PHYSICAL REVIEW D, VOLUME 65, 105017

Spontaneous symmetry breaking and thgg—0 limit

M. Consolf
Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Corso Italia 57, 95129 Catania, Italy
(Received 7 January 2002; published 10 May 2002

| point out a basic ambiguity in the— 0 limit of the connected propagator in a spontaneously broken phase.
This may represent an indication that the conventional singlet Higgs boson, rather than being a purely massive
field, might have a gapless branch. This would dominate the energy spectrpm-fdrand give rise to a very
weak, long-range force. The natural interpretation is in terms of density fluctuations of the “Higgs conden-
sate:” in the region of very long wavelengths, infinitely larger than the Fermi scale, it cannot be treated as a
purely classicat-number field.
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|. INTRODUCTION sate,” the idea of an energy spectrufip®+M? down top

o =0 seems unnatural. In fact, for very long wavelengths, one
The ground state of spontaneously broken theories is fregoy|d expect the lowest excitations to arise from small dis-

quently denoted as the “Higgs condensate.” In_this view, theplacements of the condensed quanta that already “pre-exist”
name itself(as for the closely related gluon, chiral .,con-

S o ; n the ground state. Our idea of density fluctuations is moti-
densatesindicates that a nonvanishing expectation value oﬂ,

. . ) ated by general considerations that should be relevant in
the Higgs field may correspond to a real medium made up t.’Yiny medium and, in particular, in a Bose system at zero

The physical Bose cquensehon process of glementary Splr'[1émperature. To this end, and for the convenience of the
ess quanta whose “empty” vacuum state is not the true . :
ground state of the theoffyL]. Noticing that bodies can flow reagie“r, | shall report 'the. fOHOW'.ng. quotatlon's. .
without any apparent friction in such a medium, it is natural (M) Any quantum I|qU|_d c_on_3|st|ng of particles with !nte-
to represent the Higgs condensate as a superfluid. In th@@l Spin (such as the liquid isotopéHe) must certainly
perspective, such a physical vacuum should support long?@ve @ spectrum of this tgn .. In aquantum Bose liquid,
wavelength density fluctuations. In fact, the existence of den€lementary excitations with small momeniawavelengths
sity fluctuations in any known medium is a very generallarge compared with distances between atorasrespond to
experimental fact, depending on the coherent response of tfgdinary hydrodynamic sound waves, i.e. are phonons. This
elementary constituents to disturbances whose wavelength igeans that the energy of such quasi-particles is a linear func-
much larger than their mean free pd@. This leads to a tion of their momentum4].
universal description, the “hydrodynamical regime,” that (i) “We now come to the key argument of superfluidity:
does not depend on the details of the underlying moleculathe only low-energy excitations are phonons. Phonons are
dynamics. By accepting this argument, and quite indepenexcited states of compression, or states involving small dis-
dently of the Goldstone phenomenon, the energy spectrum gflacements of each atom with a resultant change in density”
a Higgs condensate should terminate with an “acoustic5].
branch, sa)E(p)=cS|p| for p—0, as for the propagation of (i) “We have seen that low-energy non-phonon excita-
sound waves in ordinary media. tions are impossible. In other words, there are no possible
However, leaving aside the Goldstone bosons, i.e., for #ng-distance movements of the atoms that do not change the
spontaneously broken one-componar? theory, the par- density” [5].
ticle content of the broken phase is usually represented as a After this preliminary introduction, I shall point out that
single massive field, thésingled Higgs boson. Although the apparent contradiction between the conventional picture
there is no rigorous prodf3], the Fourier transform of the ©Of symmetry breaking and the physical expectation of a su-
connected Euclidean propagator is assumed to tend to a finigerfluid medium with density fluctuations has a precise
limit, say G(p) — 1/M?2 when the four-momentupp—0, and ~ counterpart in a basic nonperturbative amblgiuty for !he
the mass squarel? is related to the quadratic shape of a — 0 limit of the inverse connected propaga®r “(p). This
semiclassical effective potentidlyc(4) (NC=nonconvex |sial two-valued fun_ctlon whep—0 and mc!udes t_he case
at its nontrivial absolute minima, say=*v. Equivalently, C (P=0)=0, as in a gapless theory. This ambiguity, by
the energy spectrum of the broken phase should tend to I5€lf, does not prove that the energy spectrum is actually

~ ~c4|p| for p—0, nor does it provide the value of. How-
nonzero valueg(p) —Mp, whenp—0 so that the nonzero ever, it represents a purely quantum-field theoretical argu-

quantity E(0)=M;, gives rise to an exponential decay ment in favor of the existence of a gapless branch and of the
~e EO)T of the connected Euclidean propagator. intuitive picture of the broken phase as a real physical me-
Clearly, by considering the broken phase as a “condendium with density fluctuations.
Before reporting any calculation, let us first try to under-
stand why the vacuum of a “pro forma” Lorentz-invariant
*Electronic address: consoli@ct.infn.it quantum field theory may be such a kind of medium. This
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guestion may have several answers. For instance, a funda- | shall now follow, in Secs. Il and I, two different meth-

mental phenomenon such as the macroscopic occupation ofls to display the ambiguity in the zero-momentum limit of

the same quantum statsay p=0 in some framgmay rep- the connected propagator in the broken phase. In Sec. IV |

resent the operative construction of a “quantum aether’shall present my conclusions and a brief discussion of the

[6,7]. This would be quite distinct from the aether of classi- Most general consequences of my results.

cal physics whose constituents were assumed to follow defi-

nite space-time trajectories. However, it would also be dif-  II. THE FUNCTIONAL INTEGRATION OVER THE

ferent from the empty space-time of special relativity, BACKGROUND FIELD

assumed at the base of axiomatic quantum field theory to

deduce the exact Lorentz covariance of the energy spectrurg
In addition, one should take into account the approximate-S

nature of locality in cutoff-dependent quantum field theories.

In this picture, the elementary quanta are treated as “hard D (x)=p+h(x). (1)

spheres,” as for the molecules of ordinary matter. Thus the

notion of the vacuum as a “condensate” acquires an intuitivein order for Eq.(1) to be unambiguousp denotes the spatial

physical meaning. For the same reason, however, the Simpa/erage in a large four-volum@

idea that deviations from Lorentz covariance take place only

When discussing spontaneous symmetry breaking, the
tarting point is the separation of the scalar field into a con-
tant background and a shifted fluctuation field, namely

at the cutoff scale may be incorrect: nonperturbative vacuum 1 4

condensation may give rise to a hierarchy of scales such that ¢= ﬁf d™x®(x) @
the region of Lorentz covariance is sandwiched both by the

high- and low-energy regions. and the limitQ) —< has to be taken at the end.

In fact, in general, an ultraviolet cutoff induces vacuum- In this way, the full functional measure can be expressed
dependent reentrant violations of special relativity in theas
low-energy cornef8]. In the simplest possible case, these

extend over a small shell of momenta, $py< 5, where the +oo

o : . . | tawcor = [ Tdo[tanor- @
gy spectrurik(p) may deviate from a Lorentz covariant —w

form and be distorted into a sound-wave shape. However,

Lorentz covariance becomes an exact symmetry in the localnd the functional integration on the right-hand side of Eq.

limit. Therefore, for very large but finitd, one expects the (3) is over all quantum modes with four-momentyn 0.

scale s to be naturally infinitesimal in units of the energy  After integrating out all nonzero quantum modes, the gen-

scale associated with the Lorentz covariant part of the energyrating functional in the presence of a space-time constant

spectrum, saMy, . By introducing dimensionless quantities, sourceJ is given by

the requirement of asymptotic Lorentz covariance introduces

a tight infrared-ultraviolet connection since=é6/M,—0 +oo

when t=A/M,—o%. In this sense, formally,O(5/My) Z(J):f _deexg—Q(Vne(d)—Id)] (4)

vacuum-dependent corrections would be equivalent to

O(M_h /A) effects and these are always neglected when diS\NhereVNC(¢) denotes the usual nonconvéC) effective
cussing 9] how Lorentz covariance emerges at energy SCaleﬁotential obtained order by order in the loop expansion. Fi-

.tha;thare m(;JCh sgnaIrI]er tha? the f[“;;at\r’]mlet Cultt?]ﬁ' Trr:e[eforetna”y, by introducing the generating functional for connected
in the condensed phase of a cutoff theory, although Lorentgs oc<' ¢ inctionsu(J) through

covariance is formally recovered in the local limit, one

should expect infinitesimal deviations in an infinitesimal re- Z(J)
gion of momenta. Qwd)=In=—— (5)
In this context, one may ask what the word infinitesimal Z(0)

actually means in the physical world. For instance, by as- , )

suming A=10' GeV and M,=250 GeV, a scales ©On€can compute the field expectation value

=10"° eV, for whiche= §/M,,=4x 10"’ might well rep-

resent the physical realization of a formally infinitesimal (P(J):d_w (6)
quantity. If this were the right order of magnitude, the non- dJ

Lorentz covariant density fluctuations of the vacuum would

start to show up from wavelengths larger than a centimetefnd the zero-momentum propagator

up to infinity. These lengths are actually infinitely large as
compared to the Fermi scale but have, nevertheless, a physi-
cal meaning. At the same time, the associated long-range
interactions would have a strengéi~M2/A?= (10" %)
relative to the Fermi constant. Although small, this strengthin this framework, spontaneous symmetry breaking corre-
is nonvanishing and these interactions can play a physicaponds to nonzero values of E®) in the double limitJ—

role on macroscopic distances. +0 andQ— oo,

d2
Gy(p=0)= a9z (7)
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Now, by denoting+v the absolute minima o¥yc and  In this representation, taking the two limif—oc> andJ—
M2=V;(‘C its quadratic shape at these extrema, one usually=0 correspond to choose some path in the two-dimensional
assumes space X,y). The former gives triviallly—o. The latter, on

the other hand, is equivalent ¥1dy— *=0 since

lim lim ¢(J)==*v (8)
OQ—xJ—=*0 J X ( 8)
- = — 1
2
and oMY
1 with many alternative possibilities. If we require a nonzero
lim lim G;(p=0)= —>. 9) limit of ¢ this amounts to an asymptotic nonzero value.of
Q—0J—+0 h If this value is finite, say=x, we get asymptotically
In this case, the excitations in the broken phase would be ¢—v tanh(X,) (19

massive particlegthe conventional Higgs bosonsvhose
massM,, is determined by the positive curvature \6fc at ~ and
its absolute minima. However, at= *+v, besides the value

1/MZ, one also find$10] _ _)i _y
Gy(p=0) M2 cosH(x,) * (20
lim lim Gy(p=0)=+, (10
Q—)—+0 implying the existence of gapless modes for every nonzero

) ) value of ¢. On the other hand, ik— *c we obtain
a result that has no counterpart in perturbation theory.

Let us review how this result emerges from the saddle- o—*u. (21
point approximation, valid fof)—o. In this case, we get
5 In this caseG;(p=0) tend to 1W|ﬁ (to +) depending on
J° IncoshQJv) whethery diverges sloweffaste) than cosh(x).

w(J)= ZMﬁ * Q (1D The above results admit a simple geometrical interpreta-
tion in terms of the shape of the effective potentigt(¢) as
and defined from the Legendre transforthT) of w(J). After
obtainingJ as a function ofe from Eq. (12), the inverse
dw J zero-momentum propagator in a given backgrognd re-
YT a1 M_ﬁ+v tanh(2Jv), (12 |ated to the second-derivative of the Legendre-transformed
effective potential, namely
Gypoy=tw_ L o 13 ?
(p=0)= dJ? _W cosif(QJv) " 13 G;l(p=0)= E_d Vur (22)

de  de?
To determine the zero-momentum propagator in a given

backgrounde, we should now invertl as a function ofp  In this case, Eqs(19) and (20) require a vanishing result
from Eq. (12) and replace it in Eq(13). However, being from Eq.(22) when—v<¢<uv. This is precisely what hap-
interested in the limit)—0 it is easier to look for the pos- pens sinceV r becomes flat in the region enclosed by the

sible limiting behaviors of Eq(13). absolute minima of the nonconvex effective potential when
Since bothJ and) are dimensionful quantities, it is con- {—. This is the usual “Maxwell construction” where
venient to introduce dimensionless variables XLT(@):\gNC(iv)r for —vsg=<v, and Vi1(¢)=Vc(p)
or °>v”.
x=Q0Jv (14 Notice, however, that the limit of Eq22) for ¢— *v
cannot so simply be identified wiﬂbﬂﬁ. In fact, even within
and the “Maxwell construction,” this identification requires a
o~ 2ea2 strong additional assumption: the derivative in E2R) has
y=Quv°Mj 15  tobea left-(or right-) derivative depending on whether we

consider the poinp=—uv ( or ¢=+wv). Now, this is just a
prescription since derivatives depend on the chosen(path
less one deals with infinitely differentiable functigrend,
(16) differently from V¢, the Legendre transformed,; is not
an infinitely differentiable function in the presence of spon-
taneous symmetry breakindl].
Therefore, in general, Eq22) leads to multiple solutions
at ¢=xv. Namely, an exterior derivative for which
_ 17)  Gea(0)=M7 but also aG;,{(0)=0, as when approaching
the points+v from the internal region where the Legendre-

so that Eqs(12) and(13) become

¢=v

X+t H(x)
—+tanh(x
y

and

Yy
cosH(x)

1
Ga<p=0>=M—ﬁ[1+
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transformed potential becomes flat for—oc. These two dif-  Usually, one defines thé-field propagator from a Dyson

ferent alternatives correspond to the various lingitscc and ~ sum of 1P| graphs only, say

x— =+ in Eq. (17) such thaty/cosH(x) tends to zero or

infinity. G(p)|1p=D(p) (26)
We observe that the “Maxwell construction,” i.e., the re-

placementyc— V.7 as a genuine quantum effect, was alsowhere[D~*(0)=D"*(p=0)]

discovered in Ref[12]. Graphically, the resulting effective

2
potential becomes flatter and flatter between and +v 1 d VNC
when removing the infrared cutoff. Numerically, the ratio D (0)= d6? (27)
between left- and right- second derivatives at the absolute
minima of V¢ is found to diverge in the same linfit3]. This provides the conventional definition bf? through Eq.

| conclude this section with the remark that the singular, 27) at p=*v.
zero-momentum behavior | have pointed out does not de- |, this description one neglects the possible role of the

pend at any stage on the existence of a continuous symmetgy,o narticle reducible, zero-momentum tadpole graphs. The
of the classical potential. As such, there are no differencgs iBason is that their sum is proportional to the one-point func-
a spontaneously broked(N) theory. Beyond the approxi- i je. toJ(4) in Eq. (23) that vanishes by definition at
mation where the “Higgs condensate” is treated as a.purely = +y. However, the zero-momentum tadpole subgraphs
classical background, one has to perform one more integrayg attached to the other parts of the diagrams through zero-
tion over the zero-momenium mode of the condensed omentum propagators so that, in an all-order calculation,
field. Therefore all ambiguities in computing the iNVerseeir gverall contribution vanishes provided the full propaga-
propagator of thes field through Eq.(22) remain. In this o G(0) is nonsingular at the minima. In this respect, ne-
sense, the possibility of multiple values f&,(p=0) has  gjecting the tadpole graphs amounts to assuming the regular-

nothing to do with the number of field components. ity of G(0) at =+ which is certainly true in a finite-
order expansion. In an intuitive analogy, whef— *uv,
Ill. RESUMMATION OF THE TADPOLE GRAPHS J(¢) represents an infinitesimal driving force due to the me-

The possibility of a divergent zero-four-momentum dium. Thus it will not produce any observable effect unless

propagator in the broken phase, as illustrated in the previou&'€ mass of a body vanishes in the same limit. The compli-

section, is nonperturbative and independent of any diagranf:2tion in our case is that the mass of our “body,” the inverse

matic analysis. As an additional evidence for the subtle naProPagatoG *(0), depends on the medium and on the driv-
ture of thep— 0 limit of G(p), | shall attempt, however, to N9 force itsel. .
isolate the possible origin of this effect in the one-particle For this reason, | shall ry to control th_e_fuII propagatqr n
reducible zero-momentum tadpole graphs. These enter tfeSmMall region of¢ values around the minima by including
usual diagrammatic expansion in the presence of a constafit 2€r0-momentum tadpole graphs, and finally take the limit
background field and can be considered a manifestation

gp— *v. | observe that the problem of tadpole graphs was
the quantum nature of the scalar condensate. The expansiGAnsidered in Refl14] where the emphasis was mainly to

we shall consider is defined in terms of the one-particle irrelind an efficient way to rearrange the perturbative expansion.

ducible (1Pl) graphs generated by the nonconvex effectiveliere | sha_lll attempt a nonperturbative aII—o_rder resummation
potentialVy(¢) considered before. In this respect, the tad-Of the various effects to check the regularity ®(0) for ¢
pole graphs are fully nonperturbative and have to be re—> *U- ] i
summed to all orders. The genuine 1P interaction graphs, on | Shall approach the problemin two steps. In afirst step, |
the other hand, represent perturbative effects and can be cop?@ll consider the contributions to the propagator by includ-
sidered to any desired order in the loop expansion, withoufd &ll possible insertions of zero-momentum lines in the

changing qualitatively the conclusions. In the following, af- internal part of the graphs, i.e., inside 1Pl vertices. At this
ter some preliminaries, we shall address the zero-momentuff{29e; however, the external zero-momentum propagators to

propagator at the absolute minima\é§c(¢). the sources maintain their starting valD¢0) atJ=0. This
Let us start by defining approximation gives rise to an auxiliary inverse propagator

given by
dVNC 5 . .
dg I P=T(4) @3 Gag(P)=DX(p)—¢2l'5(p.0.~ p)
2
and¢=*v+#0 are the solutions of + _(q;zl) [',(0,0p,—p)
2 =
T(¢9)=0 (24) (02)?
with — 3y [s(000p,—p)+---, (28
2 h
d Vr:c 0 5 where
de” |4, z=T(4*)D(0) (29)
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represents the basic one-tadpole insertion. EquéfiBncan  in such a way that the formal power series for the exact
be easily checked diagrammatically starting from the trea@nverse zero-momentum propagator can be expressed as
approximation where

d?v
1\ G H(0)=—-"F (36)
2 4 d 2
Viree™ §r¢ +E¢ ) (30) ¢ d=d(1-17)
ith
D Yp)=p?+r+ A9? (31 "
= r+-—, ~

PP =T(42)6(0), 37

andl'3(p,0,—p)=A¢, I'4(0,0p,—p)=\ (with all 'y van-  je., as in Eq(33) with the replacemenz— 7. As a result,
ishing forn>4). _ after including tadpole graphs to all orders, one finds mul-
Now, by using the relation of the zero-momentum 1Pltiple solutions for the zero-four-momentum propagator that

vertices with the effective potential at an arbitrapy differ from Eq. (27) even wheng— *uv.
4y The situation is similar to solving the following equation:
_aVine
I'a(0.0,....0= do" (32 fH(x)=1+x2—g?x?f(x). (39

we can express the auxiliary zero-four-momentum inverséor x—0 there are two distinct limiting behavior&) f(x)
propagator of Eq(28) as —1 and(b) f(x)~ 1/g?x>— + . However, only the former
solution is recovered in a finite number of iterations from

d?v
NC (33)

Gail0)=—— : 1
A" 1 s1-2) o= 1752 (39
For ¢—*v, this partial resummation of tadpole graphsfor g?=0. In the case oh®* theory, deriving the gapless
gives a vanishing contribution to the inverse propagator senode from tadpole resummation corresponds to(theype
thatG,,5(0)— MZ as determined from the quadratic shape ofof behavior.

V¢ at its absolute minima. However, for arbitragy even In this sense, the resummation in E§6) is only formal

this partial resummation produces nonperturbative modificasince, with this procedure, the functi&w) is always de-
tions of the zero-momentum propagator. For instance, as onigrmined as a finite-order polynomial up to higher orders in
can checf:kl with the tree-level potential, there are valueg of J, as it happens in perturbation theory. However, this is not
whereD ™ 7(0) is positive butG,,(0) is negative. so important since the possibility of a singular zero-four-
The second step consists of including now all possiblemomentum propagator ab=+v does not depend on the
tadpole corrections on each external zero-momentum line. gy, of I(4) but only on its vanishing ath=*v. As we
fact, in a diagrammatic expansion, a single external zerogpq|| see, this vanishing reflects simple geometrical proper-
momentum leg gives rise to a new infinite hierarchy ofiag of the nonconvex effective potentidl,c .
graphs, each producing another infinite number of graphs 1o ngerstand this point, we first observe that tradition-
and so on. Despite the apparent complexity of the task, thgyy for 4+, tadpole resummation has been considered
final outcome of this computation can be cast in a rathe{, e jrrelevant. Namely, in the literature the inverse propa-
simple form, at least on a formal ground. The point is thaty i, is always defined from E@27) that neglects the tad-
this infinite class of graphs can be included into a redefiniyge graphs altogether. As anticipated in the Introduction,
t'o? of the two basic t:]xpansmn pzfaramgters entirlng the tadpis js the main motivation to relate the physical Higgs boson
pole resummation: the source functichand the zero- .16 the quadratic shape\jc. Therefore, after includ-
momentum propaggth(O). . ing the tadpole graphs, EQR7) should also be contained in
In fact, to any finite order i, | can rearrange the expan- Eq. (36), at least as a particular solution whe@(0)
sion for the zero-momentum propagatall I",, are evaluated —D(0). Tothis end, however, wheh—0 and¢— * v, also

at zero external momenta . ~ . . -
0 the modified sourcéd has to vanish. The alternative possibil-

33712 ity, i.e., that the fullJ remains nonzero whesp— *v, would
G(0)=D(0)+JI'3;D%0) + D>(0) produce a drastic result. In fact, after tadpole resummation,
an inverse propagator as in E@7) would never be recov-
r,J2 4 3 ered from Eq(36), even as a particular solution. This would
—— D0)+0(F) (34 also contradict the indications of the previous section where
we have found evidence for both regular and singular values
in terms of a modified source of the zero-four-momentum propagator¢gt +v.
, Adopting the natural point of view that the modified
~ o T B = 2 sourceJ (and soT) vanishes wherp— +v, Eq. (36) pro-
J=J-—-D (0)+0())=¢T(¢%) (35 vides a regular solutio®.5(0)=D~*(0) for which
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lim 7=7=0 (40)
Pp—*v

and a singular solutioG;,}g(O)=O such that
lim 7=7#0. (41)
d—=*v

As an example, let us consider the situatiolVet=Vee iN

PHYSICAL REVIEW D 65 105017

energies when the three-momentyw-0: a massive one,
with E,(p)—M,, and a gapless one, wifh,(p)—0 that,a
priori, can both propagatéand interfer¢ in the broken-
symmetry phase. In analogy wiftHe, | would conclude that
the latter dominates the exponential decag (P of the
connected Euclidean correlator for~0 so that the massive
excitation becomes unphysical in the infrared region. There-
fore, differently from the simplest perturbative indications, in

Eqg. (30) which is equivalent to re-summing tree-level tad- a (one-componentspontaneously brokend* theory there

pole graphs to all orders.e., no loop diagranmjsin this case
the regular solution igs;e;(O):mﬁ/s, while the singular
solution is

. 1 Av2
lim Ggpd0)=—

- - 2
=27+ =
P2n? 2

3=O

(42

which implies limiting valuesr=1+1/y/3.

In general, beyond the tree-approximation, finding th

singular squtiorG;,fg(O)=0 at ¢=*v is equivalent to de-
termine that value ofp?=v2(1—7)? where d?Vyc/d¢?

would be no energy-gap associated with the “Higgs mass”
My, as in a genuine massive single-particle theory where the
relation

E.(p)=p?+ M2

remains true fop— 0. Rather, the far-infrared region would
be dominated by gap-less collective excitations whose typi-
ecal energy spectrum fqgr—0,

(44)

Ey(p)=cp| (45)

=0. For instance, in the case of the Coleman-Weinberg efdepends on an unknown parametgr This, according to the

fective potential

2
|n¢__
U2

2 14
K¢( 43

1
Vne(9)= 35672 ﬁ
the required values are=1+e 3 |n principle, such solu-
tions exist in any approximation ¢ due to the very gen-

arguments given in the Introduction, would represent the
“sound velocity” for the density fluctuations of the super-
fluid scalar condensate.

By their very nature, these density fluctuations represent
non-Lorentz covariant effects and, following the discussion
given in the Introduction, should be restricted to an infini-
tesimal region of momentp| <8 with §/M,=0O(My/A),

eral properties of the shape of a nonconvex effective potenA being the ultraviolet cutoff of the theory.

tial.

IV. CONCLUSIONS AND OUTLOOK

As discussed in the Introduction, the strength of the asso-
ciated long-range interactions is also expected to be infini-
tesimal. In this framework, one may consider possible viable
phenomenological frameworks, of the type presented in Ref.

In principle, a medium can support different types of ex-[18], where the massive branch dominates at higher mo-
citations. For instance, the energy spectrum of superfluignenta as it would happen in a superfluid system where
“He is considered to arise from the combined effect of two= =M. The superfluid analogy is further supported by
types of excitations, phonons and rotons, whose separate efire observationi1] that, as for the interatomiéHe-*He po-
ergy spectra “match,” giving rise to a complicated patterntential, the low-energy limit of cutofhd®* is a theory of
[15]. In this sense, there is a unique spectrum but phononguanta with a short-range repulsive core and a long-range
and rotons can be considered different “particles” reflectingattractive tail. The latter originates from ultraviolet-finite

different aspects of the superfluid helium wave func{ibh
The essential point is that, for superfluftie, the exis-

parts of higher loop graphgl] that give rise to a
—\2e~2M7/r3 attraction,m being the mass of the elementary

tence of two types of excitations was first deduced theoreticondensing quanta. Differently from the usual ultraviolet di-

cally by Landau on the basis of very general argumghié

vergences, this finite part cannot be reabsorbed into a stan-

According to this original idea, there are phonons with en-dard redefinition of the tree-level, repulsivex 8C)(r) con-

ergy Ep(p)=vslp| and rotons with energyE(p)=A

tact potential and is essential for a physical description of the

+p®/2p. Only later, it was experimentally discovered that condensation process when approaching the phase transition

there is a single energy spectri(p). This is made up by a

limit m—0 where the symmetric vacuum &®)=0 be-

continuous matching of these two different parts and iscomes unstable.

dominated by phonons fqs—0 where the rotons become

unphysical.

Of course, one may object that | have not provided a
calculation of the energy spectrum. Admittedly, this is a

Let us now consider our analysis of the zero-momentunweak point of my analysis that just concentrates on the zero-
propagator. Its two-valued nature may be the indication thainomentum propagator. At the same time, it will not be so
something similar happens in the broken phase, in agreemesgasy to improve on it. In fact, for a full calculation of the
with the intuitive picture of the Higgs vacuum as a superfluidenergy spectrum, one should improve on the usual covariant

system. In fact, the existence of bothGg *(0)=MZ2 and a

generalization of the Bogolubov method used in Réf.

Ggl(O)EO implies that there would be two possible types This approximation, where the creation and annihilation op-
of excitations with the same quantum numbers but differeneratorsa,_, agzo for the elementary quanta in the=0
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mode are simply replaced by teenumberyN, is equivalent These are needed for the dynamical equilibrium in the pres-
to treat the scalar condensate as a purely classical backnce of interactions and extend over a typical region of mo-
ground field ¢ entering the quadratic Hamiltonian for the menta, say|p|< 4, such thate= §/M;—0 whena—0. In
shifted fluctuation fielch(x). In this case, the energy spec- thjs limit, in fact, the Bogolubov spectrum‘p2+ Mh2 applies
trum is justyp®+Mj, and, therefore, the existence of a gap-to the whole range of momenta producing an exact Lorentz-
less excitation branch fop—0 could not be discovered covariant theory(with the possible exception of the zero-
there. measure sgbh=0).

However, in Ref[1] it was noticed that the Bogolubov  Therefore, taking into account my discussion in the Intro-
method does not allow for a straightforward extrapolationduction, | conclude that the limit of vanishing interactions,
down top=0. This is due to an ambiguity relating the origi- ,_,o has to correspond to the continuum lirhit A/M,
nal creation and annihilation operators to their Bogolubov-_, o, of cutoff A4 theory, i.e., “triviality,” in full agreement
transformed counterpart in the limit—0. Requiring conti- ity all rigorous result3]. However, my analysis shows
nuity of the massive energy spectrum down i&-0 is  that, in the broken-symmetry phase, the approach to the con-
equivalent to replacing,-o anda,Lo with \/N. This choice  tinyum theory is more subtle than what is generally believed.
is the second-quantization analog of “freezingg==v  |n fact, usually, one just considers the deviations from “trivi-
without performing the functional integration in Sec. Il or ality” to be perturbative corrections to a free massive theory,
without first resumming the zero-momentum tadpole graphsyithout any qualitative change f@—0.
in Sec. IIl. In this case, the only solution & *(0)=M§. | end up by mentioning that the existence of gapless

In this sense, one should first include a genuine operatanodes in the broken symmetry phase finds some support in
part for a,_o [19], say a,_o= JIN—£ with @):a and the results of numerical simulations. These have been per-
|a|?><N. This introduces new contributions as the three-formed [20] in the low-temperature phase of a one-

linear couplings ala,Z, ..., the four-linear couplings component 4D Ising model. The lattice data for the exponen-
ata 317 ho pe peffect hould be oreliminarly com tial decay of the connected correlator show that, by simply
pdpé &, - .., Whos S shou prefiminarty ~increasing the lattice size, one finds smaller and smaller val-

puted in analogy with the zero-momentum tadpole graphs ~ .
considered in Sec lll. The new contributions produce correcyesl' of the energy gaR(p=0). Namely, Py using thE same
tions to the standard Bogolubov massive spectrum computé@ttice parameters that on a 2@attice give[21,22 E(0)

in Ref.[1]. B =0.3912+0.0012, the results of Ref[20] were E(0)
Now, the stationarity value ofr, say a=a, has to be =0.3826+0.0041 on a 2% lattice, E(0)=0.3415+0.0085
determined after minimizing the energy density and does nodn a 32, lattice andE(0)=0.303+0.026 on a 40 lattice.

necessarily correspond w@=0. This can easily be under-  However, in Ref.[20] the extraction of the energy-gap
stood by noticing that, after minimization, the number ofWas obtained from a fit to a single exponentiaé~E©T for

particles in the condensate is all time-slices. Although the quality of the fit was quite good,
+ N — — strictly speaking, due to the contamination from higher ex-
<ap=°ap=°>_ N=2 Re@) {N+0(a?). (46 cited states, the energy-gap should be obtained from the ex-

Thereforea describes dynamical rearrangements of the totaPOnential decay for asymptotit: In this case, by restricting

number of particles between the condensate and the statls [arge T only, a good signal-to-noise ratio requires very
with p#0. By dynamical, we mean that a nonzerechanges high statisticgsay 10 mil of sweepsso that on large 32and

the fraction of particles in the condensate and that this modi30" lattices, one has to wait for very long running times. For

fication is not an overall change ®f. The latter does not this reason, the numerical evidence from lattice simulations,
depend on the occurrence of Bose condensation but concerfii?0ugh promising, is still inconclusive and suggests the
the infinite volume limit of any system with a given particle N€€d for additional efforts by other groups.
density.

With an intuitive term, a nonzera produces a depletion
of the condensate, i.e., additional contributions to the ground | thank J. Polonyi and P. M. Stevenson for useful discus-
state wave function asp(—p), (pP1,P2,—P1—P2),.... Sions.
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