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Exactly solvable matrix models with spontaneous breakdown of S@) symmetry

Jun Nishimur&
The Niels Bohr Institute, Blegdamsvej 17, DK-2100 CopenhagebeBmark
and Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
(Received 3 February 2002; published 8 May 2002

In the type 1IB matrix model, which was proposed as a nonperturbative formulation of type 11B superstring
theory, it is possible that our four-dimensional space-time appears dynamically as a brane in ten dimensions.
This in particular requires the spontaneous breakdown dfl§Gsymmetry, which was conjectured to be
caused by the phase of the fermion integral. We present a concrete example of exactly solvable matrix models
in which this happens. The models consisDofiosonic Hermitian matrices coupled to chiral fermions, and the
SO(D) symmetry is spontaneously broken precisely due to the phase of the fermion determinant.
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I. INTRODUCTION phase to make standard Monte Carlo methods applicable, the
dynamical space-time is observed to be isotropic in ten di-
One of the biggest puzzles in superstring theory is that thenensions at largsl [3]. On the other hand, it was found that
space-time dimensionality which naturally allows a consisthe phase of the fermion integral enhances the contribution
tent construction of the theory is ten instead of four. A natu-of lower-dimensional configurations consideraifl$#]. A
ral resolution of this puzzle is to consider our 4D space-timesaddle-point analysis predicts that the dimensionality of the
to appeadynamicallyand the other 6 dimensions to become dynamical space-time in the type 1B matrix model should be
invisible due to some nonperturbative effects. This may b&<d<38 [4].
compared to the situation with QCD in the early 1970s, In this paper, we present a concrete example of exactly
where quarks were believed to exist according to flavor symsolvable matrix models, in which the spontaneous symmetry
metries and high-energy experiments, while the puzzle wabreaking(SSB of SO(D) symmetry occurs precisely due to
that none of them has ever been observed in reality. Théhe phase of the fermion integral. The models consisD of
understanding of quark confinement as a nonperturbativBosonic Hermitian matrices, which are coupled to chiral fer-
phenomenon in non-Abelian gauge theories was importarinions in an SOD) invariant manner. The integral over the
for QCD to be recognized as the correct theory of strongchiral fermions is complex in general, and its phase favors
interaction. Likewise, we think it important to try to under- lower-dimensional configurations just as in the type 1B ma-
stand the puzzle of space-time dimensionality in terms of thérix model. We study thé =4 case explicitly and find that
nonperturbative dynamics of superstring theory. the SQ4) symmetry is broken down to S0). If we replace
The issue of the dynamical generation of space-time hathe fermion integral by its absolute value, the model is still
been pursued1-7] in the context of the type 1IB matrix solvable and exhibits no SSB.
model[8]—the Ishibashi-Kawai-Kitazawa-Tsuchiy&KKT)
version of the Matrix Theory9]. The type 1IB matrix model, Il. THE MODEL
which was proposed as a nonperturbative definition of type
IIB superstring theory in ten dimensions, is a supersymmet- The partition function of the model we consider is given
ric matrix model composed of 10 bosonic matrices and 1y
fermionic matrices, and it can be thought of as the zero-
volume limit of 10D SU(N) super Yang-Mills theory :f T a—(SytSy)
[16,10-13. The 10 bosonic matrices represent the dynami- z dAdydy e " @
cal space-tim¢1] and the model is manifestly invariant un-
der S@10) transformations, where the bosonic and fermi- 2
onic matrices transform as a vector and a Majorana-Weyl Sh= EN”(AM)' )
spinor, respectively. Our four-dimensional space-time may

be accounted for if configurations with only four extended S = —W(F )AL &)
directions dominate the integration over the bosonic matri- 4 ot e
ces. This in particular requires the 80) symmetry to be whereA, (x=1, ... D) areNxN Hermitian matrices and

spontaneously broken. — ¢ i ]
Monte Carlo studies of the type 1B matrix model are ¥« ¥. @r€N-dimensional row and column vectors, respec-

technically difficult due to the so-called complex-action tively. [The system has an SNf symmetry] We assume
problem, since the Grassmann integral over fermionic matrithatD is even, but we comment on a generalization to bdd
ces yields a complex quantity in general. If one omits théater. The actions2) and(3) are SOD) invariant, where the
bosonic matrice#\, transform as a vector, and the fermion
fields@ and ¢!, transform as Weyl spinors. The spinor in-
*Electronic address: nisimura@eken.phys.nagoya-u.ac.jp dexa runs over 1. .. ,p, wherep=2P?"1 s the dimension
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of the spinor space. TheXx p matricesI’, are the gamma random matrix theory15]. Integrating out the bosonic ma-
matrices after Weyl projection. The flavor indéxuns over tricesA,,,
1,... N;. We take the largeN limit with r=N;/N fixed

(Veneziano limit [17]. The fermionic part of the model can NiJ’ - [ 1 '
be thought of as the zero-volume limit of the system of Weyl z N dydy ex 2N Sremil ©
fermions in D dimensions interacting with a background
gauge field via fundamental coupling. Srerm= (¢ A 5(¢ %) (10)
Integrating out the fermion fields, one obtains 7
f dA & S(detD)V, @ Sap.10= 2 1y (F VoL yp (11)

where D is a pNX pN matrix given byD=T,A,. In D The normalization facto\ in Eq. (9) is given by

=2, we find that deD transforms under an §@) transfor-
mation as deD—€'’detD, whered is the angle of rotation N=]1 (m#)NZ/Z_ (12
[18,14]. Hence the partition functio() vanishes in this case w
[19]. InD=4, detD is SOD) invariant and so is the model. o .
The fermion determinant d&t is complex in general. Un- Here and henceforth, we omit irrelevamtindependent fac-
der parity transformationAS=—Ap and AP=A, (for i  tors in the partition function. ,
#D), it becomes complex conjugate. From this, it follows '€ four-Fermi actionl10) can be written as
that detD becomes real ifAp=0, or more generally, if (+) (-
n,A,=0 for some vecton,, . Srermi= 2 g, y&(q)aﬁ 1gPyo1g™ Pag, fgq)ysfg) 13
We interpret theD bosonicN XN Hermitian matricesA ,
as the dynamical space-time as in the type IIB matrix model o) Ctg= _(@(/,%Jr@l,/,fﬁ),
[1]. The space-time has the Euclidean signature as a result of
the Wick rotation, which is always necessary in path-integral

formalisms. In the present model, we can obtain the extent of &) = (T =8y 14
Space—'[ime aﬁ fg— (l/l lﬂg W 'ﬁ,g) ( )
5 5 The matrixX, where we consider«) and (yd) as single
R™= ﬁtr(Au) =D+rp ) indices, is symmetric, and one can always make it real by
choosing the representation bf, properly. Hence one can
using a scaling argument for arbitraly/ diagonalize it as
In order to probe the possible SSB of JW)( we first
eneralize the bosonic action as _
g Eaﬁ,yﬁ_g Oaﬁ,pTAp’To’}/(S,pT' (15)
-1 5 5
Sp(m) = EN m m,tr (A). ©) and Eq.(13) can be written as
2
We calculate the extent in theth direction
. X ! h@ ! I SFerm| E APT(Z Oa,B pT aﬁfg)
1
N,= <—tr (A )2> (no summation oveg) 2
® 2 R -
N . -3 a3 oaﬁ,ppgﬁzfg) T
pT a
:_iim Z(m) 7) Each square in Eq(16) can be linearized by a Hubbard-

N2 dm, Stratonovitch transformation according to
for arbitraryrﬁ in the largeN limit. Then we take the limit of 5 a?
m,— 1 (for all v) keeping the order exp—AQ%)~ | doexp 1 —iQo ). (17)

My<Mp<---<Mp. (8) Introducingp? complex matrices}pT of sizeN;, we arrive

If A\, do not converge to the same value, it signals the SS@t
of SO(D) symmetry.

1 n _
ZNJTJ dodydyexpg—NS;+ Sg), (19
IIl. THE METHOD
We study the mode{1) with the anisotropic bosonic ac- Seg= Tr(apT or); So= ¥ M Lgﬁzp%,
tion (6) in the largeN limit by using a technique known from (29
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where thep N; X p N; matrix M is matrices and ' ,=i1. The matrixM is a 2x 2 matrix
1 - - at+ib ic+d
M= JA,.0.5,.(0,.+0" )iq. 20 M(o)=| . , 2
s \/Eg prOaspr(Tort Tpr)tg 20 (D=ic_d a-ib)’ (28)
The fermionic integration yields a=\pso11;  b=1p30o
1 - -
ZNJT/’ doexp(—NW o)), (21) Cc= \/Eﬂ'lzi d=\/5021, (29
R where we have introduced the notation
where the effective actioV[ o] is given by
~ — _ [ -1
W[ &)= Se— In detiM . 22 pu=2 (=1)%(m,) "%, (30
Let us first consider the largé limit with finite N¢. Thenthe  The saddle-point equations are
evaluation of the partition function amounts to solving the
saddle-point equations, which are given by o1=A"1pso11; o=A1piop,
1 on=A"1py021; 0= Atpzoyy, (3D

Fog=(E}i0= 75 3 (M B Oy (23 o
ap where A=a?+b?+c?+d? Equation (31) implies thatA

: . should take one of the four possible valygas p,, p3 and
Assuming that the flavor SB(;) symmetry is not broken, ps- In each case, the effective action is evaluatedWas

we set&mz o,.l, whereo,. e C. We can further taker,, to  _ N((1—In A).

be real, due to Eq23). The effective action reduces to When the parameter§ obey the ordef8), the dominant

W=N¢{(o,,)°—IndetM (o)}, (24)  saddle point is given bA=p,. Thus the partition function
? can be obtained as
where thepX p matrix M (o) is given by 1
Z~ Ne“ Niln pa (32)
Maﬁ(o-): \/Eé VApTOaB,pTUpT' (25)
Using Eq.(7) we get
Thus the problem reduces to a system of finite degrees of

freedom.
Next we consider the largd limit with r=N;/N fixed.

We assume thatis small, and expan&m around thgdomi-
nany saddle-point configuration obtained for finikg as

A, ,=(m )*1+2ri(m )~? (33
I “ - P4 “ ’

where thex symbol should bet+ for ©=1,2,3 and— for
m=4. In the limit of m,— 1 (for all ), one obtains

(0pr)tg=0prdtg™ Jiﬁ@m)fg. (26) MZA=hg= 14 =1, 34
which means that the 3@ is spontaneously broken down to
The partition function can be evaluated as SQ(3). We note thatR?=3 \ ,=4+2r agrees with the fi-
nite N result(5). The SSB is associated with the formation of
Zwie—NW[a]-%—C 27 @ condensatéy! ), which is invariant under S@), but
N ' not under full S@4). We remind the reader that E¢34)

] _gives the result up to @f as we discussed in the previous
where C represents the correction due to the fluctuationgection.

(é,7)tg- The saddle-point contributioN\W o] in Eq. (27) is
of order O¢N?). The correctiorC grows asN? at largeN,
and thus it may become comparableNOV o]. However,
the fact that it can be neglected for finltg means that it is In order to clarify the role played by the phase of the
suppressed at smalby higher powers than Therefore, one determinant deb, let us consider the model
can neglect the correctio@ in the largeN limit with r

=N; /N fixed, as far as results up to §(are concerned. 7/ :j dAe | detD| .

V. THE PHASE OF THE DETERMINANT

(35

IV. EXACT RESULTS IN 4D
This model can be obtained by replacing half of MeWeyl

Let us solve the saddle-point equations explicitly in thefermions ¢ in Eq. (1) by Weyl fermionsy with opposite
simplest casdD=4. We choosd’; (i=1,2,3) to be Pauli chirality. Namely, Eq.(35) can be rewritten as
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Z'= J dAdydydydy e (St Su+S0, (36)
S=Xu(T 1) apP X (37)

We use a representation of gamma matrices in whichi

=1,...,(0—1)] are Hermitian and'p=il. Note that the

flavor indexf now runs overf =1, ... N¢/2.

We can solve the above model with the anisotropic
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c= P14?T12i a=vp24521, (49
where we have introduced the notations
p=2 (M) Y pa=2 (—1)2%Fo%(m,) L,
(46)

For the first class of solutions, the effective action at each

bosonic actior(6) in the largeN limit using the same method saddle point is given byW’'=N¢(1—Inp,) , where v

as before. The four-Fermi action reads
Stemi= (U ap s WD+ XXDZ ap,5s(XIXE)
+(PXDZ g o XD+ ADE gy $oXD),
(39

where 3. can be obtained fron® by replacingmp by
—mp . Similarly to Eq.(15), it can be diagonalized as

2&/3,76:2 6&/3,,07'?&;)7076,,07" (39)
pT

In order to linearize Eq(38), we have to introduce four sets

~ ; ; 2 ~ ~S ~ A
of o,, matrices, which we denote agff, oy, o,.ando,, .

As before, we setr’, = o1, wherea/ e R, etc. Introducing
a new complex variable,,= (172)(a5, +i0%,), the effec-
tive action becomes

! Nf ’ !
W'= —=-(Sg=IndetM”), (40)
Se=(o)2+ (0¥ )+ 2[0,|? (41)
M(o?)  M(o)
= _ . (42)
M(a*) M(o¥)

The px p matricesM (o¥) andM(oX) are the same as Eq.

(25 except thawr, . is replaced byrp‘ﬂ andoy,,
The newpx p matrix M () is given by

M ﬂﬁ(a) = \/E E \ Kp7'acrﬁ,p7';-p7' '
pT

respectively.

(43

The set of solutions to the saddle-point equations is rich

than before. There are solutions with,,= o, =0. In this

=1,2,3,4. For the second class of solutions, the saddle-point
equations become

_A-1. 7.
o1=A Tpoy;

I
01,= A7 " p1yo

iy e
051= A7 p2y0as;

5= A pyozy, 47
and their complex conjugates, whefe=a%+b?+c?+d?.
Due to Eq.(47), |A| should take one of the four valugs
P14, P22 @Ndpg,. In each case, the effective action is evalu-
ated asW’ =N;(1—In[A)).

Thus for arbitraryn3, we find that the dominant saddle

point is given by the second class of the solutions With
=p and the partition function is obtained as

1
Z!~ e, (48)

Using Eq.(7) we get

(49

-1 1 A 1
A,=(m,) +2r;(mﬂ) —1+ Er,

in the limit of m,— 1 (for all »), which means that S@) is

preserved. A nonvanishing condensate/ x' + x! ")
breaks chiral symmetry, but not $40).

VI. SUMMARY AND DISCUSSION

One can generalize the model to oBdby considering
Dirac fermions instead of Weyl fermions. In fact, such a
model can be obtained from the evBnmodel considered
here by taking thenp— limit. The result for the 3D case
can thus be read off from Eg@33) as)\ﬂ=1+§r for all u,
which preserves the §8) symmetry. We note that in the odd

b models the fermion determinant for each flavor is real, but

it is not necessarily positive. However, for evisih one ob-

case, the problem reduces to the previous one. Howevefains a real positive weight, and for odit} the sign of the

there is another class of solutions in whia;sz ar.=0.

Let us consider th® =4 case. The matri is a 2x 2
matrix

ol

a+ib ic+
, (44)

Y
[
gl

a= \/;5'11; b= \/P_a41~722

weight is independent of;. This explains the absence of
SSB in the 3D model. Based on a similar argument, we
speculate that the SO() symmetry ofeven Dmodels is
spontaneously broken down to SO 1) in general.

Our model provides a concrete example in which the
spontaneous breakdown of SQ) symmetry is caused by
the phase of the fermion determinant. While this demon-
strates the conjectured mechanism for the SSB in the type
IIB matrix model, the actual dimensionality of the dynamical
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space-time should be determined by the dynamics, whickerve also as a toy model for testing new methods to deter-
must be very different from the present model. In particularmine the dimensionality of the dynamical space-time in the
it is known that supersymmetry makes the dynamical spaceyype 1B matrix model.
time behave like a branched-polymer systghh which is
expected to be much easier to collapse due to the external
force caused by the effec_ts we have studied here. _ ACKNOWLEDGMENTS
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