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Gauged supergravities, de Sitter space, and cosmology
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We study scalar potentialsV of gaugedN58,4,2 supergravities ind54. Extrema of these potentials may
correspond to de Sitter, anti–de Sitter and Minkowski vacua. We find that all known de Sitter extrema
correspond to unstable maximum or saddle points with negative curvatureuV9u52V for the fields canonically
normalized at the extremum. This is equivalent to the relationum2u5uRu/256H2 for the tachyonic massm, the
curvature scalarR, and the Hubble constantH. This prevents the use of de Sitter extrema for slow-roll inflation
in the early universe, which would requireuV9u!V. Moreover, in all models that we are able to analyze the
potential is unbounded from below. On the other hand, barring the question of how realistic such models could
be, one can use them for the description of the accelerated expansion of the universe at the present epoch. This
is related to the novel possibility of the fast-roll inflation withuV9u*V. We also display some potentials that
have flat directions with a vanishing cosmological constant, and discuss their possible cosmological implica-
tions.
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I. INTRODUCTION

Recent cosmological observations based on the stud
supernova@1# and of the anisotropy of the cosmic microwa
background radiation@2# suggest that soon after the big ba
our universe experienced a stage of very rapid acceler
expansion~inflation! @3–6#. Moreover, observations indicat
that a few billion years after the big bang the universe
tered a second stage of accelerated expansion. The ra
acceleration now is many orders of magnitude smaller t
during the stage of inflation in the early universe. For a d
cussion of the recent cosmological observations and t
theoretical interpretation see, e.g.@7#.

Most of the inflationary models are based on the assu
tion that the energy-momentum tensor during inflation
dominated by the potential energy density of a scalar fie
Tmn'gmnV(f) with V.0 @8,9#. This means, in particular
that ḟ2/2!V(f). The limiting caseḟ50 corresponds to de
Sitter space with a positive cosmological constant. The c
rent cosmological acceleration can be explained either b
positive vacuum energyV ~cosmological constant! or by a
slowly rolling scalar field in a near de Sitter background w
ḟ2/2!V(f) ~quintessence! @10#.

Much of the recent progress in the theory of all fund
mental interactions is related to supersymmetry. Therefo
would be very desirable to find de Sitter or near–de Si
solutions in supersymmetric theories based on M or str
theory. One can find de Sitter solutions in many theor
based onN51 supergravity in 4d. However, M or string
theories in 11/10 dimensions have 32 supersymmetries,
responding toN58 supersymmetry ind54. Such theories
are only indirectly related to 4d N51 supergravity where
most of these supersymmetries are broken. Therefore it is
clear whether the de Sitter solutions ofN51 supergravity
can be obtained from a more fundamental theory. Indeed
arguments are known that it may be difficult to find de Sit
0556-2821/2002/65~10!/105016~12!/$20.00 65 1050
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solutions in any 4d theory obtained by compactification o
M or string theory@11–15#. In order to address this impor
tant issue one may try to find de Sitter solutions in extend
supergravity, which has a more direct relation to M or stri
theory due to the increased number of supersymmetries

This possibility was recently discussed in the context
4d N52 supersymmetry in@16#, where a hybrid hypersym
metric model of inflation or acceleration was proposed, a
in @17#, where the string theory version of this model w
presented.

In this paper we will study de Sitter solutions in variou
versions ofN52,4,8 gauged supergravity. The basic pro
lem of finding de Sitter solutions in such theories seems
originate from the compactification of M or string theory o
internal space with the finite volume@14,15#. However, some
4d N58,4,2 gauged supergravity theories are known to h
de Sitter solutions with spontaneous breaking of supers
metry @18,20–22#. These versions of 4d supergravity are re-
lated to 11d supergravity with a noncompact internal 7d
space@23#. M theory has some solutions with warped pro
ucts of de Sitter space with hyperbolic spaces and gene
ized cylinders, dS43H p,q,r . For conceptual problems asso
ciated with noncompact internal space and attempts
overcome them we refer to@14# and references therein.

Here we will take a simple attitude to potentials of gaug
supergravities: we will consider only 4d theories where all
kinetic terms have correct sign. Therefore these theo
from the 4d perspective do not have any conceptual pro
lems whatsoever. We will study the properties of their pote
tials with regards to cosmology. If we find any potentia
interesting for cosmology, we may come back to the pro
lems of accommodating these 4d supergravity models in the
framework of M theory with noncompact internal space.

The physical motivation for our study of potentials
supergravity originates in cosmology. A standardslow-roll
inflation resulting in manye-foldings and scale independenc
of the spectrum will be reviewed. A new concept offast-roll
©2002 The American Physical Society16-1
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inflation will be proposed. It is partially motivated by th
properties of supergravity potentials and also by the pre
epoch acceleration with a small number ofe-foldings.

We start with recalling some well known facts about t
relation between de Sitter space and expanding univers
Sec. II. Section III explains a standardslow-roll inflationand
introduces a new concept of afast-roll inflation. This defines
the properties of the potentials interesting for cosmology

In Secs. IV and V we study the potentials ofN58 and
N54,2 gauged supergravities. In Sec. VI we discuss so
potentials of N58 supergravity which have interestin
Minkowski vacua with flat directions. We discuss the ma
results and perspectives in the Conclusions.

II. de SITTER VERSUS ANTI –de SITTER SPACE

Anti–de Sitter space was at the full attention of the hig
energy physics community for the past 10 years from
time when it was realized that near horizon the geometry
stringy Bogomol’nyi-Prasad-Sommer field~BPS! black holes
and branes tends to anti–de Sitter space. It was known
for a very long time that the potentials of gauged supergra
ties have anti–de Sitter critical points which are at the top
the inverted potentials and correspond to the maximum
these potentials and the tachyons are present. Still when
negative (mass)2 is limited in a certain way corresponding t
the Breitenlohner-Freedman bound, the anti–de Sitter s
tion is stable. For AdS4 the bound is

m2>2
9

4
H2, ~1!

whereH21 defines the radius of the throat of the hyperbolo
in the flat 5d space

X0
22X1

22X2
22X3

21X4
25H22. ~2!

The hyperboloid in the 5d flat space defining de Sitter spac
dS4 is

X0
22X1

22X2
22X3

22X4
252H22. ~3!

The difference between the two hyperboloids is that
right-hand side has an opposite sign. Besides, the AdS
perboloid has two ‘‘time directions’’ whereas dS one h
only one ‘‘time direction.’’ The symmetry group for the Ad
hyperboloid isSO(3,2) whereas for the dS hyperboloid it
SO(4,1).

To explain shortly the relation of de Sitter space to c
mology we will first present here the Friedmann-Roberts
Walker ~FRW! metric describing the expanding Friedma
universe:

ds25dt22a2~ t !F dr2

12kr2 1r 2~du21sin2 udf2!G , ~4!

wherek561,0 for a closed, open or flat expanding Frie
mann universe, respectively. Herea(t) is the time-dependen
scale factor. For a spatially flat universe withk50 the metric
can be represented in a form
10501
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ds25dt22a2~ t !dxW2. ~5!

Closed Friedmann universe withk51 can be represented i
the form

ds25dt22a2~ t !@dx21sin2~x!~du21sin2 udf2!#,

0<x<2p. ~6!

Finally, an open Friedmann universe withk521 can be
represented in the form

ds25dt22a2~ t !@dx21sinh2~x!~du21sin2 udf2!#,

0<x<`. ~7!

The relation between the metric of expanding universe
de Sitter space is the following. First, one can consider
hyperboloid~3! in a coordinate system which spans the h
of the hyperboloid withX01X4.0. The choice

X05H21 sinhHt1
1

2
HeHtxW2,

X45H21coshHt2
1

2
HeHt, Xi5eHtxi , i 51,2,3

leads to the metric

ds25dt22e2HtdxW2. ~8!

This is a FRW spatially flat metric with the exponential sca
factora(t)5eHt. We may choose the coordinates which sp
the entire hyperboloid

X05H21 sinhHt, X15H21 coshHt cosx,

X25H21 coshHt sinx cosu,

X35H21 coshHt sinx sinu cosf,

X45H21 coshHt sinx sinu sinf,

which results in the metric

ds25dt22H22 cosh2 Ht

3@dx21sin2~x!~du21sin2 udf2!#, 0<x<2p.

~9!

This is a FRW metric of the closed Friedmann universe w
the exponential scale factora(t)5H21coshHt. An open
Friedmann universe appears from de Sitter space if the c
dinate system is chosen as follows:

X05H21 sinhHt coshx, X15H21 coshHt,

X25H21 sinhHt sinhx cosu,

X35H21 sinhHt sinhx sinu cosf,
6-2
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GAUGED SUPERGRAVITIES, de SITTER SPACE, AND . . . PHYSICAL REVIEW D65 105016
X45H21 sinhHt sinhx sinu sinf.

These coordinates do not cover the entire hyperboloid.
metric is

ds25dt22H22 sinh2Ht

3@dx21sinh2~x!~du21sin2 udf2!#, 0<x<`.

~10!

This is a FRW metric of the open Friedmann universe w
the exponential scale factora(t)5H21sinhHt.

III. de SITTER SPACE, SLOW-ROLL INFLATION AND
FAST-ROLL INFLATION

de Sitter space has a direct relation to inflationary cosm
ogy @3–6,8,9#, which we will briefly describe now. Conside
a theory of a scalar fieldf with potentialV(f). The Fried-
mann equation for the scale factor of the universe looks
follows:

S ȧ

a
D 2

1
k

a2 5
r~f!

3
~11!

in units M p51. Here k561,0 for a closed, open or fla
universe correspondingly;r(f)5V(f)1ḟ2/21(] if)2/2 is
the energy density of the scalar field.

Let us assume first thatV(f)5V5const.0, and the field
f is constant and homogeneous,ḟ5] if50. Then

S ȧ

a
D 2

1
k

a2 5
V

3
. ~12!

The solutions of this equation describe de Sitter space w

H5AV

3
. ~13!

Note that at very large timest→` all 3 types of de Sitter
metric for the flat, closed and open universe lead to the s
exponential scale factor

eHt, coshHt→eHt, sinhHt→eHt. ~14!

Therefore we will concentrate on the simplest case of the
universe witha(t)5a(0)eHt. Flatness of the universe is
standard prediction of most of the inflationary models, wh
typically the termk/a2 can be neglected as compared w
r/3 after inflation @3–6,8,9#. This means that inflationary
theory predicts that our universe at present cannot be in
anti–de Sitter regime, because Eq.~11! does not have any
solutions forr,0 in the flat universe.

de Sitter space can describe late stages of the evolutio
our universe if the universe has nonvanishing vacuum ene
V&102120M p

4 . However, in order to use de Sitter–lik
stages for a description of inflation in the early universe o
should find how de Sitter stage ends and the usual hot Fr
mann universe emerges.
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One possibility is to study models where the potent
V(f) has a very flat maximum, as in the new inflation sc
nario @4#. Consider, for example, the model whereV(f) has
a maximum atf50, such that in the vicinity of the maxi
mum

V~f!5V02
m2f2

2
. ~15!

Suppose that initially the fieldf5f0 was homogeneous
small, and had small velocity, so thatm2f2/2,ḟ2/2!V0.
Then the Hubble constantH25r/35 1

3 (V02m2f2/2
1ḟ2/2) practically did not change until the field rolled dow
to the point withm2f1

2;V0. Therefore the universe contin
ues expanding aseHt until the fieldf rolls from f0 to

f1;AV0/m. ~16!

The motion of a homogeneous fieldf is described by equa
tion

f̈13Hḟ52V85m2f. ~17!

Now let us assume thatuV9u5um2u!H25V/3. In this case
one can show that the field moves very slowly, so that o
can neglectf̈ as compared to 3Hḟ, and the growing solu-
tion for the fieldf is given byf5f0 exp(m2t/3H). This is
the standard slow-roll solution for the scalar field during
flation. The slow-roll regime continues at least until the fie
rolls down belowf1, i.e., during the time

Dt5
3H

m2 log
f1

f0
. ~18!

This leads to inflation by a factor of

eHDt;S f1

f0
D 3H2/m2

;S f1

f0
D V/uV9u

. ~19!

Thus one can obtain an exponentially large degree of in
tion for

uV9u!uVu, ~20!

which is one of the two well-known inflationary slow-ro
conditions: h5uV9u/uVu!1 and e5 1

2 (V8/V)2!1 @9#. The
last condition is automatically satisfied at the top of the
fective potential.

The slow-roll conditions serve two purposes: They ma
the total expansion of the universe during the stage of in
tion very large,eHDt;(f1 /f0) uVu/uV9u, and they ensure tha
the spectrum of adiabatic density perturbations produ
during inflation is almost scale-independent. These den
perturbations are produced due to quantum effects du
inflation @25#; they are playing a critical role in the subs
quent process of formation of the large-scale structure of
universe@8,9#. The deviation from scale independence~flat-
ness! of the spectrum is characterized by the factorun21u
5u2(uV9u/uVu)23(V8/V)2u @9#. Recent observations of an
6-3
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KALLOSH, LINDE, PROKUSHKIN, AND SHMAKOVA PHYSICAL REVIEW D 65 105016
isotropy of the cosmic microwave background radiation s
gest thatun21u&0.1 @2#, which implies that

uV9u&0.05V ~21!

if the perturbations that we observe were produced du
inflation when the fieldf was near the top of the potentia

The slow-roll conditionuV9u!V implies that um2u!V0,
and, consequently,

f1@1 ~22!

in Planck units~i.e. f1@M p). This is very similar to the
standard requirement that appears in the simplest mode
chaotic inflation withV(f);fn @5,8#. To avoid this require-
ment and still have slow-roll inflation one would need
make the potential very flat at the top, and very curved n
the minimum of the potential, as in the original version
the new inflation scenario@4#, or as in the hybrid inflation
scenario@6#.

One of the results of our paper is that the slow-roll co
dition V9!V is not satisfied near any of the extrema of t
potentials withV.0 in N58 gauged supergravity that hav
been studied in the literature. As we will show, in all of th
models ofN58 gauged supergravity studied so far one h
V952V. Thus, in all known cases these models do not s
port slow-roll inflation near the extrema of the correspond
potentials.

Is it possible to have afast-roll inflation with uV9u5um2u
>H25V/3? In our investigation of this question we ha
found, much to our own surprise, that the answer to t
question is positive.

For simplicity we will consider first the limiting cas
um2u@H2. In this case one can neglect the term 3Hḟ in the
equation for the fieldf. Then the growing solution become

f5f0emt. ~23!

The duration of rolling fromf0 to f1 is given by

Dt5m21 log
f1

f0
. ~24!

Until the field rolls down tof1 the energy density remain
dominated byV0. This leads to inflation by a factor of

eHDt;S f1

f0
D H/m

. ~25!

Usually one does not expect the ratiof1 /f0 to be exponen-
tially large, and therefore one could think that forH/m,1
the duration of inflation of this kind must be rather insigni
cant. Also, no long-wavelength perturbations of metric
generated in the regimem.H by the standard inflationary
mechanism. That is why the possibility of a fast-roll inflatio
with m>H has not been thoroughly studied in the literatu

Meanwhile fast-roll inflation can be quite interesting,
least for a marginally fast-rolling regime withm;H ~i.e.,
10501
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AuV9u;AV). This is the regime that we will often encounte
in our investigation of extrema of the potentials inN58
gauged supergravity.

First of all, let us note that the initial value of the fieldf
can be quite small. Formally, one may havef050. In this
case the factorf1 /f0 in Eq. ~25! can be indefinitely large. In
reality, f0 in this equation cannot be taken much smal
than the level of quantum fluctuations with momentak,m,
since such fluctuations also experience exponential grow
even in the absence of a homogeneous fieldf0 : dfk(t)

;dfk(0)eAm22k2t. A typical initial amplitude of all quantum
fluctuations with k,m participating in the exponentia
growth of the fieldf can be estimated bydf;Cm, where
C5O(10) @28#. A typical time it takes for this field to grow
up to f1 is given by@28#

Dt;m21 log
Cf1

m
. ~26!

This leads to inflation by a factor of

eHDt;S 10f1

m D H/m

. ~27!

Now that we have studied two limiting cases, let us stu
a more general regime wherem and H can be of the same
order. To study this problem one should look for solutions
Eq. ~17! in the formf5f0eivt. This yields

v5 i S 3H

2
6A9H2

4
1m2D . ~28!

The solution with the minus sign corresponds to the ex
nentially growing solution

f5f0 exp@„Ht•F~m2/H2!…#, ~29!

where

F~m2/H2!5A9

4
1

m2

H22
3

2
. ~30!

This immediately gives us the general result for the to
expansion of the universe during inflation near the maxim
of the potential:

eHDt;S f1

f0
D 1/F

. ~31!

One can easily check that this result coincides with our p
viously obtained results in the limiting casesm@H and m
!H.

As an example, consider first the potentials withm5H. In
this case one hasF(1)50.3. In the theories withm;H one
hasf1;M p51, so forf0;10m21 ~i.e., for the initial value
of the field provided by quantum fluctuations@28#! one has

eHDt;S 10M p

m D 3.3

. ~32!
6-4
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Clearly, this number can be quite significant.
To be more specific, consider the possibility that su

models can be responsible for the present stage of acc
ated expansion of the universe with the Hubble constanH
;10260M p . Then inflation in an unstable state close to t
maximum of the potential in such a theory can lead to
pansion of the universe by a factor that can be as large

eHDt;~1061!3.3;10200;e460. ~33!

This is more than sufficient to explain the observed sin
e-folding of accelerated expansion of the universe at
present epoch.

Meanwhile if one takesm;102 GeV;10216M p , which
corresponds to the electroweak scale, one can obtain fas
inflation by a factor of

eHDt;~1017!3.3;1056;e130. ~34!

Efficiency of fast-roll inflation rapidly decreases once o
considers the regime withH!m. An interesting example is
provided by gaugedN58 supergravity, where, as we wi
see later,uV9u52V, i.e., m256H2. In terms of our potential
V(f)5V02m2f2/2 this implies that the pointf1, which
corresponds toV(f1)5V0/2, is given byf151/A2. In di-
mensional units this is equivalent to havingf1
;1.531018 GeV. In this model one hasF(m2/H2)5F(6)
51.37, and 1/F50.73. Then, form5A6 H;2310260M p
one finds

eHDt;~531060!0.73;1044;e100. ~35!

Thus, fast-roll inflation inN58 gauged supergravity may b
responsible for up to 100e-folds of exponential expansion o
the universe with the Hubble constant similar to its pres
valueH;10260M p .

On the other hand, form5A6H;102 GeV, one has

eHDt;1013;e28. ~36!

To give a different example, one may consider the s
plest model of spontaneous symmetry breaking with the
tential

V~f!5
l

4
~f22v2!252

1

2
m2f21

m2

4v2 f41
1

4
m2v2,

~37!

wherem25lv2, andf5v corresponds to the minimum o
V(f) with symmetry breaking. The Hubble constant atf
50 in this model is given byH25m2v2/12, so that
F(m2/H2)5F(12/v2). Fast-roll inflation in this model oc-
curs for f&v/2. Assuming, e.g.,v51 and m;100 GeV,
one findsF21(12)50.44, and

eHDt;~1017!1/F;107, ~38!

whereas forv50.7, as in the Polonyi model, one has

eHDt;105. ~39!
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Of course, adiabatic density perturbations are not p
duced during the fast-roll inflation. On the other hand, unl
this stage of inflation is too prolonged, it does not era
density perturbations produced by a possible earlier stag
slow-roll inflation. Moreover, such inflation may induce pe
turbations in other scalar fields which may have massm
,H during the fast-roll inflation. Such perturbations lead
isocurvature perturbations of metric, which are disfavored
observations. However, under certain conditions such per
bations can be converted to the usual adiabatic perturbat
@26#.

More importantly, the stage of the fast-roll inflation ma
help us to solve the moduli problem and the gravitino pro
lem, in the same way as thermal inflation@27#. In order to
solve the moduli problem one would need to have inflat
by a modest factor 1042105, which dilutes the energy den
sity of moduli and the density of gravitinos by a factor
10212210215. Then the scalar field driving inflation mus
decay to ultrarelativistic particles. It is quite possible to o
tain inflation by a factor of 1042105 in the fast-roll model
discussed above. And it is even easier to add a few e
e-folds to the stage of thermal inflation. It was usually a
sumed that thermal inflation ends as soon as the field be
to fall from the top of the effective potential. This assum
tion is often correct for the models with the scale of spon
neous symmetry breaking much smaller than 1018 GeV @27#.
However, as we have seen above, one can ha! ve much m
than 105 e-folds of inflation in the models withv*0.5. Note
that potentials withv5O(1) often appear in phenomeno
logical N51 supergravity.

Thus, if in a certain class of theories one hasuV9u;V, one
should not immediately discard such theories as candid
for the description of an accelerated~inflationary! stage of
the evolution of the universe. Such theories can describ
prolonged stage of fast roll inflation ifm!1 in Planck units;
see Eqs.~27! and~32!. For uV9u;V, the requirementm!1 is
equivalent to the requirement that the extremum of the eff
tive potential corresponds to the energy density much sma
than the Planck density,V!1.

IV. NÄ8 GAUGED SUPERGRAVITIES

A. de Wit –Nicolai potential

The ungaugedN58 supergravity of Cremmer and Juli
@29# has a localSU(8) symmetry and a rigidSL(8,R) sym-
metry; equations of motion have a larger, noncompactE7(7)
symmetry. The 70 real scalars ofN58 supergravity param-
etrize the coset spaceE7 /SU(8) and can be described by a
elementV(x) of the fundamental 56-dimensional represen
tion of E7(7) :

V~x!5S ui j
IJ~x! v i jKL ~x!

vklIJ~x! ukl
KL~x!

D . ~40!

Out of 133 fields 63 may be gauged using anSU(8) sym-
metry. de Wit and Nicolai@30# gauged theSO(8) subgroup
of SL(8,R) symmetry of the ungauged supergravity. T
SO(8) gauge coupling constantg is a new parameter which
6-5
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KALLOSH, LINDE, PROKUSHKIN, AND SHMAKOVA PHYSICAL REVIEW D 65 105016
the gauged supergravity has, in addition to the gravitatio
constant. The localN58 supersymmetry of gauged supe
gravity requires a nontrivial effective potential for the sc
lars. It is proportional to the square of the gauge coupli
The scalar and gravity part of de Wit–Nicolai action is

E d4xA2gS 1

2
R2

1

96
uAm

i jkl u22VD , ~41!

where the building blocks for the scalar kinetic terms a
Am

i jkl 522A2(ui j
IJ]mvklIJ2v i j IJ ]mukl

IJ). de Wit–Nicolai
nontrivial effective potential can be written as the differen
of two positive definite terms:

V52g2S 3

4
uA1

i j u22
1

24
uA2 jkl

i u2D , ~42!

A1
i j 52

4

21
Tm

i jm , A2l
i jk52

4

3
Tl

[ i jk ] , ~43!

with some particular combinations of T tensors:

Tl
ki j5~ui j

IJ1v i j IJ !~ulm
JKukm

KI2v lmJKvkmKL!. ~44!

The 56-beinV(x) can be brought into the following form
in the SU(8) unitary gauge by theSU(8) rotation

V~x!5expS 0 f i jkl ~x!

f i jkl ~x! 0 D , ~45!

wheref i jkl is a complex self-dual tensor describing the
scalars and 35 pseudoscalars off i jkl ) of N58 supergravity.
The potential has an AdS4 critical point where all scalars an
pseudoscalars vanish.

B. SO„p…ÃSO„q…ÃSO„r … sector

Compact gaugings ofN58 supergravity do not give de
Sitter solutions, however the non-compact and non-se
simple gaugings withCSO(p,q,r ) groups, suggested b
Hull @20# do have de Sitter and Minkowski solutions. The
are unitary 4d theories with positive definite kinetic terms

Very recently somewhat more general noncompact
non-semi-simple gaugings with potentials depending on
scalars were performed by Ahn and Woo in t
SO(p)3SO(q)3SO(r ) sectors of the theory in@22#. One
starts with the subalgebra of theSL(8,R) algebra with the
metric parametrized byj andz:

hAB5S 1p3p

j1q3q

jz1r 3r

D , p1q1r 58.

~46!

The CSO(p,q,r ) group is a group contraction of theSO(p
1r ,q) group preserving a symmetric metric withp positive
eigenvalues,q negative eigenvalues~for negativej), and r
zero eigenvalues. Such gaugings lead to a more complic
potential with two real scalar fieldss and t,
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Vj,z
p,q,r~s,t !5g2

„4@]sWj,z
p,q,r~s,t !#214@] tWj,z

p,q,r~s,t !#2

26@Wj,z
p,q,r~s,t !#2

…, ~47!

where the superpotentialWj,z
p,q,r(s,t) is

Wj,z
p,q,r~s,t !5

1

8
~peA[4q/p(p1q)]s2A[ r /2(p1q)] t

1qje2A[4p/q(p1q)]s2A[ r /2(p1q)] t

1r jzeA[ p1q/2r ] t! ~48!

and the kinetic terms for scalar fields have a canonical fo
The gravitational and scalar part of the supergravity act
for each model withp,q,r andj,z is given by

Sj,z
p,q,r5E d4xA2gS 1

2
R2

1

2
]ms]ms2

1

2
]mt]mt

2Vj,h
p,q,r~s,t ! D . ~49!

Thus we have a family of models characterized by 3 discr
parametersp1q1r 58 and by two parametersj,z. At r
50, p1q58 the meaning ofj can be inferred from the
higher-dimensional interpretation of these models. It h
been shown by Hull and Warner@23# that they can be ob-
tained from 11d supergravity~M theory!. The general case o
a compactification on a hyperboloid gives SO(p,q) gauging
and a compactification on a sphere leads to SO~8! gauging of
de Wit and Nicolai @30#. The corresponding hypersurfac
constraining the internal 7-manifold is

r 25hABzAzB5 (
A51

p

~zA!21j (
A5p11

8

~zA!2. ~50!

For j,0 the expression~50! represents a family of hyper
boloids and forj.0 it is a family of ellipsoids. When alsor
null directions are present in the metric, the higher dime
sional interpretation was not studied yet. But clearly, the n
parameterz plays an important role in specification of th
model.

The extrema of the potential in these models have b
studied in@22#. They have found 5 classes of models wi
j561 andz561 and various sets ofp,q,r which have de
Sitter vacua at some critical values of scalar fields, which
denote byscr and tcr .

We have investigated the nature of these critical poin
We have found that they are always saddle points; the eig
values of the matrix of the second derivatives have one p
tive and one negative value. We have presented the resul
the calculations in Table I forg251.

For each model we give the critical values of the fields
superpotential and a potential. The eigenvalues of the sq
of the mass matrix are (m1)2 and (m2)2. Their product is in
all cases negative. Now we may also compare the tachy
mass near the critical point with the value of the poten
there. We find that in all 27 cases a remarkable relation ta
place:2V95um2u tach52V. The absolute value of the squa
6-6
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TABLE I. de Sitter critical points forp,q,r ,j,z models. One of the mass square eigenvalues (m1)2 or
(m2)2 is negative; all critical points are saddles.

p q r j z scr tcr W(scr ,tcr) V(scr ,tcr) (m1)2 (m2)2

1 2 5 20.7522 1
2 3323/8 10.53 25.264

1 4 3 0.7522 2
1
2 3323/8 25.264 3.51

2 1 5 1 21 0 20.7522 1
2 3323/8 2331/4 10.53 25.264

2 3 3 0.7522 2
1
2 3323/8 25.264 3.51

3 2 3 0.7522 2
1
2 3323/8 25.264 3.51

4 1 3 0.7522 2
1
2 3323/8 25.264 3.51

1 3 4 24 4
2 2 4 1 21 0 0 0 2 24 4
3 1 4 24 4

3 1 4 0.4757 20.5826 1
2 3323/8 25.264 3.51

3 2 3 0.6017 20.4513 1
2 3323/8 25.264 3.51

3 3 2 21 1 0.6728 20.3364 1
2 3323/8 2331/4 25.264 3.51

3 4 1 0.7192 20.2202 1
2 3323/8 25.264 3.51

5 1 2 20.5014 0.5606 2
1
2 3323/8 10.53 25.264

5 2 1 20.6565 0.367 2
1
2 3323/8 10.53 25.264

4 1 3 4 24
4 2 2 21 1 0 0 0 2 24 4
4 3 1 4 24

1 3 4 20.4757 20.5826 2
1
2 3323/8 25.264 3.51

1 5 2 0.5014 0.5606 1
2 3323/8 10.53 25.264

2 3 3 21 21 20.6017 20.4513 2
1
2 3323/8 2331/4 25.264 3.51

2 5 1 0.6565 0.367 1
2 3323/8 10.53 25.264

3 3 2 20.6728 20.3364 2
1
2 3323/8 25.264 3.51

4 3 1 20.7192 20.2202 2
1
2 3323/8 25.264 3.51

1 4 3 4 24
3 4 1 21 21 0 0 0 2 4 24
2 4 2 24 4
l i
r

oi
th

re
re

all
ch

, as
ome
of the tachyonic mass is twice the value of the potentia
units in whichM p51. Using the curvature of the de Sitte
space we can present these relations as

um2u tach52V5
1

2
uRu56H2. ~51!

The positive square mass eigenvalues at the critical p
also have a simple relation to the potential and/or to
curvature. In models whereWcr50 one has

mtach
2 52

1

2
uRu, mpos

2 5
1

2
uRu. ~52!

In models withWcrÞ0

mtach
2 52

1

2
uRu, mpos

2 5uRu or mpos
2 5

1

3
uRu. ~53!

Until now we described potentials with an extremum cor
sponding to de Sitter space. All of such extrema cor
10501
n

nt
e

-
-

sponded to saddle points of the type shown in Fig. 1. In
models of such type known so far, there is only one su
saddle point, and the potential is unbounded from below
we have checked. Whereas such potentials could play s

FIG. 1. An example of the de Sitter saddle point inN58
gauged supergravity.
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role in the description of the present stage of exponen
expansion of the universe, it is hard to see them playing
role in inflationary cosmology. The slow-roll condition is n
satisfied, however, as we discussed in Sec. III; the fast-
regime with uV9u52V may be acceptable in certain case
The situation may change once one considers potentials
volving many other scalar fields and/or quantum correctio

C. SO„p…ÃSO„q… sector

Now we will also study the nature of the critical points f
potentials depending on one field in the models w
SO(p,q) gauging withp1q58 and r 50, z50 @20#. We
will use the form of these models as given in@22#, where the
scalar fieldf has a canonical kinetic term. The relevant p
of the action ofN58 gauged supergravity is

Sp,q,j5E d4xA2gS 1

2
R2

1

2
]mf]mf2Vp,q,j~f! D .

~54!

The potential can be written with the help of a superpoten
Wp,q,j :

Wp,q,j5
1

8
~peA(q/2p)f1qje2A(p/2q)f!, ~55!

Vp,q,j5g2
„4@]fWp,q,j~f!#226Wp,q,j~f!2

….
~56!

There are three cases of de Sitter vacua here.
p5q54

V4,4,j52g2~eA2f14j1j2e2A2f!. ~57!

de Sitter critical point is at negativej so that e2A2fcr

51/uju. The value of the potential and of its second deriv
tive at the critical points is

V4,4,jucr52g2uju, ~V4,4,j9 !cr524g2uju. ~58!

p55, q53

V5,3,j52
3g2

8
~5eA(6/5)f110je2A(2/15)f1j2e2A(10/3)f!.

~59!

de Sitter critical point is at negativej and e24A(2/15)fcr

53/uju. The value of the potential and of its second deriv
tive at the critical point is

V5,3,jucr52g2331/4uju3/4, ~V5,3,j9 !cr524g2331/4uju3/4.
~60!

p53, q55

V3,5,j52
3g2

8
~eA(10/3)f110jeA(2/15)f15j2e2A(6/5)f!.

~61!
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de Sitter critical point is at negativej and e24A(2/15)fcr

53/uju. The value of the potential and of its second deriv
tive at the critical points is

V3,5,jucr52g2331/4uju5/4, ~V3,5,j9 !cr524g2331/4uju5/4.
~62!

Thus we find that in all 3 cases above the critical point
a maximum of the scalar potential and the tachyonic m
squared has twice the value of the potential:

2V95um2u tach52V5
1

2
uRu. ~63!

V. de SITTER VACUA OF NÄ4 AND NÄ2 GAUGED
SUPERGRAVITIES

The first de Sitter solutions of gauged supergravity ha
been discovered by Gates and Zwiebach@18,19# in the
framework of SU(2)3SU(2) gauged version of the
SO(4)N54 theory. It seems that SO~4! gauged supergravi
ties have to have two independent gauge couplingsg1 andg2
corresponding to eachSU(2). However, it was found by
Zwiebach@19# that it is not really the case due to the pre
ence of scalar fields in front of the kinetic terms of the vec
fields. These scalar fields acquire vacuum expectation va
and this makes it necessary to rescale vector fields
gauged couplings so that the model has only one effec
coupling constant. For the case corresponding to a pos
cosmological constantg1 and g2 have to satisfy a relation
g1e f f52g2e f f5Ag1g2. It was shown that the value of th
cosmological constant depends only on this one effec
coupling constant. More generalN54 supergravities were
studied in superspace in@31#.

Later de Roo and Wagemans@21# studied a more genera
case ofSU(2)3SU(2) gauging with separate phasesa1,2
for eachSU(2) . For a5a12a25p/2 the scalar potentia
proposed in@21# corresponds to the potentials from the p
pers of Gates and Zwiebach@18,19# and Hull @20#. In all
cases scalars parametrize theSU(1,1)/U(1) coset space.

We will also take into account that some supergravity
tions have the Einstein term as6 1

2 R, which corresponds to
6(M p

2/2)R with M p51, whereas some other actions ha
6 1

4 R, which corresponds to6(M p
2/2)R, with M p51/A2. In

theN58 case in the previous action we had theM p51 case;
in @21# we have theM p51/A2 case. When we compare th
relation between tachyon mass and the potential, we
keep this in mind. We will perform the study of de Sitte
solutions, starting with the potential from the de Roo a
Wagemans paper@21#:

V52
1

2
~g1

2uF1u21g2
2uF2u2!2 ig1g2~F1

!F22F2
!F1!,

~64!

where scalar fieldsF1 andF2 are

F15eia1f11e2 ia1f2,

F15eia2f11e2 ia2f2,
6-8
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where f1 and f2 are the SU~1,1! doublet of scalar fields
from N54 Weyl multiplet

f15~f1!!, f252~f2!!, ~65!

with the constraint

fafa51, a51,2. ~66!

The solution of this constraint gives

f15
eib

A12uZu2
, f25

Zei (a11a2)

A12uZu2
, ~67!

where

eib5
eiag1

21e2 iag2
2

ueiag1
21e2 iag2

2u

anda5a12a2. The only remaining independent scalar fie
is Z5X1 iY and in terms of this fieldZ and parametera
5a12a2 the potential is

V52
1

2

1

~12uZu2!
„~g1

21g2
2!~11uZu2!22ueiag1

2

1e2 iag2
2uX…22g1g2 sina. ~68!

The critical point for this potential with the additional con
straintuZu,1, required for the positivity of the kinetic term
for scalars, is

Xcr5Z05
g1

21g2
222ug1g2 sin~a!u

ueiag1
21e2 iag2

2u

5
g1

21g2
222ug1g2 sinau

A~g1
21g2

222g1g2 sina!~g1
21g2

212g1g2 sina!
,

Ycr50.

The potential at this point is Vucr52ug1g2 sinau
22g1g2 sina. For 2g1g2 sina,0 the potential is positive

Vcr5ug1g2 sinau. ~69!

To find a second derivative of the potential we have to fi
the scalars which have canonical kinetic terms at the crit
point. Using Eqs.~65! and ~66! we will get kinetic terms at
the critical point:

1

2
]fa]fa52

1

2

1

~12Z0
2!2

]X]X2
1

2

1

~12Z0
2!

]Y]Y.

~70!

Thus x5@1/(12Z0
2)#X and y5@1/(12Z0

2)1/2#Y are the
fields over which we have to differentiate the potential. W
find

mxx
2 524ug1g2 sinau, ~71!
10501
d
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myy
2 52~g1

21g2
212ug1g2 sinau!. ~72!

Thus we see~with account of normalizationM p
25 1

2 in @21#!
that the tachyonic mass in thex direction compares with the
potential as in all previous cases:

2M p
2Vcr9 52Vcr , mtach

2 52
1

2
uRu. ~73!

However, the potential iny direction has a tachyonic mas
which looks quite independent of the value of the potentia
the critical point. This looks puzzling in view of the larg
amount of examples considered before. However, in a p
ticular case ofa5p/2 this puzzle is resolved as follows:

Vcr5ug1g2u, mxx
2 524ug1g2u, myy

2 52~g11g2!2.
~74!

This is still puzzling; however here we have to rememb
that without looking at kinetic terms for vector fields, on
cannot make a definite judgement about the relation betw
g1 andg2. But this analysis was performed by Zwiebach
@19# and he concluded that effectively one has to consi
only the case ofg152g2 for the de Sitter solution. This cas
gives usmyy

2 50. In fact the potential depends only on th
combinationZ25X21Y2 and there is only one tachyon ex
citation and a flat direction. Thus suggests that if we wo
perform the analysis of the kinetic terms for vector fields
the theory withaÞp/2 we would find again that for canoni
cal kinetic terms we do not have an extra tachyon field.

Another form of potential ofN54 theory was given in
@20# and has been recently discussed in@14#:

V52S 4g1g21~g1
21g2

2!cosh~auwu!

1~g1
22g2

2!
Rew

uwu
sinh~auwu! D ~75!

with W5(w/uwu)tanh(auwu/2). For g152g2 we get the po-
tential discussed in@14#

V52
1

2
g2
„cosh~auwu!22…

with g2524g1g2. The critical point is w50 and Vucr
5 1

2 g2. The presence of the parametera will not affect the
properties of the system even though it seems that in
caseV9ucr52(a2/2)g2 and for very smalla it is possible to
get Vucr@uV9ucr . The properties of the potential are relate
to canonical kinetic terms and the rescaling of the scalar fi
w in the potential will also lead to the rescaling of the kine
terms; therefore we conclude that there is no free adjust
parameter which can be used for a slow-roll condition.

The SU(2)3SU(2) gauging ofN54 supergravity can
be easily reduced toN52 gauged supergravity with one vec
tor multiplet gauging@24#. In this caseg152g2 and the
potential has a form
6-9
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TABLE II. Minkowski critical points forp, q, r, j, z models.

p q r j z scr tcr W(scr ,tcr) V(scr ,tcr) m1
2 m2

2

1 1 6 1 0 0 any 1

4
expF2A3

2
tcrG 0 2 e2A6 tcr 0

2 1 5 0 0
2 2 4 0 0
2 3 3 0 1,0,21 any any 1

4
expF2scr2A5tcr

A6
G 0 0 0

2 4 2 0 0
2 5 1 0 0
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V52g1
224g1

2 uZu2

~12uZu2!
. ~76!

The critical point corresponds toZ50 andVucr52g1
2. Again

we find that the tachyon mass is related to the potential
2M p

2Vcr9 52Vcr .
To summarize, in all cases ofN54, 2 gauged supergravi

ties we find tachyons with relation to the curvature of the
Sitter space of the formmtach

2 52 1
2 uRu.

VI. MINKOWSKI VACUA AND A POSSIBILITY
OF INFLATION ALONG FLAT DIRECTIONS

There is another class of potentials which should not
overlooked in our search for de Sitter solutions. For cert
values of parameters the potentials have flat directions
responding to Minkowski space withV(f)50. Existence of
Minkowski or near-Minkowski ground state is a prerequis
of a successful inflationary cosmology, so even though at
classical level such potentials do not have any de Sitter
lutions, their existence is rather intriguing.

Several examples of such models have been present
@22#. The corresponding results can be summarized by Ta
II. The class of theories in this table has a possibility to
related to M theory avoiding the noncompactness probl
In all cases herej>0, thus there are no negative compone
of the metric on the hypersurface~50!. Instead, there are
some noncompactU(1) directions, for example, in thep
51, q51, r 56, j51, z50 case the internal space isS2

3R6 and the symmetry isSO(2)3U(1)15. However the flat
directionsR6 could be compactified toT6 as explained in
@14#.

In the casep51, q51, r 56, j51, z50 the potential of
the scalar fieldss and t appears as follows:

V~s,t !5
1

8
e2A2(2s1A3t)~12e2A2s!25

1

2
e2A6t sinh2~A2s!.

~77!

This potential blows up at large negativet and at largeusu,
it is even with respect tos, and it vanishes for allt along the
valley s50; see Fig. 2. Its curvature is positive in all dire
tions and no tachyons are present.
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This potential is not of inflationary type, at least at th
classical level. Indeed, there is no slow-roll regime of infl
tionary type in the theories with exponential potentials
type ecf with c>1; such potentials are too steep. Mea
while, the potential along the valley vanishes, so inflati
does not appear for the fields moving along this valley
well. One could hope that the regime of acceleration m
emerge when the fields oscillate in the valley and slowly d
towards positivet. However, the energy density of the osc
lating field rapidly drops down. We have checked nume
cally, for various initial conditions fors and t, that the cos-
mological evolution in the theory with this potential is n
inflationary.

A similar situation appears in the model withp52, de-
scribed in the lower part of the table. In this model the p
tential vanishes~i.e., the cosmological constant is equal
zero! for all s and t. Once again, in this case one does n
have an inflationary regime.

However, it might happen that the flat directions can
lifted due to quantum effects. Note that in these models
persymmetry is broken along the flat directions, so it do
not protect the effective potential against radiative corr
tions.

In this respect it is instructive to remember the rece
example related toP-term inflation inN52 @16#, as well as
very similar examples ofD-term inflation @32# and F-term
inflation in N51 @33#. The effective potential inP-term in-

FIG. 2. A potential with a valley withV50 corresponding to
Minkowski space.
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flation at the classical level has several Minkowski flat dire
tions with unbroken supersymmetry. Perturbative effe
cannot lift up these flat directions and give rise to inflatio
However, once one takes into account possible FI ter
these flat directions are lifted up to a state withV.0. They
still remain flat, but they correspond to a de Sitter vacu
with broken supersymmetry. Then the radiative correctio
which appear because of the supersymmetry breaking, m
the effective potentialV slightly tilted. This leads to a real
ization of the hybrid inflation scenario inN52.

We do not know whether anything like that will happen
N58, but this is a very interesting possibility that deserv
separate investigation.

One should note also that in this paper we concentrate
the investigation of potentials with extrema at finite values
the scalar fields. However, one may also look for poss
classical potentials that may have flat directions approach
de Sitter state withV.0 or Minkowski state withV50 only
asymptotically. From the point of view of cosmology suc
potentials are very interesting: They can describe inflation
largeV(f) and quintessence at smallV(f).

VII. CONCLUSIONS

In this paper we investigated the possibility of having
Sitter–like solutions describing inflation or accelerated
pansion of the universe inN58,4,2 gauged supergravitie
In each model that we have studied we have found that
de Sitter state corresponds to a single unstable extremu
the scalar potentialV. The ~negative! curvature of the poten
tial in the direction of the fastest descent in all of these m
els obeys the simple rule:uV9u52V in units M p51. ~Note
that throughout the paper we are using the following defi
tion of the Planck mass:M p

258p/G, whereG is the gravi-
tational coupling constant.! This relation can be represente
in the following way:um2u5uRu/2, wherem2 is the tachyonic
mass corresponding to the excitation in the direction of
fastest descent, andR is the curvature scalar,uRu512H2.

It would be very interesting to find a simple geomet
explanation of this result. In this paper we concentrated
the derivation of this result for a large class of models, a
on investigation of its consequences.

One of the consequences is that the slow-roll inflation
regime is impossible near the extrema of the scalar pote
in such models. Note, however, that this conclusion m
change when one takes into account all other scalar fi
and other gaugings. Indeed, initially there are 35 scalars
35 pseudoscalars inN58 supergravity, and many differen
ways to gauge supergravity are possible. We have stu
only those models for which an explicit expression for t
potential was known. In these models the potential depe
on only one or two scalar fields. Thus it may happen t
some of our conclusions are not generic. It would be in
l-

10501
-
s
.
s,

s,
ke

s

on
f
e
g

at

-

e
of

-

i-

e

n
d

y
ial
y
ds
nd

ed

ds
t

r-

esting, in particular, to look for potentials that have flat d
rections with uV9u!V asymptotically approaching
Minkowski vacuum withV50 or de Sitter vacuum withV
&102120, which would correspond to the present state of
universe.

If such a regime is possible, one may start looking for
already at the classical level. One may also try to find
whether the flat directions withV50, which are present in
some versions ofN58 gauged supergravity, can be lifted u
by quantum effects, and can be used for implementation
inflation. An example of how this possibility could be rea
ized in N52 has been recently given in@16#; see also ex-
amples inN51 given in @32,33#.

On the other hand, if one is only interested in describ
the present stage of quasi-exponential expansion of the
verse in a state withV;102120, the danger of the vacuum
instability can be removed to a very distant future, hundre
of billions of years from the present epoch: The unive
with uV9u52V;102120 may experience more than 10
e-folds of fast-roll inflation, which is more than sufficient t
explain the present stage of accelerated expansion.
course, such models require rather extreme values of pa
eters, but it is still interesting that such a regime is possi
despite the expected strong instability of de Sitter space w
uV9u52V.

Note Added. While we were preparing this paper for su
mission we became aware of a related investigation by P
Townsend~Ref. @34# !. He has found a model based onN
58 gauged supergravity with a sufficiently flat potentia
which may lead to a marginally inflationary regimea(t)
;t3. Such potentials can be useful for the description of
present acceleration of the universe, as proposed
Townsend. It would be interesting to use such potentials
a description of inflation in the early universe. However, de
sity perturbations produced in the universe witha(t);t3

have a substantially nonflat spectrum,n is well below 1,
whereas observations suggestun21u&0.1. One should note
also that the model proposed by Townsend is based on fi
ing a de Sitter solution ind55 and making a subsequen
reduction tod54. In order to check whether this model
realistic it would be important to find out whether the corr
sponding 5d de Sitter solution may suffer from the sam
problem of instability as all 4d de Sitter solutions analyze
in our paper.
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