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We examine the origin of neutrino masses and oscillations in the context of the six-dimensional standard
model. The space-time symmetries of this model explain proton stability and forbid Majorana neutrino masses.
The consistency of the six-dimensional theory requires three right-handed neutrinos, and therefore Dirac
neutrino masses are allowed. We employ the idea that the smallness of these masses is due to the propagation
of the right-handed neutrinos in a seventh, warped dimension. We argue that this class of theories is free of
gravitational anomalies. Although an exponential hierarchy arises between the neutrino masses and the elec-
troweak scale, we find that the mass hierarchy among the three neutrino masses is limited by higher-dimension
operators. All current neutrino oscillation data, except for the LSND result, are naturally accommodated by our
model. In the case of the solar neutrinos, the model leads to the large mixing angle, MSW solution. The
mechanism employed, involving three right-handed neutrinos coupled to a scalar in an extra dimension, may
explain the features of the neutrino spectrum in a more general class of theories that forbid Majorana masses.
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I. STANDARD MODEL IN SIX DIMENSIONS as low as the TeV rangg]. For theT?/Z, orbifold, a Zg
subgroup of the six-dimensional Lorentz symmetry is exactly

The proposa[1] that all the standard model fields accesspreserved. In the case of the squaiféZ, orbifold, the same
extra spatial dimensions above some energy Scal@ver- is true provided the two orbifold fixed points that are ex-
sal extra dimensiong”has received considerable attentionchanged by a 90° rotation in the compactifigchnsversg
during the past year. Precision electroweak measurementimensions are physically indistinguishable. Thesymme-
require only that the compactification scale of universal extrary requires that the baryon and lepton numbarB,andAL,
dimensions be above a few hundred GeV, opening up a paf any operator in the low-energy four-dimensional Lagrang-
tentially rich set of signatures, both in additional precisionian obey the selection rufle
measurement2,3] and in collider searchdd,3,4).

An especially attractive possibility is that there exist two 3AB+AL=0 mod 8. 1.1
universal extra dimensions. The six-dimensional standar
model is chiral, and the constraints from Lorentz invarianc
and anomaly cancellation have remarkable consequenc
The quarks Q,U,D) and leptons £,£) are four-component
Weyl fermions of definite chirality, labeled by and—. The
cancellation of irreducible gauge anomalies imposes one
the following two chirality assignments consistent with Lor-

g\s a result, the proton is very long livedll AB=1 transi-
Sions are governed by very high-dimension operators, and are
Sherefore strongly suppressedvhile neutron—anti-neutron
oscillations AB=2,AL=0) are forbidden. In the lepton
0§ector, there are no neutrino Majorana madsasd more
generally neutrino-less double beta decaysBEO,AL

. . . =2) are forbidden. The absence of Majorana masses follows
entz invariant Yukawa. couplingse. -,D—.Lx,E-, from the properties of the gamma matrices in six dimensions,

where generational indices are impli¢g]. The reducible . : .
. g namely that the charge conjugation operator does not flip the
gauge anomalies can be canceled via the Green-Schwaé irality

mechanism as discussed[i®,5,7,8. Gravitational anomaly In this paper we study the implications for neutrino phys-

cancellation requires that each generation include a 9aUGES of the six-dimensional standard model. The mass matrix

singlet fermion .. with six-dimensional chirality opposite for the zero-mode neutrinos is induced dominantly by the
to that of the lepton doublef6]. In addition, the six- ollowing dimension-seven Yukawa terms in the six-
dimensional standard model is the only known theory tha{iimensional Lagrangian:

constrains the number of fermion generations to '

=3 mod 3, based on the global anomaly cancellation con-——_

dltl_?ﬂe[s,[&lo universal extra dimensions have to be compacti- The cancellation of anomalies via the Green-Schwarz mechanism
. . .. ; .“requires a(four-dimensional scalar field that transforms nontrivi-
fied on an orbifold, so that each of the six-dimensional chiral

f . . in the effective f di . Ith ith ally under theZg. Operators that involve this field can be induced
ermions gives in the eftective four-dimensional theory eit erby four-dimensional instanton effects and could result in a violation

a left- or a right-handed zero-mode fermion. The simplesty ihe selection rule Eq(1.1). We expect these effects to be negli-

orbifold compactifications are either the squargZ, or gible. We thank E. Poppitz for discussions on this point.

T?/Z, orbifolds. 2The fact that theZg symmetry forbids Majorana masses was not
An intriguing feature of the six-dimensional standard taken into account in Ref7]. We note that even if the two univer-

model is that the combination of its Lorentz and gauge symsal extra dimensions were compactified on an arbitf&iz,, orbi-

metries can lead to a sufficient conservation of baryon numfold, an exactZ, symmetry would still have prevented any Majo-

ber, even with the scale of baryon-number violating physicsana mass.
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—E—Xi/ifl/\/iing* +H.c., (1.2 the neutrino mixing angle;, as vyell as mass eigen\{alues, gnd
show that values compatible with all current neutrino oscil-
lation data, except for the LSND result, emerge naturally.

wherei,i’ label the generationgy is the six-dimensional The energy scales associated with the seventh dimension, as
Higgs doublet, and where we have taken the six-dimensionalell as the universal six dimensions, are such that the
chirality of £ to be —. The ensuing Dirac masses of the threesinglet-neutrino Kaluza-KleifKK) modes are too heavy to
neutrino flavors can accommodate the neutrino oscillatioplay a direct role in the observed neutrino oscillations. Simi-
data and all other experimental constraints, with the exceparly, the constraints from astrophysi€%7] or cosmology

tion of the Liquid Scintillation Neutrino DetectoflL SND) [18] on the mass of the KK neutrinos are not relevant here.
result [10]. It is nevertheless difficult to explain why the In Sec. VII, we discuss the relations among various param-

eigenvalues of the Yukawa matrﬁgv are extremely small.  €ters in the model and draw some ponplusions about the

Since the standard model in extra dimensions is an effec@pected mass scales that characterize it. In Sec. VIII, we
tive theory, breaking down at some sca, in the Tey ~ Summarize the essential ingredients of our mode! leading to a
range, it is natural to expect gravity to be strongly couplediable neutrino mass spectrum, and emphasize that the
there as well. A structure that accommodates the observé@echanism applies to a more general class of higher-
weakness of the gravitational interaction should then bélimensional models.
added to the universal extra dimensions. The simplest possi-
bilities are that either some number of additional flat dimen-
sions[11] or one additional warped dimensifh2] are trans-
verse to the universal ones and are not accessible to standardThe seven-dimensional gauge-singlet fermions are Dirac
model fields. Each of these alternatives also provides a pospinors with eight components, denoted &§(x"), where
sible mechanism for explaining small but finite Dirac neu-i=1,2,3 labels the generations. The spacetime coordinates,
trino masses, as first proposed i8] and[14], respectively, xM with M=0,1, ... ,6, ardabeled as followsx?,x*,x?,x3
by letting the gauge singlet fermions propagate in these extréor the ordinary spacetimex*,x® for the two additional uni-
dimensiors). versal dimensions, amxP=z for the dimension inaccessible

We concentrate here on the possibility that the singleto the standard model fields. We use the following conven-
fermions, along with gravity, propagate in a single additionaltions: capitalsM,N ... (from the middle of the alphabet
(seventh warped dimension, with the standard model fieldsdenote the seven coordinate indices in a curved background,
confined to a 5-brane. We adapt and generalize the fivewhile capitalsA,B, . .. (from the beginning of the alphabet
dimensional model of Ref[14], and examine its conse- denote the corresponding local Lorentz indices. We also use
quences for neutrino masses and mixing angles. In Sec. Il Wewercase Greek letters, u, . .. to refer to the coordinate
present a simple effective theory, involving a single scalaindices, and lower case Latin lettegsm, . . . to refer to the
field in the seven-dimensional bulk, that couples to e Lorentz indices along the flat universal dimensions.
fields. We then discuss, in Sec. Ill, the global gravitational The (T?/Z,) % (S%Z,) orbifold compactification projects
anomalies in this context and argue that there is no additionaut the unwanted zero modes, and restricts the coordinates to
constraint on the number ok fields (contrary to claims 0=x*x°<#wR, and O<z=r.. The six-dimensional stan-
made in the literaturgl4,19)). dard model fields are localized at r ., while the gauge-

We examine the neutrino zero modes in Sec. IV, where wginglet fields propagate in the whole bulk.
derive their mass matrix in terms of the wave functions of The most general metric consistent with six-dimensional
the V zero modes at the standard model 5-brane. In Sec. Yoincareinvariance is diagonal, and warped in thelirec-
we derive the shape of the scalar vacuum expectation valugon. However, the compactification of the two universal ex-
(VEV), and then find the profiles of th&” zero modes. The tra dimensions on th&%/Z, orbifold breaks six-dimensional
effect of the scalar VEV is to concentrate thézero modes Poincarenvariance, and in general leads to a warp factor for
near the brane opposite to the standard model one, so that th& x5 different from the warp factor for the familiar uncom-
resultant four-dimensional neutrino mass matrix is exponenpactified dimensions. For example, we expect contributions
tially suppressed relative to the weak scale. We then showo the stress-energy tensor, due to the Casimir energy of bulk
that the mass hierarchy between the different flavors is limfields, that do not respect the six-dimensional Lorentz invari-
ited by the presence of higher-dimension operators, whiclance. However, we will assume for simplicity that these dif-
have a flavor mixing effect. This is an important result, es-ferences can be neglecttédur main conclusions do not
pecially in view of the often stated existence of a large exchange if we allow for the more general possibility that the
ponential hierarchy induced between the masses of differentarp factors for the uncompactified and compactified univer-
flavors, whenever the two chiralities are localized at separatgal dimensions are different. Therefore, we consider a diag-
braneq 14,16|.

The implication, discussed in Sec. VI, is that the ratio
between the mass scales associated with the atmospheric angh complete solution that incorporates the gravitational back re-
solar neutrinos is not expected to be larger than one to tw@ction of Casimir energies or other effects arising from the compac-
orders of magnitude. Therefore, the large mixing angl&ification of the two universal dimensions would involve the speci-
Mikheyev-Smirnov-WolfensteiiMSW) solution to the solar fication of a radius stabilization mechanism. We leave such a study
neutrino problem is a consequence of this model. We discudsr future work.

IIl. AWARPED SEVENTH DIMENSION
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onal metricG,,y that is warped in the direction, corre- =0.5 TeV, imposed by the electroweak dftd The radius

sponding to a line element r. of the dimension accessible only to neutral fields is rather
loosely constrained by searches for new long-range forces.
ds*=Gyy dxMdx" In addition to theN'(xM) fermions and the graviton,
5 , 5 other fields that are singlets under the standard model gauge
=W(2) 7,,,dx*dx"—dz*, group could be present in the warped extra dimension. To

(2.1) describe naturally small neutrino masses it is sufficient to
include a single real scalar with the dynamics described in
the framework of effective field theory. This scalar is thus an
effective degree of freedom, and could well represent a com-
posite structure, with the compositeness becoming evident at
scales of ordeM, and above. The seven-dimensioftef-
w(z)=ek(me=2), (2.2 fective) action, invariant under both general coordinate and
local Lorentz transformations, is then given by
which is a good approximation whenever the dominant con-
tribution to the bulk stress-energy tensor is due to a bulk
cosmological constant. This normalization is chosen so that
w(mr.)=1, which facilitates the physical interpretation at
the standard model brane, locatedzat=r.. In particular,
this choice implies that the coordinate radR|sis theproper
radius of the universal extra dimensions as measured by stan-

dard model probes. For the AdS metric defined by E24) where the first two terms are kinetic terms in the warped
and (2.2, the Riemann curvature tensor iR,,q,= spacetime and the last two terms describe the bulk interac-

- k2(gapg}w_gypgw), using the sign conventions p19]. tions of theN and ¢ fields, and the six-dimensional standard
So far we have introduced three mass parameters: the ifinodel. Heree)' is the inverse vielbeinG is the determinant
verse coordinate radiusR of the universal extra dimen- of the seven-dimensional metric, witfG=w®(z), andg is
sions(associated witfT?/Z,), the inverse radius a/ of the  the determinant of the six-dimensional induced metric, with
dimension accessible only to neutral fields, &ndhey are  —g=w®(zr.). TheI'* are the anti-commuting matrices in
all taken to be below the fundamental seven-dimensionadeven-dimensional Minkowski space: the gamma matrices of
mass scal®, , which, as will be discussed in Sec. VII, is in six-dimensional Minkowski space along witlr®=iTI'-,
the TeV range. We will see in Sec. IV that, with the normal-where I';=T"°...T'® defines six-dimensional chirality via
ization w(wrr.)=1, the mass scale for the standard modelV.=3(1=T';)N. The fermion covariant derivative in
KK modes is set b)RJl, and thus satisfies the bowﬁqjl Eq. (2.3), associated with the diagonal metfg,y, IS

where ©,v=0,1, ...,5, andp=diag(+1,—1,...,—1) is
the six-dimensional Minkowski metric.

Starting in Sec. V we will take the warp factor to have the
form [12]

i — A 1
d7X| \/6|:§(NIFAEX|DMNI_ HC)+ EGMN&MgDaN(P

—Von| T 8(z=mr)N—=9Lsw(, 2.3

w Yz)[d,+i8%, T I (dw/d2)/2]N, A=a=0,1,...,5
M oMt oz, A=6.

M A

eVd (2.4

The bulk interactions preserve the orbifddgd symmetry, matrices. All are dimensionless. The mass-square in the sec-
defined such that"_ and ¢ are odd, while\", are even. ond term ofV,, ,ris chosen to satisfMi>0, so thatp has a
They may be organized into a tower of operators of increasnonzero VEV. BothM, andk are taken to be well beloM .,
ing mass dimension: to justify the use of effective field theory for exploring the

vacuum properties ap. By a flavor transformation it is pos-

Y sible to diagonalize the first term inside the parentheses, so

1
Von=—A— EM1¢2+4M¢3 o* that we can use a basis where
*
h;. hii . —
J —LPMoye | NN+, (2.5 hij=h; &, (2.6

——
32 712
M* M*

where A is a bulk cosmological constant that needs to beyith h; real and positive. The other terms involving are in
fine-tuned in order to keep the four dimensional sections flatgeneral flavor nondiagonal.

At the classical level this involves tuninfy against possible The six-dimensional standard model Lagrangiai,,
brane tension terms as well as the vacuum energy stored Bcalized az= =, includes the kinetic terms for the lepton
the ¢ VEV. The parametek , is real, anch, h are Hermitian ~ and Higgs doublets and the Yukawa interactions\of
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ESMDiE_FaegDa£L+g"BDaH TDBH there are none we turn to the more subtle issuglobal
gravitational anomalies.
ij
N=Soarie
~| y32 - NiioH* +H.c.|, 2.7 A. Local gravitational anomalies
*
A noninvariance of the effective fermion action under lo-
where the inducedinverse metric and vielbein at the stan- cal Lorentz transformations would imply that the corre-

dard model 5-brane are given by sponding stress-energy tensb¥N is not symmetric. This
would be incompatible with general covariance and the con-
g¥P=w"?(7r.) n*k, servation lawv,, TMN=0. Thus, in the presence of local Lor-
entz anomalies, either general covariance is brokén'otis
el=w Y(mry)s:, «=01,...,5 not conserved. Anomalies associated with general coordinate

(2.8)  transformations, on the other hand, lead directiyWor™N
#0. In either case, the theory that results when gravity be-
In Eq. (2.7), D, are the gauge covariant derivatives, and thecomes dynamical is inconsistent, and it is necessary to en-
Yukawa couplings are again dimensionless. Note that theure that all gravitational anomalies cancel. However, the
four-component fieldC_ has mass dimensior5/2 while  conditions derived from the requirement of anomaly cancel-
the NV, field (also four-componeit being defined in seven lation for both kinds of transformations are not independent.
dimensions, has mass dimensi®B. At least in the case dbcal anomalies, it is possible to shift
Before proceeding with the analysis of the neutrinothe anomalies of one kind into anomalies of the other kind by
masses, we discuss the consistency of the seven-dimensiorelding suitable local terms to the vacuum functidi2d,21].
theory. Thus, we may concentrate only on general coordinate trans-
formations.
IIl. GRAVITATIONAL ANOMALIES In the case of gauge theories in t'hreg or five dimensions,
any local gauge noninvariance, which is necessarily local-
We next show that the seven-dimensional model deized at orbifold boundary points, can always be cancelled by
scribed in the previous section is anomaly free. The reades bulk Chern-Simons terif22,23, provided the anomalies
interested mostly in neutrino phenomenology may wish tan the lower dimensional effective theory vanishVe now
move directly to Sec. IV. argue that this is also the case focal general coordinate
The seventh dimension is compactified o1$'dZ, orbi-  anomalies in seven dimensiochaVe follow the argument
fold and the six-dimensional standard model is localized on gjiven in[23] for the spin-1 case. The idea is to calculate the
5-brane at one of the two fixed points, while the three singlebne-loop contributions to the covariant divergence of the
neutrino fields propagate in the bulk. It was showfiShthat  seven-dimensional stress-energy tensor in the six-
if all fields were six-dimensional, the resulting theory would dimensional effective theory. If we regularize in such a way
be free of gauge and gravitational anomalies, Bottal and  as to produce the covariant form of the anomaly, it is pos-
global. Letting the neutrino fields propagate in a seventhsible to perform the calculation in any convenient gauge.
dimension amounts to adding three infinite towers of KK  For the analysis of anomalies, it is sufficient to consider
fields to this theory. Since all gauge fields are localized at themall fluctuations about a flat background
orbifold fixed points, allowing the singlets to propagate in
more dimensions cannot introduce any gauge anomalies. ds*=[ 7,5+ h,p(x,2)Jdx*dx?—dZ, 3.1
Gravity, however, propagates in the bulk and one must con-
sider whether all gravitational anomalies cancel. When couwhereh,,,<1. In Eq.(3.1) we took advantage of the gauge
pling fermions to gravity, there can be two types of anomafreedoni to setG,,=0 andG,,=—1. We also choose the
lies: those associated with general coordinatevielbein as follows:e,,=(7a,+ 3Nan): €a,=€,,=0 and
transformations and those associated with local Lorentz, =1. The fact that we take a symmetric vielbein means
transformations. For each of these cases one must distinguish
betweenlocal and global anomalies. We analyze first the

case oflocal gravitational anomalies. After showing that 5the mathematical relation between Chern-Simons forms in odd
dimensions and anomalies in even dimensions was discussed in
[24,25.
“Note that the word “local’can have two different meanings. In  8In five dimensions there are tocal gravitational anomalies: the
the context of “local Lorentz"transformations it means that the Lor- triangle diagrams always vanish.
entz group has been gauged, the standard usage in gauge theorie§The invariance of the line element E@®.1) under the reflection
There can be, however, local Lorentz transformations that are core— —z requiresG, 5 andG,, to be even, whilés,, should be odd.
tinuously connected to the identity as well as local Lorentz trans+or consistency, the infinitesimal parameters of a general coordinate
formations that are not. It is customary to refer to the transformatransformation;® (£%) should be evefodd). Although these bound-
tions of the first kind adocal and to those of the second kind as ary conditions do not allow the zero mode @f,, to be gauged
global. We useitalic fonts whenever we want to emphasize the away, this “radion”’mode has vectorlike couplings in our theory so
distinction between the transformations that are continuously conthat it does not contribute to the anomaly, and we do not include it
nected to the identity and those that are not. here.
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that the stress-energy tensor is symmettic.this gauge the The action Eq.(3.7) corresponds to the six-dimensional

absence of local Lorentz anomalies is expljcit. theory of an infinite number of fermion fields that couple
The action for a fermionP’ in the background Eq3.1)  (chirally) to background field®”* with standard gravita-
becomes tional couplings. Note that wheh,z is z independent, the
i _ . resulting couplings are vectorlikéexcept for those of the

S= EJ’ d’x e¥T*eyDy W +H.c. zero-mode fermiondue to the normalization condition Eq.

(3.6), which is the same for both chiralities.
- i One can calculate now the relevant square diagr2®nh
ivres, v+ —\prﬁﬁz\y with one insertion of the operator E(.3), with the seven-
2 dimensional fermions replaced by their KK mode expan-
sions. Performing then the same manipulations af28j,
, (3.2 and adding the contribution of a brane fermi@mour model
these are the electrically neutral component ofghe while
the corresponding bulk fermions, labeled generically in this
) section byW¥, are theN") to compensate for the zero mode
TMNZI_[\I_,F(M Ny — WMN(@Fﬂg \I,_'_\I_,FGE’Z\I,)]' projected_ out by the orbifold boundary conditions, one can
4 m finally write

=fd7x

—h,zT*+0(h?)

where

(3.3 1 1

6 MN _ _ _ -

and all components with an index along the seventh dimen- AW =5 [ 8(z— ) 5(2)]4774
sion vanish. Here we use the notatiolf U=V ¥

—(0¥)W¥, and in the second line of E@3.2) as well as in XJ — THv,R]TIR?]
Eqg. (3.9 it is understood that all indices are raised and low- 288 ¢
ered with the Minkowski metriey,, s . 1
We now expand the fermion fields in KK modes, +%Tr[v4R3]]. (3.9

V., (x,2)= M(x)&x(2), 3.4
=(x2) En: V= (X)En (2) 34 Here we used a compact differential form notatidgf:,

_ _ =3R%,, dx*/\dx’, whereR*z,,(x,z) is the Riemann ten-
wherey.. (x,2) = 3(1+'7) ¢(x,2), with T;=—iI'®>. The KK sor calculated from the background E8.1), but with the
wave functionst; (z), which can be taken real, are solutions indices running only from 0 to 5. The traces are taken over
to the indices that are not saturated by differentials. Also,

Gy = maET (3.5 _(vg)f“ﬁ=_p7ﬁ§“, where the{“(x,z) can be thogght of as the
infinitesimal parameters of a general coordinate transforma-
where &' (z) and &, (z) satisfy Neumann and Dirichlet tion. Due to general covariance, the result E219) holds in

boundary conditions, respectively, and are normalized as 2"y 9auge. In addition, we are allowed to replace the Rie-
mann tensor in Eq3.9) by its exact, nonlinear expression,

7 . . .
dzE5(2)E5(2) = 6. 3.6 so that the final result holds in an arbitrary background.
fo én (2)6y(2)=Omn 36 The covariant anomaly given in E.9) does not satisfy
the Wess-Zumino consistency conditions and therefore can-
The result of replacing the mode expansion B334) in the  not be obtained from the general coordinate variation of a

action Eq.(3.2) is functional of the metric. There is a standard procedure to
o obtain the consistent anomaly by adding local terms to the
S=, f dbx| M (iTr %, —m,) ™ stress-energy tensor[20]. The resulting anomaly
" Qi(v, . I \R[8(z— 1) — 8(2)1/2, wherel * =T, dx* is

the connection 1-form, is related to the variation of a 7-form

—> heb® Tg};l'hro(hz)}, (3.7  Q(TI',R) that can be added to the seven-dimensional action
n’ by
where 5UJ Q7(F,R)=fdQé(vg,F,R). (3.10
! l - ’ R !
T =2 '_(j)[‘ N — '_(f)[wa (n) _ o
apx 4[“’07 (g ¥ Tap(1= w2 The Chern-Simons secondary characteristic clsl’,R)

/ — / involves traces over all seven dimensional inditd$ow-
=m0y —my, g0y,

and
) 8Q,(I'\R)  satisfies  dQ(I',R)=[1/(27)*]{ z58(TI[R?])?
+ e N 4 1 . . . I
hzf;(x)zf dzg,;(z)gg,(z)h“ﬁ(x,z). (3.9 + 365 TI{R*]}, whereR is the §even-d|m§h5|onal Riemann curva-
0 ture two-form. For a pedagogical exposition $2&].

105019-5



APPELQUIST, DOBRESCU, PONm, AND YEE PHYSICAL REVIEW D 65 105019

ever, only the six-dimensional components contribute to theynd any diffeomorphism aM onto M can be continuously

right-hand side of Eq(3.10 due to the orbifold boundary deformed into one which is trivial in the intervat/Z,:
conditions on the metric and on the infinitesimal parameters

oM. . . x'a=fo(x), z'=z, (3.12
The modified(consistent form of Eqg. (3.9) matches pre-

cisely with Eq.(3.10. We note thaQ,(I',R) is odd under here vo denote the coordinates i (T2/Z,). We can
parity (defined as reflection through tiee=0 hyperplang  herefore restrict attention to coordinate transformations of

Therefore, if we define the prbn‘olld theory by starting from a, o type(3.12. It is then convenient to perform a KK de-
compactification on the circleS’, the coefficient of the omposition for all fields, including the background metric,
Chern-Simons term must change sign when crosging 55 analyze the resulting six-dimensional theory. Regarding
(andz=r), so that the theory is invariant under the reflec-yhe phackground, we note that under the limited class of dif-

tion that is used in the orbifold projection. Because of thisfeomorphisms(S.lZ) the affine connection transforms as
discontinuity, the gauge variation of such a term gives rise to

delta-function singularities as in E¢3.9). Alternatively, we

X > . . AN T o /AN 2yp
can think of theS'/Z, orbifold as a compactification on an T :&X ox" X" ., 4 X I°X
interval (the half circlé¢ with certain boundary conditions Baxe ax'@ ax'B T axP ax’ 2o’ P
imposed at the end points. In this picture the coefficient of (3.13

the Chern-Simons term is constant and the compensating
anomaly comes from the boundary contributions. In eithefwhile all other components transform simply as tengths
picture, it is clearly possible to cancel the noninvariance okecond term in Eq3.13 would vanish if any of the indices
the original fermion effective action by including the seven-«, 8,\ were along the seventh dimension parametrized]by
dimensional Chern-Simons for@(I",R). We therefore as- Furthermore, if we perform a suitable KK mode expansion,
sume that this Chern-Simons term is present so that thenly the zero mode OFZB is affected by the second term in
vacuum functional is invariant undéwcal coordinate trans- Eq. (3.13; all other KK modes are true tensors under Eq.
formations. (3.12. (When referring to the gravitational background field,
a zero mode igefinedto be independent of the higher-
B. Global gravitational anomalies dimensional coordinatg.
. _ . _ We next argue that if there are mgobal anomalies in a

There still remains the question gfobal general coordi- ey zero-mode gravitational background, then there are no
nate (local Lorents transformations26-28. If there are  g1oha) anomalies even in the presence of the higher gravity
diffeomorphisms not continuously connected to the identityxk modes. The reason for this is that the group of discon-

the previous analysis is not enough to ensure that the theory, iaq ditfeomorphisms is finite, at least for the case of the
is invariant under such transformations. We phrase the fo'h-sphereS“ [30]. It follows that for any elemenp in the

lowing analysis in terms of general coordinate transforma- roup there exists ésmallest integerN such thato" is the

tions, but the same arguments apply for the case of locglenity element, and therefore the phase in €ql1) asso-
Lorentz transformations. ) . . ciated withp must be an integer multiple of72N. If this
If W(G) denotes the fermion determinant in the présencey,ase yanishes when the higher gravity KK modes are turned

of a background metric, we have in general off, and we turn them on smoothly, the phase must remain

W(Gh) zero, unless it changes discontinuously. Since the higher
=e9, (3.11 gravity KK modes are just like background “matter” fields

W(G) in the appropriate tensor representation of E312, we

consider this very unlikely.

where G? denotes the metric obtained fro@ under a rep- Now, in a zero-mode gravity background, the theory in

resentativep of one of the disconnected classes of diffeo-question is just the six-dimensional standard model with the

morphisms, andb;,,; is a phase that depends on the class taddition of three infinite towers of massive neutrino KK

which p belongs’® We are specifically interested in the dif- modes, which haveectorlike couplings to the background
feomorphism classes oM =S*x (T%Z,)x(SYZ,). The 9gravity field. We also note that the Chern-Simons term that is

key observation is tha8'/Z, is diffeomorphic to an interval needed to cancel thecal anomalies is invariant under Eq.
(3.12 when the higher gravity KK modes are turned off.

Therefore, the fermion effective action in a zero-mode grav-

“We note that the group of disconnected diffeomorphisms of théty bac_kground IS Invariant under_gene_ral Coord'r!ate trans-
n-sphereS" is trivial for n<5. This follows from the absence of ormations. From the argument given in the previous para-
“exotic” ( n+1)-spheres fon+1<6 [29]. There are therefore no 9raph it follows that there are nglobal anomalies in an
constraints on the number of bulk neutrinos in the popular five-2rbitrary gravitational background. It is worth pointing out
dimensionalSt/Z, orbifolds from global anomaly considerations. that in the presence of the higher gravity KK modes, the
For higher dimensional theories the situation is not as straightforChern-Simons tern@-(I',R) is not invariant even under the
ward, as indicated by the fact that there are 28 disconnected confiestricted class of diffeomorphisms E@.12. This nonin-
ponents orS® and two onS’. See[30] for some other higher di- variance must be canceled by the rest of the terms involving
mensional cases. the higher gravity KK modes.
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We conclude that adding a seventh dimension compacti- Integrating out the universal extra dimensions, the Dirac
fied onSY/Z, to the six-dimensional standard model and let-neutrino mass matrix induced after electroweak symmetry
ting the neutrinos propagate in the bulk introduces neithebreaking is
local nor global gravitational anomalies. Turning the argu-
ment around, we can say that the consistency constraints on
the number of neutrinos in the seven-dimensional model are M &(mry) (4.4)
the same as in the six-dimensional standard model analyzed aRM M,
in [5], namely it is necessary to include one singlet neutrino

per generation. From the point of view of anomaly cancella-wherevh: 174 GeV is the Higgs VEV, and the denominator

g(r);ng f:selér;materlal whether these neutrinos are bulk orrepresents the square-root of the volume of tA&/Z,)
' X (S'/Z,) orbifold. As we will see in the next section, the
neutrino mass eigenvalues are largely determined by the hi-
IV. NEUTRINO MASSES erarchy among thg?(wrc), while the mixing angles are de-

We now return to the action of E2.3), which leads to  termined by the flavor structure of the coupling$ andh;; .
Dirac neutrino masses. In order to study the implications for
neutrino oscillations it is sufficient to analyze the zero-mode
spectrum. '

The zero modes oV are projected out by the orbifold
boundary conditions. The KK decomposition along the |n this section we derive the profiles of the neutrino zero
warped dimension that includes the zero-modéfields is  modes, which determine the neutrino mass matrix according

)\i/{/l)h

ij
)=

V. ZERO-MODE PROFILES OF GAUGE-SINGLET
FERMIONS

given by to Eq. (4.4). These depend on the VEV af and therefore
our first task is to determine the solution to theequation of
w1 - () war o motion that follows from theN-independent part of Egs.
N (x%,2)= WFOM (x9&(2), (4D (2.3 and(2.5.
C

where the indexx=0,1, ... ,5labels the universal dimen- A. The bulk VEV
. n .
sions. Thegj(2) form a complete set of orthogonalimen- We will be interested in a region of parameter space

sionles3 functions on.t_he[O,wrc] intgrval, satisfying Neu- where theg field VEV varies slowly in the bulk of the 7th
mannhboundarybcond;]tlonshappropna}_te for %\{9” fields. The>éiimens;ion(with the exception of two narrow regions close to
are chosen to obey the ortho-normality conditions the branek so that to a good approximation it simply gives a
1 o contribution to the bulk cosmological constant. Thus, we use
— | Cdzw(2) (2 (2)= Son » (4.2  the explicit form for the warp factor, Eq2.2.
7o The negative mass-squared @fimplies that a nonzero
VEV for ¢ is energetically favored, but at the same tignées
which ensure the canonical normalization of the six-an odd field under the orbifold identification, and therefore

dimensional kinetic terms fak™"(" . its VEV must satisfy the boundary conditions
We now adopt a warp factor chosen to be unity at the
standard model brane, as in E&.2). All kinetic terms for (¢(0))=(¢(mr))=0. (5.9)

the standard model fields are then automatically canonically
normalized. Keeping the zero modes with respect to the sevn terms of the rescaled VEV,
enth dimension only, and integrating oveyr the six-
dimensional effective Lagrangidsee Eq.(2.3)] is

z
_ | _ | f(z)= 22 (5.2
Lep=iL T*D L +D,H D*H+INOT2 NIO My
ANy — . . . . o
_ j £ NI +He | +- - which has mass dimensionl, the equation of motion is
e Ve
4.3 d*f df
43 d—ZZ—de—Zz)\‘pfs—Mif, (5.3
where «=0,1, ...,5.Note that we do not need to distin-

guish between coordinate and Lorentz indices anymore, and

all the indices are raised and lowered with the flat metricsubject to the boundary conditiofig0)=f(#r.)=0. We as-
745 Equation(4.3) shows that the mass scale for the stan-sumek>0. In Eq.(5.3) we have neglected possible higher
dard model KK modes is set by the inversmper radius  dimension operators. This is justified as long as the effective
1R, [or 1Aw(=r)R,) for an arbitrary normalization of the field theory description is valid, that is as longkandM,,
warp factol. are well belowM, .
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Equation(5.3) describes the motion of a particle in the £
potential

A M2
V(f)=—T‘Pf4+ T‘sz, (5.4)

I

in the presence of aanti-friction term proportional tok. I
Thus, we are looking for trajectories in which the particle
starts at the bottom of the potenti=0 with some initial
velocity, climbs the potential up to a certain point and then
rolls down back tof =0. The antifriction term puts energy zZ1 Zg

into the system, so it is conceivable that for a sufficiently _

largek, no matter how small the initial velocity, the particle ~ FIG. 1. Scalar profile wheM,/k=10 and@r:M,=70. The
will gain enough energy to overcome the potential barrier; inP/ateau is af~M,/x,. The pointsz, andz, define the bound-
this case the only solution that satisfies the boundary cond@ries between regions |, Il and Ill. In the main text we consider the
tions is the trivial onef(z)=0.

case where, /z,<1.
We first determine the restrictions in parameter space for

nontrivial solutions to exist. In order to do this it is conve- H(2)~ M, tanr‘M "’ZtanI“M o(TTe—2) 1+O(L)
nient to setf (2) = VA ,M_ ' e 3*(2), so that Eq(5.3) be- W, 2 2 M,
comes
+0O(e” ™M) | (5.9
ﬁ=|v|2eﬁkff'3—(|v|2—9k2)“f‘ (5.5
dz ¢ ¢ ' ' This solution is essentially constant except in the region of

size ~M;1 around the endpoints. We will in general be
describing now frictionless motion in a potential whose slop interested in the parameter range in wrkas not negligible,
decreases with time. Fae=M /3. the “motion” starts atz ®ut where l/gr)<M,. The Iatt.er hierarchy WI|| need to be
o DT et _ - only one to two orders of magnitude to explain the smallness
=0 from the maximum #0 of a continuosly decreasing of the neutrino masses relative to the weak scale. As we
potential, so thatf(z)=0 is the only solution satisfying show in the Appendix, the solutions in this case are qualita-
F(mrr.)=0. Therefore, Eq(5.5 can have a nontrivial solu- fively similar to the flat cas&=0. We show a typical nu-

tion which satisfied(0)=T(r¢)=0 only if merical solution in Fig. 1.

M B. Bulk fermions
k<—2. (5.6 In the presence of the VEV, the V fields have nontrivial

3 profiles along the dimension. The thred/ zero modes de-
fined in Eq.(4.1) are a solution to the set of equatiorisj(

This necessary condition is not sufficient for the existence of=1,2,3, withi fixed andj summed over
solutions withf(0)=f(=r.)=0. Another necessary condi- . _
tion can be derived as follows. If we neglect the first term on dﬁ | 3Kks —h 8. f— hf,, 0 5.9
the right-hand side of Eq(5.5) the fictitious particle feels dz AT & '
just a harmonic oscillator potential and returns to the origin
after a “time” z=m(M2—9k? Y2 The effect of the ne- where we have again neglected possible higher dimension
glected term is always to increase the oscillation periodoperators in Eq(2.5). We also set”=d?*f/dz> wheref was
Hence, the boundary conditidi{=r.)=0 requires defined in Eq(5.2). It will be useful to factor out the leading
order solution in powers d¥1,,/M, , namely the solution in
the absence of the last term in E®.9), by defining new
functionsc;(z) through

*

1 2
—<MZ—9k%. (5.7
e £9(2) = c,(2)e3kz NS, (5.10

In the Appendix we prove that the conditiof&6) and(5.7) where
are also sufficient for the existence of nontrivial solutions.
We conclude that the VEY¢(2)) is nonzero in the interval
0<z<mr for a substantial range of values bf, andk.

For the special case of a flat and largelimension,k
<1/(mr)<M,, the solution is given approximately f81]  Thec;’s satisfy the following differential equations

S<z>zfozdzf<g>. (5.1
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dg; HJ 1 a(hi—hi)S Nz i -no)sirroy ¢ '
FEavell e(h M)A, (5.12 ci<z>:ci<z2>—c3<wrc>M—§e< RIS 7 (2) — £/ (2,)],
which we now solve in the limitrr ;M > 1. for i=1,2, (5.17)

Given the general features of therofile discussed in the
previous subsection, it is convenient to separate the analysf
in the three regions shown in Fig. 1. We first note that in () ¢(2,)
region Il, f” is exponentially small and therefore all thgs ! ¢ o T2 o (h—hg)S(ary)
remain essentially constant throughout it. The differential §g(wrc) ()
equationg5.12) are nontrivial in regioll;nzs I and 1ll. In region -
iInttr:ae mtggral Eq.(5.1) is of order)\g . In region 11l this B —'3[f’(ﬂ-rc)—f’(22)]. (5.18

gral is much larger, so that the important features of the Mf
Ci(z) are determined in this region as follows: fay<z
<. the integral expression fo®(z), Eq. (5.11), can be Butthe first term here is exponentially small compared to the
replaced, to a good approximation, 8¢ ), which is itself ~ second term. Furthermord,’(z;) is exponentially small
of orderx , "?mr )M, . Therefore, in this region there will be compared td’(7rc) and we flnaIIy obtain
an exponential hierarchy among the various terms on the

tom which we find

0
right-hand side of Eqs(5.12, providedhi)\;l’zwrcMgD».l. fio(ch) e 1), (5.19
Without loss of generality we can assume the ordeting &s(mre) M2
>h,>h3>0. If we keep only the leading terms, then Egs. ) 1 )
(5.12 in region 11l reduce to Becausef(z) varies fromO(\ ,"“M,) to zero over a dis-
tance of order M, it follows that —f'(7r)
deg h33 =0(\, 12\ 2 ). This prowdes the promised result. The zero-
az- vz " C3 (5.13  mode wave functlonglz(rrr o) are suppressed compared to
53(7rrc) but only by a quantity
%:_Ef//e(hi—h:%)s(wrc) cs = f'(mre) M? (5.20
=M vi L |
for i=1,2. (5.14  We note that in Eq(5.18) the leading term in M, is ex-

ponentially suppressed while the subleading term is not, so
We first solve forgg. It will be sufficient to work to zeroth that it dominates as long ds; is not extremely small com-
order inM,/M, , so that from Eq.(5.13 we havec;(z) pared with unity. The reader might wonder whether this sig-
= const. Imposing the normalization condition E4.2), and nals a breakdown in the effective theory description, which
in the limit 1/(7rr ;) <k<M /3, where we can evaluatz) relies on the convergence of the expansion M 1/ There is
by settingf(z)=M /J— throughout the region of integra- no reason to worry: the term suppressedwy in Eq. (5.18
tion, we find from Eq (5 10 that comes actually from thkeadingflavor off-diagonal operator.

All other terms suppressed by higher powerd/hf give just

gg(wrc)z\/wrc(zﬁ/l@_k)e—wrc(%—k/Z), (5.15  small corrections te.

where only one combination of the parameters in the La- VI. NEUTRINO OSCILLATIONS

grangian fore appears, We are now equipped with all the tools necessary for
analyzing the neutrino mass spectrum and the ensuing neu-

M,= 3)\ e (5.16 trino oscillations.
¢ A. Neutrino mass matrix
We will see in the next section that the expression Bdl9 As we discussed in the introducti@Sec. ), the neutrino
will lead to exponential suppression of neutrino masses promasses are of the Dirac type, the Majorana masses being
vided only thatM ,>k/2. forbidden by the symmetry under rotations of the two uni-

Naively, one might think that for the other two genera- versal extra dimensions. Below the electroweak scale, the
tions there will be a greater exponential suppression coneffective four-dimensional theory contains three left-handed
trolled by their larger Yukawa couplinds, ,. We now show  neutrinos,v| , which are the neutral zero modesf , and
that this is not the case, due to the presence of the highehree right-handed neutrinoliy, which are the zero modes

dimension operators that couphé*?to A% in Eq. (2.5. To  of A'(?) with respect to the two universal dimensions. In the
see this we need to solve fof y(z) in region Ill to first order  weak eigenstate basis,

in M2/MZ . By using the zeroth order solution fax(2) o
=cg4(7re) in Eq. (5.14 we obtain v M, Ng+H.c., (6.

105019-9



APPELQUIST, DOBRESCU, PONm, AND YEE PHYSICAL REVIEW D 65 105019

the neutrino mass matrix derived in Ed4.4), (5.15 and

my=m,_hiz(1;1% —151%),
(5.19 is given by 1i=m, his(lil5 —1517)

AR Mz =m, hig[11(113l2i =124l 1i)
N

5

ehi A}
_ T oy 21
M y=Mp| € h13)\./\/

T oy 31
€hihy Equation(6.6) shows that then, andm,,, physical neu-

where e<1 is defined in Eq(5.20, and the scale of the trino masses are of ordem, , and generically are nonde-
neutrino masses is set by generate. We choosmvl<mV2. These can be computed

€ hyah 2

EHZ?:)\,?\% ’ (62) +T3(|33|2i_|23|3i)]7 |:1,2 (68)

EFZ‘?,)\?\%

straightforwardly by diagonalizingm (the 2x2 matrix
whose elements are given by;):

1 )(2m¢—k

12
TRM. M, ) . (6.3

Me=v1e mc(mk/z)(

20t — v di 2 2\t
As we will see in Sec. VII, the factors in parentheses are emm leagm”l' sz)V ' 6.9

expected to provide a suppression of no more than one to ) ) )

two orders of magnitude, so that the neutrino mass scale &hereV is a unitary 2<2 matrix. ItsV;; elements depend

explained by the first exponential. only on ratios ofA'{’s and on|h;3/h,3 . This dependence can
The neutrino mass matrix is diagonalized by unitary transbe computed straightforwardly using E@.8), but is cum-

formations:
UM, Ug=diagm, ,m,,m,). (6.4)

The unitary matrix describing neutrino oscillatiohs, , and

the physical neutrino masses, , may be found by expand-

ing in powers ofe=O(\,*?MZ/M?). The largest physical
neutrino squared-mass is

m7 =ma(NF2+ N2+ INADL+O(e))]. (6.5

It is convenient to use the following identity, valid up to

corrections of ordee?:

Ts _(|23~|1)* 13 € Fnll € r~nlz 0
M= O JIlig®+13d® oz || emy emy O
-Ti (gl las 0 o m,
1 0 —e6;
x| O 1 —e€0,]|, (6.6)
€l; €0, 1

where we use the following notation:
(NS I ) 7

Iij i,j:1,2,3,

)\i3*
! (l)\/l\?2+|)\/3\/§|2)1/2

=13,

3
0i=hi3j§l I%1%, =12 (6.7)

The first matrix that appears in E(.6) can be shown to be
unitary, while the last matrix is unitary to leading ordereth

bersome and we do not display it here.
The unitary 3x 3 matrix U is then given by the product
of the first matrix on the right-hand side of E@.6) with

vV 0
0 1) (6.10
The third column entries df), ,
: M1+ 0(€?)
2 A . =12, (6.1

(MR N2+ NG

are relevant for atmospheric neutrino oscillations, as dis-
cussed below. The first two columns Of have entries that
also dependto leading order ire) only on ratios of\ {/s and

on |hy3/h,g. The ratio of theUl! and U2 entries, which is
relevant for solar neutrino oscillations, is given by

12
UL

11
UL

V21I - VllI 1| 23

. (6.12

*
3
115 —Vaililag
This ratio is typically of order unity if most of thkijv's have

the same order of magnitude. In particular, this is true for the
phenomenologically favored case discussed below, which is
near the bimaximal mixing of three neutrinf32].

B. Predictions and experimental constraints

The neutrino oscillation data constrains the differences of
neutrino squared-masses. With three neutrinos, the atmo-
spheric and solar neutrino data can be fit nioghe LSND
data cannot be accommodajed

The atmospheric neutrino data require a larger mass split-
ting compared to the solar data so thﬁ3 is determined to

leading order ine?. The range for the mass-square difference
(Am?) ,m given by the global fif33] to the data obtained in

The elements of the block-diagonal mass matrix shown iratmospheric neutrino experiments and in the CHOOZ reactor

Eq. (6.6) are given by

experiment is
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m’ ~(Am?)5 IR
—(15-6.0x10°% eV? at 99% C.L. (6.13 VINA 2 NV

As long as the combination of Yukawa couplings shown inTh€ atmospheric neutrino data strongly favor puge— v,
Eq. (6.5 is not smaller than unity by many orders of mag- oscillations with a mixing angle satisfying $2¥,5>0.83 at
nitude, Eq.(6.3) requires the 99% confidence levegB6]. The expression of this mixing

angle in terms of the Yukawa couplings is the same in our

ok model as in the five-dimensional model of Grossman and
| M,— 5) ~30, (6.149  Neubert[14], and gives
. . ) 23]
where we ant|C|_pate that the terms in parentheses if@8). 0.65< N <1.55. (6.20
are of order unity. A3
The solar neutrino oscillations are controlled by the mass-
square difference of the lighter neutrinos: This is not a particularly strong constraint, given that the
Yukawa couplings are typically expected to be of the same
(AMP) gojq=mZ —m? . (6.15  order of magnitude. However, if the march of the atmo-

spheric neutrino data towardasaximalv, < v, mixing con-
tinues, then it will be necessary to find a more detailed ex-
planation for why the ratio of Yukawa couplings shown
above is so close to unity.

Finally, the global fits of the large mixing angle MSW
solution to the solar neutrino problem requi]

Based on the reasonable assumptions|tiaf,|h,q=O(1),
and that most Yukawa couplings!; have the same order of
magnitude, we find the following prediction for the solar
neutrino oscillation scale:

2
=1. (6.2

Am?
( )S°|ar%(9(€2), (6.16) 12
(Am*)ZH 0.2

L
11
UL

wheree is given by Eq(5.20. In the absence of fine-tuning, This constraint is naturally accommodated by order unity

the ¢ scala_lr mass—_squared can b(_a no s_maller than th2e ONGalues of the parameters entering the first two columns of the
loop contribution in the seven-dimensional theoiM: matrix shown in Eq(6.12.

2 3
~O[\ M /(1287°)]. Also, we expect that the effective |, symmary, we can explain the hierarchy between the
theory description starts breaking down whéM, ap-  electroweak scale and the scale relevant for the atmospheric
proachesM,, . This leads to an allowed range feffsee Eq. npeutrino data by the first exponential factor in E6.3). We

(5.20]: can further explain the small hierarchy between this scale
4 L, and the solar neutrino scale associated with the large-mixing
O(10 3\ ,)=e=<0(10 Y/ \r,), (6.17  angle MSW solution based on the typical size of the higher-

. ] ) dimension operators controlling neutrino flavor mixing. Fur-
with the values near the upper end being preferred if thehermore, the currently allowed ranges for the mixing angles

mass parametev , is not too much smaller than the funda- are natural if the various couplings of our model are of order
mental scaleM, . If A is of order unity, the ratio shown in ypjty.

Eq. (6.16 is then of order 102. The generic prediction of
our model for the solar neutrino scale then becomes VII. MASS PARAMETERS AND WARPING
(AM?)55a=107°—10"* eV2, (6.18 Having observed that the smallness of the neutrino mass
scale relative to the electroweak scale is explained by Eq.
This prediction fits well the range currently allowed for the (6.3) with the exponent given by Ed6.14), we now com-
large-mixing angle MSW solution to the solar neutrino prob-ment on the other mass scales of the model. These are the
lem [34]. The large uncertainties due to the unknown valuesscaleM, at which the seven-dimensional theory, including
of various parameters do not allow us to rule out the longts six-dimensional component, breaks down, the paranketer
oscillation wavelength solution, whose fit to the data prefergelated to the seven-dimensional cosmological constant, the
(Am?) 55010~ eV2. On the other hand, the vacuum os- sjze R, of the universal extra dimensions, and the sizef
cillation solution requires §m?)s,a~10"'° eV?, so that it the warped dimension. We also introduced the midssof
is disfavored within our model. the bulk scalar that localizes the neutrino fields away from
The elements of the unitary matrix_are constrained by the standard model brane, and the Higgs doublet mass pa-
the SOlar, atmOSpheriC and reactor neutrino eXperimentS. ThﬁmeterMH . These scales give rise to other, derived scales
elementU{* is most tightly constrained by the global fit to such as the electroweak scalg.

the CHOOZ and solar neutrino data, which givesi?)? There are several important relations among the above
<6.5x10 2 at 99% C.L.[35]. Applied to our case, this parameters. We assume a normalization of the warp factor as
translates into a mild restriction: in Eq. (2.2). (For a different normalization it is only neces-
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sary to interpreR, in the following formulas as the proper cated thaM, must be approximately an order of magnitude
radius of the universal extra dimensions at the standarbelow M, , which is consistent with a naturality estimate
model brang.The first relation follows from the fact that the analogous to Eq7.2), if the corresponding coupling,, is of
observed standard model gauge couplings, collectively desrder unity or smaller.
noted byg, (as well as the top Yukawa couplingre of There are now various possibilities depending on how
order one. Writing a typical six-dimensional standard modelarge the warping is. First suppose that the warping is no
gauge coupling inCsy, of Eq. (2.3 asgg/M, , wheregg is  more than milde™ <~ 1. In this case, the weakness of grav-
dimensionless, the observed four-dimensional gauge couty must be attributed to some suppression that lies beyond
pling is given by the seven-dimensional theory presented here, such as a few
. other flat dimensions accessible only to gravity along the
1~g,=(mRM,) " "de- (7.1 lines of[11]. It is important to note that the mechanism for

If the standard model gauge interactions become strong %Iuppre53|ng the neutrino masses presented here is indepen-

) f h ion. F .1 h
the scaleM, , theng3~ 12872 [37]. In this case, the product ent~o any SU_C ~exten5|on rom HG.14), we _now ave
) mr M ,~30. WithM , roughly an order of magnitude below
RM, is of ordery128x. For a range of values @s>1, " the inverse size of the seventh dimensiomr}/, is of
M, will be somewhat above R/, providing a finite range grder 10 GeV.

of validity for the six-dimensional standard model. In the A more interesting possibility is thatkr,> 1. In this case

: 10 L ; ! -
following we assume thaD(1)<R M, =0(10)." _itis possible to explain the weakness of gravity in the man-
A second relation follows from naturalness considerationsyer of Randall and Sundrunfl2] within the seven-

with respect to the Higgs doublet mass. The Higgs doublegimensional model. There are, however, some differences
mass parametei; must be belowM, for the effective  arising from the existence of the universal extra dimensions.

theory description to be valid. However, on naturality The four-dimensional Planck mass is now relatedvitp by
grounds,My cannot be much smaller than the one loop cor-

rections. They can be roughly estimated by cutting off the Mi(ﬂ-Ru)z y
e ar

2 ok
K . (7.9

quartically divergent one-loop integrals, such as the one aris- Mp~=
ing from the quartic Higgs self-interaction, at the breakdown

scale of the effective, six-dimensional theory. This yields Suppose thak is on the order ofbut somewhat less than

N M, . Thenif 1R, andM, are in the TeV range as expected
- 6 from the previous consideratiofsit follows from Eq. (7.4)
M,>My=My~\/——M, , 7.2 ) .
x T H H 12873 ¢ (7.2 thate?™ <~ 10, which translates intarkr .~ 20. (Note that
there is an extra factor of two in the exponent compared to

wherelg is a dimensionless coupling in the six-dimensionalthe five-dimensional Randall-Sundrum mo&le then see
theory. Using this estimate, it follows that the Higgs VEV is from Eq. (6.14) that =M fc~40, and the inverse size of the

given by seventh dimension, &t ., is again of order 10 GeV. The
1 lightest spin-2 KK mode with momentum along the warped
_ —1/2 - 2p-1 dimension has a mass of abouk,4vhich is roughly of the
on=[TRM.Xe TIMy= \/12877(R“ *) Ry same order as the mass of the first KK modes of the standard

(7.3  model fields. It will be interesting to see which KK modes

will be discovered first if this model is realized in nature.
If RyM,=0O(1) then Eq.(7.3) can be read as an upper

bound on 1R, in the TeV range. But the electroweak preci-
sion measurements impose a lower boung 0.5 TeV
[1]. It then follows fromR M, <O(10) thatM, is in the We have presented a higher-dimensional mechanism for
TeV range. generating a realistic neutrino mass spectrum. The smallness
Finally we note that the parametek$, and k are ex-  of the neutrino masses compared with the electroweak scale
pected to satisfy relations analogous to E§2) (though, as is explained by an exponential suppression of the right-
noted in Sec. VA, we must have<M ,/3). Our discussion handed neutrino wave functions on the standard-model
of the solar and atmospheric neutrino data in Sec. VI A indi-brane. The hierarchy between the mass scales associated

VIIl. CONCLUSIONS

10An interpretation based on the AdS/CFT correspondd86 UNote that we have chosen to measure all mass scales at the
may be useful ifRM,<1, in which case the present six- standard model brane with respect to the corresponding induced
dimensional description is not applicable. We note thatzhsym- metric. Had we measured them with respect to a metric rescaled by
metry that lies at the heart of the remarkable proton decay suppres™'c as in Ref.[12], we would have concluded thad, and the
sion pointed out if9] and which also forbids Majorana masses, is other “fundamental”’parameters of the seven dimensional theory
expected to remain valid. Thus, even though it would not be posare of ordetM . The cutoff on the effective six dimensional stan-
sible to talk about a six-dimensional standard model, the six-dard model would, however, remain in the TeV range, being given
dimensional structure still has observable effects in the low-energpy M, e” " "c. None of the physical conclusions described here
four dimensional theory. would change.
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with the v, < v, and v« v, transitions, measured by the Kaluza-Klein modes in addition to the Kaluza-Klein modes
atmospheric and solar neutrino data, respectively, is limite®f the standard model fields.

by the effect of flavor-nondiagonal, higher-dimension opera-

tors. As a result, the mass scale of the solar neutrino oscilla- ACKNOWLEDGMENTS

tions fits well the I_arge-_m_|X|ng-angIe MSW solution. F_ur- We thank H.-C. Cheng, S. Glashow, M. Luty, I. Mocioiu,
thermore, the neutrino mixing angles are naturally large if n .
. Mohapatra, and H. Murayama for useful conversations

large hierarchies between the neutrino Yukawa couplings oc- o L
cur. This is an important result in view of the fact that aand communications. We acknowledge the hospitality of the

majority of the models in the literaturdor a recent review Aspen Center for Physics during early stages of this work.
jonty . This work was supported by DOE under contract DE-FG02-
see [39]) can accommodate only the small-mixing-angle

MSW or vacuum solutions to the solar neutrino problem,92ER_40704'

which are less favored by the data. In addition, the seemingly

“maximal” mixing required by the atmosperic neutrino data

is consistent with our mechanism for a reasonably large | this appendix we prove that the real scajarhas a

range of parameters. _ nonzero VEV whenever the paramet&r$v , andr ; satisfy
While our mechanism has been developed in the frameg,q conditions (5.6) and (5.7). The rescaled VEVu(z)

work of the six-dimensional standard model, it is worth :\/)\_M—lf(z) must satisfy the-independent equation
pointing out that it relies fundamentally on four ingredients e

that could naturally be present in a more general class of d2u du
higher-dimensional theories: 5= 6kd— +M fo(u3— u). (A1)
(i) Three right-handed neutrinos; dz z

ii) A symmetry structure forbidding Majorana neutrino __, . . . . L
ma(ss)eS' y v gVl This equation describes the mechanical motion in the poten-

. _ 2 2_ 2 . . . .
(iii) A spatial dimension compactified d8"/Z, and ac- @&l ~Mg(u”—1)%/4, and in the presence of @mti-friction

cessible to the right-handed neutrinos but not to the standaf§™ Proportional tok. The z coordinate plays the role of
model fields: time”variable.

(iv) A bulk (effective scalar field which is odd under the W& Will prove the existence of a solution to EGAL),

Z, orbifold transformation, has a VEV, and couples to theSatisfying the boundary conditions(0)=u(rc)=0, by
right-handed neutrinos. analyzing the “flows” in the equivalent first order system:

Ingredients(i) and (i) are automatically present in the du

APPENDIX

six-dimensional standard model, as required by the six- —=P,,

dimensional gravitational anomaly cancellat{&n6] and the dz

Zg rotational symmetry of the two universal extra dimen- dp

sions[9]. We were then led to consider the six-dimensional U= 6kP,+M2(ud—u).
standard model localized in a seventh dimension satisfying dz v ¢

(ii ) and (iv). (A2)

More generally, ingredier@i) could be enforced by lep- In the (u,P,) plane, the solution sought corresponds to a

ton number conservation in a variety of models, and its X% 0w that starts somewhere on the=0 line and. after time
perimental test is the absence of neutrinoless double-beta de- '

cay. Ingredients (ii) and (iv) could be present in 7re, comes back to this linébecause of the symmetry

4+ 1-dimensional models, as suggested in R&t] as a — —u, we can restrict=0.) More premsely, we shall prove
possible source of fermion mass hierarchies. We have geneIIEat fﬂr ar|1_yk< N.I‘Fr’l/?” thfr? are ZOV.VS starting and_ en?mg on
alized this construction by allowing a warped metric. Wet eu—Q Ine, with total elapsed timesn{ ) ranging from
have analyzed the conjectured restriction on the number o?/ o to infinity, where

gauge-singlet fermion§l4], and have found that in 61
dimensions the local and global gravitational anomalies can-
cel independently of the number of right-handed neutrinos, The systen{A2) has two fixed points,|,P,)=(0,0) and
provided the fermion content is free of six-dimensional 1 o), near which it may be linearized. In the vicinity of

anomalies(In 4+1 dimensions no restrictions arise because(g 0), Egs.(A2) have the following explicit solution satisfy-
there are ndocal or global gravitational anomalies in four or jng the initial conditions ¢,P,) = (0,Py>0):

five dimensions.

0=\M2=9KZ, (A3)

Finally, it is worth noting that the model presented here Po s, .
has another intriguing feature. In the most appealing version u(z)=-—_-e ‘sinwz,
of the model, the extra dimension that leads to an exponen-
tial suppression of the right-handed neutrino wave functions Pu(2)=u(2)(3k+ w tan twz).
also solves the hierarchy problem along the lines of Randall (A4)

and Sundrunf12], while explaining proton stability based on
six-dimensional Lorentz invariance as in Rg®]. In this  Since u vanishes az=n/w, the existence of solutions is
case collider searches at the TeV scale will reveal gravitorstablished for a separation between the branesrigf
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FIG. 2. The flow diagram wheM ,/3k=4.

—mlw [see Eq.(5.7)], at least wherP,—0 such that the
linear approximation is reliable.

PHYSICAL REVIEW D 65 105019

(A2) shows that along the lin®,=0, and foru<1, the
trajectories flow vertically downwarcsee Fig. 2 Second,

the trajectories passing through the=1 line flow into the
regionu>1 wheneverP,>0, and then they are driven to
u—« due to the negative slope of the potential. Tracing
these trajectories back in time, it follows from the first re-
mark that they necessarily cross the0, P,=0 half-line.
However, they cannot cross the origin because the flows can-
not stop except at fixed points, and the pa) cannot be
reachedfor small enougtP >0 the trajectories stay only in
the vicinity of (0,0); see Egs(A4)]. Note that the flows
cannot cross due to the uniqueness of the solutions to ordi-
nary differential equations such as E#é2). Third, tracing
back in time the trajectory attracted to the fixed point (1,0),
the same argument as above shows that it crosses the line
u=0, P,>0. This “critical” trajectory, which starts at some
critical (O,P,>0) and is attracted to (1,0), sets a boundary

A similar linear analysis around (1,0) shows that there isbetween qualitatively different flows. Finally, from any point
an attractive flow that approaches the fixed point (1,0) from(u,0), u<1, the trajectory traced back in time crosses the

the regionu<1, P,>0, and a repulsive flow in the region
u<l, P,<0. For either one of them, the total time is infi-

line u=0 at some &P, <P,. Thus, a point ¢,0) with u
arbitrarily close to 1 corresponds to a trajectory that spends

nite. This shows that adjacent flows that come arbitrarilyan arbitrarily long time in the vicinity of (1,0).

close to (1,0) will spend an arbitrarily long time in its vicin-
ity. Note that whenever the flow enters the regionl, P,
<0, it will be driven to theu=0 line, since the only possi-
bility is to roll down the slope of the potential.

We have shown so far that there are solutions #og
close to eitherr/w or infinity. By continuity, it follows that
there are solutions to EgA1), satisfying the boundary con-
ditions u(0)=u(mr.) =0, for anyr.>1/w. This completes

We now prove the possibility of reaching these flows fromthe proof that Eqs(5.6) and (5.7) are necessary and suffi-

a point (OP,>0), based on the following remarks. First, Eq.

cient conditions for the existence of a nonzero/EV.
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