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Spontaneous symmetry breaking and thep\0 limit
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I point out a basic ambiguity in thep→0 limit of the connected propagator in a spontaneously broken phase.
This may represent an indication that the conventional singlet Higgs boson, rather than being a purely massive
field, might have a gapless branch. This would dominate the energy spectrum forp→0 and give rise to a very
weak, long-range force. The natural interpretation is in terms of density fluctuations of the ‘‘Higgs conden-
sate:’’ in the region of very long wavelengths, infinitely larger than the Fermi scale, it cannot be treated as a
purely classicalc-number field.
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I. INTRODUCTION

The ground state of spontaneously broken theories is
quently denoted as the ‘‘Higgs condensate.’’ In this view,
name itself~as for the closely related gluon, chiral, . . . ,con-
densates! indicates that a nonvanishing expectation value
the Higgs field may correspond to a real medium made up
the physical Bose condensation process of elementary s
less quanta whose ‘‘empty’’ vacuum state is not the t
ground state of the theory@1#. Noticing that bodies can flow
without any apparent friction in such a medium, it is natu
to represent the Higgs condensate as a superfluid. In
perspective, such a physical vacuum should support lo
wavelength density fluctuations. In fact, the existence of d
sity fluctuations in any known medium is a very gene
experimental fact, depending on the coherent response o
elementary constituents to disturbances whose waveleng
much larger than their mean free path@2#. This leads to a
universal description, the ‘‘hydrodynamical regime,’’ th
does not depend on the details of the underlying molec
dynamics. By accepting this argument, and quite indep
dently of the Goldstone phenomenon, the energy spectru
a Higgs condensate should terminate with an ‘‘acous
branch, sayẼ(p)5csupu for p→0, as for the propagation o
sound waves in ordinary media.

However, leaving aside the Goldstone bosons, i.e., fo
spontaneously broken one-componentlF4 theory, the par-
ticle content of the broken phase is usually represented
single massive field, the~singlet! Higgs boson. Although
there is no rigorous proof@3#, the Fourier transform of the
connected Euclidean propagator is assumed to tend to a
limit, sayG(p)→1/Mh

2 when the four-momentump→0, and
the mass squaredMh

2 is related to the quadratic shape of
semiclassical effective potentialVNC(f) ~NC5nonconvex!
at its nontrivial absolute minima, sayf56v. Equivalently,
the energy spectrum of the broken phase should tend
nonzero value,Ẽ(p)→Mh , whenp→0 so that the nonzero
quantity Ẽ(0)5Mh gives rise to an exponential deca
;e2Ẽ(0)T of the connected Euclidean propagator.

Clearly, by considering the broken phase as a ‘‘cond
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sate,’’ the idea of an energy spectrumAp21Mh
2 down to p

50 seems unnatural. In fact, for very long wavelengths, o
would expect the lowest excitations to arise from small d
placements of the condensed quanta that already ‘‘pre-ex
in the ground state. Our idea of density fluctuations is mo
vated by general considerations that should be relevan
any medium and, in particular, in a Bose system at z
temperature. To this end, and for the convenience of
reader, I shall report the following quotations.

~i! ‘‘Any quantum liquid consisting of particles with inte
gral spin ~such as the liquid isotope4He) must certainly
have a spectrum of this type . . . In aquantum Bose liquid,
elementary excitations with small momentap ~wavelengths
large compared with distances between atoms! correspond to
ordinary hydrodynamic sound waves, i.e. are phonons. T
means that the energy of such quasi-particles is a linear fu
tion of their momentum’’@4#.

~ii ! ‘‘We now come to the key argument of superfluidit
the only low-energy excitations are phonons. Phonons
excited states of compression, or states involving small
placements of each atom with a resultant change in dens
@5#.

~iii ! ‘‘We have seen that low-energy non-phonon exci
tions are impossible. In other words, there are no poss
long-distance movements of the atoms that do not change
density’’ @5#.

After this preliminary introduction, I shall point out tha
the apparent contradiction between the conventional pic
of symmetry breaking and the physical expectation of a
perfluid medium with density fluctuations has a prec
counterpart in a basic nonperturbative ambiguity for thep
→0 limit of the inverse connected propagatorG21(p). This
is a two-valued function whenp→0 and includes the cas
G21(p50)50, as in a gapless theory. This ambiguity, b
itself, does not prove that the energy spectrum is actu
;csupu for p→0, nor does it provide the value ofcs . How-
ever, it represents a purely quantum-field theoretical ar
ment in favor of the existence of a gapless branch and of
intuitive picture of the broken phase as a real physical m
dium with density fluctuations.

Before reporting any calculation, let us first try to unde
stand why the vacuum of a ‘‘pro forma’’ Lorentz-invarian
quantum field theory may be such a kind of medium. T
©2002 The American Physical Society17-1
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M. CONSOLI PHYSICAL REVIEW D 65 105017
question may have several answers. For instance, a fu
mental phenomenon such as the macroscopic occupatio
the same quantum state~sayp50 in some frame! may rep-
resent the operative construction of a ‘‘quantum aeth
@6,7#. This would be quite distinct from the aether of clas
cal physics whose constituents were assumed to follow d
nite space-time trajectories. However, it would also be d
ferent from the empty space-time of special relativi
assumed at the base of axiomatic quantum field theor
deduce the exact Lorentz covariance of the energy spect

In addition, one should take into account the approxim
nature of locality in cutoff-dependent quantum field theori
In this picture, the elementary quanta are treated as ‘‘h
spheres,’’ as for the molecules of ordinary matter. Thus
notion of the vacuum as a ‘‘condensate’’ acquires an intuit
physical meaning. For the same reason, however, the sim
idea that deviations from Lorentz covariance take place o
at the cutoff scale may be incorrect: nonperturbative vacu
condensation may give rise to a hierarchy of scales such
the region of Lorentz covariance is sandwiched both by
high- and low-energy regions.

In fact, in general, an ultraviolet cutoff induces vacuu
dependent reentrant violations of special relativity in t
low-energy corner@8#. In the simplest possible case, the
extend over a small shell of momenta, sayupu,d, where the
energy spectrumẼ(p) may deviate from a Lorentz covarian
form and be distorted into a sound-wave shape. Howe
Lorentz covariance becomes an exact symmetry in the l
limit. Therefore, for very large but finiteL, one expects the
scaled to be naturally infinitesimal in units of the energ
scale associated with the Lorentz covariant part of the ene
spectrum, sayMh . By introducing dimensionless quantitie
the requirement of asymptotic Lorentz covariance introdu
a tight infrared-ultraviolet connection sincee[d/Mh→0
when t[L/Mh→`. In this sense, formally,O(d/Mh)
vacuum-dependent corrections would be equivalent
O(Mh /L) effects and these are always neglected when
cussing@9# how Lorentz covariance emerges at energy sca
that are much smaller than the ultraviolet cutoff. Therefo
in the condensed phase of a cutoff theory, although Lore
covariance is formally recovered in the local limit, on
should expect infinitesimal deviations in an infinitesimal
gion of momenta.

In this context, one may ask what the word infinitesim
actually means in the physical world. For instance, by
suming L51019 GeV and Mh5250 GeV, a scaled
51025 eV, for whiche[d/Mh54310217, might well rep-
resent the physical realization of a formally infinitesim
quantity. If this were the right order of magnitude, the no
Lorentz covariant density fluctuations of the vacuum wo
start to show up from wavelengths larger than a centim
up to infinity. These lengths are actually infinitely large
compared to the Fermi scale but have, nevertheless, a p
cal meaning. At the same time, the associated long-ra
interactions would have a strengthe2;Mh

2/L25O(10233)
relative to the Fermi constant. Although small, this stren
is nonvanishing and these interactions can play a phys
role on macroscopic distances.
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I shall now follow, in Secs. II and III, two different meth
ods to display the ambiguity in the zero-momentum limit
the connected propagator in the broken phase. In Sec.
shall present my conclusions and a brief discussion of
most general consequences of my results.

II. THE FUNCTIONAL INTEGRATION OVER THE
BACKGROUND FIELD

When discussing spontaneous symmetry breaking,
starting point is the separation of the scalar field into a c
stant background and a shifted fluctuation field, namely

F~x!5f1h~x!. ~1!

In order for Eq.~1! to be unambiguous,f denotes the spatia
average in a large four-volumeV

f5
1

VE d4xF~x! ~2!

and the limitV→` has to be taken at the end.
In this way, the full functional measure can be express

as

E @dF~x!#•••5E
2`

1`

dfE @dh~x!#••• ~3!

and the functional integration on the right-hand side of E
~3! is over all quantum modes with four-momentumpÞ0.

After integrating out all nonzero quantum modes, the g
erating functional in the presence of a space-time cons
sourceJ is given by

Z~J!5E
2`

1`

df exp@2V~VNC~f!2Jf!# ~4!

whereVNC(f) denotes the usual nonconvex~NC! effective
potential obtained order by order in the loop expansion.
nally, by introducing the generating functional for connect
Green’s functionsw(J) through

Vw~J!5 ln
Z~J!

Z~0!
~5!

one can compute the field expectation value

w~J!5
dw

dJ
~6!

and the zero-momentum propagator

GJ~p50!5
d2w

dJ2 . ~7!

In this framework, spontaneous symmetry breaking cor
sponds to nonzero values of Eq.~6! in the double limitJ→
60 andV→`.
7-2



a

b

le

ve

-

-

nal

ro

ero

ta-

ed

t
-
he
en

a

e

n-

e-

SPONTANEOUS SYMMETRY BREAKING AND THEp→0 LIMIT PHYSICAL REVIEW D 65 105017
Now, by denoting6v the absolute minima ofVNC and
Mh

25VNC9 its quadratic shape at these extrema, one usu
assumes

lim
V→`

lim
J→60

w~J!56v ~8!

and

lim
V→`

lim
J→60

GJ~p50!5
1

Mh
2 . ~9!

In this case, the excitations in the broken phase would
massive particles~the conventional Higgs bosons! whose
massMh is determined by the positive curvature ofVNC at
its absolute minima. However, atw56v, besides the value
1/Mh

2 , one also finds@10#

lim
V→`

lim
J→60

GJ~p50!51`, ~10!

a result that has no counterpart in perturbation theory.
Let us review how this result emerges from the sadd

point approximation, valid forV→`. In this case, we get

w~J!5
J2

2Mh
2 1

ln cosh~VJv !

V
~11!

and

w5
dw

dJ
5

J

Mh
2 1v tanh~VJv !, ~12!

GJ~p50!5
d2w

dJ2 5
1

Mh
2 1

Vv2

cosh2~VJv !
. ~13!

To determine the zero-momentum propagator in a gi
backgroundw, we should now invertJ as a function ofw
from Eq. ~12! and replace it in Eq.~13!. However, being
interested in the limitJ→0 it is easier to look for the pos
sible limiting behaviors of Eq.~13!.

Since bothJ andV are dimensionful quantities, it is con
venient to introduce dimensionless variables

x[VJv ~14!

and

y[Vv2Mh
2 ~15!

so that Eqs.~12! and ~13! become

w5vFx

y
1tanh~x!G ~16!

and

GJ~p50!5
1

Mh
2 F11

y

cosh2~x!G . ~17!
10501
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In this representation, taking the two limitsV→` andJ→
60 correspond to choose some path in the two-dimensio
space (x,y). The former gives triviallyy→`. The latter, on
the other hand, is equivalent tox/y→60 since

J

vMh
2 5

x

y
~18!

with many alternative possibilities. If we require a nonze
limit of w this amounts to an asymptotic nonzero value ofx.
If this value is finite, sayx5xo we get asymptotically

w→v tanh~xo! ~19!

and

GJ~p50!→ 1

Mh
2

y

cosh2~xo!
→` ~20!

implying the existence of gapless modes for every nonz
value ofw. On the other hand, ifx→6` we obtain

w→6v. ~21!

In this caseGJ(p50) tend to 1/Mh
2 ~to 1`) depending on

whethery diverges slower~faster! than cosh2(x).
The above results admit a simple geometrical interpre

tion in terms of the shape of the effective potentialVLT(w) as
defined from the Legendre transform~LT! of w(J). After
obtaining J as a function ofw from Eq. ~12!, the inverse
zero-momentum propagator in a given backgroundw is re-
lated to the second-derivative of the Legendre-transform
effective potential, namely

Gw
21~p50!5

dJ

dw
5

d2VLT

dw2
. ~22!

In this case, Eqs.~19! and ~20! require a vanishing resul
from Eq. ~22! when2v,w,v. This is precisely what hap
pens sinceVLT becomes flat in the region enclosed by t
absolute minima of the nonconvex effective potential wh
V→`. This is the usual ‘‘Maxwell construction’’ where
VLT(w)5VNC(6v), for 2v<w<v, and VLT(w)5VNC(w)
for w2.v2.

Notice, however, that the limit of Eq.~22! for w→6v
cannot so simply be identified withMh

2 . In fact, even within
the ‘‘Maxwell construction,’’ this identification requires
strong additional assumption: the derivative in Eq.~22! has
to be a left-~or right-! derivative depending on whether w
consider the pointw52v ~ or w51v). Now, this is just a
prescription since derivatives depend on the chosen path~un-
less one deals with infinitely differentiable functions! and,
differently from VNC, the Legendre transformedVLT is not
an infinitely differentiable function in the presence of spo
taneous symmetry breaking@11#.

Therefore, in general, Eq.~22! leads to multiple solutions
at w56v. Namely, an exterior derivative for which
Gext

21(0)5Mh
2 but also aGint

21(0)50, as when approaching
the points6v from the internal region where the Legendr
7-3
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M. CONSOLI PHYSICAL REVIEW D 65 105017
transformed potential becomes flat forV→`. These two dif-
ferent alternatives correspond to the various limitsy→` and
x→6` in Eq. ~17! such thaty/cosh2(x) tends to zero or
infinity.

We observe that the ‘‘Maxwell construction,’’ i.e., the r
placementVNC→VLT as a genuine quantum effect, was al
discovered in Ref.@12#. Graphically, the resulting effective
potential becomes flatter and flatter between2v and 1v
when removing the infrared cutoff. Numerically, the rat
between left- and right- second derivatives at the abso
minima of VNC is found to diverge in the same limit@13#.

I conclude this section with the remark that the singu
zero-momentum behavior I have pointed out does not
pend at any stage on the existence of a continuous symm
of the classical potential. As such, there are no difference
a spontaneously brokenO(N) theory. Beyond the approxi
mation where the ‘‘Higgs condensate’’ is treated as a pur
classical background, one has to perform one more inte
tion over the zero-momentum mode of the condenseds
field. Therefore all ambiguities in computing the inver
propagator of thes field through Eq.~22! remain. In this
sense, the possibility of multiple values forGs(p50) has
nothing to do with the number of field components.

III. RESUMMATION OF THE TADPOLE GRAPHS

The possibility of a divergent zero-four-momentu
propagator in the broken phase, as illustrated in the prev
section, is nonperturbative and independent of any diagr
matic analysis. As an additional evidence for the subtle
ture of thep→0 limit of G(p), I shall attempt, however, to
isolate the possible origin of this effect in the one-parti
reducible zero-momentum tadpole graphs. These enter
usual diagrammatic expansion in the presence of a cons
background field and can be considered a manifestatio
the quantum nature of the scalar condensate. The expan
we shall consider is defined in terms of the one-particle ir
ducible ~1PI! graphs generated by the nonconvex effect
potentialVNC(f) considered before. In this respect, the ta
pole graphs are fully nonperturbative and have to be
summed to all orders. The genuine 1PI interaction graphs
the other hand, represent perturbative effects and can be
sidered to any desired order in the loop expansion, with
changing qualitatively the conclusions. In the following, a
ter some preliminaries, we shall address the zero-momen
propagator at the absolute minima ofVNC(f).

Let us start by defining

dVNC

df
[J~f![fT~f2! ~23!

andf56vÞ0 are the solutions of

T~f2!50 ~24!

with

d2VNC

df2 U
f56v

.0. ~25!
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Usually, one defines theh-field propagator from a Dyson
sum of 1PI graphs only, say

G~p!u1PI[D~p! ~26!

where@D21(0)[D21(p50)#

D21~0![
d2V

NC

df2 . ~27!

This provides the conventional definition ofMh
2 through Eq.

~27! at f56v.
In this description one neglects the possible role of

one-particle reducible, zero-momentum tadpole graphs.
reason is that their sum is proportional to the one-point fu
tion, i.e., toJ(f) in Eq. ~23! that vanishes by definition a
f56v. However, the zero-momentum tadpole subgrap
are attached to the other parts of the diagrams through z
momentum propagators so that, in an all-order calculat
their overall contribution vanishes provided the full propag
tor G(0) is nonsingular at the minima. In this respect, n
glecting the tadpole graphs amounts to assuming the reg
ity of G(0) at f56v which is certainly true in a finite-
order expansion. In an intuitive analogy, whenf→6v,
J(f) represents an infinitesimal driving force due to the m
dium. Thus it will not produce any observable effect unle
the mass of a body vanishes in the same limit. The com
cation in our case is that the mass of our ‘‘body,’’ the inver
propagatorG21(0), depends on the medium and on the dr
ing force itself.

For this reason, I shall try to control the full propagator
a small region off values around the minima by includin
all zero-momentum tadpole graphs, and finally take the li
f→6v. I observe that the problem of tadpole graphs w
considered in Ref.@14# where the emphasis was mainly
find an efficient way to rearrange the perturbative expans
Here I shall attempt a nonperturbative all-order resumma
of the various effects to check the regularity ofG(0) for f
→6v.

I shall approach the problem in two steps. In a first ste
shall consider the contributions to the propagator by incl
ing all possible insertions of zero-momentum lines in t
internal part of the graphs, i.e., inside 1PI vertices. At t
stage, however, the external zero-momentum propagato
the sources maintain their starting valueD(0) at J50. This
approximation gives rise to an auxiliary inverse propaga
given by

Gaux
21~p!5D21~p!2wzG3~p,0,2p!

1
~wz!2

2!
G4~0,0,p,2p!

2
~wz!3

3!
G5~0,0,0,p,2p!1•••, ~28!

where

z[T~f2!D~0! ~29!
7-4
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SPONTANEOUS SYMMETRY BREAKING AND THEp→0 LIMIT PHYSICAL REVIEW D 65 105017
represents the basic one-tadpole insertion. Equation~28! can
be easily checked diagrammatically starting from the t
approximation where

Vtree5
1

2
rf21

l

4!
f4, ~30!

D21~p!5p21r 1
lf2

2
, ~31!

andG3(p,0,2p)5lf, G4(0,0,p,2p)5l ~with all Gn van-
ishing for n.4).

Now, by using the relation of the zero-momentum 1
vertices with the effective potential at an arbitraryf,

Gn~0,0, . . . ,0!5
dnVNC

dfn , ~32!

we can express the auxiliary zero-four-momentum inve
propagator of Eq.~28! as

Gaux
21~0!5

d2VNC

df2 U
faux5f(12z)

. ~33!

For f→6v, this partial resummation of tadpole grap
gives a vanishing contribution to the inverse propagator
thatGaux

21(0)→Mh
2 as determined from the quadratic shape

VNC at its absolute minima. However, for arbitraryf even
this partial resummation produces nonperturbative modifi
tions of the zero-momentum propagator. For instance, as
can check with the tree-level potential, there are values of
whereD21(0) is positive butGaux

21(0) is negative.
The second step consists of including now all possi

tadpole corrections on each external zero-momentum line
fact, in a diagrammatic expansion, a single external ze
momentum leg gives rise to a new infinite hierarchy
graphs, each producing another infinite number of gra
and so on. Despite the apparent complexity of the task,
final outcome of this computation can be cast in a rat
simple form, at least on a formal ground. The point is th
this infinite class of graphs can be included into a redefi
tion of the two basic expansion parameters entering the
pole resummation: the source functionJ and the zero-
momentum propagatorD(0).

In fact, to any finite order inJ, I can rearrange the expan
sion for the zero-momentum propagator~all Gn are evaluated
at zero external momenta!

G~0!5D~0!1JG3D3~0!1
3J2G3

2

2
D5~0!

2
G4J2

2
D4~0!1O~J3! ~34!

in terms of a modified source

J̃5J2
J2G3

2
D2~0!1O~J3![fT̃~f2! ~35!
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in such a way that the formal power series for the ex
inverse zero-momentum propagator can be expressed a

G21~0!5
d2VNC

df2 U
f̂5f(12t)

~36!

with

t[T̃~f2!G~0!, ~37!

i.e., as in Eq.~33! with the replacementz→t. As a result,
after including tadpole graphs to all orders, one finds m
tiple solutions for the zero-four-momentum propagator t
differ from Eq. ~27! even whenf→6v.

The situation is similar to solving the following equatio

f 21~x!511x22g2x2f ~x!. ~38!

For x→0 there are two distinct limiting behaviors:~a! f (x)
→1 and~b! f (x);1/g2x2→1`. However, only the former
solution is recovered in a finite number of iterations from

f 0~x!5
1

11x2 ~39!

for g250. In the case oflF4 theory, deriving the gaples
mode from tadpole resummation corresponds to the~b! type
of behavior.

In this sense, the resummation in Eq.~36! is only formal
since, with this procedure, the functionJ̃(f) is always de-
termined as a finite-order polynomial up to higher orders
J, as it happens in perturbation theory. However, this is
so important since the possibility of a singular zero-fou
momentum propagator atf56v does not depend on th
form of J̃(f) but only on its vanishing atf56v. As we
shall see, this vanishing reflects simple geometrical prop
ties of the nonconvex effective potentialVNC.

To understand this point, we first observe that traditio
ally, for f→6v, tadpole resummation has been conside
to be irrelevant. Namely, in the literature the inverse pro
gator is always defined from Eq.~27! that neglects the tad
pole graphs altogether. As anticipated in the Introducti
this is the main motivation to relate the physical Higgs bos
mass to the quadratic shape ofVNC. Therefore, after includ-
ing the tadpole graphs, Eq.~27! should also be contained i
Eq. ~36!, at least as a particular solution whereG(0)
5D(0). To this end, however, whenJ→0 andf→6v, also
the modified sourceJ̃ has to vanish. The alternative possib
ity, i.e., that the fullJ̃ remains nonzero whenf→6v, would
produce a drastic result. In fact, after tadpole resummat
an inverse propagator as in Eq.~27! would never be recov-
ered from Eq.~36!, even as a particular solution. This wou
also contradict the indications of the previous section wh
we have found evidence for both regular and singular val
of the zero-four-momentum propagator atf56v.

Adopting the natural point of view that the modifie
sourceJ̃ ~and soT̃) vanishes whenf→6v, Eq. ~36! pro-
vides a regular solutionGreg

21(0)5D21(0) for which
7-5
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M. CONSOLI PHYSICAL REVIEW D 65 105017
lim
f→6v

t5 t̄50 ~40!

and a singular solutionGsing
21 (0)50 such that

lim
f→6v

t5 t̄Þ0. ~41!

As an example, let us consider the situation ofVNC[Vtree in
Eq. ~30! which is equivalent to re-summing tree-level ta
pole graphs to all orders~i.e., no loop diagrams!. In this case
the regular solution isGreg

21(0)5lv2/3, while the singular
solution is

lim
f2→v2

Gsing
21 ~0!5

lv2

2 F t̄222t̄1
2

3G50 ~42!

which implies limiting valuest̄5161/A3.
In general, beyond the tree-approximation, finding

singular solutionGsing
21 (0)50 at f56v is equivalent to de-

termine that value off̂2[v2(12 t̄)2 where d2VNC/df2

50. For instance, in the case of the Coleman-Weinberg
fective potential

VNC~f!5
l2f4

256p2S ln
f2

v2 2
1

2D ~43!

the required values aret̄516e21/3. In principle, such solu-
tions exist in any approximation toVNC due to the very gen-
eral properties of the shape of a nonconvex effective po
tial.

IV. CONCLUSIONS AND OUTLOOK

In principle, a medium can support different types of e
citations. For instance, the energy spectrum of superfl
4He is considered to arise from the combined effect of t
types of excitations, phonons and rotons, whose separat
ergy spectra ‘‘match,’’ giving rise to a complicated patte
@15#. In this sense, there is a unique spectrum but phon
and rotons can be considered different ‘‘particles’’ reflecti
different aspects of the superfluid helium wave function@5#.

The essential point is that, for superfluid4He, the exis-
tence of two types of excitations was first deduced theor
cally by Landau on the basis of very general arguments@16#.
According to this original idea, there are phonons with e
ergy Eph(p)5vsupu and rotons with energyErot(p)5D
1p2/2m. Only later, it was experimentally discovered th
there is a single energy spectrumE(p). This is made up by a
continuous matching of these two different parts and
dominated by phonons forp→0 where the rotons becom
unphysical.

Let us now consider our analysis of the zero-moment
propagator. Its two-valued nature may be the indication t
something similar happens in the broken phase, in agreem
with the intuitive picture of the Higgs vacuum as a superflu
system. In fact, the existence of both aGa

21(0)[Mh
2 and a

Gb
21(0)[0 implies that there would be two possible typ

of excitations with the same quantum numbers but differ
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energies when the three-momentump→0: a massive one
with Ẽa(p)→Mh and a gapless one, withẼb(p)→0 that,a
priori , can both propagate~and interfere! in the broken-
symmetry phase. In analogy with4He, I would conclude that
the latter dominates the exponential decay;e2Ẽb(p)T of the
connected Euclidean correlator forp→0 so that the massive
excitation becomes unphysical in the infrared region. The
fore, differently from the simplest perturbative indications,
a ~one-component! spontaneously brokenlF4 theory there
would be no energy-gap associated with the ‘‘Higgs ma
Mh , as in a genuine massive single-particle theory where
relation

Ẽa~p!5Ap21Mh
2 ~44!

remains true forp→0. Rather, the far-infrared region woul
be dominated by gap-less collective excitations whose ty
cal energy spectrum forp→0,

Ẽb~p![csupu ~45!

depends on an unknown parametercs . This, according to the
arguments given in the Introduction, would represent
‘‘sound velocity’’ for the density fluctuations of the supe
fluid scalar condensate.

By their very nature, these density fluctuations repres
non-Lorentz covariant effects and, following the discuss
given in the Introduction, should be restricted to an infin
tesimal region of momentaupu,d with d/Mh5O(Mh /L),
L being the ultraviolet cutoff of the theory.

As discussed in the Introduction, the strength of the as
ciated long-range interactions is also expected to be infi
tesimal. In this framework, one may consider possible via
phenomenological frameworks, of the type presented in R
@18#, where the massive branch dominates at higher m
menta as it would happen in a superfluid system whereD
5m[Mh . The superfluid analogy is further supported
the observation@1# that, as for the interatomic4He-4He po-
tential, the low-energy limit of cutofflF4 is a theory of
quanta with a short-range repulsive core and a long-ra
attractive tail. The latter originates from ultraviolet-finit
parts of higher loop graphs@1# that give rise to a
2l2e22mr/r 3 attraction,m being the mass of the elementa
condensing quanta. Differently from the usual ultraviolet
vergences, this finite part cannot be reabsorbed into a s
dard redefinition of the tree-level, repulsive1ld (3)(r ) con-
tact potential and is essential for a physical description of
condensation process when approaching the phase trans
limit m→0 where the symmetric vacuum at^F&50 be-
comes unstable.

Of course, one may object that I have not provided
calculation of the energy spectrum. Admittedly, this is
weak point of my analysis that just concentrates on the ze
momentum propagator. At the same time, it will not be
easy to improve on it. In fact, for a full calculation of th
energy spectrum, one should improve on the usual covar
generalization of the Bogolubov method used in Ref.@1#.
This approximation, where the creation and annihilation o
eratorsap50 , ap50

† for the elementary quanta in thep50
7-6
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mode are simply replaced by thec-numberAN, is equivalent
to treat the scalar condensate as a purely classical b
ground fieldf entering the quadratic Hamiltonian for th
shifted fluctuation fieldh(x). In this case, the energy spe
trum is justAp21Mh

2 and, therefore, the existence of a ga
less excitation branch forp→0 could not be discovered
there.

However, in Ref.@1# it was noticed that the Bogolubo
method does not allow for a straightforward extrapolat
down top50. This is due to an ambiguity relating the orig
nal creation and annihilation operators to their Bogolub
transformed counterpart in the limitp→0. Requiring conti-
nuity of the massive energy spectrum down top50 is
equivalent to replacingap50 andap50

† with AN. This choice
is the second-quantization analog of ‘‘freezing’’f56v
without performing the functional integration in Sec. II o
without first resumming the zero-momentum tadpole gra
in Sec. III. In this case, the only solution isG21(0)5Mh

2 .
In this sense, one should first include a genuine oper

part for ap50 @19#, say ap505AN2 ĵ with ^ĵ&5a and
uau2!N. This introduces new contributions as the thre
linear couplings ap

†apĵ, . . . , the four-linear couplings

ap
†apĵ

†ĵ, . . . , whose effects should be preliminarly com
puted in analogy with the zero-momentum tadpole gra
considered in Sec III. The new contributions produce corr
tions to the standard Bogolubov massive spectrum comp
in Ref. @1#.

Now, the stationarity value ofa, say a5ā, has to be
determined after minimizing the energy density and does
necessarily correspond toa50. This can easily be under
stood by noticing that, after minimization, the number
particles in the condensate is

^ap50
† ap50&5N22 Re~ ā !AN1O~ ā2!. ~46!

Thereforea describes dynamical rearrangements of the to
number of particles between the condensate and the s
with pÞ0. By dynamical, we mean that a nonzeroa changes
the fraction of particles in the condensate and that this m
fication is not an overall change ofN. The latter does no
depend on the occurrence of Bose condensation but conc
the infinite volume limit of any system with a given partic
density.

With an intuitive term, a nonzeroā produces a depletion
of the condensate, i.e., additional contributions to the gro
state wave function as (p,2p), (p1 ,p2 ,2p12p2), . . . .
M
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These are needed for the dynamical equilibrium in the pr
ence of interactions and extend over a typical region of m
menta, sayupu,d, such thate[d/Mh→0 when ā→0. In
this limit, in fact, the Bogolubov spectrumAp21Mh

2 applies
to the whole range of momenta producing an exact Loren
covariant theory~with the possible exception of the zero
measure setp50).

Therefore, taking into account my discussion in the Int
duction, I conclude that the limit of vanishing interaction
ā→0, has to correspond to the continuum limitt5L/Mh
→` of cutoff lF4 theory, i.e., ‘‘triviality,’’ in full agreement
with all rigorous results@3#. However, my analysis show
that, in the broken-symmetry phase, the approach to the
tinuum theory is more subtle than what is generally believ
In fact, usually, one just considers the deviations from ‘‘triv
ality’’ to be perturbative corrections to a free massive theo
without any qualitative change forp→0.

I end up by mentioning that the existence of gaple
modes in the broken symmetry phase finds some suppo
the results of numerical simulations. These have been
formed @20# in the low-temperature phase of a on
component 4D Ising model. The lattice data for the expon
tial decay of the connected correlator show that, by sim
increasing the lattice size, one finds smaller and smaller
ues of the energy gapẼ(p50). Namely, by using the sam
lattice parameters that on a 204 lattice give @21,22# Ẽ(0)
50.391260.0012, the results of Ref.@20# were Ẽ(0)
50.382660.0041 on a 244 lattice, Ẽ(0)50.341560.0085
on a 324, lattice andẼ(0)50.30360.026 on a 404 lattice.

However, in Ref.@20# the extraction of the energy-ga
was obtained from a fit to a single exponential;e2Ẽ(0)T for
all time-slices. Although the quality of the fit was quite goo
strictly speaking, due to the contamination from higher e
cited states, the energy-gap should be obtained from the
ponential decay for asymptoticT. In this case, by restricting
to large T only, a good signal-to-noise ratio requires ve
high statistics~say 10 mil of sweeps! so that on large 324 and
404 lattices, one has to wait for very long running times. F
this reason, the numerical evidence from lattice simulatio
although promising, is still inconclusive and suggests
need for additional efforts by other groups.
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