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Modified dispersion relations from closed strings in toroidal cosmology
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A long-standing problem of theoretical physics is the exceptionally small value of the cosmological constant
L;102120 measured in natural Planckian units. Here we suggest how this tiny number might arise from a
toroidal string cosmology based on closed strings. In this picture the dark energy would arise from a correlation
between momentum and winding modes that for short distances has an exponential fall-off with increasing
values of the momenta. The freeze-out by the expansion of the background universe for these trans-Planckian
modes might be interpreted as a frozen condensate of the closed-string modes in the three noncompactified
spatial dimensions. Our qualitative arguments are heuristic in nature and published only because they may
suggest an improved treatment of the connection between strings and cosmological expansion.
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I. INTRODUCTION

In this work we will attempt to make a qualitative arg
ment about the origin of dark energy from string theory. T
transition from string theory to conventional cosmology is
importance not only to theoretical physics in general but
inflationary cosmology in particular. Corrections to short d
tance physics due to the nonlocal nature of strings may c
tribute to dark energy. The possibility to detect their sign
ture observationally is very intriguing. In Ref.@1# it was
shown that a nonlinear dispersion function modifying t
frequency of the trans-Planckian perturbation modes@2# can
produce the right contribution to the dark energy of the u
verse@3#. The physics mechanism that gave rise to poss
dark energy was the freeze-out of these ultralow freque
modes by the expansion of the background universe. Su
string duality @4# can be invoked to justify the dispersio
function. This work attempts to make more plausible, in
heuristic and qualitative fashion, this connection.

In Sec. II we review some preliminaries of th
Friedmann-Robertson-Walker~FRW! cosmological solutions
found for string theory in aD-dimensional torus@5–8#. The
quantum Hamiltonian from closed string theory obtained
@9# by using the correspondence principle between string
quantum operators, is reviewed in Sec. III. Although t
background is an FRW universe, it is globally nontrivial
@9#, thus it allows two types of quantum string field config
rations, twisted and untwisted fields.

Based on the equivalence between Euclidean path inte
and statistical partition functions, we perform in Sec. IV t
calculation of a coarse-grained effective action@10,11# for

*Email address: bastero@cibs.sns.it
†Email address: frampton@physics.unc.edu
‡Email address: mersini@cibs.sns.it.
0556-2821/2002/65~10!/106002~12!/$20.00 65 1060
e
f
o
-
n-
-

-
le
y

er-

n

d

ral

the momentum and winding modes of the system descri
in Sec. II for the case of 3 expanding spatial dimensionsR in
the TD toroidal topology. The string scale is taken as t
natural UV lattice cutoff scale of the theory. The renorm
ization group equations~RGE! of the coupling constants fo
the winding and momentum modes describe the evolu
from early to late times of their entanglement. Based onT
duality the whole spectrum is obtained by exchanging m
mentum to winding modes andR→R21. Their coupling is
strong when the radius of the torusR is of the same order a
the string scaleAa8, i.e. during the phase transition from
winding dominated universe to a momentum mode do
nated universe. Because of the expanding background
have a nonequilibrium dynamics and calculate the effec
action by splitting our modes into the open system degree
freedom~low energy modes, mainly momentum modes! and
the environment degrees of freedom~high energy modes
mainly winding modes!. The coarse graining is performed b
integrating out the environmental degrees of freedom. T
scale factora(t)5R(t) serves as the collective coordina
that describes the order parameter for the environment
grees of freedom. The effective action calculated in this w
contains the influence of the environment at all times in
systematic way and the coarse graining process encode
dispersion function and corrections to short distance phy
due to the correlation between the two types of modes in
system and environment. This procedure results in the RG
for the coupling constants that offer information about th
running to trivial and nontrivial fixed points at early and la
times, therefore the flow of one family of Lagrangians~string
theory phase! to another family of Lagrangians at late time
~conventional 311 quantum theory!. Results of this non-
equilibrium phase transition are summarized in Sec. V wit
discussion about the possibility of their observational sig
tures through measurement of the equation of state. In
section we also briefly touch upon the issue of the two fi
©2002 The American Physical Society02-1
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configurations in a globally nontrivial topology and the i
stabilities in the theory arising from their interaction. A d
tailed summary of the main coarse-graining formulas a
procedure@10# needed in Sec. IV, is attached in the Appe
dix. In essence, the putative dark energy contribution ar
from the study of the UV behavior of the correlations wi
environmental modes.

II. TOROIDAL STRING COSMOLOGY

We consider the string cosmological scenario proposed
Brandenberger and Vafa~BV! @5,7,12#. Strings propagate in
compact space, a box withD spatial dimensions and period
boundary conditions, theTD torus. It was argued that@5# a
thermodynamic description of the strings with positive sp
cific heat is well defined only when all the spatial dimensio
are compact.

Let us begin with the universe placed in aTD box with a
size of the order of the string scale, that we are taking to
the Planck scale. In such a space, string states also co
winding modes, which are characteristic of having an
tended object like a string, ‘‘winding’’ around the compa
spatial dimension, besides the usual momentum modes,
oscillator modes with energy independent of the size of
box. The energy of the winding modes increases with
size of the box aswR, while the energy of the momentum
modes decreases asm/R. The spectrum is symmetric unde
the exchangeR↔1/R andm↔w. This symmetry known as
T duality @4# is not only a symmetry of the spectrum but
the theory.

The BV model @5# argues that if the universe expan
adiabatically in more than 3 spatial dimensions, it would n
be possible to maintain the winding modes in thermal eq
librium. As their energy density grows with the radius, th
number would have to decrease, for example through a
hilation processes. But typically strings do not meet in m
than 3 spatial dimensions and do not interact with each ot
therefore the winding modes fall out of equilibrium@13#. In
summary, their growing energy density will tend to slo
down the expansion of the universe and eventually stop
But if the universe starts to contract, the dual scenario of
momentum modes opposing contraction would take pl
and the universe may oscillate between expanding or c
tracting eras. In what follows we use this argument of@5# to
justify the assumption that onlyD53 dimensions of theTD

torus will expand to create an FRW universe.
Cosmological solutions for an arbitrary number of anis

tropic toroidal spatial dimensionsTD were found by Mueller
in @6#. He studied the cosmology of bosonic strings prop
gating in the background defined by a time-dependent d
ton field,F(t), and space-time metric

dsd
25Gmn~X!dXmdXn52dt21(

i 51

D

4pRi
2~ t !dXi

2 . ~1!

The radii of the torus,Ri(t), become the time-depende
scale factors, and the spacetime dimension isd511D. The
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equations of motion of the bosonic string in backgrou
fields are obtained from the following action1 @14#

I 5
1

4pa8
E d2sAgFgmnGmn~X!]mXm]nXn1

1

2
a8FR(2)G ,

~2!

where gmn is the two-dimensional world-sheet metric, an
R(2) the world-sheet scalar curvature. The background fi
equations are obtained by imposing the condition that
theory be free from Weyl anomalies. To lowest order in p
turbation theory this leads to the equations

bmn
G 5Rmn1¹m¹nF50, ~3!

bF5
d226

3a8
2R1~¹F!222¹2F50. ~4!

Using the metric given in Eq.~1!, they reduce to

F̈2( i
R̈i

Ri
50, ~5!

R̈i

Ri
1(

j Þ i

Ṙi Ṙj

RiRj
2Ḟ

Ṙi

Ri
50, ~6!

F̈2
1

2
Ḟ21(

i , j

Ṙi Ṙj

RiRj
5

d226

3a8
. ~7!

WhenD525, the solutions obtained in@6# are

e2F(t)}tp, ~8!

Ri~ t !}tpi, ~9!

with the constraints

(
i 51

D

pi
251, (

i 51

D

pi512p. ~10!

Note that these solutions are found in the absence of ma
sources. In general the back reaction of the matter actio
the strings inTD alters the solutions for the backgroun
geometry.2 It is clear that we can have an arbitrary number
compact spatial dimensionsDc with pi,0, that are decreas
ing with time,3 and D2Dc expanding spatial dimension
with pi.0. Among the many solutions found in@6# we select

1The antisymmetric tensor field is taken to be zero.
2See@7,8# and references therein for the geometry solutions in

presence of a matter action. Inclusion of matter sources alters
solutions of@6# due to the back reaction of the winding modes, su
that the scale factor approaches asymptotically a constant valu
late times.

3We do not address the concern that the time dependence o
compactifiedRi endangers the constancy of the dimensionless
rameters in theD53 theory.
2-2
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MODIFIED DISPERSION RELATIONS FROM CLOSED . . . PHYSICAL REVIEW D65 106002
the solutionD2DC53 that, although is not unique, is just
fied by the BV argument. The assumption that our univers
expanding in only 3 spatial dimensions, with the remain
D23 being small and compact, as well as considerin
constant dilaton field4 (p50), is consistent with Mueller’s
solutions Eqs.~10!. The issue of stabilizing the dilaton i
beyond the scope of this paper, and we assume that the
ton has acquired a mass and become stable at some
value. It is also assumed that the back reaction of the ma
string sources on the backround geometry is small eno
such that the deviations from the FRW metric, Eq.~10!, can
be neglected.

Due to the toroidal string cosmology, the three expand
dimensions contain both types of modes:momentumand
winding, propagating in the 311 FRW spacetime. The num
ber of winding modes at each stage of the evolution of
universe is determined by the dynamics of the backgrou
In the next section, we touch base with quantum field the
through correspondence principle between string and qu
tum operators, in order to use coarse graining techniques
studying the influence of the winding modes on the mom
tum modes as the Universe expands.

III. QUANTUM HAMILTONIAN FROM CLOSED STRING
THEORY

Let us consider the BV model@5# of a D-dimensional
anisotropic torus with radiusR̄i , by including the dynamics
of both modes: momentum modes,p1,i5m/R̄i ~wherem is
the wave number!, and winding modes with momentap2,i

5wR̄i /a8. The dimensionless quantity for the radius isRi

5R̄i /Aa8, wherea8 is the string scale. Based on the arg
ments reviewed in Sec. II, wechoosea cosmology with three
toroidal radii equal and largeR@1 in units of the string or
Planckian scale, with the other (D23) toroidal radii equal
and smallRC!1. Here the subscriptC refers to compactified
dimensions. Then,R(t) becomes the scale factor for the
11 metric in conventional FRW cosmologyR(t)5a(t),
while RC corresponds to the radius, in this factorizable m
ric, of the D23 compact dimensionszj that decrease with
time,

dsD
2 52dt214pR2~ t !dxi

214pRC
2 ~ t !dzj

2

5a~h!2@2dh21dy2#1dsD23
2 . ~11!

Using the string toroidal solution of@6# the time dependenc
of these radii is

R~ t !5aUtpU ~12!

RC~ t !5aCtpC. ~13!

4The authors of@7# argued that a constant dilaton background m
not be consistent with ahigh temperature phase of string therm
dynamics.
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The solutions in Ref.@6# show thatpU andpC depend on the
dimensionalityD in an interesting way. There are a pletho
of possible solutions but if we assume, for example, that
dilaton is time-independent and the compactification is i
tropic we find that for 4<D,`, then 0.5<pU,1/A3
.0.577. Let us takeD54 where the scale factor behaves
a radiation-dominated universe; if, in fact,D>5 we can as-
sume that theD24 additional dimensions havepC8 !pC to
achieve the same result. In this case,pC520.5. Here we do
not, however, need to specialize to a particular solution.

What we have in mind for the dark energy is the corre
tion of momentum towindingstring modes. The question is
given the well-known form for the kinetic energy of thes
strings, e.g.@15#, how to describe best the interaction b
tween the winding and momentum modes. Some aspects
addressed in@15# which focuses on the smallness of tempe
ture (T/TH). For temperatureT very much below the Hage
dorn or string temperatureTH we expect that only very smal
winding numberswi50 or 1 in the compact dimensions a
of any significance@15#. Similar arguments apply to the mo
mentum modesmi for the time-reversed case.

Let us consider the small parameterd(t), taken to be

d5
RC

R
;tpC2pU. ~14!

For the caseD53 (d54), for example,d;t21;(T/TH)2

and is an extremely small number (;10260) at present. The
point is that in thed→0 limit these modes are in separa
spaces and for very smalld are therefore expected to b
highly restricted. The compactified dimensions can be in
grated out, and we are left with the momentum and wind
modes in the remainingD53 spatial dimensions.

The partition function for this system was calculate
from first principles, by summing up over their momenta
@15#:

Z5(
s

e2nses, ~15!

wherens is the number of strings in states with energyes

es5p05AS m

RD 2

1~wR!21N1Ñ22, ~16!

and s counts over (m,w), with the constraintN2Ñ5mw

for closed strings whereN andÑ are the sums over the left
and right-mover string excitations, respectively. By now,
Eq. ~16!, we are considering only the large 3 spatial dime
sions. The string state can also be described by its left
right momenta,kL5p11p2 , kR5p12p2. The string state
for left and right modes can be expanded in terms of
creation and annihilation operatorsam , ãn , with higher ex-
citation string states given byN5(n51

` a2nan ~similarly for

Ñ), and string energyL01L̃05p1
21p2

21(N1Ñ22)/a8.

y

2-3
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MAR BASTERO-GIL, PAUL H. FRAMPTON, AND LAURA MERSINI PHYSICAL REVIEW D65 106002
We would like to write the path integral for this configu
ration in terms of quantum fields.5 The path integral is cal-
culated from the Hamiltonian density. In order to use t
correspondence between the Euclidean path integral of
persistence vacuum amplitudeu^ inuout&u2 and the partition
function Z, we need to write a Hamiltonian density over th
fields in configuration space in such a way that its Fou
transform ink space corresponds to the string energy exp
sion Eq.~16!.

Thus in writing a coarse-grained effective action~CGEA!,
the kinetic terms are unambiguous while for the interact
terms we must appeal to simplicity and the requirement oT
duality. Closed-string field theory provides guidance, since
e.g.@16# truncation at a quartic coupling can be sensible, a
this will lead to a CGEA which is renormalizable and sat
fies useful RG equations.

Generally, closed string field theory contains couplings
all nonpolynomial orders. In a semiclassical approximat
we may restrict to genusg50 since the genusg contribution
is proportional to\g @17#.

The quantum Hamiltonian is in any case known for t
classical string in axisymmetric or toroidal backgrounds@9#.
They explicitly calculated the quantum Hamiltonian a
demonstrated the correspondence principle between
string operatorsL0 , L̃0 and quantum field operators in th
form ~in the notation of@9#!

Ĥ5L̂01 L̂̃0

5
1

2
a8S 2E21pa

21
1

2
~Q1

2 1Q2
2 ! D

1N1Ñ22c02a8@~q1b!Q11bE#

2a8@~q2a!Q21aE#JL

1

2
a8q@~q12b!JR

2

1~q22a!JL
212~q1b2a!JRJL# ~17!

L̂02 L̂̃05N2Ñ2mw ~18!

whereJR,L are bilinear quadratic operators in terms of c
ation and annihilation operators and the higher string os
lators N,Ñ contribute to the string mass. Therefore theJR

2

term would be a quartic interaction in terms of creation a
annihilation operators.

This particular solution is for a cylindrical topolog
~Melvin model! where the uncompactifiedx1 and x2 are
written in polar coordinatesx11 ix25reif and x3 is also
uncompactified~but could be compactified along with add
tional similar coordinates!, together with time and one add
tional compactified dimensiony,(0,2pR). Although an ex-
act solution for the Hamiltonian of the string matter in
toroidal background is not yet known, a quartic potent
energy was advocated and found in@8# by arguments similar

5Below we use quantum string equations under the assump
that the dilaton is massive and stable.
10600
e
he

r
s-

n

n
d
-

f
n

he

-
l-

d

l

to those of Eq.~17!, for the classical string and the thre
string coupling level. We take this as an indication, in t
subsequent section~if the exact solution were known to a
orders!, that a quantum Hamiltonian analogous to Eq.~17!
for closed strings on a torus, similarly containing only qu
tic terms as suggested by@9#, exists for our present case o
(T3)3(TD23)3(time) and focuses on the uncompactified
spatial dimensions.

The Hamiltonian depicted in Eq.~17! is for a static back-
ground, i.e. a constant scale factorR(t). In the next section,
we base our calculation in the coarse-grained effective ac
~CGEA! formalism where the dynamics of an expandi
background is replaced by scaling on a static backgroun

Thus Eq.~17! which applies to a static background@as in
Eq. ~16!# can be generalized to a cosmologically-expand
background as in Eq.~11! by using this technique of resca
ing, as we shall discuss in the next section. This strateg
necessitated by the absence of an exact string solution in
time-dependent background.

IV. COARSE GRAINED EFFECTIVE ACTION „CGEA…

AND RGE’S

A. General case of thedÄD¿1 Universe

Our system of winding and momentum modes is d
scribed by nonequilibrium dynamics due to the expand
background spacetime. All the information about the evo
tion of these modes will be contained in the effective actio
Therefore we need to write the path integral in the config
ration space of the quantum fields in order to obtain
effective action. This information must be extracted from t
torus analogues of the quantum mechanics Hamiltonian
Eq. ~17! such that its Fourier transform in momentumk
space recovers the string energy spectrum Eq.~16!. Correla-
tion functions are obtained by using the correspondence
tween the Euclidean path integral of the persistence vacu
amplitude u^ inuout&u2 and the partition functionZ. All the
string quantum operators below are promoted to quan
field operators with the corresponding Hamiltonian dens
H(t,x) in configuration space derived from the quantu
string HamiltonianH(t).

The following calculations are done in the conforma
flat background6 Eq. ~11!, through the scaling of the field
and operators with the conformal factora(h). The momen-
tum fieldf1(R,x) and the winding fieldf2(R,x) are defined
by the relation

f i~x!5E eipixf i~pi !d
3pi ,

E u¹f i u2d3x5E d3pipi
2f i~pi !, ~19!

where

on6We do not address issues of the matter back reaction on
geometry. They are treated in@7,8#.
2-4
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MODIFIED DISPERSION RELATIONS FROM CLOSED . . . PHYSICAL REVIEW D65 106002
¹5R]/]x5]/]y, ~20!

andpi5p1 , p2. Let us also define two new fields,cL(R,x)
andcR(R,x), with momentakL , kR that are the left and righ
combinations of the Kaluza Klein momentum and windi
modes

cL~R,x!5f1~R,x!1f2~R,x!, ~21!

cR~R,x!5f1~R,x!2f2~R,x!. ~22!

These fields live in the expanding~311! spacetime dimen-
sions. Similarly there is another set of fieldsCc,a that are
functions of the compact dimensionsza . Their energy con-
tribution to the total Hamiltonian density isHC(pa)5Aapa

2

whereAa is a constant parameter with dimensions of inve
volume of the compact space, andpa are the momenta o
these fields in the extra compact dimensions, witha running
over theD23 dimensions.

The Hamiltonian density ansatz that would describe
energy of our two string states in theD53 expanding di-
mensions with energyH5L01L̃0, including the oscillators
from string’s higher excitations (N1Ñ22)/a8, is similar to
the Hamiltonian of spin waves in a periodic lattice.7 The
Ginzburg-Landau Hamiltonian for a Heisenberg magnet
tained in@9# by means of coformal field theory~CFT! bears
similarity with lf4 quantum field theory in a well-known
manner. Our lattice spacing is given by the string scaleAa8.
Therefore the Hamiltonian density can be written for th
dual lattice in terms of wave functional ‘‘spin’’ fields
cL(R,x),cR(R,x) of Eqs.~21!, ~22! as follows:

H5H31HC , ~23!

with

H35u¹cLu21u¹cRu2u1u¹cLuu¹cRu1m0
2~ ucLu21ucRu2!

1g1~ ucLu41ucRu4!1g2ucLu2ucRu2, ~24!

where the fieldscL , cR are expanded in terms of the mod
functionsun ,ũn ,

cL5Sunbn1un* bn
1 , cR5Sũnb̃n1ũn* b̃n

1 , ~25!

andbn ,b̃n are the normalized quantum creation and ann
lation operators ofan ,ãn . The commutation relation for the
unnormalized operators are such that@an ,am

1#5v6dnm

with v6 the frequency of left and right moving modes.
The periodic lattice conditionN2Ñ5mw introduces an

interaction term in the HamiltonianH3 of the form
¹cL¹cR . In terms of the 2-component stateCEN
5(cL ,cR), the Hamiltonian reads

7Torus is obtained by identifying the first and the last lattice sit
thus the periodicity.
10600
e

e
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H35u¹CENu21¹CENX̂¹CEN1m0
2uCENu21g1uCENu4

1~g222g1!uCENX̂CENu2, ~26!

with

X̂5S 0 1/2

1/2 0 D . ~27!

The system is known as the dual momentum-space lat
and for g252g1 reduces to the XYZ model of condense
matter. Let us for simplicity limit to the XYZ model case
g252g1, for the rest of this paper.

These periodic lattice systems studied in 311 dimensions
in terms of Bloch wave functions have a solution with r
spect to lattice translation invariance, exp(2pl), with the lat-
tice spacing ‘‘l ’’ equal to the string scaleAa8. The interac-
tion term, in the tight-binding approximation, lifts th
degeneracy between the energy eigenstates due to the
age or tunnelling of the wave function from one lattice site
the neighbor site. As a result the gap energy produced
tween the ground~bound! state and higher excitation states

p2Dp5p2ucos~2u!u5p2u2 cos2~u!21u, ~28!

in which

pl5pAa85Aa8~p1
21p2

2!5AS m

RD 2

1~wR!2, ~29!

andu→u1 ipl . Therefore,

Dp<2 cosh2~pl !21. ~30!

The first term inu is a pure phase of rotation of the ‘‘spin
wave’’ in the dual lattice, but the second term describes
tunnelling of the wave function to the nearest neighbor.8 The
gap energy of Eq.~28! introduces a correction to the kineti
energy, such that in momentum space the Hamiltonian re

H35zpp2uCENu21m0
2uCENu21g1uCENu4, ~31!

with zp511Dp . This correction contributes to the wav
function renormalization constant of the fieldCEN . We can
then make a partial~finite! renormalization of the Hamil-
tonian in order to recover the canonically normalized kine
term, such that

CEN→C̃EN5zp
1/2CEN , ~32!

m0
2→m̃0

25zp
21m0

25
m0

2

11Dp
, ~33!

g1→g̃15zp
22g1 . ~34!

, 8In condensed matter this is known as the Coulomb dipole typ
vortex interaction.
2-5
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The Hamiltonian densityH3 finally reads

H35u¹C̃ENu21m̃0
2uC̃ENu21g̃1uC̃ENu4. ~35!

The action inD dimension therefore is

SD5E dtRCd(D23)zaa~ t !d3x„H3@C̃EN~x!#

1HC@Cc,a~z!#… ~36!

5VCE a~ t !dtd3xH3@C̃EN~x!#

1VUE RCdtdD23zHC@Cc,a~z!#, ~37!

whereVC (VU) is the volume factor obtained from integra
ing out the contribution from the compact (D23) ~uncom-
pact! dimensions. The partition functionZ is then

Z5ZcZ3 , ~38!

Zc5E DCc,ae2VUE RCdtdD23zHC[Cc,a] , ~39!

Z35E DC̃ENe2VCE a(t)dtd3xH3[ C̃EN] . ~40!

The contributionZc to the path integral is easy to calcula
since the integral over the compact dimension fields i
simple Gaussian:

Zc5E DCc,ae2VUE dD23paAaCc,apa
2Cc,a5)

a
A p

AaVU
.

~41!

The contribution of these fields to the path integral is prop
tional to the volume of the compact spaceRC

a they live in;
thus their contribution is relevant only around the string sc
because at late times the volume of the compact metric
creases rapidly with time. In either case their contribut
rescales the normalization constant of the path integ
which we will allow for the moment to be arbitrary,9 such
that

Z5N8E DC̃ENe2VCE a(t)dtd3xH3[ C̃EN] ~42!

5N8Z3 . ~43!

The volume of the compact dimensions,VC , is roughly of
order unity in terms of string units, and it can be reabsorb
into the parameters ofH3.

9Varying the action with respect to the metric care should be ta
to account for the effect of the compact metric volume on the Ne
tons constant of the reduced (311) metric.
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We would like to find a simplified description for th
dynamics of our nonequilibrium system, consisting of bo
winding and momentum modes, while incorporating t
back reaction of the short wavelength modes to it, in
reduced (311) dimensions. This is done by carrying out th
necessary steps of coarse graining which are the follow
@10#: ~1! distinguish the system from the environment,~2!
coarse grain the environment, and~3! measure how the
coarse grained environment influences the system in pro
ing an effective dynamics for our reduced system. As we w
see below, the environment, consisting of the short wa
length modes, has a time dependent order parameter du
the expanding background universe, thus the need for u
nonequilibrium dynamics methods.10

B. The DÄ3 Universe

At this point, in evaluating the reduced 3 dimension
partition function Z, we want to separate our modes in
system ~S! 1 environment ~E! degrees of freedom, an
coarse grain by integrating out the degrees of freedom for
environment. This amounts to finding out the back react
of the coarse grained environment on the system, and e
tually leads to the RGE’s.11 We use many of the results an
the approach of@10# in what follows. We will consider as the
environment all the short wavelength modes with momen

~E!:
L

b
,pE5

1

Aa8
@~m/R!21~wR!2#1/2,L, ~44!

where the cutoffL5(a8)21/2 is the string scale becaus
(a8)1/2 is identified with the lattice spacingl, and b
5a(t)/a(t0) is the coarse grained scaling parameter, wh
t0 is the initial time. The scale factora(t) plays the role of
the collective coordinate describing the environmental
grees of freedom. Time in this procedure is playing the r
of a scaling parameter and dynamics is being replaced
scaling @10#. This is an artificial procedure~known as
Kadanoff-Migdal transform@18#! that relates the microscopi
and macroscopic properties of a system based on the e
tence of scaling properties of the system in the infrared lim
Thusa(t) is treated simply as a parameter while carrying o
the coarse graining in this ‘‘static limit,’’ 3-dimensiona
Minkowski field theory of the foliationa(t)5const hyper-
surface at eachtn5t01nDt.

The system modes are the ones with

~S!: pS,
L

b
. ~45!

n
-

10A whole program with a detailed treatment of the concept
and formal techniques of coarse-graining has been pioneered
developed by Hu and collaborators in@10#. They showed that for a
special class of expansion, the dynamics of spacetime can
equivalently replaced by a scaling transformation with time play
the role of the scaling parameter.

11The running of the coupling constants with time depends
how one selects the environment and the system.
2-6
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From the above definitions of system and environment, E
~45! and ~44!, at initial times whenb'1 we havep<L/b
thus all our modes, momentum and winding, are in the s
tem; but at later times whenb>1 more and more winding
modes systematically transfer to the environment because
condition of Eq. ~45!, p5(1/Aa8)@(m/R)21(wR)2#1/2

<L/b is satisfied only for vanishingly small winding num
bers w→0. As t becomes large, the system containsm
<RL, w50, i.e. all the modes exceptm<RL,w50 have
transfered to the environment. The Euclidean path integra
this 2 field systemC̃EN with Hamiltonian density given in
Eq. ~35! is12

Z5u^R,1uR.1&u2

5E )
L/b<p<L

DC̃E )
0<p<L/b

DC̃Se2S[ C̃EN] , ~46!

where the field is split into high and low energy as follow
C̃EN5C̃S1C̃E , e.g.C̃E denotes the modes with ‘‘environ
ment’’ momentapE given by Eq.~44!. After this splitting of
the modes into~System1 Environment!, we can separate th
terms in the actionS@C̃EN# into

S@C̃EN#5SS@C̃S#1S0@C̃E#1SI@C̃E ,C̃S#, ~47!

whereSS ,S0 are the action depending on system, enviro
ment variables andSI is the piece that depends on the inte
action of system variables to the environment variables:

SS@C̃S#5E a~ t !dtE d3x~C̃SGS
21C̃S1g1C̃S

4!, ~48!

S0@C̃E#5E a~ t !dtE d3xC̃EGE
21C̃E , ~49!

SI@C̃E ,C̃S#5E a~ t !dtE d3xg1@4C̃S
3C̃E16C̃S

2C̃E
2

14C̃SC̃E
31C̃E

4 #. ~50!

GS,E are Green’s functions for open system~S! and environ-
ment ~E! given by

GS
,L/b@pS,L/b#5@~pS!21m̃0

2#21, ~51!

GE
L/b@pE<L/b#5@~pE!21m̃0

2#21. ~52!

The Green function for the whole~closed system, S1E) sys-
tem G@p# satisfies

G@p#5GS
,L/b@pS#1GE

L/b@pE#. ~53!

After integrating out the high energypE modes Eq.~44! in
the action, we are left with an effective action that depen
only on the system variablespS,L/b, such that

12From now on, we drop the subindex ‘‘3’’ from the action.
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Se f f@C̃S#5SS@C̃S#1DS@C̃S#. ~54!

SS@C̃S# is the portion of the action that all along depen
only on the system variables. The termDS results from the
interaction of the system with the environment, but it d
pends only on the system variables after the coarse-grain
It gives rise to correctionsdm̃0

2 and dg̃1 to the mass and
coupling parameters in the action~see @10#, Appendix for
details!. Therefore, the effective actionSe f f will have the
same form asSS@C̃S# with parametersm̃2 and g̃ defined as

m̃25m̃0
21dm̃0

2 ~55!

g̃5g̃11dg̃1 . ~56!

We assumed that cosh2(pAa8) in the expression ofDp that
enters in the mass termm̃0

2 Eq. ~33! is a slowly varying
function of momentap and consider it to be a constant whi
carrying out the procedure of coarse graining.13

Let us rescale our variables in the effective action E
~54!, such that

p85bp, C̃8~p8!5b2(D12)/2C̃EN~p8/b!. ~57!

Clearly, the original cutoffL and range of momenta are re
stored after rescaling. Dynamics has been replaced by s
ing of parameters in astatic spacetime@10#. This procedure
can be repeatedn times, for very small time incrementsDt
5(t f2t0)/n between the initial and final times,

Se f f~C̃8!5b2DE dDp8C̃~p8/b!F S p8

b D 2

1m̃2

1g̃^C̃2&GC̃~p8/b! ~58!

5E dDp8C̃8~p8!@~p8!21b2m̃2

1b42Dg̃^C̃2&#C̃8~p8!. ~59!

Se f f@C̃8# will have the same form as the original one in E
~54! provided that we identify the mass term and coupli
constant

m̃825b2m̃2, g̃85b42Dg̃. ~60!

Although we are formally keeping the dimensionality to
an arbitraryD in discussing the RGEs below, in fact ou
reduced system hasD53 and we take that limit at the end
Repeating this proceduren times~with n→`), results in the
RGEs for the coupling constants.

The canonical two-point correlation function at high e
ergy for system-environment interaction is calculated fro

13We are keeping only first order corrections to the mass term
to theDp . Contributions from higher order terms to the mass c

rectiondm̃0
2, like Dp8 , Dp9 , . . . , have been ignored.
2-7



t

rk
n

m

A

d

h
of

c

is

e

ls
t

io

nt

qs.
y

or

ent

tion
y,

A
ys-
a

ack

he

s or
orn

ead
on.
that
is

MAR BASTERO-GIL, PAUL H. FRAMPTON, AND LAURA MERSINI PHYSICAL REVIEW D65 106002
the path integral of the canonical fieldsC̃S,E in momentum
space~Fourier transform ofGL/b). It is related to the corre-
lation function of the original fieldsCE ~which decreases a
high energy! as follows:

^CECE&5
^C̃EC̃E&

zp
, ~61!

wherezp511Dp and Dp is given in Eq.~30!. This is the
crucial result for the interpretation of the cosmological da
energy. Because of the mass gap, the correlation functio
suppressed exponentially inp space. It is very familiar that a
mass gap leads to an exponential fall off inx space, but here
for the dual lattice the exponential fall off is in momentu
space. This may be traced to theT duality of the closed
strings and the resultant interchange of the IR-UV limits.
we will show, for the rescaled fieldsC̃E the correlation func-
tion increases at high energy leading to an exponential
crease in the dispersionv(p).

The two-point correlation function at low energies,pS

<L/b is related to the canonical one in the same way. T
canonical two-point function is the Fourier transform
G,L/b, and at low momenta it goes like a polynomial:

^C̃SC̃S&5
1

~pS!21m̃82
. ~62!

The reason for this different behavior of the correlation fun
tion is because before splittingC into high 1 low energy
modes, the total canonical two-point correlation function

^C̃8C̃8&5G@p8#5
1

p821m̃82
. ~63!

When writing it in terms of the two point function of th
original fields ~by dividing with thezp normalizations fac-
tor!, it goes as an exponential for large momentump, and as
a polynomial for low momenta.

The correlation length is given by

j.~m̃8!21. ~64!

Clearly, j diverges at very high momenta~early times! that
indicate that the correlation length is very large and signa
phase transition. Alternatively, the correlation length goes
zero at low momenta~late times! indicating that the theory
becomes local at late times.

Let us denotet5 ln b, ande542D. The RGEs for this
system at hand are known from the analogy of our partit
function,

Z5N )
p8,L

E DC̃8e2Se f f[ C̃8] , ~65!

to the dual lattice Ising model,

dg1

dt
5eg12A~36g1

21g2
2!, ~66!
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dg2

dt
5eg22A~24g1g218g2

2!, ~67!

dx

dt
52x112~12x!S 11

g2

6g1
D g1

Le
, ~68!

with x5m̃82L22, andA a numerical constant.
For the case we considered,g252g1 (g1→g̃) thus Eq.

~66! reduces and becomes identical to Eq.~67!. The solution
to the RGEs will tell us the running of the couplings consta
m̃82 and g̃8 to their nontrivial fixed points with time,m̃82

5 f m(b), g̃85 f g(b). These relationsf i(b) are replaced in
the expression for the correlation function and length, E
~63! and ~64!. Note thatG21@p# is the dispersed frequenc
with short distance modifications contained in them̃0

2 term

m̃0
2 →

p→` m0
2

2 cosh2pAa8
.

1

2
m0

2e22Aa8p, ~69!

where bf5a(t f)/a(t0) and t f is the final time that can be
taken to be future infinity. It is clear from the expression f
the modified canonical mass of Eq.~69!, which originated
from the interaction between the system and the environm
at short distances, that the correlation length of Eq.~64! di-
verges exponentially at high energies and the correla
function between the original fields falls off exponentiall
Eq. ~61!. From the RGEs, the correlation lengthj and the

quartic coupling constantg1 vanish with time,j →
t→`

0, and
the system is dominated only byfree momentum modes
(m/R) (w→0). The RGEs in combination with the CGE
thus describe the dynamics evolution of our entangled s
tem of winding and momentum modes at early times to
free gas of momentum modes at late times, due to the b
reaction of the high energy environmental~mainly winding!
modes. Also notice that by using the Tolman relation for t
temperature in an expanding background,T5Tc /a(t), we
can express the RGEs and the partition functionZ as func-
tions of temperature rather than the scale factora(t) ~or
equivalentlyb), i.e.,

Z5ZFT2Tc

Tc
G , ~70!

where Tc corresponds toa(t0), i.e. b51. The correlation

lengthj diverges aroundb51,T5Tc , j →
t→0

`. Thus our sys-
tem breaks down due to strong correlations at early time
high temperatures, but this simply signals the Haged
phase transition at around the critical temperatureTc .

V. DARK ENERGY FROM CLOSED STRING THEORY.
DISCUSSION

We argue that closed strings on a toroidal cosmology l
to a plausible explanation of the dark energy phenomen
Although bosonic strings have been used, it is expected
superstrings will lead to a similar conclusion. Certainly it
2-8
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crucial that closed strings are involved because open str
do not have the same aspect of winding around the toru

The scale factor of the universea(h) has been used as
collective coordinate for the environment degrees of fr
dom, and as the fundamental scaling parameter in the coa
graining. The choice of aD53 expanding cosmology wa
chosen phenomenologically. An argument for this choice
the BV model was presented in@5#, and we believe this
argument does provide a possible justification. It is enco
aging that inclusion of branes gives a similar result@12#. It
has further been assumed that the mass gapDp can be safely
assumed to be slowly varying during our coarse-grain
procedure.

We would like to make the reader aware of anoth
subtlety related to the torus topology of our background
globally nontrivial topology likeT33R1 admits two types of
quantum field configurations, twisted and untwisted fiel
due to the periodic and antiperiodic boundary conditions
posed on the fiber bundle of the manifold. This is a lon
standing problem@19# that does not have a definite remed
The problem is the following: twisted fields can have a ne
tive two-point function. These fields interact with each oth
while preserving the symmetries of the Hamiltonian. Th
interaction thus contributes a negative mass squared ter
the effective mass of the untwisted field due to the nega
two-point function of the twisted field and renders the u
twisted field unstable. It is often assumed that Nature sim
chose to preserve the untwisted configuration only or forb
their interaction due to some, as yet unknown, symme
@20#.

String theory preserves Lorentz invariance. This symm
try has been broken for the open system of our low ene
string modes due to the back reaction from the coa
grained environment. Their correlation results in our disp
sion relation. If a specific frame must be chosen, it could
e.g., the rest frame of the cosmic microwave backgrou
~CMB!. The formalism needed for the calculation of th
stress-energy tensor and the equation of state of the no
early dispersed short-distance modes in the presence of
entz noninvariance and an expanding background while la
ing an effective Lagrangian for this short-distance phys
requires further development. The initial condition for o
model is a vacuum state conformally equivalent to
Minkowki spacetime—the so-called Bunch-Davies vacu
@21#. Finally, before summarizing we should note that
there are other modes without the exponential suppressio
high k, all that we need is one such mode to lead to
frozen tail comprising the dark energy.

The high wave number behaviore2ak of the dispersion
relationv(k) leads again to the correct estimate for the d
energy as a fraction;102120 of the total energy during in-
flation. This dark energy is certainly completely stringy b
cause our derivation depends on the existence of wind
modes, as seen by the role of the generalized level-matc
condition

N2Ñ5S imiwi .

This correlation between momentum and winding mod
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leads to the quantum Hamiltonian14 and hence to the inter
pretation of the dark energy as the weak correlation with
winding mode energy at short distances.15 The excitation
modes of these correlations with energy less than the cur
expansion rate are currently frozen by the expanding ba
ground.

Within string cosmology there has always been the qu
tion of the fate of the winding modes in the uncompactifi
three spatial dimensions, whether or not they combine t
single string per horizon which wraps around the univer
Our remedy is intuitively appealing that while the mome
tum modes are in evidence as quarks, leptons, gauge bo
etc. the winding modes are now condensed uniformly in
environmental background, hence with a weak correlation
short distances to the momentum modes, frozen by the
pansion of the FRW universe in the form of the dark ener

The observed small valueL;102120 in natural units
might have an explanation in the toroidal cosmology
closed strings and if so the dark energy provides an exci
opportunity to connect string theory to theoretical cosm
ogy. We may argue that numerically the size of the cosm
logical constant in the present approach is a combination
the string scale and the Hubble expansion rate in the se
that L/M Planck

4 .102120.(H0 /M Planck)
2. Therefore the

correct amount of dark energy obtained by this frequen
dispersion function does not require any fine tuning and
lies, besides a physical mechanism~such as freeze out!, only
on the string scale as the parameter of the theory.

The qualitative effort we have made in this work sugge
that an interpretation of the dark energy in terms of str
theory might be competitive with either a simple cosmolo
cal constant or the use of a slowly varying scalar field as
quintessence theories. Our arguments are admittedly he
tic and we publish them only in the hope they might sugg
an improved understanding of the connection betwe
strings and cosmological expansion.

Note added

~i! We have not addressed the equation of statew5p/r
for dark energy in this work. A recent paper by M. Lemoin
et al. ~Ref. @22#!, attempts to calculatew from a dispersion
relation similar to that discussed in the present paper, arr
at a bizarre resultw52186 and concludes correctly that th
value appears in contradiction with data. However, this re
for w depends sensitively on the

14We would like to remind the reader of the approximation ma
in Sec. III for obtaining the toroidal string quantum Hamiltonia
since an exact solution for this class of backgrounds does not e
as yet.

15The correlations in the trans-Planckian regime contribute to
total energy density of the universe with two types of modes: T
excitation modes of these correlations with energy less than
current Hubble expansion rate,H, are currently frozen by the ex
panding background therefore their kinetic energy is nearly ze
All the other modes in the trans-Planckian regime whose freque
is higher thanH oscillate and redshift away at a rate that will b
determined by their equation of state.
2-9
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assumed initial conditions@e.g. Eq.~34! of that work#. We
agree with Lemoineet al. that an acceptable equation of sta
is not automatic but depends on initial conditions. Our co
clusion would be that an acceptable equation of state requ
initial conditions dictated by string theory. We will return t
this question in a future publication where it is argued t
w,21 can be a defining characteristic of stringy dark e
ergy.

~ii ! Starobinsky,~Ref. @23#!, suggests that trans-Planckia
physics is irrelevant to inflationary cosmology; however,
result is based on a discussion using the WKB approxima
and as he himself emphasizes does not apply to a dispe
relation which falls to a constant such as zero,v(k)→0,k
→`, at largek as we have assumed in the present article
such a case, there is a legitimate concern about exten
particle production caused by cosmological expansion. I
conceivable, however, that in the present case such parti
if they are indeed produced, might themselves exert nega
pressure.
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APPENDIX

In this appendix we summarize the derivation of t
coarse-grained actionSe f f@CS#, Eq. ~54!. For details we re-
fer the reader to the original papers in@10#.

We start with the Euclidean action for the quartic intera
tion scalar model under consideration, Eq.~35!, in a spatially
flat FRW universe,

S@C#5E a~ t !dtE d3x@ u¹Cu21m̃0
2uCu21g̃1uCu4#.

~A1!

Time in this approach is considered as a parameter, and
scale factora(t) is regarded as a constant instead of a
namical function. In this way, different values ofa(t)5const
labels different spatial sections in 3-dimensional Minkows
space, related to each other by ‘‘scaling’’ transformatio
with scaling parameter

b5a~ t !/a~ t0!. ~A2!

In this sense,dynamicsis replaced byscaling.
In ~3-dimensional! momentum space, the action is give

by
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S@C#5E a~ t !dtF E d3pC~p!~p21m̃0
2!C~2p!

1g̃1E )
i

4

d3piC@p1#C@p2#C@p3#C@p4#

3d3~p11p21p31p4!G . ~A3!

We now separate the field modes into system and envi
ment,C5CS1CE , with the choice

CS :pS<L/b CE :L/b<pE<L. ~A4!

We can then also write the action as system1environment,
plus the interaction between system and environment:

S@C#5S@CS#1S0@CE#1SI@CE ,CS#, ~A5!

where

SS@CS#5E a~ t !dtF E d3pSCS~pS!GS
21CS~2pS!

1g̃1E )
i 51

4

d3pi
SCS

4~pi
S!d3S ( pi

SD G , ~A6!

S0@CE#5E a~ t !dtE d3pECE~pE!GE
21CE~2pE!,

~A7!

SI@CE ,CS#5g̃1E a~ t !dtF E )
i 51

4

d3pi
ECE~p1

E!

3CE~p2
E!CE~p3

E!CE~p4
E!d3S ( pi

ED
14E )

i 51

3

d3pi
E d3pSCE~p1

E!CE~p2
E!

3CE~p3
E!CS~pS!d3~p1

E1p2
E1p3

E1pS!

16E )
i 51

2

d3pi
E)

j 51

2

d3pj
SCE~p1

E!CE~p2
E!

3CS~p1
S!CS~p2

S!d3~p1
E1p2

E1p1
S1p2

S!

14E d3pE)
j 51

3

d3pj
SCE~pE!CS~p1

S!

3CS~p2
S!CS~p3

S!d3~pE1p1
S1p2

S1p3
S!G ,

~A8!

whereGS,E are Green’s functions given by

GS
,L/b@pS,L/b#5@~pS!21m̃0

2#21, ~A9!
2-10
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GE
L/b@pE.L/b#5@~pE!21m̃0

2#21,
~A10!

and the Green’s function for the whole system is defined

G@p#5GS
,L/b@pS#1GE

L/b@pE#. ~A11!

Now, the ‘‘environment’’ fields can be integrated out fro
the partition function, such that

Z@C#5NE DCe2S[C]

5NE DCSE DCEe2(S[CS] 1S0[CE] 1SI [CE ,CS])

~A12!

5N8E DCSe2S[CS]^e2SI [CE ,CS]&CE
. ~A13!

The averagê•••&CE
is defined with respect to the free a

tion for the environment fieldsS0@CE#,

^e2SI [CE ,CS]&CE

5E DCEe2(S0[CE] 1SI [CE ,CS])YE DCEe2S0[CE]

~A14!

5e2DS[CS] . ~A15!

The coarse-grained effective action is then

Se f f@CS#5S@CS#1DS@CS#, ~A16!
. A

,

ys

s.

10600
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with

DS@CS#52 ln^expSI@CE ,CS#&. ~A17!

When the interaction between system and environm
modes is small (g̃1!1), the contribution from Eq.~A17! can
be expanded in a Dyson-Feynman series, which cont
only even powers of the system fields~odd powers of the
environment fields average to zero!. The first terms in the
series give rise then to corrections to the mass@dm̃0

2(b)# and

coupling constant@dg̃1(b)# parameters, which can be ab
sorbed by redefining the original mass and coupling para
eters in the actionSS@CS#. Therefore, the effective action
will be given by

Se f f@C#5E a~ t !dtF E d3pSCS~pS!

3„~pS!21m̃2~b!…CS~2pS!

1E )
i

4

d3pi
Sg̃~b!CS@p1

S#CS@p2
S#CS@p3

S#

3CS@p4
S#d3~p1

S1p2
S1p3

S1p4
S!G , ~A18!

where

m̃2~b!5m̃0
21dm̃0

2~b!, ~A19!

g̃~b!5g̃11dg̃1~b!. ~A20!
ys.
d

a-

d-
.

on
,
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