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In this paper, we look for metrics of cohomogeneity onéDirr 8 and 7 dimensions with Sgi) and G,
holonomy, respectively. Ifd =8, we first consider the case of principal orbits that &fe viewed as ars®
bundle overS* with triaxial squashing of thes® fibers. This gives a more general system of first-order
equations for SpifY) holonomy than has been solved previously. Using numerical methods, we establish the
existence of new nonsingular asymptotically locally coni@dlC) Spin7) metrics on line bundles oveétP?,
with a nontrivial parameter that characterizes the homogeneous squastiifid. afle then consider the case
where the principal orbits are the Aloff-Wallach spadegk,l)=SU(3)/U(1), where the integer& and |
characterize the embedding of1). We find new ALC and asymptotically conicé\C) metrics of Spifi7)
holonomy, as solutions of the first-order equations that we obtained previdis®vetic, G. W. Gibbons, H.
LG, and C. N. Pope, Nucl. PhyB617, 151(2001)]. These include certain explicit ALC metrics for al(k,1),
and numerical and perturbative results for ALC families with AC limits. We then siigy7 metrics ofG,
holonomy, and find new explicit examples, which, however, are singular, where the principal orbits are the flag
manifold SU3)/[U(1)XxU(1)]. We also obtain numerical results for new nonsingular metrics with principal
orbits that areS®x S%. Additional topics include a detailed and explicit discussion of the Einstein metrics on
N(k,l), and an explicit parametrization of £&).
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I. INTRODUCTION sizes of theS® fiber and theS* base being functions of the
radial variable. The specific forms of these functions ensure
Metrics of special holonomy are of considerable interesthat the metric is complete on the chiral spin bundleshf

both in mathematics and in physics. They are special cases fith the radius of theS® fibers approaching zero at short
Ricci-flat metrics, whose holonomy groups are strictlydistance in such a way that one obtains the required nonsin-
smaller than the S@) holonomy of a generic gularR* bundle overs®.
D-dimensional metric. The irreducible cases include Ricci- Recently, further complete and nonsingular noncompact
flat Kahler metrics in dimensiorD=2n, with holonomy eight-metrics of Spiv) holonomy were found3]. By con-
SU(n), and hyper-Khler metrics in dimensio® = 4n, with trast to the example ifL,2], the new metrlcs are asymptoti-
holonomy Spf). Two further irreducible cases arise: Cally locally conical(ALC), approaching the product of a

namely, G, holonomy inD=7, and Spifi7) holonomy in circle and an AC seven-manifold locally at large distance.
i 2 — 0,

_ . . The seven-manifold is a cone oveéP3. The new metrics
D=8. It is to these latter cases, known as metrics of excep- : - . .
. . . were obtained by writing a metric ansatz with a more general
tional holonomy, that this paper is devoted.

our focus in this paper will be on noncompact metrics ofparametrization of homogeneous metrics on $hgrincipal
urfocus n this paper Will be P ! orbits, in which theS® fibers overS* can themselves be
cohomogeneity one, in dimensiols=7 and 8. The first

| ol - | _ “squashed,” with theS® described as aB' bundle overs?.
complete and nonsingular such examples were obtained iis now gives functions in the metric ansatz, parametrizing

[1], and first appeared in the physics literaturd2h They  (he sizes of thes?, S?, and S'. First-order equations for
comprised three metrics @&, holonomy inD=7, and one  these functions were derived 8], which can be viewed as
of Spin(7) holonomy inD =8, and all four of these metrics the necessary conditions for Spin holonomy, and then the
are asymptotically conicd/AC). Specifically, the metrics in  general solution was obtained. In addition to the previous AC
D=7 are asymptotic to cones ov&x S%, CI’®, and the example of(1,2], which of course is contained as a special
six-dimensional flag manifold S(3)/[U(1)*xU(1)], while case, all the new solutions are ALC. The ALC nature of the
the metric inD=8 is asymptotic to a cone ové’. In all large-distance behavior arises because the function param-
cases the base of the cone carries an Einstein metric, albeitrizing the size of th&' tends to a constant at infinity. The
not the “standard” one. Topologically, the thr&=7 mani-  general solution of the first-order equations has a family of
folds are the spin bundle &, and the bundles of self-dual nonsingular metrics, with a nontrivial continuous parameter
two-forms overS* and CPP?, respectively. (i.e., a parameter over and above the trivial scale)sire
The topology of theD=8 manifold is the chiral spin general the manifold is again the chiral spin bundleSbf
bundle of S*. The homogeneouS’ of the principal orbits For general values of the parameter the solution is quite
can be described as(aound S® bundle overS*, with the  complicated, and is expressed in terms of hypergeometric
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functions; the manifolds were denoted By andB~ in[3].  S®and not a lens space. We obtain an explicit analytical local
For a particular value of the parameter the solution becomesolution, which is ALC, for each choice ®i(k,I) principal
much simpler, and is expressible in terms of rational func-orbit. We also give a discussion of numerical solutions,
tions; this case was denoted By in [3]. One further com- which indicate the existence of complete examples with a
plete solution arises: an isolated example which is topologinontrivial parameter, and which include metrics that are as-
cally R8, and denoted by in [3]. ymptotically conical in a particular limit.

In Sec. Il we consider a further generalization of the an- In Sec. V, we turn to a consideration of more general
satz for Spili7) metrics withS principal orbits, in which the = seven-metrics ofG, holonomy. We begin in Sec. VA by
S fibers over theS* base have “triaxial” homogeneous dis- Studying seven-metrics @; holonomy on theR® bundle of
tortions, implying that there will now be a total of four func- self-dual two-forms ovef:P?. These generalize the AC ex-
tions parametrizing the various radii. We obtain first-orderample on this topology ih1,2], whose principal orbits are
equations that imply Spi) holonomy, and then we discuss the flag manifold S(3)/[U(1)xU(1)], with two size pa-
the possible solutions. The previous example$lij?] and rameters as metric functions. The more general ansatz that
[3] of course arise as special cases. Although we have nave consider here has principal orbits of the same topology,
been able to obtain more general solutions analytically, wéut with three, instead of two, sizes as metric functions. In-
have carried out an extensive numerical analysis of the equégrestingly, the first-order equations that follow from requir-
tions. We find clear evidence for the existence of nonsingulaing G, holonomy turn out to be the same as those that arise
triaxial solutions, in which there is a minimé&lP® surface(a  in four dimensions, for a set of Bianchi type 1X hyperider
bolt) at short distance, with ALC behavior at infinity. There metrics. In that case the equations were solved completely in
is a nontrivial one-parameter family of such regular solutiong 11], and so we are able to use the same procedure here. As
where the parameter can be thought of as characterizing the the four-dimensional case, we find here that the general
“squashing” of the minimalCP3, viewed as arS? bundle  solution gives irregular metrics, with regularity attained only
over S*. If we denote the ratio of the radius &f over the if two of the metric functions are equal, which reduces the
radius of CP? by \, then we find nonsingular metrics for system to the already known onel[ih,2].

\?<4. The special cask?=4 corresponds to the “round” In Sec. VB, we briefly consider the possibility of more
Fubini-Study metric oriP®, and in this case the eight-metric general seven-metrics @, holonomy where the principal

is nothmg but the complex line bundle over? contalr;ed N orbits areCP3. Although we end up concluding that no pos-
[4,5], which has the smaller holonomy 84). WhenA“<4,  gjijities arise of greater generality than those considered
the new metrics exhibit a behavior reminiscent of the At'yah'previously in[1,2], we do nevertheless obtain as a by-

Hitchin [6] hyper-Kabler four-metric, with the three radial oqct a more elegant formulation of the already known
functionsa; on S° going fromaj=0, a;=az=const at the metrics

2 2 : )
bolt, to aazgonst,alfa2~r2 at large radius. We denote In Sec. VC, we study a general system of equations for
these new eight-manifolds of Sgifi holonomy byCs. metrics ofG, holonomy on the spin bundle &. Here, the

In Sec. lll, we examine eight-metrics of Sgpi ho- P : 3
o ) principal orbits have the topology &*x S°. A rather gen-
lonomy where the principal orbits are the Aloff-Wallach ho- eral ansatz with six functions parametrizing sizes in a family

mogeneous spacds(k,l), which are SUB)/U(1) with the of squashed3®x S® metrics was studied ifi12,13, where

integersk and | specifying the embedding of the(l) in first-order equations implyings, holonomy were derived.

SU(3). We begin, in Sec. lllA, by reviewing some of the We find b ‘ al vsis that th |
relevant properties of the Aloff-Wallach spaces themselves''c N0 Dy means of a numerical analysis that the only non-

In particular, we present a more explicit demonstration tharpingular solutions occur when two pairs of metric functions
has previously appeared in the literature of the fact that fof"® Set equal, leading to a truncation to a four-function sys-
generick andl eachN(k,|) admits two inequivalent Einstein €M that was discussed|ib3], where an isolated nonsingular
metrics.[The existence of an Einstein metric for eddk,]) ~ ALC solution was obtained explicitly. Perturbative argu-
was proven i 7]; an explicit expression for one such metric ments in[13] suggested that a more general family of nons-
on N(k,!) was given in[8], and the proof that each generic ingular ALC solutions, with a nontrivial parameter, should
N(k,I) admits two Einstein metrics was given [8].] We  €Xist. These would be analogous to the one-parameter family
also give an alternative proof of a result following fr¢#9] ~ of ALC Spin(7) metrics found in[3]. Using a numerical
that every homogeneous Einstein metric has w&akho-  analysis, we also find evidence for the existence of such a
lonomy. In Sec. IlIB, we give a discussion of the global one-parameter family of nonsingular solutions. We denote
structures of thél(k,l) spaces, focusing in particular on the these byB; andB; , with the isolated example found &3]
question of when a given such space admits a description d®ing denoted byg.

an S® (as opposed to lens-spadeundle overCP?. This is After our conclusions, we include a number of Appen-
important in what follows in Sec. IV, where we discuss de-dixes. Appendix A contains a detailed discussion of the pa-
tails of eight-metrics of Spiit) holonomy withN(k,l) prin-  rametrization of S(B) in terms of generalized Euler angles,
cipal orbits. The first-order equations for S@hholonomy  which is useful in our discussion of the global structure of
for this class of metrics were obtained [ih0]. In order to  the Aloff-WallachN(k,|) spaces.

have a nonsingular such metric on Bhbundle overCP?, it Recent applications of Ricci-flat manifolds with special
is crucial that the collapsing fibers at short distance should bholonomy in string and M theory can be found[itd—45.
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Il. NEW Spin (7) METRICS WITH TRIAXIAL S®
BUNDLE OVER S*

It is straightforward to establish that

dPy=(R;+L1)0OP;+(Ry+L,)0P,+ (R3+L3)0P5,
In [3], new complete nonsingular SgiH metrics on the
chiral spin bundle o8*, and onR®, were constructed. These
metrics have cohomogeneity one, with principal orbits that
areS’, with a transitively acting SO(5J U(1) isometry, and
they are asymptotically locally conical. They were obtained
by generalizing the original ansatz used in the AC example dP;=—(R;—L;)0P,+(R,—L,)0P;—(Rs+L3)0Py,

dP;=—(Ry+L1)OPy—(Ry— L) OP3+(R3—L3) 0P,

dP;=(R;—L;)0P3—(Ry+L,)0Py—(R3—L3) 0Py,

of [1,2], by describingS’ as anS® bundle overS*, with
radial functions in the metric parametrizing the size of #ie
base, and the sizes 8f and the W1) fibers, in a description

of S® as the Hopf bundle oved?. First-order equations com-
ing from a superpotential were then constructed, and the gen-
eral solution was obtained. A one-parameter family of non-

singular solutions on the chiral spin bundle o®rwas ob-
tained; these were denoted I , Bg , and Bg in [3]. It

should be emphasized that the parameter in these solutions

d R]_: - 2R2DR3_ %(PoDPl'f' P2|:|P3),
dR,=—2R;300R; — 3(P,OP,+ P50P,),
dR;=—2R;0R,— 3 (PoOP3+ P,0P,). (4)

We are now in a position to write an ansatz for the more
general metrics of Spi) holonomy on theR* bundle

dver S*:

nontrivial, and not merely a scale size. The general solution

also includes an isolated nonsingular S@jrmetric onR8;
this was denoted byg in [3]. The local form of the metric in
this example is in fact the same as the metricBanin the
one-parameter family on the chiral spin bundle 3 but
with the range of the radial coordinate chosen differently.
In this section, we shall generalize the constructiofSih

by introducing a fourth radial function in the cohomogeneity

one metrics, so that the principal orbits are nedescribed
as a bundle of triaxially squashed three-spheres 8teAf-

ds;=dt’+a’R*+b2P2, (5
From this, we find after mechanical calculations using Eq.
(4) that the conditions for Ricci flatness can be derived from
the LagrangianL=T—V, together with the constraint
+V=0, where

T= 2aiaé+ Zaéaé-l- 2aiaé+ 8(afi+ aé-l— aé) afl-l- 12a4'12,

. . . 122,220 402 22 2 8/ 4, 4, A 5 2.2
ter calculating the curvature, we find that the potential in aV = 7@1aa3b"(ai+a;+a3) +2b%(a; +a;+a;—2aia;

Lagrangian description of the Ricci-flat conditions can be
derived from a superpotential, and hence we obtain a system

(6

—2a%a3—2aja3)—12aja3asb®,

of first-order equations for the four metric functions. Theseynere a,=e%, b=e, and a prime denotes a derivative

are equivalent to the integrability conditions for S@inho-

lonomy. In fact, the equations that we obtain have also bee

found recently by Hitchin[47], using a rather different
method.

A. Ansatz and first-order equations

We begin by introducing left-invariant one-forrhg g for
the group manifold S®). These satisfy. xg=—Lga, and

)

The seven-sphere is then given by the cosefS(5U(2) ,
where we take the obvious $0 subgroup of S(%), and
write it (locally) as SU(2) X SU(2)R.

If we take the indiceA andB in L,g to range over the
values G=A=<4, and split them aA=(a,4), with 0<a
<3, then the S@}) subgroup is given by ,,. This is de-
composed as SU(2X SU(2)g, with the two sets of S(2)

dLAB: LACDLCB .

one-forms given by the self-dual and anti-self-dual combina-

tions

R=3(Loit+zeikli), Li=3(Loi—zeikli), (2

where 1<i<3. Thus the seven one-forms in t!8 coset
will be
PaELa4v Rli

Ry, Rs. 3

with respect to7, defined bydt=aja3a3b®dy. Reading
Bff the ‘DeWitt metric g;; from the kinetic energy
T=3gja''a)’, we find that the potentialv can be
written in terms of a superpotentialw, as V
=—39""(6W/9a") (d0W/da'), where

W= a,a,a;(a; +a,+az)b?
—2b*(af+aj+a3—2a,a,— 2a,a;—2aza;). (7)

This leads to the first-order equations’=g"oW/da,
which give

2 2 2
aj—(a,—ag) a;

a,= -5,
1 a,ag 2b?
2 2 2

- a,—(az—ap)” a3
2 asa; 2b?’

2 2 2
. az—(ag—ap)” a3

4= aa,  2b?%
- a1+a2+a3
b= b , €))

where an overdot denotes a derivative with respect to the
original radial variablet appearing in the ansat®). It is
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straightforward to see that these are in fact the integrability B=b?. (14)
conditions for Spifi7) holonomy!
Then the first-order equatiori8) become

B. Some properties of the equations
_ _ d(wq+wsy) 1 > o
1. Truncations to simpler systems T:4W1W2_ ﬁ[W1W2(W1+W2)+W3(W1+W2)],
First, note that if we drop the terms associated \bitlve
get precisely the first-order system that arises for triaxial Bi-d(w,+ws;) 1 5 5
anch type IX metrics ifD =4 [46], which admits the Atiyah- — q,— ~ “WaWs™ ﬁ[W2W3(W2+W3)+W1(W2+W3)]’
Hitchin metric[6] as a solution. This corresponds to a limit

in which the radius o8* goes to infinity, so that we effec- d(ws+w;) 1
tively recover the equations for the Atiyah-Hitchin solution d =4w3w, — 2—[w3w1(w3+w1)+w2(w§+wf)],
times flat R*. Some properties of the Atiyah-Hitchin solu- m B
tions are reviewed in Appendix B. g 1

If instead we set any two of thee equal, saya,=as, and = (W Wy WoW3+WaWy). (15)
make the redefinitiona,=az;—2a, a;—2b, b—c, we get dn 2

precisely the first-order system of our previous pdj3gron

the new Spiti) manifoldsAg, Bs, andBZ : namely, This set of equations can be reduced to a single highly

nonlinear second-order equation. To do this, we first make
b a2 . b2 p2 a b the field redefinitions
a=1l--——, b=z=——=, ¢t==+=—=. (9

2a 02 2a2 Cz c ZC X:W3_Wl, Y:WZ_W]_, Z:W2+W3. (16)
This system was solved completely[il.

: > SOIVEL We can then derive the following simple equations:
A third specialization is to sed,= —as. It can be seen

from Eq.(8) that this will be consistent provided that we also d X d
imposea,=2b. We then have the metric ansatz EIOQ(V) =4(Y—X), ﬁlog(XYB2)=4Z, (17)
ds2=dt2+a’R2+a3(R3+R2+ 1P?), (10)

together with two more complicated equations Zoand 3.

and the truncated first-order equations are the equations In terms of a new radial variable defined bydr=2 d#, we
therefore have

3a? a
a=4— —, ay=—. (1) B2XY Z 2=coe?, (18)
a5 a,

. . . wherec, is a constant of integration. After the further redefi-
It is straightforward to solve these, to give nitions 0 9

dsi=

|8 -1 |8
1_r_8) dr2+r2(l—r—8

R T V=g, Bepzt 19

C
i
<
i

+rA(Ry+RE+5PY). (12) . . o

and the introduction of another radial varialdelefined by
This is in fact precisely the Ricci-flat Keer metric with ~dz=8UV(V—1)~2dr, we find thatV is given by
SU(4)=Spin(6) holonomy, on aft? bundle overCP3. The
complete metric is asymptotic to the cone 0®t7,. The V= (20)
six-metric with ag prefactor is in fact precisely the Fubini- z-1’
Study metric onCP3. ~

and then the remaining two equations, tband 8, become
2. Some observations about the Spin(7) system

2_ 2_ _
Let us definew; variables as in the Atiyah-Hitchin case - U-2zU+1 (UT=1)(zU-1)
[6], namely, 2(2*-1) 16(z2—1)B

Wi=asaz, Wpy=azad;, Wz=a;ap, (13 B(U?—1) zU3+U%+3zU-5

and a radial variabley by dt=a;a,as;d» (exactly as for the N 2(z2—1)U 16(z2—1)U
Atiyah-Hitchin casg Also, define

: (21)

where a prime meand/dz. One can solve algebraically for

B in the U’ equation, and substitute it back into titg
These equations were also obtained recently by Hitchin, using &quation, thereby obtaining a second-order nonlinear equa-
rather different constructiof47]. tion for U:
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2(Z2—1)’[U(U%-1)(zU—-1)U" other words, the set of nonsingular metrics corresponds to
s ) " ) those cases where the choice of initial conditions leads to an
—(2zU°=3U"—-4zU+5)U" ]+ (z°~1) ALC or AC behavior at infinity.

X[2(zU—1)2(U?+5)—(U%2—1)2]U’

1. Numerical analysis forCP® bolts: New Spin(7) metricsg
+2(zU-1)%(zU%-3U%+3zU-1)=0. (22

We can study the solution space for regular metrics in this
case as follows. First, we seek a solution in the form of a
It is not clear how to solve this equation in general. Here Taylor series irt, for smallt, that exhibits the required short-
we just remark that two special solutions até=2(z  distance behavior. In the present context, where we are look-

+1)"tandU=2(z—1)"". In fact, both of these correspond ing for solutions in which the metric collapses td'&® bolt
to the previously known solutiofil2) on the complex line  att=0, we make an expansion

bundle overCP3. For example,sfoU:2(2+21)‘1, aftler de-

fining a radial coordinate by r8=(z+3)?(z+1) "1, one

obtains Eq(12) with I8=%. (The Ag andBg metrics found in ai(t)=n§O xi(mt", b(t):n;) y(mt", (23
[3] are also special solutions of the more general triaxial

system we are studying here, but these all correspond to wherex,(0)=0, implying thata, vanishes at=0. ThusR,
degeneration of the parametrization in this section, With andR; describe the directions on &f bundle over thes*
=0 orX=Y.) that is described by the,.

We find that the general Taylor expansion of this form has
two free parameters. These can be taken ty ({8, speci-
fying the radius of thes* base, anc,(0) [which is equal to

Since we have not been able to solve the first-order equa= x3(0)] specifying the radius of th&? fibers, on theCP?
tions (8) explicitly, we now turn to a numerical analysis of polt att=0. One of these two parameters is trivial, corre-
the equations. In the case of nonsingular manifolds, the mekponding merely to a choice of overall scale, and so without
rics are defined OM+XG/H, Completed by the addition of loss of genera”ty we may tak¢(0)= 1. For Convenience,

a degenerate orbis/K at short distance, whei¢ contains e shall definex,(0)=\, and so this corresponds to a non-
H. The possible cases a@/K=S0(5)/U(2)=CP®, G/K  trivial adjustable parameter in the solutions that are regular

=S0(5)/SO(4xS*, or G/K=SO(5)/SO(5}1, corre- near theCl’® bolt. Thus the metric restricted to the bolt is
sponding to &P2 or S* bolt, or a Newman-Unti-Tamburino

(NUT) metric, respectively. dsi=\?(R3+R3)+ P2, (24)
Our technique consists of first performing an analytic

Taylor expansion of the solution in the neighborhood of theNote that this family of homogeneous metrics Gh* re-

degenerate orbii.e., in the neighborhood of the NUT metric duces to the standard Fubini-Study metriaff=4.

or bolt at short distangeWhen making this expansion, we  To the first few orders int, we find that the Taylor-

impose the necessary boundary conditions to ensure that tiexpanded solution to E@8) is given by

metric can be regular thefa an appropriate coordinate sys- 4 )

tem). At this stage we are left with a number of undeter- A=At + (A"—40\"—49)

mined coefficients in the Taylor expansions, and these repre- 12n

sent the free parameters in the general solution that is

nonsingular near the NUT metric or bolt. We then use these

C. Numerical analysis

t3+"',

(3N*—8\2+48) 2

Taylor expansions in order to determine initial conditions a 8= N+ (1= )t+ 30N T

short distance away from the NUT metric or bolt, and then

we evolve these data to large distance in a numerical inte- (3N*—8\2+48)

gration of the first-order equatiori8). In particular, we can az=—A+(1- %Nz)t—thﬁL“‘ ,
study the evolution of the solution as a function of the free

parameters, and determine the conditions under which the b=1+ (12— \2)t2+- - (25)

solution is nonsingular.

We find that the nonsingular solutions are those where thgjsing the Taylor expansions to set initial data at some small
metric at large distance appgoache§ a cone over e8fi@;  ositive value oft, we now evolve Eqs(8) forward to large
(the AC line bundle overI) or S” (the AC chiral spin  { nymerically? We find that the solution with the above

bundle overS*), or else a circle splits off and approaches asmajl4 behavior is regular provided that the nontrivial pa-
constant radius, while the other directions in the principalgmeter\ is chosen to that

orbits grow linearly so that the metric approaclggimes a
cone overCP® locally. These are the ALC cases. In fact, we \2<4. (26)
find that generically the nonsingular solutions are ALC, with
the AC behavior arising only as a limiting case.

In cases where the initial conditions do not lead to an ?|n order to set the initial data accurately at a sufficient distance
ALC or AC structure at infinity, we find from the numerical away from the singular point of the equationst a0, we typically
analysis that a singularity arises in the metric functions. Inperform the Taylor expansions to tenth ordet.in
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SU(4)
M x R4 AC
4
Spin(7)
ALC FIG. 1. The new nonsingular Sgif)y metrics
Cg as a function of\.
Cg

| |
0 A 2

The casen?=4 corresponds precisely to the situation wemeasured from infinity. Just as the product of the Atiyah-
arrived at in Eq(10); namely, settind\?=4 in theCP® bolt ~ Hitchin metric and seven-dimensional Minkowski spacetime
metric (24), we get precisely the Fubini-Study metric on describes an orientifold plane in M theory, so too here we
CP3. In fact, the solution when\?=4 is nothing but the can expect that th€g metrics will have an associated inter-
Ricci-flat Kahler metric given by Eq(10). This is the limit-  pretation in terms of orientifolds.
ing AC case that we alluded to above. It has an “accidental” The new nonsingular Spif) metrics Cg have the same
decrease in its holonomy group from the S@inof the ge-  topology as thex=2 example. Thus they are line bundles
neric solution of Eq(8) to SU(4)=Spin(6), with a conse- overCP? (specifically, the fourth power of the Hopf bunglle
guent increase from one to two parallel spinors.

When\?< 4, we get new nonsingular solutions, whichwe 2. Numerical analysis for $ bolts: TheBg, By , and By
shall denote by’s. From the numerical analysis, we find that examples recovered
now the metric functiora; tends to a constant value atlarge  Tpis case can be studied by starting from the small-

distance,_ Wh?le all the others grow linearly. Thus fo?r<_4 distance expansior(23), and now takingx,(0)=x,(0)
the solution is ALC. The case whel becomes zero is a =x5(0)=0. We then find that the general such solution is

Gromov-Hausqlorff limit in which the metric becomes the characterized by three parameters, which we shall relabel as
product M, X R*, where M, is the Atiyah-Hitchin metric. U1, Oo, andgs. The first few orders give
The X modulus space of the new solutions is depicted in Fig.

1 (we assume, without loss of generality, thatis non- a;=t—qqt2+--,
negative, so that regular solutions occur o« 2).

It should be noted that the new solutions exhibit the same a,=t—Qot2+--,
“slump” phenomenon that was encountered in the Atiyah-
Hitchin metric. Thus, at small distance it is the direction az=t—Qat?+---,

on S that is singled out, witta; =0, while a,=az=const
on the bolt. By contrast, at large distance itag that is 3
singled out(by tending to a constantwhile a; anda, be- b=by+ =—t2+--, (27)
come equal asymptotically. A sketch of the typical behavior 8bo
of the metric functiong; andb is given in Fig. 2.
It is worth remarkingI that the s?milarity ofgthe asymptotic Wherebo=2 Y24, +0,+0s. Note that we must have,
behavior of the nevils metrics and the Atiyah-Hitchin met- + 92+ 93>0 _ _ _ _
ric may have some interesting physical significance. Like the From the numerical solutions we find that regularity re-

Atiyah-Hitchin, theCs metrics will have “negative mass,” as duires that two of they; be equal, leading, in turn, to the
equality of the corresponding pair of functioas. Thus all

the regular solutions here reduce to ones that we have al-

ready found in3]. It is, nevertheless, of interest to see how

they relate to the previous results|[ig].

Let us, without loss of generality, choosg=qs. This

will be understood to be the case in everything that follows.
1 b The regular solutions can then be summarized as follows. In
all cases we must havp + 2g,>0. Regularity also turns out
to imply q;>0 andqg,<q,. The cases are as follows:

—ag
—30,<0,<0, theBg metrics,
g,=0, theBg metric,
t 0<0g,<dq;, theBg metrics,
FIG. 2. The metric functions for a typical nonsingular ALC 0.=0,, the original AC Spin7) metric of[1,2].
solution. (28)
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M x s! AC
7

ALC FIG. 3. The nonsingular Spif) metrics Bg
andBjg as a function ofy,/q; .

-12 0 9 19 1

Note that whenq,/q,; becomes equal te-3, we have a ticular the conditions under which they admit Einstein met-
Gromov-Hausdorff limit to the produdil,x S', whereM,  rics and metrics of weals, holonomy.
is the original ACG, metric[1,2] on theR® bundle oversS*.

The Spirf7) metrics are depicted in Fig. 3. A. The principal orbits: Aloff-Wallach spaces

3. Analysis for NUT metrics: TheAg example recovered The coset spaces $2J/U(1) are characterized b)é(thO in-
. : tegersk andl, which specify the embedding of th in
The short-distance expansion for the NUT case Correg y(3). Specifically, if we represent SB) by 3x special uni-

sponds ta .using Eq23) with x1(0)=x2(0)=>§3(0):y(p) tary matrices then the () subgroup can be taken to be
=0. One finds that there are only two possible solutions ahhatrices of the form

short distance. One of these is

e’ 0 0
3 .
a;—a,—a;=32t, b=——t, (29) h=( 0 €’ 0 . (31)
245 0 0 e-ikehe

which is an exact solution corresponding to the cone over the i
squashed Einstei’. It is singular at the apex. The other The coset spaces are simply connected whkeand | are

solution has the following expansion: relatively prime, and these are denoted Mfk,l). Clearly,
the spaces\(k,l), N(I,k), and N(k,—k—1) are topologi-
a;=—t+qt®—2g%t>+---, cally identical, and in fact there is &% permutation sym-

metry generated by these twg operations. It was shown in

a,=az=t, [48] that all theN(k,I) admit metrics of positive sectional

curvature. Then, if7], an existence proof for an Einstein

b=3t+3qt3— Zg%t>+---. (300 metric on eactN(k,|) was given, and a more explicit expres-

. o sion was found if8]. Subsequently, it was shown [ifi] that

The constant just corresponds to a trivial scale parameteraachN(k, 1) in fact admitstwo inequivalent Einstein metrics
here. This is in fact precisely the previously known sqution[except when K,1)=(0,1) or theSs-related valueg1,0) or
Ag. ) ) (1,-1), when there is only odeFurthermore, it was proved

In summary, we get new regular Spm metrics With  that each such metric admits a Killing spir@xcept for one
squashed:” bolts, with a nontrivial parameter°<4 char-  qf the Einstein metrics witk=1, which admits three Killing
acterizing the radius of th&? fibers relative to th&* base in spinors. The special cas&=I can be viewed as a 38
theCIP® bolt. If \?= 4, we recover the previously known case pyndie overCP?, and the existence of the second Einstein

of a complex line bundle over the Fubini-Study metric onmetric in this case had already been demonstratéddh
CP?, with SU(4) holonomy, included in the cases considered

in [4,5]. There are no new regular solutions wah bolts or 1. Einstein metrics on N(k,I) from first-order equations
for NUT metrics, since regularity in these cases forces two of

the S® directions to be equal, thus reducing the systems to Here, we present a summary_of the constr.uption of the
ones already solved if8]. Aloff-Wallach spacedN(k,l), and give more explicit expres-

sions for the Einstein conditions than have been presented

previously. These will be useful when we study cohomoge-

neity one Ricci-flat metrics witiN(k,l) principal orbits in

subsequent sections. A system of first-order equations fol-
In this section, we shall study the solutions of the first-lowing from requiring Spifi7) holonomy for such metrics

order equations for Spm) ho|onomy for metrics of co- was derived ir{lO], and we can first make use of these in

homogeneity one whose principal orbits are the Aloff-order to obtain equations for Einstein metricshogk,l). For

Wallach spacedl(k,l), which are cosets SB)/U(1) where further details of the construction described below, [ed.

the integers and| specify the embedding of the(l). All Defining left-invariant one-formd »® for SU(3), where

the necessary results for the first-order $pinequations A=1,2,3,L,*=0, (LA®)"=Lg" anddL,P=iL,“0OL:B, we

were derived in10], and here we shall also follow the no- introduce the combinations

tation established in that paper. We begin our discussion with

a study of the Aloff-Wallach spaces themselves, and in par- o=L.3, 3=L,% v=L,%

111 Spin (7) METRICS WITH SU (3)/U(1)
PRINCIPAL ORBITS
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A=v2cosSL, +v2sindL,?, (32

Q=—-v2sindL;*+v2 cosdL,?,

whereQ is taken to be the (1) generator lying outside the
SU(3)/U(1) coset. It is evident by comparing with E1)
that we have

k

P=- tans,

(33

and so0d is restricted to an infinite discrete set of values.
Later, it will be convenient to write

- |
co0soé=— ——,
Mmv2

wherev2 u= k?+12,

In what follows we shall use real left-invariant one-forms
deﬁned by0'20'1+i(72, 2=21+i22, and v= V1+iV2. It
was shown in[10] that if one defines eight-metrics of co-
homogeneity one as follows:

dsi=dt?

~ k
siné=——, (34
V2

o

+aZol+ b2+ c2u+ AN, (35)
wherea, b, ¢, andf are functions of the radial coordinate

then the first-order equations

~ b2%+c?—a? v2fcosd
a= —

bc a '
_a?+c’~b? V2fsind
B ca b
- a?+b%?-c? v2f(cosé—sind)
c= + ,
ab c
. v2f2(cosé—sind) . v2f2cosé v2f2?siné

2 2

c a b?

(36)

are the integrability conditions for Sgir) holonomy.

PHYSICAL REVIEW D65 106004

it must be that, if the eight-metric is Ricci flat, thers? is
Einstein, satisfyindR,,=64g.,. Furthermore, since the first-
order equations are the conditions td)sﬁ to have Spili7)
holonomy, it follows thads§ will have weakG, holonomy;

in other words it will not only be Einstein, but it will admit a
Killing spinor. Since the results dB8] showed that the Ein-
stein metrics discussed there admitted one or more Killing
spinors, and the results (8] showed that all of the Einstein
metrics on theN(k,l) spaces admit one or more Killing
spinors, we will not be losing any generality in our construc-
tion of Einstein metrics oN(k,l) by imposing the additional
requirement of weaks, holonomy. We shall, however, have
the advantage of having a simpler “first-order” system of
equations to work with.

In order to simplify the notation, we shall drop the over-
bars from the constants in the seven-met88). Thus, after
making the substitution, we find that the metric

dsf=a2o?+ b3 2+ v+ fA\2 (40)
is Einstein, satisfyingR,,=69d,,, and of weakG, ho-
lonomy, if the constants, b, ¢, andf satisfy the conditions

If b?+c?—a?
=

ua abc '

kf c?+a’-b?

ub?”  abc

mf a’+b%—c?

uc®  abc ’
! + K + m f—1 41
2ttt “n

where, in order to emphasize the symmetry, we have defined
m=—k—1. In fact, the system is invariant under the simul-
taneous action of the permutation gro8pon (I,k,m) and
(a,b,c).

The permutation grouf®; can be generated by twa,
elements, namely,

We can study Einstein seven-metrics on the principal or-

bits by taking
(37
and solving the equations for the constaaisb, C, and f

that result from substituting Eq37) into the first-order
equationg36). In other words, since we then have

dsi=dt?+t?ds?, (38)
with

ds2=a’o?+b23 2+ T2+ f2\?, (39

A: k—l, |-k, m—m,

B: k—k, I—m, m—l. (42
If we definex=k/l, then we shall have

Al X— E

X

B: X—-— T x (43

It is easily seen that a “fundamental domain”
0os=x<1 (44)

can therefore be chosen, with all other valuexefk/| ob-
tainable from this by acting with th8; permutation group.
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To solve Eqgs.(41), we first note that two independent
relations involving onlya, b, andc can be derived, one by
adding all the equations, and the other by sumnzifgimes
the first,b? times the second, araf times the third. Thus we
have
a*+b*+c*=6a%b?c?.

a’+b?+c?=4abc, (45)

PHYSICAL REVIEW D 65 106004

_ (2+cosg)? ,  (2+cos¢)?
& T 2(3+2cosprsing)’ °  2(3+2cosp—sing)’
(46)
where
0<¢p<2m. (47)

It is straightforward to see that the general solution to thes&ubstituting back into the remaining equations we therefore

equations can be written in terms of an anglesuch that

k_ 4+6 cos¢p+12sing+5 sin 2¢

have

) (24 cos¢)?

1 4+6cosp—12sing—5 sin 24’

f2

_ (2+cos¢)?(cos 2p+25co$ ¢+ 60 cos ¢— 72 cosp—39)

¢ ~T8+12cost5cof ¢’

4(8+12cosp+5 cos ¢)?

: (48)

It should be recalled that we have normalized the Einstein One final point remains. We have defined the one-farm

metrics so that they all have,,=69,p.

as in Eq.(32). Despite naive appearances, this means that it

Note that the set of solutions that we have obtained hergs not in fact normalized to a fixed length for arbitrasy

maps into itself under the action of ti$g permutation group.
It is easily seen that thg&, transformationA in Eqg. (43) is
implemented by the replacement

¢p— @' =2m— ¢,

and this interchanges? and b? (as well ask and|), while
leaving c? fixed. The Z, transformationB in Eq. (43) is
slightly trickier to implement. It is achieved by transforming
from ¢ to ¢’ where

(49

2(1+cos¢p—sing)
342 cosgp—sing '’

cos¢’ =

_1+2 COoS¢+sing

SiNé’= 372 cosp—sing’

(50

This interchanges® and c? [as well as implementing the
mapping onk/l given in Eq.(43)], while leavingb? fixed.
As ¢ varies over its range specified in E¢.7), the func-

tion k/1 traverses each point on the real line exactly twice. Of

course the allowed values f@F are those for which the ex-
pression fork/l in Eq. (48) is rational. In general, the two
values ¢, and ¢, for ¢ that give the samé&/| lead toin-
equivalentsets of values for the constarasb, ¢, andf, and

This is because the “metric” for calculating the length is not
simply a 22 unit matrix in theC? subspace spanned hy*
andL,?. In fact, one should calculate lengths using the33
unit matrix in theC? subspace spanned hy?, L,?, andL3®,
projected onto the plane defined hy*+L,2+L3*=0 [the
condition that ensures tHe,® are in SU3) and not U3)].

The easiest way to calculate the length\as therefore to
add the appropriate multiple of the(l) generatot=L,*
+L,2+ L3® which lies in U3) but not in SU3), such that the

shifted one-form\ is orthogonal toJ, which implies:
~ V2 -~ . _
= 3[(2 cosd—sin )L, + (2 sind—cosd)L ,>
—(cosd+sin )L

(51)

Thus we see that the length Bf and hence, by definition,
the length ofA, is given by

2 Ry N\ 1/2
|)\|=‘/—§(1—sm5cos5) : (52

Finally, since the\ term appears in the metric viels%

hence to inequivalent Einstein metrics. However, if it should=f2\2+---, and we now want to express this in terms of a

happen thatp; and ¢, are related by,=27— ¢4, then it
is evident from Eqs(46) and(48) that the associated pair of
solutions will be equivalent, witl andb interchanged. This

occurs only wherk/l=—1, and so in this case there is just

one Einstein metric[The two values ofg that give rise to
k/l=—1 are ¢y=arccost3) and ¢,=2m—arccos32).]
Thus we have reproduced the resulf®f, that eachN(k,I)

universally normalized quantity

A

A= (53

so thatds2=f2\2+---, we see that we should define

space has two inequivalent Einstein metrics, except for

N(1,—1), which has only one.

f2=2%(1-sindcosd)f2. (54)
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The quantityf will be invariant under theS; permutation _ V2lfb _ 6a’b?
group. Written in terms ok, |, andm=—k—1, we have v= pac’ A= 2 (57)
2.2 2124 m2
“zzf ke+1+kl fzzz k“+1°+m 2 (55 In terms of these, Eq$56) become
3 Kk*+I? 3 k*+1°

B6A+B2—AZ—1—u2=),

The numerator factok?+ 12+ m?) is clearly invariant under
the permutation group, but the denominatkf12) is not.

It is this nhonsymmetric denominator that corrects for the
nonpermutation-invariance df making f permutation in-

variant. In fact we can see that,fifis replaced byf in Eq. u?+0v2+(Av+Bu)?=\. (58)
(41), then the factors oft = JKkZ+12/v2 in the denominators

are precisely removed, so that the equations become marfirom these, we can obtain the following three equations in
festly permutation symmetric, with being invariant. which A is eliminated:

It should be emphasized that using the Cartan-Maurer
equationdL,B=iA,“0OL® we havedU=0, and so there-
fore d\ anddX areidentical Thus there is nothing wrong (1+B2)u?+2ABuy + (2+A?)p2=6B+A2—B2—1,
with our using\ in our metric constructions, it is just that its
length is not given by the expression one would naively have(lJr 2B2)u2+ 4ABW + (1+2A%)p2=6AB— A2— B2+ 1.
expected, but, rather, by E(52). (59)

6B+AZ—B2—1—p2=\,

6AB—A’—B?—(Av+Bu)?+ 1=\,

(2+B2)u+2ABw + (1+A2)p2=6A+B2—A2—1,

2. Einstein metrics on N(k,l) from second-order equations ~ These can be viewed as three linear equations for the three

Having constructed the Einstein metrics bigk,1) from  duantiiesx=u? y=v? andz=uo. After obtaining the re-
the first-order equations implying weak, holonomy, it is  Sulting expressions fng y, andz in terms ofA and B, we
instructive now to reexamine the second-order Einstein equdhen recall thaixy=z7, which leads to a polynomial con-
tions themselves. In fact, as we shall show, these imply thétraint of the formP(A,B)=0. In fact, we find that
previous first-order equations, thus supplying another proof B a2 a2
of the result in[9] that all the Einstein metrics oN(k,I) P(A,B)=[(A+B—3)"+4(A-B)"~4]Q(A.B), (60
haye wealG, holonomy, and thus admit at least one Killing whereQ(A,B) is a sixth-order polynomial that can be shown
spgor]; lowing th rat in th . b not to vanish for any real positiva andB [see Appendix C

y following the Same strategy as In the previous subseCe, . 4, expression foQ(A,B), and the proof of its positivity

tion, but now calculating the conditions for Ricci flatness of b _ _
the cone oveN(k,I), we find that the metri¢d0) (k) o ovanishingh andB]. Thus fromP(4,8) =0 we con

will be Einstein, with Ricci tensor normalized t&®,,

=60,p, If the constants, b, ¢, andf satisfy (A+B—3)2+4(A—B)2=4, (61)
2 f2|2: 64 E+ a*-b*—c* which can be solved by writingh+B—3=2 cos¢, B—A
wrat a’ a’b%c? =sing, and hence
2 212 6 bi_ct_al A=32+31cosp—sing, B=3+1cosp+sing. (62

——=—6+ 5+ —5 5
24 2 2K2,2
wb b a‘b’c The solutions fou andv then follow, giving

2 f?m? 6 c*—a*—b* 1
s == +?+W’ uzﬁ(cos¢+23in¢),
2f2 |2 k2 2 1
W ¥+F+?):6' (50 v=—(cosp=2sing). (63

The approach to solving these equations that we sha|]_.inall we find that
present here is an elaboration of the method that was pre- Y.
sumably used if8]. Since a fully explicit derivation was not \=2(2+cos¢)? (64)
included there, we shall give rather detailed results. We begin '
by introducing new variables as [8]: and hence from Eq57) we can obtain expressions fay b,

5 ¢, andf. These are in fact precisely the ones given in Egs.
b_ _ v2kfa (46) and (48), which we previously obtained by solving the
¢z M7 Tubc conditions for weakG, holonomy.

A a B
==, B=
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In summary, we have seen that the conditi(& follow- functions just of(¢,6,4,£€), and conversely. The (@) stabi-

ing from imposing the Einstein equations have precisely theizer of the origin isU(, 8, %) exp(v37\g) Where the range

same solution set as those coming from the simpler equatiorbsf the angles ispe (0,27], Be[0,r], Fe(0,4n], and

41) that b iri &R, hol . ~
(41) that arose by requiiring wea&, holonomy € (0,27]. The two coordinatest ) label points in a maxi-

mal torus of W2). A fundamental domain for the torus is

In order to investigate the global structure of the $pin given by arectangle in- ¢ space of width 2 and height 4.

metrics that we shall construct later, it is important to under- The circleSy,, parametrized by an angle, may be ex

stand it first in the Aloff-Wallach spaces themselves. In par_pressed as

ticular, since in most of our SpiA) examples that we shall i

discuss below there will be @P? degenerate orbit at short exp—{(k—)\g+ (k+1)vV3\g}, (66)

distance, it is important to understand the structure of the 2

Aloff-Wallach spaces as bundles ové&P?. Not surprisingly, ) ) o )

triality plays an important role in this question, and in fact a&nd acting on the right it induces the action

generic spaceN(k,l) can be viewed as any one of three -

inequivalent such bundles. T—=1+H(k=Dea, ¢y—y+k=1)a. (67)
An example that is rather familiar is the case of the

N(1,1) space. It is well known tha&i(1,1) can be viewed as If k+1#0 (which will be treated separatelywe may define

anRIP® bundle overCP? (a physicist's discussion of this can a coordinatel which is invariant under the circle action, and

be found in[9]). On the other hand, the principal orbits in the Which may be used to label its orbits, by

Calabi metric onT*CP? are also the same Aloff-Wallach

S . . _ k—1 k+1
space, and so clearly here it is being viewed as &25U Uhgt+ TVINg=—— A3+ ——1V3Ng+P¥A;. (69

3. Global considerations

bundle overCP?, since the degeneration to th#&? orbit in K+ K+

the Calabi metric is a regular one, with the metric approach-

ing R*x CP? locally. One has

In fact, in general it can be shown that if we view thg

andy; one-forms in Eq(40) as spanning th€P? base, and ~ k=l

v; and\ as spanning the three-dimensional fibers, then the V=y- k+1 " (69

spaceN(k,l) can be described as a%/zp lens-space bundle

over CP?, where The problem is now to find the correct period for the angle

V. This leads to a picture dfi(k,l) as a lens-space bundle

p=lk+1]. (65) over CP2. The period is determined by the requirement that

asV ranges over its allowed values, it labels uniquely every
(Note thatS®/Z, is a degenerate example, for which the fi- orbit of St in SU(3). To see how this is done it is helpful to
bers will beS'x §%.) consider some examples.
Applied to the case oN(1,1) and its cousin®l(1,—2) Let us consideMN(2,—1), for which we shall havel
and N(—2,1), we see that with respect to this convention:l}_%_ By examining the torus of side@x 4 in (7,7)

choice of having the; , together with\, spanning the fibers, s ; : ; ;

. EYI -y s pace and following the orbit passing throu@h 0) and its
N(1,1) will be anS /Z%_RP§ bundle overng, while  heighbors, it is easy to see that every orbit passes once and
N(1,—2) andN(—2,1) will be S bundles ovet.P”. Thisis oy once through a strip of width3 in 7 bounded by the

consistent with the observations made above. straight lines¥ =0 and¥ = — 4. (The verification of these
There are various ways of proving the above results abo”fbcts is greatly assisted by drawing a diagram.

the topology of the bundleSHere, we shall present a rather As another example, considsi(1,0), for which we shall

intuitive approach, base on a consideration of an eXp"Citnave‘IbI]/— Each orbit on the torus passes once and onl
parametrization of S(B8), which is presented in Appendix A. T' P y

We begin by recalling that S3)/Z; acts effectively on once through the square subdomais: f<2, 0<2)p. _
P2, with stabilizer U2). Explicitly, if (21,22’ ,Z%) are ho- '!'he square lies inside the region bqunded by the gtralght
mogeneous coordinates ati=21/73, (2=72/7% are inho- NS ¥ =2m and ¥ =—2m. Thus again the range of is

. 4.
mogeneous coordinates 6i?, then we may express almost . . . I
every element of S(2) as in Appendix A, so thate,6,,é) ~As a third example, considé(3,2), which will give W

parametrizeCP?, considered as the set of right cosets, and™ ¥~ 7/5. Following the orbit through the origin around the
(a) D T// 7) parametrize the (2) stabilizer of the origin torus, we see that it winds around thalirection ten times

(0,0,2. Note that the inhomogeneous coordina&s {2) are for every Win_ding around th&_x direction._ Thus th_e funda-
mental domain decomposes into ten strips of heigh62n

W, and every orbit visits each such strip once and only once.
SWe are very grateful to James Sparks and Nigel Hitchin for ex-The range of” is therefore /5. By applying similar argu-
tensive help and discussions, and for explaining how the result denents, one can fairly easily see that in general N¢k,1),
scribed above arises. the period of¥ will be 4/|k+1].
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It is also of interest to identify what the bundles are. Forwherey is a constant that sets the scale of the solution. We
example, we can think oN(2,—1) or N(1,—2) as the shall choosey to be
bundle of unit cotangent vectors 6P?, i.e., ST*CP2. To see
that SU3) acts transitively, we need only remark that the 8
stabilizer U(2)CSO(4) of a point inCP? acts on the unit Y~ oYy~ 2(y+1(2y=1)= i3 (k=D =m)(m=k),
sphere ink*. We thus need to identify the stabilizer. In fact (72
SU(2)CU(2)CSO(4) acts simply transitively, and the sta-
bilizer is the circle action generated by an overall phase. Iwhere as usuai=—k—I. By differentiating Eq.(70) and
terms of inhomogeneous coordinates, the actiorSpf is using the first-order equations, one obtains another algebraic
(2,20 — (expiO(2k+1)ZL, expid(2+K)&2). It follows that — equation, which we may cal¥=X=0. This again involves
the cotangent vector at the origin of the forai¢,0) willbe  only & b, andc, but notf. Differentiating again, and using
left invariant if and only if X+1=0. In other WordsSi’_2 is  the first-order equations, givé§=Y =0, which is an alge-
the stabilizer of cotangent vectors at the origin with vanish-braic equation fom, b, ¢, andf (linear inf). Thus from these
ing second component. Similarl$; , is the stabilizer of ~equations we can solve fa b, andf in terms ofc. Differ-
unit cotangent vectors at the origin with vanishing first com-entiating again, we gaz\}\h which again must vanish for
ponent. This is consistent with our result above that in thehe solution. However, this must be satisfied identically, if
case ofN(2,—1) the period of¥ is 4. the original suppositior(70) is correct, since otherwise it
We have seen above thd{2,— 1) andN(1,0) correspond would give us a solution fot as a pure constant. Calculation
to the same bundle, since the period®fis the same. This shows that indeed vanishes identically, so all is consistent,
seems to be related to the following: We can think of theand the validity of imposing the relatioi70) is established.
cotangent bundle ofP’?, as the bundle of holomorphic one- It turns out now to be advantageous to work with a func-
forms A*°. Now CP? has no Spif#) structure, but it does tion p, rather thanc itself, in order to avoid square roots,
have a Spif(4) structure. One may identify the Sp{d)  wherec®+9(y—1)%=p2. Thus the algebraic solutions far
bundle with holomorphic forma\*:%. Under this identifica- b, ¢, andf in terms ofp are
tion, chirality corresponds to Hodge duality. Thus the odd
forms correspond to negative chirality spinors. It seems a?=(p—y—1)(p—y+5),
therefore that we may think of botk(2,—1) andN(1,0) in
terms of the bundle of unit negative-chirality spinors. The  p2=(,+ y+1)(p—5y+1),
posizti(\)/e-chirality spinors correspond to even formsd?
®A~". However, the even forms are left invariant by the 2 _
SU(2) subgroup of the (2) stabilizer, and so even if normal- c=(p=3y+3)(p+3y=3),
ized to have unit length they cannot be a homogeneous space 5
with respect to S(2). On the other hand, we can consider  f2— Ay +D(p=5y+D(p—y+5)[p+3(y—1)]
the bundle of suitably charged negative-chirality spinors. 2[p*—(y+1)%I[p—3(y—1)]
This amounts to giving the spinors a charge with respect to (72)

the connection whose curvature is theha form. ) . .
To summarize. we see that in genera(IZL)J/Sb is alens We can now substitute these into any one of the first-order

space of the formL(1,N)=S%/7,, where N=|k+I|. For equations, in order to obtain the differential equation gor
each geometrically distindi(k,1) space we will obtain in (Since the algebraic relations above were obtained by re-

general three different lens spaces, corresponding to the ae-eated use of the first-order equations, there is only one re-

tion of the Weyl groupS; of SU(3). In particular cases we ][nalnltnhg eq;J_atl?_nst w((j)rth oftlnformatlon to bﬁ extracr:(_adh
obtain fewer than three bundles. Thus, for exampél,1) rom the entre first-order system, So we can choose which-

gives a SO(3%&RP® bundle. On the other hand, its Weyl ever of the four equations is most convenient. Theguation
cousins N(—1,2) and N(2,—1) are both SU(2%&S® is a convenient choiceUsing the coordinate gauge choice

bundles. dt=f"1dr, we find that the differential equation fqr is
simply
B. An explicit Spin(7) solution for all N(k,I) , V2 73
Although we have not been able to obtain the general P 3V1i+92

solution of the first-order equatiori86) for Spin(7) metrics
with N(k,I) principal orbits, we have succeeded in finding whose solution may be taken to be
an isolated exact solution to these equations for ge e

|. To construct the solution, it is convenient to introduce a N
constanty=tané=—k/l. We find that there exists a solution =——T. (74)
” P 3V1+ 92

in which the following algebraic relation among the metric

functionsa, b, andc holds: ) ) ) ] ]
We see thap is essentially just the radial coordinate, and the

X=(1-2y)a%+(y—2)b%+(1+y)c?>+y=0, (700  metric can be written as
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9 5 dp? s 2. 2 pwr . w2 and nonsingular, and is asymptotic to the cone GHRZ,.
d52=§(1+ YY) <z ta(oitop) +b(X1+3)) TheN=2 example is nothing but the Eguchi-Hanson metric,
which can be written in its familiar cohomogeneity one form.
+C2(vi+ v3) + A2, (75  However, the higheN metrics cannot have cohomogeneity
) one. Thus, for example, the metric one obtains by imposing
wherea, b, c, andf are given by Eqs(72). the periodicity 47/N on the Hopf fiber coordinate in the

It is easy to see that the set of metrics we have obtainegq,chi-Hanson metric will have an orbifold singularity as a
here maps into itself under triality. It is convenient to makemetric of the Eguchi-Hanson cohomogeneity one typd if

use of this observation when analyzing the global propertie3'>2, but it nevertheless admits a perfectly nonsingular reso-

it allows us to restrict attention to cases where the metric .. . . )
: : . ution as an inhomogeneous multicenter metric. It may be
functionc is the first ofa, b, andc to reach zero ag reduces - L . . .
that a similar situation could arise with the resolution of the

from the asymptotic region git=2<. The vanishing ot will )
then signal the inner end point of the radial coordinate rangememc on the cone oveil(k,|).
Before studying this end point in detail, we may first observe
that at large distance the metrics are all asymptotically lo-
cally conical, sincea, b, andc grow linearly, whilef tends to
a constant. Since we have not been able to obtain the general solution
If cis the first ofa, b, andc to vanish ag reduces from to the first-order equation86) analytically, we now turn to
infinity, say atp=pg, then it must be that the factors &  a numerical analysis. To begin we therefore need to construct
andb? in Eq. (72) are still all positive wherp reachesp,  a Taylor expansion for the solutions that are regular at small
from above.(We shall, without loss of generality, assume distance, i.e., in the region where one or more of the metric
that the asymptotic region is whepe= +.) Itis easy to see  functions vanishes. For such an end point of the metric to be
from Eq. (72) that for this to happen we must have regular, it must be that the terms that approach zero must be
1 associated with the collapse of spheres. In the present case,
po=—3y*3, y=—q. (76) we find that the possibilitrijes thatpmay gave reglrjlar metrics

This in turn means that we must hakd =1, and sincek  are thatf alone vanishes, corresponding to a collapse of

and | must therefore have the same sign, we may withoufircles, or else thatanda vanish, orf andb vanish, orf and

loss of generality take them both non-negative. We thereforé vanish, corresponding to a collapse of three-spheres.

have (These last three are equivalent, modulo $gpermutation

group) One might also in principle have situations with col-

2k>1=0. (77 lapsing two-sphere§ust a or justb or justc vanishing, or

else with five-spheres collapsindy having @,b,f) or

(a,c,f) or (b,c,f) vanishing.

We shall first describe the set of triality-related cases giv-
ing collapsing three-spherésr lens spacgswhere ¢,f) or
(a,f) or (b,f) vanishes. Thus the bolt at short distance will
case that the principal orbits aNy(1,0) * be CP?. The idga is to obtain Taylor .expansions up t_o_ tenth

If we consider a solutiori72) and(75) for which k and| _order or so, which can thgn be used in ord_er to set initial dat_a
satisfy the inequality(77), we shall have an ALC Spii) just outsld.e.the bolt, Whlch'can then be integrated numeri-
metric with N(k,1) principal orbits, whose topology is an cally to infinity. We present just the first couple of orders in
R%/Z,, bundle overCP? with p=k+1. Although this metric 1" Taylor expansions here,
will be singular(if p>1), it is a relatively “mild” singular-
ity, in the sense that it is an orbifold in which the only in-
finities in the curvature will be delta functions. Such spaces Although we shall present the three possible classes of
might in fact be relevant in string or M theory, especially in Small-distance solution, correspondingctor a or b vanish-
view of the fact that M theory reductions can only give chiraling together withf, it should be emphasized that it is really
fermions if the reduction manifold is singular. redundant to consider all three, since they are related by

Another possibility is that the orbifold singularities could triality. Thus one can adopt two different viewpoints. One
be resolved by considering more general metrics of highepossibility is to stick with just one of the cases, say, where
cohomogeneity. A phenomenon of this sort is known to occugndf vanish, and then consider all possiék,|) principal
in four dimensions, with the multicenter hyperddar met-  orbits, including, in particular, not only a giveM(k,!) but
rics. TheN-center multi-Eguchi-Hanson metric is complete also its cousinsN(k,—k—1) and N(—k—1,I). The other

possibility is to consider all three cases, withf(), (a,f),
or (b,f) vanishing, and then restrict attention to a “funda-
“The solution in this special ca$é(1,0) was obtained if60], and ~ mental domain” among thél(k,l) spaces, such as that de-
we are very grateful to the authors for informing us of their resultfined in Eq. (44). Either viewpoint can be taken, but one
prior to publication. It provided one of the motivations for our should take care not to “overcount” the possibilities by in-
investigations in this section. cluding all three cases and also including all the “cousins.”

C. Small-distance behavior and numerical analysis

Noting from Egq. (65 that the associated description of
N(k,!) will be as anS%Z,, bundle overCP? with p=k+I, it
follows that the cas@=1 is achieved only ifl=0, k=1.
The conclusion from this is that the Spi metrics(75) will
haveZ, orbifold singularities on thé:P? bolt except in the

1. A triality of short-distance solutions
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In general, we shall find it convenient to adopt the first ap-reduces to a Gromov-Hausdorff limit & times a seven-
proach, and consider all ti(k,|) cousins within the frame- metric of G, holonomy, whose principal orbits ar&?
work of just case 1 below. bundles ovef:’?. (G, metrics of this type will be discussed
Case 1First we consider the short-distance Taylor expandater, in Sec. V A). This is consistent with the general result
sion corresponding to the case whereand f vanish att discussed in Sec. Il A3, where it was noted that the space

=0. We find N(k,!) admits a description as a/Z, bundle overCl?,
with p=|k+1|. ThusN(1,— 1) here corresponds to &i/Z,
5 cosd—4 sind bundle overCP?2. This bundle is a degenerate case, which is
a=1+ —————— 3+, Stx &,
6(cosé—sind) Before discussing the numerical integration of E86)
using these small-distance Taylor expansions to set up the
4 cosd—5 sind ) initial data outside the'’? bolt, we first note that another
=+t (78 situation of particular interest is when the principal orbits are
6(coss—sind) N(1,1), or its triality-related cousinsN(1,—2) or

N(—2,1). Studying these within the case 1 framework, the
exampleN(1,1) [which is then viewed as a8%Z, (i.e.,
RIP%) bundle overCP?, as can be seen from E(§5)] arises

1 — .~ 1
c=t+—| q(cosé—sind)— — | t3+---,
V3 v2
as the principal orbits in the Sgifd manifold with Z, orbi-

t fold singularity that one gets by replacir®} by CP? in the
f= ——————————+qt3+---. (79 chiral spin bundle oveS* whose Spifi7) metric was ob-
v2(cosé—sind) tained in[1,2]. Indeed, we find that the Taylor expansion in

Eq. (79) gives this exact solution if we set tas—1, and
take the free parameter to have the valug=3, which
impliesa=b andf=—c/2.

The cousindN(1,—2) andN(—2,1) ofN(1,1) arise as the
34, principal orbits in the hyper-Kaer Calabi metric orT* CP2.
As we shall discuss in more detail later, although this has the
smaller holonomy Sp(25 Spin(5), it is in fact a particular

Case 2 Now we consider the triality-related case where it
is insteada that vanishes along withat t=0. We find

2

1 ~ 1
a=t—| —qcosé+ =
V2

b=1+(2+1tand)t?+:--, solution of the Spi(¥) first-order equation$36), in the case
of N(—2,1) andN(1,—2). These correspond, respectively,
c=1+(2-Ltand)t’+---, to tand=2 and tard=2%. We find that the Taylor expansions

(36) reduce to those for the exact Calabi solution if the free

t parameteq is chosen as follows:
f=— —+qt3+---. (80)
V2 cosé _ J10
tané=2, q=——;
Case 3 Finally, if b instead vanishes along withwe get 3
a=1+(3+§coto)t?+- -, a?+c?=b% ac=\/2bf,
1 -1 J10
_ il i P I ~
b=t+ ﬁqsmé Z)t +eee tand=1, q:T;
- 5_1cot8)t2+---
c=1+(E-gcototit -, b?+c?=a? bc= \/gaf. (82
f=— t — +qt3+---. (81 2. Results of numerical analysis
v2sino We are now in a position to make use of the series expan-

It is easy to see that the three cases listed above are relat%'ggs of Sec. ll1C1to provide initial _data_ Just Ogts'de the
‘ bolt, in order to perform a numerical integration of the

by triality. , , , ~ o~ first-order equation$36). Again, because of the triality, we
Note that case 1 is valid provided that @dssind, and  aeq only discuss the series solution in case 1, provided that
likewise that case 2 is valid for co¥0, and case 3 for we considerN(k,l) for all k andl. The discussion can be
tand+#0. These exclusions are just a triality-related set. Folfurther narrowed since case 1 is invariant underZzhesym-
lowing our policy of using just case 1 for our discussion, wemetry k<1, a«<b, f< —f, andq< —q. It follows that we
note that in this guise the excluded cas®l{d,—1). Itisin  need only concentrate on the cases wWkh<|l|, implying
fact easy to reanalyze the Taylor expansion in case 1 wheihat we can consider the case 1 solution Witnd<1.
cosd=sind, we find that we then get=0 and the solution The following is a summary of our numerical findings.
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(a) For each given tad=—ki/, there exists @o>0, such the terms inaiz, Eiz, and\? describe homogeneous metrics
that for parameterg=q, the functions 4,b,c,f) are regu- 0On S° (viewed as ars! bundle overClP?). Thus we see that at
lar. In the limiting case wherg=q,, the metric is AC, with ~ short distance the metrics approachR&hbundle overs®. A
the Einstein metric om(kl) on the base of the cone being straightforward calculation shows that the squashed metric
the one for whichg, defined in Eq(48), lies in the interval
[0,m). For q>qq, the metrics are ALC, witlf becoming a dsi= o7+ 372+ x2\? (84)
finite constant at large distance. The precise valugqdfor

~ . e . . 5 . . L.
eachs is difficult to determine numerically. As we have seen N S° becomes the standard &pinvariant round metric if
x“=1. From Eq.(83) we see that our numerical result that

i ~—— :l' ~:l'
\pl)vre\;:o\tjsly,_fo\;%/rg— 1, we haveqo=35; and for tano=y, |g/|<0qe=0.87 ... therefore means that all the regular ex-
€ haveqo= : amples arise when the (1) Hopf fibres on theS® bolt,

Thus we see that for a generic value®fthere exists an viewed as ars! bundle overCP?, are squashed relative to
AC metric and a family of ALC metrics with a nontrivial {hejr length in the roun&® case.

parameter, which are all regular aside from havingRé/er
orbifold singularity on theCP? bolt, wherep=|k+I|. In )
particular, this means that the AC metric and the ALC family IV ANALYTIC RES{%‘;SNFET Tg:;%n (7) EQUATIONS
of metrics are completely nonsingular in the caseNgk,1 (k.1)
—k) principal orbits, for all integers. A. The general caseN(k,|)

(b) Without loss of generality, we can restrict the integers

It is advantageous first to rescale the metric funcfian
k andl so that 0<k=I, and then enumerate the case 1 solu- . S
tions for all three cousind(k.1), N(k,—k—1), and N(, the fashion of Eq(55), so that the rescaled function is a

—k—1). For generic values d andl, the three cousins will singlet under theS; permutation group. Accordingly, we

give rise to three distinctly different sets of AC and ALC shall define

solutions. If we focus in particular on the AC solutions, then V3

the choiceN(k,l) will be asymptotic to the cone over one of T= f. (85)
the two Einstein metrics oN(k,l), while its two cousins k*+1°

N(k,—k—1) andN(l,—k—1) will give a pair of (inequiva-
lent) AC solutions that are asymptotic to the cone over theNext, we define new variablesA(B,F,G) in place of
other Einstein metric on this particular Aloff-Wallach space. (a,b,c,T) as follows:
This implies that each given asymptotic cone structure ad-
mits two different small-distance resolutions. a? b2 Tab a

Case 4 We have seen that the case 1 solution is valid A= 2 B=—, F= = G= s (86)
provided that tad+1. When tand=1 two possibilities arise,
one of which is thatf =0, as we discussed earlier. Another These therefore satisfy the first-order equations
possibility is thatf, as well asa andb, becomes a constant at
small distance. To the first few orders, we find that the solu-

SRR .1
tion is given by A= 6[4A_4A2+ 2(k+1)AF+2IF],

a=1-3qt+(1- 509+ (5 — 51007 g+, .
B= G[4B—4B?+2(k+1)BF+2kF],
b=1+3qt+(1- 599)t*— (35— 55079t ++ -+,

. F
c=2t+ 7 (q?—9)t3+- -, F=5[5-3A-3B+4(k+1)F],
f=q+393%%+---. (83
. IF  kF
[Owing to triality, there are also two addition@quivalent G=3-A-B+(k+DF+ X+ B (87)

types of solution for either ca$=0 or sind=0.]
A numerical analysis shows that there exist regular solu- If we now introduce a new radial variable related tot

tions for|q|<qgy=0.87..., such that the functiong, b, c, by dt=G d7, these equations become
andf are regular as one integrates outward. Whar=q,
the solution is AC, while foilq|<qg, we have a nontrivial A'=4A—4A2+2(k+)AF+2IF,

one-parameter family of ALC solutions. For=0, we re-
cover the case witlfi=0 mentioned above.

In this class of solutions, where only the metric functon
vanishes at small distance, we see from §) that we have
collapsing two-spheres with metric described izfy while F'=(5—3A-3B)F+4(k+I)F?

B'=4B—4B%+2(k+1)BF+ 2kF,
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- IF  kF =3[k+(k+1)B] Y(B'—4B+4B?) !
G 1G’=3—A—B+(k+I)F+K+§, (88)
X (—[k+(k+1)B]B"{—11(2k+1)B
where a prime denotes a derivative with respech.tiVe see +9(k+1)B?+3[3k+ (k+1)B']}

that the first three equations now involve only the variables

(A,B,F). From these, one can solve fBrandA in terms of XB'+4B(B-1)[5k—3(2k+1)B

B, given by +5(k+1)B]). (89
F— B'—4B+4B? The system then reduces down to the following nonlinear
2[k+(k+1HB]’ differential equation for the functioB:

18(k+1)B'*+3[k+ (k+1)B]*[7B"?—3(—4B+4B2+B')B" ]+ 12 2k(4k+51) — (31k*+ 42k| + 111%)B
+3(k+1)?B?1B"3—64B[ —k?—kIB—I(k+1)B+ (k+1)B]B"+4[k+ (k+1)B]B'{(26k—21)B+ 12(k+1)B?
—3[6k+ (k+11)B']}B"8[33k?— 9k(17k+ 61)B+ (260k>+ 260k| + 7712)B2— 3(51k?+ 92k | + 411%) B3
+57(k+1)2B*]B’264B(B— 1)[ 12k?>— 7k(7k+ 21)B+ 3(22k>+ 22k| + 71%)B?— 7(7k?*+ 12k| + 5I) B®
+12(k+1)2B*1B’ +128B%(B—1)?[ 5k?— 3k(7k+21)B + (28k>+ 28k + 91?)B?

—3(7k?+ 12kl +51%)B?+5(k+1)?B*]=0. (90)

Note that the equation is not explicitly dependent on the1288%(B2—1)(9B?— 15B+5)
coordinates, implying that we can reduce the system to a 5 o .
third-order equation by defining=B andb(a)=B’. +88(7B°—-9B+3)B'“+8(14B—-9)B'B

+64B(B—1)(21B°>—35B+12)B’ —64B(B—1)B”"

B. The caseN(1,—1
( ) +7B"?>—24B'2—3[B’'+4B(B—1)]B"”=0. (93

1. The first-order equations
Let us consider the Spif) equations specifically for the If we now define a new variablQ by Q= y9—8B, we

case ofN(1,—1) principal orbits. Settingk=—1=1, we May note that the following give solutions of E@3):
have 1_1/02
(1) Q'=z(Q°-1)(Q—3),
b2+ 2_ 42 f 2+ 2_b2 f ,
goorcma o crery b (2) Q' =%Q*-1)(Q+3),
bc a ca b
(3) Q'=1Q7HQ*-1)(Q*-9).
. a?+b?-c? ; 2 f2 @1 (94
C=—7 > =322
ab a® b Here a prime meand/d#. Solution 1 is
and Egs(88) then reduce to 142274+ J1+e27

21+e?1) 99

A'=4A—4A*—2F, B’'=4B—4B%+2F,
and it is the special case fof(1,0) of the explicit solutions
F'=F(5—3A—3B), found in Sec. Il B, which was obtained {50]. Solution 2
corresponds to interchanging the rolesfoéindB relative to
solution 1, and it has

“1G'=3-A-B- -+ . 2
G 'G'=3 2T5 (92 1426271+
B 2(1+e?7)

(96)

From these equations, one can derive the following third-
order equation foB: Solution 3 is rather trivial, and has
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1 The explicit ALC solution found in50] [described in Sec.
B=T—c (97 B for N(1,0)] corresponds to a flow fron{0,1,0 to
(1,1,0. As we adjust the nontrivial constant that parametrizes
inequivalent solutions of the first-order equations that start
from a CP? bolt at short distance, we get a family of flows
that run from(0,1,0 to the ALC end point af1,1,0. As the
parameter is pushed to a limiting value, the distance at which
the functionf “turns over” and becomes asymptotically con-

which leads td==0; it corresponds to a degeneration of the
metric to a seven-dimensional one.
Another approach to solving Eq€?2) is to define

A=X+Y, B=X-Y. (99 stant grows larger and larger. Eventually, at the limiting
value of the parameter, the distance at which this happens
The first three equations i®2) now give gets pushed to infinity, and the end point jumps to the AC
value ((5+/5)/6,(5—/5)/6,4J5/9). If the parameter is
X' =4(X—X2—Y2), Y'=4Y—8XY—2F, taken beyond the limiting value, the flow runs to some sin-

gular point and the metric is correspondingly singular.
The large-distance structure of the AC solution can be
F'=(5—-6X)F. (99) studied as follows. Let us suppose that we have the case
((5—/5)/6,(5+\5)/6,—45/9), in which B approaches
Calculating Y”, using the other first-order equations, and(5+5)/6 asymptotically. Setting
then usingd/dn=X"d/dX, we get the second-order equa-

tion 5+5
B=—5—1vy(n) (103
2 2 2 2 d2Y dy :
(X=XT= Y9 4(X=X=Y%) 52— 8Y| g in Eqg. (93), and then linearizing iry, we obtain the third-

order equation

dy
_ _ _ 2_ 2\
+(6X=5) 75| + Y(5-8X+4X?~8Y?)=0. (100 oy + 48y"— 16y~ 160y—0. (104

auxiliary equation

yo YiTX (100 N3+ 4812 — 16\ — 160=0. (105

‘/2 1

All three roots\; are real, witha;<<0, A,<0, and\3>0.
which gives rise to the explicit metric in Sec. Il B for the Since we want solutions that approach the AC liréind
caseN(1,0), which was obtained if50]. hencey—0 as n—), we conclude that regular solutions

must have the asymptotic form

2. Heuristic discussion of the flows

We can give the following analysis of the fixed points of y~ X, €M7+ x,eN27, (106)
the first-order equation&92). Solving forA’=B’'=F'=0,

we see that the fixed points occur fok,B,F) given by We can think of the general solution as being character-

ized by three parametefgxcluding the completely trivial
constant shift ofyp, but including the constant scalingVe

(0,00, (0,10, (1,00, (1,10, see that the solutions with regular large-distance AC behav-
ior lie on a two-dimensional submanifold of ingoing trajec-
tories, parametrized by the constarisandx,. On the other

5+15 5-\5 4\/§> (5_\@ 5+\5 4.5 hand, we know that at the bolt, the solutions regular there
6 ' 6 9 ) 6 ' 6 9/ also lie on a two-dimensional submanifold, of outgoing tra-

(102 jectories. Although we do not know analytically how to in-
terpolate between the two regions, we can argue on general

It is easily seen tha0,0,0 is a degenerate point1,0,0 and  grounds that the intersection of the two-dimensional outgo-
(0,1,0 correspond t@:P? bolts at short distance, arid,1,0  ing submanifold at short distance, and the two-dimensional
is the large-distance asymptotic limit for ALC metrics. The AC ingoing submanifold at large distance, should occur
two points ((5+/5)/6,(5-5)/6,4/5/9) and ((5 along a curve(This family would really be just a single
—/5)/6,(5+/5)/6,—4/5/9) correspond to large-distance nontrivial solution, since the single parameter along the
asymptotic limits for AC metrics. The metrics on the princi- curve would be a “trivial” one) Thus we can expect a solu-
pal orbits in these last two limits are precisely the Einsteintion that is regular on the bolt and also regular at an AC
metric on theN(1,—1) Aloff-Wallach space, as discussed in infinity. This same conclusion is also indicated by the nu-
Sec. VA. merical solutions.
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We can, of course, repeat the above discussion for thpundle overCI’>. Nonetheless, the associated solution of the
general case dfi(k,I) principal orbits. The principles are the first-order equations is nonsingular, and from a physical
same as foN(1,—1) but the discussion is a little more in- point of view in string theory, one might even find the orbi-
volved since there are now two nontrivial fixed points thatfold singularity attractive.
describe the flows to cones over the two inequivalent Ein- [eaving aside for now the question of the acceptability or
stein metrics on the Aloff-Wallach space. We find that at theotherwise of an orbifold singularity, we can take the two
linearized level, the analogue of EG.04) is now exact solutions described in the previous paragraph as start-
ing points for perturbative constructions of AC solutions of
the first-order equation@6), for values ofk/l that are close
to the values occurring in the exact solutions. Thus, for ex-
ample, we can take thg(1,1) solution with theZ, orbifold

where ¢ is the angle parametrizing the Einstein metrics onSingularity, and then seek a solution wiihl=1—e, order

the Aloff-Wallach spaces, which was introduced in E4f). by order ine. Of course we should ultimately have in mind
The solutions will therefore be of the forgre*” with that e should be rational, but this does not present any diffi-

culty.

The other starting point with an exact AC solution is the
hyper-Kanler Calabi metric. In this particular instance we
find it more convenient, rather than following our usual strat-
egy of working withN(1,—2) or N(—2,1) principal orbits
It is easy to see that this cubic polynomialNrhas extrema in the framework where vanishes on the bolt, to work in-
at two values oh, one negative and the other positive, for all Stéad in the framework whera vanishes on the bolt, in
values of$. One can also see that the cubic is itself respecWhich case we again haw(1,1) principal orbits. Thus the
tively positive and negative at the two extrema. This showderturbative expansions arounol~ both of the exact solutions
that all three root3; of Eq. (108 are real, and that ong,;, can be parametrized by taking tés —1+e.
is certainly negative, and another;, is certainly positive. Case (a): Expansion around SO(3) bundle ot&f. Here
Together with the fact that the cubic is negative\at0 for ~ we take as our zeroth-order starting point the $fimetric
all ¢, we can deduce that the intervening roos, is nega- on the chiral spin bundle d8*, given in[1,2], but with S*
tive, and so for allg two of the \; are negative and one is replaced byCP?. The principal orbits aré(1,1), with the
positive. Thus again we have a two-dimensional submanifolanetric functionc? that muItipIies:»i2 in Eqg. (5) vanishing on
of ingoing trajectories, supporting the indications from thethe bolt. We shall work up to and including ordef in the
numerical analysis that there will be regular AC solutions. expansion aroun#/l =1.

In order to simplify our results for the perturbative expan-
C. Perturbative construction of AC metrics sion it is helpful to introduce a new radial varialledefined
in terms ofr by p=r?2. After some algebra, we find that the
E}Eerturbative expansion up to ordef is given by

y"+4y"(2+cos¢)—y' (24 cosep)?—4y(15 cog ¢
+20cog ¢p+12cosp+8)=0, (107

N3+4N%(2+cos¢p)— N (2+ cosg)?—4(15coS ¢

+20cog ¢+ 12 cosp+8)=0. (108

We have obtained evidence by means of a numeric
analysis that for each choice of ti(k,l) principal orbit,
there are two possible AC Spif) metrics, which approach
the cones over the two inequivalent Einstein metrics on 3 . 3pM-11p°+33p-25
N(k,1). The only exception iN(1,0), for which there is a= \/_1—09 1+ 264p(p°—1)2
only one AC solution, since here there is only one possible
Einstein metric on the base of the cone. ) 3

We have already alluded to the fact that for the special X(2e+€7)+0(€”) |,
case of principal orbits that amd(1,1), or its cousindN(1,

—2) andN(—2,1), we actually know of two explicit AC

solutions of the first-order equatio36). One such solution 3 3ptt—11p°+33p—25
is the complete and nonsingular hyperkiter Calabi metric b= —Pslz( - 264p(p°—1)2

on T*CP?, which happens to have the smaller holonomy V10 P

group Sp2), but nonetheless corresponds to a solution also

of the Spir7) first-order equationg36). If we make our X (2e+ 62)+O(63)>,

usual choice where it is the functianin Eq. (5), rather than

a or b, that vanishes at short distance, then the principal

orbits will be N(1,—2) or N(—2,1) in this case. The other c=3p L p5— 1) Y1+ c,e2+0O(€d)),
exact solution is the SpiiA) metric that one obtains by re-

placingS* by CP? in the original construction ifil,2] of the

complete and nonsingular Spim AC metric on the chiral f=—32p Hp°—1)Y 1+ 1,62+ 0(%)],
spin bundle ofS*. After the replacement, the metric will

have aZ, orbifold singularity on the bolt, since now we have

N(1,1) as principal orbits, which can be described as an __P

P 2 3
S%z, bundle overCP? with p=|k+I|=2, i.e., a STB) h_(p5—1)[1+hze O], (109

5/2
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where
(p— 1), -1/ 5 5 1~
C2= 261360(,»2(p5_1)5+P (p°—Du+(p>—1)" 11,
(P—1)4v2 -1/.5 5 — 1~
f2= 261360(]»2(,35_1)5 p (pP—1u+(p>—1) T,
= (p—Dvq 1 -1,5 5 1~
ho= 261360@;2(p5_1)5 5p (p°—1Du—(p>—1)" T,
(110
and the functionsi andu are given by
7 16 -5 7 4 49 -5
T 16y 2Fi[15, 5.0 "1+ seeop” 2Fa[15.5.0 7],
T=Kk+ s55500°(15p°— 24p° — 40)
7(p°-1)7 i
+ s Lo 2 Fil13,2.07°]

PHYSICAL REVIEW D 65 106004
—3p 2oF4[1,8,2,p7°1]

— z388109(p°— 1)+ 10p ™1 ,F4[1,5,8,p7°]

=30 % Fal1E5.0 70 (112)
Note that we have
u_ 7(p°-1)
dp  165p°—1)’
2 2 5 1
ﬂszfl_ 17%%(p—1) N (1+8p°=9p™)u
ap *° 4356 p5—1) 3,2 .
(112

The functionsv; are polynomials irp, given by

v,=231250+ 18750 + 87382(p>+ 2495280 >+ 5456950+ + 9894075 ° + 1568815@°+ 21497475  + 259803598

+27795095°+ 2622134p 19+ 213874951+ 14948034 %+ 85574313+ 387016( 4+ 149879515+ 134466( 16
+2431196¢ 7+ 37818448+ 442004%1°+ 42813400+ 351127(>1+ 24378492+ 138908 p>>+ 69300p>*

+ 27720025+ 69302,

v,= — 156250~ 50250Q — 119282(>— 2381280 °— 4221950 *— 606916%°— 756101(°— 7585363 ' — 50301022
+121689%°+ 10072100+ 2125573511+ 321923942+ 4030667 p 13+ 430231604+ 40712455 1°
+3304890010+ 2261255G17+ 119834848+ 374174%°— 17453002°— 390029( 21— 3838392 22— 26747723

— 15246002~ 60984(>°— 15246(°°,

v3=125000+ 25250( + 3811(%— 86256(°>— 279390p* — 565574%°— 1065168p°— 1669564 p’ — 2270158%°
—27583445°—2993751p 19— 2850132511 24368354 °— 1863206 p 13— 1238591p 14— 7010763°
—3391240%+1197516— 997748+ 231805 1%+ 25654 2%+ 22375(p 2+ 16003 2%+ 9198323+ 46204

+1848(p %%+ 462025,

(113

Herek in T is an integration constant, which should be cho- 3 1 1

sen to be a \/—1_0r 1+4—45+§352),
k= 53400+ 7355 Y + 738 200(5) —(5)] (119

in order that the solution be regular at small distance, where b= ir 1 ie iez),

v is the Euler-Mascheroni constant, afdz)=I"'(2)/T(2) V10 44 88

is the diagamma function.
At large distance, the functions become
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f=— 351 (1+357€°),

PHYSICAL REVIEW D65 106004

hyper-Kanler Calabi metric is described in these conventions

in terms ofN(1,1) or N(—2,1) Aloff-Wallach spaces form-

_ 31 2
h=1+ 55€°.

(115

ing the principal orbits. We shall také(1,1), so that again
our perturbation will be of the form tab=1—e.

As a verification, one can check that the above cone met- It should be emphasized that although our starting-point
ric matches precisely the conifolds obtained in Sec. IIl, up tohere is the hyper-Kaer metric, we perturb around it using

€ order, expanding aroung=0. At small distance, it can
be matched to case 1 in Sec. Il C, with the constaspeci-
fied as

the usual Spiv) first-order equations. Thus the reduced ho-
lonomy whene=0 is to be viewed as an “accidental” re
duction that is a feature of this specific solution of the

Spin(7) equations.

— LaV1+2//5)e2+0(e).

What we have seen emerging here is an orderly expansion
of the metric functions around their unperturbed form, with
corrections at orde¢ ande? that are perfectly regular both at
short distance and at large distance. This provides further
evidence, of an analytical nature, for the existence of regular
solutions of the first-order equatioi36) for AC metrics(5)
with Spin(7) holonomy, where the principal orbits arkk,|)
with general values of andl. Of course, one should distin-
guish between having regular solutions of the first-order
equations, and having regular metrics, since, as we know, our
starting point for the perturbation series in this case is a
metric with aZ, orbifold singularity. Thus our emphasis in
this specific perturbation expansion is really on the regularity
of the metric functions, rather than on the complete regular-
ity of the eight-metrics. Nonetheless, as we mentioned pre-
viously, even those with orbifold singularities on the bolt
may be of interest in string and M theory. However, the main
point emerging here is that we see strong supporting evi-
dence for the proposition that there exist regular AC solu-
tions of the first-order equations, for &land|. For those
cases wher¢k+1|=1 (which are, of course, far away from
the e=0 starting point herg we should therefore obtain
complete and nonsingular AC metrics.

Case (b): Expansion around Calabi metrim this case
we take as our zeroth-order starting point the hypénia
Calabi metric onl* CI’?, which is complete and nonsingular.
Since we shall choose to work in a framework where it is the
metric functiona that vanishes on the bolt, and since e
symmetry of the system involves permuting,lf,c) in step
with (I,k,m), wherem=—k—1, it follows that instead of
N(k,I) being viewed as ai$*/Z, bundle overCP? with p
=|k+1|=|m|, as it is whenc vanishes on the bolt, we now
have anS*Zz, bundle with p=|I|. Thus the nonsingular and

(116

225
=56 + ( 26136

where

After some algebra, we find in this case that up to oeder
the perturbed solution is given by

=V3(r2—1)(1+a e+ aye?),

2(r2+1)(1+bye+bye?),
c=r(l+cyetcCye),

f:%r \ 1_r74(1+f16+f2€2),

r

h= 57 (117
_1+3z-37*  logz
N 6(z—1)
b= z—1 logz
"4z 7 6z
(2712 logz
1T 122222-1) T 3(2z-1)°
4-9z (1—2z+27%)logz

f1:

12(22-1) T 62z-D)(22-1) '
(118

 15+268&—4312°-2722°+67%"  74(2,1-2z) [—20+26z+312°~972°+60z*+2°( 21z~ 26)log z]logz
a2= 43207 60z—1) 3603(z—1)2
16+ 38z— 1477%+98%° — 2903* + 1755° . 74(2,1-2)
2= 4320 (z—-1) 60z

[35 1272+ 233°— 12023+ (z— 1)%(21z— 5)log z]log z
36Qz%(z— 1)
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— 15+ 2472— 15002+ 43163 —

7795%*+ 1035%°—

PHYSICAL REVIEW D 65 106004

860°+ 3240’

C2= 43204 (z—1)(22—1)2

(— 20+ 131z— 30622+ 27423+ 247*

—2022°+1208)log z

(42z—3Dlog?z  74(2,1-2)

360z°(z—1)%(2z—1)?

4+ 127—3247°+ 12163+ 2092* —

4720°+ 32405

1802z—1) = 30(2z—1)

7(1-2z+272%)(2,1-2)

2= 43204(2z—1)?

(20— 1442+ 3517°— 301z°+ 60z%)log z

60z(z—1)(2z—1)

(—5+61z— 16522+ 25073 — 230z* + 84z°) log? z

18Qz%(z—1)(2z—1)°

Here z=3(1+r?) and ¢(2x)=— % 'log(1-?dz is the
dilogarithm function.
At large distance, we have

r
a=—(1-te+ 262, b=— 1+1e+ ¢
‘/2( 4 32 ) f( 1 32 )

c=(1+2e’r, f=31-Z6edr,

h=1+ =€ (120

360z%(z—1)%(2z—1)? (119

results for curvatureT andV from Sec. 2 of[10], and re-
produced in Eq(36), by dropping all thef terms. Thus we
have

T=2a'?+2p'?+2y'?+8a'B' +2B'y' +2a'y',

2¢ 2
2b2

2b?
2 2

12 12 12+ 2a’ .
~a? b2 c? ' b%?

(122

Note that the principal orbits are the coset space
SU(3)[U(1)xU(1)], which is the six-dimensional flag

As a verification, one can check that the above cone methanifold.
ric matches preC|ser the conifolds obtained in the previous e find thatV can be derived from the superpotential
section, up toe? order, expanding aroung= 1. At small

_ 2, 2
distance, it can be matched with case 2 in Sec. IV C, pro- W=4abc(a®+b?+c?). (123
. _ 277 .2
vided thatq=—2/3+ e~ 375¢", From this, we arrive at the first-order equations
Again, we are seeing that an orderly perturbative expan-
sion can be developed, with corrections to the metric func- 2,2 .2 i 2, .2 2
tions at ordefe and e that are regular both at short distances a_ b+c—a’ E: M,
and at large distances. This again provides analytical evi- a abc b abc
dence supporting the findings from our numerical analysis _ s o o
that regular AC solutions of the first-order equatidi®6) c a +b*—c (124

should exist for alk andl.

V. MORE GENERAL SEVEN-METRICS OF G,
HOLONOMY

c abc

It should be noted that these are identical to one of the
sets of first-order equations that can be derived for the tri-
axial Bianchi type IX system inD=4, with dsfl:dt2

Having studied more general cohomogeneity eight-ya252+h252+c?2, where here thes; are the left-

metrics with Spif7) holonomy, we now turn to the consid-
eration of analogous generalizations for seven-metrids.of
holonomy.

A. New G, metrics on R® bundle over CP?

We start from the left-invariant one-forms,® of SU(3),
and define complex one-forms=L,3 3=L,3 and v
=L,2, as in Sec. llA1. Defining real one-forms via
=g;,t+io,, etc., we then make the ansatz

dsf=dt®+a%e?+b?S 2+ c2?. (121
This is very like the ansatz for eight-dimensional Sgjn
metrics in Eq.(35), except that the extra () directionf?\?2

in Eq. (3.2) there is dropped. We can therefore read off the

invariant one-forms of S(2). Specifically, they coincide
with the D=4 equations that correspond to the Nahm equa-
tions for the “spinning top.” This is the first-order system
that admits Eguchi-Hanson as a nonsingular solutioa if
=b. For unequah, b, andc, the system was studied fiii1],
and the general solution was obtained. It was found that the
associated Ricci-flat metrics were singular when the three
functions were unequal.

We can use the same method here to solve the first-order
equations(124). Thus we letu=ab, v=bc, andw=ca.
After defining a new radial coordinate by dr=abc dt

=uvwdt, we then get

du 2 B
u

, (125

dv 2 dw
v’ odr

=N
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with the general solution

U?=4(r—ry), v2=4(r—r,), W?=4(r—ry),

(126

wherer, r,, andrg are constants of integratioriThe met-
ric is
dr?  uw uv
2 2 2 2
d‘%:uvw +—(oi+o))+ - (31+3)+

uw
T(V%ﬁL v5).
(127
It can be seen that this is singular unless two ofrthare set
equal. If two are set equal, so that=b, we get, after a

coordinate transformation, the previously kno®n metric
on theR® bundle overCP?.

PHYSICAL REVIEW D65 106004

From Eq.(4), we can see that the following exterior de-
rivatives lie entirely within the coset:

d(PoOP3+ P,0P,) = — 2R, [(PoOP,+ P30P;)
+2R,0(PoOP,+ P,0P3),
d(R;0R,) = 3R, 0(P,OP,+ P30P,)
—3R,0(Po0P,+ P,0OP). (131
In particular, we see that
d(PoOP3+ P,0P,+ 4R, 00R,)=0. (132

This corresponds to a nearly Klar structure orC’®. Note,

The G, holonomy can be checked by looking for a cova- however, that there is no result lying purely within the coset
riantly constant spinor. Equivalently, we can check to see iff we try giving the PoIJP3 and P,[IP, terms different co-
there is a covariantly constant three-forithe calibrating efficients. Thus we cannot break t& base(whose coset
form). From the exterior derivatives of the complex one-one-forms aré®,) apart. This is quite different from the pre-

forms given in the hyper-Kaer paper, we can easily verify Vvious example in Sec. VA.
that The most general metric ansatz we can consider is there-

fore
d(o0o)=—d(S03)=d(»[p) = — 2i Re(TTIS ).

(128 dsf=dt?+a?(R3+R3)+b?P2, (133

From this we see that the three-foi&,, defined by This is equivalent to the standard ansatz for @yemetrics
on theRR® bundle overs* [1,2].

The natural S(®)-invariant ansatz for the calibrating
three-form is

G(sy=abcReaIS ) +i(—alolo+ b2 03 + c2ulv)
(129

is closed,dG3=0, by virtue of the first-order equations
(124). A more complete calculation should show that it is in
fact covariantly constant.

Note that the vielbein components Gf3) will be con-

G(3)=dt a’R,0R,— b?*(PoOP3+ P, 0P,) ]
+ab?[R,O(P,0OP;+ P,0OP3)

_ _ From the conditiordG3=0 we get
B. G, metric on R bundle over S* reconsidered
We could attempt a similar more general construction of d(ab?) —_132_9p2 (135
metrics on theR® bundle overS*. As we shall see, this does dt 2 ’
not in fact seem to be possible. It does, however, provide us
with a more convenient way of writing the stand&¢g met-  while from d* G3,=0 we get
ric on this manifold.
Our starting point is the left-invariant one-formhg g on db d(a®h?)
. . e B 2b—+a=0, +4ab?=0. (136)
SQ(5), introduced in Sec. Il. In the earlier discussion we dt dt

identified P, and R{,R,,R3) as the one-forms in the coset

S’=S0(5)/SU(2) . We now divide out by a further (1)
factor, associated with the one-forRy. The requiredCP®
principal orbits for theR® bundle overS* are thus described
by the coset

(o= o)

~SU2) <UD (130

5We understand that the first-order equati¢t®4) for the Spir(7)

These imply the first-order equatioas=2a’b~2—2 andb
=—1ab™ !, which are the same, after appropriate adjust-
ment for normalization, as those obtained 19] for the R®
bundle overs®. The solution can be written as

as|

|4

-1 4
1- r_“) +dr?+r?

1
(R{+R)+5r?P.
(137)

175

C. G, metrics for the six-function triaxial S*XS® ansatz

metrics(121) have also been obtained independently by R. Cleyton

(Ph.D. thesis, Odense Universityand by A. Dancer and M. Y.

Another class of5, metrics that may be studied has prin-

Wang, who also noted that they are equivalent to the Nahm equasipal orbits that ares®x S°. A rather general ansatz involv-

tions, and hence are integrable.

ing six radial functions was considered[it2,13, and first-
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order equations fofs, holonomy were derived. The metric _ b% bi
for the six-functionG, space is given by b,= 222 2p2
2 2

dsj=dt*+a’(o;—3)?+ b (o +3)%, (139 2

whereo; and; are left-invariant one-forms for two SP) b>= daza; 4a; 4a, " 4b,’ (142
group manifolds. It was found that f@, holonomy,a; and _ o
b; must satisfy the first-order equations Making the redefinitions
2 2
. aj N ai a ag b, bg A= il _b
— - -z ___= T L2 2
a 4agb2 4azb3 4b3 4b2 4a3 432 ’ a; a;
b,a,b ab
. a% a% ajg as bl b3 F= Lg_z G= f2r2 (143)
QH=——+————— —— = PEI a
dazb, 4da.b; 4b; 4b, 4da; 4a; 1 1
the equations become
__a§+a§ a, a, by b,
87 4a,b, ' dab, 4b, 4b, 4a, 4a;’ A'=3A?+A(B-3)+F,
(139 ,
) bi b% a, as b2 b3 B'=3B +B(A_3)_F,
b

1" 4a,a; 4b,b; 4a; 4a, 4by  4b,’ F'—(—4+3A+3B)F

b B bg bg a; as bl b3 =

2 4aza; 4bsb; 4az 4a; 4by  4by’ GG’ =—2+A+B+ 1~ o, (144
_ b3 b3 a, a, by by where a prime denotes a derivative with respec,tavhich
b is defined bydt=2G d#. Note thatG is decoupled from the

3= - PR TR T
42,3, 4bib, 43, 4a;  4b,  4b, first three equations. If we now define
One can look for solutions with regular Taylor expansions

corresponding to a collapsirgf, S?, or S att=0. We find

no such regular solutions for a collapsiBt or S?, but for a

collapsingS® we find that solutions that are regular near the

. 3 _ . .

associate®® bolt att=0 hav_e a Taylor expansion with three X' =4X2—3X+2Y2, Y'=6XY—3Y+F,

free parameters, and are given by

A=X+Y, B=X-Y, (145

the first three equations give

F'=2(3X—2)F. (146)

1 2 1 3
=2 16a0t o b= 4thqit s (149 By calculatingY”, using the other first-order equations, and
then writingd/d»=X"d/dX, we get the following second-
where a52=64(q1+q2+q3) (implying that q;+q,+0Qs order equation:

>0). A numerical analysis now shows that regularity at large

distance requires that 2

d
(4X2—3X+ 2Y2)[(4x2— 3X+2Y?)

dx?
0:=0,=03, or cyclic order. (141
dy)\? dy
Thus the only regular solutions of the six-function equations +4Y d_X> —4(X-1) axlt 12(X+Y—-1)
(139 are solutions also of the reduced four-function equa-
tions first obtained if13]. Settinga,=as; andb,=b in Eq. X (X—Y—1)Y=0. (147)

(139, these are
Note that a special solution of this equation is

_ aj a; by
= 2a,0, 2b, 2a,’ 3—4X
2a,b, 2b, 2a, v . (149
. a3 a b, b This is in fact the isolated solution th found 13
a,= _ L is is in fact the isolated solution that was found 13]. It
4a.b, 4b, 4a; 4a, can be written as
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M x s! AC
6
ALC FIG. 4. The nonsingulat, metrics B; and
B as a function ofy,/qy .
B7 B, B3 7 asajiunct 0,/09;
| - |
-12 -1/14 0 @l 1
al:_%r, aZZ% /3(I’—|)(I’+3|), VI. CONCLUSIONS

In this paper, we have made a rather extensive investiga-
tion of many of the possible classes of metrics of cohomo-

r—9l? geneity one in dimensions eight and seven that might give
b=l N rise to the exceptional holonomies S@ihandG,, respec-
tively. For the case of eight dimensions, we considered first
the situation where the principal orbits are topologic&ly
L endowed with a homogeneous metric given by the coset
b,=—zV3(r+1)(r—3l), (149  sO5)/SO3). One can view such metrics 8 bundles over
S*, where theS? fibers are themselves required to be only
wheredt=— 21 dr/b; . left invariant under the action of SP). The eight-

Taking q,=qs, our numerical analysis shows that Q|men5|onal metric ansatz therefore has(®@sometry, and

4,/q;=1 is a nontrivial parameter characterizing inequiva involves four functions of the radial variable; three charac-
2141= 3

. ; : terizing homogeneous “squashings” of ti88 fibers, and a
lent solutions, which are nonsingular and ALC when ; ; ) .
uH il ingu W fourth measuring the radius of t!8 base. We obtained first-

order equations for these functions, coming from the require-
1 q, ment of Spiti7) holonomy, and we then examined the pos-
- §<I<l' (150 sible solutions. We found by a numerical analysis that there
should exist a family of complete and nonsingular metrics
with a nontrivial parametex?<4, which we denote by,
The limiting cased,/q;=1 gives an AC solution, which is  that are topologicallyR? bundles ovet:P3. The parametek
in fact the previously knowfs, metric on the spin bundle of characterizes the degree of squashing of the minifi&i
S° [1,2]. The general family in Eq(150) includes the spe- polt, with A\2=4 corresponding to the Fubini-Study metric
cific explicitly known examplg€149 found in[13]. Convert-  gn CP3. This limiting case has SW) holonomy, and the
ing to the proper-distance coordinatewe find that the so- metric has been known for a long time, but the metrics with
lution (149 corresponds taj,/q;= — 15. A\2<4 are new. They are ALC, and on tt& fibers they
Our numerical analysis supports the perturbative arguexhibit a similar behavior to that seen in the Atiyah-Hitchin
ments given in[13], which indicated the existence of the metric inD=4.
nontrivial one-parameter family of ALC solutions that we  \wWe then considered eight-dimensional metrics of co-
have found numerica”y. By analogy with our notation for the homogeneity one whose principa| orbits are the Aloff-
new ALC eight-manifolds of Spi7) holonomy found i3],  wallach spacedN(k,1)=SU(3)/U(1),,. We began with a
we shall denote the explic, solution(149) of [13] by B;.  more complete and explicit discussion of the Einstein met-
We shall also denote the one-parameter family of nonsingurics onN(k,|) than has previously appeared in the literature.
lar ALC solutions with—3<q,/q;<—1; by B; , and those  Earlier results showed the existence of Einstein mefifds
with —5<q,/g;<1 by B; . It should be noted, however, gave an explicit result for an Einstein metric bifk,1) [8],
that there is no\; solution of R’ topology, which would be and gave a demonstration, based on the resul{8jofthat
analogous to the\g solution onR® found in [3]. This is  there exist two inequivalent Einstein metrics on eAk,|)
because, unlike the metrics studied8], where the princi- exceptN(1,—1) [9]. In this paper, we gave an explicit con-
pal orbits were spheresS() which have the possibility of struction, from first principles, of the two Einstein metrics,
collapsing down smoothly to a point at the original of spheri-deriving them from the conditions for wedk, holonomy.
cal polar coordinates, here the principal orbits &fex S2, These Einstein metrics form the possible bases for cones in
and so a smooth collapse to a point is impossible. eight-dimensional AC metrics of Sgif) holonomy. Al-
Note that in addition to the upper boud/gq,=1 when though we were unable to obtain the general solutions of the
we recover the original AC metric d&, holonomy[1,2] on first-order equations for Spi) holonomy, we were able to
the R* bundle overS?, the lower boundy,/q,=—3% corre-  find an isolated ALC solution explicitly for alli|). In gen-
sponds to the Gromov-Hausdorff limit in which we get eral, the metric will not be completely nonsingular, but rather
MgXx S, where Mg is the Ricci-flat Kéler metric on the will have an orbifold structure, of the local form
deformed conifold. The various nonsingular solutions are deR“/ZpXCPZ, wherep=|k+1|.
picted in Fig. 4. We also studied the solutions of the first-order equations
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for N(k,l) principal orbits numerically, and in certain pertur- G.W.G., C.N.P. and the Ecole NormaléM.C., C.N.P) for

bative expansions, and found evidence for the existence dfospitality at various stages during this work. M.C. was sup-

complete and nonsingular metrics, both AC and ALC, for allported in part by DOE grant DE-FG02-95ER40893 and

(k,1). NATO grant 976951; H.L. was supported in full by DOE
We then turned our attention to seven-metrics of conomogrant DE-FG02-95ER40899; C.N.P. was supported in part by

geneity one withG, holonomy. We studied the first-order DOE DE-FGO03-95ER40917.

system for the case where the principal orbits are the flag

manifold SU3)/[U(1)XU(1)]. This can have three metric APPENDIX A: THE GEOMETRY OF SU (3)

functions depending on the radial variable. We showed that

the first-order equations implyir@, holonomy reduce to the For a better understanding of the global structures of the

same ones that are encountered in one of the first-order syAloff-Wallach spaced(k,l) =SU(3)/U(1),, it can be use-

tems for hyper-Khler Bianchi type IX metrics ilD=4, and  ful to have available an explicit parametrization of the group

hence they can be solved by the same method that was us&§/(3). One may parametrize any ) group elemeng in

in [11]. As in that case, it turns out that the resulting metricsterms of generalized Euler angles as

are singular unless two of the metric functions are equal, in

which case the system reduces to the already studied one g=UestUelV32Ner, (A1)
whose solution is the complete nonsingu&r metric on the
R® bundle of self-dual two-forms oveiP? [1,2]. where

A secondG, example arises if the principal orbits are
CP3, described as a? bundle overS*. Only two metric
functions are possible in this case, describing the radii of the

U = (122 3g(i/2M20g(i12Ns0.

S? fibers and thes* base, and the system reduces to the one DEe<i/2>ksrﬁe<i/2>>\z~ﬂe<i/2>hazb, (A2)
that was solved iifi1,2], giving the nonsingular metric on the
R® bundle of self-dual two-forms oves". where(6,¢,4) are Euler angles for S@), (6, ¢,%) are Euler

A third possibility is when the principal orbits are angles for another S), and\, are the Gell-Mann matri-

can now write an ansatz with nine functions of the radial
coordinatg 12], although it is not clear that a first-order sys- O<f<m O<f=m, O=¢<in (A3)
tem of equations foG, holonomy can arise in this case. A ’ ’
simpler system with six functionghree measuring the radii o the “latitudes,” while the azimuthal coordinates have the
of the squashe8® base, and three measuring the radii of theperiods
squashed® fibers was also considered {1.2], and in[13],
for which a first-order system implyinG, holonomy exists. Adp=2m, Ay=4m, Ap=2x
Our numerical investigations in this paper lead to the con- ' ’ ’
clusion that the solutions will be nonsingular only if pairs of
metric functions on the base and fiber three-spheres are set
equal. This results in a four-function system, whose generaé
solution has not been found analytically. An isolated ALC > ; : ]
example was found ifl3], and arguments for the existence trivial, and_errors hav_e F’CC“Ffed_ In various pu_bllshed Papers,
of a nontrivial one-parameter family were presented. weVe S.ha" give an ex.pI|C|t de.nvatllon of the periods tielow.

It is useful to define left-invariant one-fornss ands; for

have analyzed the system numerically in this paper, and w . i
also find evidence for the existence of such a family of nonﬁ‘e two SU2) subgroups in the standard way:

singular solutions.

Note added After this paper was completed, the paper U-ldu=
[51] appeared, which also studies the solutions of the first- 2
order equations ifl0] for metrics of Spii7) holonomy with o
N(k,l) principal orbits. This has an extensive overlap with 91Ving
our results in Secs. IlIB and llIC. In particuld51] also ) ]
obtains the explicit ALC solution§75), and discusses the sy=cosydf+singsingde,
existence of more general classes of ALC metrics.

AYy=4m, Ar=2m. (A4)

ince the determination of these periods is slightly non-

N\iSi, UfldU=—)\{§i, (AS)

s,=—siny dh+cosysinfddg,
ACKNOWLEDGMENTS S=dy+cosfdo, (A6)
We are grateful to Michael Atiyah, Andrew Dancer,

Krystoff Galicki, Nigel Hitchin, Simon Salamon, James and similarly fors;. Calculating the S(B) left-invariant
Sparks, Paul Tod, and McKenzie Wang for helpful discus-one-forms X, defined byg~'dg=(i/2)A,X,, and taking
sions, and to K. Kanno and Y. Yasui for pointing out an errorv,;+iv,=X;+iX,, o1+io,=X3+iX5, 21+i2,=Xg
in the original Egs.(15). Subsets of the authors thank +iX5;, together witho3=X3; andog=Xg for the two Cartan
DAMTP (C.N.P), the Benasque Center for Scien@é.C., subalgebra one-forms, we find
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vi+iv,=i8;+3,+ € i cosé[(cosg+i sing cosh)s;
+(sing—i cos¢ cosh)s,]

+1(3+cos 2)siné s},

_Ie(|/2)¢+ (3i12)7 2e<|/2)¢

otio,

X C0oS= ¢(d§— sin 2¢ s3>

= 1.
+e*<"2)¢sin§sin§ 6(s;+is,) |,

'S i (i) P+ (327 oa(il2)p
3.+id,=ie 2e

><S|n— (dg— sin 2553)

o~ 1.
—ell2¢ siné cos 0(s; +isy) |,

03=35+COSESINB(SiNp S;— COS S,)

+2(3+cos %)cosf s;,

0'82\/§(d7'—%sin2§S3). (A7)

PHYSICAL REVIEW D65 106004

dsi=1v2+ v5+ 0%=(t,+cosé s;)?

+(t,+cosés,) 2+ [T+ 1(3+cos 2)s5]2.
(A10)

The metricds] is four times the standard Fubini-Study met-
ric on CP?, and since its principal orbits at fixegdare SU2),
this proves thaty and ¢y must indeed have the periods given
in Eqg. (A4). The eight-metric

dss==1v2+v3+ o5+ 0s+ 02+ 05+32+33

= (t,+cosés; )2+ (T,+ cosés,)?
+[T5+ 3(3+cos %)s;]?
+3(d7— 5 Sir? £s3)2+ 4(dE2+ § sir? &(s]+5)
+1 sir? £ cog ¢£s3) (A1)

is then the canonical bi-invariant metric on &) viewed as
a U(2) bundle overCP?.

If we project the metri¢A11) orthogonally tod/dr, which
amounts to dropping the termé, we get a metric on the
Aloff-Wallach spaceN(1,1), viewed as an S@) bundle
over CP? (see[9]). The fact that the bundle is $8) and not
SU(2) means thatp and i must indeed have the periods
given in Eq.(A4). [We see from Eq(A1l) that we have an

SQO(3) bundle as opposed to $2) sinced has period 2]

For some purposes it is highly advantageous to introduce

instead right-invariant one-forms; for the second S(2)
group, defined byU U ~1=(i/2)\1;. In terms of the Euler

angles @,,v), these are given by
71=c0s¢ df+sinp sin dy,

t,=sing do—cosp sinddiy,

t,=d¢p+coshdy. (A8)

The SU3J) left-invariant one-forms/,, v,, andoj then be-

come

vy +iv,=el¥i(cosp+i sind cosh)[T,+cosés, |
+i(sing—i cos¢ cosh)[t,+ cosés,]
+sin@[t5+ 2(3+cos %)s;]},

o3=sin0{sing[t,+cosés;]— cosg[ t,+ cosés, |}

+cosf[ T3+ 1 (3+cos 2%)s,]. (A9)

From these results, it is straightforward to show that

dsi=02+05+32+32=4[d&?+ % sir? &(s2+53)
+1sir? £cod ¢s2],

APPENDIX B: THE ATIYAH-HITCHIN SYSTEM
AND THE RICCI FLOW ON SU (2)

The Ricci flow equations, which are encountered when
studying the renormalization group equations for the target-
space metri@;; in a sigma model, are

dg;

- (B2)

ij o
whereR;; is the Ricci tensor of;; . For metrics of the form
d$?=Ac?+Bo3+Co?, (B2)

the nonvanishing components of the Ricci tensor in the triad
(01,05,03) are

R;1=3A[A?—(B—-C)?],
Ry,=3B[BZ—(C—A)?],
Rss=3C[C?—(A—-B)?]. (B3)

The Ricci-flow equations are therefore
—-—=A?-B?-C?+2BC, (B4)

and cyclic permutations.
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If we drop the terms involvind in Eq. (8), we get the
Atiyah-Hitchin system

Equations(B6) giving the Atiyah-Hitchin metric can be
solved by defining a new radial coordinaterelated toz by
dr=u?d#, with u being a solution of

2 2
ai—(az—ag)

M v
243 W + %U Coseé r=0. (Bg)
. aj—(ag—ay)?
= T aan It can then be verified that the solution is
391
a2—(a;—ay)? w;=—uu’ —ju?coseq,
A= ——(——— (B5)
a1a;
w,=—uu’+ 3u?cott, (B10)

It is a curious fact that the Ricci flow and the Atiyah-Hitchin
system go into themselves under the identificattona,,
B=a,, andC=aj, together with a suitable change of pa-
rametrizationdt=2a,a,a; du. As far as we are aware, this
coincidence between first-order equations coming from a suahereu’ meansdu/dr. The correct solution of EqB9) to
perpotential and the Ricci-flow equations occurs only in thischoose foru is
case. It follows from the work of Atiyah and Hitchin that the

Ricci flow is completely integrable in this case, and in what

wz=—uu’+ 2u?coseaq,

follows we shall review the standard way of solving Eq. u=+2sinrK(sinzr), (B11)
(B5).
On begins by defining a new radial coordinageby dt
. : . . where
=a,a,azdyn, and also introducing new variableg as in
Eqg. (13). One then has
" jw/2 d¢
KK=| —a—a—1p. B12
d(w;+ws) d(wy+wsg) (k) o (1—K®sir? ¢)1? (812
T: WiWo, T=4W2W3,
APPENDIX C: PROOF OF POSITIVITY OF Q(A,B)
d(W3+W1):4W3W1. (B6) In Sec. A2, our proof that the conditions for Einstein
dn metrics onN(k,l) implied precisely the same set of solutions

It has been observed that there is 8 &R) symmetry of
this system; namely, letting, b, ¢, andd be constantsthey
are nothing to do with the previous metric functipnié we
define transformed variables in place ofw;, and a trans-
formed radial coordinaté in place of 5, according to

_anpthb c

1
= ntd’ w; = svi, (B7)

¢ =7 2(cptd) | (cy+d)

wheread—bc=1, then Eqs(B6) become

d(vi+vy) d(vptvg)

d—f_ U1Uop, d—g_ UoU3,
d(vs+vy)

—vzgvl =48&30;. (B8)

as the ostensibly more restrictive conditions for weak
holonomy depended upon the assertion that the function
Q(A,B) in Eq. (60) is nonvanishing for all real positivé
andB. We present a proof of this property here.

The sixth-order polynomialQ(A,B) occurring in Sec.
IIIA2 is given by

Q(A,B)=5A%—B6A>—5A%+ 12A%—5A%— 6A+5B%—6B°®
—5B*+12B3—5B%2—6B— AB(6A%—42A3
+36A%+36A+6B*

—42B%+36B%+36B—42) — A?B?(5A+ 36A

+5B2%+36B—12AB—130) +5. (C1

In order to show that all solutions of the Einstein equations
for the seven-dimensional(k,l) spaces are also solutions of
the weakG, holonomy equations, we need to establish that
Q(A,B) is nonvanishing whenevek and B are both posi-

This allows one to transform a given solution into anothertive. To do this, we defind=x+y, B=x-vy, in terms of

using SL(2R).

which Eq.(C1) becomes
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Q=(4x?+1)(12x*>— 12x+5) + 4(16x*+ 48x3— 80x>

+36x— 13)y?+ 64(4x%— 6x+3)y*. (C2

Note that sincé andB are positive, it follows thax>0, and
althoughy can have either sign, it appears only yia and
y*. SolvingQ=0 for y?, we get

_ 13-36x+80x*— 48¢ — 16x*+ (1-4x?) I
B 32(3—6x+4x°) ’
(C3)

2

y

PHYSICAL REVIEW D65 106004

whereJ=16x*+ 96x3— 200+ 12x— 71. Fory? to be real
we must therefore havé=0 or x=3. To haveJ=0 (andx
positive we must havex=1.2873 . . . . Now thecoefficients
of y® andy* in Eq. (C2) are positive for all reak, and the
coefficient ofy? is positive for allx>0.8983% . .. . ThusQ
is positive for allx that satisfyJ=0. The casex=3 implies
y?>=1% and hence 4&,B)=(1,0) or(0,1), both of which vio-
late the requirement ¢k andB both being positive. Thus we
have proved thatQ is positive (and hence nonvanishiing
wheneverA and B are both positive. This completes the
proof.
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