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Exactly solvable matrix models with spontaneous breakdown of SO„D… symmetry
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In the type IIB matrix model, which was proposed as a nonperturbative formulation of type IIB superstring
theory, it is possible that our four-dimensional space-time appears dynamically as a brane in ten dimensions.
This in particular requires the spontaneous breakdown of SO~10! symmetry, which was conjectured to be
caused by the phase of the fermion integral. We present a concrete example of exactly solvable matrix models
in which this happens. The models consist ofD bosonic Hermitian matrices coupled to chiral fermions, and the
SO(D) symmetry is spontaneously broken precisely due to the phase of the fermion determinant.
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I. INTRODUCTION

One of the biggest puzzles in superstring theory is that
space-time dimensionality which naturally allows a cons
tent construction of the theory is ten instead of four. A na
ral resolution of this puzzle is to consider our 4D space-ti
to appeardynamicallyand the other 6 dimensions to becom
invisible due to some nonperturbative effects. This may
compared to the situation with QCD in the early 1970
where quarks were believed to exist according to flavor sy
metries and high-energy experiments, while the puzzle
that none of them has ever been observed in reality.
understanding of quark confinement as a nonperturba
phenomenon in non-Abelian gauge theories was impor
for QCD to be recognized as the correct theory of stro
interaction. Likewise, we think it important to try to unde
stand the puzzle of space-time dimensionality in terms of
nonperturbative dynamics of superstring theory.

The issue of the dynamical generation of space-time
been pursued@1–7# in the context of the type IIB matrix
model @8#—the Ishibashi-Kawai-Kitazawa-Tsuchiya~IKKT !
version of the Matrix Theory@9#. The type IIB matrix model,
which was proposed as a nonperturbative definition of t
IIB superstring theory in ten dimensions, is a supersymm
ric matrix model composed of 10 bosonic matrices and
fermionic matrices, and it can be thought of as the ze
volume limit of 10D SU(N) super Yang-Mills theory
@16,10–13#. The 10 bosonic matrices represent the dyna
cal space-time@1# and the model is manifestly invariant un
der SO~10! transformations, where the bosonic and ferm
onic matrices transform as a vector and a Majorana-W
spinor, respectively. Our four-dimensional space-time m
be accounted for if configurations with only four extend
directions dominate the integration over the bosonic ma
ces. This in particular requires the SO~10! symmetry to be
spontaneously broken.

Monte Carlo studies of the type IIB matrix model a
technically difficult due to the so-called complex-actio
problem, since the Grassmann integral over fermionic ma
ces yields a complex quantity in general. If one omits
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phase to make standard Monte Carlo methods applicable
dynamical space-time is observed to be isotropic in ten
mensions at largeN @3#. On the other hand, it was found tha
the phase of the fermion integral enhances the contribu
of lower-dimensional configurations considerably@4#. A
saddle-point analysis predicts that the dimensionality of
dynamical space-time in the type IIB matrix model should
3<d<8 @4#.

In this paper, we present a concrete example of exa
solvable matrix models, in which the spontaneous symme
breaking~SSB! of SO(D) symmetry occurs precisely due t
the phase of the fermion integral. The models consist oD
bosonic Hermitian matrices, which are coupled to chiral f
mions in an SO(D) invariant manner. The integral over th
chiral fermions is complex in general, and its phase fav
lower-dimensional configurations just as in the type IIB m
trix model. We study theD54 case explicitly and find tha
the SO~4! symmetry is broken down to SO~3!. If we replace
the fermion integral by its absolute value, the model is s
solvable and exhibits no SSB.

II. THE MODEL

The partition function of the model we consider is give
by

Z5E dAdcdc̄ e2(Sb1Sc), ~1!

Sb5
1

2
N tr ~Am

2 !, ~2!

Sc52c̄a
f ~Gm!abAmcb

f , ~3!

whereAm (m51, . . . ,D) areN3N Hermitian matrices and
c̄a

f , ca
f areN-dimensional row and column vectors, respe

tively. @The system has an SU(N) symmetry.# We assume
thatD is even, but we comment on a generalization to oddD
later. The actions~2! and~3! are SO(D) invariant, where the
bosonic matricesAm transform as a vector, and the fermio
fields c̄a

f andca
f transform as Weyl spinors. The spinor in

dexa runs over 1, . . . ,p, wherep52D/221 is the dimension
©2002 The American Physical Society12-1
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of the spinor space. Thep3p matricesGm are the gamma
matrices after Weyl projection. The flavor indexf runs over
1, . . . ,Nf . We take the largeN limit with r[Nf /N fixed
~Veneziano limit! @17#. The fermionic part of the model ca
be thought of as the zero-volume limit of the system of W
fermions in D dimensions interacting with a backgroun
gauge field via fundamental coupling.

Integrating out the fermion fields, one obtains

Z5E dA e2Sb~detD!Nf , ~4!

where D is a pN3pN matrix given byD5GmAm . In D
52, we find that detD transforms under an SO~2! transfor-
mation as detD°eiudetD, whereu is the angle of rotation
@18,14#. Hence the partition function~4! vanishes in this case
@19#. In D>4, detD is SO(D) invariant and so is the mode

The fermion determinant detD is complex in general. Un-
der parity transformation,AD

P52AD and Ai
P5Ai ~for i

ÞD), it becomes complex conjugate. From this, it follow
that detD becomes real ifAD50, or more generally, if
nmAm50 for some vectornm .

We interpret theD bosonicN3N Hermitian matricesAm
as the dynamical space-time as in the type IIB matrix mo
@1#. The space-time has the Euclidean signature as a resu
the Wick rotation, which is always necessary in path-integ
formalisms. In the present model, we can obtain the exten
space-time

R2[ K 1

N
tr ~Am!2L 5D1rp ~5!

using a scaling argument for arbitraryN.
In order to probe the possible SSB of SO(D), we first

generalize the bosonic action as

Sb~mW !5
1

2
N(

m
mmtr ~Am

2 !. ~6!

We calculate the extent in themth direction

lm5 K 1

N
tr ~Am!2L

mW
~no summation overm!

52
2

N2

]

]mm
ln Z~mW ! ~7!

for arbitrarymW in the largeN limit. Then we take the limit of
mn→1 ~for all n) keeping the order

m1,m2,•••,mD . ~8!

If lm do not converge to the same value, it signals the S
of SO(D) symmetry.

III. THE METHOD

We study the model~1! with the anisotropic bosonic ac
tion ~6! in the largeN limit by using a technique known from
10501
l

l
of
l

of

B

random matrix theory@15#. Integrating out the bosonic ma
tricesAm ,

Z;
1

NE dcdc̄ expS 2
1

2N
SFermiD , ~9!

SFermi5~ c̄a
f cb

g !Sab,gd~ c̄g
gcd

f !, ~10!

Sab,gd5(
m

1

mm
~Gm!ad~Gm!gb . ~11!

The normalization factorN in Eq. ~9! is given by

N5)
m

~mm!N2/2. ~12!

Here and henceforth, we omit irrelevantmW -independent fac-
tors in the partition function.

The four-Fermi action~10! can be written as

SFermi5Sab,gd~Fab, f g
(1) Fgd, f g

(1) 2Fab, f g
(2) Fgd, f g

(2) !, ~13!

Fab, f g
(1) 5

1

2
~ c̄a

f cb
g1c̄a

gcb
f !,

Fab, f g
(2) 5

1

2
~ c̄a

f cb
g2c̄a

gcb
f !. ~14!

The matrixS, where we consider (ab) and (gd) as single
indices, is symmetric, and one can always make it real
choosing the representation ofGm properly. Hence one can
diagonalize it as

Sab,gd5(
rt

Oab,rtLrtOgd,rt , ~15!

and Eq.~13! can be written as

SFermi5(
rt

LrtS (
ab

Oab,rtFab, f g
(1) D 2

2(
rt

LrtS (
ab

Oab,rtFab, f g
(2) D 2

. ~16!

Each square in Eq.~16! can be linearized by a Hubbard
Stratonovitch transformation according to

exp~2AQ2!;E ds expS 2
s2

4A
2 iQs D . ~17!

Introducingp2 complex matricesŝrt of sizeNf , we arrive
at

Z;
1

NE dŝdcdc̄ exp~2NSG1SQ!, ~18!

SG5Tr ~ ŝrt
† ŝrt!; SQ5c̄a

f M ab
f g cb

g ,
~19!
2-2
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where thep Nf3p Nf matrix M is

M ab
f g 5

1

A2
(
rt

ALrtOab,rt~ ŝrt1ŝrt
† ! f g . ~20!

The fermionic integration yields

Z;
1

NE dŝ exp~2NW@ŝ# !, ~21!

where the effective actionW@ŝ# is given by

W@ŝ#5SG2 ln detM. ~22!

Let us first consider the largeN limit with finite Nf . Then the
evaluation of the partition function amounts to solving t
saddle-point equations, which are given by

~ ŝrt! f g5~ ŝrt
† ! f g5

1

A2
(
ab

~M 21!ba
f g ALrtOab,rt . ~23!

Assuming that the flavor SU(Nf) symmetry is not broken
we setŝrt5srt1, wheresrtPC. We can further takesrt to
be real, due to Eq.~23!. The effective action reduces to

W5Nf$~srt!
22 ln detM ~s!%, ~24!

where thep3p matrix M (s) is given by

Mab~s!5A2(
rt

ALrtOab,rtsrt . ~25!

Thus the problem reduces to a system of finite degree
freedom.

Next we consider the largeN limit with r 5Nf /N fixed.
We assume thatr is small, and expandŝrt around the~domi-
nant! saddle-point configuration obtained for finiteNf as

~ ŝrt! f g5srtd f g1
1

AN
~jrt! f g . ~26!

The partition function can be evaluated as

Z;
1

Ne2NW[s] 1C, ~27!

where C represents the correction due to the fluctuat
(jrt) f g . The saddle-point contributionNW@s# in Eq. ~27! is
of order O(rN2). The correctionC grows asN2 at largeN,
and thus it may become comparable toNW@s#. However,
the fact that it can be neglected for finiteNf means that it is
suppressed at smallr by higher powers thanr. Therefore, one
can neglect the correctionC in the largeN limit with r
5Nf /N fixed, as far as results up to O(r ) are concerned.

IV. EXACT RESULTS IN 4D

Let us solve the saddle-point equations explicitly in t
simplest caseD54. We chooseG i ( i 51,2,3) to be Pauli
10501
of

n

matrices andG45 i 1. The matrixM is a 232 matrix

M ~s!5S a1 ib ic1d

ic2d a2 ib D , ~28!

a5Ar4s11; b5Ar3s22

c5Ar1s12; d5Ar2s21, ~29!

where we have introduced the notation

rm5(
n

~21!dmn~mn!21. ~30!

The saddle-point equations are

s115D21r4s11; s125D21r1s12

s215D21r2s21; s225D21r3s22, ~31!

where D5a21b21c21d2. Equation ~31! implies that D
should take one of the four possible valuesr1 , r2 , r3 and
r4. In each case, the effective action is evaluated asW
5Nf(12 ln D).

When the parametersmW obey the order~8!, the dominant
saddle point is given byD5r4. Thus the partition function
can be obtained as

Z;
1

NeNNf ln r4. ~32!

Using Eq.~7! we get

lm5~mm!2162r
1

r4
~mm!22, ~33!

where the6 symbol should be1 for m51,2,3 and2 for
m54. In the limit of mn→1 ~for all n), one obtains

l15l25l3511r ; l4512r , ~34!

which means that the SO~4! is spontaneously broken down t
SO~3!. We note thatR25(mlm5412r agrees with the fi-
nite N result~5!. The SSB is associated with the formation
a condensatêc̄a

f ca
f &, which is invariant under SO~3!, but

not under full SO~4!. We remind the reader that Eq.~34!
gives the result up to O(r ) as we discussed in the previou
section.

V. THE PHASE OF THE DETERMINANT

In order to clarify the role played by the phase of t
determinant detD, let us consider the model

Z85E dAe2SbudetDuNf . ~35!

This model can be obtained by replacing half of theNf Weyl
fermions c in Eq. ~1! by Weyl fermionsx with opposite
chirality. Namely, Eq.~35! can be rewritten as
2-3
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Z85E dAdcdc̄dxdx̄ e2(Sb1Sc1Sx), ~36!

Sx52x̄a
f ~Gm

† !abAmxb
f . ~37!

We use a representation of gamma matrices in whichG i @ i
51, . . . ,(D21)# are Hermitian andGD5 i 1. Note that the
flavor indexf now runs overf 51, . . . ,Nf /2.

We can solve the above model with the anisotro
bosonic action~6! in the largeN limit using the same method
as before. The four-Fermi action reads

SFermi8 5~ c̄a
f cb

g !Sab,gd~ c̄g
gcd

f !1~ x̄a
f xb

g !Sab,gd~ x̄g
gxd

f !

1~ c̄a
f xb

g !S̃ab,gd~ x̄g
gcd

f !1~ x̄a
f cb

g !S̃ab,gd~ c̄g
gxd

f !,

~38!

where S̃ can be obtained fromS by replacing mD by
2mD . Similarly to Eq.~15!, it can be diagonalized as

S̃ab,gd5(
rt

Õab,rtL̃rtÕgd,rt . ~39!

In order to linearize Eq.~38!, we have to introduce four set
of ŝrt matrices, which we denote asŝrt

c , ŝrt
x , ŝrt

S andŝrt
A .

As before, we setŝrt
c 5srt

c 1, wheresrt
c PR, etc. Introducing

a new complex variables̃rt5(1/A2)(srt
S 1 isrt

A ), the effec-
tive action becomes

W85
Nf

2
~SG8 2 ln detM 8!, ~40!

SG8 5~srt
c !21~srt

x !212us̃rtu2 ~41!

M 85S M ~sc! M̃ ~ s̃ !

M̃ ~ s̃* ! M ~sx!
D . ~42!

The p3p matricesM (sc) and M (sx) are the same as Eq
~25! except thatsrt is replaced bysrt

c andsrt
x , respectively.

The newp3p matrix M̃ (s̃) is given by

M̃ab~s̃ !5A2 (
rt

AL̃rtÕab,rts̃rt . ~43!

The set of solutions to the saddle-point equations is ric
than before. There are solutions withs̃rt5s̃rt* 50. In this
case, the problem reduces to the previous one. Howe
there is another class of solutions in whichsrt

c 5srt
x 50.

Let us consider theD54 case. The matrixM̃ is a 232
matrix

M̃ ~ s̃ !5S ã1 i b̃ i c̃1d̃

i c̃2d̃ ã2 i b̃
D , ~44!

ã5Ars̃11; b̃5Ar34s̃22
10501
c

r

er,

c̃5Ar14s̃12; d̃5Ar24s̃21, ~45!

where we have introduced the notations

r5(
n

~mn!21; rml5(
n

~21!dmn1dln~mn!21.

~46!

For the first class of solutions, the effective action at ea
saddle point is given byW85Nf(12 ln rn) , where n
51,2,3,4. For the second class of solutions, the saddle-p
equations become

s̃11* 5D̃21rs̃11; s̃12* 5D̃21r14s̃12

s̃21* 5D̃21r24s̃21; s̃22* 5D̃21r34s̃22, ~47!

and their complex conjugates, whereD̃5ã21b̃21 c̃21d̃2.
Due to Eq.~47!, uD̃u should take one of the four valuesr,
r14, r24 andr34. In each case, the effective action is eva
ated asW85Nf(12 lnuD̃u).

Thus for arbitrarymW , we find that the dominant saddl
point is given by the second class of the solutions withuD̃u
5r and the partition function is obtained as

Z8;
1

NeNNf ln r. ~48!

Using Eq.~7! we get

lm5~mm!2112r
1

r
~mm!22→11

1

2
r , ~49!

in the limit of mn→1 ~for all n), which means that SO~4! is
preserved. A nonvanishing condensate^c̄a

f xa
f 1x̄a

f ca
f &

breaks chiral symmetry, but not SO~4!.

VI. SUMMARY AND DISCUSSION

One can generalize the model to oddD by considering
Dirac fermions instead of Weyl fermions. In fact, such
model can be obtained from the evenD model considered
here by taking themD→` limit. The result for the 3D case
can thus be read off from Eq.~33! aslm511 2

3 r for all m,
which preserves the SO~3! symmetry. We note that in the od
D models the fermion determinant for each flavor is real,
it is not necessarily positive. However, for evenNf one ob-
tains a real positive weight, and for oddNf the sign of the
weight is independent ofNf . This explains the absence o
SSB in the 3D model. Based on a similar argument,
speculate that the SO(D) symmetry of even D models is
spontaneously broken down to SO(D21) in general.

Our model provides a concrete example in which t
spontaneous breakdown of SO(D) symmetry is caused by
the phase of the fermion determinant. While this demo
strates the conjectured mechanism for the SSB in the t
IIB matrix model, the actual dimensionality of the dynamic
2-4
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space-time should be determined by the dynamics, wh
must be very different from the present model. In particu
it is known that supersymmetry makes the dynamical spa
time behave like a branched-polymer system@1#, which is
expected to be much easier to collapse due to the exte
force caused by the effects we have studied here.

As we mentioned earlier, standard Monte Carlo simu
tion of the type IIB matrix model is difficult precisely due t
the existence of the phase. However, we have recently
posed a new method to circumvent this problem@7#. Analyti-
cal approaches using approximations such as the one in
@13# may be useful as well. We hope that our model w
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hy
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serve also as a toy model for testing new methods to de
mine the dimensionality of the dynamical space-time in
type IIB matrix model.
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