*
d2z d2w d2u

uz2wu2uw2uu2uu2xu2

*
d2z d2w

uz2wu4

5Vconf. ~5.12!

Since evaluating the pole residue of Eq.~5.11! at J5M , J̄

5M̄ is the same as evaluating it at the pole and dividing
by Vconf ~with an appropriate regularization of thez integral!,
we can interpret Eq.~5.11! as resulting from a two-poin
function in thex basis of the form
^FJ,J
w, j~x1 ,z1!F

JJ̄

w, j 8
~x2 ,z2!&5

1

Vconf
Fd~ j 1 j 821!1d~ j 2 j 8!

pB~ j !

g~2 j !

G~ j 1m!

G~12 j 1m!

G~ j 2m̄!

G~12 j 2m̄!G
3

1

x12
2Jx̄12

2J̄z12
2@D~ j !2wM1~k/4!w2#z̄12

2@D~ j !2wM̄1~k/4!w2#
. ~5.13!
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The factor Vconf
21 will eventually be canceled in the strin

theory computation that follows. In going from Eq.~5.11! to
Eq. ~5.13!, we have switched the sign ofw in the second
operator. This is due to the fact that an outgoing state w
negativew is the same as an incoming state with positivew.
In other words, in thex basis we can label the operators wi
w>0.

Some readers may be disturbed by the appearance o
infinite factorVconf in our computation. We can avoid the us
of Vconf altogether if we work directly in thex basis using
Eq. ~5.5!. This will be explained in Appendix E. Forw51,
both approaches give the same result. Forw.1, computa-
tions in thex basis become cumbersome. For this reason,
will continue to work in them basis in this section so that w
can find expressions for allw at once.

So far, we have takenj to be arbitrary. Let us now setj
5 1

2 1 is, so that we have a continuous representation aw

26There is an important exception when thew50 operator is in a
discrete representation, in which casem̄5 j 1n̄ and there is a pole
We will come back to this point later.
h

the

e

50. In this case, the spectral flowed expression~5.13! gives
the two-point function of the vertex operator for the lon
string with w51. In order to compute the spacetime tw
point function, we need to take into account the contribut
from the internal CFT. We choose the internal conform
weight (h,h̄) such that the long string obeys the physic
state condition

D~ j !2wM1
k

4
w21h51,

~5.14!

D~ j !2wM̄1
k

4
w21h̄51.

Assuming that the operator in the internal CFT is unit n

malized, its effect is to multiply the factorz22hz̄22h̄ to Eq.
~5.13!. We then need to integrate overz and divide it by the
volume of the conformal group on the sphere. This produ
another factor ofVconf

21 . By changing the normalization of th

operator asF̂5Vconf F, the two-point function in the targe
space is given by
6-25
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^F̂J,J̄

w, j
~x1!F̂

J,J̃

w, j 8
~x2!& target5

1

Vconf

Vconf
2 ^FJ,J̄

w, j
~x1 ,z150!F

J,J̄

w, j
~x2 ,z251!&worldsheet

;F d~s1s8!1d~s2s8!
pB~ j !

g~2 j !

GS j 2
k

2
w1JD

GS 12 j 2
k

2
w1JD

GS j 1
k

2
w2 J̄D

GS 12 j 1
k

2
w2 J̄D G 1

x12
2Jx̄12

2J̄
, ~5.15!
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where

j 5 1
2 1 is,

~5.16!

J5
k

4
w1

1

w
S 1

4 1s2

k22
1h21D ,

and a similar expression forJ̄ in terms of h̄. As far as the
two-point function is concerned, we can of course norma
the operatorF as we like. All we are saying here is that th
normalization removes the divergent factorVcont and keeps
the target space two-point function finite. In the next subs
tion, we will see that the rescalingF̂5VconfF also gives
finite results for the three-point functions that appear in
factorization of the four-point function.

We would like to make a couple of comments about
two-point function of the long strings~5.15!. Unlike the case
of the short string, the on-shell condition does not requirj
5 j 8. However, the two-point function has the delta fun
tionsd(s1s8) andd(s2s8), giving constrains on the label
s,s8. For the operator before the spectral flow, the term p
portional tod(s1s8) in Eq. ~2.9! is multiplied by;d2(x12),
i.e., it is a contact term in BCFT. After the spectral flo
~5.15!, the corresponding term contributes to the long-ran

correlation of the two operators;x12
22Jx̄12

22J̄ in the same way
as the term proportional tod(s2s8). Thus, when we discus
the factorization of the four-point function, we need to ta
into account both the first and the second terms in Eq.~5.15!.
Another remark we would like to make is that the fact
multiplying thed(s2s8) in the second term in Eq.~5.15! is
a pure phaseeid(s), see Eq.~3.6!. We can interpret it as the
phase shift for a scattering experiment where we let a l
string come from infinity of AdS3 , shrink to the origin, and
go back to infinity again@1#. In fact, the operators labeled b
s and 2s are not independent, and they are related by
reflection coefficientF (1/2)1 is;eid(s)F (1/2)2 is as shown in
@19#.

Now let us turn to discrete representations. We start w
a global SL(2,C) descendent withm5 j 1q and m̄5 j 1q̄,
whereq,q̄ are non-negative integers. After the flow, we o
tain a state with J5M5 j 1q1(k/2)w, J̄5M̄5 j 1q̄
1(k/2)w. In this case, we get a pole from one of theG
functions in Eq.~5.13!, and it cancels the factorVconf

21 . Thus
the expression in thex space is finite. As in the case of a lon
string, turning this into a string theory two-point functio
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generates an additional factor ofVconf
21 , but this is also can-

celed byd( j 2 j 8) in Eq. ~5.13! evaluated atj 5 j 8.27

With all the factorsVconf canceled out, we have a finit
correlation function in the target space. There is one subt
here since there is a possibility that aj-dependent factor ap
pears when we canceld( j 2 j 8) at j 5 j 8 with the volume of
the conformal groupVconf. We claim that, in fact, a finite
factor of the formu2 j 211(k22)wu remains after the can
cellation. One heuristic way to see this is the following.~A
more rigorous derivation of this factor in the case ofw50 is
given in Appendix A.! If we regularize the computation b
taking j to be slightly away from on-shellL0( j )2150 and
introduce a cutoffe in thez integral, the volumeVconf of the
conformal group would bede„L0( j )21…, where de is a
Gaussian with a short tail which becomes the delta funct
in the limit e→0. This is the factor that cancels thed( j
2 j 8) term in the worldsheet two-point function. Thus w
expect that the cancellation of the two divergences leaves
finite factor given by

U]L0~ j !

] j U;u2 j 211~k22!wu, ~5.17!

up to ak-dependent coefficient. Taking this into account, t
two-point function of the short string with winding numbe
wÞ0 is of the form

^FJJ̄

w, j
~x1!F

JJ̄

w, j
~x2!& target5

1

Vconf
^FJ,J̄

w, j
~x1 ,z150!

3F
J,J̄

w, j
~x2 ,z250!&worldsheet

;u2 j 211~k22!wu

3
G~2 j 1q!G~2 j 1q̄!

G~2 j !2q! q̄!

B~ j !

x12
2Jx̄12

2J̄
,

~5.18!

whereq5J2 j 2(k/2)w,q̄5 J̄2 j 2(k/2). Unlike the case of
the long string, we do not have to rescale the operatorFJ,J̄ .

27For a short string, the physical spectrum ofj is discrete and we
need to evaluate thed function right atj 5 j 8 rather than leaving the
delta functionsd(s1s8) andd(s2s8) as in the case of long string
in Eq. ~5.15!.
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We note that the coefficient in Eq.~5.18! is positive as long
as j is in the physical range12 , j ,(k21)/2. This of course
is consistent with the positivity of the physical Hilbert spa
of the string in AdS3. Whenw50, the two-point function is
given by

^F j
w50~x1!F j

w50~x2!& target;~2 j 21!
B~ j !

ux12u4 j . ~5.19!

Later in this section, we will show that this additional fact
of (2 j 21) is precisely what one needs in order to reprodu
the factorization of the four-point function onto the sho
string with w50. In general, we have to be careful abou
possiblej-dependent factor that could appear when we
from the worldsheet expression to the target space exp
sion, and Eq.~5.19! is an example of this.

For a short string, another useful computation one can
is to evaluate the two-point functions of operatorsF̂

J,J̄

j ;q,q

corresponding to the state of the form

~J21
2 !p~ J̄21

2 ! p̄u j ;m5m̄5 j &, ~5.20!

where J5 j 2p and J̄5 j 2 p̄ are the spacetime conforma
weights under global SL(2,C). Although they are descen
dants of the current algebra, they are the lowest weight st
of the global SL(2,C). These states appear in the interme
ate channel of the factorization of the four-point amplitu
discussed later in this section, so it is useful to compute t
two-point functions here. They are computed in the follo
ing way. Let us view these states as given by performing
unit of spectral flow on the lowest energy states as
D(k/2)2 j

20 →D(k/2)2 j
2w51 5Dj

10. We start with the stateu j 8;m5
2 j 82p,m̄52 j 82 p̄& with j 85(k/2)2 j . Under one unit of
spectral flow, this state is mapped into a state of the fo
~5.20!. So we first compute the correlation function of th
state labeled byj 8 in them basis, perform spectral flow usin
the formulas~5.11!, and finally we go to thex basis as in Eq.
~5.18!. We find

^FJJ̄

jpp̄
~x1!F

JJ̄

jpp̄
~x2!&

;~2 j 21!
G~k22 j 1p!G~k22 j 1 p̄!

G~k22 j !2p! p̄!

BS k

2
2 j D

x12
2~ j 2p!x̄12

2~ j 2 p̄! ,

~5.21!

where again we have assumed that the amplitude is m
plied by a unit-normalized primary field in the internal CF
operator so that the total worldsheet conformal weight of
vertex operator is 1, and we integrated the resulting tw
point function over the worldsheet. We have taken into
count the factor (2j 21) discussed at Eq.~5.19!. Notice that,
up to ak-dependent factor,B@(k/2)2 j # is equal toB( j )21 as
one can see from Eq.~2.10!. If we setp5 p̄50 in Eq.~5.21!,
we recover the original result~5.19! but with a different nor-
malization; instead ofB( j ), we haveB21( j ). What this
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shows is that the natural normalization of the operator
Dj

w50 and that of the operator inD(k/2)2 j
2 are different. It is

therefore more convenient to define the operator correspo
ing to the state~5.20! as

F̂
JJ̄

jpp̄
~x!;B~ j !F

JJ̄

jpp̄
~x!. ~5.22!

In this way, forp5 p̄50, we recover thew50 SL~2! current
algebra primaries with the standard normalization~2.10!.
Their two-point function is then given by

^F̂JJ̄

jpp̄
~x1!F̂

JJ̄

jpp̄
~x2!&

;~2 j 21!
G~k22 j 1p!G~k22 j 1 p̄!

G~k22 j !2p! p̄!

B~ j !

x12
2~ j 2p!x̄12

2~ j 2 p̄!.

~5.23!

We will use this formula in Sec. V E, where we examin
effects of intermediate short strings withw50 in the four-
point function.

B. Three-point functions in m basis

Let us now turn to three-point functions. In the case of t
two-point functions, the winding numberw is preserved in
the m basis ~5.11!. This simply reflects the fact that th
worldsheet HamiltonianL01L̄0 can be diagonalized by
states carrying fixed amounts ofw. However, the winding
number can be violated by string interactions. In this subs
tion, we will compute the four-point function with three ve
tex operators and one spectral flow operator. This comp
tion has been done in@20#, and we reproduce it here. In@26#,
this was done using the free field theory approach. In
next subsection, we will use this result to derive the thr
point functions with winding number violations.

The spectral flow operator changes the winding numbe
another operator by one unit. According to@1#, we can view
it as the lowest weight state indj

1
^ dj

1 with j 5k/2. This
operator is outside the allowed range~3.2! for physical op-
erators in the target space theory. We will not use this ope
tor by itself for an operator in the target space theory, bu
is used in an intermediate step to construct physical opera
with nonzero winding numbers. A very important property
the spectral flow operator is that it has a null descendan
the form

J21
2 u j5k/2;m5k/2&50. ~5.24!

We can then compute a four-point function where one of
operators isu j 5k/2,m5k/2& since it obeys the differentia
equation which follows from the existence of the null sta
~5.24!. The equation turns out to have a unique solution up
an overall normalization, and we can use it to derive a thr
point function with winding number violation. This compu
tation also serves as a simple example where we can fin
explicit expression forFSL(2) in Eq. ~4.6! ~though in the
nongeneric case! and it gives us some intuition about ho
four-point functions look in general. In particular, we wi
6-27
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find that the solution indeed has a singularity atz5x with the exponent for (z2x) expected from the general argument giv
in Sec. II D.

We want to compute the four-point function

^F j 1
~x1 ,z1!Fk/2~x2 ,z2!F j 3

~x3 ,z3!F j 4
~x4 ,z4!&

5uz43u2~D21D12D42D3!uz42u24D2uz41u2~D31D22D42D1!uz31u2~D42D12D22D3!

3ux43u2~ j 21 j 12 j 42 j 3!ux42
u24 j 2ux41u2~ j 31 j 22 j 42 j 1!ux31u2~ j 42 j 12 j 22 j 3!3C̃~ j 1 , j 3 , j 4!uF~z,x!u2, ~5.25!
s

om
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to
where the coefficientC̃( j 1 , j 3 , j 4) will be determined later.
We have written the dependence on the cross ratioz
5z21z43/z31z42 andx5x21x43/x31x42 of the worldsheets and
the target space coordinates in the form of a square of s
homomorphic functionF in Eq. ~5.25!, anticipating that
there is only one state in the intermediate channel. This
will be derived by explicitly solving the differential equatio
below. The null state condition~5.24! for the operator atz2
implies the equation

H Fx

z
2

x21

z21Gx~x21!]x2kFx2

z
2

~x21!2

z21 G
2

2 j 1x

z
2

2 j 3~x21!

z21 JF~z,x!50. ~5.26!

Here j 25k/2 and k5 j 42 j 12 j 22 j 3 . On the other hand
since

L21U j 5 k

2L 52J21
3 U j 5 k

2L , ~5.27!

the KZ equation takes the form

]zF52H x~x21!

z~z21!
]x1kFx

z
2

x21

z21G
1

j 1

z
1

j 3

z21JF. ~5.28!

Using Eq.~5.26!, we can eliminate]x from Eq. ~5.28!, and
we obtain

]zF5H j 1

z
1

j 3

z21
2

~ j 11 j 31 j 42k/2!

z2x JF. ~5.29!

This equation can be easily integrated and we can inser
resulting general solution in Eq.~5.26! to determine thex
andz dependence ofF completely. We find

F5zj 1~z21! j 3~z2x!2 j 12 j 32 j 41~k/2!

3x2 j 31k~x21!2 j 11k. ~5.30!
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The solution is unique up to an overall normalization, a
the four-point function is indeed given by the absolute va
squared of this function as anticipated in Eq.~5.25!. Note
also that there is a singularity atz5x with precisely the
expected form.

We also need to determine the coefficientC̃( j 1 , j 3 , j 4) in
Eq. ~5.25!. We use the same method as in@20,19#. The stan-
dard operator product expansion formula giv
C( j 1 ,k/2,j )B( j )21C( j , j 3 , j 4), wherej is for the intermedi-
ate state. As we mentioned earlier in Eq.~2.21!, the factor
C( j 1 ,k/2,j ) is equal to the delta functiond„j 11 j 2(k/2)…
modulo ak-dependent~j 1-independent! coefficient. This is
consistent with the fact that, in Eq.~5.30!, only the state with
j 5(k/2)2 j 1 is propagating in the intermediate channel f
z→0. Thus the coefficientC̃ is determined as

C̃~ j 1 , j 3 , j 4!;BS k

2
2 j 1D 21

CS k

2
2 j 1 , j 3 , j 4D

;B~ j 1!CS k

2
2 j 1 , j 3 , j 4D ~5.31!

modulo ak-dependent factor. Here we used Eq.~2.10!.
As shown in@1# and reviewed in the preceding subse

tion, the spectral flow operator is given by the operatorFk/2
in the m basis. Thus we need to perform the integral tra
form ~5.4! on Eq.~5.25! and setm252k/2. As in the case of
the two-point function, setting this value ofm2 generates a
pole in the amplitude so the spectral flow operator is defin
by

e2 iA~k/2!w;
1

Vconf
Fk/2,2k/2;k/2,2k/2 , ~5.32!

where the operatorFk/2,2k/2;k/2,2k/2 is normalized as in Eq.
~5.4!. The factor 1/Vconf is there to remind us that we have
extract a pole residue atm52k/2. This residue can be
evaluated by taking the limitx2→` of ux2u2k times Eq.
~5.25!. After performing thexi integrals, we find@20#
6-28
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E )
i 51,3,4

d2xixi
j i2mi21x̄i

j i2m̄i21H lim
x2→`

ux2u2k~5.25!J
5C̃~ j 1 , j 3 , j 4!d2S 2

k

2
1m11m31m4 ,2

k

2
1m̄11m̄31m̄4D

3 )
i 51,3,4

~z22zi !
miz13

D42D12D31~k/4!1m4z34
D12D32D41~k/4!1m1z41

D32D42D11~k/4!1m3

3 )
i 51,3,4

~ z̄22 z̄i !
m̄i z̄13

D42D12D31~k/4!1m̄4z̄34
D12D32D41~k/4!1m̄1

3 z̄41
D32D42D11~k/4!1m̄3

1

gS j 11 j 31 j 42
k

2D )
i 51,3,4

G~ j i2mi !

G~12 j i1m̄i !
, ~5.33!

where ‘‘cyclic’’ means a cyclic permutation of the labels 134. Thez2 dependence is what we expect for the operator~5.32!. We
can now extract the action of the spectral flow operator onF j 1

. This is done by taking the limit ofz2→z1 and extracting the

coefficient of the term which goes likez12
m1z̄12

m̄1. This performs spectral flow on the operator inserted atz1 by 21 unit.28

According to the rules~5.1! of the spectral flow, the new spacetime quantum numbers of the operator atz1 are M5m1

2(k/2) andM̄5m̄12(k/2), and its global SL(2,C) left and right conformal weights areJ5uM u andJ̄5uM̄ u. Finally, we find

^F
J,M ,J̄,M̄

w521,j 1~z1!F j 3 ,m3 ,m̄3
~z3!F j 4 ,m4m̄4

~z4!&

5C̃~ j 1 , j 3 , j 4!d2S 2
k

2
1m11m31m4 ,2

k

2
1m̄11m̄31m̄4D z13

D42D̂12D3z34
D̂12D32D4z41

D32D42D̂1

3 z̄13
D42D̂

¯
12D3z̄34

D̂
¯

12D32D4z̄41
D32D42D̂

¯
1

1

gS j 11 j 31 j 42
k

2D
G~ j 12m1!

G~12 j 11m̄1!

G~ j 32m3!

G~12 j 31m̄3!

G~ j 42m̄4!

G~12 j 41m4!
,

~5.34!

with

D̂15D~ j 1!1m12
k

4
, D̂̄15D~ j 1!1m̄12

k

4
,

~5.35!

J52M52m11
k

2
, J̄52M̄52m̄11

k

2
,

where we used thed function in mi to go from Eq.~5.33! to Eq. ~5.34!.29 This indeed has the expectedz dependence for the
correlation function of one spectral flowed operator with two unflowed operators.

C. Three-point functions in the x basis

In this subsection, we will discuss how to go from them basis to thex basis for three-point functions. We want to rewri
Eq. ~5.34! in the x basis. This is similar to what we did for the two-point functions.

We start with a general three-point function in thex basis,

^FJ1 ,J̄1
~x1!FJ2J̄2

~x2!FJ3J̄3
~x3!&5

D~J1 ,J2 ,J3!

x12
J11J22J3x13

J11J32J2x23
J21J32J1x̄12

J̄11 J̄22 J̄3x̄13
J̄11 J̄32 J̄2x̄23

J̄21 J̄32 J̄1
, ~5.36!

28We have21 unit of spectral flow because we extracted them252k/2 component of the spectral flow operator in Eq.~5.33!. The
resulting operator represents an outgoing state carrying away one unit of winding number.

29We also used properties of theG function to absorb the sign (21)m42m̄4 that came from the powers ofz14 in going from Eq.~5.33! to
Eq. ~5.34!.
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where theJi ,J̄i label the conformal weight under global SL(2,C). We can compute the integral transform of this express
to go to them basis. The integral can be written using the Barnes hypergeometric function@27#. For our purposes, we do no
need to compute the most general expression since the three-point function~5.34! is really the residue of the pole atJ15

2M1 ,J̄152M̄1 in the x integral of Eq.~5.36!. This pole comes from the region wherex1 is very large. We are interested i

the coefficient of this pole. This is obtained by taking thex1→` limit of x1
2J1x̄1

2J̄1 times Eq.~5.36! and then performing the
integral transform with respect tox2 andx3 . We obtain

^FJ152M1 ,J̄152M̄1
FJ2J̄2 ,M2 ,M̄2

FJ3J̄3 ,M3 ,M̄3
&

;Vconfd
2~M11M21M3!D~J1 ,J2 ,J3!

G~ J̄32M̄3!

G~12J31M3!

G~J22M2!

G~12 J̄21M̄2!

G~11 J̄12 J̄22 J̄3!

G~J21J32J1!
, ~5.37!

where theVconf is there to remind us that the rest is the residue of a pole. Notice that only properties under global SC)
have been used to derive this formula.

By comparing Eq.~5.34! to Eq.~5.37! @and changing the labels (2,3)→(3,4) in Eq.~5.37! in the obvious way#, we find that
the three-point function inx space is given by

^F
J,J̄

w51,j 1~x1!F j 3
~x3!F j 4

~x4!&;
1

Vconf

B~ j 1!CS k

2
2 j 1 , j 3 , j 4D G~ j 31 j 42J!

G~11 J̄2 j 32 j 4!

GS j 11J2
k

2
D

GS 12 j 12 J̄1
k

2
D

1

gS j 31 j 41 j 12
k

2
D

3
1

x13
J1 j 32 j 4x14

J1 j 42 j 3x34
j 31 j 42Jx̄13

J̄1 j 32 j 4x̄14
J̄1 j 42 j 3x̄34

j 31 j 42 J̄
, ~5.38!
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J152m11
k

2
, J̄152m̄11

k

2
,

~5.39!

J3,45 J̄3,45 j 3,4.

In the case ofj 5 1
2 1 is, when the first operator correspond

to a long string, this factor of 1/Vconf is canceled since the
long string operatorF̂ comes with the extra factor ofVconf as
in Eq. ~5.15!. Thus we conclude that the three-point functi
of two short strings withw50 and one long string withw
51 is nonzero. In the following subsection, we compare
expression~5.38! with the factorization of the four-poin
function.

In Appendix D, we will show, using the representatio
theory of the SL(2,R) current algebra, that two short string
with w50 can only be mixed with short strings withw
50,1 or long strings withw51. One may ask why we did
not see short strings withw51 in the factorization of the
four-point function. In fact, there is an additional reason
10600
e

r

the vanishing of the three-point amplitude with two sho
strings withw50 and one short string withw51. If j 1 is

real andm1 ,m̄1,0, the operatorF
J,J̄

w51,j 1 in Eq. ~5.38! cor-

responds to a short string withw51. For this operator, the
two-point function is finite as we saw in Eq.~5.18!, and we
do not have to rescale the operator as we did for the l
string. Thus we interpret the factor of 1/Vconf in Eq. ~5.38! as
saying that the three-point function vanishes. This gives
additional constraint on the winding number violation stati
that two short strings withw50 cannot produce a shor
string with w51.

As a check that we are interpreting this factor of 1/Vconf

correctly and as a further application of Eq.~5.38!, let us
consider the case in whichj 1 is real andm1 ,m̄1.0, m1

5 j 11p, m̄15 j 11 p̄. This can be interpreted as doing th
spectral flow of a discrete representation by21 unit, thus
producing the operator described at Eq.~5.20! with j
5(k/2)2 j 1 . This state is just a descendant in a discr
representation withw50. Thus, in this case, we do not ex
pect the three-point function to vanish. Indeed we find th
as we setm15 j 11p, one of theG functions in Eq.~5.38!
develops a pole, thereby canceling the factor 1/Vconf in Eq.
~5.38!. Finally, we obtain
6-30
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^F̂JJ̄

jpp̄
~x1!F j 3

~x3!F j 4
~x4!&;~21!p1 p̄C~ j , j 3 , j 4!

G~ j 31 j 42 j 1p!

p!G~ j 31 j 42 j !

G~ j 31 j 42 j 1 p̄!

p̄!G~ j 31 j 42 j !

3
1

x13
J1 j 32 j 4x14

J1 j 42 j 3x34
j 31 j 42Jx̄13

J̄1 j 32 j 4x̄14
J̄1 j 42 j 3x̄34

j 31 j 42 J̄
. ~5.40!

Note that j 5(k/2)2 j 1 , where j 1 is the label appearing in Eq.~5.38! and J5 j 2p,J̄5 j 2 p̄. We have also normalized th
operator as in Eq.~5.22!. If we setp5 p̄50, we indeed find that this is the same as the correlation function of threew50
discrete states. This is an interesting consistency check of what we are doing. Moreover, we will see that the express~5.40!
exactly matches with the factorization of the four-point function in the target spacetime.

VI. FACTORIZATION OF FOUR-POINT FUNCTIONS

In the preceding section, we computed the two- and three-point functions including spectral flowed operators.
section, we will use these results to show that the coefficients of the powers ofx appearing in the spacetime operator prod
expansion computed in Sec. IV are precisely what are expected, i.e., each of them is a product of two three-point f
involving the intermediate state divided by the two-point function of that intermediate state.

A. Factorization on long strings

Let us first examine the coefficient for the continuous representations appearing in Eq.~4.31!. In the expression~4.31!, the
integration contour runs alongj c5k/22 1

2 1 is5k/22 j , wherej 5 1
2 2 is. We are denoting the SL(2,C) spin along the contour

by j c , and j is introduced for convenience. Then we define

J5 j c1d~ j c!5
s21 1

4

k22
1h21,

~6.1!

J̄5 j c1d̄~ j c!5
s21 1

4

k22
1h̄21.

From the power ofx in Eq. ~4.31!, we conclude thatJ is the spacetime conformal weight of the intermediate state.
coefficient of this power ofx is Eq. ~4.31!,

GS J2
k

2
1 j D

GS 12 J̄1
k

2
2 j D

G~ j 11 j 22 J̄!

G~12 j 12 j 21J!

G~ j 31 j 42 J̄!

G~12 j 32 j 41J!

GS 11J2 j 2
k

2
D

GS k

2
1 j 2 J̄D

3
g~2 j !

gS j 11 j 21 j 2
k

2
D gS j 31 j 41 j 2

k

2
D

CS j 1 , j 2 ,
k

2
2 j D CS k

2
2 j , j 3 , j 4D

BS k

2
2 j D . ~6.2!

It can be shown that this coefficient is given by the product of two of the three-point functions divided by the two
function. This can be seen explicitly by writing Eq.~6.2! as

B~ j !CS k

2
2 j , j 1 , j 2D G~ j 11 j 22J!

G~12 j 12 j 21 J̄!

GS j 1J2
k

2
D

GS 12 j 2 J̄1
k

2
D

1

gS j 11 j 21 j 2
k

2
D

g~2 j !

B~ j !

GS 12 j 2
k

2
1JD

GS j 1
k

2
2 J̄D

GS 12 j 1
k

2
2 J̄D

GS j 2
k

2
1JD

3B~ j !CS k

2
2 j , j 3 , j 4D G~ j 31 j 42J!

G~12 j 32 j 41 J̄!

GS j 1J2
k

2
D

GS 12 j 2 J̄1
k

2
D

1

gS j 31 j 41 j 2
k

2
D . ~6.3!
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Note that we used thatB@(k/2)2 j #;B( j )21. We see that this has the form of the product of two three-point functions~5.38!
divided by the two-point function~5.15! with w51. Note that, in Eq.~5.15!, there are two terms, one proportional tod(s
1s8) and the second proportional tod(s2s8). Physically,s and 2s describe the same operator. So when we consider
inverse of the two-point function, it is convenient to restrict the integral overs so thats>0. This is possible in Eq.~4.31! since
the expression is symmetric unders→2s. In this prescription, only the term proportional tod(s2s8) in the two-point
function needs to be inverted. We have checked that, if we took the other term in the two-point function, the one prop
to d(s1s8), we will find the same result provided we switch the sign ofs in one of the three-point functions in Eq.~6.3!,
precisely as required.

B. Factorization on short strings

We now consider Eq.~4.34! where, as we explained before, we should shift thej contour of integration. This picks up som
poles explicitly displayed in Eq.~4.35!. These poles are atd52n,d̄52n̄. From theirx dependence, we conclude that th
spacetime conformal weight of the intermediate operator isJ5 j 2n,J̄5 j 2n̄. The residue of the pole is

1

]d/] j

C~ j 1 , j 2 , j !C~ j , j 3 , j 4!

B~ j !

G~ j 11 j 22 j 1n!

n!G~ j 11 j 22 j !

G~ j 31 j 42 j 1n!

n!G~ j 31 j 42 j !

n!G~k22 j !

G~k22 j 1n!

3
G~ j 11 j 22 j 1n̄!

n̄!G~ j 11 j 22 j !

G~ j 31 j 42 j 1n̄!

n̄!G~ j 31 j 42 j !

n̄!G~k22 j !

G~k22 j 1n̄!
. ~6.4!

The factor@]d( j )/] j #21 appears here since the pole we picked up in Eq.~4.35! is of the form;@d( j )1n#21 and we are
evaluating residues in thej integral in Eq.~4.34!. We see that this has precisely the expected form for a state like Eq.~5.20!
propagating in the intermediate channel. Indeed we can write Eq.~6.4! as the product of two three-point functions~5.40!
divided by the coefficient of the two-point function~5.23!, including the factor involving]d/] j ;(2 j 21), which we discussed
at Eq.~5.19! as

~21!n1n̄C~ j , j 1 , j 2!
G~ j 11 j 22 j 1n!

n!G~ j 11 j 22 j !

G~ j 11 j 22 j 1n̄!

n̄!G~ j 11 j 22 j !

1

~2 j 21!B~ j !

n!G~k22 j !

G~k22 j 1n!

n̄!G~k22 j !

G~k22k1n̄!

3~21!n1n̄C~ j , j 3 , j 4!
G~ j 31 j 42 j 1n!

n!G~ j 31 j 42 j !

G~ j 31 j 42 j 1n̄!

n̄!G~ j 31 j 42 j !
. ~6.5!

In other words, we need to correct the two-point function by the factor (2j 21) as in Eq.~5.19! in order to get the right
spacetime factorization properties. This completes the test of the factorization of the four-point function.
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VII. FINAL REMARKS

Most of what we said in this paper refered to the Eucl
ean theory, both on the worldsheet and on target space. T
computations can also be interpreted as describing st
theory on a Lorentzian target space. Note that string the
in Lorentzian AdS3 can be thought of in terms of the usu
S-matrix formulation, where the asymptotic states are
long strings. Short strings appear as poles in the long st
amplitudes. We did not compute this precisely but this is
expected picture. It would be interesting to expand the fo
point function for two long strings withw51 and two with
w521, and see that indeed we produce only long and s
strings in accordance with the winding violation rule d
scribed in the Appendix D. In this way, the theory on t
Lorentzian AdS3 can be interpreted either in terms of anS
matrix or in terms of a BCFT, albeit one with a noncompa
target space. TheS-matrix computation of long strings is in
fact describing scatterings in the Lorentzian BCFT. It
amusing to note that this singular BCFT is reproducing so
features which seem characteristic to strings in flat spa
10600
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such as having anS-matrix description. This may give us
hint as to how to construct a holographic description of fl
space physics.

This BCFT is rather peculiar due to the noncompactn
of its target space. All the computations we have been de
ing were for the case in which the BCFT is onS2. These
computations are well defined when properly interpreted
we discussed in this paper. The only peculiarity is that
cannot insert too many discrete state operators, but
should not be surprising since we also saw simple quant
mechanical models where that is true. If we put the BCFT
a torus, we will find divergences in one-loop computations
we have shown explicitly in@2#. In @2#, these divergences
were regulated by adding a volume cutoff near the bound
but strictly speaking the one-loop free energy is infinite. W
would find a similar result in the quantum-mechanical e
ample we discussed in Sec. III B. This BCFT would not
well defined on a higher genus Riemann surface.

The SL(2,R) WZW model has an interesting algebra
structure which should be explored further.
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APPENDIX A: TARGET SPACE TWO-POINT FUNCTION
OF SHORT STRING WITH wÄ0

In Sec. V, we computed the target space two-point fu
tion starting with the worldsheet two-point function and d
viding it by the volume of worldsheet conformal symmet
which fixes the two points. This process involved som
subtlety since we have to cancel two divergent factors, le
ing the finite coefficient u2 j 211(k22)wu for a short
string.30 In this appendix, we present an alternative deriv
tion of the target space two-point function in the case ofw
50.
10600
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The idea is to use the target space Ward identity. We
sume that there is some current algebra symmetry in
BCFT and use it to relate the three-point function includi
the conserved current to the two-point function that we w
to compute.31 One may view this as the string theory versio
of the computation in@37# where a similar factor for the
two-point function was derived using the Ward identity in t
supergravity approximation.

The global symmetry of the BCFT comes from a curre
algebra symmetry in the internal CFT on the worldshe
According to @9#, the vertex operator for the target spa
current is given byJ(x,z)L̄( z̄)F j 51(x,z), where

J~x,z!52J2~z!12xJ3~z!2x2J1~z!, ~A1!

andL̄( z̄) is the current algebra generator in the internal CF
Thus, to compute the Ward identity for the target space tw
point function, we need to evaluate a three-point funct
^F j 1

F j 2
F j 51&. Due to the fact that the two-point function o

the internal CFT is nonzero only between operators with
same conformal dimensions, the on-shell condition requ
j 15 j 2 and we can focus our attention to this case. We th
find that the AdS3 part of the correlation function is of the
form
t

rward to
et space
^F j~x1 ,z1!F j~x2 ,z2!F1~x3 ,z3!&5
G~22 j !

2p2n2 jgS k21

k22DG~122 j !

1

uz12u2Dux12u2~2 j 21!ux23u2ux31u2

5
1

2p2n2 jgS k21

k22DgS 2 j 21

k22 D
1

uz12u4Dux12u2~2 j 21!ux23u2ux31u2

5
1

n•2p~k22!gS k21

k22D
B~ j !

uz12u4Dux12u2~2 j 21!ux23u2ux31u2
, ~A2!

whereD52 j ( j 21)/(k22). We then multiply the current generatorJ(x3 ,z3) on F1(x3 ,z3). Using the operator produc
expansion

J~x,z!F j~y,w!;
1

z2w S ~x2y!2
]

]y
22 j ~x2y! DF j~y,w!, ~A3!

we find

^F j~x1 ,z1!F j~x2 ,z2!@J~x3 ,z3!F1~x3 ,z3!#&;
~2 j 21!B~ j !

uz12u4Dux12u4 j S 1

x̄32 x̄1
2

1

x̄32 x̄2
D S 1

z32z1
2

1

z32z2
D , ~A4!

where we ignored a constant independent ofj. To obtain the spacetime three-point function, we choose an operatorfh of

30There is no such factor for a long string.
31If there is no current algebra symmetry, one can use the energy-momentum tensor, which exists in any CFT. It is straightfo

generalize the following computation with the energy-momentum tensor, and one obtains the same normalization for the targ
two-point function.
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dimensionh in the internal CFT so thatD1h51 and multiply it toF j . Similarly, we multiply the current generatorL̄ of the
internal CFT toF1 . We find

^@F j~x1 ,z1!fh~z1!#@F j~x2 ,z2!fh8~z2!#@J~x3 ,z3!L̄a~ z̄3!F1~x3 ,z3!#&

;
1

uz12u2uz23u2uz31u2
S q1

x̄32 x̄1
1

q2

x̄32 x̄2
D ~2 j 21!B~ j !

ux12u4 j , ~A5!
c
on

ist

k

-
th

n

n

er

w.
-

r-

c

f

whereq1 and q2 are theR chargesfh(z1) and fh8(z2), re-
spectively, and we used the charge conservation,q11q2
50. Comparing this with what we expect for the target spa
Ward identity, we find that the spacetime two-point functi
is given by

^F j~x1!F~x2!&;
~2 j 21!B~ j !

ux12u4 j , ~A6!

reproducing the result we have obtained using the heur
argument in Sec. V A.

It is easy to see that if we insert in Eq.~A6! the operator
JJ̄F1(x3), we obtain Eq.~A6! times an extra factor of (2j
21) in agreement with the arguments in@24#.

APPENDIX B: SOME PROPERTIES OF THE CONFORMAL
BLOCKS

In this appendix, we will prove that the conformal bloc
Fj (z,x) of the four-point function has no poles inj when 1

2

<Re j<(k21)/2. We also argue that the integral overj in Eq.
~4.10! is convergent.

1. Proof of no poles inFj in 1
2ÏRe jÏ„kÀ1…Õ2

This has been shown in@21# using properties of the Kac
Kazhdan determinant. Here we present a direct proof of
absence of poles.

We use the expansion~4.17! as

Fj~z,x!5xD~ j !2D~ j 1!2D~ j 2!1 j 2 j 12 j 2

3uD~ j !2D~ j 1!2D~ j 2! (
n50

`

gn~u!xn, ~B1!

whereu5z/x. As we discussed in Sec. IV, the KZ equatio
and the boundary condition for smallz determine thatg0(u)
is given by the hypergeometric function

g0~x!5F~ j 11 j 22 j , j 31 j 42 j ,k22 j ;u!. ~B2!

The standard Taylor expansion of the hypergeometric fu
tion shows that theu expansion ofg0(u) has no poles in the
region ~4.15!.

Let us write

r[
k21

2
2 j ~B3!

and
10600
e
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c-

a~r ![2
r 2

k22
, ~B4!

which is defined so that

D~ j !1 j 5a~r !1
k

4
1

1

4~k22!
. ~B5!

We then look for a solution to the KZ equation in the pow
series expansion of the form

F~x,u!5xa~r !1~k/4!1@1/4~k22!#2D~ j 1!2D~ j 2!2 j 12 j 2

3ub~r !2@~k22!/4#1@1/4~k22!#2D~ j 1!2D~ j 2!

3 (
m,n50

`

c̃m,numxn, ~B6!

whereb is some constant which will be determined belo
We have chosenm,n50,1, . . . sothat the expansion is con
sistent with Eqs.~4.7!, ~4.9!, and ~B1!. The fact thatg0(u)
has no poles means thatc̃m,n50 has no poles. We will then
show inductively that this is also the case for allc̃m,n with
n>1.

Substituting this into the KZ equation, we find the recu
sive equation for the coefficientcn,m of the form

P@a~r !1n,b1m# c̃m,n

5~ linear combination ofc̃m8,n8 , m8,m, n8<n!

~B7!

for some functionP(a,b), which is quadratic inb. The right-
hand side contains no poles inj. For n50,m50, this gives
the conditionP„a(r ),b…50. This is merely the characteristi
equation for the hypergeometric equation ong0(u), and we
know that this determinesb to be b5b6(r )5a(r )6r . In
Eq. ~B2!, we have chosen the1 root in order to fit it with the
boundary condition~4.7!. With this choice ofb, we want to
show thatP@a(r )1n,b1(r )1m# is nonzero for anyn>1
and m>0 in the region~4.15!, or equivalently 0<Rer<(k
22)/2. If this is true, by recursive application of Eq.~B7!, we
can show thatc̃m,n has no pole.

Our strategy is to look for a solution toP@a(r )1n,b8#
50 for n>1 and show that it can never be of the formb8
5b1(r )1m for anym>0. Let us writea(r )1n5a(r 8) for
some r 8. We know that the zeros ofP„a(r 8),b8…50 are
given by b85b6(r 8). Let us first consider the solution o
b85b1(r 8). Since
6-34



is
he
n

t.

ree-

in

-

STRINGS IN AdS3 AND THE . . . . III. . . . PHYSICAL REVIEW D 65 106006
b1~r 8!5a~r 8!1r 85a~r !1r 81n, ~B8!

then b8 could be equal tob1(r )1m5a(r )1r 1m if and
only if r 85r 1m2n. On the other hand,r 8 was defined by
a(r )1n5a(r 8). Eliminating r 8, we find the condition

22mr2~n2m!25n~k2222r !. ~B9!

This cannot be satisfied byr in the range 0<Rer<(k22)/2
for (n,m)Þ(0,0) since the real part of the left-hand side
negative while it is positive on the right-hand side. For t
other solutionb85b2(r 8), we also find the same equatio
~B9!. Thus we have shown thatP@a(r )1n,b1(r )1m#
never vanishes forn>1,m>0 if r is in this range. This
proves thatFj (z,x) has no pole in the region of our interes
10600
2. Convergence of the expression for the four-point function

To see that thej integral ~4.10! is indeed convergent, we
note that, as a function ofj 5 1

2 1 is, the coefficientuC( j )u
behaves as;eas for larges wherea is some constant. This
can be deduced from the expression for the two- and th
point functions ~2.10!, ~2.14!, and ~2.15!, using the
asymptotic formulas of theG function and the BarnesG
function. Due to the factorua(r ) in Eq. ~B6!, each term in the
u expansion ofC( j )uFj u2 decays ase2bs2

for s→6` as long
asuuu,1. We can see, using Eq.~B7!, that the coefficients in
theu andx expansion do not grow more than polynomially
n, m, so that these sums will converge ifuuu,1,uxu,1. For
other values ofu,x, Eq. ~4.10! is defined by analytic continu
ation.
tion
fact
Eq.

al:
APPENDIX C: A USEFUL FORMULA

In this appendix, we derive the formula

I ~a,b,c,d,d̄!5E d2u ud21ūd̄21~ uF~a,b,c;u!u21luu12cF~11b2c,11a2c,22c;u!u2!

5p
G~d!G~a2d̄!G~b2d̄!G~12c1d!

G~12d̄!G~12a1d!G~12b1d!G~c2d̄!

g~c!

g~a!g~b!
, ~C1!

where

l52
g~c!2g~a2c11!g~b2c11!

~12c!2g~a!g~b!
, ~C2!

andg(x) is defined in Eq.~2.11!. The formula~C1! is obtained as follows. Let us first prove the following identity:

uF~a,b,c;u!u21luu12cF~11b2c,11a2c,22c;u!u25
g~c!

pg~b!g~c2b!
uu12cu2E d2tutb21~u2t !c2b21~12t !2au2.

~C3!

This is based on the following formula:

E d2tuta~u2t !c~12t !bu25
sin~pa!sin~pc!

sin„p~a1c!… U E
0

u

dt ta~u2t !c~12t !bU2

1
sin~pb!sin„p~a1b1c!…

sin„p~a1c!… U E
1

`

dt ta~u2t !c~12t !bU2

. ~C4!

A derivation of this formula can be found, for example, in@41#, where it appears in the context of the free boson realiza
of the c,1 conformal field theory. There the variablet corresponds to the location of the screening operator. Using the
that thet integrals on the right-hand side of Eq.~C4! can be expressed in terms of the hypergeometric function, we obtain
~C3!. The integralI (a,b,c,d,d̄) of the hypergeometric functions can then be expressed as the following double integr

I ~a,b,c;d,d̄!5
g~c!

pg~b!g~c2b!
E d2u d2t ud21ūd̄21utb21~u2t !c2b21~12t !2au2. ~C5!

It turns out that bothu and t integrals can be carried out using the formula

E dxuxu2au12xu2bxn~12x!m5p
G~a1n11!G~b1m11!G~2a2b21!

G~2a!G~2b!G~a1b1m1n12!
. ~C6!

A derivation of this formula can be found, for example, in Sec. 7.2 of@42#. Thus we have proven the formula~C1!.
6-35



r
th
s
pr

io

th
nc

es

r
in
e
in
i

g
o
nd
m
s
or
s
t,
ta

by

e
ns

.
ut

a

ting
her-
-
s in

re-
er
oes

s
We

ng
w-

er
e

d-

lude
the

r
e
ust

m-

ller
o

JUAN MALDACENA AND HIROSI OOGURI PHYSICAL REVIEW D65 106006
APPENDIX D: CONSTRAINTS ON WINDING NUMBER
VIOLATION

We have seen in@1# that representations of the SL(2,R)
current algebra are parameterized in terms of an integew.
For long strings, this integer could be interpreted as
winding number of the long string. For short strings, it is ju
a parameter of states with no obvious semiclassical inter
tation.

Let us clarify the meaning ofw for the short string. The
short string wave function, when expanded at larger, has
components on all winding numbers. An explicit discuss
of this in an expansion aroundr50 can be found in@1#. By
an abuse of notation, we will still callw the winding number
of short strings, but it should be kept in mind that it isnot the
winding number in the semiclassical sense. It is not even
winding number of the largest component of the wave fu
tion at infinity. For example, whenk is large, the wave func-
tion for a w50 state can be expanded at larger as

C5e22 j rc01e22~k/22 j !rc11¯ , ~D1!

where we separated the radial dependence, and the indic
c0 ,c1 ,... indicate the actual winding numbers atr5`. As
j→k/2, we see that the second term with winding numbe
becomes more dominant even though we are still study
the wave function withw50. This second component of th
wave function is responsible for giving the divergences
the two- and three-point functions, which we discussed
Sec. II. The winding number has a semiclassical meanin
infinity. However, since the circle is contractible, we do n
expect that it should be conserved. In fact, it is not. We fi
however, that there is an interesting pattern in winding nu
ber violations. It essentially says that the possible amount
winding violation are restricted by the number of operat
in a way that we will make precise below. This was fir
observed in@20#. Below, we will make a precise statemen
and we will prove it using the properties of the represen
tions of the SL(2,R) current algebra.

Let us work in them basis. The states are labeled
ud, j̃ ,w& and uc, j̃ ,w&, as well as somem that we do not
indicate since it will not be important in what follows. Her
the lettersd,c indicate discrete or continuous representatio
We will think of d asd1 and we constructd2 by considering
d1 with w,0. The winding numberw can have any sign
The sign ofw distinguishes an incoming states and an o
going state in the Lorentzian picture. The sign ofm is corre-
lated with the sign ofw.32 These representation are such th
there is a ‘‘lowest weight’’ state that obeys the conditions

Jw1n
1 ud, j̃ ,w&5J2w1n21

2 ud, j̃ ,w&50,

Jw1n
1 uc, j̃ ,w&5J2w1n

2 uc, j̃ ,w&50, ~D2!

n>1.

32This is true in our case, but it might not be true in some qu
tients of AdS3 @43#.
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All states in the representation can be generated by ac
with the generators that do not annihilate the states. Furt
more, for operators withj in the physical ranges for continu
ous and discrete representations, there are no null state
the representation.

Now we will consider the following state:

)
i 51

nd

Fwi

d ~zi !)
j 51

nc

Fwj

c ~zj !u0&, ~D3!

wherend ,nc is the number of continuous and discrete rep
sentations. The stateu0& does not quite make sense, but aft
we act with any of the operators, we get a state that d
make sense. Now we want to consider the state~D3! and
decompose it into representations of SL(2,R). For this we
pick a circle uzu5A sufficiently large so that all the point
where the operators are inserted are left inside the circle.
consider SL(2,R) generators that are defined by integrati
the SL(2,R) currents on this contour times appropriate po
ers ofz. In other words,Jn

6;rdz J6(z)zn. Now let us show
that some combination of the formJP5Ja

11c1Ja21
1 1¯ an-

nihilates the state~D3!. The precise combination is

JP5 R dz)
i 51

nt

~z2zi !
wi11J1~z!, ~D4!

where nt5nc1nd . We see thata5(wi1nt . We see that
this combination annihilates the state~D3! after using Eq.
~D2!. We can now decompose Eq.~D3! into SL(2,R) repre-
sentations with definitew. This implies that Eq.~D4! will
annihilate each of the states with definite winding numb
independently. Now we will show that this implies that th
state will carry a winding number less than or equal toa
215(wi1nt21. Suppose that there was a state with win
ing numbera. Then Eq.~D4! would annihilate it. But, on the
other hand, we know that all operators in Eq.~D4! act as
creation operators on the Fock space due to Eq.~D2!. Since
there are no null states in the representation, we conc
that this cannot happen. To be more precise, let us expand
hypothetical state with winding numberw>a in such a way
that we fixJ0

3 and we look at the state with fixedJ0
3 with a

minimum value ofL0 ~thoughL0 is not bounded below, it is
bounded below if we consider fixedJ0

3!. Let us denote this
state byuh&. It is clear thatJa

1uh&50 since there is no othe
state with which it could mix. This is inconsistent with th
idea that there are no null vectors. Therefore, the state m
have a winding number less than or equal toa21.

Now we can similarly form the combinationJN5Jb
2

1c1Jb21
2 1¯, which annihilates the state. The precise co

bination is

JN5 R dz)
i 51

nd

~z2zi !
2wi)

j 51

nc

~z2zj !
2wj 11J2~z! ~D5!

so thatb52(wi1nc . We see using Eq.~D2! that Eq.~D5!
annihilates Eq.~D3!. Now we show that the total winding
number of the state should be bigger than2b. Suppose, to
the contrary, that the winding number of the state is sma

-

6-36
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than or equal to2b. Then Eq.~D2! implies as above thatJb
2

will annihilate at least one state. Actually, the precise sta
ment will depend on whether the state we consider is disc
or continuous. If the state is discrete, then the statement
bit weaker, sow should be bigger than2b21.

If we expand Eq.~D3! in irreducible representations o
the SL(2,R) current algebra, it becomes a sum of discr
and continuous states whose winding numbers are restr
as

2nc11<w2( wi<nt21, continuous,

~D6!
2nc<w2( wi<nt21, discrete.

In terms of correlation functions of operators, we need
take the inner product of Eq.~D3! with ^0uF(z), whereF
could be a discrete or continuous representation. Notice
in our conventions, when we take the adjoint of a discr
representation we takew→212w while for a continuous
representation we takew→2w. We conclude that correla
tors will obey the winding number violation rule

2Nt12<( wi<Nc22, at least one continuous,

~D7!
2Nd11<( wi<21, all discrete,

where nowNt5Nc1Nd , andNc ,Nd is the total number of
operators in the continuous and the discrete representa
appearing in the correlation function. Note that through
this discussion, we were thinking of the correlators in them

basis, and the discrete states were taken withm̃56 j̃ .
Now let us consider the operators in thex basis. The la-

belswi of all operators can be taken to be non-negative
that case, it is easy to show that in anN-point function the
winding numbers should obey

wi2(
j Þ i

wj<N22. ~D8!

Note that an operatorOw(x,z) obeys simple OPE expansio

rules for the currentsJa(x,z)5exJ0
1

Ja(z)e2xJ0
1

~see @29#!.
SinceJ1(x,z)5J1(z), the analysis done with the operat
~D4! goes through as before and leads to~D8! if we put the
i th operator atz5x5`. This shows that for a three-poin
function, the winding violation is only by one unit, so th
the correlation function of two discretew50 states with any
state withw.1 vanishes inx space.

APPENDIX E: ANOTHER DEFINITION OF THE
SPECTRAL FLOWED OPERATORS

In Sec. V, we defined the operator corresponding to
spectral flowed representation by~i! starting with the opera-
tor F j , j̄ (x,x̄) in the regular representation in thex basis,~ii !
going to them basis by the integral transform~5.4!, ~iii !
multiplying ew(k/2)A(2/k)w with J35 iA(k/2)]w as in Eq.
~5.10!, and ~iv! going back to thex basis to obtain expres
sions such as in Eqs.~5.18! and ~5.40!.

Here we will describe a way to define the spectral flow
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operatorF
J,J̄

w, j
(x) without going through them basis. This

approach has an advantage that we do not have to deal
the infinite factorVconf as we did in Sec. V. We will compute
the two- and three-point functions includingF

J,J̄

w, j
(x), and

show that they agree with the results in Sec. V whenw51.

1. Definition in the x basis

The definition, in the case ofw51, is given by the fusion
of F j with the spectral flow operatorFk/2 as

F
J,J̄

w51,j
~x,z![ lim

e→0
emēm̄E d2y yj 2m21ȳ j 2m̄21

3F j~x1y,z1e!Fk/2~x,z!, ~E1!

whereJ5m1(k/2) and J̄5m̄1(k/2). This equality is un-
derstood to hold inside of any correlation functions.

First we need to show that the limite→0 in Eq. ~E1!
exists, i.e., the result of they integral scales ase2mē2m̄ for
small e. We will prove this for a correlation function wher
there are at least two more operators besidesF

J,J̄

w, j
(x). There

is a subtlety with the argument when there is only one ad
tional operator in the correlation function, i.e., when we co
sider a two-point function includingF

J,J̄

w51,j
. This does not

cause a problem sinceF
J,J̄

w51,j
has a nonzero two-point func

tion only with another operator withw51, which actually is
a composite of two operators as in Eq.~E1!. In fact, we will
be able to compute the two-point function using Eq.~E1!.

For simplicity, we setx50 andz50 and consider a cor
relation function

F5^F j 1
~x1 ,z1!¯F j N

~xN ,zN!F j~y,e!Fk/2~0,0!&.
~E2!

For uyu!uxi u and ueu!uzi u ( i 51,...,N), with finite e/y, we
can show that this behaves as

F;e j~e2y!22 j 2DyDf ~x3 ,...,xN ;z3 ,...,zN!, ~E3!

whereD is a differential operator acting onx3 ,...,xN . We
have set (x1 ,z1)5(1,1) and (x2 ,z2)5(`,`) by using the
SL(2,C) symmetries on both worldsheet and the targ
space. ForN52, we can check this explicitly by using th
formula ~5.30! for the four-point function with the spectra
flow operator.~In this case,D is a number depending o
j , j 1 , j 2 .! This can be generalized for any correlation functi
with N>2 as follows. The spectral flow operatorFk/2 obeys
the null state condition

J2~z!Fk/2~x,z!50. ~E4!

Using this, the KZ equation is simplified as

]

]z
Fk/2~x,z!52J3~z!Fk/2~x,z!. ~E5!

Let us evaluate the KZ equation in the correlation functi
~E2!. When ueu!uz1u,...,uzNu, we can ignore the operato
product singularities ofJ3(z) at z50 with the operators a
6-37
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z1 ,...,zN , and we only have to consider the contributio
from F j (y,e). We then find that the KZ equation~E5! leads
to

]

]e
F52

1

e S y
]

]y
1 j DF. ~E6!

To evaluate the null state condition~E4! in the limit of our
interest, we need to use the global SL(2,C) invariance ofF
to turn derivatives with respect toxi , for example]x1

and

]x2
, into a derivative with respect toy. This is where we need

to assume that there are at least two more operators in
correlation function. Setting (x1 ,z1)5(1,1) and (x2 ,z2)
5(`,`) after this procedure, and taking the limite,y→0
keepinge/y finite, we find that the null state condition~E4!
leads to the equation
10600
he

H y

e S 2~e2y!
]

]y
12 j D1DJF50, ~E7!

with some differential operatorD acting onx3 ,...,xn . Here
e21y2]y acting onF comes from the operator product e
pansion ofJ2(0,0) with F j (y,e), and the other terms ar
obtained fromJ2(0,0) with F j 1

(x1 ,z1)¯F j N
(xN ,zN) and

by converting]xi
’s into ]y by using the SL(2,C) invariance

in the target space. We can then show that a general solu
to Eqs.~E6! and~E7! is given by Eq.~E3! ~besides the con-
tact term solution discussed in the footnote later!.

Now we can estimate they integral in Eq.~E1!. From the
discussion in the above paragraph, we see that the produ
the operatorsF j (y,e)Fk/2(0,0) can be expanded, in the lea
ing order ine→0, as
ing
n for
^F j~y,e!Fk/2~0,0!¯&;ue j~e2y!22 j 2DyDu2 (
n,n̄50

`

f n,n̄~x3 ,...,xN!ynȳn̄ ~E8!

for some operatorsOn,n̄ . They integral for each term in the expansion~E8! can then be estimated as

ueu2 jE d2y yj 2m211D1nȳ j 2m̄211D1n̄ue2yu22~2 j 1D!;e2m1nē2m̄1n̄, ~E9!

where we assumedm2m̄PZ. Thus the limite→0 in Eq. ~E1! is well defined. Only then5n̄50 survives in the limit. Note
that, although the differential operatorD has dropped out from the exponent ofe, there is a product ofG functions whose
arguments includeD. When this operator acts on the finite term left over, it modifies itszi and xi dependence fori
53,...,N, but does give rise to additionale dependence.

Next we need to show that the operator defined by Eq.~E1! is indeed in the flowed representation. We do this by check
that it has the correct OPE with the SL(2,R) currents. To show this, we start with the standard operator product expansio
operators withw50,

J~x8,z8!F j~x1y,z1e!Fk/2~x,z!5H 1

z82z2e F ~x1y2x8!2
]

]y
12 j ~x1y2x8!G1

1

z82z F ~x2x8!2S ]

]x
2

]

]yD
1k~x2x8!G J F j~x1y,z1e!Fk/2~x,z!. ~E10!

Applying this to Eq.~E1! and performing the integration by parts iny, we obtain

J~x8,z8!F
J,J̄

w51,j
~x,z!5 lim

e,ē→0

emēm̄E d2y yj 2m21ȳ j 2m̄21H 1

z82z2e
@2~ j 2m21!y21~x1y2x8!21~2 j 22!~x1y2x8!#

1
1

z82z F ~x2x8!2
]

]x
1~ j 2m21!y21~x2x8!21k~x2x8!G J F j~x1y,z1e!Fk/2~x,z!

5 lim
e,ē→0

emēm̄E d2y yj 2m21ȳ j 2m̄21H 2
j 2m21

~z82z!2

e

y
~x2x8!2

1
1

z82z F ~x2x8!2
]

]x
12S m1

k

2D ~x2x8!G J F j~x1y,z1e!Fk/2~x,z!

52~ j 2m21!
~x2x8!2

~z82z!2 F
J11,J̄

w51,j
~x,z!1

1

z82z F ~x2x8!2
]

]x
12S m1

k

2D ~x2x8!GFJ,J̄

w51,j
~x,z!. ~E11!

This means that the corresponding state
6-38
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uw51,j ;J,J̄&5F
J,J̄

w51,j
~x50,z50!u0& ~E12!

obeys

J0
3uw51,j ;J,J̄&5S m1

k

2D uw51,j ;J,J̄&,

~E13!
Jn

3uw51,j ;J,J̄&50,Jn61
6 uw51,j ;J,J̄&50 ~n51,2, . . .!.

This is the correct highest weight condition for a state withw51.

2. Three-point function

Now we can use the definition~E1! to compute correlation functions with spectral flowed states. First let us study
three-point function. We start with the four-point function with a spectral flow operator,

^F j 1
~x1!Fk/2~x2!F j 3

~x3!F j 4
~x4!&5uz43u2~D21D12D42D3!uz42u24D2uz41u2~D1D22D42D1!uz31u2~D42D12D22D3!uzu2 j 1u12zu2 j 3

3ux43u2~k/21 j 12 j 42 j 3!ux42u22kux41u2~ j 31k/22 j 42 j 1!ux31u2~ j 42 j 12k/22 j 3!3B~ j 1!C~k/2

2 j 1 , j 3 , j 4!uz2xu2~2 j 12 j 32 j 41k/2!uxu2~2 j 11 j 31 j 42k/2!ux21u2~ j 12 j 31 j 42k/2!. ~E14!

Settingx15x21w,

x5
x21x43

x31x42
5

wx43

~w2x32!x42
,

12x5
~w2x42!x32

~w2x32!x42
, ~E15!

z2x5
~zx422x43!w2zx32x42

~w2x32!x42
.

Substituting this into Eq.~E14!, we find

^F j 1
~x1!Fk/2~x2!F j 3

~x3!F j 4
~x4!&5uz43u2~D21D12D42D3!uz42u24D2uz41u2~D31D22D42D1!uz31u2~D42D12D22D3!

3uzu2 j 1u12zu2 j 3B~ j 1!C~k/22 j 1 , j 3 , j 4!ux42u2~ j 11 j 32 j 42k/2!ux32u2~ j 12 j 31 j 42k/2!

3uwu2~2 j 11 j 31 j 42k/2!u~zx422x43!w2zx32x42u2 j 12 j 32 j 41k/2. ~E16!

We then multiply the factoruwu2( j 12m121) and integrate overw. We find

E dw2uwu2~ j 12m121!^F j 1
~x1!Fk/2~x2!F j 3

~x3!F j 4
~x4!&

5~standard powers ofzi !B~ j 1!C~k/22 j 1 , j 3 , j 4!ux42u2~ j 11 j 32 j 42k/2!ux32u2~ j 12 j 31 j 42k/2!

3E d2wuwu2~ j 31 j 42m12k/221!u~zx422x43!w2x32x42u2 j 12 j 32 j 41k/2

5uz43u2~D21D12D42D3!uz42u24D2uz41u2~D31D22D42D1!uz31u2~D42D12D22D3!u12zu2 j 3uzu22m1B~ j 1!C~k/22 j 1 , j 3 , j 4!

3ux42u2~ j 32 j 42m12k/2!ux32u2~2 j 31 j 42m12k/2!uzx422x43u2~2 j 32 j 41m11k/2!

3p
G~ j 31 j 42m12k/2!G~2 j 12 j 32 j 41k/211!G~ j 11m1!

G~12 j 32 j 31m11k/2!G~ j 11 j 31 j 42k/2!G~12 j 12m1!
. ~E17!

Now we multiply by uz21u2m1 and sendz21→0. We find
106006-39
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lim
z21→0

uz21u2m1E dw2uwu2~ j 12m121!^F j 1
~x1!Fk/2~x2!F j 3

~x3!F j 4
~x4!&

5B~ j 1!C~k/22 j 1 , j 3 , j 4!p
G~ j 31 j 42J!

G~12 j 32 j 41J!

G~ j 11J2k/2!

G~12 j 12J1k/2!

1

g~ j 31 j 41 j 12k/2!

3ux42u2~ j 32 j 42J!ux32u2~ j 42 j 32J!ux43u2~J2 j 32 j 4!uz43
D̂12D32D4z42

D32D̂12D4z32
D42D̂12D3u2, ~E18!
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where

D̂15D~ j 1!2m12
k

4
, J5m11

k

2
. ~E19!

Due to the limit in Eq.~E18!, we can neglect higher power
of z appearing at various places.

The result~E18! is in agreement with Eq.~5.38!, which
we computed by going through them basis.33 We should
point out that the factor 1/Vconf in Eq. ~5.38! is absent in Eq.
~E18!. Thus the definition~E1! includes the rescalingF
→F̂5VconfF that we performed for the long string.

3. Worldsheet two-point function

To compute the two-point function with spectral flowe
operators, we start with the four-point function with two i
sertions of spectral flow operators, sayj 25 j 45k/2. The KZ
equation and the null state conditions imply thatj 15 j 3 . To
see this, we notice that the four-point function should
symmetric under 2↔4, leaving 1 and 3 unchanged. Th
changesz→12z, x→12x. Taking into account also the
prefactors, we find

4pt~1,2,3,4!

4pt~1,4,3,2!
5US z

12zD
D12D31 j 12 j 3S 12x

x D j 12 j 3U2

.

~E20!

Demanding that this is 1, we findj 15 j 3 .34

33Note thatm in Eq. ~E19! is 2m in Eq. ~5.39!.
34A solution with j 1512 j 3 appears to come from a contact ter

for the four-point function. In fact, the functionz2 j 1d2(x2z) is a
solution to Eqs.~E6! and ~E7!, with j 3512 j 1 and D5122 j 1 ,
which is the value that appears in the four-point function equa
when j 25 j 45k/2. @Note thatd2(x2z) is not a standard contac
term, forx5z is not a coincidence limit of two operators. If we us
the relation between the four-point functionFSL(2)(z,x) in the
SL(2,C)/SU(2) coset model and a five-point function in the Lio
ville model, recently pointed out in@33#, one can interpretd2(x
2z) as a contact term coming from the coincidence limit involvi
the extra operator one inserts in the Liouville model. It would
interesting to find a direct interpretation of such a contact term
the SL(2,C)/SU(2) model.# Insertingz2 j 1d2(x2z) into thex inte-
gral we describe below and doing the same change of variables
see that we recover the term proportional tod( j 11 j 221) in the
two-point function.
10600
e

Now let us apply Eq.~E1! to extract the two-point func-
tion of the spectral flowed state. As we explained in t
above, we expectj 15 j 3 from the null vector equations. In
fact, the factorC(k/22 j 1 , j 3 , j 4) in Eq. ~E14! with j 45k/2
vanishes forj 1Þ j 3 and is infinite atj 15 j 3 . We can regular-
ize the infinity by slightly modifying the spectral flow opera
tor ask/2→k/21 i e. Indeed, in the limite→0, we recover
the d function enforcingj 15 j 3 ,

CS k

2
2 j 1 , j 3 ,

k

2D
5~k-dependent coefficient!d~ j 12 j 3!.

~E21!

Thus the four-point function in this case reduces to

^F j~x1 ,z1!Fk/2~x2 ,z2!F j~x3 ,z3!Fk/2~x4 ,z4!&

5uz42
k/2z31

22Dzj~12z! j x42
2kx31

22 j~z2x!22 j u2

3B~ j !d~ j 2 j 8!, ~E22!

where we ignored ak-dependent overall coefficient. Now w
set x15w11x2 , x35w31x4 , multiply by
uw1u2( j 2m121)uw3u2( j 2m321), and integrate overw1 andw3 .
It is convenient to introduce new variablesu1 andu3 defined
by wi5x42ui , i 51,3. The integrated correlation function b
comes

uzu2 jE d2u1d2u2

3uu1
j 2m121u2

j 2m321
@u1u32z~u3111!#22 j u2,

~E23!

where we setz50 in the term with (12z) since we are
going to be interested in the small-z behavior of Eq.~E22!.
Here we omitted the standard factors ofx42 and z42. It is
convenient to change the integration variables asu15Asy,
u35Asy21. After rescalings5zt, we find that~E23! goes as

uz21/2~m11m3!u2E d2y d2suym32m121u2

3usj 2~1/2!~m11m3!21@s1Asz~y2y21!21#22 j u2.

~E24!

n

n

we
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Since we are interested in the leading term in thez expan-
sion, we setz50 in the last factor. The integral overy then
givesd2(m12m3), and the integral overs gives a combina-
tion of G functions,

2p
G~ j 2m̄1!G~ j 1m1!

g~2 j !G~12 j 1m̄1!G~12 j 2m1!
. ~E25!

Combining this with the factorB( j )d( j 12 j 3) in Eq. ~E22!,
we have reproduced the expression for the two-point fu
tion in Eq. ~5.13!.

Finally, let us note that, instead of the definition~E1!, we
could also define the spectral flowed operator via

F
J,J̄

w51,j
~x,z![ lim

y→0
yj 2mȳj 2m̄E d2e em21ēm̄21

3F j~x1y,z1e!Fk/2~x,z!, ~E26!

for J5m1(k/2). Instead of integrating overy, here we are
taking an integral overe. In this definition of the flowed
operator, the expression is manifestly local inx. On the other
hand, the definition~E1! is manifestly local inz. In order to
show that the two definitions are equivalent, we note that
10600
-

e

relevant part of the correlation function behaves as Eq.~E9!.
Then, with the previous definition in Eq.~E1!, we find that
the spectral flowed correlator goes as

E d2wuwj 2m211D~12w!22 j 2Du2 ~E27!

after we rescalew→zw and taking thez→0 limit. Similarly
from Eq. ~E26!, we obtain

E d2tut j 1m21~12t !22 j 2Du2 ~E28!

after rescalingz5xt and and taking thex→0 limit. We see
that after the change of variablest51/w, the two integrals
become the same. This shows that the two definitions~E1!
and ~E26! give the same results in general.

4. Target space two-point function

Let us turn to the target space two-point function for t
state withw51. We apply the method used in Appendix
for w50 and use the Ward identity to determine the norm
ization of the two-point function. We start with the followin
identity for the three-point function:
n for the
^F
J1 ,J̄1

w51,j 1~x1 ,z1!F
J2 ,J̄2

w51,j 2~x2 ,z2!J~x3 ,z3!F1~x3 ,z3!&

52~ j 12m121!
~x32x1!2

~z32z1!2 ^F
J111,J̄1

w51,j 1 ~x1 ,z1!F
J2 ,J̄2

w51,j 2~x2 ,z2!F1~x3 ,z3!&2~ j 22m221!

3
~x32x2!2

~z32z2!2 ^F
J1 ,J̄1

w51,j 1~x1 ,z1!FJ211,J2

w51,j 2 ~x2 ,z2!F1~x3 ,z3!&1H 1

z32z1
F ~x12x3!2

]

]x1
12S m11

k

2D G1
1

z32z2

3F ~x22x3!2
]

]x2
12S m21

k

2D G J ^F
J1 ,J̄1

w51,j 1~x1 ,z1!FJ2 ,J2

w51,j 2~x2 ,z2!F1~x3 ,z3!&. ~E29!

We then have to compute the three-point functions on the right-hand side of this equation. We start with the expressio
five-point function with two spectral flow operators, obtained in@20#,

^Fk/2~x1 ,z1!Fk/2~x2 ,z2!F j 1
~y1 ,z1!F j 2

~y2 ,z2!F1~y3 ,z3!&

5B~ j 1!B~ j 2!CS k

2
2 j 1 ,

k

2
2 j 2,1D u~x12x2! j 11 j 2112km1

j 12 j 221m2
j 22 j 121m3

12 j 12 j 2u2, ~E30!

where

m i5
~x12yi 11!~x22yi 12!

~z12z i 11!~z22z i 12!
2

~x12yi 12!~x22yi 11!

~z12z i 12!~z22z i 11!
. ~E31!

We have neglected thez- and z-dependent factors. Whenj 15 j 2 , the factorB2C in Eq. ~E30! is equal toB( j 1) up to a
k-dependent factor as

CS k

2
2 j ,

k

2
2 j ,1D5

G~2 j 2k!

2p2nk22 jgS k21

k22DG~112 j 2k!

5S k22

2p D 2

n22k
1

B~ j !
. ~E32!
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We apply Eq.~E1! to Eq. ~E30! and integrate overz1 andz2 . It is convenient to setx15z150, x25z251, y35z35`,
y15uz1 , y2215v(z221), and takez1 , 12z2 to be small. In this limit we find

m1512n, m2512u, m35uv21. ~E33!

The integral we need to evaluate, in order to compute^F
J1 ,J̄1

w51,j 1F
J2 ,J̄2

w51,j 2F1& is then

E du2dv2uj 12m121ū j 12m̄121v j 22m221v̄ j 22m̄221u~u21! j 12 j 221~v21! j 22 j 121~uv21!12 j 12 j 2u2. ~E34!

Let us consider the case of the long string. We then havej a5 1
2 1 is2 , and the integral gives ad-function singularity at

s15s2 coming from the region of the integral ofu;1 or v;1. The term proportional to thed function can be evaluated a

d~ j 12 j 2!S E du2uj 12m121ū j 12m̄121u ~u21!22 j 1u21~m1 ,m̄1→m2 ,m̄2! D
5d~ j 12 j 2!

p

g~2 j 1!
S G~ j 12m1!G~ j 11m̄1!

G~12 j 12m1!G~12 j 11m̄1!
1~m1 ,m̄1→m2 ,m̄2! D . ~E35!

Since

J5
k

4
1

1
4 1s2

k22
1h21, ~E36!

the delta functiond(s12s2) together with the conditionh15h2 in the internal CFT impliesJ15J2 and thereforem15m2 . The
correlator multiplying the double pole term in Eq.~E29! then gives

E du2dv2uj 12m22ū j 2m̄21v j 22m21v̄ j 22m̄21u~u21! j 12 j 221~v21! j 22 j 121~uv21!12 j 12 j 2u2

;d~ j 12 j 2!
1

g~ j ! S 2 j 12m

j 12m21
11D G~ j 12m!G~ j 11m̄!

G~12 j 12m!G~12 j 11m̄!

;2d~ j 12 j 2!
1

g~ j 1!

2m11

j 11m21

G~ j 12m!G~ j 11m̄!

G~12 j 12m!G~12 j 11m̄!
. ~E37!

On the other hand, the correlator multiplying the single pole term in Eq.~E29! gives

d~ j 12 j 2!
2m11k

g~ j 1!

G~ j 12m1!G~ j 11m̄1!

G~12 j 12m1!G~12 j 11m̄1!
. ~E38!

We combine them with Eq.~E32! and multiply by the correlation function̂fh(z1)fh8(z2)L̄( z̄3)& in the internal CFT, as we did
in Appendix A, to compute the on-shell three-point function involving the target spaceR current. We find

^@F
J,J̄

w51,j 1~x1 ,z1!fh~z1!#@F
J,J̄

w51,j 2~x2 ,z2!fh~z2!#@J~x3 ,z3!L̄~ z̄3!F1~x3 ,z3!#&

;
1

uz12u2uz23u2uz31u2
S q1

x̄32 x̄1
1

q2

x̄32 x̄2
D d~ j 12 j 2!

G~ j 12m!G~ j 11m̄!

g~ j 1!G~12 j 12m!G~12 j 12m̄!

B~ j 1!

ux12u4,J , ~E39!

whereq1 andq2 are theR charges of the two operators. From this, we find that the spacetime two-point function ofF
J,J̄

w51,j
fh

is

G~ j 12m1!G~ j 11m̄1!

g~ j 1!G~12 j 12m1!G~12 j 12m̄1!
B~ j 1!.

We do not have the extra factor of (2j 21) for the long string.
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