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Modified dispersion relations from closed strings in toroidal cosmology
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A long-standing problem of theoretical physics is the exceptionally small value of the cosmological constant
A~10*?° measured in natural Planckian units. Here we suggest how this tiny number might arise from a
toroidal string cosmology based on closed strings. In this picture the dark energy would arise from a correlation
between momentum and winding modes that for short distances has an exponential fall-off with increasing
values of the momenta. The freeze-out by the expansion of the background universe for these trans-Planckian
modes might be interpreted as a frozen condensate of the closed-string modes in the three noncompactified
spatial dimensions. Our qualitative arguments are heuristic in nature and published only because they may
suggest an improved treatment of the connection between strings and cosmological expansion.
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[. INTRODUCTION the momentum and winding modes of the system described
in Sec. Il for the case of 3 expanding spatial dimensi@ms
In this work we will attempt to make a qualitative argu- the TP toroidal topology. The string scale is taken as the
ment about the origin of dark energy from string theory. Thenatural UV lattice cutoff scale of the theory. The renormal-
transition from string theory to conventional cosmology is ofization group equation€RGE) of the coupling constants for
importance not only to theoretical physics in general but tahe winding and momentum modes describe the evolution
inflationary cosmology in particular. Corrections to short dis-from early to late times of their entanglement. BasedTon
tance physics due to the nonlocal nature of strings may corduality the whole spectrum is obtained by exchanging mo-
tribute to dark energy. The possibility to detect their signa-mentum to winding modes and— R ™. Their coupling is
ture observationally is very intriguing. In Refl] it was  strong when the radius of the torBsis of the same order as
shown that a nonlinear dispersion function modifying thethe string scale/a’, i.e. during the phase transition from a
frequency of the trans-Planckian perturbation md@dsan  winding dominated universe to a momentum mode domi-
produce the right contribution to the dark energy of the uni-nated universe. Because of the expanding background, we
verse[3]. The physics mechanism that gave rise to possibldave a nonequilibrium dynamics and calculate the effective
dark energy was the freeze-out of these ultralow frequencgction by splitting our modes into the open system degrees of
modes by the expansion of the background universe. Supefreedom(low energy modes, mainly momentum modaad
string duality[4] can be invoked to justify the dispersion the environment degrees of freedaifmigh energy modes,
function. This work attempts to make more plausible, in anmainly winding modes The coarse graining is performed by
heuristic and qualitative fashion, this connection. integrating out the environmental degrees of freedom. The
In Sec. Il we review some preliminaries of the scale factora(t)=R(t) serves as the collective coordinate
Friedmann-Robertson-Walk€FRW) cosmological solutions that describes the order parameter for the environment de-
found for string theory in @&-dimensional toru¢5—8]. The  grees of freedom. The effective action calculated in this way
guantum Hamiltonian from closed string theory obtained incontains the influence of the environment at all times in a
[9] by using the correspondence principle between string andystematic way and the coarse graining process encodes the
guantum operators, is reviewed in Sec. lll. Although thedispersion function and corrections to short distance physics
background is an FRW universe, it is globally nontrivial in due to the correlation between the two types of modes in the
[9], thus it allows two types of quantum string field configu- system and environment. This procedure results in the RGEs
rations, twisted and untwisted fields. for the coupling constants that offer information about their
Based on the equivalence between Euclidean path integralinning to trivial and nontrivial fixed points at early and late
and statistical partition functions, we perform in Sec. IV thetimes, therefore the flow of one family of Lagrangigesing
calculation of a coarse-grained effective actid®,11 for  theory phasgeto another family of Lagrangians at late times
(conventional 3-1 quantum theory Results of this non-
equilibrium phase transition are summarized in Sec. V with a

*Email address: bastero@cibs.sns.it discussion about the possibility of their observational signa-
"Email address: frampton@physics.unc.edu tures through measurement of the equation of state. In this
*Email address: mersini@cibs.sns.it. section we also briefly touch upon the issue of the two field
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configurations in a globally nontrivial topology and the in- equations of motion of the bosonic string in background

stabilities in the theory arising from their interaction. A de- fields are obtained from the following actiofi4]

tailed summary of the main coarse-graining formulas and

procedurg 10] needed in Sec. IV, is attached in the Appen- 1 )

dix. In essence, the putative dark energy contribution arises' = KJ d*o\g

from the study of the UV behavior of the correlations with

environmental modes. @
where g, is the two-dimensional world-sheet metric, and
R the world-sheet scalar curvature. The background field

Il. TOROIDAL STRING COSMOLOGY equations are obtained by imposing the condition that the

We consider the string cosmological scenario proposed b{€ory be free from Weyl anomalies. To lowest order in per-
Brandenberger and Va#8V) [5,7,12. Strings propagate in turbation theory this leads to the equations
compact space, a box with spatial dimensions and periodic

1
9""G ,,(X) i XH 3, X" + Ea’d)R(z) ,

a/

G _ —
boundary conditions, th&® torus. It was argued thd6] a Buv=Ruy+ V.V, 2 =0, &)
thermodynamic description of the strings with positive spe- 5
cific heat is well defined only when all the spatial dimensions go= _R+(Vd)2— 2V2D =0, 4
are compact. 3’

Let us begin with the universe placed iff& box with a
size of the order of the string scale, that we are taking to b&sing the metric given in Eq1), they reduce to
the Planck scale. In such a space, string states also contain
winding modes, which are characteristic of having an ex- . i
tended object like a string, “winding” around the compact b i R0 )
spatial dimension, besides the usual momentum modes, and '
oscillator modes with energy independent of the size of the

box. The energy of the winding modes increases with the E+ ﬁ_(j}&: 0, (6)
size of the box asvR, while the energy of the momentum R {7 RR Ri
modes decreases agR. The spectrum is symmetric under o
the exchang®«+ 1/R and m«w. This symmetry known as . 1. RR; d—26

- : -2+, == @)
T duality [4] is not only a symmetry of the spectrum but of 2 < RR, 3a'

the theory.
The BV model[5] argues that if the universe expands\yhenD =25, the solutions obtained 6] are
adiabatically in more than 3 spatial dimensions, it would not

be possible to maintain the winding modes in thermal equi- e PMotP, (8)
librium. As their energy density grows with the radius, their
number would have to decrease, for example through anni- R;(t)ectPi, 9

hilation processes. But typically strings do not meet in more

than 3 spatial dimensions and do not interact with each othekvith the constraints

therefore the winding modes fall out of equilibriur3]. In 5 5

summary, their growing energy density will tend to slow S op2=1, S p-i-

down the expansion of the universe and eventually stop it. “~ Pir=1 =4 Pi=L17P

But if the universe starts to contract, the dual scenario of the

momentum modes opposing contraction would take plac@lote that these solutions are found in the absence of matter

and the universe may oscillate between expanding or corsources. In general the back reaction of the matter action of

tracting eras. In what follows we use this argumenf&fto  the strings inT® alters the solutions for the background

justify the assumption that onlp =3 dimensions of thd®  geometny It is clear that we can have an arbitrary number of

torus will expand to create an FRW universe. compact spatial dimensioti, with p;<0, that are decreas-
Cosmological solutions for an arbitrary number of aniso-ing with time® and D—D, expanding spatial dimensions

tropic toroidal spatial dimensiors> were found by Mueller  with p,>0. Among the many solutions found ] we select
in [6]. He studied the cosmology of bosonic strings propa-
gating in the background defined by a time-dependent dila=—"———

(10

ton field, ®(t), and space-time metric The antisymmetric tensor field is taken to be zero.
2See[7,8] and references therein for the geometry solutions in the
D presence of a matter action. Inclusion of matter sources alters the

_ v _ A2 2 2 solutions of[ 6] due to the back reaction of the winding modes, such
dsﬁ—GW(X)dX"dX =-dt +i21 AnRi(DAXT. (D) that the scale factor approaches asymptotically a constant value at
late times.
3We do not address the concern that the time dependence of the
The radii of the torusR;(t), become the time-dependent compactifiedR; endangers the constancy of the dimensionless pa-
scale factors, and the spacetime dimensiot=isl+D. The  rameters in thdd =3 theory.
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the solutionD — D=3 that, although is not unique, is justi- The solutions in Ref.6] show thatp, andp. depend on the
fied by the BV argument. The assumption that our universe islimensionalityD in an interesting way. There are a plethora
expanding in only 3 spatial dimensions, with the remainingof possible solutions but if we assume, for example, that the
D -3 being small and compact, as well as considering alilaton is time-independent and the compactification is iso-
constant dilaton fiefi(p=0), is consistent with Mueller's tropic we find that for 4&D<w, then 0.5<p,<1//3
solutions Eqgs.(10). The issue of stabilizing the dilaton is =0.577. Let us tak® =4 where the scale factor behaves as
beyond the scope of this paper, and we assume that the dila-radiation-dominated universe; if, in fa@=5 we can as-
ton has acquired a mass and become stable at some fixedme that theD —4 additional dimensions have-<pc to
value. It is also assumed that the back reaction of the matte{chieve the same result. In this cape= —0.5. Here we do
string sources on the backround geometry is small enoughot, however, need to specialize to a particular solution.
such that the deviations from the FRW metric, EL0), can What we have in mind for the dark energy is the correla-
be neglected. tion of momentum tawinding string modes. The question is,
Due to the toroidal string cosmology, the three expandingiven the well-known form for the kinetic energy of these
dimensions contain both types of modesomentumand  strings, e.g[15], how to describe best the interaction be-
winding propagating in the 3 1 FRW spacetime. The num- tween the winding and momentum modes. Some aspects are
ber of winding modes at each stage of the evolution of thexddressed ifil5] which focuses on the smallness of tempera-
universe is determined by the dynamics of the backgroundyre (T/T,). For temperaturd@ very much below the Hage-
In the next section, we touch base with quantum field theor)dom or String temperaturg, we expect that on|y very small
through correspondence principle between string and quafyinding numbersv;=0 or 1 in the compact dimensions are

tum operators, in order to use coarse graining techniques fq§f any significancé15]. Similar arguments apply to the mo-
studying the influence of the winding modes on the momenmentum modesn; for the time-reversed case.

tum modes as the Universe expands. Let us consider the small paramet#t), taken to be
Il. QUANTUM HAMILTONIAN FROM CLOSED STRING Rc -
THEORY o= E~tpc Pu, (14

.Let us. conS|der-the By_mode{ﬁ] of g D-dlmensmn.al For the cased =3 (d=4), for example.d~t~1~(T/T,)?
anisotropic torus with radiuR;, by mcludmg the dynamics ;14 is an extremely small number(0 %% at present. The
of both modes: momentum modes,; =m/R; (wheremis  point is that in thes—0 limit these modes are in separate
the wave number and winding modes with momen{@;;  spaces and for very smali are therefore expected to be
=wR/a’. The dimensionless quantity for the radiusRs  highly restricted. The compactified dimensions can be inte-
=R /\Ja’, wherea' is the string scale. Based on the argu-9rated out, and we are left with the momentum and winding
ments reviewed in Sec. Il, wehoosea cosmology with three Modes in the remainin® =3 spatial dimensions.
toroidal radii equal and largR>1 in units of the string or The partition function for this system was calculated,
Planckian scale, with the otheb(-3) toroidal radii equal ~from first principles, by summing up over their momenta in
and smalRz<1. Here the subscrif refers to compactified [15]:
dimensions. ThenR(t) becomes the scale factor for the 3
+1 metric in conventional FRW cosmologR(t) =a(t),

while R¢ corresponds to the radius, in this factorizable met- Z:; e Moco, (19
ric, of the D—3 compact dimensiong; that decrease with
time,

wheren,, is the number of strings in state with energye,,
dsj = —dt?+47R%(t)dx} +47RE(1)dZ

2
m -
=a(7)?[—dp*+dy’]+dsp . (12) €,=Po= \/(ﬁ +(WR??+N+N-2, (16
Using the string toroidal solution ¢B] the time dependence ) ) -
of these radii is and o counts over fn,w), with the constraintN—N=mw
for closed strings whertl andN are the sums over the left-
R(t)= atPu (120  and right-mover string excitations, respectively. By now, in

Eq. (16), we are considering only the large 3 spatial dimen-

sions. The string state can also be described by its left and
right momentak, =p;+p,, Kg=p1—p,. The string state

for left and right modes can be expanded in terms of the

“The authors of7] argued that a constant dilaton background mayc_rea,tlon arld annlhllatlpn Operiitmffﬂ’ n W'th, hllgher ex-
not be consistent with high temperature phase of string thermo- CItation string states given dy=2,_,a_nay, (similarly for

dynamics. N), and string energy.q+Lo=p2+p3+(N+N—2)/a’.

Rc(t):actpc. (13)

106002-3



MAR BASTERO-GIL, PAUL H. FRAMPTON, AND LAURA MERSINI PHYSICAL REVIEW D65 106002

We would like to write the path integral for this configu- to those of Eq.(17), for the classical string and the three
ration in terms of quantum fieldsThe path integral is cal- string coupling level. We take this as an indication, in the
culated from the Hamiltonian density. In order to use thesubsequent sectiofif the exact solution were known to all
correspondence between the Euclidean path integral of therderg, that a quantum Hamiltonian analogous to ELj7)
persistence vacuum amplitudéinouty|?> and the partition for closed strings on a torus, similarly containing only quar-
function Z, we need to write a Hamiltonian density over the tic terms as suggested B9], exists for our present case of
fields in configuration space in such a way that its Fourier(T3) X (Tp_3) X (time) and focuses on the uncompactified 3
transform ink space corresponds to the string energy expresspatial dimensions.
sion Eq.(16). The Hamiltonian depicted in E17) is for a static back-

Thus in writing a coarse-grained effective acti@GEA), ground, i.e. a constant scale fac®(t). In the next section,
the kinetic terms are unambiguous while for the interactionwe base our calculation in the coarse-grained effective action
terms we must appeal to simplicity and the requiremert of (CGEA) formalism where the dynamics of an expanding
duality. Closed-string field theory provides guidance, since irbackground is replaced by scaling on a static background.
e.g.[16] truncation at a quartic coupling can be sensible, and Thus Eq.(17) which applies to a static backgroupak in
this will lead to a CGEA which is renormalizable and satis-Eq. (16)] can be generalized to a cosmologically-expanding
fies useful RG equations. background as in Eq11) by using this technique of rescal-

Generally, closed string field theory contains couplings ofing, as we shall discuss in the next section. This strategy is
all nonpolynomial orders. In a semiclassical approximationnecessitated by the absence of an exact string solution in the
we may restrict to genug=_0 since the genug contribution  time-dependent background.
is proportional toA9 [17].

The quantum Hamiltonian is in any case known for the

classical string in axisymmetric or toroidal backgroupék IV. COARSE GRAINED EFFECTIVE ACTION  (CGEA)

They explicitly calculated the quantum Hamiltonian and AND RGE'S
demonstrated the correspondence principle between the A. General case of thed=D+1 Universe
string_operatorsl_o_, Lo and quantum field operators in the oy system of winding and momentum modes is de-
form (in the notation of 9]) scribed by nonequilibrium dynamics due to the expanding
s background spacetime. All the information about the evolu-
H=Lo+L, tion of these modes will be contained in the effective action.
1 1 Thgrefore we need to write the.path integral in the co_nfigu—
—Za'| —E24+p2+ 2(Q2 +Q?) ration space of the quantum fields in order to obtain the
2 2 effective action. This information must be extracted from the
~ , torus analogues of the quantum mechanics Hamiltonian of
+N+N-2¢o—a’[(q+)Q+ + BE] Eq. (17) such that its Fourier transform in momentum
1 space recovers the string energy spectrum(Eg). Correla-
- a’[(q—a)Q_+aE]JL§a’q[(q+2,8)J§ tion functions are obtained by using the correspondence be-
tween the Euclidean path integral of the persistence vacuum
+(q—2a)32+2(q+ B— a)Ird, ] 17) amplitude |(in|outy|? and the partition functiorz. All the

string quantum operators below are promoted to quantum
S ~ field operators with the corresponding Hamiltonian density
Lo—Lo=N—=N-mw (18) H(t,x) in configuration space derived from the quantum
. . . string HamiltonianH(t).
WhereJRvL are pll|near quadratic operators in terms of cre- Tﬁe following caI(Cl)JIations are done in the conformally
ation ang~ annihilation operators and the higher string Osc'li‘lat backgrounl Eq. (11), through the scaling of the fields
lators N,N contribute to the string mass. Therefore e gng operators with the conformal facta¢»). The momen-

term would be a quartic interaction in terms of creation andym field ¢1(R,x) and the winding fields,(R,x) are defined
annihilation operators. by the relation

This particular solution is for a cylindrical topology
(Melvin mode) where the uncompactifiedt; and x, are ipix 3
written in polar coordinates;+ix,=pe'? and x; is also ¢i(x):f e ¢i(p))d°pi,
uncompactifiedbut could be compactified along with addi-
tional similar coordinatgs together with time and one addi-
tional compactified dimengioyn;(O,ZWR). AIt_hough an ex- j |V¢i|2d3X:J dgpipizdh(pi), (19)
act solution for the Hamiltonian of the string matter in a
toroidal background is not yet known, a quartic potential
energy was advocated and found & by arguments similar where

Below we use quantum string equations under the assumption®We do not address issues of the matter back reaction on the
that the dilaton is massive and stable. geometry. They are treated [id,8].
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V=Rdldx=dl dy, (20

andp;=pq, p,. Let us also define two new fieldg; (R,x)
andyr(R,x), with moment&k, , kg that are the left and right

PHYSICAL REVIEW B5 106002

Hs= |V\I’EN|2"‘V‘I’ENS(V‘I'EN"'m(2)|‘I’EN|2"‘91|‘I’EN|4

combinations of the Kaluza Klein momentum and winding With

modes

UL (RX) = ¢1(R,X) + ¢2(R,X), (21)

YR(RX) = ¢1(R,X) — ¢2(R,X). (22)
These fields live in the expandin@+1) spacetime dimen-
sions. Similarly there is another set of fields, , that are
functions of the compact dimensiomg. Their energy con-
tribution to the total Hamiltonian density Ec(p,) =Aap2

+(02—297) | WX P epl?, (26)
0 1/2
X=\12 o] (27)

The system is known as the dual momentum-space lattice,
and for g,=2g, reduces to the XYZ model of condensed
matter. Let us for simplicity limit to the XYZ model case,
0,=204, for the rest of this paper.

These periodic lattice systems studied ih B dimensions
in terms of Bloch wave functions have a solution with re-

whereA, is a constant parameter with dimensions of inversespect to lattice translation invariance, exj(), with the lat-

volume of the compact space, apg are the momenta of
these fields in the extra compact dimensions, witlunning
over theD — 3 dimensions.

tice spacing 1" equal to the string scalg/a’. The interac-
tion term, in the tight-binding approximation, lifts the
degeneracy between the energy eigenstates due to the leak-

The Hamiltonian density ansatz that would describe the,e or tynnelling of the wave function from one lattice site to

energy of our two string states in the#=3 expanding di-
mensions with energii =L+ L,, including the oscillators
from string’s higher excitationsN+N—2)/a’, is similar to
the Hamiltonian of spin waves in a periodic lattic@he

Ginzburg-Landau Hamiltonian for a Heisenberg magnet ob-

tained in[9] by means of coformal field theolCFT) bears
similarity with A ¢* quantum field theory in a well-known
manner. Our lattice spacing is given by the string sgalé.

Therefore the Hamiltonian density can be written for this

dual lattice in terms of wave functional “spin” fields
Y (R, X), ¥r(R,Xx) of Egs.(21), (22) as follows:

H="Hz+Hc, (23

with

Ha= |V |2+ |V bl + |V g ||V ool + mi(| |2+ | el ®)
+ 01|+ [rl D) + 9ol 1 vl %, (24)

where the fields), , ¢ are expanded in terms of the mode
functionsu,, ,u,,

JL=3upb,Furb’,  yr=3u.b,+u*b’, (25

andb,,,b, are the normalized quantum creation and annihi

lation operators ofy,,,«,. The commutation relation for the
unnormalized operators are such tHat,,a,,]=®+nm
with - the frequency of left and right moving modes.

The periodic lattice conditioN—N=mw introduces an
interaction term in the Hamiltoniar{; of the form
Vi Vig. In terms of the 2-component statdgy
= (¢ ,¥r), the Hamiltonian reads

the neighbor site. As a result the gap energy produced be-
tween the grouné¢bound state and higher excitation states is

p?Ap=p?lcoq20)|=p*2cos(6)~1|, (28

in which

2
pl=pVa’=a'(pi+p3)= \/(g) +(WR)% (29

and 60— 6+ipl. Therefore,

A, <2 cosk(pl)—1. (30
The first term inf is a pure phase of rotation of the “spin-
wave” in the dual lattice, but the second term describes the
tunnelling of the wave function to the nearest neigHtbne
gap energy of Eq(28) introduces a correction to the kinetic
energy, such that in momentum space the Hamiltonian reads
Ha=2,p?|Wen|?+mj| Wen|2+ 01| Wen|®, (31
with z,=1+A,. This correction contributes to the wave
function renormalization constant of the figld:y. We can
then make a partialfinite) renormalization of the Hamil-
tonian in order to recover the canonically normalized kinetic
term, such that

Ven—Ven=2Vey, (32)
2
- m
mi—m3= z;lm§=1+—0Ap, (33
91—91=2, 1. (34)

"Torus is obtained by identifying the first and the last lattice sites, ©In condensed matter this is known as the Coulomb dipole type of

thus the periodicity.

vortex interaction.
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The Hamiltonian density; finally reads We would like to find a simplified description for the
dynamics of our nonequilibrium system, consisting of both
Ha= |V enl?+ M| W en|?+9q Tenl®. (35)  winding and momentum modes, while incorporating the
back reaction of the short wavelength modes to it, in the
The action inD dimension therefore is reduced (3-1) dimensions. This is done by carrying out the

necessary steps of coarse graining which are the following
_ (D-3) 3 ~ [10]: (1) distinguish the system from the environme()
So j dtRcd () d"x (Ha[ Ven(X)] coarse grain the environment, arid measure how the
coarse grained environment influences the system in provid-
+Hc[Wea(2)]) (36) ing an effective dynamics for our reduced system. As we will
see below, the environment, consisting of the short wave-
_ 3 F length modes, has a time dependent order parameter due to
ch A AtdXHa[ W en()] the expanding background universe, thus the need for using
nonequilibrium dynamics methodS.
+VUJ Redtd® 3zH[ W 4(2)], (37
B. The D=3 Universe

whereVc (Vy) is the volume factor obtained from integrat- At this point, in evaluating the reduced 3 dimensional
ing out the contribution from the compadD - 3) (uncom-  partition functionZ, we want to separate our modes into

pach dimensions. The partition functiad is then system (S) + environment(E) degrees of freedom, and
coarse grain by integrating out the degrees of freedom for the
VAYAVAY (38)  environment. This amounts to finding out the back reaction

of the coarse grained environment on the system, and even-

_ vy | Redtd® 323w, ] tually leads to the RGE’%l. We use many.of the _results and
Ze j DV e Uf ¢ ieteal, (39 the approach dfL0] in what follows. We will consider as the
environment all the short wavelength modes with momenta
Z;= f DWep\e Ve f a()dtdHa Tenl (40) A 1
° =N (E):  —<pE=—[(M/R)2+(WR)Z[¥2<A, (44)

b Ja'
The contributionZ., to the path integral is easy to calculate
since the integral over the compact dimension fields is guhere the cutoffA=(a') %2 is the string scale because

simple Gaussian: (a')Y? is identified with the lattice spacind, and b
=a(t)/a(ty) is the coarse grained scaling parameter, where
7 :j DV e‘VUf despaAa\pcvapiq,CYa:H ™ to is the initial time. The scale facta(t) plays the role of
¢ ca a AV, the collective coordinate describing the environmental de-

(41 grees of freedom. Time in this procedure is playing the role
of a scaling parameter and dynamics is being replaced by
The contribution of these fields to the path integral is proporscaling [10]. This is an artificial procedurgknown as
tional to the volume of the compact spaR@ they live in;  Kadanoff-Migdal transforni18]) that relates the microscopic
thus their contribution is relevant only around the string scaleand macroscopic properties of a system based on the exis-
because at late times the volume of the compact metric dgence of scaling properties of the system in the infrared limit.
creases rapidly with time. In either case their contributionThusa(t) is treated simply as a parameter while carrying out
rescales the normalization constant of the path integrakthe coarse graining in this “static limit,” 3-dimensional
which we will allow for the moment to be arbitrafysuch  Minkowski field theory of the foliatiora(t) = const hyper-
that surface at each,=ty+nAt.
The system modes are the ones with

Z=N’f D\’I’ENe_ch a(t)dtd3xHa[ Py (42) A

(9): pS<y- (45)

=N’'Z5. (43)

The volume of the compact dimensionsg, is roughly of 1%A whole program with a detailed treatment of the conceptual

order unity in terms of string units, and it can be reabsorbeding formal techniques of coarse-graining has been pioneered and

into the parameters offs. developed by Hu and collaborators[it0]. They showed that for a
special class of expansion, the dynamics of spacetime can be
equivalently replaced by a scaling transformation with time playing

Varying the action with respect to the metric care should be taketthe role of the scaling parameter.
to account for the effect of the compact metric volume on the New- The running of the coupling constants with time depends on
tons constant of the reduced{3) metric. how one selects the environment and the system.
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From the above definitions of system and environment, Egs. S SV I=STTI+AST . 54

(45) and (44), at initial times wherb~1 we havep<A/b erfl Vs] =S Ws]+ AS V] ®4

thus all our modes, momentum and winding, are in the syss ¥ ] is the portion of the action that all along depends
tem; but at later times wheb=1 more and more winding only on the system variables. The tet results from the
modes systematically transfer to the environment because thgieraction of the system with the environment, but it de-
condition of Eq. (45), p=(1Na")[(M/R)*+(WR)*I">  pends only on the system variables after the coarse-graining.
<A/b is satisfied only for vanishingly small winding num- 4 gives rise to correction§ﬁ1§ and 69, to the mass and
bers w—0. As t becomes large, the system contaims coupling parameters in the actigeee[10], Appendix for

<RA, w=0, ie. all the modes except<RA,w=0 have detaily. Therefore, the effective actioBer; will have the
transfered to the environment. The Euclidean path integral o ~ . ~ 5 ~ )
same form a$Sq V] with parametersn® andg defined as

this 2 field systen’ﬁfEN with Hamiltonian density given in
12 ~ o~ ~
Eq.(35) is m?=m3+ 6m3 (55)
Z=|(R<1|R>1)|? -~~~
9=01+59;. (56)
=f A/bg)q D@EO<!_<[A/b DWge SIVeN,  (46)  we assumed that co¥py/a’) in the expression o\, that
enters in the mass term3 Eq. (33) is a slowly varying
where the field is split into high and low energy as follows: function of momenta and consider it to be a constant while
Ven=Ts+T¢, e.9.T¢ denotes the modes with “environ- carrying out the procedure of coarse graintfig.

the modes intdSystem+ Environment, we can separate the (54, such that

terms in the actior§ Wy ] into ' =bp, ‘Tf’(p’)=b‘(D+2)’2quN(p’/b). (57)

S WVen]=SdVs]+S[Vel+S[ Ve, Vs, (47) Clearly, the original cutoffA and range of momenta are re-
stored after rescaling. Dynamics has been replaced by scal-
‘ing of parameters in atatic spacetim¢10]. This procedure
can be repeated times, for very small time incrementst
=(t;—tp)/n between the initial and final times,

where Sg,S, are the action depending on system, environ
ment variables an®, is the piece that depends on the inter-
action of system variables to the environment variables:

~ ~ i~ ~ 1\ 2
SS[‘I’S]II a(t)dtj dSX(\PSGsl\PS-i- gqug, (48) Seff(\NP’):b_Dj de’{I’(p,/b) F +F’n2
Sl¥el- [ amat [ axveog e, (49 +§<@2)}@(p'/b) 59
S|[@E,ﬁ'fs]=fa(t)dtf d*xga[4TEVe+6WETVE =dep'\Tf’(p')[(p')2+b2ﬁ12

+4WPE+ T, (50) +b*PTAT (p). (59)
Gs are Green’s functions for open syste8) and environ- s . 1¥'] will have the same form as the original one in Eq.
ment(E) given by (54) provided that we identify the mass term and coupling

-~ constant
Gs MP[pS<A/b]=[(p%)*+m3] %, (51) _ o ~
m'2=b’m?, g'=b*Pq. (60)
GeP[pE<A/b]=[(p%)>+mg]". (52

Although we are formally keeping the dimensionality to be
The Green function for the wholelosed system, SE) sys-  an arbitraryD in discussing the RGEs be[ovy, in fact our
tem G[ p] satisfies reduced system hd3=3 and we take that limit at the end.
Repeating this proceduretimes(with n—<), results in the
G[p]=Gs " pS]+GLA/"[ pFI. (53)  RGEs for the coupling constants.
The canonical two-point correlation function at high en-

After integrating out the high energy® modes Eq(44) in  ergy for system-environment interaction is calculated from
the action, we are left with an effective action that depends
only on the system variablgs>< A /b, such that

3We are keeping only first order corrections to the mass term due
to the A, . Contributions from higher order terms to the mass cor-

2From now on, we drop the subindex “3” from the action. rection 5513, like A"), A’F’,, ..., have been ignored.
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the path integral of the canonical fieléissyE in momentum 92 2
space(Fourier transform of*'?). It is related to the corre- dr €927 A(249:9,+803), (67)
lation function of the original field&¥ ¢ (which decreases at
high energy as follows:
92
1+—
69;

9 69)

dx
—=2x+12(1—X) ,
AE

T dr
<‘1’E‘1’E>:%: (62)

with x=m’2A "2, andA a numerical constant.

wherez,=1+A, and A, is given in Eq.(30). This is the For the case we considereg, =29, (gl—>§) thus Eq.
crucial result for the interpretation of the cosmological dark(66) reduces and becomes identical to E&J/). The solution
energy. Because of the mass gap, the correlation function t® the RGEs will tell us the running of the couplings constant
suppressed exponentially ispace. It is very familiar thata m'2 and’g’ to their nontrivial fixed points with timem’?
mass gap leads to an exponential fall offispace, but here =, (b), El':fg(b)- These relationd (b) are replaced in

for the dual lattice the exponential fall off is in momentum the expression for the correlation function and length, Egs.

space. This may be traced to tAeduality of the closed _1 : :
strings and the resultant interchange of the IR-UV limits. As(6_3) and (64?' Note tha“?, [P] 's the dl.sperélerequency
with short distance modifications contained in thg term

we will show, for the rescaled fieldE g the correlation func-

tion increases at high energy leading to an exponential de- - m2 1

crease in the dispersian(p). _ _ Mo 0 e 2lep (69)
The two-point correlation function at low energigs; Zcosﬁp\/y 2

<A/b is related to the canonical one in the same way. The

canonical two-point function is the Fourier transform of whereb;=a(ts)/a(ty) andt; is the final time that can be

G~MP and at low momenta it goes like a polynomial: taken to be future infinity. It is clear from the expression for
the modified canonical mass of E(9), which originated
o 1 from the interaction between the system and the environment
(V¥ = (62 at short distances, that the correlation length of @&d) di-

(pS)2+ Fn/2 ! - i ) )
verges exponentially at high energies and the correlation
function between the original fields falls off exponentially,

The reason for this different behavior of the correlation func- .
tion is because before splittindf into high + low energy Eq. (61). From the RGEs, the correlation Iengt;ihgnd the

modes, the total canonical two-point correlation function is quartic coupling constarg, vanish with time,&é — 0, and
the system is dominated only biyee momentum modes
(m/R) (w—0). The RGEs in combination with the CGEA
(63) thus describe the dynamics evolution of our entangled sys-
tem of winding and momentum modes at early times to a
When writing it in terms of the two point function of the frée gas of momentum modes at late times, due to the back
original fields (by dividing with thez, normalizations fac- reaction of the high energy environmentedainly winding
tor), it goes as an exponential for large momentonand as modes. Also notice that by using the Tolman relation for the

VT =6lp']=———s.
(W) =Glp’'] ERCAT

a polynomial for low momenta. temperature in an expanding backgrouids T./a(t), we
The correlation length is given by can express the RGEs and the partition functfoas func-
tions of temperature rather than the scale fac(r) (or
E=(m’") L (64)  equivalentlyb), i.e.,
Clearly, ¢ diverges at very high momentearly timeg that ZZZ[T_TC (70
indicate that the correlation length is very large and signals a T. |

phase transition. Alternatively, the correlation length goes to _ _
zero at low momentdlate time$ indicating that the theory Where T corresponds ta(ty), i.e. bf 10- The correlation

becomes local at late times. _ length¢ diverges arounty=1,T=T,, & — . Thus our sys-
Let us denoter=Inb, ande=4—D. The RGEs for this  tem preaks down due to strong correlations at early times or
system at hand are known from the analogy of our partitiomigh temperatures, but this simply signals the Hagedorn

function, phase transition at around the critical temperafyre
z=N ][ DY’ e Serd¥'] (65) V. DARK ENERGY FROM CLOSED STRING THEORY.
p'<A DISCUSSION

to the dual lattice Ising model, We argue that closed strings on a toroidal cosmology lead

q to a plausible explanation of the dark energy phenomenon.
9 2, 2 Although bosonic strings have been used, it is expected that

—=¢€Q;— + i ; S ! S
dr €91~ A(36g1 +92), (66) superstrings will lead to a similar conclusion. Certainly it is
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crucial that closed strings are involved because open stringsads to the quantum Hamiltonidrand hence to the inter-
do not have the same aspect of winding around the torus. pretation of the dark energy as the weak correlation with the
The scale factor of the universd ») has been used as a winding mode energy at short distan¢@sThe excitation
collective coordinate for the environment degrees of freemodes of these correlations with energy less than the current
dom, and as the fundamental scaling parameter in the coarsexpansion rate are currently frozen by the expanding back-
graining. The choice of & =3 expanding cosmology was ground.
chosen phenomenologically. An argument for this choice in  Within string cosmology there has always been the ques-
the BV model was presented ib], and we believe this tion of the fate of the winding modes in the uncompactified
argument does provide a possible justification. It is encourthree spatial dimensions, whether or not they combine to a
aging that inclusion of branes gives a similar re$@]. It  single string per horizon which wraps around the universe.
has further been assumed that the mass/gapan be safely Our remedy is intuitively appealing that while the momen-
assumed to be slowly varying during our coarse-grainingum modes are in evidence as quarks, leptons, gauge bosons,
procedure. etc. the winding modes are now condensed uniformly in the
We would like to make the reader aware of anotherenvironmental background, hence with a weak correlation at
subtlety related to the torus topology of our background. Ashort distances to the momentum modes, frozen by the ex-
globally nontrivial topology likeT®x R* admits two types of pansion of the FRW universe in the form of the dark energy.
quantum field configurations, twisted and untwisted fields, The observed small valué~10 1% in natural units
due to the periodic and antiperiodic boundary conditions im-might have an explanation in the toroidal cosmology of
posed on the fiber bundle of the manifold. This is a long-closed strings and if so the dark energy provides an exciting
standing probleni19] that does not have a definite remedy. opportunity to connect string theory to theoretical cosmol-
The problem is the following: twisted fields can have a nega-ogy. We may argue that numerically the size of the cosmo-
tive two-point function. These fields interact with each otherlogical constant in the present approach is a combination of
while preserving the symmetries of the Hamiltonian. Theirthe string scale and the Hubble expansion rate in the sense
interaction thus contributes a negative mass squared term that A/Mp =10 2°=(Ho/Mpjancd?. Therefore the
the effective mass of the untwisted field due to the negativeorrect amount of dark energy obtained by this frequency
two-point function of the twisted field and renders the un-dispersion function does not require any fine tuning and re-
twisted field unstable. It is often assumed that Nature simpldies, besides a physical mechanigsach as freeze oytonly
chose to preserve the untwisted configuration only or forbid®n the string scale as the parameter of the theory.
their interaction due to some, as yet unknown, symmetry The qualitative effort we have made in this work suggests
[20]. that an interpretation of the dark energy in terms of string
String theory preserves Lorentz invariance. This symmetheory might be competitive with either a simple cosmologi-
try has been broken for the open system of our low energygal constant or the use of a slowly varying scalar field as in
string modes due to the back reaction from the coarseuintessence theories. Our arguments are admittedly heuris-
grained environment. Their correlation results in our dispertic and we publish them only in the hope they might suggest
sion relation. If a specific frame must be chosen, it could bean improved understanding of the connection between
e.g., the rest frame of the cosmic microwave backgroundgtrings and cosmological expansion.
(CMB). The formalism needed for the calculation of the
stress-energy tensor and the equation of state of the nonlin- Note added
early dispersed short-distance modes in the presence of Lor- )
entz noninvariance and an expanding background while lack- () We have not addressed the equation of statep/p
ing an effective Lagrangian for this short-distance physicdor dark energy in this work. A recent paper by M. Lemoine
requires further development. The initial condition for our et - (Ref. [22]), attempts to calculates from a dispersion
model is a vacuum state conformally equivalent to therelathn similar to that discussed in the present paper, arrives
Minkowki spacetime—the so-called Bunch-Davies vacuum@t @ bizarre resuly=—186 and concludes correctly that this
[21]. Finally, before summarizing we should note that if value appears in cor_1t_rad|ct|on with data. However, this result
there are other modes without the exponential suppression £ W depends sensitively on the
high k, all that we need is one such mode to lead to the
frozen tail comprising the dark energy.
The high wave number behavier 2 of the dispersion We would like to remind the reader of the approximation made

relationw(k) leads again to the correct estimate for the darkin Sec. Il for obtaining the toroidal string quantum Hamiltonian
energy as a fraction- 10~ 120 of the total energy during in- since an exact solution for this class of backgrounds does not exist

flation. This dark energy is certainly completely stringy be-2S Y€t
cause our derivation ggpends on )t/he exﬁstenge of %ndin%isme correlations in the trans-Planckian regime contribute to the

. . total ener nsity of the universe with two t f m :Th
modes, as seen by the role of the generalized level-matchin a energy density of the unive s€ VO Types o odes: The
condition citation modes of these correlations with energy less than the

current Hubble expansion ratel, are currently frozen by the ex-
- panding background therefore their kinetic energy is nearly zero.
N—N=Z;mw;. All the other modes in the trans-Planckian regime whose frequency
is higher thanH oscillate and redshift away at a rate that will be
This correlation between momentum and winding modesgletermined by their equation of state.
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assumed initial conditionge.g. Eq.(34) of that work]. We
agree with Lemoinet al.that an acceptable equation of state SRAE f a(t)dt[ f d3p¥ (p)(p?+m3)¥(—p)
is not automatic but depends on initial conditions. Our con-
clusion would be that an acceptable equation of state requires 4
initial conditions dictated by string theory. We will return to +§1f H d3p W p, 1V p.1 V[ ps] ¥ pa]
this question in a future publication where it is argued that i
w<—1 can be a defining characteristic of stringy dark en-
ergy.

(i) Starobinsky(Ref.[23]), suggests that trans-Planckian X 8Pyt Pzt PatPa)
physics is irrelevant to inflationary cosmology; however, his
result is based on a discussion using the WKB approximatioi/e now separate the field modes into system and environ-
and as he himself emphasizes does not apply to a dispersionent, ¥ =¥ s+ V¥, with the choice
relation which falls to a constant such as ze#gk)— 0k s £
— oo, at largek as we have assumed in the present article. In Vsip®<A/b  WeiA/bsp=<A. (Ad)
such a case, there is a legitimate concern about extensiv . . .
particle production caused by cosmological expansion. It igVe can then also write the action as systenvironment,
conceivable, however, that in the present case such particlg@lUS the interaction between system and environment:
grtsegu?:a indeed produced, might themselves exert negative U= Vo] +S[Vel+S[ Ve, ¥, (A5)

. (A3)
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S[¥e, ¥sl=0; f a(t)dt{ f iH1 d®pFWe(ph)

APPENDIX

In this appendix we summarize the derivation of the XWE(pE)WE(pE)WE(pE)§(2 pIE)
coarse-grained actioB{ Vs, Eq. (54). For details we re-

fer the reader to the original papers[it0]. 3
We start with the Euclidean action for the quartic interac- +4 [ [ d®pF d®pSwe(p)we(ps)
tion scalar model under consideration, E8p), in a spatially =1
flat FRW universe, XWe(p5)W(p%) 5%(pE+ P+ p5+ p°)
2 2
S[qf]:f a(t)dtf d3X[| VW |2+ m3| W |2+ g, | P|4]. +6j TT o*pETT o®pSwe(pS)We(ph)
i=1 i=1
(A1) |

o o X Wo(pDW(p3) 8%(PT+Ps+pT+p3)
Time in this approach is considered as a parameter, and the .
scale factora(t) is regarded as a constant instead of a dy-
namical function. In this way, different values aft) =const +4f d3pEj1:[1 d®pPWe(pF)Ws(pd)
labels different spatial sections in 3-dimensional Minkowsky
space, related to each other by “scaling” transformations,

with scaling parameter X Ws(p3)Ws(p3) 83(pE+pi+p5+p3d) |,
b=a(t)/a(tp). (A2) (A8)

In this sensedynamicsis replaced byscaling whereGs g are Green's functions given by

byIn (3-dimensiongl momentum space, the action is given G§A’b[pS<A/b]=[(ps)2+ﬁ1§]‘1, (A9)
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G (P> A/b]=[(pF)2+ ME] 2, i

(A10)
A ¥]=—In(expS[ Ve, ¥s]). (A17)
and the Green’s function for the whole system is defined as

When the interaction between system and environment

modes is smallg;<1), the contribution from Eq{A17) can
be expanded in a Dyson-Feynman series, which contains
only even powers of the system fieldsdd powers of the
environment fields average to z@rdhe first terms in the

series give rise then to corrections to the n[a%?ag(b)] and

coupling constanf 8g;(b)] parameters, which can be ab-
sorbed by redefining the original mass and coupling param-
eters in the actiorBJ Ws]. Therefore, the effective action

Glp]=Gs"*[p®]+ G pE]. (A11)

Now, the “environment” fields can be integrated out from
the partition function, such that

Z[‘P]=Nf DWPe SV

:Nf Dq;SJ DW e (S¥sl+ Sol Vel +S[Ve Vo))

will be given by
(A12)
— 3 S
:N,j DW e V(e SIVeVd), (A13) Seff[‘l’]—f a(t)dt fd PSP <(p®)
S\2 1 M2 _nS
The averagd - - -)y_ is defined with respect to the free ac- X((p?)"+mi(b))Ws(—p7)
tion for the environment fieldSy[ V¢], 4 . < < <
(esivesay, + [ 11 oo w g pswdpsiva o)
:f DW e (Sol Vel +SiVe Vs /f DW e Sl Vel X W p318%(p5S+p5+p5+ps) |, (A18)
Al4
(A1) where
=g ASIYd (A15) _ _ _
_ . o m?(b)=ma+ sma(b), (A19)
The coarse-grained effective action is then
Serd Wsl=S[Ws]+AS[ V], (A16) g(b)=g;+6gs(b). (A20)
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