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We study scalar potentialé of gaugedN=8,4,2 supergravities id=4. Extrema of these potentials may
correspond to de Sitter, anti—de Sitter and Minkowski vacua. We find that all known de Sitter extrema
correspond to unstable maximum or saddle points with negative curyat(jre 2V for the fields canonically
normalized at the extremum. This is equivalent to the reldticii= |R|/2=6H?2 for the tachyonic mass, the
curvature scalaR, and the Hubble constaht This prevents the use of de Sitter extrema for slow-roll inflation
in the early universe, which would requife”’|<V. Moreover, in all models that we are able to analyze the
potential is unbounded from below. On the other hand, barring the question of how realistic such models could
be, one can use them for the description of the accelerated expansion of the universe at the present epoch. This
is related to the novel possibility of the fast-roll inflation witf’|=V. We also display some potentials that
have flat directions with a vanishing cosmological constant, and discuss their possible cosmological implica-
tions.
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[. INTRODUCTION solutions in any 4 theory obtained by compactification of
M or string theory[11-15. In order to address this impor-
Recent cosmological observations based on the study dént issue one may try to find de Sitter solutions in extended
supernoval] and of the anisotropy of the cosmic microwave supergravity, which has a more direct relation to M or string
background radiatiof2] suggest that soon after the big bang theory due to the increased number of supersymmetries.
our universe experienced a stage of very rapid accelerated This possibility was recently discussed in the context of
expansion(inflation) [3—6]. Moreover, observations indicate 4d N=2 supersymmetry ifi16], where a hybrid hypersym-
that a few billion years after the big bang the universe enMmetric model of inflation or acceleration was proposed, and
tered a second stage of accelerated expansion. The rate Bf[17], where the string theory version of this model was
acceleration now is many orders of magnitude smaller thaR"€Sented. , _ o _
during the stage of inflation in the early universe. For a dis- !N this paper we will study de Sitter solutions in various

cussion of the recent cosmological observations and theifers'ofn?_ (()jf_N:§,4§ttgaug?dt_supgrgraw:]y.ﬂ;l' he basic probt-
theoretical interpretation see, e[g). em of finding de Sitter solutions in such theories seems to

Most of the inflationary models are based on the assum originate from the compactification of M or string theory on

. N .~ .Tinternal space with the finite volunj&4,15. However, some
tion that the energy-momentum tensor during inflation is _ . .
dominated by the potential energy density of a scalar field4d N=8,4,2 gauged supergravity theories are known to have
) . . . tle Sitter solutions with spontaneous breaking of supersym-
TMV”fgWV(q&) with V>O _[8'9]' Th.'s means, in particular, metry[18,20-22. These versions ofdlsupergravity are re-
that $*/2<V(¢). The limiting casep=0 corresponds to de |ated to 1H supergravity with a noncompact internatl 7
Sitter space with a positive cosmological constant. The CUrspace[23]. M theory has some solutions with warped prod-
rent cosmological acceleration can be explained either by gcts of de Sitter space with hyperbolic spaces and general-
positive vacuum energy (cosmological constanior by a jzed cylinders, dgx H P9. For conceptual problems asso-
SlOWIy I’Olling scalar field in a near de Sitter background with Ciated W|th noncompact interna| Space and attempts to
$?12<V(¢) (quintessenoe[10]. overcome them we refer {d.4] and references therein.

Much of the recent progress in the theory of all funda- Here we will take a simple attitude to potentials of gauged
mental interactions is related to supersymmetry. Therefore bupergravities: we will consider onlyd4theories where all
would be very desirable to find de Sitter or near—de Sittekinetic terms have correct sign. Therefore these theories
solutions in supersymmetric theories based on M or strindrom the 4d perspective do not have any conceptual prob-
theory. One can find de Sitter solutions in many theoriedems whatsoever. We will study the properties of their poten-
based onN=1 supergravity in 4. However, M or string tials with regards to cosmology. If we find any potentials
theories in 11/10 dimensions have 32 supersymmetries, cointeresting for cosmology, we may come back to the prob-
responding toN=8 supersymmetry id=4. Such theories lems of accommodating thesel 4upergravity models in the
are only indirectly related to @ N=1 supergravity where framework of M theory with noncompact internal space.
most of these supersymmetries are broken. Therefore it is not The physical motivation for our study of potentials of
clear whether the de Sitter solutions Wf=1 supergravity supergravity originates in cosmology. A standatdw-roll
can be obtained from a more fundamental theory. Indeed, th@flation resulting in manye-foldings and scale independence
arguments are known that it may be difficult to find de Sitterof the spectrum will be reviewed. A new conceptfaét-roll
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inflation will be proposed. It is partially motivated by the d=dt?—a2(t)dx2 (5)
properties of supergravity potentials and also by the present
epoch acceleration with a small numberesfoldings. Closed Friedmann universe with=1 can be represented in

We start with recalling some well known facts about thethe form
relation between de Sitter space and expanding universe in

Sec. Il. Section Ill explains a standastbw-roll inflationand ds?=dt?—a?(t)[dy?+sir(x)(d 6>+ sir? 6d¢?)],
introduces a new concept offast-roll inflation This defines
the properties of the potentials interesting for cosmology. O=x<2w. (6)

In Secs. IV and V we study the potentials N=8 and
N=4,2 gauged supergravities. In Sec. VI we discuss someg&inally, an open Friedmann universe wik+—1 can be
potentials of N=8 supergravity which have interesting represented in the form
Minkowski vacua with flat directions. We discuss the main s _— . 5
results and perspectives in the Conclusions. ds’=dt?—a*(t)[dx?+sint(x)(d6?+sir* 6d$?)],

Il. de SITTER VERSUS ANTI —de SITTER SPACE O<x=e. (7)
Anti—de Sitter space was at the full attention of the high-The relation between the metric of expanding universe and

energy physics community for the past 10 years from thele Sitter space is the fol!owmg. First, one can consider the

time when it was realized that near horizon the geometry ofyperboloid(3) in a coordinate system which spans the half

stringy Bogomol'nyi-Prasad-Sommer figlBPS black holes ~ 0f the hyperboloid withX,+X,>0. The choice

and branes tends to anti—de Sitter space. It was known also 1

f_or avery Ion_g time .that th.e_ poten.tials of .gauged supergravi- Xo=H"sinhHt+ “HeHtx2,

ties have anti—de Sitter critical points which are at the top of

the inverted potentials and correspond to the maximum of

these potentials and the tachyons are present. Still when the R 1 _ .
negative (mas@)is limited in a certain way corresponding to ~ Xa=H “coshHt—ZHe™,  Xi=e"x, =123
the Breitenlohner-Freedman bound, the anti—de Sitter solu-
tion is stable. For AdSthe bound is leads to the metric

9 ds?=dt?>—e’"dx. ®)

m?= — ZHZ, 1)

This is a FRW spatially flat metric with the exponential scale
whereH ~ ! defines the radius of the throat of the hyperboloidfactora(t) = ™. We may choose the coordinates which span

in the flat 5 space the entire hyperboloid

X2—X2—X5— X2+ X3=H 2 2) Xo=H 1sinhHt, X;=H !coshHt cosy,
The hyperboloid in the & flat space defining de Sitter space Xo= H~1coshHt sin y cosé,
ds, is

—H-1 i i
X%—Xf—X%—X%—Xﬁz—H‘? 3 X3=H"*coshHt siny sin 6 cos¢,
—y-1 i i i
The difference between the two hyperboloids is that the X4=H""costHtsiny sinfsin,

right-hand side has an opposite sign. Besides, the AdS hyghich results in the metric
perboloid has two “time directions” whereas dS one has
only one “time direction.” The symmetry group for the AdS ds?=dt?—H ~2 coslif Ht
g)g(ir,ki())fmd isSO(3,2) whereas for the dS hyperboloid it is [y SiP () (A0 + S 6dg)],  0=y=27.

To explain shortly the relation of de Sitter space to cos- 9)
mology we will first present here the Friedmann-Robertson-
Walker (FRW) metric describing the expanding Friedmann This is a FRW metric of the closed Friedmann universe with
universe: the exponential scale facta(t)=H lcoshHt. An open
Friedmann universe appears from de Sitter space if the coor-

2 . .
dinate system is chosen as follows:

dr
d52=dt2—a2(t) m+r2(d02+sin2 0d¢2) ) (4)
Xo=H1sinhHt coshy, X;=H !coshHt,
wherek==*=1,0 for a closed, open or flat expanding Fried-

mann universe, respectively. Haeagt) is the time-dependent X,=H"1sinhHt sinhy cosé,
scale factor. For a spatially flat universe with 0 the metric
can be represented in a form X3=H"!sinhHt sinhy sinf cose,
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X,=H"1sinhHt sinhy sin @ sin ¢. One possibility is to study models where the potential
V(@) has a very flat maximum, as in the new inflation sce-
These coordinates do not cover the entire hyperboloid. Thaario[4]. Consider, for example, the model whéfés) has

metric is a maximum at$=0, such that in the vicinity of the maxi-
mum
ds?=dt?>—H 2 siniPHt
m2¢)2
X [dy2+siniP(x)(d6?+sir? 6d¢p?)], 0<y=ce. V(¢)=Vo— — (15)
(10)

Suppose that initially the fieldb= ¢, was homogeneous,
small, and had small velocity, so that?$%/2,$%/2<V,.
Then the Hubble constantH?=p/3=3(Vy—m2¢?/2

+ ¢212) practically did not change until the field rolled down
to the point Withm2¢§~vo. Therefore the universe contin-
ues expanding ag't until the field ¢ rolls from ¢, to

de Sitter space has a direct relation to inflationary cosmol-
ogy [3-6,8,9, which we will briefly describe now. Consider b1~ Vo/m. (16)

a theory of a scalar field with potentialV(¢). The Fried- . —_ .
mann equation for the scale factor of the universe looks at%-gr? motion of a homogeneous fiellis described by equa-
follows:

This is a FRW metric of the open Friedmann universe with
the exponential scale factal(t)=H ~!sinhHt.

Ill. de SITTER SPACE, SLOW-ROLL INFLATION AND
FAST-ROLL INFLATION

a

2 K p(e) d+3Hp=—V'=m?¢. (17)
a 2

=t 11
a 3 1y Now let us assume thav”|=|m?|<H?=V/3. In this case

_ . one can show that the field moves very slowly, so that one

n .un|ts Mp=1. Hergkz +10 for a clpsed, open or.ﬂat can neglect) as compared to B¢, and the growing solu-

universe correspondinglyi(¢) =V(¢) + ¢*12+(di$)*12 IS tion for the field ¢ is given by = o exp(ret/3H). This is

the energy density of the scalar field. _ the standard slow-roll solution for the scalar field during in-
Let us assume first tha( ) =V=const-0, and the field  fjation. The slow-roll regime continues at least until the field

¢ is constant and homogeneouys= 9,¢=0. Then rolls down belowe, i.e., during the time
\ 2
a k VvV 3H ¢,
bt o= At= —log—. 18
7 t2=3 (12) s g—O (18)

The solutions of this equation describe de Sitter space withThis leads to inflation by a factor of

- ! HAt~<ﬁ> 3H2/m2~(ﬂ
H= \[3 : (13 e 4o 4o

Note that at very large times— all 3 types of de Sitter Thus one can obtain an exponentially large degree of infla-
metric for the flat, closed and open universe lead to the samigon for
exponential scale factor

v

(19

[V"|<|V|, (20
et coshHt—e"!, sinhHt—e"t. (14

which is one of the two well-known inflationary slow-roll

Therefore we will concentrate on the simplest case of the flagonditions: »=|V"|/|V|<1 and e=3(V'/V)?<1 [9]. The
universe witha(t)=a(0)e™. Flatness of the universe is a last condition is automatically satisfied at the top of the ef-
standard prediction of most of the inflationary models, wherédective potential.
typically the termk/a? can be neglected as compared with ~ The slow-roll conditions serve two purposes: They make
pl3 after inflation[3—6,8,9. This means that inflationary the total expansion of the universe during the stage of infla-
theory predicts that our universe at present cannot be in thigon very large,e"2t~ (¢, /¢o) V'V, and they ensure that
anti—de Sitter regime, because Hl) does not have any the spectrum of adiabatic density perturbations produced
solutions forp<0 in the flat universe. during inflation is almost scale-independent. These density

de Sitter space can describe late stages of the evolution plerturbations are produced due to quantum effects during
our universe if the universe has nonvanishing vacuum energinflation [25]; they are playing a critical role in the subse-
VleflzoMg. However, in order to use de Sitter—like quent process of formation of the large-scale structure of the
stages for a description of inflation in the early universe oneuniverse[8,9]. The deviation from scale independer{flat-
should find how de Sitter stage ends and the usual hot Friedes$ of the spectrum is characterized by the fadtor 1|
mann universe emerges. =|2(JV"|/|V])—3(V'/V)?| [9]. Recent observations of an-
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isotropy of the cosmic microwave background radiation sug-/|V"|~ JV). This is the regime that we will often encounter

gest thagn—1|=<0.1[2], which implies that in our investigation of extrema of the potentials =8
gauged supergravity.
|V"|=<0.05v (21 First of all, let us note that the initial value of the fieftl

can be quite small. Formally, one may hagg=0. In this
if the perturbations that we observe were produced duringase the factop, / ¢ in Eq. (25) can be indefinitely large. In
inflation when the fieldp was near the top of the potential. reality, ¢, in this equation cannot be taken much smaller
The slow-roll condition|V”|<V implies that|m?/<V,,  than the level of quantum fluctuations with momektam,
and, consequently, since such fluctuations also experience exponential growth,
even in the absence of a homogeneous figld 5o (t)

¢1>1 (22 ~ 8¢ (0)eV™ KT Atypical initial amplitude of all quantum
) o o o fluctuations with k<m participating in the exponential
in Planck units(i.e. ¢;>M_). This is very similar to the growth of the field¢ can be estimated byé~Cm, where
standard requirement that appears in the simplest models gf_ 0(10) [28]. A typical time it takes for this field to grow
chaotic inflation withV ()~ ¢" [5,8]. To avoid this require- up to ¢, is given by[28]
ment and still have slow-roll inflation one would need to

make the potential very flat at the top, and very curved near B Co,
the minimum of the potential, as in the original version of At~m 1|09?- (26)
the new inflation scenarip4], or as in the hybrid inflation
scenario[6]. This leads to inflation by a factor of
One of the results of our paper is that the slow-roll con-
dition V"<V is not satisfied near any of the extrema of the uar | 1061 H/m
potentials withvV>0 in N=8 gauged supergravity that have e~ ?) . (27)

been studied in the literature. As we will show, in all of the

models ofN=8 gauged supergravity studied so far one has Now that we have studied two limiting cases, let us study
V"=2V. Thus, in all known cases these models do not Supa more genera| regime wheme and H can be of the same
port slow-roll inflation near the extrema of the correspondingorder. To study this problem one should look for solutions of

potentials. Eq. (17) in the form ¢= ¢oe'“". This yields
Is it possible to have &st-roll inflation with |V”|=|m?|
=H?=V/3? In our investigation of this question we have [3H 9H*
found, much to our own surprise, that the answer to this w=1 Ti T+m . (28)

question is positive.

For simplicity we will consider first the limiting case The solution with the minus sign corresponds to the expo-
|m?|>H?2. In this case one can neglect the terid@ in the  nentially growing solution
equation for the fieldp. Then the growing solution becomes

b= po exd (Ht- F(m?/H?))], (29)
= ¢poe™. 23
$=doe 3 where
The duration of rolling fromg, to ¢4 is given by \/W 3
2142\ — o
b1 F(ms/H*)= 4+H2 5 (30)
At=m"tlog—. (24)
0

This immediately gives us the general result for the total

. ) , . expansion of the universe during inflation near the maximum
Until the field rolls down tog, the energy density remains ¢ ine potential:
1/F
eHAt~( ¢1) . (31)

dominated by/,. This leads to inflation by a factor of
%o

H/m
eH“~<ﬁ> : (25)
®o

One can easily check that this result coincides with our pre-
Usually one does not expect the rathq/ ¢, to be exponen- viously obtained results in the limiting cases>H andm
tially large, and therefore one could think that fa¥m<1 <H.
the duration of inflation of this kind must be rather insignifi- ~ As an example, consider first the potentials witkH. In
cant. Also, no long-wavelength perturbations of metric arethis case one has(1)=0.3. In the theories wittm~H one
generated in the regime>H by the standard inflationary has¢;~M,=1, so for¢,~ 10m~1 (i.e., for the initial value
mechanism. That is why the possibility of a fast-roll inflation of the field provided by quantum fluctuatiof@8]) one has
with m=H has not been thoroughly studied in the literature. 23

Meanwhile fast-roll inflation can be quite interesting, at eHAtN(loM p) '

least for a marginally fast-rolling regime witm~H (i.e., m '

(32
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Of course, adiabatic density perturbations are not pro-

To be more specific, consider the possibility that suchduced during the fast-roll inflation. On the other hand, unless
models can be responsible for the present stage of acceldahis stage of inflation is too prolonged, it does not erase

ated expansion of the universe with the Hubble constant
~10"%M,. Then inflation in an unstable state close to the

density perturbations produced by a possible earlier stage of
slow-roll inflation. Moreover, such inflation may induce per-

maximum of the potential in such a theory can lead to exturbations in other scalar fields which may have mass

pansion of the universe by a factor that can be as large as

eHALL (10P1)33 (P00 o460 (33)

<H during the fast-roll inflation. Such perturbations lead to
isocurvature perturbations of metric, which are disfavored by
observations. However, under certain conditions such pertur-
bations can be converted to the usual adiabatic perturbations

This is more than sufficient to explain the observed singlg2g.
efolding of accelerated expansion of the universe at the More importantly, the stage of the fast-roll inflation may

present epoch.
Meanwhile if one takesn~10° GeV~10 M, which

help us to solve the moduli problem and the gravitino prob-
lem, in the same way as thermal inflatif®7]. In order to

corresponds to the electroweak scale, one can obtain fast-ralplve the moduli problem one would need to have inflation

inflation by a factor of

eH At__ ( 1017)3.3~ 1(#6,_\, 6130. (34)

Efficiency of fast-roll inflation rapidly decreases once one
considers the regime withl<m. An interesting example is
provided by gaugedN=8 supergravity, where, as we will
see later|V”|=2V, i.e.,m?*=6H?2. In terms of our potential
V(¢)=Vo—m?¢?/2 this implies that the pointp;, which
corresponds t&/( ;) =Vo/2, is given byg,;=1/\/2. In di-
mensional units this is equivalent to havingb;
~1.5x 10" GeV. In this model one haB(m?/H?)=F(6)
=1.37, and ¥ =0.73. Then, form=6H~2x10 M,
one finds

eHAt,\, (5>< 1(ﬁ0)0'73~ 1044,\, elOO_ (35)

Thus, fast-roll inflation infN=8 gauged supergravity may be
responsible for up to 108-folds of exponential expansion of
the universe with the Hubble constant similar to its presen
valueH~10"%M,,.

On the other hand, fom=\6H~10? GeV, one has

ehat_1013~e?8, (36)

by a modest factor 8- 10°, which dilutes the energy den-
sity of moduli and the density of gravitinos by a factor of
10 *2—10"15. Then the scalar field driving inflation must
decay to ultrarelativistic particles. It is quite possible to ob-
tain inflation by a factor of 1010 in the fast-roll model
discussed above. And it is even easier to add a few extra
e-folds to the stage of thermal inflation. It was usually as-
sumed that thermal inflation ends as soon as the field begins
to fall from the top of the effective potential. This assump-
tion is often correct for the models with the scale of sponta-
neous symmetry breaking much smaller thatf1GeV[27].
However, as we have seen above, one can ha! ve much more
than 10 e-folds of inflation in the models with =0.5. Note

that potentials withv=0(1) often appear in phenomeno-
logical N=1 supergravity.

Thus, if in a certain class of theories one he4~V, one
should not immediately discard such theories as candidates
for the description of an acceleratéaflationary stage of
%he evolution of the universe. Such theories can describe a
prolonged stage of fast roll inflation th<<1 in Planck units;
see Eqs(27) and(32). For|V"|~V, the requiremeni<1 is
equivalent to the requirement that the extremum of the effec-
tive potential corresponds to the energy density much smaller
than the Planck density/<1.

To give a different example, one may consider the sim-

plest model of spontaneous symmetry breaking with the po-

tential

1 m? 1
)2=— §m2¢2+ m(]54+ Zmzvz’

37)

wherem?=\v?, and ¢=v corresponds to the minimum of
V(¢) with symmetry breaking. The Hubble constantdat
=0 in this model is given byH?=m??/12, so that
F(m?/H?)=F(12?). Fast-roll inflation in this model oc-
curs for ¢=<v/2. Assuming, e.g.p=1 andm~100 GeV,
one findsF ~1(12)=0.44, and

eHAt~ ( 1017) 1F __ 107,

A
V(g)= 7 (¢7—v?

(38)
whereas fow =0.7, as in the Polonyi model, one has

efat_100. (39

IV. N=8 GAUGED SUPERGRAVITIES
A. de Wit—Nicolai potential

The ungaugedN=8 supergravity of Cremmer and Julia
[29] has a locaSU(8) symmetry and a rigi&L(8,R) sym-
metry; equations of motion have a larger, noncom(iagt,
symmetry. The 70 real scalars Nf=8 supergravity param-
etrize the coset spade,/SU(8) and can be described by an
elementV(x) of the fundamental 56-dimensional representa-
tion of E7(7y:

Ui (x)

vijkL (X)
V(X): kaIJ(X) -

. 40
uMe (%) “0
Out of 133 fields 63 may be gauged using &(8) sym-
metry. de Wit and Nicolai30] gauged theSQ(8) subgroup
of SL(8,R) symmetry of the ungauged supergravity. The
SO(8) gauge coupling constagtis a new parameter which
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the gauged supergravity has, in addition to the gravitational nggyf(s,t)292(4[(95\/\/2’2:%5,0]4 4[&tW§'?'r(s,t)]2
constant. The locaN=8 supersymmetry of gauged super- ’ ’ ’

gravity requires a nontrivial effective potential for the sca- —6[WR?'(s,1)]1%), 47
lars. It is proportional to the square of the gauge coupling. ] )

The scalar and gravity part of de Wit-Nicolai action is  Where the superpotentialV (s, t) is

1 1 .
=gl ZR— —|A k2
f d™x 9(2 96| Lo | v

1
p.q.r _- V[4aq/p(p+ —\[r2(p+ )Tt
’ (41) we:d (s,t)—8(pe[ arp(p+a)]s—Ir72(p+a)l

- o —[4pla(p+a)Is—Ir72(p+ag)Jt
where the building blocks for the scalar kinetic terms are +qce

ALK = —2\2(ul ;0,0 =0'1Mg,uM, ). de Wit-Nicolai +rezePTaaT (48)
nontrivial effective potential can be written as the difference
of two positive definite terms: and the kinetic terms for scalar fields have a canonical form.
The gravitational and scalar part of the supergravity action
V=—g2 E Al z_i PNIE: 42 for each model withp,q,r and &, is given by
- g 4| 1 | 24| 2]k| | ' ( )
SpPT =] d*y - ER—laﬂsa s—laﬂta t
i 4 ijm ijk 4 [ijk] et g 2 2 B2 a
Al=— 2—1Tm . Ay =— §T| , (43

. . o —Vg’q’r(S,t)) . (49
with some particular combinations of T tensors: 7
T =(ull 5+ 0T (U Uk ™ — v imak K™Y, (44) Thus we have a family of models characterized by 3 discrete

parameterp+q+r=8 and by two parameter§,{. At r
The 56-beinV(x) can be brought into the following form =0, p+q=8 the meaning of can be inferred from the

in the SU(8) unitary gauge by th&U(8) rotation higher-dimensional interpretation of these models. It has
been shown by Hull and Warn¢23] that they can be ob-
0 Bijki (X) tained from 18 supergravityM theory). The general case of
V(x)=ex S (x) o | (49 4 compactification on a hyperboloid gives $Q) gauging

and a compactification on a sphere leads t¢8@auging of
where ¢'*' is a complex self-dual tensor describing the 35de Wit and Nicolai[30]. The corresponding hypersurface
scalars and 35 pseudoscalarsgdf') of N=8 supergravity. constraining the internal 7-manifold is
The potential has an AdSritical point where all scalars and o 8

pseudoscalars vanish. (2= pae2®2B= S (P)2+E S (P2 (50)
A=1 A=p+1

B. SO(p)XSO(q)XSO(r) sector o 50 tamilv of h
. B . . For £<0 the expression50) represents a family of hyper-
Compact gaugings d=8 supergravity do not give de boloids and foré>0 it is a family of ellipsoids. When also

S_|tter solut|o_ns, h0\_/vever the non-compact and non-semig | girections are present in the metric, the higher dimen-
simple gaugings withCSQ(p,q,r) groups, suggested DY qiqna) interpretation was not studied yet. But clearly, the new
Hull [2.0] do have d.e S|tt§r and.Mlnkow’sI‘(l So'lutpns. Theseparameterg“ plays an important role in specification of the
are unitary 4l theories with positive definite kinetic terms. odel
Very recently somewhat more general noncompact an(?1 '

simpi i ith ls d di The extrema of the potential in these models have been
hon-semi-simple gaugings with potentials depending on tWay, jieq in[22]. They have found 5 classes of models with

scalars were performed by Ahn and Woo in thegz +1 andz=+1 and various sets gf,q,r which have de

SO(p) X SO(q) X SA(r) sectors of the theory if22]. One  gjyar vacua at some critical values of scalar fields, which we
starts with the subalgebra of ti®L(8,R) algebra with the denote bys,, andt
Cr cr-

metric parametrized by and¢: We have investigated the nature of these critical points.
1 We have found that they are always saddle points; the eigen-
PP values of the matrix of the second derivatives have one posi-
NAB= §lgxgq , ptqg+r=8. tive and one negative value. We have presented the results of
£l o, the calculations in Table | fog?>=1.
(46) For each model we give the critical values of the fields, a
superpotential and a potential. The eigenvalues of the square
The CSQ(p,q,r) group is a group contraction of tHeO(p of the mass matrix areng;)? and (m,)2. Their product is in
+r,q) group preserving a symmetric metric withpositive  all cases negative. Now we may also compare the tachyonic
eigenvaluesq negative eigenvaluegor negative¢), andr ~ mass near the critical point with the value of the potential
zero eigenvalues. Such gaugings lead to a more complicateétere. We find that in all 27 cases a remarkable relation takes
potential with two real scalar fieldsandt, place:— V" =|m?|,.n=2V. The absolute value of the square
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TABLE |. de Sitter critical points fop,q,r,£,¢ models. One of the mass square eigenvalueg? or
(m,)? is negative; all critical points are saddles.

p q r f g Ser tcr W(Scr vtcr) V(Scr rtcr) (ml)2 (m2)2

1 2 5 —-0.7522 3x3738 10.53 —5.264
1 4 3 0.7522 —3x37%8 -5.264 351
2 1 5 1 -1 0 —-0.7522  3x37%8 2x 314 10.53  —5.264
2 3 3 0.7522 —3x37 %8 —-5.264 351
3 2 3 0.7522 —3x37 %8 —-5.264 351
4 1 3 0.7522 —3x37%8 —-5.264 351
1 3 4 —4 4

2 2 4 1 -1 0 0 0 2 —4 4

3 1 4 —4 4

3 1 4 0.4757 —0.5826 $x3738 -5.264 351
3 2 3 0.6017 —0.4513 $x3738 -5.264 351
3 3 2 -1 1 0.6728 —0.3364 $x37 %8 2x3¥  —5264 351
3 4 1 0.7192 —0.2202 $x3738 —-5.264 351
5 1 2 -0.5014 05606 —3x3738 10.53  —5.264
5 2 1 —-0.6565  0.367 —3x37 %8 1053 —5.264
4 1 3 4 -4

4 2 2 -1 1 0 0 0 2 —4 4

4 3 1 4 -4

1 3 4 —-0.4757 —0.5826 —3x3738 -5.264 351
1 5 2 0.5014 0.5606 3x37 %8 1053 —5.264
2 3 3 -1 -1 -06017 -04513 -31x373% 2x3¥™ -5264 351
2 5 1 0.6565 0.367 3x3738 10.53  —5.264
3 32 —-0.6728 —0.3364 —3x3738 —-5.264 351
4 3 1 -0.7192 -0.2202 —3x3738 —-5.264 351
1 4 3 4 -4

3 4 1 -1 -1 0 0 0 2 4 -4

2 4 2 —4 4

of the tachyonic mass is twice the value of the potential insponded to saddle points of the type shown in Fig. 1. In all
units in whichM,=1. Using the curvature of the de Sitter models of such type known so far, there is only one such

space we can present these relations as saddle point, and the potential is unbounded from below, as
we have checked. Whereas such potentials could play some
1
|m2|tach=2V=§|R|=6H2. (52 .

The positive square mass eigenvalues at the critical poin
also have a simple relation to the potential and/or to the

curvature. In models wheN/., =0 one has 10 \\
\\\
N\
1 1 AN .
2 == 2 == WS
’ SRKRFH
In models withW,, # 0 \\“‘z””f
cr \ “’ Ly
<7
2 1 2 » 1
Miach™ — §|R|’ Mpos™ | R| or mpos:§| Rl- (53

Until now we described potentials with an extremum corre- FIG. 1. An example of the de Sitter saddle point =8
sponding to de Sitter space. All of such extrema corregauged supergravity.
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role in the description of the present stage of exponentiale Sitter critical point is at negativé and e *(Z5)cr
expansion of the universe, it is hard to see them playing any-3/|£|. The value of the potential and of its second deriva-
role in inflationary cosmology. The slow-roll condition is not tive at the critical points is

satisfied, however, as we discussed in Sec. lll; the fast-roll

regime with|V”|=2V may be acceptable in certain cases. Vasgcr=292X3YE  (V45,)cr= —4g7x 34 &[54,

The situation may change once one considers potentials in- (62

volving many other lar fiel nd/or ntum corrections. . . . o
olving many other scalar fields and/or quantum corrections Thus we find that in all 3 cases above the critical point is

a maximum of the scalar potential and the tachyonic mass

C. SO(p)XS0(q) sector squared has twice the value of the potential:
Now we will also study the nature of the critical points for
potentials depending on one field in the models with V=M= 2V = E|R|. (63)
SO(p,q) gauging withp+q=8 andr=0, =0 [20]. We tach 2

will use the form of these models as given #2], where the
scalar field¢ has a canonical kinetic term. The relevant part v de SITTER VACUA OF N=4 AND N=2 GAUGED
of the action ofN=8 gauged supergravity is SUPERGRAVITIES
4 1 1 The first de Sitter solutions of gauged supergravity have
Sp,q,fzj d*xV=g FR=50¢9,6=Vpqd ). been discovered by Gates and Zwiebdd!8,19 in the
(54)  framework of SU(2)XSU(2) gauged version of the
SO(4)N=4 theory. It seems that 3@ gauged supergravi-
The potential can be written with the help of a superpotentiaties have to have two independent gauge couplingsndg,
W, corresponding to eacBU(2). However, it was found by
Zwiebach[19] that it is not really the case due to the pres-
ence of scalar fields in front of the kinetic terms of the vector
fields. These scalar fields acquire vacuum expectation values
and this makes it necessary to rescale vector fields and
2 2_ 2 gauged couplings so that the model has only one effective
Voa.s= 9 (416 Wp.q.($)17=6Wp q.4(¢) ).56) coupling constant. For the case corresponding to a positive
cosmological constarg; and g, have to satisfy a relation
There are three cases of de Sitter vacua here. J1eft= — Uzerf= V0192 It was shown that the value of the
p=q=4 cosmological constant depends only on this one effective
coupling constant. More generbl=4 supergravities were
Vaue=—g2(e %%+ a¢+ g2e 29, (57)  studied in superspace [B1].
’ Later de Roo and Wagemaf&l] studied a more general
de Sitter critical point is at negativé so thate 2%r  case ofSU(2)xXSU(2) gauging with separate phases,
=1//¢|. The value of the potential and of its second deriva-for €achSU(2) . For a=a;—a,=/2 the scalar potential

g

1
Wp.q.e=g(pe @ P+ qge™ P29, (55)

tive at the critical points is proposed in21] corresponds to the potentials from the pa-
pers of Gates and Zwiebadii8,19 and Hull [20]. In all
Vaager= 297 ¢, (V) s)er= —4g?4. (58) cases scalars parametrize ®8(1,1)/U(1) coset space.

We will also take into account that some supergravity ac-
tions have the Einstein term as3R, which corresponds to
i(Mﬁ/Z)R with M,=1, whereas some other actions have
+ 4R, which corresponds ta: (M2/2)R, with M,=1/y/2. In
theN=8 case in the previous action we had Mg=1 case;

(59) in [21] we have thd\/lpzll\/i case. When we compare the
relation between tachyon mass and the potential, we will
de Sitter critical point is at negativé and e~ *@™®%c  keep this in mind. We will perform the study of de Sitter

=3/|¢£|. The value of the potential and of its second deriva-Solutions, starting with the potential from the de Roo and

p=5,09=3

3g° ‘ ‘ |
V3=~ %(5ev(§/35¢+ 10¢e™ (2115 §2e* qu;).

tive at the critical point is Wagemans papég21]:
" 1
Vsagler=202X 3" g3, (V53.)er=—4g?x 3" §|3(’:3-0) V== (g1l P1] >+ 03| @o|?) —ig1ga( P10, — @5 Py),
(64)
P=3.4=3 where scalar field®, and®, are
2 . _.a
V3‘5§: — %(evilﬁmi(ﬁ_l_ 10§e¢(27155¢+ 5§2e— \sT67§5¢). <1>1=e'“1¢1+e i 1¢2,
(62) O =e2¢pt+e %242
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where ¢; and ¢, are the SU1,1) doublet of scalar fields
from N=4 Weyl multiplet

P'=(d)*,  d*=—(do)", (65
with the constraint
P?ha=1, a=1,2. (66)
The solution of this constraint gives
elB Z (a1t as)
¢1:\/1%|Z|’ ¢2:ﬁ|z|' (67)

where

e €rgite "y
le'*gi+e vg)|

PHYSICAL REVIEWE@3 105016

mjy=— (93 +03+2|919, sinal). (72)
Thus we sedgwith account of normalizatioMf,z% in [21])
that the tachyonic mass in thedirection compares with the
potential as in all previous cases:

—M2V" =2V m? =—1|R| (73
pYer cro tach 2 '

However, the potential ity direction has a tachyonic mass
which looks quite independent of the value of the potential at
the critical point. This looks puzzling in view of the large
amount of examples considered before. However, in a par-
ticular case ofae= /2 this puzzle is resolved as follows:

2

Ver=10102, mMi=—4(010a, miy:_(gl—’—gz)z-

(74)

anda= a1 — a,. The only remaining independent scalar field This is still puzzling; however here we have to remember

is Z=X+iY and in terms of this field and parameter
= a1~ a, the potential is

Ve s (g2 g1+ |27 —2lei g2
21—z

+e '%g3|X)— 29,0, sina. (68)

The critical point for this potential with the additional con-
straint|Z| <1, required for the positivity of the kinetic terms

for scalars, is

9%+95—2/g102 sin(a)|
|e'“gi+e g}

Xer=2Zo=

- 9i+95-2/9,9;sinal
V(g2+05— 2010, sina) (97 +95+ 29,9, Sina) |

Y =0.

The potential at this point isV|,=—|g.9,sinq|
—20:0,Sina. For 29,9, sina<0 the potential is positive

Ver=19192sine|. (69)

that without looking at kinetic terms for vector fields, one
cannot make a definite judgement about the relation between
g, andg,. But this analysis was performed by Zwiebach in
[19] and he concluded that effectively one has to consider
only the case ofj; = — g, for the de Sitter solution. This case
gives usm§y=0. In fact the potential depends only on the
combinationZ?=X?+Y? and there is only one tachyon ex-
citation and a flat direction. Thus suggests that if we would
perform the analysis of the kinetic terms for vector fields for
the theory witha# 7/2 we would find again that for canoni-
cal kinetic terms we do not have an extra tachyon field.

Another form of potential oN=4 theory was given in
[20] and has been recently discussedid]:

V=—|4g,0,+ (g7 +g3)costial ¢|)

R

+<gi—g§>—|‘°sinrta|<ol> (75)

e
lo

with W= (¢/|¢|)tanh@l¢|/2). Forg,=—g, we get the po-
tential discussed ih14]

1
V=—>g*(coshiale))~2)

To find a second derivative of the potential we have to find
the scalars which have canonical kinetic terms at the criticalyith g?= —4g,g,. The critical point ise=0 and V|

point. Using Eqs(65) and (66) we will get kinetic terms at
the critical point;

aYIY.
(70

1 1
=020 pa=— 5 ——5 5 IXIX— 5 ——5
20400 2 (1-23)? 2 (1-7%)

Thus x=[1/(1—23)]1X and y=[1/(1-Z3)*?]Y are the

=1g2. The presence of the parametewill not affect the
properties of the system even though it seems that in this
caseV"|.,= — (a%/2)g? and for very smalh it is possible to
getV|,>|V"|., . The properties of the potential are related
to canonical kinetic terms and the rescaling of the scalar field
¢ in the potential will also lead to the rescaling of the kinetic
terms; therefore we conclude that there is no free adjustable
parameter which can be used for a slow-roll condition.

fields over which we have to differentiate the potential. We The SU(2)XSU(2) gauging ofN=4 supergravity can

find

2

my,= —4[g19, sina/, (71

be easily reduced t=2 gauged supergravity with one vec-
tor multiplet gauging[24]. In this caseg;=—g, and the
potential has a form
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TABLE Il. Minkowski critical points forp, q, r, £, { models.

pa ¢ Ser e W(ser ter) V(Ser s ter) mj m3
1 1 6 0 0 any 3 0 2e ®ter 0
ZEX[{— Etcr}
2 1 5 0 0
2 2 4 0 0
2 3 3 0 1,01 any any }ex Zst:r_\/gtcr 0 0 0
D G
2 4 2 0 0
2 5 1 0 0
2|2 This potential is not of inflationary type, at least at the
V=29§_49§—2- (76)  classical level. Indeed, there is no slow-roll regime of infla-
(1-12]%) tionary type in the theories with exponential potentials of

. . 2 . type e°? with c=1; such potentials are too steep. Mean-
The critical point corresponds @=0 andV|¢,=2g7. Again  \yhile, the potential along the valley vanishes, so inflation

we fiznd that the tachyon mass is related to the potential agjges not appear for the fields moving along this valley as
—MpVE =2V, . well. One could hope that the regime of acceleration may

To summarize, in all cases df=4, 2 gauged supergravi- emerge when the fields oscillate in the valley and slowly drift
ties we find tachyons with relation to the curvature of the deowards positivet. However, the energy density of the oscil-
Sitter space of the form, .= —3|R|. lating field rapidly drops down. We have checked numeri-
cally, for various initial conditions fos andt, that the cos-
mological evolution in the theory with this potential is not
inflationary.

A similar situation appears in the model wiph=2, de-

There is another class of potentials which should not bécribed in the lower part of the table. In this model the po-
overlooked in our search for de Sitter solutions. For certairféntial vanishedi.e., the cosmological constant is equal to
values of parameters the potentials have flat directions corerd for all s andt. Once again, in this case one does not
responding to Minkowski space witi($)=0. Existence of ~have an inflationary regime. o
Minkowski or near-Minkowski ground state is a prerequisite  However, it might happen that the flat directions can be
of a successful inflationary cosmology, so even though at théfted due to quantum effects. Note that in these models su-
classical level such potentials do not have any de Sitter sgRersymmetry is broken along the flat directions, so it does
lutions, their existence is rather intriguing. not protect the effective potential against radiative correc-

Several examples of such models have been presented #@NS. o _

[22]. The corresponding results can be summarized by Table In this respect it is instructive to remember the recent
Il. The class of theories in this table has a possibility to beexample related t&-term inflation inN=2 [16], as well as
related to M theory avoiding the noncompactness problemvery similar examples ob-term inflation[32] and F-term

In all cases heré=0, thus there are no negative componentghflation in N=1 [33]. The effective potential ifP-term in-

of the metric on the hypersurfad®0). Instead, there are
some noncompadt)(1) directions, for example, in the
=1,q=1, r=6, é=1, (=0 case the internal space $ 0
X R® and the symmetry i§ Q(2)x U(1)*®. However the flat 2SN
directionsR® could be compactified td® as explained in AN
[14]. =S| 2

In the casgp=1,q=1,r=6, £&=1, {=0 the potential of
the scalar fields andt appears as follows: 0t

VI. MINKOWSKI VACUA AND A POSSIBILITY
OF INFLATION ALONG FLAT DIRECTIONS

=1

1 U R
V(st)= ge‘V'2(25+‘“3t)(1— ez“‘25)2=§e“’6t sint?(/2s).
77 |

This potential blows up at large negatitvand at larges|, : e "
it is even with respect tg, and it vanishes for all along the ’ ! ’ - N
valley s=0; see Fig. 2. Its curvature is positive in all direc-
tions and no tachyons are present.

T
o
&

FIG. 2. A potential with a valley witi/=0 corresponding to
Minkowski space.
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flation at the classical level has several Minkowski flat direc-esting, in particular, to look for potentials that have flat di-
tions with unbroken supersymmetry. Perturbative effectsections with |V”|<V asymptotically approaching
cannot lift up these flat directions and give rise to inflation.Minkowski vacuum withV=0 or de Sitter vacuum with/
However, once one takes into account possible Fl termss 10 2% which would correspond to the present state of the
these flat directions are lifted up to a state witt-0. They  universe.

still remain flat, but they correspond to a de Sitter vacuum If such a regime is possible, one may start looking for it
with broken supersymmetry. Then the radiative correctionsalready at the classical level. One may also try to find out
which appear because of the supersymmetry breaking, makehether the flat directions with'=0, which are present in
the effective potentiaV slightly tilted. This leads to a real- some versions dfl=8 gauged supergravity, can be lifted up
ization of the hybrid inflation scenario IN=2. by quantum effects, and can be used for implementation of

We do not know whether anything like that will happen in inflation. An example of how this possibility could be real-
N=8, but this is a very interesting possibility that deservesized in N=2 has been recently given {16]; see also ex-
separate investigation. amples inN=1 given in[32,33.

One should note also that in this paper we concentrated on On the other hand, if one is only interested in describing
the investigation of potentials with extrema at finite values ofthe present stage of quasi-exponential expansion of the uni-
the scalar fields. However, one may also look for possiblaserse in a state withv~10 2% the danger of the vacuum
classical potentials that may have flat directions approachingstability can be removed to a very distant future, hundreds
de Sitter state witlv>0 or Minkowski state wittv=0 only  of billions of years from the present epoch: The universe
asymptotically From the point of view of cosmology such with |V”|=2V~10"12° may experience more than 100
potentials are very interesting: They can describe inflation ag-folds of fast-roll inflation, which is more than sufficient to

large V(¢) and quintessence at sm&l(¢). explain the present stage of accelerated expansion. Of
course, such models require rather extreme values of param-
VII. CONCLUSIONS eters, but it is still interesting that such a regime is possible

. . ) . ) despite the expected strong instability of de Sitter space with
In this paper we investigated the possibility of having de V| =2V,
Sitter—like solutions describing inflation or accelerated ex-  Note AddedWhile we were preparing this paper for sub-

pansion of the universe iN=8,4,2 gauged supergravities. mission we became aware of a related investigation by Paul
In each model that we have studied we have found that thgq\nsend(Ref. [34]). He has found a model based &h

de Sitter state corresponds to a single unstable extremum afg gauged supergravity with a sufficiently flat potential,

the scalar potentid¥. The (negative curvature of the poten- which may lead to a marginally inflationary reginagt)

tial in the directipn of the fastest de_scen.t in all of these mOd;tB. Such potentials can be useful for the description of the
els obeys the simple rul¢y”|=2V in units M,=1. (Note

. , __present acceleration of the universe, as proposed by
that throughout the paper we are using the following defini~q,;nsend. i1t would be interesting to use such potentials for

. . 2_ . .
tion of the Planck massvl,=8#/G, whereG is the gravi- 4 gescription of inflation in the early universe. However, den-
tational coupling constantThis relation can be represented sity perturbations produced in the universe witft)~t3
in the following way:|m2|=|R|/2,'wherem2 is the tachyonic  have a substantially nonflat spectrum,is well below 1,
mass corresponding to the excitation in the direction of th§ynereas observations sugghst-1|=0.1. One should note
_ airectio 1. One _

fastest descent, arRlis the curvature scalafR|=12H".  3i50 that the model proposed by Townsend is based on find-

It wogld be very interesting to find a simple geometric ing a de Sitter solution id=5 and making a subsequent
explanation of this result. In this paper we concentrated oRedyction tod=4. In order to check whether this model is
the derivation of this result for a large class of models, angegjistic it would be important to find out whether the corre-
on investigation of its consequences. sponding % de Sitter solution may suffer from the same

One of the consequences is that the slow-roll inflationary, shjem of instability as all @ de Sitter solutions analyzed
regime is impossible near the extrema of the scalar potential, o paper.

in such models. Note, however, that this conclusion may
change when one takes into account all other scalar fields
and other gaugings. Indeed, initially there are 35 scalars and
35 pseudoscalars iIN=8 supergravity, and many different ~ The authors are grateful to G. Felder, C. Hull, N. Kaloper,
ways to gauge supergravity are possible. We have studiedl. Kachru, L. Kofman, P. Townsend, and E. Witten for useful
only those models for which an explicit expression for thediscussions. This work was supported by NSF grant PHY-
potential was known. In these models the potential dependd870115. The work of M.S. was partly supported by the
on only one or two scalar fields. Thus it may happen thaDepartment of Energy under contract DE-AC03-76SF00515.
some of our conclusions are not generic. It would be interS.P. acknowledges the support from Stanford University.
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