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We consider correlation functions for string theory on Ad8/e analyze their singularities and we provide
a physical interpretation for them. We explain which worldsheet correlation functions have a sensible physical
interpretation in terms of the boundary theory. We consider the operator product expansion of the four-point
function and we find that it factorizes only if a certain condition is obeyed. We explain that this is the correct
physical result. We compute correlation functions involving spectral flowed operators and we derive a con-
straint on the amount of winding violation.
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I. INTRODUCTION has been the only case in which we have been able to explore
the correspondence beyond the supergravity approximation
This is the third installment of our series of papers on thewith complete control over the worldsheet theory.
SL(2R) Wess-Zumino-Witten\WZW) model and its rela- Besides the AdS/CFT correspondence, understanding
tion to string theory in Adg, three-dimensional anti—de Sit- string theory in Ad$ is interesting since AdSis the sim-
ter space. In the first two papefs,2], we determined the plest example of a curved spacetime where the metric com-
structure of the Hilbert space of the WZW model, computedponentgyg is nontrivial. Using this model, one can discuss
the spectrum of physical states of the string theory, and studrarious questions which involve the concept of time in string
ied the one-loop amplitude. In this paper, we will discuss theheory. This will give us important lessons on how to deal
correlation functions of the model. with string theory in geometries which involve time in more
The SL(2R) WZW model has many important applica- complicated ways. In this connection, there had been a long-
tions in string theory and related subjects. It has close constanding puzzle, first raised if15,16, about whether the
nections to the Liouville theory of two-dimensional gravity no-ghost theorem holds for string in AglSThe proof of the
(for a review, see, for exampl¢3]) and three-dimensional no-ghost theorem in this case is more involved than in
Einstein gravity[4]. It is used to describe string theory in Minkowski space since the time variable in Ad8oes not
two-dimensional black-hole geometrigs]. Its quotients are decouple from the rest of the degrees of freedom on the
an important ingredient in understanding string theory in theworldsheet. The task was further complicated by the fact that
background of Neveu-SchwaftiS) 5-braneq 6], and they  AdS; is a noncompact space and the worldsheet CFT is not
capture aspects of strings propagating near singularities oftional. Thus it was difficult to decipher the spectrum of the
Calabi-Yau spacef7—9]. One can also construct a black- worldsheet theory.
hole geometry in three dimensions by taking a quotient of This problem was solved ifi,2]. In [1], we proposed the
the SL(2R) group manifold[10]. Moreover, sigma models spectrum of the WZW model and gave a complete proof of
with noncompact target spaces such as SR have various the no-ghost theorem base on the proposed spectrum. This
applications to condensed-matter physits|. For these rea- proposal itself was verified if2] by exact computation of
sons, the model has been studied extensively for more thanthe one-loop free energy for a string on AdSM, where
decadé- Recently the model has becomes particularly impor-M is a compact space represented by a unitary conformal
tant in connection with the AdS conformal field thedGFT)  field theory on the worldsheet. Although the one-loop free
correspondencil 2,13 since it describes the worldsheet of a energy receives contributions only from physical states of the
string propagating in Adswith a background NS-N$  string theory, we can deduce the full spectrum of the
field. According to the correspondence, type 1B superstringSL(2R) WZW model from the dependence of the partition
theory on Adgx S®x M, is dual to the supersymmetric non- function on the spectrum of the internal CFT representing
linear sigma model in two dimensions whose target space i34, which can be arbitrary as far as it has the appropriate
the moduli space of Yang-Mills instantons &, [13,14). central charge. Thus the result [#] can be regarded as a
Here M, is a four-dimensional Ricci flat Kder manifold,  string theory proof of the full spectrum proposed[ifj.
which can be either a toruE* or aK3 surface. So far this The spectrum of the SL(R) WZW model established in
[1,2] is as follows. Since the model has the symmetry gen-
erated by the SL(R) X SL(2R) current algebra, the Hilbert
For a list of historical references, see the bibliographylih spaceH is decomposed into its representations as
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In the standard WZW model, based on a compact Lie group,
spectral flow does not generate new types of representations;
it simply maps a conventional representation into another,
where the highest weight state of one representation turns
(1.))  into a current algebra descendant of another. In the case of
SL(2R), representations with different amountswfre not
equivalent.
In [1], it was shown that Eq(1.1) leads to the physical
spectrum of string in AdgSwithout ghosts and that the spec-

(k=12
H=@g . f dj D'e DY

12

1
f djf daC}Na®C}Na) :
(1/2+iR 0 ' '

HereD}” is an irreducible representation of the SIKP cur-
rent algebra generated from the highest weight dtgte)

52

defined by ) . . .
trum agrees with various aspects of the dual two-dimensional
Joliwy=0, J- ., 4]i;w)=0, CFT (CFT,) on the boundary of the target space. In particu-
lar, it is shown that the spectral flow images of the continu-
Bljw)=0 (n=1,2,..) ous representations lead to physical states with continuous
" (1.2 energy spectrum of the form
3 ok
Joliswy=| i+ zw|[isw),
, ko 1(s*+;
; K \2 1 - RN JO—ZW'FW k_2+N+h—1 , (1.5
[-(JO—EW +§(JWJ_W+J_WJW)}|J;W>

. where s is a continuous parameter for the statBisis the
Jiw), amount of the current algebra excitations before we take the
spectral flow, andh is the conformal weight of the state in
the internal CFT representing the compact directions in the
Iyl esw)=0, Jﬁ|j,a;w>:0 (n=1,2,..) target space. These states are called “long str@ngs” with
winding numbew, and their continuous spectrum is related

=—j(i—-D

andCj" is generated from the stalf a;w) obeying

K to the presence of noncompact directions in the target space
B, a;w)y=| a+ EW)“,&;W), (1.3  of the dual CFF [17,18. The continuous parameter is
identified with the momentum in the noncompact directions.
K12 1 The continuous representations thh:O givg no physiqal
[_<Jg_ SW +§(JVJ\;J7W+J7WJ$) lj,e;w) states except for the tachyon, which is projected out in su-
perstring. On the other hand, the discrete representations and

o . their spectral flow images give the so-called “short strings,”
=—j(—=Dlj,a;w). whose physical spectra are discrete.
i ) ) In this paper, we compute amplitudes of these physical
The representations witi=0 are conventional ones, where gates of the string theory and interpret them as correlation
|1;0) and|j,a;0) are annihilated by the positive frequency fnctions of the dual CF;T. We show that the string theory

+,3 i . . . . .
modeos of the current, * (n=1). These re_presentatlom? amplitudes satisfy various properties expected for correlation
and(j , are called the discrete and continuous representgynctions of the dual CF.

tions, respectively. The representations wit+0 are re- The dual CF7 is unitary with a Hamiltonian of positive-
lated to the ones withv=0 by the spectral flow automor- definite spectrum, and the density of states grows much
phism of the current algebra®* —J33~, defined by slower than the exponential of the enefgyherefore, one

should be able to analytically continue the time variable of
CFT, to Euclidean time. Correspondingly, the Ad§eom-
(1.4  etry can be analytically continued to the three-dimensional
~ 3 K hyperbolic spacél;, whose boundary i$?. The worldsheet
Jn=Jh= 5 Wého- of the string orH is described by the SL(€)/SU(2) coset
model. We would like to stress that the SLRR, WZW
model and the SL(Z)/SU(2) coset model are quite distinct

2We caIID? a discrete representation even though the spectrum ofVen thoggh thelr_actlons_are formally related by anal_ytlcal
j in the Hilbert space1.1) of the WZW model is continuous. It continuations of field variables. For example, the Hilbert

would have been discrete if the target space were the single cover ghaces of t'he two models are completely different since all
the SL(2R) group manifold. In order to avoid closed timelike the states in the Hilbert spacé.1) of the SL(2R) WZwW
curves, we take the target space to be the universal cover dhodel, except for the continuous representations with
SL(2R), in which case the spectrum jis continuous. We still call

these representations discrete since tﬂ&ieigenvalues are related

to the values of the Casimir operatef,j(j—1), while theJ3 ei- 3The Cardy formula states that the density of states of conformal
genvalue for continuous representations is not related to their valudield theory on a unit circle grows as expfZcE/6), whereE is the
of the Casimir operator. energy anc is the central charge of the theory.
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w=0, correspond to non-normalizable states in thetal “winding number” w of a string? We will explain its
SL(2,C)/SU(2) model. This means that all the physical origin from the worldsheet SL(R) current algebra symme-
states in string theory, except for the tachyon, are representdty and the structure of the two- and three-point functions. In
by non-normalizable states in the SLC2/SU(2) model. It the course of this, we will clarify various issues about the
is in the context of string theory computations of physicalanalytic continuation relating the SL@)/SU(2) model and
observables that one can establish connections between ttitee SL(2,R) model.
two worldsheet models. We will discuss in detail how this  We find that, in certain situations, the four-point functions
connection works when we use string theory to compute corfail to factorize into a sum of products of three-point func-
relation functions of the dual CETon the boundary of the tions with physical intermediate states. We show that this
target space. failure of the factorization happens exactly when it is ex-
Correlation functions of the SL(€)/SU(2) model have pected from the point of view of the boundary GET
been derived if19-21 for operators corresponding to nor- Namely, the four-point functions factorize only when they
malizable states and some non-normalizable states simpkhould.
related to them by analytic continuation. Although the corre- This paper is organized as follows. In Sec. I, we review
lation functions for normalizable states are completely norcorrelation functions of the SL(€)/SU(2) coset model de-
mal, those for non-normalizable states contain singularitiesived in [19,20] and explain the worldsheet origin of their
of various kinds. Thus we need to understand the origins o$ingularities. In Sec. lll, we turn to the string theory compu-
these singularities and learn how to deal with them. tation and discuss the target space interpretation of the sin-
For clarity, we separate our discussion into two parts. Firsgularities in two- and three-point correlation functions. In
we will discuss the origins of these singularities purely fromSec. IV, we give a detailed treatment of four-point correlation
the point of view of the worldsheet theory. We will show functions. On the worldsheet, a four-point function of the
how functional integrals of the SL(@)/SU(2) model gen- SL(2,C)/SU(2) model is expressed as an integral over solu-
erate these singularities. We find that some of these singuions to the Knizhnik-Zamolodchikov equati¢@1]. We in-
larities can be understood in the point-particle limit while tegrate the amplitude over the worldsheet moduli, which in
others come from large “worldsheet instantons.” this case is the cross ratio of the four points 8 and
After explaining all the singularities from the worldsheet obtain the target space four-point correlation function. We
point of view, we turn to string theory computations and examine factorization properties of the resulting correlation
interpret these singularities from the point of view of the function. We explain when it factorizes and why it some-
target spacetime physics. Some of the singularities are intetimes fails to factorize. In Sec. V, we compute two- and
preted as due to operator mixings, and others originate frorthree-point functions of states with nonzero winding num-
the existence of the noncompact directions in the target spadeers. We also explain the origin of the constraint on the
of the dual CFJ. In addition to the singularities in the winding number violation. In Sec. VI, we use the result of
worldsheet correlation functions, the integral over the moduliSec. V to show that the factorization of the four-point func-
space of string worldsheets can generate additional singularilon works with precisely the correct coefficients.
ties of a stringy nature. In Minkowski space, singularities are N Appendix A, we derive the target space two-point func-
all at boundaries of moduli spacés.g., when two vertex tion of a short string WithN=_ 0. _The_ normalization of the
operators collide with each other or when the worldsheef@rget space two-point function is different from that of the
degeneratésand divergences coming from them are inter-Worldsheet two-point function. The target space normaliza-

preted as due to the propagation of intermediate physica{ ‘ ) litud In A dix B deri
states. For strings in AdS we find that amplitudes can have the four-point amplitudes. In Appendix B, we derive some

singularities in the middle of moduli space. We have alread)PrOpertles of conformal blocks of four-point functions. In

encountered such phenomena in a one-loop free-energy Corﬁppendm C, we derive a formula for integrals of hypergeo-

putation in[2], and they are attributed to the existence of thememc functions used in Sec. IV. In Appendix D, we derive a

I . in the phvsical We will find constraint on winding number violation from the SLR2,
ong strmg stgt_es In the physica s.pectrum. € Wit Tind 1€-c,rrent algebra symmetry of the theory. In Appendix E, we
lated singularities in our computation of four-point correla-

‘ ) introduce another definition of the spectral flowed operator,

tion functions. _ N working directly in the coordinate basisather than in the
By taking into account these singularities on the world-momentum basjson the boundary of the target space. We

sheet moduli space, we prove the factorization of four-poingompute two- and three-point functions containing the spec-

correlation functions in the target space. We show that thera| flowed operators using this definition.

four-point correlation function, obtained by integrating over Some aspects of correlation functions of the

the moduli space of the worldsheet, is expressed as a sum gi (2,C)/SU(2) model have also been discusseflia—27.

products of three-point functions summed over possible in-

termediate physical states. The structure of the factorization———

agrees with the physical Hilbert space of a string given in 4as explained in1], w is in general a label of the type of repre-

[1,2]. We also check that normalization factors for interme-sentation and is not the actual winding number of the string, al-

diate states come out precisely as expected. The resultingough, for some states, it could coincide with the winding number

factorization formula shows a partial conservation of the to-of the string in the angular direction of A¢S

E)n is precisely the one that shows up in the factorization of
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Il. GENERAL REMARKS ABOUT THE SL (2,C)/SU(2)
MODEL

In this section, we study properties of the sigma modelg;

whose target space is Euclidean AdS three-dimensional
hyperbolic space, which is denoted Hy. This sigma model
is a building block for the construction of string theory in

H3X M, where M is an internal space represented by some
unitary conformal field theory. It is also used to compute

string amplitudes for the Lorentzian signature Ad& pre-

cise prescription for computing string amplitudes will be
given in Sec. lll. Before discussing the string-theory inter-
pretation, let us clarify some properties of the sigma mode

itself.

The hyperbolic spackl; can be realized as a right-coset
space SL(Z7)/SU(2)[28]. Accordingly, the conformal field
theory with the target spadé,; and a nonzero NS-NS two-
form field B,,, can be constructed as a coset of the SC{2,
WZW model by the right action of S@). The action of the

SL(2C)/SU(2) model can be expressed in terms of the

Poincarecoordinates ¢,y,7) and the global coordinates
(p,0,¢) Of H3 as

k — _
S:Ff d’z(dpap+e*Payay)

k _ _
;f d?z[ dpdp+sint? p(96036

+sir? 09¢de) +i(% sinh 20— p)
X sin@(90d¢—30d¢)]. (2.2)

We are considering the Euclidean worldsheet withd,,
etc. Near the boundary—«, the action becomes

k 2 ¥y 1.2 P
S~; d<z[ dpdp+ 7€°P(d6—isSinBIp)

X (90+i sin@dp)—ip sin@(d0dp—d0d¢)].
(2.2

Because of the second term on the right-hand side, contribu-

tions from large values gb are suppressed in the functional
integral as ~exp(—a€®); the coefficient « is positive
semidefinite, and it vanishes only whéfie) is a holomor-
phic map from the worldsheet & obeying

90+isin8de=0. 2.3

Even fora=0, if the map is nontrivial, the last term in Eq.
(2.2) may grow linearly inp. For constanp and(6,¢) obey-

ing Eq. (2.3, the action goes aS~2knp, wheren is the
number of times the worldsheet wraps tBe
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since theB field is pure imaginary. The action is positive
definite, and all normalizable operators have positive confor-
al weights. Thus one expects Euclidean functional integrals
behave reasonably well in this model. The only novelty is
the fact that the target spakk; of this sigma model is non-
compact, but it is just as in the case of a free scalar field
taking values iR, which is also noncompact.
The interpretation of this model on a Lorentzian world-
sheet is more subtle. Because of #éeld, the action(2.1)
is not invariant under reflection of the Euclidean time, and it
becomes complex-valued after analytically continuing to the
orentzian worldsheet. Thus the Hilbert space of the

L(2C)/SU(2) model on the Lorentzian worldsheet may
not have a positive-definite inner product; in fact, an action
of the SL(2C) currentJ® | generates negative norm states.
As we mentioned in the above paragraph, the model on the
Euclidean worldsheet appears to be completely normal, ex-
cept that it does not have an analytic continuation to a nor-
mal field theory on a Lorentzian worldshéet.

What is the space of states of this conformal field theory?

In the semiclassical approximation, which is valid whein
the action(2.2) is large, states are given by normalizable
functions on the target space. More precisely, since the target
space H; is noncompact, we allow functions to be
continuum-normalizable. Because of the SIGPisometry
of Hs, the space of continuum-normalizable functions is de-
composed into a sum of irreducible unitary representations
of SL(2C). The representations are parameterized By
+is with sbeing a real number, and the Casimir operator of
each representation is given byj(j —1). The Casimir op-
erator is proportional to the eigenvalue of the Laplacian on
H5. Corresponding to each of these states, there is an opera-
tor in the SL(2C)/SU(2) model, which is also called nor-
malizable. They can be conveniently written[&6,19

] .
—¢ — y|2a®)— 2]
- (e”%+|y—x|%e?) 4.

D;(x,X;2,2)= ! (2.4

The labelsx,x are introduced to keep track of the SL(2,
quantum numberg31].” The SL(2C) currents act on it as

a

a==,3,

(2.5

() D (X, x;W, W)~ D (X, X;W,W),

Z—W

5This is so that the3 field becomes real-valued after analytically
continuing the target space to the Lorentzian signature;AdS

5This is somewhat of a reflection of the situation of the SR(2,
WZW model. The SL(R) model makes sense in the Lorentzian
worldsheet as discussed[ia9,1]. However, we cannot analytically
continue to the Euclidean worldsheet since the Hamiltonian of the
model is not positive definite. Note that here we are talking about
analytically continuing the worldsheet without analytically continu-
ing the spacetime.

’In the string theory interpretation discussed in Sec. &lX] is
identified as the location of the operator in the dual CFTSéron

The action on the Euclidean worldsheet is real-valuedhe boundary oH; [32].
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whereD? are differential operators with respectxtalefined  can consider a state given by operators of the f@m) with
by j=1+is acting on it®
The two- and three-point functions of operators like Eq.
9 9 (2.4) were computed if19-21]. The two-point function has
D =— D3=x—x+j, D‘=x2(9—x+2jx. (2.6)  the form

(Pj(X1,X1;21,21) P}/ (X2,X2:22,25))
By using this and the Sugawara construction of the energy-

momentum tensor, 52()(1_ X,) 5(] +j '—1)

B EPR
1 .
= [J"(2)d (2)-332)3° B(G) . .
T(2)= '@ @-P2P 2], @7 a1 2.9
we find the precise expression for the conformal weights offhe coefficientB(j) is given by
these operators as 1-2i
B()— k—2 79 ”1
. . (= NEEE (2.10
A(.)__J(J_l)_S+Z 2.8 y—k_z
V=" " k=2- '
where
1 . . I'(x)
Operators withj =5 +is have positive conformal weight, as Y(X)= . (2.1
we expect for normalizable operators in a well-defined I'(1=x)

theory with Euclidean target space. It was showf28] that  The choice of the constamtwill not affect the discussion in
states corresponding to these operators and their current ghe rest of this paper. I[21], it is set to be

gebra descendants make the complete Hilbert space of the

SL(2,C)/SU(2) model. r(l— L)
The vacuum state of the SL@)/SU(2) model is not k—2
normalizable. This again is not unfamiliar; the vacuum state vVETT T (212
for the free scalar field oR is also non-normalizable since ryi1+ —)
its norm is proportional to voR)=cc. In this case, we do k=2

not consider the vacuum in isolation. The vacuum state alpy requiring a certain consistency between the two- and
ways appears with an operator, such ag'f¥(®?|0). Simi-  three-point functions.

larly, onHg, the vacuum stat®) is not normalizable, but we The three-point function is expressed as

(Dj,(X1,X1;21,20) P (X2,X2322,2) D (X3,X3;23,Z3))

S 1 1
:C(JlaIZvJS)|212|2(A1+A2—A3)|223|2(A2+A3‘A1)|231|2(A3+A1—A2)|X12|2(11+J2—13)|X23|2(J2+13—J1)|X31|2(13+11—12)' (213

The z and x dependence is determined by SIG2,invariance of the worldsheet and the target space. The coefficient
C(j1,i2.]3) is given by

G(1-j1—J2=i3)G(j3=J1—i2)G(j2=J3—i1)G(j1—J2—i3)

27721/““2“317(m)G(— 1DG(1-2j1)G(1-2]2)G(1-2j,)

C(j1,J2.3)=— , (2.19

where

8n the flat space case, the vacul@ can be regarded as the—0 limit of €PX(¥|0), and therefore it is a part of the continuum-
normalizable states. Such an interpretation is not possible in the chkgsaice there is a gap of[¥(k—2)] between the conformal weight
(2.8) of the normalizable states and that of the vacuum.
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G(j) = (k—2)lk-1=DV20=2Ip (—{|1 k—2)

k
C( J1+]2s 5) = (k-dependent coefficient
XTo(k—1+j|1k—2) (2.15

. . , X6(j1t]2—k2). (2.29)
andI',(x|1,0) is the Barnes double gamma function defined
Unlike the case of Eq(2.20), the proportionality factor de-
o = pends only ork and not onj4, j,. This identity is used in
. e later sections when we evaluate correlation functions involv-
log(I"z(X| L)) = “mﬁ[nyéo (x+n+mo) ing spectral flowed states.
These two- and three-point functions are perfectly well
behaved and finite for normalizable operators wjth 3
— > (n+mw)"¢|. (2.1  +is. Similarly, one expects the four-point function of such
(nm‘;(g 9 states to be given by summing over intermediate normaliz-
' ' able stated21,33.2° The four-point function will be dis-
This shows thafl’, has poles atx=—n—me with n,m cussed in detail in Sec. IV. These properties are familiar and
=0,1,2,.... The functios(j) defined by Eq(2.15 then has happen in all conformal field theories. The noncompactness
poles at of the target space does not pose a problem; we deal with it
as in the case of a free noncompact scalar field.

e—0

j=n+m(k—2), —(n+1)—(m+1)(k—2)

A. Analytic continuation and singularities

(nm=0,12,.). (2.17 Life would be relatively simple if all we were interested

in were operators like Eq2.4) with j=3+is.

The complications in our case show up because the op-
erators we are going to be interested in are non-normalizable
operatorg 35,3]. This is also familiar in standard flat space
computations in string theory. There, we are interested in

i j+1 . vertex operators which go aé’oxguclid, wherep, is the en-
G(j +1):7( - E)G(J)’ ergy carried by the operator and is real, a¥g|q is the
(2.18 scalar field representing the Euclidean time coordinate. It is
1 sometimes said that we compute amplitudes in Euclidean
G(j—k+2)= Wy(j +1)G(j). signature spacéwith pure imaginarypy) and then we ana-
lytically continue the results ipg. This analytic continua-

These will play an important role in the following discus-
sion.

Another important fact abouG(j) is that it obeys the
functional relations

For example, one can use the first of these relations to sho(tllvon is possible if correlation functions  with - non-

that normalizable operators of the formPoXEuis make sense in
the model with Euclidean target space. There might be sin-
C G(j1—j,+€)G(j,—jite) gularities for complex values qf,, but we should be able to
lim G(—1)G(1-26¢) go around them to arrive at real valuespyf. Original cor-
€0 relators with pure imaginarp, are well defined in the Eu-
k—1 2¢ clidean theory and never infinite since these operators corre-
=(k—2)y( — ) im——-—— spond to normalizable states of the theory. When we
k=2] _oll1m2) e analytically continue to realor complex pg, there can be
singularities where the amplitudes diverge. In flat space
=—2m(k—2) 7( ;) 8(S1—Sy), (2.19 string th_e_ory, these singularities arise when we integrate over
k-2 the positions of the operators on the worldsheet. The inte-

grated four-point function can become singular as a function
whenj;=3+is; andj,=;+is,. From this, it follows that  of the momenta. The interpretation of these singularities is of
course well known in flat target spacetime; they correspond

C(j1,i200=B(j1)é(j1—]2), (2.20

verifying that the -three-point function including the ideptity 19Recently, it was shown if84] that the four-point function of the
operator®;_ is in fact equal to the two-point function. g| (2,c)/sU(2) model has the same form as that of the five-point
Similarly, by using the second of Eg.18), we can show  function of the Liouville model where the cross ratio of fogts in

the SL(2C)/SU(2) model is related to the location of the fifth

vertex operator in the Liouville model. This in particular shows that

9The sums oven, min the right-hand side are defined by analytic the four-point function obeys the crossing symmetry, the mono-

regularization. Namely, the sums are defined fordre®, where  dromy invariance, and so on, assuming that Liouville correlation
they are convergent, and the result is analytically continued to functions also satisfy these properties. The monodromy invariance
—0. of the four-point function is proven explicitly in Sec. IV B.
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to poles in theS matrix and they are due to the propagations| (2,C) transformations that leave two points fixéte two
of an intermediate on-shell state. The lesson from the flapointsx, andx, where the operators are insented

space case is that we should be able to interpret any singu- The analytically continued expressi@h10 has other di-
larity that appears in the physical computation of string am-ergences. It has poles at

plitudes. Part of the definition of the physical theory is the

choice of operatprs we con_sider. In the fact space gagse, j= E(k—2)+l n=12,... (2.22

has to be pure imaginary in order for the vertex operator

0
ePoXewcid to be normalizable. These are the operators that ar
most natural(i.e., normalizable from the point of view of

the Euclidean Worldsheet theory. On the other hand, for ap dth dt luate it telv. Th
plications to string theory, we need to consider the case jind there is no need to reevaluate it approximately. The pur-

which pg is real as these are the ones that correspond tBOse |0f.t'.{h's 1e_r>:_erC|s_|<|a h|s|to ur:dersttand mﬁ orlgmthof these
physical states in target space. singularities. This will help us to interpret them in the con-

In our case, we can define non-normalizable operators b Xt of st.ring thgpry !ater' It may glso b.e useful in analyzing
taking j away from the linej=1%+is. In the string theory imilar singularities in situations in which we do not know
=14is.

e . . . : . exact answers.
application, we will be interested in the case in whijcls . _ L .
real. One can define correlation functions of these operatorﬁ Let us start with thev=1 case. Sincg~k and the semi-

by analytically continuing the well-defined expressions that® assical limit corresponds té—c, these poles can be
were found forj=2+is. In fact, the expressions for com- thought of as arising from nonperturbative effects on the

plex j were derived in[19] by using special properties of worldsheet. The non_perturbauve effect we have in mind is
operators at particular real valuesjpso analyticity inj was due to a.worldzsheet instanton. The t‘?“get space has a b°“.”d'
an input to the calculation. A feature of this analytic continu-2"Y that is aFS » and c_)urzworldsheet Instanton approaches It
ation is that correlation functions that were perfectly ﬁniteWhlle wrapping on th'.SS once. These are sometlmg callgd
and well behaved can develop singularities for particular val-10nd Strings” [36], which are related to the long strings in
ues ofj. In the following subsections, we will explain the the spectrum of the SL(R) WZW model. To evaluate ef-
origin of these singularities in the SLE)/SU(2) model. fects of the instanton, it is useful to use global coordinates in

We will also explain that there are other non-normalizable/ 13- AS We dlsc_:ussed earlier, the worldsheet actiar®)
operators that are necessary for the string theory applicatiof®"s exponentially large toward the boundary: unless
which arenot obtained by analytic continuation inof Eq. the worldshe(_at obeys the holomorphlcny cond|t(_dr8). For
(2.4). In Sec. V, we will discuss how to compute correlation @ Nolomorphic worldsheet, the action grows linearly s
functions of these operators. _~2kp for largep. Thg ef_fect is of t_he ordeze P Wh_lch is
indeed nonperturbative if we identi~ 1/9°, whereg is the
coupling constant on the worldsheet. These worldsheet in-
stanton effects are similar to the ones which appear in the
The first thing we need to understand is how the operatorsomputation of the Yukawa coupling of the type Il string
(2.4) with realj are defined. It seems that all we need to do iscompactification, where the instantons wrap topologically
to insert the vertex operatof.4) in the path integral. As nontrivial 2-cycles in a Calabi-Yau threefolh complex
usual, we need to remove short-distance singularities in thghree-dimensional manifoldin our case, however, tH# is
worldsheet theory when we insert these operators. This is théontractible inH;. In fact, the instanton actior 2kp is not
standard renormalization procedure we need to use to defingtopological invariant, but it depends on the sjzef the
vertex operators. In this case, however, we also need to bgorldsheet. Thus the instanton configuration is not topologi-
careful with singularities on the worldsheet theory that arisecally stable, and it is continuously connected to the
due to the fact that the sigma model is noncompact. Thgacuum*! Without additional effects, the facter 2% tends
vertex operatofb;(z,x) defined by Eq(2.4) has the property to suppress large instantons.
that, depending on whether(z) =x or #X, it behaves as This observation can be used to explain the poles in the
®;~e’? or ~e 27 for large ¢. For Re{)<3, we see that, two-point function at 2~k in the following way. As we
once we take into account the measure faefdh, the two-  noted, depending on whethe(z) =x or y(z) #x, the vertex
point function will have a divergence. This divergence comesperator behaves aB;(z,x)~ ~e%¢ or ~e~2? for large ¢.
from the region wherey#x and ¢—, and therefore it is  On the worldsheeg? with the two vertex operators inserted,
not localized neax in target space; it is spread all over the one can always find a holomorphic map such théz;)
space. On the other hand, if Re¢3, this divergence is lo-  =x, (i=1,2). In fact, there is a one-complex parameter fam-
calized aty=x. This distinction between these two casesily of instantons, generated by dilatation and rotation which
will be very important for the string theory application dis-
cussed in the next section. From the worldsheet point of ———
view, operators of the form RB¢ 3 are not normalizable. 13 several respects, these instantons are similar to instantons in
Analytic continuation is defining these operators in someprdinary Yang-Mills theory in four dimensions. In this latter case,
way. We also get a divergence in the two-point function com-+heir action depends logarithmically on the size of the instanton
ing from the delta functio®(j — ') in Eq.(2.9). This comes (analogous toe™*° in our casg and if we are in a given theta
from the volume of the subgroup of target space globalacuum, the instanton can dissolve into the vacuum.

Eet us understand these poles wheis large. Before we
continue, let us note that we know the exact expres&d),

B. Singularities in two-point functions
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keep fixed the two points, and the integral over the family is i=1—ji—i2—is» Js3—i1—i2
responsible for the delta functiof(j—j’) in the two-point o o
function. On such instantons, the vertex operator is evaluated jo=iz—J1, Orj1—j2—js. (2.24

as ®;(z;,x;)=€?? in Poincarecoordinates. In the global _ _ o . N
coordinates, it behaves dg5~e?/” for largep. Therefore, in Our first task is to understand the origin of these singularities
the two-point function, the integral over the zero megeof ~ from the point of view of the SL(Z)/SU(2) sigma model

the instanton size is of the form on the worldsheet.
Let us first consider the poles at

J dpge ™ 2krog?lrog?iro, (2.23 ja—ii—j2=n (n=0,1,2,..). (2.29

, . _ . Here we use the standard largexpproximation treatingp
where the first factor is the instanton action and the last twg, 4 y, 7 as constant on the worldsheghis is the point-

factors come from the vertex operator insertions. We see th?)tarticle a P :
) ) pproximation The vertex operatof2.4) goes like
the integral(2.23 converges at largg, only for j<k/2[the  2j¢ 4 y=x and it decays likee 2% for y#x. Whenjs

exact answex2.10 is finite only for j<(k—1)/2].** Thus >j,;+j,, a divergence in the three-point amplitude arises
the instanton effect expleyns Fhe origin of the smgulanty aSrom the integral region wherey=xs (and thereforey
due to the noncompact direction in field space which can bgéx x,) S0 that @ (x5)~e€%:® and @ @,
e i i i e di 1572 i3\ "3 i *i
explored with finite cost in the action. Since this divergence 5" 5 4 . 3 vz
is coming from the large region, it does not matter that the € ' +€ ~2°. The integral ove then takes the form
instanton is not topologically stable in the full space of the
worldsheet fields. What is important is that the lapgegion f dgp eis=iimi2é, (2.26
gives a dominant contribution to the functional integral. We
can therefore say that this divergence is an IR effect in the
target space. It is interesting that the divergence is not localhere the measure factef? is canceled by the integral over
ized on the worldsheet and therefore cannot be considered asy- The amplitude is divergent fgg=]; +j,, and analytic
an UV effect there. The standard lore about the correspori€gularization gives a pole a=j,+j,. This explains the
dence between IR effects in the target space and UV effectgole withn=0 in Eq. (2.25. To reproduce the other poles
on the worldsheet does not hold in this case. withn=1,2,..., we just have to expari} _(z3,X3) in powers
Thus we have shown that there is a divergence foj)Re( of | y(z3) — x3|? and repeat the above exercise. Thus we have
=(k—1)/2 due to large worldsheet instantons. In the analytidnterpreted the pole$2.25 in the exact expressiof2.14
regularization, the divergence is converted into a pol¢ at from the point of view of the worldsheet theory. There are
=(k—1)/2. Of course, the formulé2.9) is precisely the re- also poles when jo—j3;—j;) and (,—j,—js) are non-
sult of such analytic continuation. These poles were also disaegative integers and they are explained in a similar way. In
cussed in[24] in the context of the SL(R)/U(1) coset Sec. lll, we will discuss how these divergences are dealt with
model using a dual descriptidi20]. Similarly, by consider- in string theory. We will see that these are very analogous to
ing an instanton which wrapstimes theS?, we can explain  poles in theS matrix in the flat space computation.
the pole at 2~nk in the two-point function. The other poles in Eq(2.24) can be explained by the
worldsheet instanton effects. Since one can always find a
holomorphic map from the worldsheet to the target space
) ) ) ) such thaty(z)=x; (i=1,2,3), the worldsheet instanton can
The three-point fun(.:tlortiz.liﬂ has various polles which grow large whenever Rp(Fj,+js) exceeds~k. This ex-
come from the poles ifG(j) [Eq. (2.179]. One finds that pjains the first pole in Eq(2.24 with (n,m)=(0,1). As in
C(j1.J2,i3) has poles at the case of the two-point function, this divergence is nonlo-
i=n+mk=2), —(n+1)—(m+1)(k—2) f:al in target space. The remaining poles in E424) can be
interpreted in similar ways.

C. Singularities in the three-point function

(n.m=0.1,2,..), D. Singularities in four-point functions

where Let us now move on to the four-point function. By world-
sheet conformal invariance and target space isometries, it
depends nontrivially only on the cross ratioszgk andx;’s

2In principle, we expect the computation {2.23 to give us (i=1,...4),

only the leading order ik behavior. By being a bit more careful

about the integral over quadratic fluctuations, we can see :M' :(Xl_XZ)(X4_X3)_
that the amplitude can be better approximated as (21— 23)(24— 2p) (X1 =X3)(Xg—X2)
fdpoe2roe™2k=2)rog2(i~1rog2(i-1)ro \where the first factor comes (2.27

from the measure of thg, integral, the shift ik comes from the ) )
determinants, and the shift jncomes from the integral ovey,y.  For special values of;, the labels of the four operators, the
This gives the exact bounjd< (k—1)/2. dependence of the four-point function oandx can be de-
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termined by differential equations. These valuesjofaire

PHYSICAL REVIEW D 65 106006

we include the other solution witd=k—j;—jo—j3—]a.

outside the range which leads to physical operators in th&herefore, g () has to have a singularity of the form

string theory.
For generic values of;, one very useful piece of infor-
mation is that it obeys the Knizhnik-ZamolodchikdiKZ)

K r = o |
-7:SL(2)|Z_X| (k=j1=j2—isla)

(2.32

equation, which follows from the Sugawara construction ofHere we combined holomorphic and antiholomorphic parts

the stress tensor(2.7). The idea is to compute
<T(w)<bjl(zl,x1)---CDj4(z4,x4)> in two different ways. One
is to convertT(z) into derivatives with respect tg’s using
the conformal Ward identity. Another is to use Hg.7) to
expressT(z) in terms of the currentd? and to turn them into
differential operators orx by the SL(2C) Ward identities

so that the amplitude is monodromy-invariant aroasex.

The presence of the singularity &t x is very surprising
from the point of view of the worldsheet theory since this is
a point in the middle of moduli space. In a standard confor-
mal field theory, amplitudes become singular only at bound-
aries of moduli spaces. A very closely related divergence

. . 13 . .
(2.5). Combining these two expressions together and goin@PP€ars in the one-loop diagrd@]. ™ The interpretation of

over to the cross ratiof.27), one finds[21] that the four-
point functionFsi 2)=(®; ---®;,) obeys

P Q
<E+ﬁ

d 1
7772

Fsi2) s (2.28

where P and Q are differential operators with respect xo
defined by

2
P=x%(x—1) ‘9—+[(— K+ 1)x°—2]
X2 J1

) d ) .
—ZJQX(l—X)]5—2K12x—21112,

) (2.29
J
Q=—(1—x)2xa—xz+[(x—1)(1—x)2

2j3(1 2jox(1 i

+2j3(1=%)+2jx( X)]a_x

—2k](1=X)=2j5js,

with
K=j4=J17 ]2 |3 (2.30

Because of the facta ! and (z—1) ! on the right-hand
side of the KZ equatio(2.28), the amplitudeFg (»y(z,x) has
singularities az=0, 1, and=. Such singularities are familiar

is singularity is again associated with instanton effects. In
the case of the four-point function, worldsheet instantons can
grow large if and only ifz=x since there has to be a holo-
morphic map from the worldsheet to the bound&fyof the
target space such tha{z)=x; (i=1,...,4). Such a map ex-
ists only when the worldsheet modulagoincides with the
target space modulus. The instanton approximation also
explains the value of in the following way. Ifzis not equal
to x but close to it, there is a harmonic méf)¢) for which

f (90—isin0ag)(6+i sinBdp)~|z—x|?.
(2.33

We can then insert this into E€R2.2) to estimate the action
for largep as

S~2kpy+ ae?0|z—x|? (2.39
for some positive constant Here we only show the depen-

dence on the zero mogsg of p. The functional integral for
the four-point function is then approximated as

J dpoezpoe‘z("—2)Po+“\X—Z‘Zezp[’ezfi(ii—l)/)o

~|Z_x|2(k*11*12*13*i4), (2.3
reproducing the singularity2.32. This is related to the re-
mark in [18] that the dynamics of long strings is approxi-
mated by the Liouville theory; hergx— z|? plays the role of

in conformal field theory and appear when locations of twothe cosmological constant. By a simple extension of this ar-
operators coincide on the worldsheet. This leads to the ogyument, we expect thaipoint amplitudes have singularities
erator product expansion, which will be discussed extenyhen the worldsheet moduli coincide with the target space

sively in Sec. IV.

moduli. For n>4, there can also be singularities when a

Quite unexpectedly, the equation also implies a singulargypset of the worldsheet moduli coincides with a subset of

ity at z=x. This is because the coefficients in frontsf 9x?
in P and Q cancel each other out at=x. Substituting the
ansatz?'—“s|_(2)~(z—x)‘S into Eq.(2.28 and solving the equa-
tion to the leading order inz(—x), the exponent is deter-
mined as

6=0 or (2.31

The solution with6=0 is regular az=x. However, as we

k=j1—j2—js~Ja

BIn [2], we considered the finite-temperature situation in which
we periodically identify the target space Euclidean time, and com-
puted a partition function on a worldsheet torus. We found that, in
addition to the divergence at the boundary of the worldsheet moduli
spacer— i, there are singularities whenis related to the peri-
odicity of the target space Euclidean time. These singularities are
interpreted as due to worldsheet instantons from the worldsheet

will see in Sec. IV, monodromy invariance of the amplitude torus to the finite-temperature target spéice, the Euclidean black

Fsi(2) aroundz=0,1 as well as around=x requires that

hole in AdS).
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the target space moduli. In this case, only the correspondinthew amount of the spectral flow of . In the semiclassical
part of the worldsheet grows large. approximation, the spif will actually be found to be in the
range G<Re(j)<k/2. In the exact computation, this be-
comesi <Re()<(k—1)/2.

So far, we have discussed some general properties of To explain this, let us consider the two-point function of
(analytically continued correlation functions of the opera- the vertex operator¥; at (z,x)=(0,0) and(s,»). We con-
tors (2.4) in the SL(2C)/SU(2) model, and we have ex- sider the case in whichis real. It was shown ifi32] that a
plained the origin of various singularities in the correlationgeneral solution to the classical equation of motion for Eqg.
functions. It turns out that there are other non-normalizablg2.1) is given by
operators we will need to consider for the string theory ap-

E. Correlation functions of spectral flowed states

plication. ¢=p(z)+p(z)+log[1+b(z)b(Z)],
The operatorsb; and their descendents by the SIG,
current algebra are not the only operators we will be inter- e~ 20(@p(Z)
ested in. The current generatd¥z) act on®; as Eq.(2.5), v=a(z)+ ————, (2.38
which means thatP; and their analytic continuations also 1+b(z)b(z)

obey the conditions _
e 2rDp(z)

+ _ 3 = = y=a( 1+b(2)b(z)
Ji|®)=0, J|®)=0 (n=12.). (230 ey

These lead to the conventional representations of the curre?cgr some holomorphic functionp.a,b of z The simplest

algebra. In WZW models based on compact Lie groups ) ) - :
these are all the operators we need to consider; other operg(-)lmIon obeying the boundary conditio(®37 is

tors are just current algebra descendents of these. In the

SL(2R) WZW model, there are other states one needs to p=— JRIog|z|2,
take into account. These are states in spectral flowed repre-
sentations of the types described in Eds2) and(1.3). Cor- (2.39

respondingly, there are non-normalizable operators in the r=0.

SL(2,C)/SU(2) model that are different from the ones ob- Thjs solution corresponds o= — (j/k)logzanda=b=0 in
tained by analytic continuation ob;. In fact, by taking  Egs.(2.39. This clearly satisfies the boundary conditions at
worldsheet operator product expansion OPE of operators 6f— g Tg see that it also obeys the boundary conditiors at

the form(2.4), which obey Eq(2.36, we can produce op- - we use the inversion of Poincaceordinates as
erators which are not in the conventional representations

obeying Eq(2.5). For example, we shall see in detail in Sec. et =g~ $(1+e2¢]y]?),
V B that we can construct an operator which generates spec-
tral flow from the operator in Eq(2.4) with j=k/2; the ety
spectral flowed representations are generated by the world- Y= W, (2.40
sheet OPE’s with this operator.

In the remainder of this section, we will argue from a 2ty

. . . . -
ignm;iccizfs;ﬁal po!nt of view that th_ese are natural operators _to PAi prwper T pw 2
. In particular, we will build operators that are non

normalizable, but such that their “non-normalizability” is Ngie that atd— o, this corresponds to the inversiori =

concentrated at a pointon target space. . —1/y of the complex coordinates d&. We then find
To formulate the problem, let us consider a vertex opera-

tor W;(zo,%p) defined so that it imposes the boundary con- j
L. r_ 12
dition ¢ ——E|09|Z %,
i (2.4)
d(z2)~— JElog|z—zo|2, y' =0,
) (2.37 where z' is the worldsheet coordinate appropriate near
Y(2)~Xo+0(|2— 20| 7¥). =,
The reason that the subleading term in the second line of 1
Egs. (2.37 has to be smaller thajz— z,|?’% will become Z'=-. (242

clear below. We will also show that, wheh<Re()<(k z

—1)/2, the operatot; coincides to the operataP;. What  Thys the solutior{2.39 obeys the boundary conditions both
happens whefis outside of this range? Let us exprgsss 4t z=0 ande. This solution describes a cylindrical world-

j=J+(k/2)w with $<Re(j)<(k—1)/2. The semiclassical sheet of zero radius, connectirg-0 and.

analysis that follows shows that the operadoy defined by Now let us examine what type of perturbations are al-
Egs.(2.37) is identified asd', which is defined by acting lowed to this solution. The simplest ones are of the form,
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¢=— JElog|z|2.
(2.43

v=¢€z"

for small e. We claim that this deformation corresponds toA similar

the action of the current algebra generatpron the solution
(2.39. To see this, we note that the poigtin the coset
SL(2,C)/SU(2) is parametrized by the coordinaiesy,y)
as

e %+yye? ety )
and the action o8, is given by
. 0 ez" »
‘g—g+ . .
Jni9—0Fly 5 /9 (2.49

One can easily verify tha2.45 indeed maps Eq$2.39—
(2.43.

PHYSICAL REVIEW D 65 106006

j
b=- Elog|z|2,
(2.50

y=€|z|¥kz".
analysis shows that this perturbation is
normalizablé® for

n=—w,—-w+1—-w+2,... (2.5
and is non-normalizable for
n=—w-—1,-w,—w+1,.... (2.52
This means¥'; is annihilated byd,, as
J,¥ij=0, n=—w,—w+1-w+2,.... (253

Combining Eqgs(2.49 and(2.53, we find that¥; corre-
sponds to the highest weight state of a discrete representation
with w amount of spectral flow. By evaluating® for the
solution (2.39), one finds that it carries th#® chargej. Ac-

One should ask whether this perturbation is normalizableording to the rule of the spectral floi&.4), this means that
or not. The norm of worldsheet fluctuations is defined usinghe Casimir operator of the representation before the spectral

the target space metric4s

d?z

||(5¢,5%5?)||2=fW(5¢2+92¢5757)- (2.46

Therefore, the perturbatig.43 is normalizablgat smallz)
if

n=w+1w+2w+3,..., (2.4
and non-normalizable if
n=ww—1w—-2,.... (2.48

Normalizable perturbations should be integrated out when
we perform the functional integral over the worldsheet and

flow is given by —](j—1), wherej =j — (k/2)w.

Something special must happen whefilkkis an integer
since the amountv of spectral flow jumps there. What hap-
pens is that the solutiof2.43 with n=w coincides with the
solution (2.50 with n=—w and both are non-normalizable.
This means that we have a new type of state, not annihilated
by J_,, andJ,, . Itis in the continuous representation with
amount of spectral flow. The fact that the two solutions co-
incide means that there is a new solution. In fact, when
2j/k=w, there is a new solution,

— Wl 2
$=— 5 loglzl?
(2.59

y=¢€z"log|z|?.

therefore do not change the boundary conditions. This ex-
plains why we require that the subleading term in the secon®ne can think ofe as the radial momentum carried by the

line of Egs.(2.37) has to be smaller thajz—z,|?’¥ since

long string. This is a Euclidean version of the phenomenon

any perturbation equal to or greater than that term is noneiscussed in Sec. 3 ¢f] in the context of string theory in

normalizable. Non-normalizable perturbations

changehe Lorentzian Ad$.
boundary conditions and correspond to inserting different

Here we have explained how to define the vertex opera-

operators on the worldsheet. Since these perturbations corrers Uj(z,x) for the spectral flowed representations. In Sec.

spond to the action of, on the worldsheet as i{2.45, one
can say that the vertex operat¥; is annihilated (AN
which generates normalizable perturbations, i.e.,

Jo¥;=0, n=w+lw+2w+3,.... (249

One can repeat this analysis for the actiondgf. This
gives a perturbed solution of the form

YHere the worldsheet metric is set|@ ~2dz dz which is appro-

priate when the worldsheet is an infinite cylinder, since we will use

V, we will give exact expressions for correlation functions of
these operators.

Ill. SPACETIME INTERPRETATION OF THE
SINGULARITIES IN TWO- AND THREE-POINT
FUNCTIONS

In the previous section, we have discussed properties of
non-normalizable operators in the SLC2/SU(2) model in
general. In this section, we will discuss which subset of those

this computation to identify the state corresponding to the vertex ®Here we assumej2k is not an integer. See the discussion be-

operatorV; .

low.
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operators we will consider as physical operators. The physi-
cal theory we have in mind is string theory diyxX M,
where M is a compact target space represented by some
standard unitary CFT. We will interpret singularities in the
amplitudes discussed in the previous section from the point
of view of this string theory. According to the AdS/CFT con-
jecture, the string theory is dual to a boundary conformal
field theory (BCFT) on S? [13]. The observables of BCFT
are local normalizable operators on the boundary of the tar-
get space. In string perturbation theory, they are represented
on the worldsheet by products of non-normalizable operators
in the SL(2C)/SU(2) theory times normalizable operators
in the unitary CFT forM.1® The same is true in flat space
computations where normalizable plane waves in the target FIG. 1. If Ref)>(k—1)/2, the worldsheet for the two-point
space theory are represented by non-normalizable operatdigction grows uniformly ors? toward the boundary.

of the form epEXg times normalizable operators in the inter-

nal CFT in the Euclidean worldsheet theofin this discus- Of

sion we have neglected the tachyon which could be both

normalizable in the Euclidean worldsheet theory and physi- £<j <E (3.2

cal in the string theory; it is projected out in superstring. 2 2 '
Notice that in the Ad$ case the Euclidean worldsheet com- _ _ -
putations are directly related to the Euclidean BCFT compu2nd all their spectral flow images. Though operators with
tations. We will concentrate on the interpretation of the string=z +iS are normalizable in the worldsheet theory, their
theory as a Euclidean field theory. The rotation to LorentziarfPectral flow images are not. After imposing the physical
target space then should be the standard rotation of the BCFState conditions, the only states wjtk 3 +is andw=0 are

X X2

to Lorentzian signature. tachyons. Neglecting the tachyons, we see that all the opera-
tors of interest are non-normalizable on the worldsheet
theory.
A. Two-point functions Though we just argued for the conditiot®1) and (3.2)

Our first task will be to pick a set of non-normalizable on the basis of the Lorentzian theory, we can make a similar
operators in the SL(&)/SU(2) model which we will use to argument purely in the Euclidean theory. The operators on
construct physical observables. The BCFT is a unitary CFthe worldsheet that can correspond to good spacetime BCFT
and it makes sense to analytically continue the target space gerators are those non-normalizable operators for which the
AdS; with a Lorentzian signature metric. By the standarddivergences are localized at the pointvhich we want to
state-operator correspondence, a normalizable operator of tfaerpret as the point where the BCFT operator is inserted. In
BCFT corresponds to a normalizable state in the BCFT in thé@ther words, the “non-normalizability” of the worldsheet
Lorentzian signature space. In the regime where perturbativéertex operator should be concentrated aroyind in target
string theory is applicable, these states correspond to singléPace. Indeed, we saw in Sec. Il thaf i§ outside the range
particle states and multiparticle states of string theory or3.2), there are divergences on the worldsheet theory that are
Lorentzian Ad$x M. The worldsheet theory of the string Not localized on the boundar§?. For j<3, these can be
on the Lorentzian Ad$is the SL(2R) WZW model. The interpreted in the usual point-particle limit, while fpr(k
spectrum of the WZW model was proposediibased ona —1)/2 the divergences came from worldsheet instantons. Let
semiclassical analysis, and the proposal was verified by ans clarify the target space implication of the latter. Instead of
exact computation of one-loop free energy[#. The spec- the analytic regularization, one may choose to compute the
trum of the WZW model is decomposed into a sum of irre-two-point function by using an explicit target space cutoff
ducible representations of the SLR2x SL(2R) current al-  regularization by limiting the functional integral to be over
gebra. As shown in Eq(1.1), it contains the discrete P<po for some large value op,. From the discussion in
representation®’® DY with < j<(k—1)/2 and their spec- Se&C. Il B, we expect that, ifis in the rangé3.2), the world-
tral flow images corresponding to short strings, and the consheet never grows large for genenicand all cutoff depen-
tinuous representatior(ﬁ"{I@C?,a with j=1+is for real s dence is localized neay~x;. On the other hand, if ex-
and their spectral flow images corresponding to long stringsc€€ds the upper bound, the amplitude dependposince

Going back to the SL(E)/SU(2) model, these states the worldsheet can grow larger thanp. So the largepg
correspond to the operators with dominates the functional integral and the two-point function

is divergent. The divergence is not localized in target space
j=3+is (3.1)  around the pointg;, but it is spread all over target space, as
shown in Fig. 1. Thus the two-point function of the operator
®; in the Euclidean theory makes sense as a local operator in
®More precisely, these are what “single-particle” operators cor-X,x only in the region(3.2). One can nevertheless define the
respond tq13]. worldsheet operator®; outside the rangé3.2), via analytic
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continuation. In this definition, one is implicitly subtracting the consistency with the target space Ward identities. The
counterterms that are not localizedn From the point of target space two-point functiai3.3) is also well behaved in
view of the worldsheet theory, there seems to be nothinghe physical rangé¢3.2).
wrong with this. In fact, operators outsid®.2) are very We can also compute target space two-point functions for
useful for computing correlation functions on the worldsheetany spectral flowed states; this will be done explicitly in Sec.
[19-21. However, worldsheet operators outsi@e2) cannot v, we will find that they are all regular and have positive-
be identified with local operators in the BCFT. In fact, our gefinite two-point functions in the regio(8.2. The extra
analysis in Sgc. IE sh_ows that, if one tries to excged the,ctor (2 — 1) mentioned in the above paragraph is general-
upper bound in the Euclidean worldsheet theory, one is natys, . to]2j — 1+ (k—2)w| whenw=0.
rally led to qurators ‘P spectral flowed represgntationg,. As shown in[1], the spectral flowed continuous states
2 g)hei\?gr?fgc'%nB((zj )13 itgivvglcl)r:jdes%ihniedt gﬁ%'pcggitti%’g?t'.?n (j=3+is) correspond to operators in the BCFT which have
) 9 y £Q-<. b 9 continuous dimensions. We conclude from this that the

belonging to the rang€3.2). In the string theory computa- BCFT has a noncompact target spaatleast it is noncom-

tion, we need to divide the amplitude by the volume of the in the leadi der i . bation th
conformal groupV.qns Which keeps the two points fixed. It pact in the cading order in string pert.ur ation t Qomhe
QDature of this noncompactness was discussdd.&hin the

cancels the divergence coming from evaluating the delt .

function 5(j—j’) in Eq. (2.9 atj=j’, leaving a finite an- Case of Ad§XS*XM,, where M,=K3 or T*. In these
swer, as explained ifi29].1” The cancellation of the two ¢&ses, BCFT is the supersymmetric sigma model whose tar-
divergent factors requires some care since it may leave sonfet space is the moduli space of the Yang-Mills instantons on
finite j-dependent factor. In Sec. V, we will given a heuristic M4. The noncompact directions are related to the limits
argument to say that the target space two-point functionvhere instantons become small. The relation between the

comes with an extra factor of {2-1) as existence of the continuous spectrum in CFT and the non-
compact directions in its target space is familiar in the case
1 of a free noncompact scalar. We would like to stress that

Di(X)Di(x =—(P.(X1;2,=0 . . . .
(i) Py 2)>t"’“get_Vconf< i(x121=0) there is nothing particularly nonlocal about the sigma model

with a continuous spectrum. The operators corresponding to

X ®;(X2:22=0) )worldsheet these states are local on the space where the BCFT is de-
(2j—1)B(j) fined. This is for the same reason that an operatordikéis
TR (3.3 |ocal on the worldsheet of the free scalar fiXz,z). In our
case, these operators are the spectral flowed versiofis of
A more rigorous derivation of the extra factorj(21) is  =3-+is. Their target space two-point function will be com-
given in Appendix A, where we show that this is required byputed in Sec. V and is given by

k S
_ F(j——w+J rij+-w-J
S jw ~i'w , , WB(J) 2 2 1
(B0 P (X pager | O(s+8')+8(s=8) ” T | 44
F(l—j——w+J F(l—j+—w—J) 12712
2 2
Herej=3+is, j'=3+is’, the spacetime conformal weight of the operatas given by
k  1[s*+i
J—Zw+— k_2+h—1 , (3.5

and h is the conformal weight of the vertex operator for the internal CFT, whose two-point function we assumed to be
unit-normalized in Eq(3.4). Equation(3.5 comes from the.,=1 condition. Unlike the case of short strings, the two-point
function of long strings does not receive the extra factd2pf- 1+ (k—2)w| when we transform the worldsheet computation
into the target space computation. Note that the term multiplying the set@umttion in Eq.(3.4) is a pure phase as

"The target space two-point function receives contribution from the internal CFT. Since this part is diagonal in the conformal weight, the
physical state condition for the short string implies that we need tg=s¢t to have a nonzero two-point function in the target space.
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K ok 3 3
I j—=—w+J rij+—-w-J
i55) 7B()) 2 2
2j k k
YED b K] e Swed . |
2 2
r 2s r l+' k +J ? ?
o Tk2) r-2is) 2T 2"
2is |\ I'(+2is) E—is—Ew—FJ FIG. 2. Here we see the change in behavior of the semiclassical
k—2 2 2 geodesics when we go from the casg p£j,+j, in (a) to the case
j3=>j1+]join (b).
. 1 K . Is=)1T)2
ISt W hand, if j3>j,+j,, we cannot find a configuration where
X

E—is+ §w+ moves to the boundary as shown in Figb)2 In the semi-
classical approximationn>0 becomes a continuous vari-

This is the phase shift that occurs when a long string come b[e. I.f we quan_tlze .th? fields, we see tmais an integer.

from the boundary and back, which in terms of the BCFT is his dlverg_ence IS ellmlnat(_ad by a re_deflmtlon of the_ opera-

a small instanton becoming large and small again. tor O;, which mixes the single-particle operator with the
In summary, the singularities in the two-point function are tWo-particle operator. That a local redefinition of the operator

outside of the rangé3.2) of our choice of operators. Now we ¢an cancel the divergence is related to the fact that the diver-

can ask whether this choice removes all singularities in algence is coming from the region close to the point on the

n-point functions. The answer iso. We will see, however, boundary wherd®;_is inserted.

that the singularities can be interpreted physically and we The three-point function has also a divergenceXa;

will give a prescription for how to deal with them. In other =k. This divergence appears even if gl are within the

words, all singularities that appear are interpretable in theange(3.2). From the point of view of the worldsheet theory,

(1 K 4) : (3.6 the interaction point is in the interior; the interaction point
I J

BCFT. this divergence is due to instanton corrections as we saw in
Sec. Il. This means that the divergence appears because the
B. Three- and four-point functions worldsheet can be very close to the boundary of AdS with no
. . o cost in action; see Fig. 3.
The three-point function has poles jat=j,+j,+n and One might think that this is a nonlocal effect in the BCFT.

their permutations injy, jz, j3. These poles are standard |, order to remove it, it seems that we need counterterms
and easy to understand. They appear in all Ad3CFTy  \hich are spread all over tr## where the BCFT is defined.

exampleg37,38. These poles are due to mixing with two- \we would like to propose a different interpretation. The
particle states. The stnng pgrturbatlon expansion in AdS cOIgcET is local and this divergence is simply due to the non-
responds to a N expansion in the boundary theory. To lead- compactness of the BCFT target space. In other words, we
ing order in 1N the operators are single particles andqq not remove the divergence. The origin of this divergence,
multiparticle states in AdS. When we computéNidorrec-  yhich we will explain below, suggests that only three-point
tions, these operators can mix. The mixing is genericallyfnctions withSj;<k make sense in the BCFT.

small, of order IN, but if two operators have the same con- | order to clarify this point, let us consider a quantum-
formal weight at leading order in i then the mixing can  mechanical example which has a phenomenon very analo-

be of order 1, since we are doing degenerate perturbatiogoys to what we are dealing with. Suppose that we have the
theory. If j3=j;+],+n, then we have two operators with

the same conformal weight, namey;, and: (9‘1‘20]-10]2:,
where ther1 are single-particle operators and the deriva-

tives act on both operators in such a way that the result is ¢
primary operator under SL(R)XSL(2R) symmetry at
largeN. These two operators can mix in the subleading orde
in 1/N, and the divergence in the three-point function is can-
celed if we take into account this mixing effect.

It is instructive to look at the semiclassical description of
this divergence. Suppoge are large, then correlation func-

tions can be computed by considering a particle of masse: (a) (b)
proportional toj; with trajectories that intersect the boundary
at the points where the operators are inseftgd]. If j; FIG. 3. Change in behavior of the classical worldsheet when

<j1+j, (and the same holds for other permutations 0f)123 =j;<k in (a) to the case whergj;>k in (b). In (b), the worldsheet
the dominant contribution is given in Fig(&. On the other s driven to the boundary of AdS.

106006-14



STRINGS IN AdS AND THE ... .1ll. ... PHYSICAL REVIEW D 65 106006

guantum mechanics of a particle in a potential well, where In order to stress once again that these divergences have
the potential asymptotes to zero at infinity and it is negativenothing to do with nonlocal behavior of the BCFT, let us
at the origin, so that the system has a normalizable groundsonsider an example withN=4 super Yang-Mills(SYM)

state wave functiony(x) which for largex decays asy(x)  theory ind=4 where this feature appears. Considier 4

~e 2 |n this system, we can consider operators of theSYM theory onT?x S'X (time) with antiperiodic boundary
form O, =e™. The expectation value on the ground state ofconditions for the fermions 08" and periodic o>, The

the product of two of these operators is well defined as longuPergravity solution describing the ground state of this
as\< «/2. If we insert several operators and we try to com-theory was described ip40]. It is the near-extremal black
pute(y|Oy (t1) -0, (tn)|¢), we will find that we can only three brane doubly Wick rotated. It is a nonsingular geometry

do th ion [ in oth ds. th with topology T?x D?, whereD? is a disk whose boundary
0 the computation iEA;<«. In other words, there seems ;o e gl (e concentrate on the geometry of the radial di-

to be a nonlocal constrairtin time) on the operators Whose rection and the three spatial dimensions of the branbis
correlators we can compute. The theory is perfectly localiheory has finite-energy excitations which correspond to
and the divergence is just an IR effect in the target spacgjacing a D3 brane at some radial position and winding on
coming from the noncompactness of the target space. It is 2 SI. These are analogous to the long strings described
well-known fact that there are operators in quantum mechargpove. They lead to divergences in computations of certain
ics that have a domain and a range, and some operators cadrrelation functions, in a very similar fashion to how long
take a state out of the Hilbert spafeln this quantum-  strings lead to divergences in the AdSase. These diver-
mechanical model, there are other operators, of the forngences come from the fact that there is a Coulomb branch
e'*%, for example, which are perfectly well defined for any that we can explore with finite cost in energy.
real value ofk. Finally let us note that, both in the Ad®ase and in the
Our BCFT is very similar to this quantum-mechanical ex-N=4 SYM example we have given above, we can remove
ample. It has a normalizable ground state, and the vacuuithe noncompact direction in field space by deforming the
expectation value of discrete states wil;>k is not de- Lagrangian of the theory. In the Ag8ase we can add some
fined. There are other operators, the ones in the spectr®amond-RamondRR) fields, which in the BCFT has the
flowed continuous representations, which we can considegffect of making the target space compact. In ke 4 ex-
These operators are analogous @ in the quantum- ample, we can add mass terms for all scalar fields.
mechanical model. Correlation functions of these are well In AdS; with RR backgrounds, the continuum states be-
defined without any additional constraint. Notice that the tarcome discrete and we can compute the correlation functions
get space BCFT has a normalizable ground state, despi@f any number of operators. If we take the limit of RR fields
having a noncompact target space since there is a gap bgoing to zero, we will find that states with high conformal
tween the ground-state energy and the threshold where thgeight with j>(k—1)/2 will lead to operators in the $2)/
continuum starts due to the noncompactness. SU(2) model which are spectral flowed. Similarly, we expect
Based on these observations, we claim that correlatiothat if we compute a three-point function for three discrete
functions of discrete states are only well define®jf<k.  states with2j;<k, the result will go over smoothly to Eg.
The expressiofi2.13 can be defined foEj;>k by analytic ~ (2.13 as we take the RR fields to zero. On the other hand,
continuation, but it does not make physical sense as it dodere is no reason why the correlation function of states with
not represent a well-defined computation in the BCFT. In2j;>k should go over smoothly to E42.13 when we re-
order to define it, we need to add counterterms that argove the RR fields; in fact, we expect that the correlation

spread ovefs? in target space. function diverges in the limit.
For the four-point function, the singularity at=x (2.32
implies, after integrating ovez, that there is a divergence in IV. FOUR-POINT FUNCTION

the four-point function if2;j;=k+ 1.1° So a four-point func-
tion makes sense only faj;<k+ 1. It might be possible to
extend the four-point function t8j;>k+ 1 by analytic con-
tinuation, but it does not have any immediate physical inter
pretation.

In this section, we compute four-point functions in target
space by performing the integration over the moduli space of
the string worldsheet. A four-point amplitude depends non-
trivially on the cross ratix of the four points on the bound-

Note that we are not saying that there is a bound on th&Y of AdS where the operator@l,.._. Oy aré mser’ged. in
spacetime conformal weight of the operators we add. B}pther words, we can use conformal invariance to fix the op-
using spectral flowed operators, we can compute correlatiofirators as
functions of operators whose conformal weights are as high
as we like. These spectral flowed operators were defined pre- Frargel X, X) ={01(0) O5(X) O3(1) O4(x)). (4.0
cisely to avoid the divergences associated to long strings.

Our main objective is to derive the operator product expan-
1875 a trivial example, consider a harmonic oscillator and imagineSion by evaluating the smali-expansion ofF,ge. If the

the Hamiltonian acting on the staltg) =3 (1/n)|n). amplitude Fage(X,X) in the BCFT obeys the factorization
91 an n-point function, we expect a divergence whef,=k  condition, we should be able to expand it faf<1 in pow-
+n-3. ers ofx as
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i — V2 Z,Z;x,X) = F: 2,2, x,X)F; 2,2),
‘Earge(xnﬂzz X‘]_\]l_JZW_Jl_\]zctarge{\]"])’ (4.2) worldshee( j SL(2)( j |nterna( j (4_6)

J,J
_ . where Fg ;) is the correlation function of the
where (,J) are the target space conformal weights andSL(2,C)/SU(2) coset model anffyemais that of the inter-
Ciarge(J,J) is given in terms of three- and two-point func- nal CFT%

tions as A closed-form expression afg () is not known for ge-
neric values ofj,,...,j4 for the external states. We will use
Ctarge{Ja‘]_):<Ol(0)02(1)0\]]°°)> an expressi(_)n for it give_n i1, Wh?Ch involves an integra}l
’ over a continuous family of solutions to the KZ equation
1 (2.28. Let us review the derivation. The KZ equatith28
X (0;3(*)0;3(0)) has an infinite number of solutions reflecting the fact that the

Hilbert space of the SL(£)/SU(2) model is decomposed
X(0;3(0)O3(1) O4(=)) (4.3 into infinitely many representations of SL(). It turns out
that there is a unique combination of these solutions that
and{O; ;} is a complete set of operators in BCFT. satisfies the factorization properties on the worldsheet, i.e.,
Before we start the detailed computation, let us summathe z expansion of the amplitude should be expressed as a
rize our result. We will focus on the case in which the op-sum over normalizable states when all four external opera-
eratorsOy,...,0, correspond to short strings with=0, i.e.,  tors, labeled byj,,...,j,, are also normalizabléor close
they correspond to states in discrete representatibﬁs enough to normalizablelt was shown in28] that the Hil-
®DJQ of the current algebra SL(R) X SL(2R). We find that, bert space of the SL(€)/SU(2) coset theory is a sum of the

if their conformal weightg,,...,j, obey the inequalities representations with=3+is (s real, >0) with the con-
formal weightA (j). Therefore, it is reasonable to expect that
. k+1  k+1 the four-point function is a sum of products of the conformal
Jitle<—— Jstla<——, (4.4 block Fi(z,x) of the form
the string amplitudé4.1) can indeed be expanded in powers Fi(z,x) =22 7800-802x (1711712 T £ (x)2",
of x as Eq.(4.3), and the intermediate staté€,  are either n=0
short strings withw=0 and in the rangé3.2), long strings (4.7)

with w=1, or two-particle states of short strings. All other N o . :
physical states do not appear. In Sec. V, we will show thaEUbSt'tu“ng this into the KZ equation, one f|'nds tm@((x)
this is because the three-point functions in E43) vanish as to obey the hyperg_eometrlc equatiorxiwith two lin-
for the other cases. If4.4) is not obeyed, then there are €@y independent solutions
terms in thex expansion that cannot be interpreted as coming FG—iitinitisjn2i:x)
from the exchange of physical states. We explain at the end 17l 2 ls™ a0,
of this section that this is due to the noncompactness of the XU AR~ it ipd it is—ja2—2j:X) (4.8
target space of BCFT, and it is the physically correct behav- I7h™ 227l %)
ior. For CFT's with compact target spaces, the operator prodag e will discuss below, we need both solutions to con-
uct expansior(4.3) should always be valid. In our case, We gg,ct a monodromy-invariant four-point function. Taking
expeqt it to hold only |f(4.4_) is obeyed. Now we proceed to into account the factod ~11i2in Eq.(4.7), one sees that the
explain these statements in more detail. two solutions in(4.8) are related to each other by the reflec-
tion j—1—j, or s——s if we write j=3-+is. Therefore,

A. The four-point function in the SL (2,C)/SU(2) coset model  instead of requiringg>0 and using both solutions, we can
llow s to be any real number and always pick the first so-
ution in (4.8).

It was shown by Teschner that, for generic valueg, afl

Each spacetime operator is associated to a worldsheet v
tex operatoi?, (x,x) — [ d?z ®,(x,X;z,z;). If we want to cal-

culate the spacetime four-point functi , we should : . X
u pacet ur-point functicRarge, W . otherf,(x) (n=1,2,...) are determined iteratively by the KZ

calculate the four-point functioft,q1qsneet0f the correspond- . . — o,
ing worldsheet vertex operators and integrate it over theifduation once we fiX,(x) as the initial condition az—0.
They take the form

positions. Using worldsheet conformal invariance, we can fix

the worldsheet position of three of them, and the worldsheet o
correlator depends only on the cross ratidGo we need to £ (x)= C. M 4.9
compute n(X) m;“ v 49

_ 2 — Therefore, by demanding thdt(x) be given by the first
Frargel X.X) f A2 Fuordsheck 2, 2:X,X) 49 solution in(4.8), we can uniquely determing; as a solution

There are two factors that contribute to the worldsheet cor=—
relation function as 200 general, Fyongsheeicould be a sum of such products.
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FIG. 5. The solid line indicates the integration contour after we

(4.10 in thej complex plane. We highlighted the location of some analytically continue Eq(4.10 in the externalj;. Some poles of

polesinC(j). Here all externaj; are of the formj;= %+ is; . There
are similar poles with1,j,—]3,j4; there are also some other poles
that will not be important for our purposes.

to the KZ equation. Note that, unlike,...,j 4, the parameter
j does not appear in the KZ equati¢h28), but it is used as
a label of the solution of the KZ equation whose snmll
behavior is as in Eg4.7).

The full four-point functionFg (»)(z,x) is then given by
the worldsheet factorization ansal] as

For2)(2,Z%X)= dj C(j)|F(zz:x, %)%,

(1/2)+iR
(4.10
where the normalization factal(j) is given by
C(j)=C(j1,J2,]) - C(i.jsiia) (4.1
J - Jl’]ZYJ B(J) J!]ByJAa .

whereC(j1,j2,j3) andB(j) are defined in Eqs.2.14) and
(2.10. The integral is ovej= 3 +is with se R. As we men-
tioned, thej integral covers both solution@.8) because of
the reflection symmetry—1—j of the integration region.
As shown in[21], including both solutions is necessary in

the form|j,—j,|—n have crossed the integration contour so we
should include their residues. There are similar poles \wth, .

We separated the poles along the imaginary direction for clarity,
although they are all along the real axis whgrare real.

To compute the correlation function of short strings with
=0, we need to analytically continyge,...,j, from the line
ji=3+is to the interval;<j;<(k—1)/2 on the real axis.
The poles that cross the contour of fhiategral in Eq.(4.10
are of the form

j=lii—i2l-n, n=012..., (4.13
with j>3. There are similar poles i€(j,j3,j4) at
j=lis=is=n, n=012.... (4.14

There are no poles iB(j) ! and F; that cross the contour
when we do the analytic continuation. Therefore, after the
analytic continuation inj,...,j4, the correlation function
Fsi(2) is defined by the integrd¥.10 plus the contribution
from the poles at Eq94.13 and (4.14). Stated in another
way, the contour of th¢ integral is deformed from the line
j=3%+is to avoid these poles. See Fig. 5.
This completes the specification &k, ,y(z,x). The next

order for the four-point function to be monodromy-invariant {535k is to multiply the factotFema(z,2) coming from the

aroundx=1 ande. In Appendix B we argue that the integral
overj in Eq. (4.10 is convergent.

The expression(4.10 is valid if all external labels
j1,-...j4 are close to the ling=3%+is. The expression for
other values of4,...,j, is defined by analytic continuation.

When we do this, some poles in the integrand cross the in-

tegration contour. The four-point function is then E4.10

plus the contribution of all poles that have crossed the inte-

gration contour. We need to know the pole structur€@

and Fj(z,x). As we discussed in earlier sections, the three

point functionC(j,j,,j) in Eq. (4.11) has poles at

1=1=j1=2=Jp, I1tiatip, E(1—J2)—Ip
(4.12

(see Fig. 4 where

jp=n+m(k—2), —(n+1)—(m+1)(k—2)

internal CFT and integrate the resulting expression over the
plane as in Eq(4.5. We will find it useful to deform the
contour of thg integral. We will deform the contour of the
integration in Eq.(4.10 within the region

k—1

5 (4.15

1 o
—<Rej<
2 =€l

In this process, we will pick up poles @(j) and.7}, soitis

useful to list them here. Among the pole.12 in
C(j,i1,12), the relevant ones in the regi¢#.15 are of the
form

Poles: j=j;+]j.+n,

Poles: j=k—ji—j,+n, (4.16

n=0,1,2,....
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i i region 1I: |z|>1.
' E k - -j2+ n . . .
-lji-jz | -n T foot R SinceFs (2)(2,X) has the singularity2.32) atz=x, one may
""""""""""" : Pol L consider dividing the region | further into two regions where
! ' +j+n ;
iy | -n : ___9__‘?_5_1_ ______ - Jitptn 0<|z|<|x| and|x|<|z|<1, but it turns out to be unneces-
.............................. ! sary to do so, as we shall see below.
. E > Poles, ! k-jz-jytn
iy I-m """"""""" g B. Integral over the region |
ljs-js | -n ............ '13"'14"'" ........ To integrate the four-point function over the region I, it is
e AU b i useful to define the variable=z/x and use the expansion
| E (4.17. We will mostly concentrate on the first tergg(u) of
the expansion. As we mentioned, the KZ equation implies
12 (k-1)12 k-2+112 that the first termgy(u) obeys the hypergeometric equation
whose solutions ar&;(u) andF,_,_;(u), whereF; is de-
FIG. 6. We shifted the integration contour jte- (k/2)— 3 +is. fined b i(u) 1) J
We picked up contributions from Polesind Poles. This figure y
represents the case in whig¢h+ j,<k/2 andj;+j,>k/2. Fj(u)EF(a b,c;u)
: . . . 4.1
Here we are assuming th@t,j, are in the physical range a=j1+jo—j, b=jatjs—] 4.19
1<j1,j2<(k—1)/2. Note that(4.15 imposes a constraint
on allowed values oh in Egs.(4.16. The poles(4.13 are c=k—2j.

also in the region(4.15, but the contour of th¢ integral is

defined to avoid these poles, as we discussed in the previoyg u=1, these solutions behave as+ Cz(u_l)k_zji,
paragraph; see Fig. 6. There are similar pole€(,j3,j4)  where the coefficients;,c, are both nonzero for generic
given by exchangingy,j,—js,j4. From Eq.(2.10, we can  values ofj,,...,j4. It is therefore clear that the first solution
see that B(j) has no poles in the regio@.15. (4.19 on its own is not monodromy-invariant at= 1. For a

One may also ask if there is a pole coming from thegivenj, there is a unique monodromy-invariant combination
conformal blockZ; . It turns out that there is no such pole in given by?l

the region(4.15. This has been shown 1] using proper- . . - . A .
ties of the Kac-Kazhdan determinant. To see this explicitly, it G; o(u,x)=|x*1) =200 =A02*I=I1 72y A1) =400~ 4(2)|2
is useful to rearrange the expansi@n?) as _
X[IFjWP+NuF g (W], (420
Fi(z,x)=x2D-800-Al02+i=]17]2
e where

X yth=al-2G2 3 g (u)x™,  (4.17 A:_y(C)Zy(a—CJrl)y(b—CJrl)
m=o (1-c)’v@yb)

and y(x) is given in EQ.(2.11). The subindex 0 is there to

(4.21

whereu=2z/x. This expansion will also be used in the next

subsection to evaluate theintegral in the region wher| remind us that we are examining the first term in thex-

<1. If we substitute this expansion in the KZ equation, Wepangjon in Eq(4.17). It is useful to note that we can write it
find that the first termgy(u) in the expansion should obey g

the hypergeometric equation in The solution which agrees
with the initial condition(4.7) for small z is C(J)Gj o(u)=C())| Fj o(u,x)|?

go(W=F(j1t+jo—].jstia—].k=2j;u). (4.18 +O(k=1=])|Fm1-j o X%, (4.22

By looking at the standard formula for the Taylor expansionWhere
of the hypergeometric function, one can check explicitly that

. =yA(D-AGD) A +i—]1-]
go(u) has no poles in the regigqd.15. Given thatgy(u) has FjoUX)=x ' ’ s

no poles, we can prove inductively that the same is true for X yd)-AG0 =202 E () (4.23
all gn(u), m=1. The proof of this statement is given in )
Appendix B. is the first term in thex expansion ofF; in Eq. (4.17). We

In the following subsections, we consider the cage  can show Eq(4.22 by using the identities
<1 and expand the expressighl10 in powers ofx. We will
then integrate it over. We will not impose a restriction on C(k—=1—j)=\C(j),
since we must integrate overto obtain the physical string
amplitude. We will divide the range dfinto two regions:
2INote thatj is not complex conjugated in this expression. In other
region I: |z|<1, words, |a(j)x D|2=a?(j)|x|? fD.
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Ak=1=])+(k=1=))=A(j)+], (4.24  pointj, it also includes the poink—1—j. Therefore, we
write the integral of the solutiof4.19 as3 of the integral of
A(k—=1-j)=A(j)+1-c. the monodromy-invariant combinatid®; o(u,x). As we de-

) ) . .. form the contour, we pick up some residue contributions
The problem with the monodromy-invariant comblnat|onfrom the poles at Eq4.16. It turns out that each of those

(.4'20) 's that it does not satisfy tlh,i smalexpansion condi- o nyripytions is monodromy-invariant by itself. This can be

B e 26 1 1 seen by noing tht for the values pin Eq, (415, he

fies the expans.ior(4 7 but is not 'monodromy-invariant coefficient\ in Eq. (4.20 vanishes. More specifically, we
’ find that the contributions from Poles Eq. (4.16 are non-

aroundz=x. This puzzle is resolved by performing the . N . . .
integral. We can show that, after thetegral, the amplitude singular aty— 1, while those of Polgsin Eq. (4.16 contain
(4.10 is monodromy-invariant. To see this, we need to de°N!y the singular solution an=1, and therefore both are
form the contour fromj=3+is to j=%+is+[(k—2)/2]: monodromy-invariant by themselves. We can now express

see Fig. 6. The new contour is such that, if in includes thé=d- (4.10 in the manifestly monodromy-invariant form as

f de(j)]—'j(z,x)=f C(j)Fj(z,x)+ (contribution from Poles and Poleg)
(1/2+iR [(k=1)/2]+iR

1
=—f dj C())[Gjo(u,x)+- -]+ (contribution from Poles and Poleg), (4.29
[(k—1)/2]+iR

where the dots represent higher-order terms inxtlegpan-  where the coefficient is given by
sion. It is convenient to combine the integrand into the

monodromy-invariant formG; o(u,x) given by Eq.(4.20

because, in the following, we will perform the integral

before theg integral.(We will be careful about justifying the Cinternal N,N) = Cinternal h1,h5 ,h) —
exchange of th¢ integral and thez integral by regularizing Binternal hh)

the z integral) In conclusion, we have shown that after inte-

grating ovelj, Teschner’s expressidd.10 for the four-point X Cinternal h, N3, hy), (4.27)

function is monodromy-invariant aroure- x.

The contribution from Polgs is of the form
xi7l17i2f(2,Z) with j=j,;+j,+n. Since the integral of andBandC are given by the two- and three-point functions
f(2,2) times Fiyema(z,2) is independent ok, we conclude ©f the internal CFT.
that the conformal weight of the intermediate stated-sj Now we are ready to integrateFyorashee Fsi(2
=j;+]j,+n. These conformal weights can be identified with X Fintenal OV€r Z in region I, namely over the regiofuf
the conformal weights of two-particle contributions. In other </x|~*. One problem is that this integral might diverge at
words, when we compute the spacetime operator product ext=0. This would not be a problem if we were actually inte-
pansion, the intermediate operators could be two-particle opgrating Fuoridsheet SINCE We can remove the divergence by
erators. There can be other contributions with these quantu@nalytic continuation, which is the standard procedure in
numbers in the intermediate channel which come from twdstring theory computation. The problem arises if we try to do
disconnected sphere diagrams in string perturbation theor§he z integral before theg integral in Eq.(4.10 since these
The z integral of this contribution contains divergences attwo integrals may not commute if there are divergences. In
small z They are canceled by another contribution whichfact, it is necessary to keep track of these possible diver-

will be discussed later. gences and to be careful about the exchange ofzthed |
If Eq. (4.4) is satisfied, Eq(4.25 does not receive any integrals in order to recover the correct pole structure. The
contributions from Polesin Eq. (4.16). two integrals commute if we regularize tleéntegral by in-

Before we perform the integral over tieplane, we need troducing a cutoffe and integrate ovee<|u|<|x| *. We
to multiply Fg; (2y(z,x) by a four-point functionFiyema(z,z) ~ Will keep track of thee dependence and seed-0 after we

of the internal CFT. In region |, i.e|z|<1, we can expand Perform thej integral. In practice, what we do is first inte-
Finternal S grate over the whol@ plane and define the integral by ana-

lytic continuation. We then subtract the contributions from
|u|<e and|x|1<|ul. If we use the same analytic continu-
ation technique to evaluate the integrals over these three re-

- gions, the result after the subtraction of the two contributions
X Cinternal N, ), (4.26  gives the regularized integral over<|u|<|x| 1.

]:internaﬁzaij = Z z(h—hi=hgjzh—h;—h;,
h,h
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1. Integral over the whole u plane

Let us start with the integral over the whaleplane:

Rlzf dzzfsuz)fimemal
:2_ f dj C(j)cinterna(hvﬁ)
hh

X
m

(4.28

XXM ]h;'r?]ﬁ(x).
0

%\M 8

The first term in thex expansion is given by

hh oy — AG) Fh—14]—jq—jsoA() h—1+]—jq—j
I570,0(X) =X 1712y 1712

1 —
x5 [ du TR ),

(4.29

where

d=A(j)+h—1, d=A(j)+h—1. (4.30

This integral can be done using the form@l) in Appen-
dix C. We find

Rlzcintema(haﬁ) djC(j)XdH*jl*jZYd*j*jl*Jz
[(k=1/2)]+iR

I'(d)(a—d)I'(b—d)[(1—c+d)
r(1-d)I'(1—a+d)'(1—-b+d)'(c—d)

w
X —
2

y(c)

A (4.30)
y(@)y(b)

PHYSICAL REVIEW D65 106006

The subleading terml%‘;’r?ﬁ with (m,m) # (0,0) in thex
expansion(4.28), represented by the the dots in E4.31),
are identified as coming from the global SLR2,
X SL(2R) descendents of the long strings considered above.

Indeed theirJ3 andJ3 eigenvalues are

B=J+m, B=J+m (4.33

with J as in Eq.(4.32. In principle, there could be new
contributions from conformal primary fields with these quan-
tum numbers, but they seem hard to disentangle from the
descendent contributions.

2. Integral over|u|<e

From the integral4.28 that we just computed, we need
to subtract contributions frorfu|<e and from|x|~1</|ul.
Here we will evaluate the integral ovr| <e. As in the case
of Ry [Eq. (4.28], let us focus on the leading term in the
expansion in Eq(4.17). The integral we need to evaluate is

> 0] C(J) G 1T 1T
o JIk-121+iR

(4.39

xfl d?u ud~ a2 F(a,b,c;u)|?.
u|<e

Here we used the reflection symmetry-k—1—j of the
contour aff (k—1)/2]+is (s rea) to combine the two terms
in Eqg. (4.20 into one. We can carry out the integral by
expandingF(a,b,c;u) in powers ofu,

fl ud= Y F(a,b,c;u)|?
uj<e

8

T
— 2(d+n -
= 4 o d+n e )5n+h,n+h
n,n=

I'(a+n)T'(b+n)I'(a+MI'(b+n)I'(c)?
I'(a)?T'(b)°T'(c+n)I'(c+n)

(4.3

where the dots indicate terms with higher integer powers ofNote that the conditioh+n=h-+"is imposed by the angu-

X,X. By looking at the powers of,x, we can read off the
conformal weight of the intermediate states as

J=d+j=A(j)+j+h-1

k s°+31
“2 %2

+h-1, (4.32

wherej=[(k—1)/2]+is and a similar expression fa ob-

tained by replacingl—ﬁin Eq. (4.32. We conclude that Eq.

lar integral ovem. In order to take the limit—0, we move
the contour toj=3+is with s real. There the exponemt
+n of eis positive(if we ignore the tachyonsince

SE

- +h+n—1.

d+n=

(4.36

Thus the contribution from the contour integral alopg 3
+is vanishes in the limit— 0. This does not mean that the
original integral(4.34) vanishes in the limit—0. As we are

(4.3 represents the contribution of long strings with wind- going see, the integral picks up pole residues as we move the
ing numberw=1 in the intermediate channel. In Sec. V, we contour fromj=[(k—1)/2]+is to j=3+is.

will show that the coefficient in Eq4.31) is precisely what
we expect from Eqs(4.2) and(4.3).

There are four types of poles that contribute when we
deform the contour of th¢ integral in Eq.(4.34 from |
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=[(k—1)/2]+is to 3 +is. The first type of poles comes from The second type of poles is af=j;+j,+n (n
the zeros ofd+n in Eq. (4.35. At the pole, we have =0,1,2...). These cancel the dependence of the contri-
bution from Poleg that emerged when we originally moved
. the contour fromj=1%+is to [(k—1)/2]+is. Thus the net
d+n= -1 +h+n—-1=0. (4.37) result is that we can compute tlzéntegral for the contribu-
k—2 tion from Polegs by the standard analytic continuation
method. The resulting contribution can be interpreted as a
contribution to the OPE from two-particle operators.
Similarly, the third type of poles is gt=k—j;—j,+n
gzn=0,1,2 ... ). These cancel the dependence of the con-
tributions from Poles. These poles do not appear(4.4) is
obeyed.
Finally, the fourth type of poles is gt=|j;—j,/—n. In
the original contour of Eq(4.10, we avoided these poles
(J:l)n(j:lﬂj ) (4.39  since they crossed the contour when we performed the ana-
lytic continuation inj,...,j4. We now pick up contributions
from these poles since we have to move the contour all the
in the SL(2R) WZW model times an operator of dimension way to the line atj=3+is. The contributions from these
h,h in the the internal CFT. In fact Ed4.37) is theLy=1 poles have explicite dependence. We believe that these

condition for such an intermediate state. Thg=L, condi-  Should be explicitly subtracted.

tion follows from the conditioh+n=h+min Eq.(4.35.In Al that we said regarding,, j, should be repeated for
Sec. V, we will check that the coefficient in Eq4.34 and  /3: J4- _ _

(4.35 evaluated at the pol@t.37) exactly agrees with what 10 summarize, the integral 0V_¢U|<f reproduces the
we expect from the operator product expans(gm) and eXChange of short string states with=0 and mixing with
(4.3). The states iff4.39 are global SL(R) X SL(2R) pri-  two-particle states. These are the only contributions to the
maries, although those with=1 are descendents of the cur- integral as long a#4.4) is satisfied.

rent algebra. Higher-order terms in tlxeexpansion(4.28

produce terms which have the quantum number of descen-

dents of the states irf4.38 under the global SL(R)

X SL(2R). Note that due to the fact that we only shifted the 3. Integral over|u|>|x|~*

contour within the rangé4.15, the values of of these dis-

crete state contributions to the OPE are naturally bounded by Finally, let us evaluate the integral ovkr/>|x|~* and
(4.15. This reproduces the constraint on the spectrum of théubtract it fromR; . It is convenient to use the expansion of
short string found irf1,2]. Eq. (4.20 for largeu. It is given by

The x dependence of the pole contributionxs "~11712 so
that the spacetime conformal weight of the correspondin
operator isJ=j—n. We can identify this state as coming
from a particular current algebra descendent of=a0 short
string representation of the form

DA = A(I) T i1 o A = A1) — A - T(jatio—js—ia)’T(k=2))% . }
= |xAG) A~ A =i~y A() —AG D~ A2)]2 11—
Gl - |HC(J)F(J'3+i4—j)2F(k—j—il—jz)zm_)k tD
Z j7j17j2 X 2
N5 F j1+j2—j,j1+j2—k+j+1,j1+j2—j3—j4+1;2 +[(J'1,J'2)<—>(l'3'j4)]]- (4.39
|

Note that this is the larga-expansion of the leading term XA(;)+h—1+j—jl—jzya(mﬁ—uj—jl—jz
(4.20 in the x expansion in region (4.17). The larged ex-
pansion of the full KZ solution is different and will be dis- - -
cussed later when we study the integral in the region II. In Xj _duPud T Yagguumul 20T
Eq. (4.28, we integrated this leading term over the whole lul>™
plane. Thus we need to subtract the integral oyer +buT" 20 —i2 1)
>|x| "1 using the same integrand to obtain an approximate "
expression for the integral of the full solution of the KZ B N P P P PRl FRN PRI PR PR
equation ovetu|<|x| 1. Using Eq.(4.39, we find that the " o '
integral gives terms of the form (4.40
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for somea, &, bp 7, ani, andEn;. From the exponents of these circumstances, we consider the operatoxét)
X, we see that these terms all have the form of two-particle=e*® and try to evaluate their correlator
contributions. It seems possible that we could shift the con¢0|O,(t,) O5(t3) O,(t,) O1(t1)|0). This correlation function
tour of integration inj to a region where it becomes conver- js well defined ifS\;<«. Now we can try to perform the
gent. This shift might produce extra contributions, but theyOPE whent;—t, andt;—t,. Naively one may expect to
all have these powers afand therefore will be of the form  find normalizable(and also continuum-normalizablstates
of two-particle exchanges. running in the intermediate channel. It is easy to see that this
This completes the evaluation of taéntegral in region I.  will be the case only ifA;+X\,<«/2 and Ag+\,<«/2.
These conditions are analogous(tb4). If these conditions
C. Integral over region II are not obeyed, the intermediate state is not in the Hilbert
space of the theory. In other words, the prod@¢t), maps
the statd0) outside the Hilbert space. This is effect is not a
UV divergence; rather it is an IR divergence in the target
% space of the quantum-mechanical system.
F(Z,X)~X* >, Gm(Z)Xx™ (4.41 These contributions from Poleghat we are discussing
m=0 are important for reproducing the general properties of the
amplitude that we explained in Sec. Ill. The four-point func-
Substituting this into the KZ equation, we find that=0 or  tion should have a pole &j;—k=1. This pole is absent
a=j3t+js—j1—]o. This means that the full contribution from all the terms in the amplitude that can be written as Eq.
from this region is interpreted as two-particle contributions.(4.3). But it is present in the term coming from Polesas
In this region, we also have to expand the internal part in &an be checked explicitly by performing the integral ozer
different way. But in any case, thedependence is just that for the Poles contribution. Note tha4.4) cannot be obeyed
of the two-particle contributions. if we are at the pole atj;—k=1, so we definitely have
Thus we have completed the computation of the integraPoles contributions in this region.
over thez plane with the results summarized at the beginning Note that we have assumed that all flssinvolved in the
of the section. The intermediate states in the smalkpan-  computation of the OPE are generic enough so that there are
sion are identified and are found to be consistent with theio coincident poles. Coincident poles can produce terms in-
operator product expansion in BCFT interpreted in the stanvolving logx. These were studied 87,38, and they have
dard way as in Eq4.2), provided(4.4) is satisfied. Note that the same interpretation here as they had in their case.
as long as(4.4) is satisfied, the three-point functions that

appear in the factorization on intermediate discrete states au- v T\Wo- AND THREE-POINT FUNCTIONS WITH

It remains now to do the integral over the region Il. In this
region, we can expand any solution of the KZ equation as

tomatically obey the constrainfjj<k. This is consistent SPECTRAL FLOWED STATES
with our previous statement that only those three-point func- . . .
tions make sense in the theory. In the preceding section, we showed that the four-point

function of short strings witlhw=0 is factorized into a sum
of products of three-point functions. We found that the inter-
mediate states are long strings with= 1, short strings with

Let us now discuss what happens whérd) is not satis- w=0, and two-particle states. These intermediate states are
fied. In this case, besides the terms we discussed above, videntified by evaluating the expansion of the amplitude and
get contributions from the residues of PglasEq. (4.16). If by comparing exponents of with the spectrum of physical
we were to read off naively the dimensidrof an interme-  states of the short and long strings. One of the purposes of
diate operator from the power g&fappearing in these contri- this and the next sections is to prove that the coefficients in
butions, we would findJ=k—j;—j,+n (or a similar ex- thex expansion are what we expect from the factorization of
pression withjs,j,). For generic values &, j,...,j4, there  BCFT. To this end, we need to compute two- and three-point
is no physical operator with this value &f Therefore, these functions involving spectral flowed states. We will also ex-
contributions do not have an interpretation as exchange dflain the origin of the constraint on the winding number
intermediate physical states as in E4.2). Their presence violation. In Appendix D, we will use the representation
signals a breakdown in the operator product expansion. theory of the SL(R) current algebra to show that two short

One may naively interpret this as saying that we need ttrings withw=0 can only be mixed with short strings with
include more physical states in the theory. We claim this isv=0,1 or long strings withw=1. This almost accounts for
not the correct interpretation. Instead we propose that, in thithe winding number violation rule we saw in the factoriza-
case, the operator product expansion is not well defined ition of the four-point function, but leaves out the question of
the target space theory. This is due to the noncompactness why short strings withw=1 do not appear in the intermedi-
the target space of BCFT. To clarify this issue, it is useful toate channel. In this section, we will show that, if we normal-
go back to the simple quantum mechanics example we gavige the vertex operators so that their target space two-point
in Sec. IlIB, i.e., that of a quantum particle moving in a functions are finite, the three-point function of two short
one-dimensional space with coordinateunder a potential strings withw=0 and one short string wittw=1 vanishes
that is zero for|x|>1 such that the wave function of the identically, thereby explaining the additional constraint on
ground state decays &s|0)=y(x)~e~ (“>* for largex. In  the winding number violation. We will also discuss other

D. When the OPE does not factorize

106006-22



STRINGS IN AdS AND THE ... .1ll. ... PHYSICAL REVIEW D 65 106006

aspects of these correlation functions. Ly Ly
In [1], it is shown how to construct vertex operators for
the spectral flowed representations. This can be done mos

easily in them basis, where the generatorsg(jg) of the P
global SL(2C) isometry are diagonalized. On the other o m 0 Y, mtkw/2 0

hand, in Eqs(2.9) and(2.13, we used the basis to express N

the two- and three-point functions. Therefore, to compute N

correlation functions involving spectral flowed states, we R G

first have to convert Eqg2.9) and (2.13 into the m basis, ~,

perform the spectral flow operation as describedlih and

then transform the result back in tikebasis. FIG. 7. ander the spectral flow, a global SL@,dgscend%nt

St - W

One thing we need to be careful about in this procedure i&? ©f SpinJo=m among the lowest energy statestit " or Cj,

that the spectral flow changes the way the global ST)2, turns into the lowest weight state of the discrete representdﬁon

. _ . W:O _
isometry acts on states since the currents are transformed §&n J=m+(k/2)w. The flgurewsjhows the flow by’ ~. The re
sulting operator is denoted b *(x,2).

+ ~ k
3o =35, Jo=33+5w. (5.)  what follows, we will indicate byJ andM the global SI2)
spin andJ3 eigenvalue, respectivekgee Fig. 7.

For example, consider a representation of the current algebra The transformation between thebasis and then basis is
whose worldsheet enerdy, is bounded from below.D}'~° carried out as follows. Consider an operaliojji,i) in the
andC}',° are an example of such representations, but her& basis, with the spacetime conformal weighis]). In gen-

we do not assume that the lowest-energy states of the repretal, the differenceJ—J) has to be an integer in order for
sentation make a unitary representation of the globatheir correlation functions to be single-valued in thepace,
SL(2RR).] We then pick one of the Iowest—energ~yoo states and we will consider such cases only. The integral transform

|, satisfying®

d2x _
~ Dypom= | =zx "M Mo, 5(x, 5.4
3E3y=0, n=123..., IMIM f X XX 3.3(%,X) (5.9
oy =mly)[-3535+3 Q535 +3530) 1) turns the operator into thk! basis whereM andM are ei-
——i(-1)|. (52  genvalues ofi3 andJ3, respectively?* Note that (M,M) are

not necessarily a complex conjugate(dfM). Since (—J)
If m=+(j+n) for a nonzero integen, the statdy) belongs  is an integer, the integral vanishes unlels<M) is also an
to the discrete representatidﬁ with respect to the SL(R) integer and we will assume this in the following.
algebra generated hji. Otherwise it is in the continuous  In practice, thex integral in Eq.(5.4) is carried out after
representatiorc; ,, wherem=a (mod integer.? If wis  computing correlation functions and using analytic continu-
positive' the same Statl@’/> is seen in the Spectra| flowed ation in the VariabIeSJ,M ... .WhenJis real, we have to
frame (5.1) as obeying keep in mind that the integral gives poles @1=J+n and
M =J+T7, with non-negative integens,n. We will see this
explicitly in the two- and three-point function computations
|4)- (5.3 in the following?® These are precisely the values at which
the operator®,; ,.; belongs to a discrete representation
With respect to the global SL(R) algebra generated by dj ®d; of the global SL(2R) < SL(2R) symmetry. In such
3, the statdy) is the lowest weight state of a discrete rep- cases, we have to keep track of this additional divergent
resentation dj with  J=m+ (k/2)w, independently of factor. There are also similar poles whigh=—-J—n,M=
whether|y) was indjt or ¢; , of the SL(2R) algebra gener- —J—n with non-negative integera,n and they formd;
ated byJ3. Similarly, spectral flow withw<<0 turns|¢) into ~ ®d; . We will call the poles with positivaVl as “incoming
the highest weight state af; with J=—m+ (k/2)|w|. In  states” and the poles with negati as “outgoing states.”
our physical application, we identify the SLE, algebra  In this way, we see that the single operatgy;in thex basis
generated by)§ with the spacetime isometries of the back-
ground and the global SR) symmetries of the BCFT. In

, 3 k
Jo =0, Jglyy=| m+ oW

24We reserve the small case lettensm to denote eigenvalues of
J3,3% in the w=0 sector, i.e., for states before we perform the
2?Herej is what we called in [1]. spectral flow. _
4We are using the symboti” andc; , to label representations of ?*Although there are two conditions i andM, the pole is only
an SL(2R) algebra, to distinguish them from the representations ofin one variable of the formNl+ M —J—J—n—n) 1. The second
the full current algebra. condition is imposed by the angular integral in thepace.

106006-23



JUAN MALDACENA AND HIROSI OOGURI

gives rise to botth+ andd; , depending on the value o
we choose in evaluating the integral transfoisr).
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—x)=misinmx and the fact thatJ—J) and (M—M) are
both integers, one can check that the expres&on is sym-

Correlation functions of spectral flowed operators are themetric under exchange ¢3,M) and J,M).

evaluated as follows. We start withpoint correlation func-
tions in thew=0 sector, which are known far=2, 3, and 4.
We perform the integral transforrts.4) to turn them into
expressions in then basis. We then use the spectral flow
operator to find expressions far# 0 (as described in detail
in the following subsections Finally, we use Eq(5.4) to
transform the expressions back into theasis.

Alternatively, one can perform the spectral flow operation
directly in the x basis. In the case ofv=1, the spectral

flowed operatori)jvjil’j(x,z) is constructed fronw;(x,z) in
thew=0 sector as

P

w=1;j

1 (x,z)=lime

e—0

mgﬁf dzy yjfmflyifﬁfl

X Dj(x+y,z+ €)Pyo(X,2). (5.5

Conversely, if we are given the expressi@?7), we can
turn it back into the forn(5.6) in the x basis. To do this, it is
not necessary to know the expression for all possible values
of M, M. For example, the expressidb.7) has a pole at
M=J andM =J, and the residue is equal (J,J) times a
simple factor. Thus it is sufficient to know the pole residue
there in order to recover thespace expressiofb.6). Simi-
larly, we can reconstruct Ed5.6) from the residue of the

pole atM=—J andM = —J. In the following, we will en-
counter such situations.

We now consider the two-point function @f=0 states
given by Eq.(2.9) and convert it into a two-point function
with w+# 0 states. As we mentioned, we first turn the expres-
sion into them basis, perform the spectral flow, and then
transform this back into the basis. In transforming the sec-
ond term(2.9) into the m basis, we can use E@5.7) with
D(j,))=4(j—]j")B(j); thexintegral of the first term is easy
to do directly. In them basis, it is straightforward to apply

Here we put a caret on the spectral flowed operator since itg,q spectral flow. As explained [4], the only change in the

normalization is different from the one naturally defined by

two-point function is that the power of is modified in an

going through them basis as described in the above para-y, gependent fashion reflecting the change in the worldsheet

graph. In Appendix E, we will prove that E@5.5) in fact

conformal weight,

defines the spectral flowed operator by showing that it has

the correct operator product expansions with the current
J3*. We will then use Eq(5.5) to compute their two- and
three-point functions.

S k
—wm— w2,

AG)—AG)—wm- 7

(5.9

In this section, we will use the spectral flowed operator
defined through then basis. This approach has an advantag&yjithout any modification to the coefficient. We should also

of being able to treat all values @f simultaneously.

A. Two-point functions

Let us start with a two-point function in space for ge-

neric values ofl, J. The two-point functions in the following
typically take the form

D(J,J)

2322]
12X12

(Py5(x) Py 5(%p)) = (5.6

where we have suppressed a possifilependence. Perform-
ing the integral using the formuléC5) in Appendix C, we
find

(PymamPamvom)

7l (1-2)T(I+M)T(I—M)

CRHC(L-I+M)T(1-I—M)

D(J,J).
(5.7)

The delta fungtion&z(M) is the standard delta function for
the sum M+ M) and the Kronecker delta for the difference
(M—M), which is an integer. Using the formula(x)I"(1

S(M+M")

remember that the assignment of the global SC{Z;harges
is changed according to the discussion after &qgl). To

perform the spectral flow explicitly, we bosonize thecur-

rent asJ®=i/(k/2)d¢ and write an operator witd® charge
m as

(Dj'm"“eim\s‘m‘“//j’m. (59)

The operatory; , carries noJ® charge and is analogous to
the parafermion field in the S@) WZW model. We then
make the replacement

MK, gilm+w(ki2) 2K e

3

(5.10

and similarly form. As explained iff1], the operator we find

in this way hasd=M=m+(k/2)w, J=M=m+ (k/2)w,
namely, it is the lowest weight state in the representation
dj@dJi of the global SL(27) isometry. Including the modi-

fied zdependence that comes from applying the spectral flow
operator, we obtain the two-point functigh]
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1
2[A())— WM+ (K W2T52[ A(j) — WM + (k/d)w?]
Z1% 215

<(I)J|\/| JM(Zl)CI)J M’:Jd, M’(22)>: 52(M+M/) 5(j+j/_1)+5(j_j,)

7B(j) T(j+m) FWW} (5.11)

¥(2j) T(1—j+m) F'(1—j—m) ]

where J=M=m+ (k/2)w and J=M=m+ (k/2)w. Note the volumeV,, of the conformal group o8? with the two-
thatj is the spacetime conformal weight of the original  Point fixed function,

=0 operator and it should be distinguished frand for the
operator we get after spectral flow. The amount of spectral

flow of the second operator isw; this is necessary in order d?z d®w d?u
to preserve the total3 charge. Ifw,m>0, we can interpret o2z IZ—wZw—u[Zu—x?
the first operator as an incoming state and the second as an —z= > =V¢ont- (5.12
outgoing state. |7 d’z dw
We would like to convert Eq(5.11) back to thex basis. |z—wl|*

According to our previous discussion, this can be done by

evaluating the pole residue d=M and J=M. Unlike a  Since evaluating the pole residue of E§.1) atJ=M, J.
generic two-point function such as EdS.6) and (5.7), the = =M is the same as evaluating it at the pole and dividing it
expression(5.11) is finite at this locatiorf® The pole that we by V. (With an appropriate regularization of téntegra),

are missing here comes from the divergent integral of theve can interpret Eq(5.11) as resulting from a two-point
form [d?z/|z|?. We recognize that it has the same form asfunction in thex basis of the form

mB(j) T(j+m) T(j—m)
y(2j) T'(1—j+m) I'(1—j—m)

1 - o
<q) Xlizl)(I)JJ (X2722)>_ 5(J+J,_1)+5(J_J’)
Vconf

1

23523 2[A(j) — WM+ (k/4) ZH[A(j) wM+ (k/4)w?] ©
X12X12Z12

(5.13

The factor V. will eventually be canceled in the string =0. In this case, the spectral flowed expresg®n3 gives

theory computation that follows. In going from E.11) to  the two-point function of the vertex operator for the long

Eq. (5.13, we have switched the sign of in the second string with w=1. In order to compute the spacetime two-

operator. This is due to the fact that an outgoing state wittPoint function, we need to take into account the contribution

negativew is the same as an incoming state with positive from the internal CFT. We choose the internal conformal

In other words, in the basis we can label the operators with weight (h, h) such that the long string obeys the physical

w=0. state condition
Some readers may be disturbed by the appearance of the

infinite factorV,,sin our computation. We can avoid the use

of Vons altogether if we work directly in thex basis using

Eqg. (5.5). This will be explained in Appendix E. Faw=1, (5.14

both approaches give the same result. ®wor1, computa- _ k _

tions in thex basis become cumbersome. For this reason, we A(j)—wM+ ZW2+ h=1.

will continue to work in them basis in this section so that we

can find expressions for alV at once. ; : ; ; ;
. ; . Assuming that the operator in the internal CFT is unit nor-
So far, we have takepto be arbitrary. Let us now sét g P

—14is, so that we have a continuous representatiow at Malized, its effect is to multiply the factar 2"z 2" to Eq.
(5.13. We then need to integrate oveand divide it by the
volume of the conformal group on the sphere. This produces

71 . . .
#There is an important exception when the-0 operator is in a another factor oV gy By changing the normalization of the

discrete representation, in which case= j +n and there is a pole. operator aSi>=Vconf ®, the two-point function in the target
We will come back to this point later. space is given by

) k
A(j)—wM+ ZW2+ h=1,
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S it 1 ) )
<(DJW”‘]%X1)CI)?/’% (X2)>target: VgonKCDY]V”JJ%Xl 1Z1= O)CDEV’%(XZ 1Z2= 1)>worldsheet
conf

(. k ) (. k _>
o I'fj——w+J ryj+-w-J
7B(j) 2 2

~| 8(s+s')+6(s—s') - , (6.195
2i) k ok o] | R
NMi-j——w+J| rf1—-j+-w-J
2 2
|
where generates an additional factor Wf -, but this is also can-

celed bys(j—j') in Eq. (5.13 evaluated aj=j'.?’

j=3+is, With all the factorsV,,¢ canceled out, we have a finite
(5.16 correlation function in the target space. There is one subtlety
k 1[3+8? here since there is a possibility thaj-dependent factor ap-
J= ZW+ wl k=2 h—1/, pears when we cancélj—j’) atj=]’ with the volume of

the conformal groupV .. We claim that, in fact, a finite
factor of the form|2j — 1+ (k—2)w| remains after the can-

and a similar expression far in terms ofh. As far as the cellation. One heuristic way to see this is the followig
two-point function is concerned, we can of course normalize j Y )

the operatord as we like. All we are saying here is that this more rigorous derivation of this factor in the casencf 0 is

normalization removes the divergent fack,; and keeps given in Appendix A} If we regularize the computation by

the target space two-point function finite. In the next subsecﬁakingj to be slightly away from on-shell(j) —1=0 and

. . s ) introduce a cutoffe in the z integral, the volumé/ s of the
tion, we will see that the rescalindg =V, also gives d cont

e : . . conformal group would bes.(Lo(j)—1), where &, is a
finite results for the three-point functions that appear in theg,ssjan with a short tail which becomes the delta function
factorization of the four-point function.

: in the limit e—0. This is the factor that cancels th¥]j

We WOUId I|I_<e to make a cou_ple of comments about the—j ") term in the worldsheet two-point function. Thus we
two-point functl_on of the long strmg@S}S). Unlike the case expect that the cancellation of the two divergences leaves the
of the short string, the on-shell condition does not require finite factor given by
=j’. However, the two-point function has the delta func-
tions 8(s+s') and 8(s—s’), giving constrains on the labels aLo(j)
9]

s,s’. For the operator before the spectral flow, the term pro-
portional tos(s+s’) in Eq.(2.9) is multiplied by ~ 5%(x,),
i.e., it is a contact term in BCFT. After the spectral flow , {5 ak-dependent coefficient. Taking this into account, the

(5.19, the corresponding term contributes to the long-ranggyyo-point function of the short string with winding number

correlation of the two operatorsx;,2°X;,-" in the same way w=0 is of the form

as the term proportional t6(s—s’). Thus, when we discuss
the factorization of the four-point function, we need to take
into account both the first and the second terms in(&d.5).
Another remark we would like to make is that the factor wi
multiplying the §(s—s’) in the second term in Eq5.15 is Xq)‘]’%(lezzo))worldsheet
a pure phase'’®, see Eq(3.6). We can interpret it as the _
phase shift for a scattering experiment where we let a long ~[2j =1+ (k=2)w]|

string come fr_o_m infin_ity of Adg, shrink to the origin, and T(2j+q)T(2j+§ B(j)
go back to infinity agaifl]. In fact, the operators labeled by

‘~|2j—1+(k—2)w|, (5.17

) ) 1 )
<<D\.;Vj](xl)q)‘\;v‘]_’J (X2)>targetzv_<q)z\%(xl 21 = 0)
conf !

N2 — y
s and —s are not independent, and they are related by the I'(2j)"qtal xiéxﬂ
reflection coefficientd (V25— gld8)p(12~is 35 shown in (5.19

[19].
Now let us turn to discrete representations. We start With/vhereq=J—j — (kI2)w,g=J—j — (k/2). Unlike the case of

a global SL(XC) descendent witm=j+q andm=j+0,  he |ong string, we do not have to rescale the operdtgy.
whereq,q are non-negative integers. After the flow, we ob- '
tain a state with J=M=j+q+ k2w, J=M=j+q

+(k/2)w. In this case, we get a pole from one of the  27rqr a short string, the physical spectrumjds discrete and we
functions in Eq.(5.13, and it cancels the factdf .. Thus  need to evaluate théfunction right atj=j’ rather than leaving the
the expression in thespace is finite. As in the case of a long delta functionss(s+s') and§(s—s’) as in the case of long strings

string, turning this into a string theory two-point function in Eq. (5.15.
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We note that the coefficient in E€5.18 is positive as long shows is that the natural normalization of the operator in

asj is in the physical rangg <j <(k—1)/2. This of course D"~ and that of the operator B p—; are different. It is

is consistent with the positivity of the physical Hilbert spacetherefore more convenient to define the operator correspond-
of the string in Adg. Whenw=0, the two-point function is ing to the stat€5.20 as

given by - L

- o 8(i) 'PP(x)~B(j) D P(x). (5.22

(P (X)) (Xe) darger (21 = 1) PR G199 hthis way, forp=p=0, we recover thev=0 SL(2) current
algebra primaries with the standard normalizati@Zl0).
Later in this section, we will show that this additional factor Their two-point function is then given by

of (2j—1) is precisely what one needs in order to reproduce

the factorization of the four-point function onto the short  _ L

string withw=0. In general, we have to be careful about a(®'’(x,)®*P(x,))

possiblej-dependent factor that could appear when we go

from the worldsheet expression to the target space expres- [(k=2j+p)I'(k=2j+p) B(j)

sion, and Eq(5.19 is an example of this. ~(2]-1) I'(k—2j)p!p! Xi(zi—p)yigi—m'
For a short string, another useful computation one can do
is to evaluate the two-point functions of operatabg (5.23
corresponding to the state of the form We will use this formula in Sec. VE, where we examine
L effects of intermediate short strings with=0 in the four-
QZPPQZYPljsm=m=]), (5.20  point function.
where J=j—p and T=j —p are the spacetime conformal B. Three-point functions in m basis

weights under global SL(€). Although they are descen-
dants of the current algebra, they are the lowest weight statgs,
of the global SL(Z). These states appear in the intermedi-ie m pasis (5.11). This simply reflects the fact that the
ate channel of the factorization of the four-point amplitude I — . .
discussed later in this section, so it is useful to compute theiyvorldsheet _Ham_llton|anLO+ Lo can be dlagonallz_ed_ by
two-point functions here. They are computed in the follow-States carrying fixed amounts ui. However, the winding

ing way. Let us view these states as given by performing on umber CQIT be V'°|?tetg b¥ string w:t;aractt]ons. It?] tt?]'s subsec-
unit of spectral flow on the lowest energy states as in o W€ Will compute the four-point function with three ver-
0 W=l _ ~+0 : S tex operators and one spectral flow operator. This computa-
Diwz)-i— Pwizy—j=D; - We start with the statgj’;m= . : -
— (K2~ Oy J__> ]with i" = (ki2)—]. Under one unit of tion has been done i20], and we reproduce it here. [26],
] —p.m== —p )= J- this was done using the free field theory approach. In the
(5.20. So we first compute th rrelation function of th Mhext subsection, we will use this result to derive the three-
-2Y). 50 We TIrst compute the correlation function o epoint functions with winding number violations.

state labeled by’ in them basis, perform spectral flow using oo

the formulag(S.ll), and finally we go to the basis as in Eq. an;l'tf;:ers gzgt;lc;‘rlot\)/;// %%eeritr?ir[.CAhg:c?r?j?ntg[?ttjvyl\?vilnc%r? l:/ril;l\?ver of

(5.18. We find it as the lowest weight state it @d;" with j =k/2. This
operator is outside the allowed ran@®2) for physical op-
erators in the target space theory. We will not use this opera-
tor by itself for an operator in the target space theory, but it

K ) is used in an intermediate step to construct physical operators

Let us now turn to three-point functions. In the case of the
o-point functions, the winding numbev is preserved in

(@ FPxp) @ (x2))
) ) B(——j with nonzero winding numbers. A very important property of
I'(k=2j+p)I'(k—=2j+p) 2 the spectral flow operator is that it has a null descendant of

~(2j—1 - — - . ,
(2j=1) I'(k—2j)%p!p! x2J=Pr2i=P)*  the form

(5.21) JZ4j=ki2;m=k/2)=0. (5.24)

where again we have assumed that the amplitude is multiwe can then compute a four-point function where one of the
plied by a unit-normalized primary field in the internal CFT operators igj=k/2,m=k/2) since it obeys the differential
operator so that the total worldsheet conformal weight of theequation which follows from the existence of the null state
vertex operator is 1, and we integrated the resulting two{5.24). The equation turns out to have a unique solution up to
point function over the worldsheet. We have taken into acan overall normalization, and we can use it to derive a three-
count the factor (—1) discussed at E@45.19. Notice that,  point function with winding number violation. This compu-
up to ak-dependent factoB[ (k/2)—j] is equal toB(j) *as tation also serves as a simple example where we can find an
one can see from E¢2.10. If we setp=p=0in Eq.(5.21,  explicit expression forFg (5 in Eq. (4.6) (though in the

we recover the original resuls.19 but with a different nor-  nongeneric caseand it gives us some intuition about how
malization; instead oB(j), we haveB (j). What this four-point functions look in general. In particular, we will
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find that the solution indeed has a singularityzatx with the exponent for{—x) expected from the general argument given
in Sec. I D.
We want to compute the four-point function

(Dj,(X1,21) Pra( X2, 22) P (X3, 23) P}, (X4, 24))

=|z44 2(A2+A1_A4_A3)|Z42| ~482)z,] 2(A?>'*'A2_A4—A1)| 3| 2(A4=A1~ 25— 4g)

X |X43|2(j2+j17j47j3)|x42|74]2|X41|2(13+j27147j1)|X31|2<i47j17]27j3)><E(j1,J'3yj4)|~7:(2,x)|2, (5.29

where the Coefﬁciené(jlljs,“) will be determined later. The solution is Unique up to an overall normalization, and
We have written the dependence on the cross ratios the four-point function is indeed given by the absolute value
= 791243/ Z31Z45 ANAX=X,1X43/X31X4» Of the worldsheets and Squared of this _functiqn as gnticipated .in EE.ZQ. Note
the target space coordinates in the form of a square of sonfsO that there is a singularity at=x with precisely the
homomorphic functionF in Eq. (5.25, anticipating that expected form. ~
there is only one state in the intermediate channel. This fact We also need to determine the coeffici€tj,,j3,j4) in
will be derived by explicitly solving the differential equation Eg.(5.25. We use the same method ag 20,19. The stan-
below. The null state conditiob.24) for the operator ar, dard operator product expansion formula gives
implies the equation C(j1.k/2,))B(j) " *C(j,j3.]4), wherej is for the intermedi-
ate state. As we mentioned earlier in Eg.21), the factor
5 5 C(j1,k/2,j)) is equal to the delta functiod(j,+j— (k/2))
Xt (x=1) modulo ak-dependent(j;-independent coefficient. This is
z z—-1 consistent with the fact that, in E¢5.30, only the state with
j=(k/2)—j, is propagating in the intermediate channel for
]]:(Z,X)zo_ (5.26  z—0. Thus the coefficient is determined as

X x—1

z z—1

X(X—=1)dy—

2j1x_ 2j5(x—1)
z z—1

Here j,=k/2 and k=j,—]j1—jo,—]3. On the other hand,
since

o k o\ (ko
Clinisia~B|5~01| Cl5=idala

L= = 5.2
R A o ok
. ~B(11)C(§—11.13,14) (5.3)
the KZ equation takes the form
X(x—1) X x—1
IF = z2(z—1) R e modulo ak-dependent factor. Here we used E2.10.

As shown in[1] and reviewed in the preceding subsec-
j1 i3 tion, the spectral flow operator is given by the operaigy,
+ ;+ 71 F. (528 in the m basis. Thus we need to perform the integral trans-
form (5.4) on Eq.(5.25 and seim,= —k/2. As in the case of
Using Eq.(5.26), we can eliminate, from Eq.(5.28, and  the two-point function, setting this value ai, generates a

we obtain pole in the amplitude so the spectral flow operator is defined
by
' j j1+jstjs—k/2
o, F= J_1+ Jz (1tistia ) F (529
z z—-1 z—X WD 1
e ~v Dz, kiz;ki2,~ k2 (5.32
conf

This equation can be easily integrated and we can insert the
resulting general solution in Eq5.26 to determine thex

. where the operato®,, _ /-0 —k» 1S NOormalized as in Eq.
andz dependence of completely. We find P ki2,~kizki2,~ k2 g

(5.4). The factor ¥/, is there to remind us that we have to

F=71(z—1)i3(z— x) i1~ iz"iat (K2) extract a pole re;idue a'r'l=.— k/2. This residqe can be
( . ) ) evaluated by taking the limik,—o of |x,|? times Eq.
X x23tr(x—1)21tx, (5.30  (5.25. After performing thex; integrals, we find20]
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ES

J dzxixfi_m‘_lﬁ‘_ﬁ_l[ lim |x2|2k(5.25)}
=13 S

ok K

=C(j1.)3:Ja)0 —§+m1+m3+m4,—§

+m;+mz+m,

x I (20— z)m'zA“ A1=Ag+ (KIA)+myAg —Ag— A+ (ki) +my A= A=Ay + (ki) +mg

=134 34 41
% Z-7) m—A4 A A3+(k/4)+m4—§i Ag— A+ (Ki4)+my
i=1,3,4
X_A3 Ag—Aq+(Ki4)+my 1 F(ji-_mﬁ (5.33
o Ky icnzaD(1—ji+my)
YWhitlstla=5

where “cyclic” means a cyclic permutation of the labels 134. Thelependence is what we expect for the operéda@2. We
can now extract the action of the spectral flow operatofbgn This is done by taking the limit af,—z, and extracting the
coefficient of the term which goes i 21_;"21 This performs spectral flow on the operator inserted;aby —1 unit?®
According to the ruleg5.1) of the spectral flow, the new spacetime quantum numbers of the operatgraaé M =m,

— (k/2) andM =m; — (k/2), and its global SL(Z;) left and right conformal weights ade=|M| andJ=|M|. Finally, we find

-1
<(DJ M,J, Ml(zl) i3.mg.my(Z3) Py, m,m, (Z4))

- k
=C(j1,j3,j4)8° —§+m1+m3+m4,—§+ﬁl+ﬁ3+ﬁ4)z s-ha AaZﬁj Aa A424Af b by
XfA47§17A3ZE17A37A4fA37A4721 1 F(j;—my)  T(jz—my) [(ja—my)
13 34 41 F(1—=j+m)l(1—jz+mg) ['(1—ju+my)’
Yiitistia—5
(5.39
with
R k = i _
A1=A(j)+m— 1 A1=A(11)+m1—z,
(5.35
k — _ _k
J=_M=_ml+§, M=—ml+§,

where we used thé function inm; to go from Eq.(5.33 to Eq.(5.34.%° This indeed has the expectedlependence for the
correlation function of one spectral flowed operator with two unflowed operators.

C. Three-point functions in the x basis

In this subsection, we will discuss how to go from timebasis to thex basis for three-point functions. We want to rewrite
Eq. (5.34) in the x basis. This is similar to what we did for the two-point functions.
We start with a general three-point function in théasis,

(@3, 5,000 ,3,0) 5, (x)) = e (539
I3 MY IR00 127 5050 3 I+, 33 l+J3 3, 2+J3 Irgd1 923591+ 03— Iz 3p+ Jg 3’ '
X12 X X2 X12 X13 X23

2%Ne have—1 unit of spectral flow because we extracted the= —k/2 component of the spectral flow operator in E§.33. The
resulting operator represents an outgoing state carrying away one unit of winding number.

2\We also used properties of tiiefunction to absorb the sign-1)™~™ that came from the powers @f, in going from Eq.(5.33 to
Eq. (5.39.
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where thel; J_, label the conformal weight under global SLC3, We can compute the integral transform of this expression
to go to them basis. The integral can be written using the Barnes hypergeometric fufigéibrior our purposes, we do not
need to compute the most general expression since the three-point fufi8dnis really the residue of the pole aj=

- Ml,J_1= - Ml in thex integral of Eq.(5.36). This pole comes from the region whexgeis very large. We are interested in

the coefficient of this pole. This is obtained by taking the- limit of xijliijl times EQq.(5.36 and then performing the
integral transform with respect tg, andx;. We obtain

(Do, =y 3= M, Pas, my M, Pagsg mg )

I(J3—Mg)  T(3-My) T(1+3;-3,—J3)

— 2
Vconf(S (M1+M2+M3)D(‘J11J21‘J3)I‘(1_\]3+M3) 1_‘(1_72_’_'\72) F(\]2+J3_\]1) ’ (537)

where theV . is there to remind us that the rest is the residue of a pole. Notice that only properties under glob@) SL(2,
have been used to derive this formula.

By comparing Eq(5.34) to Eq.(5.37) [and changing the labels (2;3)(3,4) in Eq.(5.37) in the obvious way; we find that
the three-point function ix space is given by

I'{j,+J k
J1 5

w=1j 1 : koo L'(jst+js—J) 1
<¢Jj 1(X1)¢13(X3)¢j4(x4)>~_B(Jl)c<—_11713114 - .
' conf 2 F(1+J3—j3—ja) . — k S k
Pl l=ji=Jd+ ] vl Jstiatii— 3
2 2
1
J+iz—ia d+tia—isy istia— I3 +iz—isI+is—iastatis—Jd’ (539
X1313 I4X14J4 ]3XJ3‘Z la X1313 14714J4 13733& la
|
where the vanishing of the three-point amplitude with two short
strings withw=0 and one short string wittv=1. If j, is
K K real andm;,m;<0, the operatorbrlgl"1 in Eq. (5.38 cor-
Ji=—my+ 5 Ji m;+ 5 responds to a short string with=1. For this operator, the

two-point function is finite as we saw in E¢5.18, and we
do not have to rescale the operator as we did for the long
string. Thus we interpret the factor oMy, in Eq. (5.38 as
saying that the three-point function vanishes. This gives the
additional constraint on the winding number violation stating
In the case of = +is, when the first operator corresponds that two short strings withw=0 cannot produce a short
to a long string, this factor of W, is canceled since the String withw=1. _ _ _
long string operato® comes with the extra factor 8y, as As a check that we are mterpret_mg this factor of s
in Eq. (5.15. Thus we conclude that the three-point function OTTectly and as a further application of EG.38, let us
of two short strings withw=0 and one long string withy ~ consider the case in whicfy is real andm,,m,>0, m,
=1 is nonzero. In the following subsection, we compare the=J1+P, M =], +p. This can be interpreted as doing the
expression(5.39 with the factorization of the four-point SPectral flow of a discrete representation By unit, thus
function. producing the operator described at E®.20 with |

In Appendix D, we will show, using the representation =(k/2)—j,. This state is just a descendant in a discrete
theory of the SL(R) current algebra, that two short strings representation wittv=0. Thus, in this case, we do not ex-
with w=0 can only be mixed with short strings withh  pect the three-point function to vanish. Indeed we find that,
=0,1 or long strings withv=1. One may ask why we did as we seim;=j;+p, one of thel’ functions in Eq.(5.38
not see short strings wittwv=1 in the factorization of the develops a pole, thereby canceling the factdf 44 in Eq.
four-point function. In fact, there is an additional reason for(5.38. Finally, we obtain

(5.39

33,423_3,4: J3a-
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F(jztja—j+p) L(jztjs—j+p)
P! (jstja—)) PT(jst+ja—])
1

J+iz=jaydtia—isy iz tia=I9+iz—igI+is—izcdatia—d’
X13 X14 X34 X13 X14 X34

(B2 (x) D) (x3);,(xa))~(—1)PPC(] i 5.1)

(5.40

Note thatj=(k/2)—j,, wherej, is the label appearing in E¢5.39 andJ=j—p,J=]—p. We have also normalized the
operator as in Eq(5.22. If we setp=p=0, we indeed find that this is the same as the correlation function of thre@
discrete states. This is an interesting consistency check of what we are doing. Moreover, we will see that the efgr3sion
exactly matches with the factorization of the four-point function in the target spacetime.

VI. FACTORIZATION OF FOUR-POINT FUNCTIONS

In the preceding section, we computed the two- and three-point functions including spectral flowed operators. In this
section, we will use these results to show that the coefficients of the powgrappiearing in the spacetime operator product
expansion computed in Sec. |V are precisely what are expected, i.e., each of them is a product of two three-point functions
involving the intermediate state divided by the two-point function of that intermediate state.

A. Factorization on long strings

Let us first examine the coefficient for the continuous representations appearing(ih 3. In the expressio.31), the
integration contour runs alorjg=k/2— 3 +is=k/2—j, wherej = 3 —is. We are denoting the SL(Q) spin along the contour
by j., andj is introduced for convenience. Then we define

S+

2,1
. . 4
J=jetd(jo)=1—5 th—-1,
(6.2)
N
I=jctd(jo)=q— th-1

From the power of in Eq. (4.31), we conclude thafl is the spacetime conformal weight of the intermediate state. The
coefficient of this power ok is Eq. (4.31),

k k
F(J——Jrj) I T 1+J—j——>
2 P(jati2—=3)  T(jstjs—J) 2
— k IF'l—j,—j,+) I'(l—js—jas+J k _
F(l—J+——j> (I=j1—j2t ) I(1—j3—js+J) r[ %43
2 2
C(.  k ')ck o
7(21) J11]2!2 ] 2 JIJ3!]4
X (6.2
i1+io+] k i2tjati k B k i
Y| Jit)aT] 5 Y| J3TlaT] > > J

It can be shown that this coefficient is given by the product of two of the three-point functions divided by the two-point
function. This can be seen explicitly by writing E@.2) as

k k )
o r(;‘u——) CTl1-j——+J F(l—j+——J)
. kK F(j1t+iz—d) 2 1 ¥(2)) 2 2
B(j)C PRRRERE i1t T . K B() . .
—Ji— 2t L S _ — _
rl1-j-J3+- Fipti—— rlj+-——3] TI|j—=+3
( j 2) 7(11 joti 2) it (1 .
_ k
k T(jstjs—J) F<J+J_E) 1
. o jatia—
XB(J)C(——J,13,14) R 6.3
2 F(1=js=ja*td) |

-k
1-j—J3+ -
2

(.+.+. k)'
AR RN V| 5
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Note that we used thd&[ (k/2)—j]~B(j) 1. We see that this has the form of the product of two three-point funct®Bs)

divided by the two-point functiort5.15 with w=1. Note that, in Eq(5.15), there are two terms, one proportional &¢s

+s’) and the second proportional #{s—s'). Physically,s and —s describe the same operator. So when we consider the
inverse of the two-point function, it is convenient to restrict the integral ewerthats=0. This is possible in Eq4.31) since

the expression is symmetric under-—s. In this prescription, only the term proportional &s—s’) in the two-point
function needs to be inverted. We have checked that, if we took the other term in the two-point function, the one proportional
to 8(s+s'), we will find the same result provided we switch the signsaf one of the three-point functions in E¢6.3),
precisely as required.

B. Factorization on short strings

We now consider Eq4.34) where, as we explained before, We_should shiftjtbentour of integration. This picks up some
poles explicitly displayed in Eq4.35. These poles are @a= —n,d=—n. From theirx dependence, we conclude that the
spacetime conformal weight of the intermediate operatdr=ig—n,J=j—n. The residue of the pole is

1 C(j1,J2,.)C(JJssja) T(J1tj2—i+n) [ (js+js—j+n) n'T'(k—2j)
ad/ dj B(}) N'C(j1+j2—)) nl(jg+ja—]) I'(k=2j+n)

[(j1+j2—j+n) [(jgtja—j+n) nll'(k—2j)
nC(ji+jo—)) nl(jgtja—)) T'(k=2j+n)’

(6.4

The factor[ad(j)/9j]* appears here since the pole we picked up in B$5 is of the form~[d(j)+n] ! and we are
evaluating residues in theintegral in Eq.(4.34). We see that this has precisely the expected form for a state likéSE)
propagating in the intermediate channel. Indeed we can write(@&4). as the product of two three-point functiofs.40
divided by the coefficient of the two-point functigh.23, including the factor involvingd/dj ~(2j — 1), which we discussed
at Eq.(5.19 as

P(jitjo—j+n) I'(ji+j—j+n) 1 nil'(k—2j) nll'(k—2j)
NIC(ja+j=j) NL(i+j2—)) (2] =1)B(j) I'(k=2j+n) I'(k—2k+n)

(=1)™"C(j,j1.j2)
I'(jstja—j+n) I'(jat+js—j+n)
NT(jatjs—j) nIT(jg+ja—j) "

In other words, we need to correct the two-point function by the factpr-(®) as in Eq.(5.19 in order to get the right
spacetime factorization properties. This completes the test of the factorization of the four-point function.

X(=1)""C(j,j3,i4) (6.5

VII. FINAL REMARKS such as having aB-matrix description. This may give us a
hint as to how to construct a holographic description of flat
pace physics.

This BCFT is rather peculiar due to the noncompactness

Most of what we said in this paper refered to the Euclid-
ean theory, both on the worldsheet and on target space. Thed
computations can also be interpreted as describing string, . , ;
theory on a Lorentzian target space. Note that string theor{! 'S target space. All the computations we have been defin-
in Lorentzian AdS can be thought of in terms of the usual "9 Were for the case in which the BCFT is ‘S% These
Smatrix formulation, where the asymptotic states are thee@mputations are well defined when properly interpreted, as
long strings. Short strings appear as poles in the long strin§/@ discussed in this paper. The only peculiarity is that we
amplitudes. We did not compute this precisely but this is thecannot insert too many discrete state operators, but this
expected picture. It would be interesting to expand the fourshould not be surprising since we also saw simple quantum-
point function for two long strings witlv=1 and two with ~ mechanical models where that is true. If we put the BCFT on
w=—1, and see that indeed we produce only long and shor torus, we will find divergences in one-loop computations as
strings in accordance with the winding violation rule de-we have shown explicitly if2]. In [2], these divergences
scribed in the Appendix D. In this way, the theory on thewere regulated by adding a volume cutoff near the boundary,
Lorentzian Ad$ can be interpreted either in terms of &1 but strictly speaking the one-loop free energy is infinite. We
matrix or in terms of a BCFT, albeit one with a noncompactwould find a similar result in the quantum-mechanical ex-
target space. Th&matrix computation of long strings is in ample we discussed in Sec. llIB. This BCFT would not be
fact describing scatterings in the Lorentzian BCFT. It iswell defined on a higher genus Riemann surface.
amusing to note that this singular BCFT is reproducing some The SL(2R) WZW model has an interesting algebraic
features which seem characteristic to strings in flat spacestructure which should be explored further.
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APPENDIX A: TARGET SPACE TWO-POINT FUNCTION J(x,2)=—J7(2)+2xF(2) - x2I"(2), (A1)
OF SHORT STRING WITH w=0

In Sec. V, we computed the target space two-point funcandL(Z) is the current algeb_ra generator in the internal CFT.
tion starting with the worldsheet two-point function and di- Thus, to compute the Ward identity for the target space two-
viding it by the volume of worldsheet conformal symmetry POINt function, we need to evaluate a three-point function
which fixes the two points. This process involved some{®j,®;,®;-1). Due to the fact that the two-point function of
subtlety since we have to cancel two divergent factors, leavthe internal CFT is nonzero only between operators with the
ing the finite coefficient|2j—1+(k—2)w| for a short same conformal dimensions, the on-shell condition requires
string® In this appendix, we present an alternative deriva-j;=j, and we can focus our attention to this case. We then
tion of the target space two-point function in the casevof find that the Adg part of the correlation function is of the

=0. form
|
G(—2j) 1
(P(x1,21)Pj(X2,22)P1(X3,23)) = — 222 X1 22 Do 2 g2
2 i o 1712 12 23 “[X31
27 vyl ——|G(1-2))
k—2
_ 1 1
» o [K=1) (2] =1} [z02* X2 P 7P| xpq % Xa1]?
27 vy —= | Y| =
k—2 k—2
1 B(j)
B K= 1) |22 *4]x12/ 227 Vx5 2| %34 (A2)
v-2m(k—2)y =2

whereA=—j(j—1)/(k—2). We then multiply the current generatd{xs,z3) on ®,(x3,z3). Using the operator product
expansion

1 d
Ix,2)Pj(y.w)~-— (X—Y)ZW— ZJ(X—V)>¢j(y,W), (A3)

we find

(Ad)

(2j-1)B(j)( 1 1 1 1
(Pj(x1,21)Pj(X2,22)[I(X5,23) P1(X3,23)]) ~ ( )( ),

4K T\ v v —_x
|22d 2 X0 (X=X Xa—Xz/\23—21 23— 2,
where we ignored a constant independenj.cfo obtain the spacetime three-point function, we choose an opepgtof
3%There is no such factor for a long string.
34 there is no current algebra symmetry, one can use the energy-momentum tensor, which exists in any CFT. It is straightforward to
generalize the following computation with the energy-momentum tensor, and one obtains the same normalization for the target space

two-point function.
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dimensionh in the internal CFT so thak + h=1 and multiply it to®; . Similarly, we multiply the current generatErof the
internal CFT tod,. We find

([®(X1,21) bn(20) I[D}(X2,22) i 22) 13X, 23) L3(Z5) P 1(X3,23) 1)

1 d: gz | (2j=1)B())
~ 75 2L 2l = te=—= 7
12121223 %1 Z21| “ | X3 — X1~ X3—X; X1

: (A5)

whereq, andq, are theR charges¢y(z;) and ¢y (z,), re- r2

spectively, and we used the charge conservatpnt: ds a(r=-1—5 (B4)
=0. Comparing this with what we expect for the target space

Ward identity, we find that the spacetime two-point functionwhich is defined so that

is given by

1

k
(2j-1)B(j) A(D+ij=aln+7

(Pj(x)D(xz))~ TPRE (AB)

_ _ _ ~ We then look for a solution to the KZ equation in the power
reproducing the result we have obtained using the heuristigeries expansion of the form

argument in Sec. VA.

It is easy to see that if we insert in EGA6) the operator F(x,u)= x0T (K HHAk=2)]=A(j) = Al2) i1 ]2
JJCDl_(xg), we obtain_Eq.(AG) times an extra factor of (2 s P = [(k=2)/4]+[ L/4k=2)]= A1)~ A(j)
—1) in agreement with the arguments[24].
APPENDIX B: SOME PROPERTIES OF THE CONFORMAL X D Bpa™", (B6)

BLOCKS m.n=0

In this appendix, we will prove that the conformal block Whereb is some constant which will be determined below.
F(z,x) of the four-point function has no poles jnvhen 3 We have -chosem,n=0,1, ... sathat the expansion is con-
<Rej<(k—1)/2. We also argue that the integral oyém Eq.  Sistent with Eqs(4.7), (4.9), and (B1). The fact thatgy(u)
(4.10 is convergent. has no poles means th&t, ,—o has no poles. We will then

show inductively that this is also the case for @&, with
1. Proof of no poles inF; in %sRejs(k—l)/Z n=1.

) ) ) Substituting this into the KZ equation, we find the recur-
This has been shown {i21] using properties of the Kac- sjye equation for the coefficient, ,, of the form
Kazhdan determinant. Here we present a direct proof of the ’
absence of poles. Pla(r)+n,b+m]Cy, ,
We use the expansioi@.17) as ] o
=(linear combination ofC., ,, m'<m, n’'=n)

- — A=A —AG)+i=j1—]>
Fi(z,x)=x ! ! (B7)

XuA(i)—A(jl)—A(jz)E gn(U)X" (B1) for some functiorP(a,b), which is quadratic ifb. The right-
n=o " ' hand side contains no poles jinFor n=0,m=0, this gives

) . _ the conditionP(a(r),b)=0. This is merely the characteristic
and the boundary condition for smalldetermine thagy(u) know that this determineb to be b=b.(r)=a(r)=r. In
is given by the hypergeometric function Eq.(B2), we have chosen the root in order to fit it with the
T T boundary conditior{4.7). With this choice ofb, we want to
90(X)=F(1tiz=] st lam]k=2]0). (B2) show thatP[a(r)+n,b,(r)+m] is nonzero for anyn=1
The standard Taylor expansion of the hypergeometric funcndm=0 in the region(4.15, or equivalently G<Rer=<(k

tion shows that the expansion ofjy(u) has no poles in the —2)/2. If this is true, by recursive application of HR7), we
region (4.15). can show that, , has no pole.

Let us write Our strategy is to look for a solution B[a(r)+n,b’]
=0 for n=1 and show that it can never be of the folrh
=h, (r)+mfor anym=0. Let us writea(r) +n=a(r") for
somer’. We know that the zeros dP(a(r’),b’)=0 are
given byb’=b.(r"). Let us first consider the solution of
and b'=b,(r"). Since

r

k—1 B3
— (B3)
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b.(r'y=a(r’)+r'=a(r)+r’+n, (B8) 2. Convergence of the expression for the four-point function

To see that the integral (4.10 is indeed convergent, we
note that, as a function gf=3+is, the coefficient/C(j)|
behaves as-e** for larges where« is some constant. This
can be deduced from the expression for the two- and three-

_ 2 (D point functions (2.10, (2.14, and (2.15, using the

2mr—(n—m)==n(k=2-2r). (B9) asymptotic formulas of thd" function and the Barne$

This cannot be satisfied hyin the range 6sRer<(k—2)/2  function. Due to the factau®") in Eq. (B6), each term in the
for (n,m)+(0,0) since the real part of the left-hand side isu expansion ot(j)| ;| decays ag £ for s— = as long
negative while it is positive on the right-hand side. For theas|u|<1. We can see, using E(B7), that the coefficients in
other solutionb’=b_(r"), we also find the same equation theu andx expansion do not grow more than polynomiallyin
(B9). Thus we have shown thaP[a(r)+n,b,(r)+m] n, m so that these sums will converge]if| <1,x|<1. For
never vanishes fon=1m=0 if r is in this range. This other values ofi,x, Eq.(4.10 is defined by analytic continu-
proves thatFj(z,x) has no pole in the region of our interest. ation.

thenb’ could be equal td (r)+m=a(r)+r+m if and
only if r’=r+m-n. On the other hand,” was defined by
a(r)+n=a(r’). Eliminatingr’, we find the condition

APPENDIX C: A USEFUL FORMULA

In this appendix, we derive the formula
I(a,b,c,dE)=J d?u ud‘lﬁa‘ldF(a,b,c;u)|2+)\|ul‘°F(1+b—c,1+a—c,2—c;u)|2)

I(d)T(a—d)T'(b—d)I(1-c+d) y(c)

=1 — — , (C1
r(1-d)r1-a+d)r(1-b+d)I'(c—d) (@ yb)
where
c)?y(a—c+1)y(b—c+1
_ 7@ i )Y ), 2
(1-c)*y(a)y(b)
and y(x) is defined in Eq(2.11). The formula(C1) is obtained as follows. Let us first prove the following identity:
|F(a,b,c;u)|*+\|ut"°F(1+b—c,1+a—c,2—c;u)|’= L — |u1—°|2f d2t[tP Hu—1)° P (1 -t) @2
T ’ B my(b)y(c—b)
(C3)
This is based on the following formula:
sin(wra)sin(arc) | (u 2
2¢(4@0 11— $+\C(1 —+\b|2— aii —+\¢(1 _+t\b
f d?t[t3(u—t)%(1—1t)"| sin(m(a+0)) fodtt (u—t)¢(1—t)
sin(wb)sin(m(a+b+c))| (= . ) 2
sin(m(a+c)) fl dtt(u—t)%(1-1)° . (Co

A derivation of this formula can be found, for example [#1], where it appears in the context of the free boson realization
of thec<1 conformal field theory. There the variallleorresponds to the location of the screening operator. Using the fact
that thet integrals on the right-hand side of E&4) can be expressed in terms of the hypergeometric function, we obtain Eq.

(C3). The integrall (a,b,c,d,a) of the hypergeometric functions can then be expressed as the following double integral:

— y(c) j g1y b b _
I(a,b,c;d,d)= —————— [ dPud?tud u® YtP Y(u—t)c P L(1—t) 3> C5
( )= B D) [ U=t (1) (c5)
It turns out that bothu andt integrals can be carried out using the formula

Na+n+1L)I'(b+m+1L)I'(—a—b—1)
I'—ayr'(—b)I'ta+b+m+n+2)

f d¥|x|?31—x|?°xN(1—x)"= 7 (C6)

A derivation of this formula can be found, for example, in Sec. 7.24@}. Thus we have proven the formul&1).
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APPENDIX D: CONSTRAINTS ON WINDING NUMBER All states in the representation can be generated by acting
VIOLATION with the generators that do not annihilate the states. Further-

more, for operators within the physical ranges for continu-

currV\é?] chIVG; S;egrgﬁl];:;i éfeﬁ:zezgnitnattlgrnrisogghaen ?rl;t@,er ous and discrete representations, there are no null states in
g p @98 the representation.

qu I_ong strings, this Integer could be mterpreteq as the Now we will consider the following state:

winding number of the long string. For short strings, it is just

a parameter of states with no obvious semiclassical interpre- Ng Ne

tation. [1 @,z @ (z)/0), (D3)
Let us clarify the meaning olv for the short string. The =1 ' j=1

short string wave function, when expanded at lapgehas ) ) ,
d P ¥ whereng,n. is the number of continuous and discrete repre-

components on all winding numbers. An explicit discussion X i

of this in an expansion aroung=0 can be found ifil]. By sentations. The state) does not quite make sense, but after

an abuse of notation, we will still call the winding number we act with any of the operators, we get a state that does
make sense. Now we want to consider the st&t8) and

of short strings, but it should be kept in mind that inist the s s ; hi
winding number in the semiclassical sense. It is not even thd€COMPose it into representations of SRR, For this we
ick a circle|z|=A sufficiently large so that all the points

winding number of the largest component of the wave funcP . L ;
tion at infinity. For example, whekis large, the wave func- where the operators are inserted are left inside the circle. We

tion for aw=0 state can be expanded at lajgas consider SL(R) generators that are defined by integrating
the SL(2R) currents on this contour times appropriate pow-
V=g 2ry+e 2K Dy 4. (D1)  ersofz In other words,J, ~$dz J*(z)z". Now let us show

that some combination of the ford¥ =J; +¢;,J;_,+- - an-

where we separated the radial dependence, and the indices oifilates the statéD3). The precise combination is
Yo,¥1,... indicate the actual winding numbers @t oo. As
j—k/2, we see that the second term with winding number 1
becomes more dominant even though we are still studying
the wave function wittw= 0. This second component of the
wave function is responsible for giving the divergences inwheren,=n.+ny. We see thah=3w;+n,. We see that
the two- and three-point functions, which we discussed irthis combination annihilates the staf®3) after using Eq.
Sec. Il. The winding number has a semiclassical meaning aD2). We can now decompose E@3) into SL(2R) repre-
infinity. However, since the circle is contractible, we do notsentations with definitev. This implies that Eq(D4) will
expect that it should be conserved. In fact, it is not. We findannihilate each of the states with definite winding number
however, that there is an interesting pattern in winding numindependently. Now we will show that this implies that the
ber violations. It essentially says that the possible amounts aftate will carry a winding number less than or equalato
winding violation are restricted by the number of operators—1=3Sw;+n;— 1. Suppose that there was a state with wind-
in a way that we will make precise below. This was firsting numbera. Then Eq.(D4) would annihilate it. But, on the
observed in20]. Below, we will make a precise statement, other hand, we know that all operators in E4) act as
and we will prove it using the properties of the representacreation operators on the Fock space due to(B@). Since
tions of the SL(R) current algebra. there are no null states in the representation, we conclude

Let us work in them basis. The states are labeled by that this cannot happen. To be more precise, let us expand the
|d,T,w> and |C,T,W>, as well as soman that we do not hypothetical state with winding numbar=a in such a way
indicate since it will not be important in what follows. Here that we fixJ3 and we look at the state with fixetf with a
the lettersd,cindicate discrete or continuous representationsminimum value ofL, (thoughL, is not bounded below, it is
We will think of d asd* and we construad ~ by considering  bounded below if we consider fixelﬁ). Let us denote this
d* with w<0. The winding numbew can have any sign. state by|h). It is clear that)}|h)=0 since there is no other
The sign ofw distinguishes an incoming states and an out-state with which it could mix. This is inconsistent with the

going state in the Lorentzian picture. The sigmofs corre-  idea that there are no null vectors. Therefore, the state must
lated with the sign ofv.>? These representation are such thathave a winding number less than or equahto1l.

N

= ¢ a7 (z-2)"" 0" (@), (04)

there is a “lowest Weight“ state that ObeyS the conditions Now we can Sim”ar'y form the CombinatiodN:Jl;
N - B - +cJ,_;+- -, which annihilates the state. The precise com-
Juanldi T W) =J7 4 4ld, ], W) =0, bination is
JynlC.] W) =324l C.T,W) =0, (D2)

Ny Ne
N= ¢ dz]] (z-z) ™]] (z—z) " (2) (D5)
=1 j=1
n=1.
so thatb= —>w;+n.. We see using EqD2) that Eq.(D5)
annihilates Eq(D3). Now we show that the total winding

32This is true in our case, but it might not be true in some quo-number of the state should be bigger thab. Suppose, to
tients of AdS [43]. the contrary, that the winding number of the state is smaller
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than or equal to-b. Then Eq(D2) implies as above thak,  gperatord"“J(x) without going through then basis. This

will annihilate at least one state. Actually, the precise state- roach has an advantage that we do not have to deal with
ment will depend on whether the state we consider is discret pproaci ge tha .
e infinite factorV s as we did in Sec. V. We will compute

or continuous. If the state is discrete, then the statement is ) ) i W

bit weaker, sow should be bigger thar b— 1. the two- and three-point functions includird;*(x), and
If we expand Eq.[D3) in irreducible representations of show that they agree with the results in Sec. V when1l.

the SL(2R) current algebra, it becomes a sum of discrete

and continuous states whose winding humbers are restricted 1. Definition in the x basis

as The definition, in the case af=1, is given by the fusion

—n.+1=w—3 w,=<n,—1, continuous, of ®; with the spectral flow operatcb,,, as
(D6) CIDEV?“(X,Z)E lim e”‘Emf d?y yl~m-tyi-m-1
—nesw->, wy<n,—1, discrete. ’ =0
_ ) XDi(x+y,z+ €)Px(X,2), (ED)

In terms of correlation functions of operators, we need to - _ ) o
take the inner product of EqD3) with (0|®(z), whered ~ WhereJ=m-+(k/2) andJ=m+(k/2). This equality is un-
could be a discrete or continuous representation. Notice tha€rstood to hold inside of any correlation functions.
in our conventions, when we take the adjoint of a discrete First we need to show that the limé&—0 in Eq. (E1)
representation we take— —1—w while for a continuous €Xists, i.e., the result of thgintegral scales as™"™e ™ for
representation we take— —w. We conclude that correla- small e. We will prove this for a correlation function where

tors will obey the winding number violation rule there are at least two more operators besiﬂvg%(x). There
_ is a subtlety with the argument when there is only one addi-
—N+2<> w;<N,—2, at least one continuous, tional operator in the correlation function, i.e., when we con-

(D7)  sider a two-point function including)‘svfl'j . This does not

—Ng+1<2> w;=-1, all discrete, cause a problem sincsb‘svdil‘J has a nonzero two-point func-
tion only with another oberator wittv= 1, which actually is
Ascomposite of two operators as in EfD. In fact, we will
{pe able to compute the two-point function using Eg).

For simplicity, we sex=0 andz=0 and consider a cor-

where nowN;=N.+ Ny, andN;,Ny is the total number of
operators in the continuous and the discrete representatio
appearing in the correlation function. Note that throughou
this discussion, we were thinking of the correlators in tiine

basis, and the discrete states were taken ﬁnith+f relation function

Now let us consider the operators in thédasis. The la- F=(Pj,(x1,20)  @j (XN, Z0) P (Y, €) P2 0,0).
belsw; of all operators can be taken to be non-negative. In (E2
that case, it is easy to show that in Brpoint function the

winding numbers should obey For ly|<|x| and |e|<|z]| (i=1,...N), with finite e/y, we

can show that this behaves as

Wi_jz#i wy=N-=2. (D8) F~é(e—y) A PyP(Xg,... XNiZ3,s...Zn),  (ED)

Note that an operatad”(x,2) obey+s simple O+PE EXPansIon \yhere D is a differential operator acting oxs,... Xy. We
rules for the current9?(x,z)=e*% J%(z)e ™% (see[29]).  have set X;,z;)=(1,1) and &,,z,)=(,®) by using the
SinceJ*(x,z)=J"(2), the analysis done with the operator S| (2C) symmetries on both worldsheet and the target
(D4) goes through as before and leads@8) if we put the  space. FoN=2, we can check this explicitly by using the
ith operator az=x=c. This shows that for a three-point formula (5.30 for the four-point function with the spectral
function, the winding violation is only by one unit, so that flow operator.(In this case,D is a number depending on
the correlation function of two discrete=0 states with any j j, j,.) This can be generalized for any correlation function
state withw>1 vanishes irx space. with N=2 as follows. The spectral flow operatds,, obeys
the null state condition
APPENDIX E: ANOTHER DEFINITION OF THE
SPECTRAL FLOWED OPERATORS J7(2)Pypx,2)=0. (E4

In Sec. V, we defined the operator corresponding to theJsing this, the KZ equation is simplified as
spectral flowed representation Ky starting with the opera-
tor ®; j(x,X) in the regular representation in thebasis,(ii)
going to them basis by the integral transforitb.4), (iii)
multiplying e"®2@Ke with J3=i(k/2)d¢ as in Eq.
(5.10, and(iv) going back to thex basis to obtain expres- Let us evaluate the KZ equation in the correlation function
sions such as in Eq$5.18 and (5.40. (E2). When |e|<|z4],...,|]zy|, we can ignore the operator

Here we will describe a way to define the spectral flowedproduct singularities 083(z) at z=0 with the operators at

d
57 PdX,2) = = 32Dy, 2). (E9
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Z4,..
from ®;(y,€). We then find that the KZ equatidi5) leads
to

i F= 1,2 +j | F E6
Gel T T Yy TS (E6)
To evaluate the null state conditid&4) in the limit of our
interest, we need to use the global SIGP,nvariance ofF

to turn derivatives with respect tq, for exampleﬁx1 and
O, into a derivative with respect % This is where we need

.,Zy, and we only have to consider the contribution

PHYSICAL REVIEW D65 106006

+D;F=0, (E7)

y 4 + o
2| —(emy) ay +2l
with some differential operatdP acting onxs,... X, . Here
e*1y2&y acting onF comes from the operator product ex-
pansion ofJ~(0,0) with ®;(y,€), and the other terms are
obtained fromJ ™ (0,0) with CDjl(xl,zl)---CDJ-N(xN,zN) and

by convertingaxi’s into d, by using the SL(Z7) invariance

in the target space. We can then show that a general solution
to Egs.(E6) and(E7) is given by Eq.(E3) (besides the con-

to assume that there are at least two more operators in thact term solution discussed in the footnote Iater

correlation function. Setting x¢,z;)=(1,1) and &,,z,)
= (0,0) after this procedure, and taking the limity—0
keepingely finite, we find that the null state conditiqi4)
leads to the equation

(D;(y,€)Pyx(0,0 -y~ el (e—y) "2 PyP2 ¥ Fri(Xa,. o Xn)YY"

Now we can estimate thgintegral in Eq.(E1). From the
discussion in the above paragraph, we see that the product of
the operatord;(y, ) ®,,,(0,0) can be expanded, in the lead-
ing order ine—0, as

(E®)

n,n=0

for some operator®, ;. They integral for each term in the expansidi8) can then be estimated as

|6|2Jf dzy yJ—m—1+D+nw—m—l+D+n|6_y|—2(2]+D)~6—m+n?—m+n'

(E9

where we assumeai—me Z. Thus the limite—0 in Eq. (E1) is well defined. Only thev=n=0 survives in the limit. Note
that, although the differential operat®r has dropped out from the exponent &fthere is a product oF functions whose
arguments includeD. When this operator acts on the finite term left over, it modifieszjtand x; dependence for

=3,...N, but does give rise to additionaldependence.

Next we need to show that the operator defined by(Ed) is indeed in the flowed representation. We do this by checking
that it has the correct OPE with the SLR},currents. To show this, we start with the standard operator product expansion for

operators withw=0,

J(X",2")Dj(x+Y,2+ €)Pyp(X,2) = Prp——

+Kk(x—x")

J
_v’\2 H !
(x+y—x") —ay+21(x+y x")

]®j(x+y,z+ €)Do(X,2).

+

!

z

(E10

Applying this to Eq.(E1) and performing the integration by partsynwe obtain

L _ ) . — 1
I 20T (x2)= lim emem dzyyl'"17ml{—z,_z_f[—u—m—l)yl<x+y—x')2+(21—2><x+y—x'>]
€,e—0
"2 J H -1 "2 ’
+ - (x—x") [?—X+(J—m—1)y (X=X HK(X=X") [ 1 Dj(X+Y,Zz+ €) P o(X,2)
) — : . — j—m—1c¢€
— m_m 2y vyi—m=1gj-m-1) _ oy —vy')2
II_TOE e | dyy y ( (Z,_Z)zy(x X")
1 "2 J k '
+E (x—x") &+2 m+§ (X=X") | { @j(X+Y,z+ €)Dy(X,2)
_ . (X_X,)Z w=1] 1 N2 dJ k , w=1]j
_—(J—m—l)mz(DJJrl;(X,Z)‘FE (X—X ) ﬁ_X+2 m+§ (X—X) 33 (X,Z). (Ell)

This means that the corresponding state
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lw=1j;3,3)= %" (x=02=0)|0) (E12)

obeys

Bw=1;3,3)= lw=1j;3,3),

LK
m+3

. B (E13
Bw=1,j;3,9)=0J, jw=1,j;J,)=0 (n=1,2,...).

This is the correct highest weight condition for a state with 1.

2. Three-point function

Now we can use the definitiofELl) to compute correlation functions with spectral flowed states. First let us study the
three-point function. We start with the four-point function with a spectral flow operator,

(D), (X1) Diya(X2) D (Xg) D (Xg) ) = |24g * A2 417847 83l 7, ~ 42| 7, | A8 827847 8] 75| 2847817827 83| 7|21] 1 — 7|3
X | Xqg 2N ILT1a7T8) [ x o 72Ky 2022770 g | 204700 2RI X B (1) C(K/2
T T o PO O P T M B PO PR PR TN (PR FRN PR ) (E14)
SettingX; =X, +w,

_ XoiXaz WXy

X31Xa2  (W—Xg32)Xgp'

_ (W—Xg2)X3p

1-x= ,
(W—X32) X4

(E15

 (ZX42~ Xg39) W— ZX30X 42
(W—X32)Xa2

Substituting this into Eq(E14), we find
(@ (X)) Pia(X2) D (Xg) D} (Xg)) =245 * 227817247 8) |7, 7482 7|2 8aT 827 Ra7 80| 72847 417827 49)
X|2|11|1—2|%13B(j 1) C(K/2= ] 1,] 3] 4) [Xag 21T I3 a7 K2 2017 Iat 4= k2

X W] 2Tt I3tIa K2 (2, )— X gg) W — ZXgXgg ~ 17137 Ia T2, (E16

We then multiply the factofw|?U1~™~1) and integrate ovew. We find
f dW?[w[2017 M (D) (Xq) Da(X2) P (X5) P, (Xa))

= (standard powers of;)B(j 1) C(KI2= ] 1,j5,]4)[Xsd 20111371472 |xgp 202713 T 14~k
Xf dPw|w]|20aHam M2 D] (72— X gg)W— XgpXgg 1171214t

= |24 282" 217847807, 4827, M85 A2 Ram Al 74| 2847 81722789 1 — 7| A 2| T2MB(j1) C(KI2— 1, 3.]4)

X | Xa2) 2(J3*i4*m1*k/2)|X32| 2(*]3+j4*m17k/2)|zx42_ X4q 2(—j3—ig+my+ki2)

- C(jagtja—m—K2)I'(=ji—jz—Jjat K2+ 1) (j1+my) (E17)
F(1—-jg—jatm+K2)[(j1+]js+ja—KI2)T(1—j;—my)

Now we multiply by|z,,/>™ and sendz,;— 0. We find
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lim |zp,|2™
Zzlﬂo

L(j3+ja—J)

PHYSICAL REVIEW D65 106006

J dw? w[2027 M (D) (X)) Pia(X2) P (X3) P, (X4))

=B(j1)C(k/2—]1,]3,] — - —
UOCET s T o277 0) T 1039 K02) Y5t et 11 W2

X |X 49l 21371479 g | 214~ 13 D[, 20T

where
(E19

Due to the limit in Eq.(E18), we can neglect higher powers
of z appearing at various places.

The result(E18) is in agreement with Eq(5.38), which
we computed by going through the basis®®* We should
point out that the factor ¥, in Eq. (5.38 is absent in Eq.
(E18. Thus the definition(E1l) includes the rescalingb

—® =V, that we performed for the long string.

3. Worldsheet two-point function

To compute the two-point function with spectral flowed
operators, we start with the four-point function with two in-
sertions of spectral flow operators, sgy j,=k/2. The KZ
equation and the null state conditions imply that j;. To

see this, we notice that the four-point function should be

symmetric under 2-4, leaving 1 and 3 unchanged. This
changesz—1—2z, x—1—x. Taking into account also the
prefactors, we find

Demanding that this is 1, we find=j3.3*

1—X j1—is|2

X

4pt(1,2,34
4pt(1,4,3,2

z
1-z

)A1A3+1113<

(E20

33Note thatm in Eq. (E19 is —m in Eq. (5.39.

34A solution with j;=1—j5 appears to come from a contact term
for the four-point function. In fact, the function 116°(x—z) is a
solution to Eqgs.(E6) and (E7), with j;=1—j; and D=1-2j,,

I'(j,+J3—k/2) 1
*J'4)|Z4A31*AS*AAZQS*A1*A4Z§241*A1*A3|2, (E18

Now let us apply Eq(E1) to extract the two-point func-
tion of the spectral flowed state. As we explained in the
above, we expeci;=j; from the null vector equations. In
fact, the factorC(k/2—j,j3,j4) in Eq. (E14) with j,=k/2
vanishes foij ; # 3 and is infinite at ;= ;. We can regular-
ize the infinity by slightly modifying the spectral flow opera-
tor ask/2—k/2+ie. Indeed, in the limite—0, we recover
the & function enforcingj;=j3,

clznis3

= (k-dependent coefficiend(j,—j3).

k kK
5_1111315

(E2)
Thus the four-point function in this case reduces to

(Pj(X1,21) Pya(X2,22) P(X3,23) Pija( X4, 24))

K220 iy~ Ky = 2] -2j|2
=lz4325,"" 2 (1= 2) X5 %517 (2= %) 7|

xXB(j)o(j =), (E22
where we ignored &dependent overall coefficient. Now we
set X1 =Wq+Xy, X3=W3+Xq4, multiply by
|wy[207 M= D|w,|20-Ms~1) - and integrate ovew; andws.

It is convenient to introduce new variableg andu; defined
by w;=X4,U; , i =1,3. The integrated correlation function be-
comes

|z|21f d?u,d?u,

><|u -mp—1 j—mg—1

u, [usuz—2z(uz+1)] 723,

(E23

j
1

which is the value that appears in the four-point function equation

when j,=j,=k/2. [Note that5?(x—z) is not a standard contact
term, forx=z is not a coincidence limit of two operators. If we use
the relation between the four-point functiafg )(z,x) in the
SL(2,C)/SU(2) coset model and a five-point function in the Liou-
ville model, recently pointed out ifi33], one can interpret?(x
—2) as a contact term coming from the coincidence limit involving

the extra operator one inserts in the Liouville model. It would be
interesting to find a direct interpretation of such a contact term in

the SL(2C)/SU(2) model] Insertingz 156%(x—z) into thex inte-

gral we describe below and doing the same change of variables, we

see that we recover the term proportionald@,+j,—1) in the
two-point function.

where we sez=0 in the term with (+2z) since we are
going to be interested in the smalbehavior of Eq.(E22).
Here we omitted the standard factors»f and z4,. It is
convenient to change the integration variablesigs /sy,
us= /sy L. After rescalings= zt, we find that(E23) goes as

|Z—1/2(ml+m3)|2J d2y d23|ym3—m1—1|2

X|sl ~WAmEmy) ~1r gt Jozy =1y 11722,
(E24
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Since we are interested in the leading term in thexpan-

sion, we setz=0 in the last factor. The integral ovgrthen

gives 6°(m; —mj), and the integral oves gives a combina-
tion of I' functions,

I(j— LG +my)
2 DT (- +m)T(i—j—my"  E2Y

Combining this with the factoB(j)d(j1—]j3) in Eq. (E22),

PHYSICAL REVIEW D 65 106006

relevant part of the correlation function behaves as(E§).
Then, with the previous definition in EGE1), we find that
the spectral flowed correlator goes as

f d2W|Wj—m—1+D(1_W)—2j—Dlz

(E27)

after we rescalev— zw and taking the— 0 limit. Similarly
from Eq. (E26), we obtain

we have reproduced the expression for the two-point func-
tion in Eq. (5.13.

Finally, let us note that, instead of the definitidl), we
could also define the spectral flowed operator via

f d2t|t M L(1—t) "2 D)2 (E29
after rescalingz=xt and and taking th&—0 limit. We see
that after the change of variablés 1/iwv, the two integrals
become the same. This shows that the two definiti@iy

HJ d2e ém—lzn_q—l
and (E26) give the same results in general.

M (x,2)=lim yi ="y~
y—0

XDj(X+Y,z+ €)Dyx(X,2), (E26)

4. Target space two-point function

for J=m+ (k/2). Instead of integrating oveyr, here we are
taking an integral ovek. In this definition of the flowed

Let us turn to the target space two-point function for the
state withw=1. We apply the method used in Appendix A
operator, the expression is manifestly locakirOn the other  for w=0 and use the Ward identity to determine the normal-
hand, the definitiofE1) is manifestly local inz. In order to ization of the two-point function. We start with the following
show that the two definitions are equivalent, we note that thédentity for the three-point function:

w= 1]1

<c1) (le 1)@ 2(X2:22)3(X3123)¢1(X3123)>

(3X1

w=1j,
(222

=—(jp—m—1) 5 +1J( 15 1)(1) z(xz,zz)CI)l(x3,z3))—(j2—m2—1)

(X3— Xz) w= 1,1

i 1
w=1]
(23 2<(D (Xl,Zl)CDJ +1'§2(X2,22)(I)1(X3,Z3)>+{H (Xl_ +

d
X3)2_+2 ml+ ~
IXq 2 23— 2,

111

X | (Xp—X3)? my+ <<I) - (X1121)q)w_ ]2(X2122)¢1(X3a23)> (E29

G
X,

We then have to compute the three-point functions on the right-hand side of this equation. We start with the expression for the
five-point function with two spectral flow operators, obtained26],

(Pria(X1,21) Prya(X2,22) P (Y1,61) P (Y2,42)P1(Y3,{3))

Kk Kk o o
=B<11)B<jz>C(§—jl,5—12,1)|<x1—x2>'1“2”‘ku’f T L (E30)
where
(X1=Yir 1) (X2=Yit2)  (X1=VYir2)(X2=Vit1)
= - . E31
Hi (Z1=&4i+1)(Z2=&iv2) (21— &iv2)(Z2— &4 1) (33

We have neglected the and {-dependent factors. When=j,, the factorB?C in Eq. (E30) is equal toB(j;) up to a
k-dependent factor as
c k  k 4]
2 b=

G(2j—k)

— k=2 ? 2—k 1 E32
» v [K—1 — \2x/) " B (32
2mevS ey k—2 G(1+2j—k)

106006-41



JUAN MALDACENA AND HIROSI OOGURI PHYSICAL REVIEW D65 106006

We apply Eq.(E1) to Eq. (E30 and integrate ovet; and{,. It is convenient to set;=z,=0, X,=2,=1, y3= (3=,
yi1=Uul4, Yo—1=v({,—1), and takel,;, 1— ¢, to be small. In this limit we find

pm1=1-v, pu,=1-u, puz=uv-—1 (E33
. . w=1j1 . w=1j, .
The integral we need to evaluate, in order to comp{dtg 0 <I>J 0 ®,) is then
1v1 272

J dUZdU2u11—ml—1Ui1—51—1v12—m2—1§i2—52—1|(u_ 1)i17i27(y—1)l27 i Yup — 1)1—11—iz|2_ (E34)

Let us consider the case of the long string. We then Hawes +is,, and the integral gives &function singularity at
s;=S, coming from the region of the integral of~1 orv~1. The term proportional to thé function can be evaluated as

5”“”“ duuls™ Mg (U—l)_2j1|2+(m1,ml—>m2,m2)>

o ™ L(j;—m)T(j+my) _ _)
=06(],— - - ———+(My,My—m,,m,) |. E3
s 12)y(zm(r<1—11—ml>r<1—11+ml> (M M . me) (£39
Since
kK 1+s?
J_Z—’_m—’_h_l’ (E36)

the delta functions(s; —s,) together with the conditioh;=h, in the internal CFT implie§, =J, and thereforen,=m,. The
correlator multiplying the double pole term in E@&29 then gives

f du?dy2ultm-2gi M- Ly lemmeTgpTem ML (g — 1)iiie iy — 1)l I Yy — 1) I ig)2

~8(i1—1s) 1 ( —ji—m ) LC(j;—m)I'(j;+m)
Il mlm—1 T —mra—j,+m

~—=08(j1—] — - - - . E3
U S frm -1 T ), mr (A j - (E37
On the other hand, the correlator multiplying the single pole term in(E89 gives
2m;+k I'(j;—mpI'(j;+m:
81—, 1 (Ji=m) T (j1+my) (E39

y(j1) T(1—ji—m)l(1—ji+my)"

We combine them with EGE32) and multiply by the correlation functiofypy,(z,) d)r’](zz)f@)) in the internal CFT, as we did
in Appendix A, to compute the on-shell three-point function involving the target sRazerent. We find

(L@ 0x0,2) (20 L@ 2%, 22) dn(22) 113X, 20) L (Z0) P (X3 Z3) 1)
1 dx a2 ) o L(ji—m)I(j1+m) B(j1)
~ ——t—=——1]0(j1— — , E39
121011224 %[ 224/ (Xs—xl " X3 X2 (12=12) (i)l (1—j—mT(1—j;—m) |X1d*’ .

yvhereql andq, are theR charges of the two operators. From this, we find that the spacetime two-point functlt)ﬁ—(ﬁi bn
is

F(ja—mpL(jo+my)
YOI (1=j—m)(1—j,—my)

B(j1)-

We do not have the extra factor of (2 1) for the long string.
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