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1Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104

and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855
2DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, Cambridge CB3 0WA, United Kingdo

3Michigan Center for Theoretical Physics, University of Michigan, Ann Arbor, Michigan 48109
4Center for Theoretical Physics, Texas A&M University, College Station, Texas 77843

~Received 20 November 2001; published 9 May 2002!

In this paper, we look for metrics of cohomogeneity one inD58 and 7 dimensions with Spin~7! andG2

holonomy, respectively. InD58, we first consider the case of principal orbits that areS7, viewed as anS3

bundle overS4 with triaxial squashing of theS3 fibers. This gives a more general system of first-order
equations for Spin~7! holonomy than has been solved previously. Using numerical methods, we establish the
existence of new nonsingular asymptotically locally conical~ALC! Spin~7! metrics on line bundles overCP3,
with a nontrivial parameter that characterizes the homogeneous squashing ofCP3. We then consider the case
where the principal orbits are the Aloff-Wallach spacesN(k,l )5SU(3)/U(1), where the integersk and l
characterize the embedding of U~1!. We find new ALC and asymptotically conical~AC! metrics of Spin~7!
holonomy, as solutions of the first-order equations that we obtained previously@M. Cvetič, G. W. Gibbons, H.
Lü, and C. N. Pope, Nucl. Phys.B617, 151~2001!#. These include certain explicit ALC metrics for allN(k,l ),
and numerical and perturbative results for ALC families with AC limits. We then studyD57 metrics ofG2

holonomy, and find new explicit examples, which, however, are singular, where the principal orbits are the flag
manifold SU(3)/@U(1)3U(1)#. We also obtain numerical results for new nonsingular metrics with principal
orbits that areS33S3. Additional topics include a detailed and explicit discussion of the Einstein metrics on
N(k,l ), and an explicit parametrization of SU~3!.
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I. INTRODUCTION

Metrics of special holonomy are of considerable inter
both in mathematics and in physics. They are special case
Ricci-flat metrics, whose holonomy groups are stric
smaller than the SO(D) holonomy of a generic
D-dimensional metric. The irreducible cases include Ric
flat Kähler metrics in dimensionD52n, with holonomy
SU(n), and hyper-Ka¨hler metrics in dimensionD54n, with
holonomy Sp(n). Two further irreducible cases arise
namely, G2 holonomy in D57, and Spin~7! holonomy in
D58. It is to these latter cases, known as metrics of exc
tional holonomy, that this paper is devoted.

Our focus in this paper will be on noncompact metrics
cohomogeneity one, in dimensionsD57 and 8. The first
complete and nonsingular such examples were obtaine
@1#, and first appeared in the physics literature in@2#. They
comprised three metrics ofG2 holonomy inD57, and one
of Spin~7! holonomy inD58, and all four of these metric
are asymptotically conical~AC!. Specifically, the metrics in
D57 are asymptotic to cones overS33S3, CP3, and the
six-dimensional flag manifold SU(3)/@U(1)3U(1)#, while
the metric inD58 is asymptotic to a cone overS7. In all
cases the base of the cone carries an Einstein metric, a
not the ‘‘standard’’ one. Topologically, the threeD57 mani-
folds are the spin bundle ofS3, and the bundles of self-dua
two-forms overS4 andCP2, respectively.

The topology of theD58 manifold is the chiral spin
bundle ofS4. The homogeneousS7 of the principal orbits
can be described as a~round! S3 bundle overS4, with the
0556-2821/2002/65~10!/106004~29!/$20.00 65 1060
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sizes of theS3 fiber and theS4 base being functions of the
radial variable. The specific forms of these functions ens
that the metric is complete on the chiral spin bundle ofS4,
with the radius of theS3 fibers approaching zero at sho
distance in such a way that one obtains the required non
gular R4 bundle overS4.

Recently, further complete and nonsingular noncomp
eight-metrics of Spin~7! holonomy were found@3#. By con-
trast to the example in@1,2#, the new metrics are asymptot
cally locally conical ~ALC!, approaching the product of
circle and an AC seven-manifold locally at large distan
The seven-manifold is a cone overCP3. The new metrics
were obtained by writing a metric ansatz with a more gene
parametrization of homogeneous metrics on theS7 principal
orbits, in which theS3 fibers overS4 can themselves be
‘‘squashed,’’ with theS3 described as anS1 bundle overS2.
This now gives functions in the metric ansatz, parametriz
the sizes of theS4, S2, and S1. First-order equations for
these functions were derived in@3#, which can be viewed as
the necessary conditions for Spin~7! holonomy, and then the
general solution was obtained. In addition to the previous
example of@1,2#, which of course is contained as a spec
case, all the new solutions are ALC. The ALC nature of t
large-distance behavior arises because the function pa
etrizing the size of theS1 tends to a constant at infinity. Th
general solution of the first-order equations has a family
nonsingular metrics, with a nontrivial continuous parame
~i.e., a parameter over and above the trivial scale size!. In
general the manifold is again the chiral spin bundle ofS4.
For general values of the parameter the solution is q
complicated, and is expressed in terms of hypergeome
©2002 The American Physical Society04-1
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functions; the manifolds were denoted byB1 andB2 in @3#.
For a particular value of the parameter the solution beco
much simpler, and is expressible in terms of rational fu
tions; this case was denoted byB8 in @3#. One further com-
plete solution arises: an isolated example which is topolo
cally R8, and denoted byA8 in @3#.

In Sec. II we consider a further generalization of the a
satz for Spin~7! metrics withS7 principal orbits, in which the
S3 fibers over theS4 base have ‘‘triaxial’’ homogeneous dis
tortions, implying that there will now be a total of four func
tions parametrizing the various radii. We obtain first-ord
equations that imply Spin~7! holonomy, and then we discus
the possible solutions. The previous examples in@1,2# and
@3# of course arise as special cases. Although we have
been able to obtain more general solutions analytically,
have carried out an extensive numerical analysis of the e
tions. We find clear evidence for the existence of nonsingu
triaxial solutions, in which there is a minimalCP3 surface~a
bolt! at short distance, with ALC behavior at infinity. The
is a nontrivial one-parameter family of such regular solutio
where the parameter can be thought of as characterizing
‘‘squashing’’ of the minimalCP3, viewed as anS2 bundle
over S4. If we denote the ratio of the radius ofS2 over the
radius of CP2 by l, then we find nonsingular metrics fo
l2<4. The special casel254 corresponds to the ‘‘round’
Fubini-Study metric onCP3, and in this case the eight-metr
is nothing but the complex line bundle overCP3 contained in
@4,5#, which has the smaller holonomy SU~4!. Whenl2,4,
the new metrics exhibit a behavior reminiscent of the Atiya
Hitchin @6# hyper-Kähler four-metric, with the three radia
functionsai on S3 going from a1

250, a2
25a3

25const at the
bolt, to a35const,a1

2;a2
2;r 2 at large radiusr. We denote

these new eight-manifolds of Spin~7! holonomy byC8 .
In Sec. III, we examine eight-metrics of Spin~7! ho-

lonomy where the principal orbits are the Aloff-Wallach h
mogeneous spacesN(k,l ), which are SU~3!/U~1! with the
integersk and l specifying the embedding of the U~1! in
SU~3!. We begin, in Sec. III A, by reviewing some of th
relevant properties of the Aloff-Wallach spaces themselv
In particular, we present a more explicit demonstration th
has previously appeared in the literature of the fact that
generick andl eachN(k,l ) admits two inequivalent Einstein
metrics.@The existence of an Einstein metric for eachN(k,l )
was proven in@7#; an explicit expression for one such metr
on N(k,l ) was given in@8#, and the proof that each gener
N(k,l ) admits two Einstein metrics was given in@9#.# We
also give an alternative proof of a result following from@8,9#
that every homogeneous Einstein metric has weakG2 ho-
lonomy. In Sec. III B, we give a discussion of the glob
structures of theN(k,l ) spaces, focusing in particular on th
question of when a given such space admits a descriptio
an S3 ~as opposed to lens-space! bundle overCP2. This is
important in what follows in Sec. IV, where we discuss d
tails of eight-metrics of Spin~7! holonomy withN(k,l ) prin-
cipal orbits. The first-order equations for Spin~7! holonomy
for this class of metrics were obtained in@10#. In order to
have a nonsingular such metric on anR4 bundle overCP2, it
is crucial that the collapsing fibers at short distance should
10600
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S3 and not a lens space. We obtain an explicit analytical lo
solution, which is ALC, for each choice ofN(k,l ) principal
orbit. We also give a discussion of numerical solution
which indicate the existence of complete examples with
nontrivial parameter, and which include metrics that are
ymptotically conical in a particular limit.

In Sec. V, we turn to a consideration of more gene
seven-metrics ofG2 holonomy. We begin in Sec. V A by
studying seven-metrics ofG2 holonomy on theR3 bundle of
self-dual two-forms overCP2. These generalize the AC ex
ample on this topology in@1,2#, whose principal orbits are
the flag manifold SU(3)/@U(1)3U(1)#, with two size pa-
rameters as metric functions. The more general ansatz
we consider here has principal orbits of the same topolo
but with three, instead of two, sizes as metric functions.
terestingly, the first-order equations that follow from requ
ing G2 holonomy turn out to be the same as those that a
in four dimensions, for a set of Bianchi type IX hyper-Ka¨hler
metrics. In that case the equations were solved complete
@11#, and so we are able to use the same procedure here
in the four-dimensional case, we find here that the gen
solution gives irregular metrics, with regularity attained on
if two of the metric functions are equal, which reduces t
system to the already known one in@1,2#.

In Sec. V B, we briefly consider the possibility of mor
general seven-metrics ofG2 holonomy where the principa
orbits areCP3. Although we end up concluding that no po
sibilities arise of greater generality than those conside
previously in @1,2#, we do nevertheless obtain as a b
product a more elegant formulation of the already kno
metrics.

In Sec. V C, we study a general system of equations
metrics ofG2 holonomy on the spin bundle ofS3. Here, the
principal orbits have the topology ofS33S3. A rather gen-
eral ansatz with six functions parametrizing sizes in a fam
of squashedS33S3 metrics was studied in@12,13#, where
first-order equations implyingG2 holonomy were derived.
We find by means of a numerical analysis that the only n
singular solutions occur when two pairs of metric functio
are set equal, leading to a truncation to a four-function s
tem that was discussed in@13#, where an isolated nonsingula
ALC solution was obtained explicitly. Perturbative arg
ments in@13# suggested that a more general family of non
ingular ALC solutions, with a nontrivial parameter, shou
exist. These would be analogous to the one-parameter fa
of ALC Spin~7! metrics found in@3#. Using a numerical
analysis, we also find evidence for the existence of suc
one-parameter family of nonsingular solutions. We den
these byB7

1 andB7
2 , with the isolated example found in@13#

being denoted byB8 .
After our conclusions, we include a number of Appe

dixes. Appendix A contains a detailed discussion of the
rametrization of SU~3! in terms of generalized Euler angle
which is useful in our discussion of the global structure
the Aloff-WallachN(k,l ) spaces.

Recent applications of Ricci-flat manifolds with spec
holonomy in string and M theory can be found in@14–45#.
4-2
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II. NEW Spin „7… METRICS WITH TRIAXIAL S3

BUNDLE OVER S4

In @3#, new complete nonsingular Spin~7! metrics on the
chiral spin bundle ofS4, and onR8, were constructed. Thes
metrics have cohomogeneity one, with principal orbits t
areS7, with a transitively acting SO(5)3U(1) isometry, and
they are asymptotically locally conical. They were obtain
by generalizing the original ansatz used in the AC exam
of @1,2#, by describingS7 as anS3 bundle overS4, with
radial functions in the metric parametrizing the size of theS4

base, and the sizes ofS2 and the U~1! fibers, in a description
of S3 as the Hopf bundle overS2. First-order equations com
ing from a superpotential were then constructed, and the g
eral solution was obtained. A one-parameter family of no
singular solutions on the chiral spin bundle overS4 was ob-
tained; these were denoted byB8

1 , B8
2 , and B8 in @3#. It

should be emphasized that the parameter in these solutio
nontrivial, and not merely a scale size. The general solu
also includes an isolated nonsingular Spin~7! metric onR8;
this was denoted byA8 in @3#. The local form of the metric in
this example is in fact the same as the metric onB8 in the
one-parameter family on the chiral spin bundle ofS4, but
with the range of the radial coordinate chosen differently

In this section, we shall generalize the construction in@3#,
by introducing a fourth radial function in the cohomogene
one metrics, so that the principal orbits are nowS7 described
as a bundle of triaxially squashed three-spheres overS4. Af-
ter calculating the curvature, we find that the potential in
Lagrangian description of the Ricci-flat conditions can
derived from a superpotential, and hence we obtain a sys
of first-order equations for the four metric functions. The
are equivalent to the integrability conditions for Spin~7! ho-
lonomy. In fact, the equations that we obtain have also b
found recently by Hitchin@47#, using a rather differen
method.

A. Ansatz and first-order equations

We begin by introducing left-invariant one-formsLAB for
the group manifold SO~5!. These satisfyLAB52LBA , and

dLAB5LAC∧LCB . ~1!

The seven-sphere is then given by the coset SO(5)/SU(2)L ,
where we take the obvious SO~4! subgroup of SO~5!, and
write it ~locally! as SU(2)L3SU(2)R .

If we take the indicesA and B in LAB to range over the
values 0<A<4, and split them asA5(a,4), with 0<a
<3, then the SO~4! subgroup is given byLab . This is de-
composed as SU(2)L3SU(2)R , with the two sets of SU~2!
one-forms given by the self-dual and anti-self-dual combi
tions

Ri5
1
2 ~L0i1

1
2 e i jkL jk!, Li5

1
2 ~L0i2

1
2 e i jkL jk!, ~2!

where 1< i<3. Thus the seven one-forms in theS7 coset
will be

Pa[La4 , R1 , R2 , R3 . ~3!
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It is straightforward to establish that

dP05~R11L1!∧P11~R21L2!∧P21~R31L3!∧P3 ,

dP152~R11L1!∧P02~R22L2!∧P31~R32L3!∧P2 ,

dP25~R12L1!∧P32~R21L2!∧P02~R32L3!∧P1 ,

dP352~R12L1!∧P21~R22L2!∧P12~R31L3!∧P0 ,

dR1522R2∧R32 1
2 ~P0∧P11P2∧P3!,

dR2522R3∧R12 1
2 ~P0∧P21P3∧P1!,

dR3522R1∧R22 1
2 ~P0∧P31P1∧P2!. ~4!

We are now in a position to write an ansatz for the mo
general metrics of Spin~7! holonomy on theR4 bundle
over S4:

ds8
25dt21ai

2Ri
21b2Pa

2. ~5!

From this, we find after mechanical calculations using E
~4! that the conditions for Ricci flatness can be derived fro
the LagrangianL5T2V, together with the constraintT
1V50, where

T52a18a2812a28a3812a18a3818~a181a281a38!a48112a48
2,

V5 1
4 a1

2a2
2a3

2b4~a1
21a2

21a3
2!12b8~a1

41a2
41a3

422a1
2a2

2

22a2
2a3

222a1
2a3

2!212a1
2a2

2a3
2b6, ~6!

where ai5ea i, b5ea4, and a prime denotes a derivativ
with respect toh, defined bydt5a1

2a2
2a3

2b8dh. Reading
off the DeWitt metric gi j from the kinetic energy
T5 1

2 gi j a
i8a j8, we find that the potentialV can be

written in terms of a superpotentialW, as V
52 1

2 gi j (]W/]a i)(]W/]a j ), where

W5a1a2a3~a11a21a3!b2

22b4~a1
41a2

41a3
422a1a222a2a322a3a1!. ~7!

This leads to the first-order equationsa i85gi j ]W/]a j ,
which give

ȧ15
a1

22~a22a3!2

a2a3
2

a1
2

2b2 ,

ȧ25
a2

22~a32a1!2

a3a1
2

a2
2

2b2 ,

ȧ35
a3

22~a12a2!2

a1a2
2

a3
2

2b2 ,

ḃ5
a11a21a3

4b
, ~8!

where an overdot denotes a derivative with respect to
original radial variablet appearing in the ansatz~5!. It is
4-3
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straightforward to see that these are in fact the integrab
conditions for Spin~7! holonomy.1

B. Some properties of the equations

1. Truncations to simpler systems

First, note that if we drop the terms associated withb, we
get precisely the first-order system that arises for triaxial
anch type IX metrics inD54 @46#, which admits the Atiyah-
Hitchin metric @6# as a solution. This corresponds to a lim
in which the radius ofS4 goes to infinity, so that we effec
tively recover the equations for the Atiyah-Hitchin solutio
times flatR4. Some properties of the Atiyah-Hitchin solu
tions are reviewed in Appendix B.

If instead we set any two of theai equal, saya25a3 , and
make the redefinitionsa25a3→2a, a1→2b, b→c, we get
precisely the first-order system of our previous paper@3# on
the new Spin~7! manifoldsA8 , B8 , andB8

6 : namely,

ȧ512
b

2a
2

a2

c2 , ḃ5
b2

2a22
b2

c2 , ċ5
a

c
1

b

2c
. ~9!

This system was solved completely in@3#.
A third specialization is to seta252a3 . It can be seen

from Eq.~8! that this will be consistent provided that we al
imposea252b. We then have the metric ansatz

ds8
25dt21a1

2R1
21a2

2~R2
21R3

21 1
4 Pa

2!, ~10!

and the truncated first-order equations are the equations

ȧ1542
3a1

2

a2
2 , ȧ25

a1

a2
. ~11!

It is straightforward to solve these, to give

ds8
25S 12

l 8

r 8D 21

dr21r 2S 12
l 8

r 8DR1
2

1r 2~R2
21R3

21 1
4 Pa

2!. ~12!

This is in fact precisely the Ricci-flat Ka¨hler metric with
SU(4)[Spin(6) holonomy, on anR2 bundle overCP3. The
complete metric is asymptotic to the cone overS7/Z4 . The
six-metric with a2

2 prefactor is in fact precisely the Fubin
Study metric onCP3.

2. Some observations about the Spin(7) system

Let us definewi variables as in the Atiyah-Hitchin cas
@6#, namely,

w15a2a3 , w25a3a1 , w35a1a2 , ~13!

and a radial variableh by dt5a1a2a3dh ~exactly as for the
Atiyah-Hitchin case!. Also, define

1These equations were also obtained recently by Hitchin, usin
rather different construction@47#.
10600
y
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b[b2. ~14!

Then the first-order equations~8! become

d~w11w2!

dh
54w1w22

1

2b
@w1w2~w11w2!1w3~w1

21w2
2!#,

d~w21w3!

dh
54w2w32

1

2b
@w2w3~w21w3!1w1~w2

21w3
2!#,

d~w31w1!

dh
54w3w12

1

2b
@w3w1~w31w1!1w2~w3

21w1
2!#,

db

dh
5

1

2
~w1w21w2w31w3w1!. ~15!

This set of equations can be reduced to a single hig
nonlinear second-order equation. To do this, we first m
the field redefinitions

X5w32w1 , Y5w22w1 , Z5w21w3 . ~16!

We can then derive the following simple equations:

d

dh
logS X

YD54~Y2X!,
d

dh
log~XYb2!54Z, ~17!

together with two more complicated equations forŻ and ḃ.
In terms of a new radial variablet, defined bydt5Z dh, we
therefore have

b2XYZ225c0e4t, ~18!

wherec0 is a constant of integration. After the further rede
nitions

U[
X2Y

Z
, V[

X

Y
, b̃5bZ21, ~19!

and the introduction of another radial variablez defined by
dz58UV(V21)22dt, we find thatV is given by

V5
z11

z21
, ~20!

and then the remaining two equations, forU andb̃, become

U85
U222zU11

2~z221!
2

~U221!~zU21!

16~z221!b̃
,

b̃85
b̃~U221!

2~z221!U
2

zU31U213zU25

16~z221!U
, ~21!

where a prime meansd/dz. One can solve algebraically fo
b̃ in the U8 equation, and substitute it back into theb̃8
equation, thereby obtaining a second-order nonlinear eq
tion for U:
a

4-4
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2~z221!2@U~U221!~zU21!U9

2~2zU323U224zU15!U82#1~z221!

3@2~zU21!2~U215!2~U221!2#U8

12~zU21!2~zU323U213zU21!50. ~22!

It is not clear how to solve this equation in general. He
we just remark that two special solutions areU52(z
11)21 andU52(z21)21. In fact, both of these correspon
to the previously known solution~12! on the complex line
bundle overCP3. For example, forU52(z11)21, after de-
fining a radial coordinater by r 85 1

16 (z13)2(z11)21, one
obtains Eq.~12! with l 85 1

2 . ~TheA8 andB8 metrics found in
@3# are also special solutions of the more general triax
system we are studying here, but these all correspond
degeneration of the parametrization in this section, withY
50 or X5Y.!

C. Numerical analysis

Since we have not been able to solve the first-order eq
tions ~8! explicitly, we now turn to a numerical analysis o
the equations. In the case of nonsingular manifolds, the m
rics are defined onR13G/H, completed by the addition o
a degenerate orbitG/K at short distance, whereK contains
H. The possible cases areG/K5SO(5)/U(2)5CP3, G/K
5SO(5)/SO(4)5S4, or G/K5SO(5)/SO(5)51, corre-
sponding to aCP3 or S4 bolt, or a Newman-Unti-Tamburino
~NUT! metric, respectively.

Our technique consists of first performing an analy
Taylor expansion of the solution in the neighborhood of
degenerate orbit~i.e., in the neighborhood of the NUT metri
or bolt at short distance!. When making this expansion, w
impose the necessary boundary conditions to ensure tha
metric can be regular there~in an appropriate coordinate sy
tem!. At this stage we are left with a number of undete
mined coefficients in the Taylor expansions, and these re
sent the free parameters in the general solution tha
nonsingular near the NUT metric or bolt. We then use th
Taylor expansions in order to determine initial conditions
short distance away from the NUT metric or bolt, and th
we evolve these data to large distance in a numerical i
gration of the first-order equations~8!. In particular, we can
study the evolution of the solution as a function of the fr
parameters, and determine the conditions under which
solution is nonsingular.

We find that the nonsingular solutions are those where
metric at large distance approaches a cone over eitherS7/Z4
~the AC line bundle overCP3! or S7 ~the AC chiral spin
bundle overS4!, or else a circle splits off and approaches
constant radius, while the other directions in the princi
orbits grow linearly so that the metric approachesS1 times a
cone overCP3 locally. These are the ALC cases. In fact, w
find that generically the nonsingular solutions are ALC, w
the AC behavior arising only as a limiting case.

In cases where the initial conditions do not lead to
ALC or AC structure at infinity, we find from the numerica
analysis that a singularity arises in the metric functions.
10600
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other words, the set of nonsingular metrics correspond
those cases where the choice of initial conditions leads to
ALC or AC behavior at infinity.

1. Numerical analysis forCP3 bolts: New Spin(7) metricsC8

We can study the solution space for regular metrics in t
case as follows. First, we seek a solution in the form o
Taylor series int, for smallt, that exhibits the required short
distance behavior. In the present context, where we are lo
ing for solutions in which the metric collapses to aCP3 bolt
at t50, we make an expansion

ai~ t !5 (
n>0

xi~n!tn, b~ t !5 (
n>0

y~n!tn, ~23!

wherex1(0)50, implying thata1 vanishes att50. ThusR2
andR3 describe the directions on anS2 bundle over theS4

that is described by thePa .
We find that the general Taylor expansion of this form h

two free parameters. These can be taken to bey(0), speci-
fying the radius of theS4 base, andx2(0) @which is equal to
2x3(0)# specifying the radius of theS2 fibers, on theCP3

bolt at t50. One of these two parameters is trivial, corr
sponding merely to a choice of overall scale, and so with
loss of generality we may takey(0)51. For convenience
we shall definex2(0)[l, and so this corresponds to a no
trivial adjustable parameter in the solutions that are regu
near theCP3 bolt. Thus the metric restricted to the bolt is

ds6
25l2~R2

21R3
2!1Pa

2. ~24!

Note that this family of homogeneous metrics onCP3 re-
duces to the standard Fubini-Study metric ifl254.

To the first few orders int, we find that the Taylor-
expanded solution to Eq.~8! is given by

a154t1
~l4240l2248!

12l2 t31¯ ,

a25l1~12 1
4 l2!t1

~3l428l2148!

32l
t21¯ ,

a352l1~12 1
4 l2!t2

~3l428l2148!

32l
t21¯ ,

b511 1
16 ~122l2!t21¯ . ~25!

Using the Taylor expansions to set initial data at some sm
positive value oft, we now evolve Eqs.~8! forward to large
t numerically.2 We find that the solution with the abov
small-t behavior is regular provided that the nontrivial p
rameterl is chosen to that

l2<4. ~26!

2In order to set the initial data accurately at a sufficient dista
away from the singular point of the equations att50, we typically
perform the Taylor expansions to tenth order int.
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FIG. 1. The new nonsingular Spin~7! metrics
C8 as a function ofl.
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The casel254 corresponds precisely to the situation w
arrived at in Eq.~10!; namely, settingl254 in theCP3 bolt
metric ~24!, we get precisely the Fubini-Study metric o
CP3. In fact, the solution whenl254 is nothing but the
Ricci-flat Kähler metric given by Eq.~10!. This is the limit-
ing AC case that we alluded to above. It has an ‘‘accident
decrease in its holonomy group from the Spin~7! of the ge-
neric solution of Eq.~8! to SU(4)[Spin(6), with a conse-
quent increase from one to two parallel spinors.

Whenl2,4, we get new nonsingular solutions, which w
shall denote byC8 . From the numerical analysis, we find th
now the metric functiona3 tends to a constant value at larg
distance, while all the others grow linearly. Thus forl2,4
the solution is ALC. The case wherel2 becomes zero is a
Gromov-Hausdorff limit in which the metric becomes th
product M43R4, where M4 is the Atiyah-Hitchin metric.
Thel modulus space of the new solutions is depicted in F
1 ~we assume, without loss of generality, thatl is non-
negative, so that regular solutions occur forl<2!.

It should be noted that the new solutions exhibit the sa
‘‘slump’’ phenomenon that was encountered in the Atiya
Hitchin metric. Thus, at small distance it is thea1 direction
on S3 that is singled out, witha150, while a25a35const
on the bolt. By contrast, at large distance it isa3 that is
singled out~by tending to a constant!, while a1 and a2 be-
come equal asymptotically. A sketch of the typical behav
of the metric functionsai andb is given in Fig. 2.

It is worth remarking that the similarity of the asymptot
behavior of the newC8 metrics and the Atiyah-Hitchin met
ric may have some interesting physical significance. Like
Atiyah-Hitchin, theC8 metrics will have ‘‘negative mass,’’ as

FIG. 2. The metric functions for a typical nonsingular AL
solution.
10600
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measured from infinity. Just as the product of the Atiya
Hitchin metric and seven-dimensional Minkowski spacetim
describes an orientifold plane in M theory, so too here
can expect that theC8 metrics will have an associated inte
pretation in terms of orientifolds.

The new nonsingular Spin~7! metricsC8 have the same
topology as thel52 example. Thus they are line bundle
overCP3 ~specifically, the fourth power of the Hopf bundle!.

2. Numerical analysis for S4 bolts: TheB8, B8
¿ , and B8

À

examples recovered

This case can be studied by starting from the sm
distance expansion~23!, and now taking x1(0)5x2(0)
5x3(0)50. We then find that the general such solution
characterized by three parameters, which we shall relabe
q1 , q2 , andq3 . The first few orders give

a15t2q1t21¯ ,

a25t2q2t21¯ ,

a35t2q3t21¯ ,

b5b01
3

8b0
t21¯ , ~27!

where b05221/2Aq11q21q3. Note that we must haveq1
1q21q3.0.

From the numerical solutions we find that regularity r
quires that two of theqi be equal, leading, in turn, to th
equality of the corresponding pair of functionsai . Thus all
the regular solutions here reduce to ones that we have
ready found in@3#. It is, nevertheless, of interest to see ho
they relate to the previous results in@3#.

Let us, without loss of generality, chooseq25q3 . This
will be understood to be the case in everything that follow
The regular solutions can then be summarized as follows
all cases we must haveq112q2.0. Regularity also turns ou
to imply q1.0 andq2<q1 . The cases are as follows:

2 1
2 q1,q2,0, theB8

2 metrics,

q250, theB8 metric,

0,q2,q1 , theB8
1 metrics,

q15q2 , the original AC Spin~7! metric of @1,2#.
~28!
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FIG. 3. The nonsingular Spin~7! metrics B8

andB8
6 as a function ofq2 /q1 .
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Note that whenq2 /q1 becomes equal to21
2, we have a

Gromov-Hausdorff limit to the productM73S1, whereM7
is the original ACG2 metric @1,2# on theR3 bundle overS4.
The Spin~7! metrics are depicted in Fig. 3.

3. Analysis for NUT metrics: TheA8 example recovered

The short-distance expansion for the NUT case co
sponds to using Eq.~23! with x1(0)5x2(0)5x3(0)5y(0)
50. One finds that there are only two possible solutions
short distance. One of these is

a15a25a35 3
5 t, b5

3

2A5
t, ~29!

which is an exact solution corresponding to the cone over
squashed EinsteinS7. It is singular at the apex. The othe
solution has the following expansion:

a152t1qt32 3
2 q2t51¯ ,

a25a35t,

b5 1
2 t1 1

8 qt32 9
64 q2t51¯ . ~30!

The constantq just corresponds to a trivial scale parame
here. This is in fact precisely the previously known soluti
A8 .

In summary, we get new regular Spin~7! metrics with
squashedCP3 bolts, with a nontrivial parameterl2,4 char-
acterizing the radius of theS2 fibers relative to theS4 base in
theCP3 bolt. If l254, we recover the previously known cas
of a complex line bundle over the Fubini-Study metric
CP3, with SU~4! holonomy, included in the cases consider
in @4,5#. There are no new regular solutions withS4 bolts or
for NUT metrics, since regularity in these cases forces two
the S3 directions to be equal, thus reducing the systems
ones already solved in@3#.

III. Spin „7… METRICS WITH SU „3…ÕU„1…
PRINCIPAL ORBITS

In this section, we shall study the solutions of the fir
order equations for Spin~7! holonomy for metrics of co-
homogeneity one whose principal orbits are the Alo
Wallach spacesN(k,l ), which are cosets SU~3!/U~1! where
the integersk and l specify the embedding of the U~1!. All
the necessary results for the first-order Spin~7! equations
were derived in@10#, and here we shall also follow the no
tation established in that paper. We begin our discussion w
a study of the Aloff-Wallach spaces themselves, and in p
10600
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ticular the conditions under which they admit Einstein m
rics and metrics of weakG2 holonomy.

A. The principal orbits: Aloff-Wallach spaces

The coset spaces SU~2!/U~1! are characterized by two in
tegersk and l, which specify the embedding of the U~1! in
SU~3!. Specifically, if we represent SU~3! by 33 special uni-
tary matrices then the U~1! subgroup can be taken to b
matrices of the form

h5S eiku 0 0

0 eil u 0

0 0 e2 i ~k1 l !u
D . ~31!

The coset spaces are simply connected whenk and l are
relatively prime, and these are denoted byN(k,l ). Clearly,
the spacesN(k,l ), N( l ,k), and N(k,2k2 l ) are topologi-
cally identical, and in fact there is anS3 permutation sym-
metry generated by these twoZ2 operations. It was shown in
@48# that all theN(k,l ) admit metrics of positive sectiona
curvature. Then, in@7#, an existence proof for an Einstei
metric on eachN(k,l ) was given, and a more explicit expre
sion was found in@8#. Subsequently, it was shown in@9# that
eachN(k,l ) in fact admitstwo inequivalent Einstein metrics
@except when (k,l )5(0,1) or theS3-related values~1,0! or
~1,21!, when there is only one#. Furthermore, it was proved
that each such metric admits a Killing spinor~except for one
of the Einstein metrics withk5 l , which admits three Killing
spinors!. The special casek5 l can be viewed as a SO~3!
bundle overCP2, and the existence of the second Einste
metric in this case had already been demonstrated in@49#.

1. Einstein metrics on N(k,l) from first-order equations

Here, we present a summary of the construction of
Aloff-Wallach spacesN(k,l ), and give more explicit expres
sions for the Einstein conditions than have been prese
previously. These will be useful when we study cohomog
neity one Ricci-flat metrics withN(k,l ) principal orbits in
subsequent sections. A system of first-order equations
lowing from requiring Spin~7! holonomy for such metrics
was derived in@10#, and we can first make use of these
order to obtain equations for Einstein metrics onN(k,l ). For
further details of the construction described below, see@10#.

Defining left-invariant one-formsLA
B for SU~3!, where

A51,2,3,LA
A50, (LA

B)†5LB
A, anddLA

B5 iL A
C∧LC

B, we
introduce the combinations

s[L1
3, S[L2

3, n[L1
2,
4-7
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M. CVETIČ, G. W. GIBBONS, H. LÜ, AND C. N. POPE PHYSICAL REVIEW D65 106004
l[& cosd̃ L1
11& sind̃ L2

2, ~32!

Q[2& sind̃ L1
11& cosd̃ L2

2,

whereQ is taken to be the U~1! generator lying outside the
SU~3!/U~1! coset. It is evident by comparing with Eq.~31!
that we have

k

l
52tand̃, ~33!

and sod̃ is restricted to an infinite discrete set of value
Later, it will be convenient to write

cosd̃52
l

m&
, sind̃5

k

m&
, ~34!

where&m[Ak21 l 2.
In what follows we shall use real left-invariant one-form

defined bys5s11 is2 , S5S11 iS2 , andn5n11 in2 . It
was shown in@10# that if one defines eight-metrics of co
homogeneity one as follows:

ds8
25dt21a2s i

21b2S i
21c2n i

21 f 2l2, ~35!

wherea, b, c, and f are functions of the radial coordinatet,
then the first-order equations

ȧ5
b21c22a2

bc
2
& f cosd̃

a
,

ḃ5
a21c22b2

ca
1
& f sind̃

b
,

ċ5
a21b22c2

ab
1
& f ~cosd̃2sind̃ !

c
,

ḟ 52
& f 2~cosd̃2sind̃ !

c2 1
& f 2 cosd̃

a2 2
& f 2 sind̃

b2

~36!

are the integrability conditions for Spin~7! holonomy.
We can study Einstein seven-metrics on the principal

bits by taking

a5āt, b5b̄t, c5 c̄t, f 5 f̄ t, ~37!

and solving the equations for the constantsā, b̄, c̄, and f̄
that result from substituting Eq.~37! into the first-order
equations~36!. In other words, since we then have

ds8
25dt21t2ds7

2, ~38!

with

ds7
25ā2s i

21b̄2S i
21 c̄2n i

21 f̄ 2l2, ~39!
10600
.

r-

it must be that, if the eight-metric is Ricci flat, thends7
2 is

Einstein, satisfyingRab56gab . Furthermore, since the first
order equations are the conditions fords8

2 to have Spin~7!
holonomy, it follows thatds7

2 will have weakG2 holonomy;
in other words it will not only be Einstein, but it will admit a
Killing spinor. Since the results of@8# showed that the Ein-
stein metrics discussed there admitted one or more Kill
spinors, and the results of@9# showed that all of the Einstein
metrics on theN(k,l ) spaces admit one or more Killing
spinors, we will not be losing any generality in our constru
tion of Einstein metrics onN(k,l ) by imposing the additiona
requirement of weakG2 holonomy. We shall, however, hav
the advantage of having a simpler ‘‘first-order’’ system
equations to work with.

In order to simplify the notation, we shall drop the ove
bars from the constants in the seven-metric~39!. Thus, after
making the substitution, we find that the metric

ds7
25a2s i

21b2S i
21c2n i

21 f 2l2 ~40!

is Einstein, satisfyingRab56gab , and of weakG2 ho-
lonomy, if the constantsa, b, c, andf satisfy the conditions

l f

ma25
b21c22a2

abc
21,

k f

mb25
c21a22b2

abc
21,

m f

mc25
a21b22c2

abc
21,

S l

a2 1
k

b2 1
m

c2D f

m
51, ~41!

where, in order to emphasize the symmetry, we have defi
m[2k2 l . In fact, the system is invariant under the simu
taneous action of the permutation groupS3 on (l ,k,m) and
(a,b,c).

The permutation groupS3 can be generated by twoZ2
elements, namely,

A: k→ l , l→k, m→m,

B: k→k, l→m, m→ l . ~42!

If we definex[k/ l , then we shall have

A: x→ 1

x
,

B: x→2
x

11x
. ~43!

It is easily seen that a ‘‘fundamental domain’’

0<x<1 ~44!

can therefore be chosen, with all other values ofx5k/ l ob-
tainable from this by acting with theS3 permutation group.
4-8
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To solve Eqs.~41!, we first note that two independen
relations involving onlya, b, andc can be derived, one by
adding all the equations, and the other by summinga2 times
the first,b2 times the second, andc2 times the third. Thus we
have

a21b21c254abc, a41b41c456a2b2c2. ~45!

It is straightforward to see that the general solution to th
equations can be written in terms of an anglef, such that
te

e

g
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uld
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a25
~21cosf!2

2~312 cosf1sinf!
, b25

~21cosf!2

2~312 cosf2sinf!
,

~46!

where

0<f,2p. ~47!

Substituting back into the remaining equations we theref
have
k

l
5

416 cosf112 sinf15 sin 2f

416 cosf212 sinf25 sin 2f
, c25

~21cosf!2

8112 cos15 cos2 f
,

f 25
~21cosf!2~cos 2f125 cos4 f160 cos3 f272 cosf239!

4~8112 cosf15 cos2 f!2 . ~48!
t it

ot

,

a

It should be recalled that we have normalized the Eins
metrics so that they all haveRab56gab .

Note that the set of solutions that we have obtained h
maps into itself under the action of theS3 permutation group.
It is easily seen that theZ2 transformationA in Eq. ~43! is
implemented by the replacement

f→f852p2f, ~49!

and this interchangesa2 and b2 ~as well ask and l!, while
leaving c2 fixed. The Z2 transformationB in Eq. ~43! is
slightly trickier to implement. It is achieved by transformin
from f to f8 where

cosf852
2~11cosf2sinf!

312 cosf2sinf
,

sinf85
112 cosf1sinf

312 cosf2sinf
. ~50!

This interchangesa2 and c2 @as well as implementing the
mapping onk/ l given in Eq.~43!#, while leavingb2 fixed.

As f varies over its range specified in Eq.~47!, the func-
tion k/ l traverses each point on the real line exactly twice.
course the allowed values forf are those for which the ex
pression fork/ l in Eq. ~48! is rational. In general, the two
valuesf1 and f2 for f that give the samek/ l lead to in-
equivalentsets of values for the constantsa, b, c, andf, and
hence to inequivalent Einstein metrics. However, if it sho
happen thatf1 andf2 are related byf252p2f1 , then it
is evident from Eqs.~46! and~48! that the associated pair o
solutions will be equivalent, witha andb interchanged. This
occurs only whenk/ l 521, and so in this case there is ju
one Einstein metric.@The two values off that give rise to
k/ l 521 are f15arccos(22

3) and f252p2arccos(22
3).#

Thus we have reproduced the result of@9#, that eachN(k,l )
space has two inequivalent Einstein metrics, except
N(1,21), which has only one.
in

re

f

r

One final point remains. We have defined the one-forml
as in Eq.~32!. Despite naive appearances, this means tha
is not in fact normalized to a fixed length for arbitraryd̃.
This is because the ‘‘metric’’ for calculating the length is n
simply a 232 unit matrix in theC2 subspace spanned byL1

1

andL2
2. In fact, one should calculate lengths using the 333

unit matrix in theC3 subspace spanned byL1
1, L2

2, andL3
3,

projected onto the plane defined byL1
11L2

21L3
350 @the

condition that ensures theLA
B are in SU~3! and not U~3!#.

The easiest way to calculate the length ofl is therefore to
add the appropriate multiple of the U~1! generatorU[L1

1

1L2
21L3

3 which lies in U~3! but not in SU~3!, such that the
shifted one-forml̃ is orthogonal toU, which implies:

l̃5
&

3
@~2 cosd̃2sind̃ !L1

11~2 sind̃2cosd̃ !L2
2

2~cosd̃1sind̃ !L3
3#. ~51!

Thus we see that the length ofl̃, and hence, by definition
the length ofl, is given by

ulu5
2

)
~12sind̃ cosd̃ !1/2. ~52!

Finally, since thel term appears in the metric viads7
2

5 f 2l21¯ , and we now want to express this in terms of
universally normalized quantity

l̂[
l

ulu
~53!

so thatds7
25 f̂ 2l̂21¯ , we see that we should define

f̂ 25 4
3 ~12sind̃ cosd̃ ! f 2. ~54!
4-9
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The quantity f̂ will be invariant under theS3 permutation
group. Written in terms ofk, l, andm52k2 l , we have

f̂ 25
4

3

k21 l 21kl

k21 l 2 f 25
2

3

k21 l 21m2

k21 l 2 f 2. ~55!

The numerator factor (k21 l 21m2) is clearly invariant under
the permutation group, but the denominator (k21 l 2) is not.
It is this nonsymmetric denominator that corrects for t
nonpermutation-invariance off, making f̂ permutation in-
variant. In fact we can see that, iff is replaced byf̂ in Eq.
~41!, then the factors ofm5Ak21 l 2/& in the denominators
are precisely removed, so that the equations become m
festly permutation symmetric, withf̂ being invariant.

It should be emphasized that using the Cartan-Mau
equationdLA

B5 iAA
C∧LC

B we havedU50, and so there-
fore dl and dl̃ are identical. Thus there is nothing wrong
with our usingl in our metric constructions, it is just that it
length is not given by the expression one would naively h
expected, but, rather, by Eq.~52!.

2. Einstein metrics on N(k,l) from second-order equations

Having constructed the Einstein metrics onN(k,l ) from
the first-order equations implying weakG2 holonomy, it is
instructive now to reexamine the second-order Einstein eq
tions themselves. In fact, as we shall show, these imply
previous first-order equations, thus supplying another pr
of the result in@9# that all the Einstein metrics onN(k,l )
have weakG2 holonomy, and thus admit at least one Killin
spinor.

By following the same strategy as in the previous subs
tion, but now calculating the conditions for Ricci flatness
the cone overN(k,l ), we find that the metric~40! N(k,l )
will be Einstein, with Ricci tensor normalized toRab
56gab , if the constantsa, b, c, andf satisfy

2 f 2l 2

m2a4 5261
6

a2 1
a42b42c4

a2b2c2 ,

2 f 2k2

m2b4 5261
6

b2 1
b42c42a4

a2b2c2 ,

2 f 2m2

m2c4 5261
6

c2 1
c42a42b4

a2b2c2 ,

2 f 2

m2 S l 2

a4 1
k2

b4 1
m2

c4 D56. ~56!

The approach to solving these equations that we s
present here is an elaboration of the method that was
sumably used in@8#. Since a fully explicit derivation was no
included there, we shall give rather detailed results. We be
by introducing new variables as in@8#:

A5
a2

c2 , B5
b2

c2 , m5
&k f a

mbc
,

10600
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v5
& l f b

mac
, l5

6a2b2

c2 . ~57!

In terms of these, Eqs.~56! become

6A1B22A2212u25l,

6B1A22B2212v25l,

6AB2A22B22~Av1Bu!2115l,

u21v21~Av1Bu!25l. ~58!

From these, we can obtain the following three equations
which l is eliminated:

~21B2!u212ABuv1~11A2!v256A1B22A221,

~11B2!u212ABuv1~21A2!v256B1A22B221,

~112B2!u214ABuv1~112A2!v256AB2A22B211.
~59!

These can be viewed as three linear equations for the t
quantitiesx[u2, y[v2, andz[uv. After obtaining the re-
sulting expressions forx, y, andz in terms ofA and B, we
then recall thatxy5z2, which leads to a polynomial con
straint of the formP(A,B)50. In fact, we find that

P~A,B!5@~A1B23!214~A2B!224#Q~A,B!, ~60!

whereQ(A,B) is a sixth-order polynomial that can be show
not to vanish for any real positiveA andB @see Appendix C
for the expression forQ(A,B), and the proof of its positivity
for nonvanishingA andB#. Thus fromP(A,B)50 we con-
clude that

~A1B23!214~A2B!254, ~61!

which can be solved by writingA1B2352 cosf, B2A
5sinf, and hence

A5 3
2 1 1

2 cosf2sinf, B5 3
2 1 1

2 cosf1sinf. ~62!

The solutions foru andv then follow, giving

u5
1

&
~cosf12 sinf!,

v5
1

&
~cosf22 sinf!. ~63!

Finally, we find that

l5 3
2 ~21cosf!2, ~64!

and hence from Eq.~57! we can obtain expressions fora, b,
c, and f. These are in fact precisely the ones given in E
~46! and ~48!, which we previously obtained by solving th
conditions for weakG2 holonomy.
4-10
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In summary, we have seen that the conditions~56! follow-
ing from imposing the Einstein equations have precisely
same solution set as those coming from the simpler equat
~41! that arose by requiring weakG2 holonomy.

3. Global considerations

In order to investigate the global structure of the Spin~7!
metrics that we shall construct later, it is important to und
stand it first in the Aloff-Wallach spaces themselves. In p
ticular, since in most of our Spin~7! examples that we sha
discuss below there will be aCP2 degenerate orbit at sho
distance, it is important to understand the structure of
Aloff-Wallach spaces as bundles overCP2. Not surprisingly,
triality plays an important role in this question, and in fac
generic spaceN(k,l ) can be viewed as any one of thre
inequivalent such bundles.

An example that is rather familiar is the case of t
N(1,1) space. It is well known thatN(1,1) can be viewed as
anRP3 bundle overCP2 ~a physicist’s discussion of this ca
be found in@9#!. On the other hand, the principal orbits in th
Calabi metric onT* CP2 are also the same Aloff-Wallac
space, and so clearly here it is being viewed as a SU~2!
bundle overCP2, since the degeneration to theCP2 orbit in
the Calabi metric is a regular one, with the metric approa
ing R43CP2 locally.

In fact, in general it can be shown that if we view thes i
andS i one-forms in Eq.~40! as spanning theCP2 base, and
n i and l as spanning the three-dimensional fibers, then
spaceN(k,l ) can be described as anS3/Zp lens-space bundle
over CP2, where

p5uk1 l u. ~65!

~Note thatS3/Z0 is a degenerate example, for which the
bers will beS13S2.!

Applied to the case ofN(1,1) and its cousinsN(1,22)
and N(22,1), we see that with respect to this conventi
choice of having then i , together withl, spanning the fibers
N(1,1) will be an S3/Z25RP3 bundle overCP2, while
N(1,22) andN(22,1) will be S3 bundles overCP2. This is
consistent with the observations made above.

There are various ways of proving the above results ab
the topology of the bundles.3 Here, we shall present a rathe
intuitive approach, base on a consideration of an exp
parametrization of SU~3!, which is presented in Appendix A

We begin by recalling that SU(3)/Z3 acts effectively on
CP2, with stabilizer U~2!. Explicitly, if ( Z1,Z28,Z3) are ho-
mogeneous coordinates andz15Z1/Z3, z25Z2/Z3 are inho-
mogeneous coordinates onCP2, then we may express almo
every element of SU~2! as in Appendix A, so that~f,u,c,j!
parametrizeCP2, considered as the set of right cosets, a
(f̃,ũ,c̃,t) parametrize the U~2! stabilizer of the origin
~0,0,1!. Note that the inhomogeneous coordinates (z1,z2) are

3We are very grateful to James Sparks and Nigel Hitchin for
tensive help and discussions, and for explaining how the result
scribed above arises.
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functions just of~f,u,c,j!, and conversely. The U~2! stabi-
lizer of the origin isŨ(f̃,ũ,c̃)exp(i)tl8) where the range
of the angles isf̃P(0,2p#, ũP@0,p#, c̃P(0,4p#, and t

P(0,2p#. The two coordinates (t,c̃) label points in a maxi-
mal torus of U~2!. A fundamental domain for the torus i
given by a rectangle int-c̃ space of width 2p and height 4p.

The circleSk,l
1 , parametrized by an anglea, may be ex-

pressed as

exp
ia

2
$~k2 l !l31~k1 l !)l8%, ~66!

and acting on the right it induces the action

t→t1~k2 l !a, c̃→c̃1~k2 l !a. ~67!

If k1 lÞ0 ~which will be treated separately!, we may define
a coordinateC which is invariant under the circle action, an
which may be used to label its orbits, by

c̃l31t)l85
k2 l

k1 l
tl31

k1 l

k1 l
t)l81Cl3 . ~68!

One has

C5c̃2
k2 l

k1 l
t. ~69!

The problem is now to find the correct period for the ang
C. This leads to a picture ofN(k,l ) as a lens-space bundl
over CP2. The period is determined by the requirement th
asC ranges over its allowed values, it labels uniquely eve
orbit of Sk,l

1 in SU~3!. To see how this is done it is helpful t
consider some examples.

Let us considerN(2,21), for which we shall haveC
5c̃23t. By examining the torus of side 2p34p in (t,c̃)
space and following the orbit passing through~0, 0! and its
neighbors, it is easy to see that every orbit passes once
only once through a strip of width 4p/3 in t bounded by the
straight linesC50 andC524p. ~The verification of these
facts is greatly assisted by drawing a diagram.!

As another example, considerN(1,0), for which we shall
haveC5c̃2t. Each orbit on the torus passes once and o
once through the square subdomain 0<t<2p, 0<c̃ (2)p.
The square lies inside the region bounded by the stra
lines C52p and C522p. Thus again the range ofC is
4p.

As a third example, considerN(3,2), which will giveC

5c̃2t/5. Following the orbit through the origin around th
torus, we see that it winds around thet direction ten times
for every winding around thec̃ direction. Thus the funda-
mental domain decomposes into ten strips of height 2p/5 in
c̃, and every orbit visits each such strip once and only on
The range ofC is therefore 2p/5. By applying similar argu-
ments, one can fairly easily see that in general, forN(k,l ),
the period ofC will be 4p/uk1 l u.

-
e-
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It is also of interest to identify what the bundles are. F
example, we can think ofN(2,21) or N(1,22) as the
bundle of unit cotangent vectors ofCP2, i.e.,ST!CP2. To see
that SU~3! acts transitively, we need only remark that t
stabilizer U(2),SO(4) of a point inCP2 acts on the unit
sphere inR4. We thus need to identify the stabilizer. In fa
SU(2),U(2),SO(4) acts simply transitively, and the st
bilizer is the circle action generated by an overall phase
terms of inhomogeneous coordinates, the action ofSk,l

1 is
(z1,z2)→„expiu(2k1l)z1, expiu(2l1k)z2

…. It follows that
the cotangent vector at the origin of the form (dz1,0) will be
left invariant if and only if 2k1 l 50. In other words,S1,22

1 is
the stabilizer of cotangent vectors at the origin with vani
ing second component. SimilarlyS2,21

1 is the stabilizer of
unit cotangent vectors at the origin with vanishing first co
ponent. This is consistent with our result above that in
case ofN(2,21) the period ofC is 4p.

We have seen above thatN(2,21) andN(1,0) correspond
to the same bundle, since the period ofC is the same. This
seems to be related to the following: We can think of t
cotangent bundle ofCP2, as the bundle of holomorphic one
forms L1,0. Now CP2 has no Spin~4! structure, but it does
have a Spinc(4) structure. One may identify the Spinc(4)
bundle with holomorphic formsL!,0. Under this identifica-
tion, chirality corresponds to Hodge duality. Thus the o
forms correspond to negative chirality spinors. It see
therefore that we may think of bothN(2,21) andN(1,0) in
terms of the bundle of unit negative-chirality spinors. T
positive-chirality spinors correspond to even forms,L0,0

% L2,0. However, the even forms are left invariant by t
SU~2! subgroup of the U~2! stabilizer, and so even if norma
ized to have unit length they cannot be a homogeneous s
with respect to SU~2!. On the other hand, we can consid
the bundle of suitably charged negative-chirality spino
This amounts to giving the spinors a charge with respec
the connection whose curvature is the Ka¨hler form.

To summarize, we see that in general U(2)/Sk,l
1 is a lens

space of the formL(1,N)[S3/ZN , where N5uk1 l u. For
each geometrically distinctN(k,l ) space we will obtain in
general three different lens spaces, corresponding to the
tion of the Weyl groupS3 of SU~3!. In particular cases we
obtain fewer than three bundles. Thus, for example,N(1,1)
gives a SO(3)[RP3 bundle. On the other hand, its We
cousins N(21,2) and N(2,21) are both SU(2)[S3

bundles.

B. An explicit Spin„7… solution for all N„k,l …

Although we have not been able to obtain the gene
solution of the first-order equations~36! for Spin~7! metrics
with N(k,l ) principal orbits, we have succeeded in findin
an isolated exact solution to these equations for generick and
l. To construct the solution, it is convenient to introduce
constantg[tand̃52k/l. We find that there exists a solutio
in which the following algebraic relation among the met
functionsa, b, andc holds:

X[~122g!a21~g22!b21~11g!c21y50, ~70!
10600
r

n

-

-
e

s

ce

.
to

c-

l

wherey is a constant that sets the scale of the solution.
shall choosey to be

y58~g22!~g11!~2g21!5
8

l 3 ~k2 l !~ l 2m!~m2k!,

~71!

where as usualm[2k2 l . By differentiating Eq.~70! and
using the first-order equations, one obtains another algeb
equation, which we may callY[Ẋ50. This again involves
only a, b, andc, but not f. Differentiating again, and using
the first-order equations, givesW[Ẏ50, which is an alge-
braic equation fora, b, c, andf ~linear in f!. Thus from these
equations we can solve fora, b, and f in terms ofc. Differ-
entiating again, we getZ[Ẇ, which again must vanish fo
the solution. However, this must be satisfied identically,
the original supposition~70! is correct, since otherwise i
would give us a solution forc as a pure constant. Calculatio
shows that indeedZ vanishes identically, so all is consisten
and the validity of imposing the relation~70! is established.

It turns out now to be advantageous to work with a fun
tion r, rather thanc itself, in order to avoid square roots
wherec219(g21)25r2. Thus the algebraic solutions fora,
b, c, andf in terms ofr are

a25~r2g21!~r2g15!,

b25~r1g11!~r25g11!,

c25~r23g13!~r13g23!,

f 25
9~g211!~r25g11!~r2g15!@r13~g21!#

2@r22~g11!2#@r23~g21!#
.

~72!

We can now substitute these into any one of the first-or
equations, in order to obtain the differential equation forr.
~Since the algebraic relations above were obtained by
peated use of the first-order equations, there is only one
maining equation’s worth of information to be extracte
from the entire first-order system, so we can choose wh
ever of the four equations is most convenient. Theḟ equation
is a convenient choice.! Using the coordinate gauge choic
dt5 f 21dr, we find that the differential equation forr is
simply

r85
&

3A11g2
, ~73!

whose solution may be taken to be

r5
&

3A11g2
r . ~74!

We see thatr is essentially just the radial coordinate, and t
metric can be written as
4-12
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ds25
9

2
~11g2!

dr2

f 2 1a2~s1
21s2

2!1b2~S1
21S2

2!

1c2~n1
21n2

2!1 f 2l2, ~75!

wherea, b, c, andf are given by Eqs.~72!.
It is easy to see that the set of metrics we have obtai

here maps into itself under triality. It is convenient to ma
use of this observation when analyzing the global propert
it allows us to restrict attention to cases where the me
functionc is the first ofa, b, andc to reach zero asr reduces
from the asymptotic region atr5`. The vanishing ofc will
then signal the inner end point of the radial coordinate ran
Before studying this end point in detail, we may first obse
that at large distance the metrics are all asymptotically
cally conical, sincea, b, andc grow linearly, whilef tends to
a constant.

If c is the first ofa, b, andc to vanish asr reduces from
infinity, say atr5r0 , then it must be that the factors ina2

and b2 in Eq. ~72! are still all positive whenr reachesr0
from above.~We shall, without loss of generality, assum
that the asymptotic region is wherer51`.! It is easy to see
from Eq. ~72! that for this to happen we must have

r0523g13, g<2 1
2 . ~76!

This in turn means that we must havek/ l> 1
2 , and sincek

and l must therefore have the same sign, we may with
loss of generality take them both non-negative. We there
have

2k. l>0. ~77!

Noting from Eq. ~65! that the associated description
N(k,l ) will be as anS3/Zp bundle overCP2 with p5k1 l , it
follows that the casep51 is achieved only ifl 50, k51.
The conclusion from this is that the Spin~7! metrics~75! will
haveZp orbifold singularities on theCP2 bolt except in the
case that the principal orbits areN(1,0).4

If we consider a solution~72! and ~75! for which k and l
satisfy the inequality~77!, we shall have an ALC Spin~7!
metric with N(k,l ) principal orbits, whose topology is a
R4/Zp bundle overCP2 with p5k1 l . Although this metric
will be singular~if p.1!, it is a relatively ‘‘mild’’ singular-
ity, in the sense that it is an orbifold in which the only in
finities in the curvature will be delta functions. Such spac
might in fact be relevant in string or M theory, especially
view of the fact that M theory reductions can only give chi
fermions if the reduction manifold is singular.

Another possibility is that the orbifold singularities cou
be resolved by considering more general metrics of hig
cohomogeneity. A phenomenon of this sort is known to oc
in four dimensions, with the multicenter hyper-Ka¨hler met-
rics. TheN-center multi-Eguchi-Hanson metric is comple

4The solution in this special caseN(1,0) was obtained in@50#, and
we are very grateful to the authors for informing us of their res
prior to publication. It provided one of the motivations for o
investigations in this section.
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and nonsingular, and is asymptotic to the cone overS3/ZN .
TheN52 example is nothing but the Eguchi-Hanson metr
which can be written in its familiar cohomogeneity one form
However, the higher-N metrics cannot have cohomogenei
one. Thus, for example, the metric one obtains by impos
the periodicity 4p/N on the Hopf fiber coordinate in the
Eguchi-Hanson metric will have an orbifold singularity as
metric of the Eguchi-Hanson cohomogeneity one type, ifN
.2, but it nevertheless admits a perfectly nonsingular re
lution as an inhomogeneous multicenter metric. It may
that a similar situation could arise with the resolution of t
metric on the cone overN(k,l ).

C. Small-distance behavior and numerical analysis

Since we have not been able to obtain the general solu
to the first-order equations~36! analytically, we now turn to
a numerical analysis. To begin we therefore need to const
a Taylor expansion for the solutions that are regular at sm
distance, i.e., in the region where one or more of the me
functions vanishes. For such an end point of the metric to
regular, it must be that the terms that approach zero mus
associated with the collapse of spheres. In the present c
we find that the possibilities that may gave regular metr
are that f alone vanishes, corresponding to a collapse
circles, or else thatf anda vanish, orf andb vanish, orf and
c vanish, corresponding to a collapse of three-sphe
~These last three are equivalent, modulo theS3 permutation
group.! One might also in principle have situations with co
lapsing two-spheres~just a or just b or just c vanishing!, or
else with five-spheres collapsing@by having (a,b, f ) or
(a,c, f ) or (b,c, f ) vanishing#.

We shall first describe the set of triality-related cases g
ing collapsing three-spheres~or lens spaces!, where (c, f ) or
(a, f ) or (b, f ) vanishes. Thus the bolt at short distance w
be CP2. The idea is to obtain Taylor expansions up to ten
order or so, which can then be used in order to set initial d
just outside the bolt, which can then be integrated num
cally to infinity. We present just the first couple of orders
the Taylor expansions here.

1. A triality of short-distance solutions

Although we shall present the three possible classes
small-distance solution, corresponding toc or a or b vanish-
ing together withf, it should be emphasized that it is real
redundant to consider all three, since they are related
triality. Thus one can adopt two different viewpoints. O
possibility is to stick with just one of the cases, say, wherc
and f vanish, and then consider all possibleN(k,l ) principal
orbits, including, in particular, not only a givenN(k,l ) but
also its cousinsN(k,2k2 l ) and N(2k2 l ,l ). The other
possibility is to consider all three cases, with (c, f ), (a, f ),
or (b, f ) vanishing, and then restrict attention to a ‘‘fund
mental domain’’ among theN(k,l ) spaces, such as that de
fined in Eq. ~44!. Either viewpoint can be taken, but on
should take care not to ‘‘overcount’’ the possibilities by i
cluding all three cases and also including all the ‘‘cousin

t

4-13
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In general, we shall find it convenient to adopt the first a
proach, and consider all theN(k,l ) cousins within the frame-
work of just case 1 below.

Case 1. First we consider the short-distance Taylor expa
sion corresponding to the case wherec and f vanish att
50. We find

a511
5 cosd̃24 sind̃

6~cosd̃2sind̃ !
t21¯ ,

b511
4 cosd̃25 sind̃

6~cosd̃2sind̃ !
t21¯ , ~78!

c5t1
1

)
S q~cosd̄2sind̃ !2

1

&
D t31¯ ,

f 52
t

&~cosd̃2sind̃ !
1qt31¯ . ~79!

Case 2. Now we consider the triality-related case where
is insteada that vanishes along withf at t50. We find

a5t2S 1

&
q cosd̃1

1

2D t31¯ ,

b511~ 2
3 1 1

6 tand̃ !t21¯ ,

c511~ 5
6 2 1

6 tand̃ !t21¯ ,

f 52
t

& cosd̃
1qt31¯ . ~80!

Case 3. Finally, if b instead vanishes along withf, we get

a511~ 2
3 1 1

6 cotd̄ !t21¯ ,

b5t1S 1

&
q sind̃2

1

2D t31¯ ,

c511~ 5
6 2 1

6 cotd̃ !t21¯ ,

f 52
t

& sind̃
1qt31¯ . ~81!

It is easy to see that the three cases listed above are re
by triality.

Note that case 1 is valid provided that cosd̃Þsind̃, and
likewise that case 2 is valid for cotd̃Þ0, and case 3 for
tand̃Þ0. These exclusions are just a triality-related set. F
lowing our policy of using just case 1 for our discussion, w
note that in this guise the excluded case isN(1,21). It is in
fact easy to reanalyze the Taylor expansion in case 1 w
cosd̃5sind̃; we find that we then getf 50 and the solution
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reduces to a Gromov-Hausdorff limit ofS1 times a seven-
metric of G2 holonomy, whose principal orbits areS2

bundles overCP2. ~G2 metrics of this type will be discusse
later, in Sec. V A.! This is consistent with the general resu
discussed in Sec. III A 3, where it was noted that the sp
N(k,l ) admits a description as anS3/Zp bundle overCP2,
with p5uk1 l u. ThusN(1,21) here corresponds to anS3/Z0
bundle overCP2. This bundle is a degenerate case, which
S13S2.

Before discussing the numerical integration of Eq.~36!
using these small-distance Taylor expansions to set up
initial data outside theCP2 bolt, we first note that anothe
situation of particular interest is when the principal orbits a
N(1,1), or its triality-related cousinsN(1,22) or
N(22,1). Studying these within the case 1 framework, t
exampleN(1,1) @which is then viewed as anS3/Z2 ~i.e.,
RP3! bundle overCP2, as can be seen from Eq.~65!# arises
as the principal orbits in the Spin~7! manifold with Z2 orbi-
fold singularity that one gets by replacingS4 by CP2 in the
chiral spin bundle overS4 whose Spin~7! metric was ob-
tained in@1,2#. Indeed, we find that the Taylor expansion
Eq. ~79! gives this exact solution if we set tand̃521, and
take the free parameterq to have the valueq5 1

6 , which
implies a5b and f 52c/2.

The cousinsN(1,22) andN(22,1) ofN(1,1) arise as the
principal orbits in the hyper-Ka¨hler Calabi metric onT* CP2.
As we shall discuss in more detail later, although this has
smaller holonomy Sp(2)5Spin(5), it is in fact a particular
solution of the Spin~7! first-order equations~36!, in the case
of N(22,1) andN(1,22). These correspond, respective
to tand̃52 and tand̃51

2. We find that the Taylor expansion
~36! reduce to those for the exact Calabi solution if the fr
parameterq is chosen as follows:

tand̃52, q52
A10

3
;

a21c25b2, ac5A 2
5 b f ,

tand̃5 1
2 , q5

A10

3
;

b21c25a2, bc5A 2
5 a f . ~82!

2. Results of numerical analysis

We are now in a position to make use of the series exp
sions of Sec. III C 1 to provide initial data just outside th
CP2 bolt, in order to perform a numerical integration of th
first-order equations~36!. Again, because of the triality, we
need only discuss the series solution in case 1, provided
we considerN(k,l ) for all k and l. The discussion can be
further narrowed since case 1 is invariant under theZ2 sym-
metry k↔ l , a↔b, f↔2 f , andq↔2q. It follows that we
need only concentrate on the cases withuku<u l u, implying
that we can consider the case 1 solution withutand̃u<1.

The following is a summary of our numerical findings.
4-14
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~a! For each given tand̃52k/l, there exists aq0.0, such
that for parametersq>q0 the functions (a,b,c, f ) are regu-
lar. In the limiting case whereq5q0 , the metric is AC, with
the Einstein metric onN(kl) on the base of the cone bein
the one for whichf, defined in Eq.~48!, lies in the interval
@0,p!. For q.q0 , the metrics are ALC, withf becoming a
finite constant at large distance. The precise value ofq0 for
eachd̃ is difficult to determine numerically. As we have se
previously, for tand̃521, we haveq05 1

6 ; and for tand̃51
2,

we haveq05A10/3.
Thus we see that for a generic value ofd̃, there exists an

AC metric and a family of ALC metrics with a nontrivia
parameter, which are all regular aside from having anR4/Zp
orbifold singularity on theCP2 bolt, where p5uk1 l u. In
particular, this means that the AC metric and the ALC fam
of metrics are completely nonsingular in the case ofN(k,1
2k) principal orbits, for all integersk.

~b! Without loss of generality, we can restrict the intege
k and l so that 0,k< l , and then enumerate the case 1 so
tions for all three cousinsN(k,l ), N(k,2k2 l ), and N( l ,
2k2 l ). For generic values ofk and l, the three cousins will
give rise to three distinctly different sets of AC and AL
solutions. If we focus in particular on the AC solutions, th
the choiceN(k,l ) will be asymptotic to the cone over one o
the two Einstein metrics onN(k,l ), while its two cousins
N(k,2k2 l ) andN( l ,2k2 l ) will give a pair of ~inequiva-
lent! AC solutions that are asymptotic to the cone over
other Einstein metric on this particular Aloff-Wallach spac
This implies that each given asymptotic cone structure
mits two different small-distance resolutions.

Case 4. We have seen that the case 1 solution is va
provided that tand̃Þ1. When tand̃51 two possibilities arise,
one of which is thatf 50, as we discussed earlier. Anoth
possibility is thatf, as well asa andb, becomes a constant a
small distance. To the first few orders, we find that the so
tion is given by

a512 1
3 qt1~12 5

18 q2!t21~ 7
45 2 167

810q2!qt31¯ ,

b511 1
3 qt1~12 5

18 q2!t22~ 7
45 2 167

810q2!qt31¯ ,

c52t1 4
27 ~q229!t31¯ ,

f 5q1 2
3 q3t21¯ . ~83!

@Owing to triality, there are also two additional~equivalent!
types of solution for either cosd̃50 or sind̃50.#

A numerical analysis shows that there exist regular so
tions for uqu<q050.87 . . . , such that the functionsa, b, c,
and f are regular as one integrates outward. Whenuqu5q0 ,
the solution is AC, while foruqu,q0 , we have a nontrivial
one-parameter family of ALC solutions. Forq50, we re-
cover the case withf 50 mentioned above.

In this class of solutions, where only the metric functionc
vanishes at small distance, we see from Eq.~35! that we have
collapsing two-spheres with metric described byn i

2, while
10600
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the terms ins i
2, S i

2, andl2 describe homogeneous metric
on S5 ~viewed as anS1 bundle overCP2!. Thus we see that a
short distance the metrics approach anR3 bundle overS5. A
straightforward calculation shows that the squashed met

ds5
25s i

21S i
21x2l2 ~84!

on S5 becomes the standard SO~6!-invariant round metric if
x251. From Eq.~83! we see that our numerical result th
uqu<q050.87 . . . therefore means that all the regular e
amples arise when the U~1! Hopf fibres on theS5 bolt,
viewed as anS1 bundle overCP2, are squashed relative t
their length in the roundS5 case.

IV. ANALYTIC RESULTS FOR THE Spin „7… EQUATIONS
FOR N„k,l … ORBITS

A. The general caseN„k,l …

It is advantageous first to rescale the metric functionf, in
the fashion of Eq.~55!, so that the rescaled function is
singlet under theS3 permutation group. Accordingly, we
shall define

f̃ [
&

Ak21 l 2
f . ~85!

Next, we define new variables (A,B,F,G) in place of
(a,b,c, f̃ ) as follows:

A5
a2

c2 , B5
b2

c2 , F5
f̃ ab

c3 , G5
ab

c
. ~86!

These therefore satisfy the first-order equations

Ȧ5
1

G
@4A24A212~k1 l !AF12lF #,

Ḃ5
1

G
@4B24B212~k1 l !BF12kF#,

Ḟ5
F

G
@523A23B14~k1 l !F#,

Ġ532A2B1~k1 l !F1
lF

A
1

kF

B
. ~87!

If we now introduce a new radial variableh, related tot
by dt5G dh, these equations become

A854A24A212~k1 l !AF12lF ,

B854B24B212~k1 l !BF12kF,

F85~523A23B!F14~k1 l !F2,
4-15
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G21G8532A2B1~k1 l !F1
lF

A
1

kF

B
, ~88!

where a prime denotes a derivative with respect toh. We see
that the first three equations now involve only the variab
(A,B,F). From these, one can solve forF andA in terms of
B, given by

F5
B824B14B2

2@k1~k1 l !B#
,

th
a

ird

10600
s

A5 1
3 @k1~k1 l !B#21~B824B14B2!21

3„2@k1~k1 l !B#B9$211~2k1 l !B

19~k1 l !B213@3k1~k1 l !B8#%

3B814B~B21!@5k23~2k1 l !B

15~k1 l !B#…. ~89!

The system then reduces down to the following nonlin
differential equation for the functionB:
18~k1 l !B8413@k1~k1 l !B#2@7B9223~24B14B21B8!B-#112@2k~4k15l !2~31k2142kl111l 2!B

13~k1 l !2B2#B83264B@2k22klB2 l ~k1 l !B1~k1 l !B#B914@k1~k1 l !B#B8$~26k22l !B112~k1 l !B2

23@6k1~k1 l l !B8#%B98@33k229k~17k16l !B1~260k21260kl177l 2!B223~51k2192kl141l 2!B3

157~k1 l !2B4#B8264B~B21!@12k227k~7k12l !B13~22k2122kl17l 2!B227~7k2112kl15l 2!B3

112~k1 l !2B4#B81128B2~B21!2@5k223k~7k12l !B1~28k2128kl19l 2!B2

23~7k2112kl15l 2!B215~k1 l !2B4#50. ~90!
Note that the equation is not explicitly dependent on
coordinateh, implying that we can reduce the system to
third-order equation by defininga[B andb(a)[B8.

B. The caseN„1,À1…

1. The first-order equations

Let us consider the Spin~7! equations specifically for the
case of N(1,21) principal orbits. Settingk52 l 51, we
have

ȧ5
b21c22a2

bc
2

f

a
, ḃ5

c21a22b2

ca
1

f

b
,

ċ5
a21b22c2

ab
, ḟ 5

f 2

a22
f 2

b2 , ~91!

and Eqs.~88! then reduce to

A854A24A222F, B854B24B212F,

F85F~523A23B!,

G21G8532A2B2
F

A
1

F

B
. ~92!

From these equations, one can derive the following th
order equation forB:
e

-

128B2~B221!~9B2215B15!

188~7B229B13!B8218~14B29!B8B9

164B~B21!~21B2235B112!B8264B~B21!B9

17B92224B8223@B814B~B21!#B-50. ~93!

If we now define a new variableQ by Q[A928B, we
may note that the following give solutions of Eq.~93!:

~1! Q85 1
4 ~Q221!~Q23!,

~2! Q85 1
4 ~Q221!~Q13!,

~3! Q85 1
4 Q21~Q221!~Q229!.

~94!

Here a prime meansd/dh. Solution 1 is

B5
112e2h1A11e2h

2~11e2h!
, ~95!

and it is the special case forN(1,0) of the explicit solutions
found in Sec. III B, which was obtained in@50#. Solution 2
corresponds to interchanging the roles ofA andB relative to
solution 1, and it has

B5
112e2h2A11e2h

2~11e2h!
. ~96!

Solution 3 is rather trivial, and has
4-16
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B5
1

12e24h , ~97!

which leads toF50; it corresponds to a degeneration of t
metric to a seven-dimensional one.

Another approach to solving Eqs.~92! is to define

A5X1Y, B5X2Y. ~98!

The first three equations in~92! now give

X854~X2X22Y2!, Y854Y28XY22F,

F85~526X!F. ~99!

Calculating Y9, using the other first-order equations, a
then usingd/dh5X8d/dX, we get the second-order equ
tion

~X2X22Y2!F4~X2X22Y2!
d2Y

dX228YS dY

dXD 2

1~6X25!
dY

dXG1Y~528X14X228Y2!50. ~100!

Note that a special solution of this equation is

Y5
A12X

&
, ~101!

which gives rise to the explicit metric in Sec. III B for th
caseN(1,0), which was obtained in@50#.

2. Heuristic discussion of the flows

We can give the following analysis of the fixed points
the first-order equations~92!. Solving for A85B85F850,
we see that the fixed points occur for (A,B,F) given by

~0,0,0!, ~0,1,0!, ~1,0,0!, ~1,1,0!,

S 51A5

6
,
52A5

6
,
4A5

9 D , S 52A5

6
,
51A5

6
,
4A5

9 D .

~102!

It is easily seen that~0,0,0! is a degenerate point,~1,0,0! and
~0,1,0! correspond toCP2 bolts at short distance, and~1,1,0!
is the large-distance asymptotic limit for ALC metrics. Th
two points „(51A5)/6,(52A5)/6,4A5/9… and „(5
2A5)/6,(51A5)/6,24A5/9… correspond to large-distanc
asymptotic limits for AC metrics. The metrics on the princ
pal orbits in these last two limits are precisely the Einst
metric on theN(1,21) Aloff-Wallach space, as discussed
Sec. V A.
10600
n

The explicit ALC solution found in@50# @described in Sec.
III B for N(1,0)# corresponds to a flow from~0,1,0! to
~1,1,0!. As we adjust the nontrivial constant that parametriz
inequivalent solutions of the first-order equations that s
from a CP2 bolt at short distance, we get a family of flow
that run from~0,1,0! to the ALC end point at~1,1,0!. As the
parameter is pushed to a limiting value, the distance at wh
the functionf ‘‘turns over’’ and becomes asymptotically con
stant grows larger and larger. Eventually, at the limiti
value of the parameter, the distance at which this happ
gets pushed to infinity, and the end point jumps to the A
value „(51A5)/6,(52A5)/6,4A5/9…. If the parameter is
taken beyond the limiting value, the flow runs to some s
gular point and the metric is correspondingly singular.

The large-distance structure of the AC solution can
studied as follows. Let us suppose that we have the c
„(52A5)/6,(51A5)/6,24A5/9…, in which B approaches
(51A5)/6 asymptotically. Setting

B5
51A5

6
1y~h! ~103!

in Eq. ~93!, and then linearizing iny, we obtain the third-
order equation

9y-148y9216y82160y50. ~104!

Writing y;elx, we find that the constantl must satisfy the
auxiliary equation

9l3148l2216l216050. ~105!

All three rootsl i are real, withl1,0, l2,0, andl3.0.
Since we want solutions that approach the AC limit~and
hencey→0 as h→`!, we conclude that regular solution
must have the asymptotic form

y;x1el1h1x2el2h. ~106!

We can think of the general solution as being charac
ized by three parameters~excluding the completely trivial
constant shift ofh, but including the constant scaling!. We
see that the solutions with regular large-distance AC beh
ior lie on a two-dimensional submanifold of ingoing traje
tories, parametrized by the constantsx1 andx2 . On the other
hand, we know that at the bolt, the solutions regular th
also lie on a two-dimensional submanifold, of outgoing tr
jectories. Although we do not know analytically how to in
terpolate between the two regions, we can argue on gen
grounds that the intersection of the two-dimensional out
ing submanifold at short distance, and the two-dimensio
AC ingoing submanifold at large distance, should occ
along a curve.~This family would really be just a single
nontrivial solution, since the single parameter along
curve would be a ‘‘trivial’’ one.! Thus we can expect a solu
tion that is regular on the bolt and also regular at an A
infinity. This same conclusion is also indicated by the n
merical solutions.
4-17
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M. CVETIČ, G. W. GIBBONS, H. LÜ, AND C. N. POPE PHYSICAL REVIEW D65 106004
We can, of course, repeat the above discussion for
general case ofN(k,l ) principal orbits. The principles are th
same as forN(1,21) but the discussion is a little more in
volved since there are now two nontrivial fixed points th
describe the flows to cones over the two inequivalent E
stein metrics on the Aloff-Wallach space. We find that at
linearized level, the analogue of Eq.~104! is now

y-14y9~21cosf!2y8~21cosf!224y~15 cos2 f

120 cos2 f112 cosf18!50, ~107!

wheref is the angle parametrizing the Einstein metrics
the Aloff-Wallach spaces, which was introduced in Eq.~46!.
The solutions will therefore be of the formy;elh with

l314l2~21cosf!2l~21cosf!224~15 cos3 f

120 cos2 f112 cosf18!50. ~108!

It is easy to see that this cubic polynomial inl has extrema
at two values ofl, one negative and the other positive, for
values off. One can also see that the cubic is itself resp
tively positive and negative at the two extrema. This sho
that all three rootsl i of Eq. ~108! are real, and that one,l1 ,
is certainly negative, and another,l3 , is certainly positive.
Together with the fact that the cubic is negative atl50 for
all f, we can deduce that the intervening root,l2 , is nega-
tive, and so for allf two of thel i are negative and one i
positive. Thus again we have a two-dimensional submani
of ingoing trajectories, supporting the indications from t
numerical analysis that there will be regular AC solutions

C. Perturbative construction of AC metrics

We have obtained evidence by means of a numer
analysis that for each choice of theN(k,l ) principal orbit,
there are two possible AC Spin~7! metrics, which approach
the cones over the two inequivalent Einstein metrics
N(k,l ). The only exception isN(1,0), for which there is
only one AC solution, since here there is only one poss
Einstein metric on the base of the cone.

We have already alluded to the fact that for the spe
case of principal orbits that areN(1,1), or its cousinsN(1,
22) and N(22,1), we actually know of two explicit AC
solutions of the first-order equations~36!. One such solution
is the complete and nonsingular hyper-Ka¨hler Calabi metric
on T* CP2, which happens to have the smaller holonom
group Sp~2!, but nonetheless corresponds to a solution a
of the Spin~7! first-order equations~36!. If we make our
usual choice where it is the functionc in Eq. ~5!, rather than
a or b, that vanishes at short distance, then the princ
orbits will be N(1,22) or N(22,1) in this case. The othe
exact solution is the Spin~7! metric that one obtains by re
placingS4 by CP2 in the original construction in@1,2# of the
complete and nonsingular Spin~7! AC metric on the chiral
spin bundle ofS4. After the replacement, the metric wi
have aZ2 orbifold singularity on the bolt, since now we hav
N(1,1) as principal orbits, which can be described as
S3/Zp bundle overCP2 with p5uk1 l u52, i.e., a SO~3!
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bundle overCP2. Nonetheless, the associated solution of
first-order equations is nonsingular, and from a physi
point of view in string theory, one might even find the orb
fold singularity attractive.

Leaving aside for now the question of the acceptability
otherwise of an orbifold singularity, we can take the tw
exact solutions described in the previous paragraph as s
ing points for perturbative constructions of AC solutions
the first-order equations~36!, for values ofk/ l that are close
to the values occurring in the exact solutions. Thus, for
ample, we can take theN(1,1) solution with theZ2 orbifold
singularity, and then seek a solution withk/ l 512e, order
by order ine. Of course we should ultimately have in min
that e should be rational, but this does not present any di
culty.

The other starting point with an exact AC solution is t
hyper-Kähler Calabi metric. In this particular instance w
find it more convenient, rather than following our usual str
egy of working withN(1,22) or N(22,1) principal orbits
in the framework wherec vanishes on the bolt, to work in
stead in the framework wherea vanishes on the bolt, in
which case we again haveN(1,1) principal orbits. Thus the
perturbative expansions around both of the exact soluti
can be parametrized by taking tand̃5211e.

Case (a): Expansion around SO(3) bundle overCP2. Here
we take as our zeroth-order starting point the Spin~7! metric
on the chiral spin bundle ofS4, given in @1,2#, but with S4

replaced byCP2. The principal orbits areN(1,1), with the
metric functionc2 that multipliesn i

2 in Eq. ~5! vanishing on
the bolt. We shall work up to and including ordere2 in the
expansion aroundk/ l 51.

In order to simplify our results for the perturbative expa
sion it is helpful to introduce a new radial variabler, defined
in terms ofr by r5r 2/3. After some algebra, we find that th
perturbative expansion up to ordere2 is given by

a5
3

A10
r3/2S 11

3r11211r6133r225

264r~r521!2

3~2e1e2!1O~e3! D ,

b5
3

A10
r3/2S 12

3r11211r6133r225

264r~r521!2

3~2e1e2!1O~e3! D ,

c5 3
5 r21~r521!1/2

„11c2e21O~e3!…,

f 52 3
10 r21~r521!1/2@11 f 2e21O~e3!#,

h5
r5/2

~r521!
@11h2e21O~e3!#, ~109!
4-18



COHOMOGENEITY ONE MANIFOLDS OF SPIN~7! AND . . . PHYSICAL REVIEW D 65 106004
where

c25
~r21!4v1

2613600r2~r521!5 1r21~r521!u1~r521!21ũ,

f 25
~r21!4v2

2613600r2~r521!52r21~r521!u1~r521!21ũ,

h25
~r21!4v3

2613600r2~r521!52 1
3 r21~r521!u2~r521!21ũ,

~110!

and the functionsu and ū are given by

u52
7

165r 2F1@1,1
5 , 6

5 ,r25#1 7
6660r

4
2F1@1,4

5 , 9
5 ,r25#,

ũ5k1 7
59400r

3~15r5224r2240!

1
7~r521!2

495
†r22

2F1@1,1
5 , 6

5 ,r25#
o

e

10600
2 1
4 r25

2F1@1,4
5 , 9

5 ,r25#‡

2 35
4356†log~r521!110r21

2F1@1,1
5 , 6

5 ,r25#

2 5
2 r22

2F1@1,2
5 , 7

5 ,r25#‡. ~111!

Note that we have

]u

]r
5

7~r321!

165~r521!
,

]ũ

]r
5 7

495r212
175r2~r21!2

4356~r521!
1

~118r529r10!u

3r2 .

~112!

The functionsv i are polynomials inr, given by
v15312501187500r1873820r212495280r315456950r419894075r5115688150r6121497477r7125980358r8

127795095r9126221340r10121387495r11114948034r1218557431r1313870160r1411498795r1511344660r16

12431196r1713781844r1814420045r1914281340r2013511270r2112437848r2211389087r231693000r24

1277200r25169300r26,

v2521562502502500r21192820r222381280r324221950r426069165r527561010r627585363r725030102r8

11216895r9110072100r10121255735r11132192394r12140306671r13143023160r14140712455r15

133048900r16122612556r17111983484r1813741745r1921745300r2023900290r2123838392r2222674773r23

21524600r242609840r252152460r26,

v351250001252500r138110r22862560r322793900r425655745r5210651680r6216695647r7222701588r8

227583445r9229937510r10228501325r11224368354r12218632061r13212385910r142701076515

23391240r1611197516r17299774r181231805r191256540r201223750r211160032r22191983r23146200r24

118480r2514620r26. ~113!
Herek in ũ is an integration constant, which should be ch
sen to be

k5 343
594001

35
4356g1 35

4356@2c~ 1
5 !2c~ 2

5 !# ~114!

in order that the solution be regular at small distance, wh
g is the Euler-Mascheroni constant, andc(z)[G8(z)/G(z)
is the diagamma function.

At large distance, the functions become
-

re

a5
3

A10
r S 11

1

44
e1

1

88
e2D ,

b5
3

A10
r S 12

1

44
e2

1

88
e2D ,

c5 3
5 r ~11 21

3872e!,
4-19
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f 52 3
10 r ~11 489

3872e
2!,

h511 31
11616e

2. ~115!

As a verification, one can check that the above cone m
ric matches precisely the conifolds obtained in Sec. III, up
e2 order, expanding aroundf50. At small distance, it can
be matched to case 1 in Sec. III C, with the constantq speci-
fied as

q5 1
6 1~ 225

261362
7

495pA112/A5!e21O~e3!. ~116!

What we have seen emerging here is an orderly expan
of the metric functions around their unperturbed form, w
corrections at ordere ande2 that are perfectly regular both a
short distance and at large distance. This provides fur
evidence, of an analytical nature, for the existence of reg
solutions of the first-order equations~36! for AC metrics~5!
with Spin~7! holonomy, where the principal orbits areN(k,l )
with general values ofk and l. Of course, one should distin
guish between having regular solutions of the first-or
equations, and having regular metrics, since, as we know,
starting point for the perturbation series in this case i
metric with aZ2 orbifold singularity. Thus our emphasis i
this specific perturbation expansion is really on the regula
of the metric functions, rather than on the complete regu
ity of the eight-metrics. Nonetheless, as we mentioned p
viously, even those with orbifold singularities on the bo
may be of interest in string and M theory. However, the m
point emerging here is that we see strong supporting
dence for the proposition that there exist regular AC so
tions of the first-order equations, for allk and l. For those
cases whereuk1 l u51 ~which are, of course, far away from
the e50 starting point here!, we should therefore obtain
complete and nonsingular AC metrics.

Case (b): Expansion around Calabi metric. In this case
we take as our zeroth-order starting point the hyper-Ka¨hler
Calabi metric onT* CP2, which is complete and nonsingula
Since we shall choose to work in a framework where it is
metric functiona that vanishes on the bolt, and since theS3
symmetry of the system involves permuting (a,b,c) in step
with ( l ,k,m), wherem52k2 l , it follows that instead of
N(k,l ) being viewed as anS3/Zp bundle overCP2 with p
5uk1 l u5umu, as it is whenc vanishes on the bolt, we now
have anS3/Zp bundle with p5u l u. Thus the nonsingula
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hyper-Kähler Calabi metric is described in these conventio
in terms ofN(1,1) or N(22,1) Aloff-Wallach spaces form-
ing the principal orbits. We shall takeN(1,1), so that again
our perturbation will be of the form tand̃512e.

It should be emphasized that although our starting-po
here is the hyper-Ka¨hler metric, we perturb around it usin
the usual Spin~7! first-order equations. Thus the reduced h
lonomy whene50 is to be viewed as an ‘‘accidental’’ re
duction that is a feature of this specific solution of t
Spin~7! equations.

After some algebra, we find in this case that up to ordere2

the perturbed solution is given by

a5A 1
2 ~r 221!~11a1e1a2e2!,

b5A 1
2 ~r 211!~11b1e1b2e2!,

c5r ~11c1e1c2e!,

f 5 1
2 rA12r 24~11 f 1e1 f 2e2!,

h5
r

2 f
, ~117!

where

a15
113z23z2

12z2 1
logz

6~z21!
,

b15
z21

4z
1

logz

6z
,

c15
~z21!2

12z2~2z21!
1

logz

3~2z21!
,

f 15
429z

12z~2z21!
1

~122z12z2!logz

6z~z21!~2z21!
,

~118!

and
a25
151268z2431z22272z31675z4

4320z4 1
7c~2,12z!

60~z21!
1

@220126z131z2297z3160z41z3~21z226!logz# logz

360z3~z21!2 ,

b25
16138z2147z21989z322903z411755z5

4320z4~z21!
1

7c~2,12z!

60z

1
@352127z1233z22120z31~z21!2~21z25!logz# logz

360z2~z21!2 ,
4-20
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c25
2151247z21500z214316z327795z4110359z528600z613240z7

4320z4~z21!~2z21!2

2
~2201131z2306z21274z3124z42202z51120z6!logz

360z3~z21!2~2z21!2 1
~42z231!log2 z

180~2z21!
1

7c~2,12z!

30~2z21!

f 252
4112z2324z211216z31209z424720z513240z6

4320z4~2z21!2 1
7~122z12z2!c~2,12z!

60z~z21!~2z21!

2
~202144z1351z22301z3160z4!logz

180z2~z21!~2z21!2 1
~25161z2165z21250z32230z4184z5!log2 z

360z2~z21!2~2z21!2 . ~119!
e
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Here z5 1
2 (11r 2) and c(2,x)[2*zz̃21 log(12z̃)dz̃ is the

dilogarithm function.
At large distance, we have

a5
r

&
~12 1

4 e1 5
32 e2!, b5

r

&
~11 1

4 e1 13
32 e2!

c5~11 3
16 e2!r , f 5 1

2 ~12 3
16 e2!r ,

h511 3
16 e2. ~120!

As a verification, one can check that the above cone m
ric matches precisely the conifolds obtained in the previ
section, up toe2 order, expanding aroundf5p. At small
distance, it can be matched with case 2 in Sec. IV C, p
vided thatq522/31e2 277

270e2.
Again, we are seeing that an orderly perturbative exp

sion can be developed, with corrections to the metric fu
tions at ordere ande2 that are regular both at short distanc
and at large distances. This again provides analytical
dence supporting the findings from our numerical analy
that regular AC solutions of the first-order equations~36!
should exist for allk and l.

V. MORE GENERAL SEVEN-METRICS OF G2

HOLONOMY

Having studied more general cohomogeneity eig
metrics with Spin~7! holonomy, we now turn to the consid
eration of analogous generalizations for seven-metrics ofG2
holonomy.

A. New G2 metrics on R3 bundle over CP2

We start from the left-invariant one-formsLA
B of SU~3!,

and define complex one-formss[L1
3, S[L1

3, and n
[L1

2, as in Sec. III A 1. Defining real one-forms vias
5s11 is2 , etc., we then make the ansatz

ds7
25dt21a2s i

21b2S i
21c2n i

2. ~121!

This is very like the ansatz for eight-dimensional Spin~7!
metrics in Eq.~35!, except that the extra U~1! direction f 2l2

in Eq. ~3.2! there is dropped. We can therefore read off t
10600
t-
s

-

-
-

i-
is

-

e

results for curvature,T and V from Sec. 2 of@10#, and re-
produced in Eq.~36!, by dropping all thef terms. Thus we
have

T52a8212b8212g8218a8b812b8g812a8g8,

V52
12

a22
12

b22
12

c2 1
2a2

b2c2 1
2b2

a2c2 1
2c2

a2b2 . ~122!

Note that the principal orbits are the coset spa
SU(3)/@U(1)3U(1)#, which is the six-dimensional flag
manifold.

We find thatV can be derived from the superpotential

W54abc~a21b21c2!. ~123!

From this, we arrive at the first-order equations

ȧ

a
5

b21c22a2

abc
,

ḃ

b
5

c21a22b2

abc
,

ċ

c
5

a21b22c2

abc
. ~124!

It should be noted that these are identical to one of
sets of first-order equations that can be derived for the
axial Bianchi type IX system inD54, with ds4

25dt2

1a2s1
21b2s2

21c2s3
2, where here thes i are the left-

invariant one-forms of SU~2!. Specifically, they coincide
with the D54 equations that correspond to the Nahm eq
tions for the ‘‘spinning top.’’ This is the first-order system
that admits Eguchi-Hanson as a nonsingular solution ia
5b. For unequala, b, andc, the system was studied in@11#,
and the general solution was obtained. It was found that
associated Ricci-flat metrics were singular when the th
functions were unequal.

We can use the same method here to solve the first-o
equations~124!. Thus we letu5ab, v5bc, and w5ca.
After defining a new radial coordinater by dr5abc dt
5Auvwdt, we then get

du

dr
5

2

u
,

dv
dr

5
2

v
,

dw

dr
5

2

w
, ~125!
4-21
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with the general solution

u254~r 2r 1!, v254~r 2r 2!, w254~r 2r 3!,
~126!

wherer 1 , r 2 , andr 3 are constants of integration.5 The met-
ric is

ds7
25

dr2

uvw
1

uw

v
~s1

21s2
2!1

uv
w

~S1
21S2

2!1
uw

u
~n1

21n2
2!.

~127!

It can be seen that this is singular unless two of ther i are set
equal. If two are set equal, so thata5b, we get, after a
coordinate transformation, the previously knownG2 metric
on theR3 bundle overCP2.

The G2 holonomy can be checked by looking for a cov
riantly constant spinor. Equivalently, we can check to se
there is a covariantly constant three-form~the calibrating
form!. From the exterior derivatives of the complex on
forms given in the hyper-Ka¨hler paper, we can easily verif
that

d~s∧s̄ !52d~S∧S̄ !5d~n∧ n̄ !522i Re~ s̄∧S∧n!.
~128!

From this we see that the three-formG(3) , defined by

G~3![abcRe~ s̄∧S∧n!1 i ~2a2s∧s̄1b2S∧S̄1c2n∧ n̄ !
~129!

is closed,dG(3)50, by virtue of the first-order equation
~124!. A more complete calculation should show that it is
fact covariantly constant.

Note that the vielbein components ofG(3) will be con-
stants.

B. G2 metric on R3 bundle over S4 reconsidered

We could attempt a similar more general construction
metrics on theR3 bundle overS4. As we shall see, this doe
not in fact seem to be possible. It does, however, provide
with a more convenient way of writing the standardG2 met-
ric on this manifold.

Our starting point is the left-invariant one-formsLAB on
SO~5!, introduced in Sec. II. In the earlier discussion w
identified Pa and (R1 ,R2 ,R3) as the one-forms in the cose
S75SO(5)/SU(2)L . We now divide out by a further U~1!
factor, associated with the one-formR3 . The requiredCP3

principal orbits for theR3 bundle overS4 are thus described
by the coset

CP35
SO~5!

SU~2!L3U~1!R
. ~130!

5We understand that the first-order equations~124! for the Spin~7!
metrics~121! have also been obtained independently by R. Cley
~Ph.D. thesis, Odense University!, and by A. Dancer and M. Y.
Wang, who also noted that they are equivalent to the Nahm e
tions, and hence are integrable.
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From Eq.~4!, we can see that the following exterior de
rivatives lie entirely within the coset:

d~P0∧P31P1∧P2!522R1∧~P0∧P21P3∧P1!

12R2∧~P0∧P11P2∧P3!,

d~R1∧R2!5 1
2 R1∧~P0∧P21P3∧P1!

2 1
2 R2∧~P0∧P11P2∧P3!. ~131!

In particular, we see that

d~P0∧P31P1∧P214R1∧R2!50. ~132!

This corresponds to a nearly Ka¨hler structure onCP3. Note,
however, that there is no result lying purely within the cos
if we try giving the P0∧P3 and P1∧P2 terms different co-
efficients. Thus we cannot break theS4 base~whose coset
one-forms arePa! apart. This is quite different from the pre
vious example in Sec. V A.

The most general metric ansatz we can consider is th
fore

ds7
25dt21a2~R1

21R2
2!1b2Pa

2. ~133!

This is equivalent to the standard ansatz for theG2 metrics
on theR3 bundle overS4 @1,2#.

The natural SO~5!-invariant ansatz for the calibratin
three-form is

G~3!5dt∧@a2R1∧R22b2~P0∧P31P1∧P2!#

1ab2@R2∧~P0∧P11P2∧P3!

2R1∧~P0∧P21P3∧P1!#. ~134!

From the conditiondG(3)50 we get

d~ab2!

dt
52 1

2 a222b2, ~135!

while from d* G(3)50 we get

2b
db

dt
1a50,

d~a2b2!

dt
14ab250. ~136!

These imply the first-order equationsȧ5 1
2 a2b2222 and ḃ

52 1
2 ab21, which are the same, after appropriate adju

ment for normalization, as those obtained in@10# for the R3

bundle overS4. The solution can be written as

ds7
25S 12

l 4

r 4D 21

1dr21r 2S 12
l 4

r 4D ~R1
21R2

2!1
1

2
r 2Pa

2.

~137!

C. G2 metrics for the six-function triaxial S3ÃS3 ansatz

Another class ofG2 metrics that may be studied has pri
cipal orbits that areS33S3. A rather general ansatz involv
ing six radial functions was considered in@12,13#, and first-

n

a-
4-22
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order equations forG2 holonomy were derived. The metri
for the six-functionG2 space is given by

ds7
25dt21ai

2~s i2S i !
21bi

2~s i1S i !
2, ~138!

wheres i andS i are left-invariant one-forms for two SU~2!
group manifolds. It was found that forG2 holonomy,ai and
bi must satisfy the first-order equations

ȧ15
a1

2

4a3b2
1

a1
2

4a2b3
2

a2

4b3
2

a3

4b2
2

b2

4a3
2

b3

4a2
,

ȧ25
a2

2

4a3b1
1

a2
2

4a1b3
2

a1

4b3
2

a3

4b1
2

b1

4a3
2

b3

4a1
,

ȧ35
a3

2

4a2b1
1

a3
2

4a1b2
2

a1

4b2
2

a2

4b1
2

b1

4a2
2

b2

4a1
,

~139!

ḃ15
b1

2

4a2a3
2

b1
2

4b2b3
2

a2

4a3
2

a3

4a2
1

b2

4b3
1

b3

4b2
,

ḃ25
b2

2

4a3a1
2

b2
2

4b3b1
2

a1

4a3
2

a3

4a1
1

b1

4b3
1

b3

4b1
,

ḃ35
b3

2

4a1a2
2

b3
2

4b1b2
2

a1

4a2
2

a2

4a1
1

b1

4b2
1

b2

4b1
.

One can look for solutions with regular Taylor expansio
corresponding to a collapsingS1, S2, or S3 at t50. We find
no such regular solutions for a collapsingS1 or S2, but for a
collapsingS3 we find that solutions that are regular near t
associatedS3 bolt at t50 have a Taylor expansion with thre
free parameters, and are given by

ai5a01
1

16a0
t21¯ , bi52

1

4
t1qit

31¯ , ~140!

where a0
22564(q11q21q3) ~implying that q11q21q3

.0!. A numerical analysis now shows that regularity at lar
distance requires that

q1>q25q3 , or cyclic order. ~141!

Thus the only regular solutions of the six-function equatio
~139! are solutions also of the reduced four-function eq
tions first obtained in@13#. Settinga25a3 andb25b3 in Eq.
~139!, these are

ȧ15
a1

2

2a2b2
2

a2

2b2
2

b2

2a2
,

ȧ25
a2

2

4a1b2
2

a1

4b2
2

b2

4a1
2

b1

4a2
,

10600
s

e

s
-

ḃ15
b1

2

4a2
22

b1
2

4b2
2 ,

ḃ25
b2

2

4a2a1
2

a2

4a1
2

a1

4a2
1

b1

4b2
. ~142!

Making the redefinitions

A5
a2

2

a1
2 , B5

b2
2

a1
2 ,

F5
b1a2b2

a1
3 , G5

a2b2

a1
, ~143!

the equations become

A853A21A~B23!1F,

B853B21B~A23!2F,

F85~2413A13B!F,

G21G85221A1B1
F

2A
2

F

2B
, ~144!

where a prime denotes a derivative with respect toh, which
is defined bydt52G dh. Note thatG is decoupled from the
first three equations. If we now define

A5X1Y, B5X2Y, ~145!

the first three equations give

X854X223X12Y2, Y856XY23Y1F,

F852~3X22!F. ~146!

By calculatingY9, using the other first-order equations, a
then writing d/dh5X8d/dX, we get the following second
order equation:

~4X223X12Y2!F ~4X223X12Y2!
d2Y

dX2

14YS dY

dXD 2

24~X21!
dY

dXG112~X1Y21!

3~X2Y21!Y50. ~147!

Note that a special solution of this equation is

Y5
A324X

2
. ~148!

This is in fact the isolated solution that was found in@13#. It
can be written as
4-23
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FIG. 4. The nonsingularG2 metrics B7 and
B7

6 as a function ofq2 /q1 .
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a152 1
2 r , a25 1

4 A3~r 2 l !~r 13l !,

b15 l
Ar 229l 2

Ar 22 l 2
,

b252 1
4 A3~r 1 l !~r 23l !, ~149!

wheredt52 3
2 l dr /b1 .

Taking q25q3 , our numerical analysis shows th
q2 /q1>1 is a nontrivial parameter characterizing inequiv
lent solutions, which are nonsingular and ALC when

2
1

2
,

q2

q1
,1. ~150!

The limiting caseq2 /q151 gives an AC solution, which is
in fact the previously knownG2 metric on the spin bundle o
S3 @1,2#. The general family in Eq.~150! includes the spe-
cific explicitly known example~149! found in @13#. Convert-
ing to the proper-distance coordinatet, we find that the so-
lution ~149! corresponds toq2 /q152 1

14 .
Our numerical analysis supports the perturbative ar

ments given in@13#, which indicated the existence of th
nontrivial one-parameter family of ALC solutions that w
have found numerically. By analogy with our notation for t
new ALC eight-manifolds of Spin~7! holonomy found in@3#,
we shall denote the explicitG2 solution~149! of @13# by B7 .
We shall also denote the one-parameter family of nonsin
lar ALC solutions with2 1

2 ,q2 /q1,2 1
14 by B7

2 , and those
with 2 1

14 ,q2 /q1,1 by B7
1 . It should be noted, howeve

that there is noA7 solution ofR7 topology, which would be
analogous to theA8 solution onR8 found in @3#. This is
because, unlike the metrics studied in@3#, where the princi-
pal orbits were spheres (S7) which have the possibility of
collapsing down smoothly to a point at the original of sphe
cal polar coordinates, here the principal orbits areS33S3,
and so a smooth collapse to a point is impossible.

Note that in addition to the upper boundq2 /q151 when
we recover the original AC metric ofG2 holonomy@1,2# on
the R4 bundle overS3, the lower boundq2 /q152 1

2 corre-
sponds to the Gromov-Hausdorff limit in which we g
M63S1, where M6 is the Ricci-flat Kähler metric on the
deformed conifold. The various nonsingular solutions are
picted in Fig. 4.
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VI. CONCLUSIONS

In this paper, we have made a rather extensive invest
tion of many of the possible classes of metrics of cohom
geneity one in dimensions eight and seven that might g
rise to the exceptional holonomies Spin~7! and G2 , respec-
tively. For the case of eight dimensions, we considered fi
the situation where the principal orbits are topologicallyS7,
endowed with a homogeneous metric given by the co
SO~5!/SO~3!. One can view such metrics asS3 bundles over
S4, where theS3 fibers are themselves required to be on
left invariant under the action of SU~2!. The eight-
dimensional metric ansatz therefore has SO~5! isometry, and
involves four functions of the radial variable; three chara
terizing homogeneous ‘‘squashings’’ of theS3 fibers, and a
fourth measuring the radius of theS4 base. We obtained first
order equations for these functions, coming from the requ
ment of Spin~7! holonomy, and we then examined the po
sible solutions. We found by a numerical analysis that th
should exist a family of complete and nonsingular metr
with a nontrivial parameterl2<4, which we denote byC8 ,
that are topologicallyR2 bundles overCP3. The parameterl
characterizes the degree of squashing of the minimalCP3

bolt, with l254 corresponding to the Fubini-Study metr
on CP3. This limiting case has SU~4! holonomy, and the
metric has been known for a long time, but the metrics w
l2,4 are new. They are ALC, and on theS3 fibers they
exhibit a similar behavior to that seen in the Atiyah-Hitch
metric in D54.

We then considered eight-dimensional metrics of c
homogeneity one whose principal orbits are the Alo
Wallach spacesN(k,l )5SU(3)/U(1)k,l . We began with a
more complete and explicit discussion of the Einstein m
rics onN(k,l ) than has previously appeared in the literatu
Earlier results showed the existence of Einstein metrics@7#,
gave an explicit result for an Einstein metric onN(k,l ) @8#,
and gave a demonstration, based on the results of@8#, that
there exist two inequivalent Einstein metrics on eachN(k,l )
exceptN(1,21) @9#. In this paper, we gave an explicit con
struction, from first principles, of the two Einstein metric
deriving them from the conditions for weakG2 holonomy.
These Einstein metrics form the possible bases for cone
eight-dimensional AC metrics of Spin~7! holonomy. Al-
though we were unable to obtain the general solutions of
first-order equations for Spin~7! holonomy, we were able to
find an isolated ALC solution explicitly for all (k,l ). In gen-
eral, the metric will not be completely nonsingular, but rath
will have an orbifold structure, of the local form
R4/Zp3CP2, wherep5uk1 l u.

We also studied the solutions of the first-order equatio
4-24
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for N(k,l ) principal orbits numerically, and in certain pertu
bative expansions, and found evidence for the existenc
complete and nonsingular metrics, both AC and ALC, for
(k,l ).

We then turned our attention to seven-metrics of cohom
geneity one withG2 holonomy. We studied the first-orde
system for the case where the principal orbits are the
manifold SU(3)/@U(1)3U(1)#. This can have three metri
functions depending on the radial variable. We showed
the first-order equations implyingG2 holonomy reduce to the
same ones that are encountered in one of the first-order
tems for hyper-Ka¨hler Bianchi type IX metrics inD54, and
hence they can be solved by the same method that was
in @11#. As in that case, it turns out that the resulting metr
are singular unless two of the metric functions are equal
which case the system reduces to the already studied
whose solution is the complete nonsingularG2 metric on the
R3 bundle of self-dual two-forms overCP2 @1,2#.

A secondG2 example arises if the principal orbits a
CP3, described as anS2 bundle overS4. Only two metric
functions are possible in this case, describing the radii of
S2 fibers and theS4 base, and the system reduces to the o
that was solved in@1,2#, giving the nonsingular metric on th
R3 bundle of self-dual two-forms overS4.

A third possibility is when the principal orbits ar
S33S3, described as anS3 bundle overS3. In principle one
can now write an ansatz with nine functions of the rad
coordinate@12#, although it is not clear that a first-order sy
tem of equations forG2 holonomy can arise in this case.
simpler system with six functions~three measuring the rad
of the squashedS3 base, and three measuring the radii of t
squashedS3 fibers! was also considered in@12#, and in@13#,
for which a first-order system implyingG2 holonomy exists.
Our numerical investigations in this paper lead to the c
clusion that the solutions will be nonsingular only if pairs
metric functions on the base and fiber three-spheres are
equal. This results in a four-function system, whose gen
solution has not been found analytically. An isolated AL
example was found in@13#, and arguments for the existenc
of a nontrivial one-parameter family were presented.
have analyzed the system numerically in this paper, and
also find evidence for the existence of such a family of n
singular solutions.

Note added. After this paper was completed, the pap
@51# appeared, which also studies the solutions of the fi
order equations in@10# for metrics of Spin~7! holonomy with
N(k,l ) principal orbits. This has an extensive overlap w
our results in Secs. III B and III C. In particular,@51# also
obtains the explicit ALC solutions~75!, and discusses th
existence of more general classes of ALC metrics.

ACKNOWLEDGMENTS

We are grateful to Michael Atiyah, Andrew Dance
Krystoff Galicki, Nigel Hitchin, Simon Salamon, Jame
Sparks, Paul Tod, and McKenzie Wang for helpful disc
sions, and to K. Kanno and Y. Yasui for pointing out an er
in the original Eqs.~15!. Subsets of the authors than
DAMTP ~C.N.P.!, the Benasque Center for Science~M.C.,
10600
of
l

-

g

at

ys-

ed
s
in
ne

e
e

l

-

set
al

e
e
-

r
t-

-
r

G.W.G., C.N.P.! and the Ecole Normale~M.C., C.N.P.! for
hospitality at various stages during this work. M.C. was su
ported in part by DOE grant DE-FG02-95ER40893 a
NATO grant 976951; H.L. was supported in full by DO
grant DE-FG02-95ER40899; C.N.P. was supported in par
DOE DE-FG03-95ER40917.

APPENDIX A: THE GEOMETRY OF SU „3…

For a better understanding of the global structures of
Aloff-Wallach spacesN(k,l )5SU(3)/U(1)k,l , it can be use-
ful to have available an explicit parametrization of the gro
SU~3!. One may parametrize any SU~3! group elementg in
terms of generalized Euler angles as

g5Ueil5jŨe~ i)/2!l8t, ~A1!

where

U[e~ i /2!l3fe~ i /2!l2ue~ i /2!l3c,

Ũ[e~ i /2!l3f̃e~ i /2!l2ũe~ i /2!l3c̃, ~A2!

where~u,f,c! are Euler angles for SU~2!, (ũ,f̃,c̃) are Euler
angles for another SU~2!, andla are the Gell-Mann matri-
ces. The coordinate ranges are

0<u<p, 0<ũ<p, 0<j< 1
2 p ~A3!

for the ‘‘latitudes,’’ while the azimuthal coordinates have th
periods

Df52p, Dc54p, Df̃52p,

Dc̃54p, Dt52p. ~A4!

Since the determination of these periods is slightly no
trivial, and errors have occurred in various published pap
we shall give an explicit derivation of the periods below.

It is useful to define left-invariant one-formssi and s̃i for
the two SU~2! subgroups in the standard way:

U21dU5
i

2
l isi , Ũ21dŨ5

i

2
l i s̃i , ~A5!

giving

s15cosc du1sinc sinu df,

s252sinc du1cosc sinu df,

s35dc1cosu df, ~A6!

and similarly for s̃i . Calculating the SU~3! left-invariant
one-forms Xa defined by g21dg5( i /2)laXa , and taking
n11 in2[X11 iX2 , s11 is2[X41 iX5 , S11 iS2[X6
1 iX7 , together withs3[X3 ands8[X8 for the two Cartan
subalgebra one-forms, we find
4-25
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n11 in25 i s̃11 s̃21ei c̃$ i cosj@~cosf̃1 i sinf̃ cosũ !s1

1~sinf̃2 i cosf̃ cosũ !s2#

1 1
4 ~31cos 2j!sinũ s3%,

s11 is25 ie~ i /2!c̃1~3i /2!tF2e~ i /2!f̃

3cos
1

2
f̃S dj2

i

4
sin 2j s3D

1e2~ i /2!f̃ sinj sin
1

2
ũ~s11 is2!G ,

S11 iS25 ie2~ i /2!c̃1~3i /2!tF2e~ i /2!f̃

3sin
1

2
ũS dj2

i

4
sin 2j s3D

2e~ i /2!f̃ sinj cos
1

2
ũ~s11 is2!G ,

s35 s̃31cosj sinũ~sinf̃ s12cosf̃ s2!

1 1
4 ~31cos 2j!cosũ s3 ,

s85)~dt2 1
2 sin2 j s3!. ~A7!

For some purposes it is highly advantageous to introd
instead right-invariant one-formst̃ i for the second SU~2!

group, defined bydŨ Ũ215( i /2)l i t̃ i . In terms of the Euler
angles (ũ,f̃,c̃), these are given by

t̃15cosf̃ dũ1sinf̃ sinũ dc̃,

t̃ 25sinf̃ dũ2cosf̃ sinũ dc̃,

t̃ 35df̃1cosũ dc̃. ~A8!

The SU~3! left-invariant one-formsn1 , n2 , ands3 then be-
come

n11 in25ei c̃$ i ~cosf̃1 i sinf̃ cosũ !@ t̃ 11cosjs1#

1 i ~sinf̃2 i cosf̃ cosũ !@ t̃ 21cosjs2#

1sinũ@ t̃ 31 1
4 ~31cos 2j!s3#%,

s35sinũ$sinf̃@ t̃ 11cosjs1#2cosf̃@ t̃ 21cosjs2#%

1cosũ@ t̃ 31 1
4 ~31cos 2j!s3#. ~A9!

From these results, it is straightforward to show that

ds4
2[s1

21s2
21S1

21S2
254@dj21 1

4 sin2 j~s1
21s2

2!

1 1
4 sin2 j cos2 js3

2#,
10600
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ds3
2[n1

21n2
21s3

25~ t̃ 11cosj s1!2

1~ t̃ 21cosjs2!21@ t̃ 31 1
4 ~31cos 2j!s3#2.

~A10!

The metricds4
2 is four times the standard Fubini-Study me

ric on CP2, and since its principal orbits at fixedj are SU~2!,
this proves thatf andc must indeed have the periods give
in Eq. ~A4!. The eight-metric

ds8
25[n1

21n2
21s3

21s8
21s1

21s2
21S1

21S2
2

5~ t̃ 11cosjs1!21~ t̃ 21cosjs2!2

1@ t̃ 31 1
4 ~31cos 2j!s3#2

13~dt2 1
2 sin2 js3!214~dj21 1

4 sin2 j~s1
21s2

2!

1 1
4 sin2 j cos2 js3

2! ~A11!

is then the canonical bi-invariant metric on SU~3!, viewed as
a U~2! bundle overCP2.

If we project the metric~A11! orthogonally to]/]t, which
amounts to dropping the terms8

2, we get a metric on the
Aloff-Wallach spaceN(1,1), viewed as an SO~3! bundle
overCP2 ~see@9#!. The fact that the bundle is SO~3! and not
SU~2! means thatf̃ and c̃ must indeed have the period
given in Eq.~A4!. @We see from Eq.~A11! that we have an
SO~3! bundle as opposed to SU~2! sincef̃ has period 2p.#

APPENDIX B: THE ATIYAH-HITCHIN SYSTEM
AND THE RICCI FLOW ON SU „2…

The Ricci flow equations, which are encountered wh
studying the renormalization group equations for the targ
space metricgi j in a sigma model, are

dgi j

dm
5Ri j , ~B1!

whereRi j is the Ricci tensor ofgi j . For metrics of the form

ds25As1
21Bs2

21Cs3
2, ~B2!

the nonvanishing components of the Ricci tensor in the tr
(s1 ,s2 ,s3) are

R115
1
2 A@A22~B2C!2#,

R225
1
2 B@B22~C2A!2#,

R335
1
2 C@C22~A2B!2#. ~B3!

The Ricci-flow equations are therefore

2

A

dA

dm
5A22B22C212BC, ~B4!

and cyclic permutations.
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If we drop the terms involvingb in Eq. ~8!, we get the
Atiyah-Hitchin system

ȧ15
a1

22~a22a3!2

a2a3
,

ȧ25
a2

22~a32a1!2

a3a1
,

ȧ35
a3

22~a12a2!2

a1a2
. ~B5!

It is a curious fact that the Ricci flow and the Atiyah-Hitch
system go into themselves under the identificationA5a1 ,
B5a2 , andC5a3 , together with a suitable change of p
rametrization,dt52a1a2a3 dm. As far as we are aware, thi
coincidence between first-order equations coming from a
perpotential and the Ricci-flow equations occurs only in t
case. It follows from the work of Atiyah and Hitchin that th
Ricci flow is completely integrable in this case, and in wh
follows we shall review the standard way of solving E
~B5!.

On begins by defining a new radial coordinateh by dt
5a1a2a3 dh, and also introducing new variableswi as in
Eq. ~13!. One then has

d~w11w2!

dh
54w1w2 ,

d~w21w3!

dh
54w2w3 ,

d~w31w1!

dh
54w3w1 . ~B6!

It has been observed that there is a SL~2,R! symmetry of
this system; namely, lettinga, b, c, andd be constants~they
are nothing to do with the previous metric functions!, if we
define transformed variablesv i in place ofwi , and a trans-
formed radial coordinatej in place ofh, according to

j5
ah1b

ch1d
, wi52

c

2~ch1d!
1

1

~ch1d!2 v i , ~B7!

wheread2bc51, then Eqs.~B6! become

d~v11v2!

dj
54v1v2 ,

d~v21v3!

dj
54v2v3 ,

d~v31v1!

dj
54j3v1 . ~B8!

This allows one to transform a given solution into anoth
using SL~2R!.
10600
u-
s

t
.

r,

Equations~B6! giving the Atiyah-Hitchin metric can be
solved by defining a new radial coordinater, related toh by
dr5u2dh, with u being a solution of

d2u

dr2 1 1
4u cosec2 r 50. ~B9!

It can then be verified that the solution is

w152uu82 1
2 u2 cosecr ,

w252uu81 1
2 u2 cott, ~B10!

w352uu81 1
2 u2 cosecr ,

whereu8 meansdu/dr. The correct solution of Eq.~B9! to
choose foru is

u5A2 sinrK ~sin 1
2 r !, ~B11!

where

K~k![E
0

p/2 df

~12k2 sin2 f!1/2. ~B12!

APPENDIX C: PROOF OF POSITIVITY OF Q„A,B…

In Sec. II A 2, our proof that the conditions for Einste
metrics onN(k,l ) implied precisely the same set of solution
as the ostensibly more restrictive conditions for weakG2
holonomy depended upon the assertion that the func
Q(A,B) in Eq. ~60! is nonvanishing for all real positiveA
andB. We present a proof of this property here.

The sixth-order polynomialQ(A,B) occurring in Sec.
III A 2 is given by

Q~A,B!55A626A525A4112A325A226A15B626B5

25B4112B325B226B2AB~6A4242A3

136A2136A16B4

242B3136B2136B242!2A2B2~5A2136A

15B2136B212AB2130!15. ~C1!

In order to show that all solutions of the Einstein equatio
for the seven-dimensionalN(k,l ) spaces are also solutions o
the weakG2 holonomy equations, we need to establish th
Q(A,B) is nonvanishing wheneverA and B are both posi-
tive. To do this, we defineA5x1y, B5x2y, in terms of
which Eq.~C1! becomes
4-27
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Q5~4x211!~12x2212x15!14~16x4148x3280x2

136x213!y2164~4x226x13!y4. ~C2!

Note that sinceA andB are positive, it follows thatx.0, and
althoughy can have either sign, it appears only viay2 and
y4. SolvingQ50 for y2, we get

y25
13236x180x2248x3216x46~124x2!AJ

32~326x14x2!
,

~C3!
h

c

10600
whereJ[16x4196x32200x21120x271. Fory2 to be real
we must therefore haveJ>0 or x5 1

2 . To haveJ>0 ~andx
positive! we must havex>1.2873 . . . . Now thecoefficients
of y0 and y4 in Eq. ~C2! are positive for all realx, and the
coefficient ofy2 is positive for allx.0.898374 . . . . ThusQ
is positive for allx that satisfyJ>0. The casex5 1

2 implies
y25 1

4 and hence (A,B)5(1,0) or ~0,1!, both of which vio-
late the requirement ofA andB both being positive. Thus we
have proved thatQ is positive ~and hence nonvanishing!
wheneverA and B are both positive. This completes th
proof.
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@3# M. Cvetič, G. W. Gibbons, H. Lu¨, and C. N. Pope, Nucl. Phys.

B620, 3 ~2002!; ‘‘New Cohomogeneity One Metrics with
Spin~7! Holonomy,’’ math.DG/0105119.

@4# L. Berard-Bergery, Institut Elie Cartan6, 1 ~1982!.
@5# D. N. Page and C. N. Pope, Class. Quantum Grav.4, 213

~1987!.
@6# M. F. Atiyah and N. J. Hitchin, Phys. Lett.107A, 21 ~1985!.
@7# Mackenzie Y. Wang, Duke Math. J.49, 23 ~1982!.
@8# L. Castellani and L. J. Romans, ‘‘N53 andN51 Supersym-

metry in a New Class of Solutions ofd511 Supergravity.’’
@9# D. N. Page and C. N. Pope, Phys. Lett.147B, 55 ~1984!.
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