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Neutrinos vis-à-vis the six-dimensional standard model
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We examine the origin of neutrino masses and oscillations in the context of the six-dimensional standard
model. The space-time symmetries of this model explain proton stability and forbid Majorana neutrino masses.
The consistency of the six-dimensional theory requires three right-handed neutrinos, and therefore Dirac
neutrino masses are allowed. We employ the idea that the smallness of these masses is due to the propagation
of the right-handed neutrinos in a seventh, warped dimension. We argue that this class of theories is free of
gravitational anomalies. Although an exponential hierarchy arises between the neutrino masses and the elec-
troweak scale, we find that the mass hierarchy among the three neutrino masses is limited by higher-dimension
operators. All current neutrino oscillation data, except for the LSND result, are naturally accommodated by our
model. In the case of the solar neutrinos, the model leads to the large mixing angle, MSW solution. The
mechanism employed, involving three right-handed neutrinos coupled to a scalar in an extra dimension, may
explain the features of the neutrino spectrum in a more general class of theories that forbid Majorana masses.
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I. STANDARD MODEL IN SIX DIMENSIONS

The proposal@1# that all the standard model fields acce
extra spatial dimensions above some energy scale~‘‘univer-
sal extra dimensions’’! has received considerable attenti
during the past year. Precision electroweak measurem
require only that the compactification scale of universal ex
dimensions be above a few hundred GeV, opening up a
tentially rich set of signatures, both in additional precisi
measurements@2,3# and in collider searches@1,3,4#.

An especially attractive possibility is that there exist tw
universal extra dimensions. The six-dimensional stand
model is chiral, and the constraints from Lorentz invarian
and anomaly cancellation have remarkable consequen
The quarks (Q,U,D) and leptons (L,E) are four-componen
Weyl fermions of definite chirality, labeled by1 and2. The
cancellation of irreducible gauge anomalies imposes on
the following two chirality assignments consistent with Lo
entz invariant Yukawa couplings:Q1 ,U2 ,D2 ,L7 ,E6 ,
where generational indices are implicit@5#. The reducible
gauge anomalies can be canceled via the Green-Sch
mechanism as discussed in@6,5,7,8#. Gravitational anomaly
cancellation requires that each generation include a ga
singlet fermionN6 with six-dimensional chirality opposite
to that of the lepton doublet@6#. In addition, the six-
dimensional standard model is the only known theory t
constrains the number of fermion generations to beng
53 mod 3, based on the global anomaly cancellation c
dition @5#.

The two universal extra dimensions have to be compa
fied on an orbifold, so that each of the six-dimensional ch
fermions gives in the effective four-dimensional theory eith
a left- or a right-handed zero-mode fermion. The simpl
orbifold compactifications are either the squareT2/Z2 or
T2/Z4 orbifolds.

An intriguing feature of the six-dimensional standa
model is that the combination of its Lorentz and gauge sy
metries can lead to a sufficient conservation of baryon nu
ber, even with the scale of baryon-number violating phys
0556-2821/2002/65~10!/105019~15!/$20.00 65 1050
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as low as the TeV range@9#. For theT2/Z4 orbifold, a Z8
subgroup of the six-dimensional Lorentz symmetry is exac
preserved. In the case of the squareT2/Z2 orbifold, the same
is true provided the two orbifold fixed points that are e
changed by a 90° rotation in the compactified~transverse!
dimensions are physically indistinguishable. TheZ8 symme-
try requires that the baryon and lepton numbers,DB andDL,
of any operator in the low-energy four-dimensional Lagran
ian obey the selection rule1

3DB1DL50 mod 8. ~1.1!

As a result, the proton is very long lived~all DB51 transi-
tions are governed by very high-dimension operators, and
therefore strongly suppressed!, while neutron–anti-neutron
oscillations (DB52,DL50) are forbidden. In the lepton
sector, there are no neutrino Majorana masses,2 and more
generally neutrino-less double beta decays (DB50,DL
52) are forbidden. The absence of Majorana masses foll
from the properties of the gamma matrices in six dimensio
namely that the charge conjugation operator does not flip
chirality.

In this paper we study the implications for neutrino phy
ics of the six-dimensional standard model. The mass ma
for the zero-mode neutrinos is induced dominantly by
following dimension-seven Yukawa terms in the si
dimensional Lagrangian:

1The cancellation of anomalies via the Green-Schwarz mechan
requires a~four-dimensional! scalar field that transforms nontrivi
ally under theZ8. Operators that involve this field can be induce
by four-dimensional instanton effects and could result in a violat
of the selection rule Eq.~1.1!. We expect these effects to be neg
gible. We thank E. Poppitz for discussions on this point.

2The fact that theZ8 symmetry forbids Majorana masses was n
taken into account in Ref.@7#. We note that even if the two univer
sal extra dimensions were compactified on an arbitraryT2/Z2 orbi-
fold, an exactZ4 symmetry would still have prevented any Majo
rana mass.
©2002 The American Physical Society19-1
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2L̄2
i l̂N

i i 8N1
i 8 is2H* 1H.c., ~1.2!

where i ,i 8 label the generations,H is the six-dimensiona
Higgs doublet, and where we have taken the six-dimensio
chirality of L to be2. The ensuing Dirac masses of the thr
neutrino flavors can accommodate the neutrino oscilla
data and all other experimental constraints, with the exc
tion of the Liquid Scintillation Neutrino Detector~LSND!
result @10#. It is nevertheless difficult to explain why th
eigenvalues of the Yukawa matrixl̂N are extremely small.

Since the standard model in extra dimensions is an ef
tive theory, breaking down at some scaleMs in the TeV
range, it is natural to expect gravity to be strongly coup
there as well. A structure that accommodates the obse
weakness of the gravitational interaction should then
added to the universal extra dimensions. The simplest po
bilities are that either some number of additional flat dime
sions@11# or one additional warped dimension@12# are trans-
verse to the universal ones and are not accessible to stan
model fields. Each of these alternatives also provides a
sible mechanism for explaining small but finite Dirac ne
trino masses, as first proposed in@13# and@14#, respectively,
by letting the gauge singlet fermions propagate in these e
dimension~s!.

We concentrate here on the possibility that the sing
fermions, along with gravity, propagate in a single additio
~seventh! warped dimension, with the standard model fie
confined to a 5-brane. We adapt and generalize the fi
dimensional model of Ref.@14#, and examine its conse
quences for neutrino masses and mixing angles. In Sec. I
present a simple effective theory, involving a single sca
field in the seven-dimensional bulk, that couples to theN
fields. We then discuss, in Sec. III, the global gravitatio
anomalies in this context and argue that there is no additio
constraint on the number ofN fields ~contrary to claims
made in the literature@14,15#!.

We examine the neutrino zero modes in Sec. IV, where
derive their mass matrix in terms of the wave functions
the N zero modes at the standard model 5-brane. In Se
we derive the shape of the scalar vacuum expectation v
~VEV!, and then find the profiles of theN zero modes. The
effect of the scalar VEV is to concentrate theN zero modes
near the brane opposite to the standard model one, so tha
resultant four-dimensional neutrino mass matrix is expon
tially suppressed relative to the weak scale. We then sh
that the mass hierarchy between the different flavors is l
ited by the presence of higher-dimension operators, wh
have a flavor mixing effect. This is an important result, e
pecially in view of the often stated existence of a large
ponential hierarchy induced between the masses of diffe
flavors, whenever the two chiralities are localized at sepa
branes@14,16#.

The implication, discussed in Sec. VI, is that the ra
between the mass scales associated with the atmospheri
solar neutrinos is not expected to be larger than one to
orders of magnitude. Therefore, the large mixing an
Mikheyev-Smirnov-Wolfenstein~MSW! solution to the solar
neutrino problem is a consequence of this model. We disc
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the neutrino mixing angles, as well as mass eigenvalues,
show that values compatible with all current neutrino osc
lation data, except for the LSND result, emerge natura
The energy scales associated with the seventh dimensio
well as the universal six dimensions, are such that
singlet-neutrino Kaluza-Klein~KK ! modes are too heavy to
play a direct role in the observed neutrino oscillations. Sim
larly, the constraints from astrophysics@17# or cosmology
@18# on the mass of the KK neutrinos are not relevant he
In Sec. VII, we discuss the relations among various para
eters in the model and draw some conclusions about
expected mass scales that characterize it. In Sec. VIII,
summarize the essential ingredients of our model leading
viable neutrino mass spectrum, and emphasize that
mechanism applies to a more general class of high
dimensional models.

II. A WARPED SEVENTH DIMENSION

The seven-dimensional gauge-singlet fermions are D
spinors with eight components, denoted byN i(xM), where
i 51,2,3 labels the generations. The spacetime coordina
xM with M50,1, . . . ,6, arelabeled as follows:x0,x1,x2,x3

for the ordinary spacetime,x4,x5 for the two additional uni-
versal dimensions, andx6[z for the dimension inaccessibl
to the standard model fields. We use the following conv
tions: capitalsM ,N . . . ~from the middle of the alphabet!
denote the seven coordinate indices in a curved backgro
while capitalsA,B, . . . ~from the beginning of the alphabe!
denote the corresponding local Lorentz indices. We also
lowercase Greek lettersa,m, . . . to refer to the coordinate
indices, and lower case Latin letters,a,m, . . . to refer to the
Lorentz indices along the flat universal dimensions.

The (T2/Z4)3(S1/Z2) orbifold compactification projects
out the unwanted zero modes, and restricts the coordinate
0<x4,x5<pRu and 0<z<pr c . The six-dimensional stan
dard model fields are localized atz5pr c , while the gauge-
singlet fields propagate in the whole bulk.

The most general metric consistent with six-dimensio
Poincare´ invariance is diagonal, and warped in thez direc-
tion. However, the compactification of the two universal e
tra dimensions on theT2/Z4 orbifold breaks six-dimensiona
Poincare´ invariance, and in general leads to a warp factor
x4,x5 different from the warp factor for the familiar uncom
pactified dimensions. For example, we expect contributi
to the stress-energy tensor, due to the Casimir energy of
fields, that do not respect the six-dimensional Lorentz inva
ance. However, we will assume for simplicity that these d
ferences can be neglected.3 Our main conclusions do no
change if we allow for the more general possibility that t
warp factors for the uncompactified and compactified univ
sal dimensions are different. Therefore, we consider a d

3A complete solution that incorporates the gravitational back
action of Casimir energies or other effects arising from the comp
tification of the two universal dimensions would involve the spe
fication of a radius stabilization mechanism. We leave such a st
for future work.
9-2
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NEUTRINOS VIS-À-VIS THE SIX-DIMENSIONAL . . . PHYSICAL REVIEW D 65 105019
onal metricGMN that is warped in thez direction, corre-
sponding to a line element

ds25GMN dxMdxN

5w2~z!hmndxmdxn2dz2,
~2.1!

where m,n50,1, . . . ,5, andh5diag(11,21, . . . ,21) is
the six-dimensional Minkowski metric.

Starting in Sec. V we will take the warp factor to have t
form @12#

w~z!5ek(pr c2z), ~2.2!

which is a good approximation whenever the dominant c
tribution to the bulk stress-energy tensor is due to a b
cosmological constant. This normalization is chosen so
w(pr c)51, which facilitates the physical interpretation
the standard model brane, located atz5pr c . In particular,
this choice implies that the coordinate radiusRu is theproper
radius of the universal extra dimensions as measured by s
dard model probes. For the AdS metric defined by Eqs.~2.1!
and ~2.2!, the Riemann curvature tensor isRlrsn5
2k2(gsrgln2gnrgls), using the sign conventions of@19#.

So far we have introduced three mass parameters: th
verse coordinate radius 1/Ru of the universal extra dimen
sions~associated withT2/Z4), the inverse radius 1/r c of the
dimension accessible only to neutral fields, andk. They are
all taken to be below the fundamental seven-dimensio
mass scaleM* , which, as will be discussed in Sec. VII, is i
the TeV range. We will see in Sec. IV that, with the norm
ization w(pr c)51, the mass scale for the standard mo
KK modes is set byRu

21 , and thus satisfies the boundRu
21
a

b
fla

d
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*0.5 TeV, imposed by the electroweak data@1#. The radius
r c of the dimension accessible only to neutral fields is rat
loosely constrained by searches for new long-range forc

In addition to theN i(xM) fermions and the graviton
other fields that are singlets under the standard model ga
group could be present in the warped extra dimension.
describe naturally small neutrino masses it is sufficient
include a single real scalarw with the dynamics described in
the framework of effective field theory. This scalar is thus
effective degree of freedom, and could well represent a co
posite structure, with the compositeness becoming eviden
scales of orderM* and above. The seven-dimensional~ef-
fective! action, invariant under both general coordinate a
local Lorentz transformations, is then given by

E d7xHAGF i

2
~N̄ iGAeA

MD̂MN i2H.c.!1
1

2
GMN]Mw]Nw

2Vw,NG1d~z2pr c!A2gLSMJ , ~2.3!

where the first two terms are kinetic terms in the warp
spacetime and the last two terms describe the bulk inte
tions of theN andw fields, and the six-dimensional standa
model. HereeA

M is the inverse vielbein,G is the determinant
of the seven-dimensional metric, withAG5w6(z), andg is
the determinant of the six-dimensional induced metric, w
A2g5w6(pr c). TheGA are the anti-commuting matrices i
seven-dimensional Minkowski space: the gamma matrice
six-dimensional Minkowski space along withG65 iG7,
where G75G0 . . . G5 defines six-dimensional chirality via
N65 1

2 (16G7)N. The fermion covariant derivative in
Eq. ~2.3!, associated with the diagonal metricGMN , is
eA
MD̂MN5H w21~z!@]a1 ida

a GaG7~dw/dz!/2#N, A5a50,1, . . . ,5

]N/]z, A56.
~2.4!
sec-

e
-
, so

n

The bulk interactions preserve the orbifoldZ2 symmetry,
defined such thatN 2

i and w are odd, whileN 1
i are even.

They may be organized into a tower of operators of incre
ing mass dimension:

Vw,N52L2
1

2
Mw

2w21
lw

4M
*
3

w4

1S hi j

M
*
3/2

w2
h̄i j

M
*
7/2

D̂M]Mw D N̄ iN j1•••, ~2.5!

where L is a bulk cosmological constant that needs to
fine-tuned in order to keep the four dimensional sections
At the classical level this involves tuningL against possible
brane tension terms as well as the vacuum energy store
thew VEV. The parameterlw is real, andh, h̄ are Hermitian
s-

e
t.

in

matrices. All are dimensionless. The mass-square in the
ond term ofVw,N is chosen to satisfyMw

2.0, so thatw has a
nonzero VEV. BothMw andk are taken to be well belowM*
to justify the use of effective field theory for exploring th
vacuum properties ofw. By a flavor transformation it is pos
sible to diagonalize the first term inside the parentheses
that we can use a basis where

hi j 5hid i j , ~2.6!

with hi real and positive. The other terms involvingN i are in
general flavor nondiagonal.

The six-dimensional standard model Lagrangian,LSM,
localized atz5pr c , includes the kinetic terms for the lepto
and Higgs doublets and the Yukawa interactions ofN i :
9-3
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APPELQUIST, DOBRESCU, PONTO´ N, AND YEE PHYSICAL REVIEW D 65 105019
LSM. i L̄2
i Gaea

aDaL2
i 1gabDaH †DbH

2S lN
i j

M
*
3/2

L̄2
i N1

j is2H* 1H.c.D , ~2.7!

where the induced~inverse! metric and vielbein at the stan
dard model 5-brane are given by

gab5w22~pr c!h
ab,

ea
a5w21~pr c!da

a , a50,1, . . . ,5.
~2.8!

In Eq. ~2.7!, Da are the gauge covariant derivatives, and
Yukawa couplings are again dimensionless. Note that
four-component fieldL2 has mass dimension15/2 while
the N1 field ~also four-component!, being defined in seven
dimensions, has mass dimension13.

Before proceeding with the analysis of the neutri
masses, we discuss the consistency of the seven-dimens
theory.

III. GRAVITATIONAL ANOMALIES

We next show that the seven-dimensional model
scribed in the previous section is anomaly free. The rea
interested mostly in neutrino phenomenology may wish
move directly to Sec. IV.

The seventh dimension is compactified on aS1/Z2 orbi-
fold and the six-dimensional standard model is localized o
5-brane at one of the two fixed points, while the three sing
neutrino fields propagate in the bulk. It was shown in@5# that
if all fields were six-dimensional, the resulting theory wou
be free of gauge and gravitational anomalies, bothlocal and
global. Letting the neutrino fields propagate in a seven
dimension amounts to adding three infinite towers of K
fields to this theory. Since all gauge fields are localized at
orbifold fixed points, allowing the singlets to propagate
more dimensions cannot introduce any gauge anoma
Gravity, however, propagates in the bulk and one must c
sider whether all gravitational anomalies cancel. When c
pling fermions to gravity, there can be two types of anom
lies: those associated with general coordin
transformations and those associated with local Lore
transformations. For each of these cases one must disting
betweenlocal and global anomalies.4 We analyze first the
case of local gravitational anomalies. After showing tha

4Note that the word ‘‘local’’can have two different meanings.
the context of ‘‘local Lorentz’’transformations it means that the Lo
entz group has been gauged, the standard usage in gauge the
There can be, however, local Lorentz transformations that are
tinuously connected to the identity as well as local Lorentz tra
formations that are not. It is customary to refer to the transform
tions of the first kind aslocal and to those of the second kind a
global. We useitalic fonts whenever we want to emphasize th
distinction between the transformations that are continuously c
nected to the identity and those that are not.
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there are none we turn to the more subtle issue ofglobal
gravitational anomalies.

A. Local gravitational anomalies

A noninvariance of the effective fermion action under l
cal Lorentz transformations would imply that the corr
sponding stress-energy tensorTMN is not symmetric. This
would be incompatible with general covariance and the c
servation law¹MTMN50. Thus, in the presence of local Lo
entz anomalies, either general covariance is broken orTMN is
not conserved. Anomalies associated with general coordi
transformations, on the other hand, lead directly to¹MTMN

Þ0. In either case, the theory that results when gravity
comes dynamical is inconsistent, and it is necessary to
sure that all gravitational anomalies cancel. However,
conditions derived from the requirement of anomaly canc
lation for both kinds of transformations are not independe
At least in the case oflocal anomalies, it is possible to shif
the anomalies of one kind into anomalies of the other kind
adding suitable local terms to the vacuum functional@20,21#.
Thus, we may concentrate only on general coordinate tra
formations.

In the case of gauge theories in three or five dimensio
any local gauge noninvariance, which is necessarily loc
ized at orbifold boundary points, can always be cancelled
a bulk Chern-Simons term@22,23#, provided the anomalies
in the lower dimensional effective theory vanish.5 We now
argue that this is also the case forlocal general coordinate
anomalies in seven dimensions.6 We follow the argument
given in @23# for the spin-1 case. The idea is to calculate t
one-loop contributions to the covariant divergence of
seven-dimensional stress-energy tensor in the
dimensional effective theory. If we regularize in such a w
as to produce the covariant form of the anomaly, it is p
sible to perform the calculation in any convenient gauge.

For the analysis of anomalies, it is sufficient to consid
small fluctuations about a flat background

ds25@hab1hab~x,z!#dxadxb2dz2, ~3.1!

wherehmn!1. In Eq. ~3.1! we took advantage of the gaug

freedom7 to setGmz50 andGzz521. We also choose the
vielbein as follows:eaa5(haa1 1

2 haa), eaz5eza50 and
ezz51. The fact that we take a symmetric vielbein mea

ries.
n-
-
-

n-

5The mathematical relation between Chern-Simons forms in
dimensions and anomalies in even dimensions was discusse
@24,25#.

6In five dimensions there are nolocal gravitational anomalies: the
triangle diagrams always vanish.

7The invariance of the line element Eq.~3.1! under the reflection
z→2z requiresGab andGzz to be even, whileGmz should be odd.
For consistency, the infinitesimal parameters of a general coordi
transformationza (zz) should be even~odd!. Although these bound-
ary conditions do not allow the zero mode ofGzz to be gauged
away, this ‘‘radion’’mode has vectorlike couplings in our theory
that it does not contribute to the anomaly, and we do not includ
here.
9-4
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that the stress-energy tensor is symmetric.~In this gauge the
absence of local Lorentz anomalies is explicit.!

The action for a fermionC in the background Eq.~3.1!
becomes

S5
i

2E d7x eC̄GAeA
MD̂MC1H.c.

5E d7xF i C̄Ga]aC1
i

2
C̄G6]JzC

2habTab1O~h2!G , ~3.2!

where

TMN5
i

4
@C̄G (M ]JN!C2hMN~C̄Gm ]JmC1C̄G6]JzC!],

~3.3!

and all components with an index along the seventh dim
sion vanish. Here we use the notationC̄ ]JC[C̄]C

2(]C̄)C, and in the second line of Eq.~3.2! as well as in
Eq. ~3.3! it is understood that all indices are raised and lo
ered with the Minkowski metrichab .

We now expand the fermion fields in KK modes,

C6~x,z!5(
n

c6
(n)~x!jn

6~z!, ~3.4!

wherec6(x,z)5 1
2 (16G7)c(x,z), with G752 iG6. The KK

wave functionsjn
6(z), which can be taken real, are solutio

to

]zjn
656mnjn

7 , ~3.5!

where jn
1(z) and jn

2(z) satisfy Neumann and Dirichle
boundary conditions, respectively, and are normalized as

E
0

pr c
dzjn

6~z!jn8
6

~z!5dnn8 . ~3.6!

The result of replacing the mode expansion Eq.~3.4! in the
action Eq.~3.2! is

S5(
n
E d6xF c̄ (n)~ iGa]a2mn!c (n)

2(
n8

hnn8
ab6 Tab6

(n,n8)1O~h2!G , ~3.7!

where

Tab6
(n,n8)5

1

4
@ i c̄6

(n)G (a ]Jb)c6
(n8)2hab~ i c̄6

(n)Gm ]Jmc6
(n8)

2mnc̄7
(n)c6

(n8)2mn8 c̄6
(n)c7

(n8)!#,

and

hnn8
ab6

~x!5E
0

pr c
dzjn

6~z!jn8
6

~z!hab~x,z!. ~3.8!
10501
n-

-

The action Eq.~3.7! corresponds to the six-dimension
theory of an infinite number of fermion fields that coup
~chirally! to background fieldshnn8

ab6 with standard gravita-
tional couplings. Note that whenhab is z independent, the
resulting couplings are vectorlike~except for those of the
zero-mode fermion! due to the normalization condition Eq
~3.6!, which is the same for both chiralities.

One can calculate now the relevant square diagram@26#
with one insertion of the operator Eq.~3.3!, with the seven-
dimensional fermions replaced by their KK mode expa
sions. Performing then the same manipulations as in@23#,
and adding the contribution of a brane fermion~in our model
these are the electrically neutral component of theL2

i , while
the corresponding bulk fermions, labeled generically in t
section byC, are theN i) to compensate for the zero mod
projected out by the orbifold boundary conditions, one c
finally write

E d6xzM¹NTMN5
1

2
@d~z2pr c!2d~z!#

1

4p4

3E H 1

288
Tr@vzR#Tr@R2#

1
1

360
Tr@vzR

3#J . ~3.9!

Here we used a compact differential form notation:Ra
b

5 1
2 Ra

bmn dxm`dxn, whereRa
bmn(x,z) is the Riemann ten-

sor calculated from the background Eq.~3.1!, but with the
indices running only from 0 to 5. The traces are taken o
the indices that are not saturated by differentials. Al
(vz)

a
b5]bza, where theza(x,z) can be thought of as the

infinitesimal parameters of a general coordinate transfor
tion. Due to general covariance, the result Eq.~3.9! holds in
any gauge. In addition, we are allowed to replace the R
mann tensor in Eq.~3.9! by its exact, nonlinear expression
so that the final result holds in an arbitrary background.

The covariant anomaly given in Eq.~3.9! does not satisfy
the Wess-Zumino consistency conditions and therefore c
not be obtained from the general coordinate variation o
functional of the metric. There is a standard procedure
obtain the consistent anomaly by adding local terms to
stress-energy tensor @20#. The resulting anomaly
Q6

1(vz ,G,R)@d(z2pr c)2d(z)#/2, whereGa
b5Ga

bmdxm is
the connection 1-form, is related to the variation of a 7-fo
Q7(G,R) that can be added to the seven-dimensional ac
by

dvz
E Q7~G,R!5E dQ6

1~vz ,G,R!. ~3.10!

The Chern-Simons secondary characteristic classQ7(G,R)

involves traces over all seven dimensional indices.8 How-

8Q7(G,R) satisfies dQ7(G,R)5@1/(2p)4#$ 1
288(Tr@R2#)2

1
1

360Tr@R4#%, whereR is the seven-dimensional Riemann curv
ture two-form. For a pedagogical exposition see@21#.
9-5
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ever, only the six-dimensional components contribute to
right-hand side of Eq.~3.10! due to the orbifold boundary
conditions on the metric and on the infinitesimal parame
zM.

The modified~consistent! form of Eq. ~3.9! matches pre-
cisely with Eq.~3.10!. We note thatQ7(G,R) is odd under
parity ~defined as reflection through thez50 hyperplane!.
Therefore, if we define the orbifold theory by starting from
compactification on the circleS1, the coefficient of the
Chern-Simons term must change sign when crossingz50
~andz5pr c), so that the theory is invariant under the refle
tion that is used in the orbifold projection. Because of t
discontinuity, the gauge variation of such a term gives rise
delta-function singularities as in Eq.~3.9!. Alternatively, we
can think of theS1/Z2 orbifold as a compactification on a
interval ~the half circle! with certain boundary condition
imposed at the end points. In this picture the coefficient
the Chern-Simons term is constant and the compensa
anomaly comes from the boundary contributions. In eit
picture, it is clearly possible to cancel the noninvariance
the original fermion effective action by including the seve
dimensional Chern-Simons formQ7(G,R). We therefore as-
sume that this Chern-Simons term is present so that
vacuum functional is invariant underlocal coordinate trans-
formations.

B. Global gravitational anomalies

There still remains the question ofglobal general coordi-
nate ~local Lorentz! transformations@26–28#. If there are
diffeomorphisms not continuously connected to the ident
the previous analysis is not enough to ensure that the th
is invariant under such transformations. We phrase the
lowing analysis in terms of general coordinate transform
tions, but the same arguments apply for the case of lo
Lorentz transformations.

If W(G) denotes the fermion determinant in the prese
of a background metricG, we have in general

W~Gr!

W~G!
5eid [r] , ~3.11!

whereGr denotes the metric obtained fromG under a rep-
resentativer of one of the disconnected classes of diffe
morphisms, andd [r] is a phase that depends on the class

which r belongs.9 We are specifically interested in the di
feomorphism classes ofM5S43(T2/Z4)3(S1/Z2). The
key observation is thatS1/Z2 is diffeomorphic to an interva

9We note that the group of disconnected diffeomorphisms of
n-sphereSn is trivial for n<5. This follows from the absence o
‘‘exotic’’ ( n11)-spheres forn11<6 @29#. There are therefore no
constraints on the number of bulk neutrinos in the popular fi
dimensionalS1/Z2 orbifolds from global anomaly considerations
For higher dimensional theories the situation is not as straight
ward, as indicated by the fact that there are 28 disconnected c
ponents onS6 and two onS7. See@30# for some other higher di-
mensional cases.
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and any diffeomorphism ofM ontoM can be continuously
deformed into one which is trivial in the intervalS1/Z2:

x8a5 f a~x!, z85z, ~3.12!

where xa denote the coordinates inS43(T2/Z4). We can
therefore restrict attention to coordinate transformations
the type~3.12!. It is then convenient to perform a KK de
composition for all fields, including the background metr
and analyze the resulting six-dimensional theory. Regard
the background, we note that under the limited class of
feomorphisms~3.12! the affine connection transforms as

G8ab
l 5

]x8l

]xr

]xt

]x8a

]xs

]x8b
Gts

r 1
]x8l

]xr

]2xr

]x8a]x8b
,

~3.13!

while all other components transform simply as tensors@the
second term in Eq.~3.13! would vanish if any of the indices
a,b,l were along the seventh dimension parametrized byz#.
Furthermore, if we perform a suitable KK mode expansio
only the zero mode ofGab

l is affected by the second term i
Eq. ~3.13!; all other KK modes are true tensors under E
~3.12!. ~When referring to the gravitational background fiel
a zero mode isdefined to be independent of the highe
dimensional coordinate.!

We next argue that if there are noglobal anomalies in a
purely zero-mode gravitational background, then there are
global anomalies even in the presence of the higher gra
KK modes. The reason for this is that the group of disco
nected diffeomorphisms is finite, at least for the case of
n-sphereSn @30#. It follows that for any elementr in the
group there exists a~smallest! integerN such thatrN is the
identity element, and therefore the phase in Eq.~3.11! asso-
ciated withr must be an integer multiple of 2p/N. If this
phase vanishes when the higher gravity KK modes are tur
off, and we turn them on smoothly, the phase must rem
zero, unless it changes discontinuously. Since the hig
gravity KK modes are just like background ‘‘matter’’ field
in the appropriate tensor representation of Eq.~3.12!, we
consider this very unlikely.

Now, in a zero-mode gravity background, the theory
question is just the six-dimensional standard model with
addition of three infinite towers of massive neutrino K
modes, which havevectorlikecouplings to the background
gravity field. We also note that the Chern-Simons term tha
needed to cancel thelocal anomalies is invariant under Eq
~3.12! when the higher gravity KK modes are turned o
Therefore, the fermion effective action in a zero-mode gr
ity background is invariant under general coordinate tra
formations. From the argument given in the previous pa
graph it follows that there are noglobal anomalies in an
arbitrary gravitational background. It is worth pointing ou
that in the presence of the higher gravity KK modes, t
Chern-Simons termQ7(G,R) is not invariant even under th
restricted class of diffeomorphisms Eq.~3.12!. This nonin-
variance must be canceled by the rest of the terms involv
the higher gravity KK modes.

e

-

r-
m-
9-6
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We conclude that adding a seventh dimension compa
fied onS1/Z2 to the six-dimensional standard model and l
ting the neutrinos propagate in the bulk introduces neit
local nor global gravitational anomalies. Turning the arg
ment around, we can say that the consistency constraint
the number of neutrinos in the seven-dimensional model
the same as in the six-dimensional standard model anal
in @5#, namely it is necessary to include one singlet neutr
per generation. From the point of view of anomaly cance
tion it is immaterial whether these neutrinos are bulk
brane fields.

IV. NEUTRINO MASSES

We now return to the action of Eq.~2.3!, which leads to
Dirac neutrino masses. In order to study the implications
neutrino oscillations it is sufficient to analyze the zero-mo
spectrum.

The zero modes ofN2
i are projected out by the orbifold

boundary conditions. The KK decomposition along t
warped dimension that includes the zero-modeN fields is
given by

N 1
i ~xa,z!5

1

Apr c
(
n50

`

N 1
i (n)~xa!j i

n~z!, ~4.1!

where the indexa50,1, . . . ,5 labels the universal dimen
sions. Thej i

n(z) form a complete set of orthogonal~dimen-
sionless! functions on the@0,pr c# interval, satisfying Neu-
mann boundary conditions appropriate for even fields. T
are chosen to obey the ortho-normality conditions

1

pr c
E

0

pr c
dz w5~z!j i

n* ~z!j i
n8~z!5dnn8 , ~4.2!

which ensure the canonical normalization of the s
dimensional kinetic terms forN 1

i (n) .
We now adopt a warp factor chosen to be unity at

standard model brane, as in Eq.~2.2!. All kinetic terms for
the standard model fields are then automatically canonic
normalized. Keeping the zero modes with respect to the s
enth dimension only, and integrating overz, the six-
dimensional effective Lagrangian@see Eq.~2.3!# is

L6D5 i L̄2
i GaDaL2

i 1DaH †DaH1 i N̄1
i (0)Ga]aN1

i (0)

2S lN
i j j j

0~pr c!

Apr cM*
3/2

L̄2
i N1

j (0)is2H* 1H.c.D 1•••,

~4.3!

where a50,1, . . . ,5.Note that we do not need to distin
guish between coordinate and Lorentz indices anymore,
all the indices are raised and lowered with the flat me
hab . Equation~4.3! shows that the mass scale for the sta
dard model KK modes is set by the inverseproper radius
1/Ru @or 1/„w(pr c)Ru… for an arbitrary normalization of the
warp factor#.
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Integrating out the universal extra dimensions, the Di
neutrino mass matrix induced after electroweak symme
breaking is

M n
i j 5

lN
i j vh

pRuM*
Apr cM*

j j
0~pr c!, ~4.4!

wherevh5174 GeV is the Higgs VEV, and the denominat
represents the square-root of the volume of the (T2/Z4)
3(S1/Z2) orbifold. As we will see in the next section, th
neutrino mass eigenvalues are largely determined by the
erarchy among thej j

0(pr c), while the mixing angles are de

termined by the flavor structure of the couplingslN
i j andh̄i j .

V. ZERO-MODE PROFILES OF GAUGE-SINGLET
FERMIONS

In this section we derive the profiles of the neutrino ze
modes, which determine the neutrino mass matrix accord
to Eq. ~4.4!. These depend on the VEV ofw and therefore
our first task is to determine the solution to thew equation of
motion that follows from theN-independent part of Eqs
~2.3! and ~2.5!.

A. The bulk VEV

We will be interested in a region of parameter spa
where thew field VEV varies slowly in the bulk of the 7th
dimension~with the exception of two narrow regions close
the branes!, so that to a good approximation it simply gives
contribution to the bulk cosmological constant. Thus, we u
the explicit form for the warp factor, Eq.~2.2!.

The negative mass-squared ofw implies that a nonzero
VEV for w is energetically favored, but at the same timew is
an odd field under the orbifold identification, and therefo
its VEV must satisfy the boundary conditions

^w~0!&5^w~pr c!&50. ~5.1!

In terms of the rescaled VEV,

f ~z!5
^w~z!&

M
*
3/2

, ~5.2!

which has mass dimension11, the equation of motion is

d2f

dz2
26k

d f

dz
5lw f 32Mw

2 f , ~5.3!

subject to the boundary conditionsf (0)5 f (pr c)50. We as-
sumek.0. In Eq. ~5.3! we have neglected possible high
dimension operators. This is justified as long as the effec
field theory description is valid, that is as long ask andMw

are well belowM* .
9-7
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APPELQUIST, DOBRESCU, PONTO´ N, AND YEE PHYSICAL REVIEW D 65 105019
Equation~5.3! describes the motion of a particle in th
potential

V~ f !52
lw

4
f 41

Mw
2

2
f 2, ~5.4!

in the presence of ananti-friction term proportional tok.
Thus, we are looking for trajectories in which the partic
starts at the bottom of the potentialf 50 with some initial
velocity, climbs the potential up to a certain point and th
rolls down back tof 50. The antifriction term puts energ
into the system, so it is conceivable that for a sufficien
largek, no matter how small the initial velocity, the partic
will gain enough energy to overcome the potential barrier
this case the only solution that satisfies the boundary co
tions is the trivial onef (z)50.

We first determine the restrictions in parameter space
nontrivial solutions to exist. In order to do this it is conv
nient to setf̃ (z)5AlwMw

21 e23kzf (z), so that Eq.~5.3! be-
comes

d2 f̃

dz2
5Mw

2e6kzf̃ 32~Mw
229k2! f̃ , ~5.5!

describing now frictionless motion in a potential whose slo
decreases with time. Fork>Mw/3, the ‘‘motion’’ starts atz
50 from the maximum f˜50 of a continuosly decreasin
potential, so thatf̃ (z)[0 is the only solution satisfying
f̃ (pr c)50. Therefore, Eq.~5.5! can have a nontrivial solu
tion which satisfiesf̃ (0)5 f̃ (pr c)50 only if

k,
Mw

3
. ~5.6!

This necessary condition is not sufficient for the existence
solutions with f̃ (0)5 f̃ (pr c)50. Another necessary cond
tion can be derived as follows. If we neglect the first term
the right-hand side of Eq.~5.5! the fictitious particle feels
just a harmonic oscillator potential and returns to the ori
after a ‘‘time’’ z5p(Mw

229k2)21/2. The effect of the ne-
glected term is always to increase the oscillation peri
Hence, the boundary conditionf̃ (pr c)50 requires

1

r c
2
,Mw

229k2. ~5.7!

In the Appendix we prove that the conditions~5.6! and~5.7!
are also sufficient for the existence of nontrivial solution
We conclude that the VEV̂w(z)& is nonzero in the interva
0,z,pr c for a substantial range of values ofMw andk.

For the special case of a flat and largez dimension,k
!1/(pr c)!Mw , the solution is given approximately by@31#
10501
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f ~z!'
Mw

Alw

tanh
Mwz

A2
tanh

Mw~pr c2z!

A2
F11OS k

Mw
D

1O~e2pr cMw!G . ~5.8!

This solution is essentially constant except in the region
size ;Mw

21 around the endpoints. We will in general b
interested in the parameter range in whichk is not negligible,
but where 1/(pr c)!Mw . The latter hierarchy will need to be
only one to two orders of magnitude to explain the smalln
of the neutrino masses relative to the weak scale. As
show in the Appendix, the solutions in this case are qual
tively similar to the flat casek50. We show a typical nu-
merical solution in Fig. 1.

B. Bulk fermions

In the presence of thew VEV, theN fields have nontrivial
profiles along thez dimension. The threeN zero modes de-
fined in Eq.~4.1! are a solution to the set of equations (i , j
51,2,3, with i fixed andj summed over!

dj i
0

dz
5S 3kd i j 2hid i j f 2

h̄i j

M
*
2

f 9D j j
0 , ~5.9!

where we have again neglected possible higher dimen
operators in Eq.~2.5!. We also setf 95d2f /dz2 wheref was
defined in Eq.~5.2!. It will be useful to factor out the leading
order solution in powers ofMw /M* , namely the solution in
the absence of the last term in Eq.~5.9!, by defining new
functionsci(z) through

j i
0~z!5ci~z!e3kz2hiS(z), ~5.10!

where

S~z![E
0

z

dz f ~z!. ~5.11!

The ci ’s satisfy the following differential equations

FIG. 1. Scalar profile whenMw /k510 andpr cMw570. The
plateau is atf 'Mw /Alw. The pointsz1 and z2 define the bound-
aries between regions I, II and III. In the main text we consider
case wherez1 /z2!1.
9-8
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dci

dz
52

h̄i j

M
*
2

f 9e(hi2hj )S(z)cj , ~5.12!

which we now solve in the limitpr cMw@1.
Given the general features of thef profile discussed in the

previous subsection, it is convenient to separate the ana
in the three regions shown in Fig. 1. We first note that
region II, f 9 is exponentially small and therefore all theci ’s
remain essentially constant throughout it. The differen
equations~5.12! are nontrivial in regions I and III. In region
I the integral Eq.~5.11! is of orderlw

21/2. In region III this
integral is much larger, so that the important features of
ci(z) are determined in this region as follows: forz2,z
,pr c the integral expression forS(z), Eq. ~5.11!, can be
replaced, to a good approximation, byS(pr c), which is itself
of orderlw

21/2pr cMw . Therefore, in this region there will b
an exponential hierarchy among the various terms on
right-hand side of Eqs.~5.12!, providedhilw

21/2pr cMw@1.
Without loss of generality we can assume the orderingh1
.h2.h3.0. If we keep only the leading terms, then Eq
~5.12! in region III reduce to

dc3

dz
.2

h̄33

M
*
2

f 9 c3 ~5.13!

dci

dz
.2

h̄i3

M
*
2

f 9e(hi2h3)S(pr c) c3

for i 51,2. ~5.14!

We first solve forj3
0. It will be sufficient to work to zeroth

order in Mw /M* , so that from Eq.~5.13! we havec3(z)
5const. Imposing the normalization condition Eq.~4.2!, and
in the limit 1/(pr c)!k,Mw/3, where we can evaluateS(z)
by settingf (z)5Mw /Alw throughout the region of integra
tion, we find from Eq.~5.10! that

j3
0~pr c!.Apr c~2M̃w2k!e2pr c(M̃w2k/2), ~5.15!

where only one combination of the parameters in the
grangian forw appears,

M̃w[
h3Mw

Alw

. ~5.16!

We will see in the next section that the expression Eq.~5.15!
will lead to exponential suppression of neutrino masses p
vided only thatM̃w.k/2.

Naively, one might think that for the other two gener
tions there will be a greater exponential suppression c
trolled by their larger Yukawa couplingsh1,2. We now show
that this is not the case, due to the presence of the hig
dimension operators that coupleN 1,2 to N 3 in Eq. ~2.5!. To
see this we need to solve forc1,2(z) in region III to first order
in Mw

2/M
*
2 . By using the zeroth order solution forc3(z)

.c3(pr c) in Eq. ~5.14! we obtain
10501
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ci~z!.ci~z2!2c3~pr c!
h̄i3

M
*
2

e(hi2h3)S(pr c)@ f 8~z!2 f 8~z2!#,

for i 51,2, ~5.17!

from which we find

j i
0~pr c!

j3
0~pr c!

.
ci~z2!

c3~pr c!
e2(hi2h3)S(pr c)

2
h̄i3

M
*
2 @ f 8~pr c!2 f 8~z2!#. ~5.18!

But the first term here is exponentially small compared to
second term. Furthermore,f 8(z2) is exponentially small
compared tof 8(pr c) and we finally obtain

j i
0~pr c!

j3
0~pr c!

.2
h̄i3

M
*
2

f 8~pr c!. ~5.19!

Becausef (z) varies fromO(lw
21/2Mw) to zero over a dis-

tance of order 1/Mw , it follows that 2 f 8(pr c)
5O(lw

21/2Mw
2). This provides the promised result. The zer

mode wave functionsj1,2
0 (pr c) are suppressed compared

j3
0(pr c), but only by a quantity

e[2
f 8~pr c!

M
*
2

;OS Mw
2

AlwM
*
2 D . ~5.20!

We note that in Eq.~5.18! the leading term in 1/M* is ex-
ponentially suppressed while the subleading term is not
that it dominates as long ash̄i3 is not extremely small com-
pared with unity. The reader might wonder whether this s
nals a breakdown in the effective theory description, wh
relies on the convergence of the expansion in 1/M* . There is
no reason to worry: the term suppressed byM* in Eq. ~5.18!
comes actually from theleadingflavor off-diagonal operator.
All other terms suppressed by higher powers ofM* give just
small corrections toe.

VI. NEUTRINO OSCILLATIONS

We are now equipped with all the tools necessary
analyzing the neutrino mass spectrum and the ensuing
trino oscillations.

A. Neutrino mass matrix

As we discussed in the introduction~Sec. I!, the neutrino
masses are of the Dirac type, the Majorana masses b
forbidden by the symmetry under rotations of the two u
versal extra dimensions. Below the electroweak scale,
effective four-dimensional theory contains three left-hand
neutrinos,nL

i , which are the neutral zero modes ofL 2
i , and

three right-handed neutrinos,NR
i , which are the zero mode

of N 1
i (0) with respect to the two universal dimensions. In t

weak eigenstate basis,

n̄LM nNR1H.c., ~6.1!
9-9
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APPELQUIST, DOBRESCU, PONTO´ N, AND YEE PHYSICAL REVIEW D 65 105019
the neutrino mass matrix derived in Eqs.~4.4!, ~5.15! and
~5.19! is given by

M n5m0S e h̄13lN
11 e h̄23lN

12 lN
13

e h̄13lN
21 e h̄23lN

22 lN
23

e h̄13lN
31 e h̄23lN

32 lN
33
D , ~6.2!

where e!1 is defined in Eq.~5.20!, and the scale of the
neutrino masses is set by

m0[vhe2pr c(M̃w2k/2)S 1

pRuM*
D S 2M̃w2k

M*
D 1/2

. ~6.3!

As we will see in Sec. VII, the factors in parentheses
expected to provide a suppression of no more than on
two orders of magnitude, so that the neutrino mass sca
explained by the first exponential.

The neutrino mass matrix is diagonalized by unitary tra
formations:

UL
†M nUR5diag~mn1

, mn2
, mn3

!. ~6.4!

The unitary matrix describing neutrino oscillations,UL , and
the physical neutrino masses,mn i

, may be found by expand

ing in powers ofe5O(lw
21/2Mw

2/M
*
2 ). The largest physica

neutrino squared-mass is

mn3

2 5m0
2~ ulN

13u21ulN
23u21ulN

33u2!@11O~e2!#. ~6.5!

It is convenient to use the following identity, valid up t
corrections of ordere2:

Mn5S l̃3 2~l23l̃ 1!* l 13

0 Au l 13u21u l 33u2 l 23

2 l̃ 1 2~ l 23l̃ 3!* l 33

D S e m̃11 e m̃12 0

e m̃21 e m̃22 0

0 0 mn3

D
3S 1 0 2eu1

0 1 2eu2

eu1 eu2 1
D , ~6.6!

where we use the following notation:

l i j 5
lN

i j

~ ulN
13u21ulN

23u21ulN
33u2!1/2

, i , j 51,2,3,

l̃ i5
lN

i3*

~ ulN
13u21ulN

33u2!1/2
, i 51,3,

u i5h̄i3(
j 51

3

l j i* l j 3* , i 51,2. ~6.7!

The first matrix that appears in Eq.~6.6! can be shown to be
unitary, while the last matrix is unitary to leading order ine2.
The elements of the block-diagonal mass matrix shown
Eq. ~6.6! are given by
10501
e
to
is

-

n

m̃1i5mn3
h̄i3~ l 1i l̃ 3* 2 l 3i l̃ 1* !,

m̃2i5mn3
h̄i3@ l̃ 1~ l 13l 2i2 l 23l 1i !

1 l̃ 3~ l 33l 2i2 l 23l 3i !#, i 51,2. ~6.8!

Equation~6.6! shows that themn1
andmn2

physical neu-

trino masses are of orderemn3
, and generically are nonde

generate. We choosemn1
,mn2

. These can be compute

straightforwardly by diagonalizingm̃ ~the 232 matrix
whose elements are given bym̃i j ):

e2m̃m̃†5Vdiag~mn1

2 , mn2

2 !V†, ~6.9!

whereV is a unitary 232 matrix. Its Vi j elements depend
only on ratios oflN

i j ’s and onuh̄13/h̄23u. This dependence ca
be computed straightforwardly using Eq.~6.8!, but is cum-
bersome and we do not display it here.

The unitary 333 matrix UL is then given by the produc
of the first matrix on the right-hand side of Eq.~6.6! with

S V 0

0 1D . ~6.10!

The third column entries ofUL ,

UL
i35

lN
i3@11O~e2!#

~ ulN
13u21ulN

23u21ulN
33u2!1/2

, i 51,2, ~6.11!

are relevant for atmospheric neutrino oscillations, as d
cussed below. The first two columns ofUL have entries that
also depend~to leading order ine) only on ratios oflN

i j ’s and

on uh̄13/h̄23u. The ratio of theUL
11 andUL

12 entries, which is
relevant for solar neutrino oscillations, is given by

UUL
12

UL
11U5UV21l̃ 3* 2V11l̃ 1l 23

V11* l̃ 3* 2V21* l̃ 1l 23
U . ~6.12!

This ratio is typically of order unity if most of thelN
i j ’s have

the same order of magnitude. In particular, this is true for
phenomenologically favored case discussed below, whic
near the bimaximal mixing of three neutrinos@32#.

B. Predictions and experimental constraints

The neutrino oscillation data constrains the differences
neutrino squared-masses. With three neutrinos, the at
spheric and solar neutrino data can be fit nicely~the LSND
data cannot be accommodated!.

The atmospheric neutrino data require a larger mass s
ting compared to the solar data so thatmn3

2 is determined to

leading order ine2. The range for the mass-square differen
(Dm2)atm given by the global fit@33# to the data obtained in
atmospheric neutrino experiments and in the CHOOZ rea
experiment is
9-10
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mn3

2 '~Dm2!atm
exp

5~1.526.0!31023 eV2 at 99% C.L. ~6.13!

As long as the combination of Yukawa couplings shown
Eq. ~6.5! is not smaller than unity by many orders of ma
nitude, Eq.~6.3! requires

pr cS M̃w2
k

2D'30, ~6.14!

where we anticipate that the terms in parentheses in Eq.~6.3!
are of order unity.

The solar neutrino oscillations are controlled by the ma
square difference of the lighter neutrinos:

~Dm2!solar5mn2

2 2mn1

2 . ~6.15!

Based on the reasonable assumptions thatuh̄23u,uh̄23u5O(1),
and that most Yukawa couplingslN

i j have the same order o
magnitude, we find the following prediction for the sol
neutrino oscillation scale:

~Dm2!solar

~Dm2!atm
exp

'O~e2!, ~6.16!

wheree is given by Eq.~5.20!. In the absence of fine-tuning
the w scalar mass-squared can be no smaller than the
loop contribution in the seven-dimensional theory:dMw

2

;O@lwM
*
2 /(128p3)#. Also, we expect that the effectiv

theory description starts breaking down whenMw ap-
proachesM* . This leads to an allowed range fore @see Eq.
~5.20!#:

O~1023Alw!&e&O~1021/Alw!, ~6.17!

with the values near the upper end being preferred if
mass parameterMw is not too much smaller than the fund
mental scaleM* . If lw is of order unity, the ratio shown in
Eq. ~6.16! is then of order 1022. The generic prediction o
our model for the solar neutrino scale then becomes

~Dm2!solar'102521024 eV2. ~6.18!

This prediction fits well the range currently allowed for th
large-mixing angle MSW solution to the solar neutrino pro
lem @34#. The large uncertainties due to the unknown valu
of various parameters do not allow us to rule out the lo
oscillation wavelength solution, whose fit to the data pref
(Dm2)solar'1027 eV2. On the other hand, the vacuum o
cillation solution requires (Dm2)solar'10210 eV2, so that it
is disfavored within our model.

The elements of the unitary matrixUL are constrained by
the solar, atmospheric and reactor neutrino experiments.
elementUL

13 is most tightly constrained by the global fit t
the CHOOZ and solar neutrino data, which gives (UL

13)2

,6.531022 at 99% C.L. @35#. Applied to our case, this
translates into a mild restriction:
10501
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ulN
13u

AulN
23u21ulN

33u2
,0.26. ~6.19!

The atmospheric neutrino data strongly favor purenm↔nt
oscillations with a mixing angle satisfying sin22u23.0.83 at
the 99% confidence level@36#. The expression of this mixing
angle in terms of the Yukawa couplings is the same in
model as in the five-dimensional model of Grossman a
Neubert@14#, and gives

0.65,UlN
23

lN
33U,1.55. ~6.20!

This is not a particularly strong constraint, given that t
Yukawa couplings are typically expected to be of the sa
order of magnitude. However, if the march of the atm
spheric neutrino data towardsmaximalnm↔nt mixing con-
tinues, then it will be necessary to find a more detailed
planation for why the ratio of Yukawa couplings show
above is so close to unity.

Finally, the global fits of the large mixing angle MSW
solution to the solar neutrino problem require@34#

0.2,UUL
12

UL
11U2

&1. ~6.21!

This constraint is naturally accommodated by order un
values of the parameters entering the first two columns of
matrix shown in Eq.~6.12!.

In summary, we can explain the hierarchy between
electroweak scale and the scale relevant for the atmosph
neutrino data by the first exponential factor in Eq.~6.3!. We
can further explain the small hierarchy between this sc
and the solar neutrino scale associated with the large-mix
angle MSW solution based on the typical size of the high
dimension operators controlling neutrino flavor mixing. Fu
thermore, the currently allowed ranges for the mixing ang
are natural if the various couplings of our model are of ord
unity.

VII. MASS PARAMETERS AND WARPING

Having observed that the smallness of the neutrino m
scale relative to the electroweak scale is explained by
~6.3! with the exponent given by Eq.~6.14!, we now com-
ment on the other mass scales of the model. These are
scaleM* at which the seven-dimensional theory, includin
its six-dimensional component, breaks down, the parametk
related to the seven-dimensional cosmological constant,
sizeRu of the universal extra dimensions, and the sizer c of
the warped dimension. We also introduced the massMw of
the bulk scalar that localizes the neutrino fields away fr
the standard model brane, and the Higgs doublet mass
rameterMH . These scales give rise to other, derived sca
such as the electroweak scalevh .

There are several important relations among the ab
parameters. We assume a normalization of the warp facto
in Eq. ~2.2!. ~For a different normalization it is only neces
9-11
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sary to interpretRu in the following formulas as the prope
radius of the universal extra dimensions at the stand
model brane.! The first relation follows from the fact that th
observed standard model gauge couplings, collectively
noted byg4 ~as well as the top Yukawa coupling! are of
order one. Writing a typical six-dimensional standard mo
gauge coupling inLSM of Eq. ~2.3! asg6 /M* , whereg6 is
dimensionless, the observed four-dimensional gauge c
pling is given by

1;g45~pRuM* !21g6 . ~7.1!

If the standard model gauge interactions become stron
the scaleM* , theng6

2;128p3 @37#. In this case, the produc

RuM* is of orderA128p. For a range of values ofg6.1,
M* will be somewhat above 1/Ru , providing a finite range
of validity for the six-dimensional standard model. In th
following we assume thatO(1),RuM* &O(10).10

A second relation follows from naturalness consideratio
with respect to the Higgs doublet mass. The Higgs dou
mass parameterMH must be belowM* for the effective
theory description to be valid. However, on natural
grounds,MH cannot be much smaller than the one loop c
rections. They can be roughly estimated by cutting off
quartically divergent one-loop integrals, such as the one a
ing from the quartic Higgs self-interaction, at the breakdo
scale of the effective, six-dimensional theory. This yields

M* .MH*dMH'A l6

128p3
M* , ~7.2!

wherel6 is a dimensionless coupling in the six-dimension
theory. Using this estimate, it follows that the Higgs VEV
given by

vh5@pRuM* l6
21/2#MH*

1

A128p
~RuM* !2Ru

21 .

~7.3!

If RuM* *O(1) then Eq.~7.3! can be read as an uppe
bound on 1/Ru in the TeV range. But the electroweak prec
sion measurements impose a lower bound 1/Ru*0.5 TeV
@1#. It then follows fromRuM* &O(10) thatM* is in the
TeV range.

Finally we note that the parametersMw and k are ex-
pected to satisfy relations analogous to Eq.~7.2! ~though, as
noted in Sec. V A, we must havek,Mw/3). Our discussion
of the solar and atmospheric neutrino data in Sec. VI A in

10An interpretation based on the AdS/CFT correspondence@38#
may be useful if RuM* ,1, in which case the present six
dimensional description is not applicable. We note that theZ8 sym-
metry that lies at the heart of the remarkable proton decay supp
sion pointed out in@9# and which also forbids Majorana masses,
expected to remain valid. Thus, even though it would not be p
sible to talk about a six-dimensional standard model, the
dimensional structure still has observable effects in the low-ene
four dimensional theory.
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cated thatMw must be approximately an order of magnitu
below M* , which is consistent with a naturality estima
analogous to Eq.~7.2!, if the corresponding couplinglw is of
order unity or smaller.

There are now various possibilities depending on h
large the warping is. First suppose that the warping is
more than mild:epr ck;1. In this case, the weakness of gra
ity must be attributed to some suppression that lies bey
the seven-dimensional theory presented here, such as a
other flat dimensions accessible only to gravity along
lines of @11#. It is important to note that the mechanism f
suppressing the neutrino masses presented here is inde
dent of any such extension. From Eq.~6.14!, we now have
pr cM̃w'30. With M̃w roughly an order of magnitude below
M* , the inverse size of the seventh dimension, 1/pr c , is of
order 10 GeV.

A more interesting possibility is thatpkrc@1. In this case
it is possible to explain the weakness of gravity in the ma
ner of Randall and Sundrum@12# within the seven-
dimensional model. There are, however, some differen
arising from the existence of the universal extra dimensio
The four-dimensional Planck mass is now related toM* by

MPl
2 '

M
*
5 ~pRu!2

4k
e4pr ck. ~7.4!

Suppose thatk is on the order of~but somewhat less than!
M* . Then if 1/Ru andM* are in the TeV range as expecte
from the previous considerations,11 it follows from Eq. ~7.4!
thate2pr ck;1015, which translates intopkrc;20. ~Note that
there is an extra factor of two in the exponent compared
the five-dimensional Randall-Sundrum model.! We then see
from Eq. ~6.14! thatpM̃wr c;40, and the inverse size of th
seventh dimension, 1/pr c , is again of order 10 GeV. The
lightest spin-2 KK mode with momentum along the warp
dimension has a mass of about 4k, which is roughly of the
same order as the mass of the first KK modes of the stan
model fields. It will be interesting to see which KK mode
will be discovered first if this model is realized in nature.

VIII. CONCLUSIONS

We have presented a higher-dimensional mechanism
generating a realistic neutrino mass spectrum. The small
of the neutrino masses compared with the electroweak s
is explained by an exponential suppression of the rig
handed neutrino wave functions on the standard-mo
brane. The hierarchy between the mass scales assoc

s-

s-
-
y

11Note that we have chosen to measure all mass scales a
standard model brane with respect to the corresponding indu
metric. Had we measured them with respect to a metric rescale
epkrc as in Ref.@12#, we would have concluded thatM* and the
other ‘‘fundamental’’parameters of the seven dimensional the
are of orderM P . The cutoff on the effective six dimensional sta
dard model would, however, remain in the TeV range, being giv
by M* e2pkrc. None of the physical conclusions described he
would change.
9-12
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with the nm↔nt and ne↔nm transitions, measured by th
atmospheric and solar neutrino data, respectively, is lim
by the effect of flavor-nondiagonal, higher-dimension ope
tors. As a result, the mass scale of the solar neutrino osc
tions fits well the large-mixing-angle MSW solution. Fu
thermore, the neutrino mixing angles are naturally large if
large hierarchies between the neutrino Yukawa couplings
cur. This is an important result in view of the fact that
majority of the models in the literature~for a recent review
see @39#! can accommodate only the small-mixing-ang
MSW or vacuum solutions to the solar neutrino proble
which are less favored by the data. In addition, the seemin
‘‘maximal’’ mixing required by the atmosperic neutrino da
is consistent with our mechanism for a reasonably la
range of parameters.

While our mechanism has been developed in the fra
work of the six-dimensional standard model, it is wor
pointing out that it relies fundamentally on four ingredien
that could naturally be present in a more general class
higher-dimensional theories:

~i! Three right-handed neutrinos;
~ii ! A symmetry structure forbidding Majorana neutrin

masses;
~iii ! A spatial dimension compactified onS1/Z2 and ac-

cessible to the right-handed neutrinos but not to the stan
model fields;

~iv! A bulk ~effective! scalar field which is odd under th
Z2 orbifold transformation, has a VEV, and couples to t
right-handed neutrinos.

Ingredients~i! and ~ii ! are automatically present in th
six-dimensional standard model, as required by the
dimensional gravitational anomaly cancellation@5,6# and the
Z8 rotational symmetry of the two universal extra dime
sions@9#. We were then led to consider the six-dimension
standard model localized in a seventh dimension satisfy
~iii ! and ~iv!.

More generally, ingredient~ii ! could be enforced by lep
ton number conservation in a variety of models, and its
perimental test is the absence of neutrinoless double-beta
cay. Ingredients ~iii ! and ~iv! could be present in
411-dimensional models, as suggested in Ref.@31# as a
possible source of fermion mass hierarchies. We have ge
alized this construction by allowing a warped metric. W
have analyzed the conjectured restriction on the numbe
gauge-singlet fermions@14#, and have found that in 611
dimensions the local and global gravitational anomalies c
cel independently of the number of right-handed neutrin
provided the fermion content is free of six-dimension
anomalies.~In 411 dimensions no restrictions arise becau
there are nolocal or global gravitational anomalies in four o
five dimensions.!

Finally, it is worth noting that the model presented he
has another intriguing feature. In the most appealing vers
of the model, the extra dimension that leads to an expon
tial suppression of the right-handed neutrino wave functi
also solves the hierarchy problem along the lines of Ran
and Sundrum@12#, while explaining proton stability based o
six-dimensional Lorentz invariance as in Ref.@9#. In this
case collider searches at the TeV scale will reveal grav
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Kaluza-Klein modes in addition to the Kaluza-Klein mod
of the standard model fields.
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APPENDIX

In this appendix we prove that the real scalarw has a
nonzero VEV whenever the parametersk, Mw andr c satisfy
the conditions ~5.6! and ~5.7!. The rescaled VEVu(z)
5Alw Mw

21f (z) must satisfy thez-independent equation

d2u

dz2
56k

du

dz
1Mw

2~u32u!. ~A1!

This equation describes the mechanical motion in the po
tial 2Mw

2(u221)2/4, and in the presence of ananti-friction
term proportional tok. The z coordinate plays the role o
‘‘time’’variable.

We will prove the existence of a solution to Eq.~A1!,
satisfying the boundary conditionsu(0)5u(pr c)50, by
analyzing the ‘‘flows’’ in the equivalent first order system:

du

dz
5Pu ,

dPu

dz
56kPu1Mw

2~u32u!.

~A2!

In the (u,Pu) plane, the solution sought corresponds to
flow that starts somewhere on theu50 line and, after time
pr c , comes back to this line~because of the symmetryu
→2u, we can restrictu>0.! More precisely, we shall prove
that for anyk,Mw/3, there are flows starting and ending o
the u50 line, with total elapsed times (pr c) ranging from
p/v to infinity, where

v[AMw
229k2. ~A3!

The system~A2! has two fixed points, (u,Pu)5(0,0) and
(1,0), near which it may be linearized. In the vicinity o
(0,0), Eqs.~A2! have the following explicit solution satisfy
ing the initial conditions (u,Pu)5(0,P0.0):

u~z!5
P0

v
e3kz sinvz,

Pu~z!5u~z!~3k1v tan21vz!.
~A4!

Since u vanishes atz5p/v, the existence of solutions i
established for a separation between the branes ofpr c
9-13
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→p/v @see Eq.~5.7!#, at least whenP0→0 such that the
linear approximation is reliable.

A similar linear analysis around (1,0) shows that there
an attractive flow that approaches the fixed point (1,0) fr
the regionu,1, Pu.0, and a repulsive flow in the regio
u,1, Pu,0. For either one of them, the total time is infi
nite. This shows that adjacent flows that come arbitra
close to (1,0) will spend an arbitrarily long time in its vicin
ity. Note that whenever the flow enters the regionu,1, Pu
,0, it will be driven to theu50 line, since the only possi
bility is to roll down the slope of the potential.

We now prove the possibility of reaching these flows fro
a point (0,Pu.0), based on the following remarks. First, E

FIG. 2. The flow diagram whenMw/3k54.
D

ll

D

B

.

10501
s

y

~A2! shows that along the linePu50, and for u,1, the
trajectories flow vertically downward~see Fig. 2!. Second,
the trajectories passing through theu51 line flow into the
region u.1 wheneverPu.0, and then they are driven t
u→` due to the negative slope of the potential. Traci
these trajectories back in time, it follows from the first r
mark that they necessarily cross theu50, Pu>0 half-line.
However, they cannot cross the origin because the flows c
not stop except at fixed points, and the point~0,0! cannot be
reached@for small enoughPu.0 the trajectories stay only in
the vicinity of (0,0); see Eqs.~A4!#. Note that the flows
cannot cross due to the uniqueness of the solutions to o
nary differential equations such as Eq.~A2!. Third, tracing
back in time the trajectory attracted to the fixed point (1,
the same argument as above shows that it crosses the
u50, Pu.0. This ‘‘critical’’ trajectory, which starts at some
critical (0,Pu.0) and is attracted to (1,0), sets a bounda
between qualitatively different flows. Finally, from any poi
(u,0), u,1, the trajectory traced back in time crosses t
line u50 at some 0,Pu,Pu . Thus, a point (u,0) with u
arbitrarily close to 1 corresponds to a trajectory that spe
an arbitrarily long time in the vicinity of (1,0).

We have shown so far that there are solutions forpr c
close to eitherp/v or infinity. By continuity, it follows that
there are solutions to Eq.~A1!, satisfying the boundary con
ditions u(0)5u(pr c)50, for any r c.1/v. This completes
the proof that Eqs.~5.6! and ~5.7! are necessary and suffi
cient conditions for the existence of a nonzerow VEV.
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