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Is the truncated SU„N… non-Abelian gauge theory in extra dimensions renormalizable?
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In this article we show that, in the extra dimension model, contrary to the widely accepted conception, the
simply truncatedf4 and non-Abelian SU(N) Kaluza-Klein theories are not renormalizable; i.e., the tree level
relations of the effective theories cannot sustain the quantum corrections. The breaking down of the tree level
relations of the effective theories can be traced back to several factors: the breaking of the higher dimension
Lorentz symmetry and higher dimension gauge symmetry, interactions assumed in the underlying Lagrangians,
and the dimension reduction and rescaling procedure.
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Renormalization holds a quite special role in the devel
ment of the quantum field theory@1#. As we know, quantum
corrections of the 4D quantum field theory are generally
finite, and only in a renormalizable theory is it possib
through the standard renormalization procedure to rem
the ultraviolet divergences in the theory by introducing on
few finite counterterms and to make loop contributio
~quantum corrections! finite and meaningful.

By considering the degrees of superficial divergence
the irreducible vertices of a specified quantum field the
defined in D dimension, the criterion of renormalizability c
be simply formulated@2,3# as

V5D2(
i 51

n

di2
D21

2
Ef2

D22

2
Eb , ~1!

where V is the superficial divergence of any a Feynm
integral determined by the theory,di is the mass dimension
of couplings of the theory, andEf (Eb) is the number of
external fermions~bosons!. This equation tells us that
theory with couplings of positive or vanishing mass dime
sion is ~super!renormalizable, while a theory with coupling
of negative mass dimension is nonrenormalizable. And
nonrenormalizability of a quantum field theory in extra d
mensions becomes a straightforward inference due to the
that any couplings in the theory~except thef3 in 5D and 6D
@4#! will have a negative mass dimension.

In non-Abelian gauge theory, we meet another kind
problem of renormalizability. The theory is unquestionab
renormalizable if only judged from the power law given
Eq. ~1!. But it is not sufficient. In the pure Yang-Mills theory
for instance, there is only one coupling constant in the the
which determines both the trilinear and quartic couplings
vector bosons and the ghost-ghost-vector coupling, as
quired by the quantum gauge covariance. A subtle prob
arises: whether the tree-level gauge structure is prese
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after taking into account the quantum corrections, in ot
words, whether the counterterm determined by, say, the th
point Green function, is enough to eliminate the ultravio
divergences of the four point Green function of the vec
boson and the ghost-ghost-vector interaction. As we kn
the Becchi-Rouet-Stora-Tyutin~BRST! symmetry@5# and the
Slavnov-Taylor identities@6# guarantee the tree level gaug
structure of the theory order by order, and the pure Ya
Mills gauge theory is renormalizable@7#. When more par-
ticles are added to a non-Abelian gauge theory, if there is
anomaly, we know the theory is still renormalizable, even
the case when the gauge symmetry is spontaneously bro

The extra dimension theory is a fast developing topic
recent years, and two kinds of extra dimensions can
roughly divided: large extra dimensions where gravity
considered, and small extra dimensions where the stan
model is extended to the high dimensions. We are concer
with the latter case here, and there are many papers on
models and phenomenologies of it@8,9#. But, there is an
irksome problem about it which is that theoretical pred
tions are explicitly cutoff dependent even in tree level calc
lations due to the sum of infinite Kaluza-Klein~KK ! excita-
tions. Such a fact can be traced back to the intrin
nonrenormalizability of the higher dimension quantu
theory. Furthermore, the trouble becomes even more ser
for the loop processes.

There are papers to regularize the divergent contribu
of KK excitations@10#, and it seems only the string regula
ization can provide a solid solution to the problem@11#. Re-
cently, the renormalizable effective theory of the extra
mension is constructed in reference@12#, where the mass
generation mechanism of the compactification of extra
mension is nonlinearly realized in a technicolor way or in t
latticed extra dimension. The~de!constructing way only pro-
vides an effective description of the extra dimension theo
but does not prove that an extra dimension theory~or a sim-
ply truncated theory! is renormalizable.

To evaluate the contribution of KK excitations, a wide
accepted and practical conception indicated in the litera
©2002 The American Physical Society09-1
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QI-SHU YAN AND DONG-SHENG DU PHYSICAL REVIEW D65 105009
is to truncate the infinite KK towers to finite. With the belie
that the truncated KK theories are always renormalizable,
tree-level relations among couplings are always used
make theoretical predictions, both in the tree level and o
loop level. However in this paper we will show that the tr
level relations of the effective theory might be broken by t
quantum corrections. Considering the characteristic po
running of extra dimension models, a large deviation fro
the tree level relations might be caused. Therefore, from
ther the theoretical respect or the numerical and pract
respect, this conception is quite questionable. Below we
detail this problem in two cases: thef4 theory and the non-
Abelian SU~N! gauge theory defined in 5D. In order to co
trast and compare, we will also examine the QED andf3

theory in 5D.
We examine thef4 theory first. The Lagrangian of thef4

theory in 5D is defined as

L5~]Mf5D!†~]Mf5D!2m2~f5D!†f5D

2
l5D

4
@~f5D!†f5D#2, ~2!

where M50,1,2,3,5. The complex singlet fieldf5D and
quartic couplingl5D have the mass dimensions 3/2 and21,
respectively. This Lagrangian owns a 5D Lorentz space-t
symmetry and global U~1! inner symmetry with the universa
phase defined in 5D.

And according to the power law given in Eq.~1!, this
theory is nonrenormalizable. However, it is helpful to und
stand the Lagrangian given in Eq.~2! in Wilson’s renormal-
ization method@3#, which is valid for quantum field theorie
defined in any dimension of space-time. In this method,
principle of renormalizability is not necessary. The price p
for the sacrifice of this restrictive principle is that one has
include all interactions in the effective Lagrangian permitt
by the 5D space-time Lorentz and 5D gauge symmetry,
the number of these operators is infinite. In thef4 case we
consider here, besides the minimal interaction term (f†f)2,
interactions like (f†f)3, f†h2f, etc. should also be adde
to the Lagrangian given in Eq.~2!. According to the effective
theory @13#, at low energy region the interaction terms wi
lower dimensions dominate the behavior of the system.
the Lagrangian given in Eq.~2! can only be understood a
being valid below a given ultraviolet cutoffLUV

5D , where op-
erators with higher dimensions have been greatly suppres
Therefore the Lagrangian given in Eq.~2! should be only
valid for uP5Du,LUV

5D , otherwise the unitarity of the
S-matrix will be violated ifuP5Du is much greater thanLUV

5D .
~Here uP5Du5ApM

2 ,M50,1,2,3,5, and the metric of spac
time is taken as that of a Eucludian one.!

The Lagrangian given in Eq.~2! also has an infrared cut
off L IR

5D in the compactified extra dimension theories wh
L IR

5D approaches the compactification scale 1/RC (RC is the
compactification size!. The reason for this infrared cutoff i
that near the energy region 1/RC it would be not appropriate
any longer to regard the fifth dimension as infinite large a
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use the 5D Lorentz symmetry and 5D gauge symmetry
restrict operators which might appear in its effective L
grangian.

For the small extra dimension scenarios, the extra dim
sions are always assumed to by compactified and small~say
TeV size!. In order to match with the low energy region
where the observed world is 4D, the standard dimension
duction method and the matching procedure are used to
rive the effective 4D quantum field theory. For example,
assuming that the vacuum manifold has aM43S1/Z2 struc-
ture ~the 5D Lorentz space-time symmetry is broken by t
vacuum while the U~1! symmetry should also be modified!,
and by requiring that the Lagrangian is invariant under
orbifold transformationx5→2x5, we can assign a boundar
condition for thef5D : f5D(x,x5)52f5D(x,2x5). Then
the f5D field can be Fourier expanded as

f5D~x,x5!5f5D
n cos

nx5

Rc
. ~3!

Substituting Eq.~3! into the Lagrangian given in Eq.~2! and
integrating out the fifth component of the space-time, we
the following reduced effective 4D theory~RE4DT!

Le f f5Lkin1Lint , ~4!

Lkin5 (
n50

fn†S 2]m]m2
n2

Rc
2

2m2D fn, ~5!

Lint52
l

4H ~f0†f0!21 (
k,l ,m51

`

R1~k,l ,m!

3~f0†fkf l†fm†1H.c.!1 (
n51

`

@4f0†f0fn†fn

12Re~f0†fnf0†fn!#

1 (
k,l ,m,n51

`

R2~k,l ,m,n!fk†f lfm†fnJ , ~6!

whereRi ,i 51, 2 are normalization factors and can be u
derstood as the requirement of the momentum conserva
of the fifth dimension. Here we omit the subscript 5D for a
quantities. To get the RE4DT, the following rescaling re
tions have been used:

f4D
0 →A2pRcf5D

0 , f4D
n →ApRcf5D

n , l4D→ l

2pRc
.

~7!

The theory owns a 4D space-time symmetry and the redu
global U~1! symmetry. The RE4DT is invariant under th
following transformation:

fn→exp~ ia!fn. ~8!

It is remarkable that there is an infinite KK towers in th
theory, and the zero modes have a different normaliza
factor than the other KK excitations. Another remarkable f
is that the infinite interactions among KK modes are co
trolled by only one parameterl.
9-2



e-
DT
ve
,

sio
K

KK
n

a

ed

ru

ar

te
ve
ta
th

i
id
n
m

s-

ua
e
ta
o
ee
op

x-
. I
o

a-

nd

he

p

sily
he

t
-

till
an

e
bu-

ust
o
-
vi-
an-
ent
on
e
of

n
n
or-

er

IS THE TRUNCATED SU~N! NON-ABELIAN GAUGE . . . PHYSICAL REVIEW D 65 105009
Now the effects of high dimension are effectively r
flected by the infinite KK towers that appeared in the RE4
given in Eq.~6!. There is no coupling which has a negati
mass dimension in the theory, and from the power law
seems that the theory should be renormalizable and the
mension reduction procedure makes a higher dimen
theory to a renormalizable one. But, due to the infinite K
excitations, even if the contribution to a process of each
excitation is finite, the total result might still be infinite. I
this sense, the RE4DT is still nonrenormalizable.

To effectively describe the 5D theory given in Eq.~2!, we
must match its RE4DT with the underlying 5D theory at
given scaleL8, which should be in the rangeL IR

5D,L
,LUV

5D . Therefore, the infinite KK excitations are truncat
by requiringN8/RC'L8 (N8/RC is the heaviest KK excita-
tion included in the RE4DTLL8

4D) and only finite KK excita-
tions are kept in the RE4DTLL8

4D . Then finite results could be
obtained even for loop processes. It is in this sense the t
cated KK theory is renormalizable.

But is that all? Since the couplings among KK modes
controlled by only one parameterl4D , then it is natural to
ask whether it is enough to introduce just only one coun
term to eliminate all ultraviolet divergences in the effecti
theory? Or in other words, can the tree level structure sus
the quantum corrections? The problem is quite similar to
case for the non-Abelian gauge theory in 4D.

In the underlying 5D theory, the answer to this problem
affirmative. To demonstrate the reason, let us cons
matching the RE4DT with the underlying 5D theory at a
other scaleL9, and for the sake of convenience, we assu
that L IR

5D,L9,L8,LUV
5D . So after invoking the matching

procedure atL9, we will get theLL9
4D with N9 KK excitations

(N9 is determined byN9/RC'L9). There are two differ-
ences between theLL8

4D and LL9
4D : ~1! the numbers of KK

excitations are different, theLL9
4D can be obtained by succe

sively integrating outN82N9 KK excitations;~2! the values
of couplingsl5D(L9) and l5D(L8) are different, but are
related with each other by the renormalization group eq
tion ~RGE! of l5D . However, these two RE4DTs have som
thing in common: the tree-level relations among KK exci
tions seem to be hold. Since the RGE is valid in the lo
level, then it might tantalize one to expect that these tr
level relations would also hold in the RE4DTs in the lo
level. However, we will show that is not the case.

To simplify consideration, we truncate the infinite KK e
citations and keep only the 0 and 1 modes in the RE4DT
order to find the consistent solution to the requirement
renormalizability, we rewrite the interaction part of the L
grangian in a more general form,

2Lint5
l00

4
~f0†f0!21

l11

4
~f1†f1!2

1
l01

4
@4~f0†f0!~f1†f1!12Re~f0†f1f0†f1!#.

~9!
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The RE4DT is only a special case of the interaction a
gives

Rl5Rl005Rl015l11, ~10!

where R53/2. Now we determine the counterterms of t
theory. The counterterms,dl00, dl01, and dl11 of l00,
l01, andl11, can be directly constructed from the one-loo
diagrams. In the dimension regularization andMS̄ renormal-
ization scheme, thedl00, dl01, anddl11 are simply deter-
mined as

dl005
3

2
kDe~l00

2 1l01
2 !, ~11!

dl015
1

4
kDe~l01l001l01l1114l01

2 !, ~12!

dl115
3

2
kDe~l11

2 1l01
2 !, ~13!

where k51/(16p2), De52/e2gE1 log 4p, and e542D.
With these counterterms, the consistent solution can be ea
found. If the RE4DT is renormalizable, we hope that t
following relation should hold:

dl005dl015dl11. ~14!

Then the consistent solution for this equation requires

l005l015l11, ~15!

but the tree level relation given in the Eq.~10! obviously is
not satisfying Eq.~15!. Therefore it is impossible to jus
introduce one countertermdl to make the quantum correc
tions of the theory finite, and the tree-level relation Eq.~10!
breaks down. And it is in this sense that the RE4DT is s
nonrenormalizable. For the truncated theory with more th
one KK excitations, we have the same conclusion.

It is remarkable that from Eqs.~11!–~13! we know the
tree level relationl005l01 will also be broken down due to
the contribution froml11, so it is questionable to use th
relation at low energy regions when evaluating the contri
tions of KK excitations to the effective potential off0.

Of course, if we forget the dimension reduction and adj
the normalization factorR to be just one, then it is enough t
just introduce one countertermdl to make the quantum cor
rections of the theory finite, at least up to one loop. Ob
ously, the procedure of normalizing and rescaling in the st
dard dimension reduction, which makes zero modes differ
from other KK excitations and produces the normalizati
factor Ri , is blamed for the nonrenormalizability of th
theory. So we conclude here that the nonrenormalizability
the high dimensionf4 theory leaves its trace not only i
appearing the infinite KK excitations but in breaking dow
the tree level relations among couplings with quantum c
rections. We also see here that the reduced U~1! symmetry of
the theory is not much help for the problem at hand.

Equipped with this experience, it is natural to ask wheth
the tree level relations of the truncated SU~N! gauge theory
9-3
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QI-SHU YAN AND DONG-SHENG DU PHYSICAL REVIEW D65 105009
can sustain the quantum corrections. Now we consider
case of non-Abelian SU~N! gauge theory. The Lagrangian i
5D is given as

L52
1

4
FMNFMN2

1

2j
F2~AM !1 c̄

dF~AM !

da
c, ~16!

whereFMN5]MAN2]NAM1 f AMAN , and f is the structure
constant of the Lie algebra.F(AM) is the gauge fixing term
and can be assumed@8# to have the form

F~AM !5]MAM. ~17!

The theory has the Lorentz symmetry of 5D space-time
BRST symmetry in 5D. But the theory is nonrenormalizab
even if we only judge from the naive power law, since t
gauge coupling owns a negative mass dimension. So
mally, even though the theory owns a gauge symme
~BRST symmetry in 5D!, it is still nonrenormalizable.

Similar to the argument in thef4 theory in 5D, the La-
grangian given in Eq.~16! can only be understood as bein
valid below the ultraviolet cutoffLUV

5D , otherwise effects of
other higher dimension operators will be important or t
unitarity condition of theS matrix will be violated.
10500
e

d

r-
y

The vacuum manifold is assumed to have the struct
M43S1/Z2 and the Lorentz symmetry of 5D is spontan
ously broken. Considering the fact that the 5D space-ti
symmetry is broken to 4D space-time symmetry, and the
gauge symmetry is broken to 4D gauge symmetry, below
will choose the gauge fixing term

F~AM !5]mAm2j]5A5. ~18!

The advantage of choosing this gauge fixing term rather t
the one given in Eq.~17! is that physical observables ar
gauge parameter independent.1

By assigning a boundary condition for the vector gau
field

Am~x,x5!5Am~x,2x5!, ~19!

and decomposing quantum fields in 5D withAm(x)
5Am

n (x)cos(nx5 /Rc), we get the RE4DT in the following
form:

L4D
e f f5L001LED, LED5Lkin

ED1Lint
ED , ~20!
, and
gian has

entum,
there is
s. And

ngs of
and 5D

s

Lint
ED5LK0

ED1LKK
ED , LK0

ED5LK0,tr i
ED 1LK0,qua

ED , ~21!

Lkin
ED5Am

0 Fgmn]g]g2]m]nS 12
1

j D GAn
01 c̄0~2]m]m!c01 (

n51

`
1

2
Am

n Fgmn]g]g1gmn
n2

Rc
2

2]m]nS 12
1

j D GAn
n

1 (
n51

`
1

2
A5

nS 2]m]m2j
n2

Rc
2DA5

n1 (
n51

`

c̄nS 2]m]m2j
n2

Rc
2D cn, ~22!

LK0,tr i
ED 52

1

2
g fabc(

n51

`

~W0amnAm
nbAn

nc12Am
0aAn

nbWncmn!1g fabc(
n51

`

Am
a0A5

nbS ]mA5
nc1

n

Rc
AncmD

1g fabc(
n51

`

]mc̄naAm
0bcnc, ~23!

whereL00 represents terms of pure zero modes,LK0,qua
ED represents the quartic coupling between the zero and KK modes

LKK
ED represents couplings among KK excitations. Here we omit those interactions among KK excitations. The Lagran

a 4D Lorentz space-time symmetry and the reduced BRST symmetry. There is a conservation law of the fifth mom
which can be viewed as the result from the compactification of the fifth dimension space. Again, it is remarkable that
an infinite KK tower in the theory, and the zero modes have a different normalization factor than the other KK excitation
the infinite interactions among KK modes are controlled by only one parameterg, the gauge coupling constant.

The matching procedure will truncate the infinite KK excitations to finite. And the tree level relations among coupli
KK modes are expected to hold if one judges from the underlying theory with the 5D Lorentz space-time symmetry
gauge symmetry.

In order to examine the renormalizability of the truncated theory, as done in thef4 case, we truncate the infinite KK tower
and keep only the 0 and 1 modes in the Lagrangian. And the Lagrangian has the following form:

1Reference@14# also used this gauge fixing term.
9-4
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L5Lkin1Lint , Lint5Ltri 1Lqua , ~24!

Lkin5Am
0 Fgmn]g]g2]m]nS 12

1

j D GAn
01 c̄0~2]m]m!c01

1

2
Am

1 Fgmn]g]g1gmn
1

Rc
2

2]m]nS 12
1

j D GAn
1

1
1

2
A5

1S 2]m]m2j
1

Rc
2DA5

11 c̄1S 2]m]m2j
1

Rc
2D c1, ~25!

Ltri 5g fabcH 2
1

2
~]mAn

0a2]nAm
0a!A0bmA0cn2

1

2
~]mAn

0a2]nAm
0a!A1bmA1cn2

1

2
~]mAn

1a2]nAm
1a!~A0bmA1cn1A0bmA1cn!

1]mc̄0aAm
0bc0c1]mc̄1aAm

0bc1c1]mc̄0aAm
1bc1c1]mc̄1aAm

1bc0c1
1

Rc
A1amAm

0bA5
1c1

j

Rc
c̄1aA5

1bc0c1]mA5
1aAm

0bA5
1cJ ,

~26!

Lqua5g2f abef cdeH 2
1

4
Am

0aAn
0bA0cmA0dn2

1

2
Am

0aAn
0bA1cmA1dn2

1

2
Am

0aAn
1bA0cmA1dn2

1

2
Am

0aAn
1bA1cmA0dn

1
1

2
Am

0aA5
1bA0cmA5

d11
R1

2
Am

1aA5
1aA1cmA5

d12
R2

4
Am

1aAn
1bA1cmA1dnJ , ~27!
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whereR151/2 andR253/2.
This simplified RE4DT has five particles, where massl

zero modes includeAm
0 , and c0 and the massive first KK

excitation includesAm
1 , c1, andA5. There are nine trilinear

and five quartic couplings, all are controlled by just one co
pling constantg. Generally, in the framework of effectiv
theory, we have only 4D spacetime Lorentz symmetry a
4D SU~N! gauge symmetry of zero mode to restrict perm
ted operators in the Lagrangian, and each of these coup
might be treated as a free parameter, as we do in thef4 case.
Besides, there might be some extra interactions
A5

1A5
1A5

1A5
1, which is still renormalizable in 4D and is ex

pected to play an important role in the low energy regio
However, for the sake of simplicity, we use these tree le
relations to calculate and check whether these relations
consistent with the requirement of renormalizability.

In order to simplify the discussion, we omit the renorm
ization of mass and gauge terms, and only consider the c
terterm of the relevant vertices given below

dLint5dZ000Am
0aAn

0bAr
0c1dZ011Am

0aAn
1bAr

1c

1dZ0000Am
0aAn

0bAr
0cAs

0d1dZ0011Am
0aAn

0bAr
1cAs

1d

1dZ1111Am
1aAn

1bAr
1cAs

1d . ~28!

If the theory were renormalizable~the tree level relations
held!, these counterterms should have their structures
given below

dZ000(011)5c000(011) V3 , ~29!

dZ(0000),(0011,1111)5c0000,(0011,1111) V4 , ~30!

whereci should be number, andV3 andV4 have the follow-
ing forms
10500
s

-

d
-
gs

e

.
l
re

-
n-

as

V35g fabc@gmn~p2q!r1gnr~q2k!m

1grn~k2p!n#, ~31!

V452 ig2@ f abef cde~gmrgns2gmsgnr!

1 f acef dbe~gmngrs2gmsgnr!

1 f adef bce~gmngrs2gmrgns!#

52 ig2@gmrgnsSbd
ac1gmsgnrSbc

ad

1gmngrsScd
ab#, ~32!

whereScd
ab5 f acef bde1 f adef bce, andScd

ab is unchanged~sym-
metric! when the indicesa(c) andb(d), and (ab) and (cd)
interchange with each other.

And if the tree level relations among vertices were p
served after considering the quantum corrections, the follo
ing relations should also hold:

Z000
2 5ZA0Z0000, Z0115

ZA1

ZA0

Z000, ~33!

Z00115
ZA1

ZA0

Z0000, Z11115
ZA1

2

ZA0
2 R2Z0000, ~34!

whereZA0 andZA1 are the renormalization constants of wa
functions andZ000, Z011, Z0000, Z0011, and Z1111 are the
renormalization constants of the corresponding vertices.

However, if those counterterms do not have the expec
structures or the above expected relations do not hold,
can necessarily conclude that the theory is not consis
with the requirement of renormalizability, i.e., the theory
nonrenormalizable.
9-5
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Before starting to extract those counterterms of vertic
we write down@here we use the Feynman and ’t Hooft gau
and work in the dimension regularization and modified mi
mal subtraction (MS) renormalization scheme# the wave
function renormalization ofA0, A1, andA5:

ZA0511S NVB3
10

3
2

NS

3 DCdiv , ~35!

ZA1511
19

3
Cdiv , ~36!

ZA5
5114 Cdiv , ~37!

whereCdiv5g2kDeC2(G). TheNVB is to count the numbe
of adjoint representations of vector bosons and their gho
NS is to count the number of adjoint representation of
scalar, and in our caseNVB52, NS51. C2(G) is the Ca-
simir operator of the adjoint representation of gauge gro
G. It is remarkable that the above result givesZA15ZA0.

Now we start to construct the relevant counterterms up
the one-loop level through the corresponding five proces
A0→A0A0, A0→A1A1, A0A0→A0A0, A0A0→A1A1, and
A1A1→A1A1, respectively. The relevant topologies of Fey
man diagrams are given in Figs. 1 and 2, respectively.

The counterterms of the relevant trilinear couplings
given below:

dZ0005S NVB3
4

3
2

NS

3 DCdv V3 , ~38!

FIG. 1. The topologies of 1→2 processes.

FIG. 2. The topologies of 2→2 processes.
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dZ011523
4

3
Cdiv V31

9

2
Cdiv f abc~R221!

3@gmnpr2gmrpn#. ~39!

p is the incoming momentum ofAm
0 . Then the renormaliza-

tion constant of the trilinear coupling of zero modes can
given as

Z000511S NVB3
4

3
2

NS

3 DCdiv . ~40!

The counterterms of the relevant quartic couplings
given as follows:

dZ000052S NVB3
2

3
1

NS

3 DCdiv V4 , ~41!

dZ001152
4

3
Cdiv V41~R221!T01, ~42!

dZ111152
4

3
Cdiv V41R1

2S111~R221!T11

1~R2
221!U11, ~43!

whereT01, S11, T11 andU11 are given as

T015
kg2De

4 H gmngrsF2
5

2
Scd

abC2~G!25Scd
abG

1gmrgsn@4 f abef cde12 f eagf gchf hdif ibe#

1gmsgrn@24 f abef cde12 f eagf gbhf hcif ide#J ,

~44!

S115kg2DeH gmngrsF1

2
Scd

abC2~G!1Scd
abG

1gmrgnsF1

2
Sbd

acC2~G!1Sbd
acG

1gmsgnrF1

2
Sbc

adC2~G!1Sbc
adG J , ~45!

T1152
kg2De

4
$gmngrs@23Scd

abC2~G!130Scd
ab#

1gmrgns@23Sbd
acC2~G!130Sbd

ac#

1gmsgnr@23Sbc
adC2~G!130Sbc

ad#%, ~46!

U115kg2H gmngrsF7

2
Scd

abC2~G!13Scd
abG

1gmrgnsF7

2
Sbd

acC2~G!13Sbd
acG

1gmsgnrF7

2
Sbc

adC2~G!13Sbc
adG J , ~47!
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where Scd
ab5 f ea ff f cgf gbhf hde1 f ea ff f dgf gbhf hce. S11 is the

contribution of scalarA5
1 in the two-point one loop,T11 is

from the three-point one loop with oneA1A1A1A1 vertex,
andU11 is from the diagrams with twoA1A1A1A1 vertices.
And the convention of indices is given asAm

ia→An
jbAr

jc and
Am

iaAn
ib→Ar

jcAs
jd . Substituting Ri into the sum of R1

2S11

1(R221)T111(R2
221)U11 we get

kg2DeH gmngrsF13

8
Scd

abC2~G!1
1

4
Scd

abG
1gmrgnsF13

8
Sbd

acC2~G!1
1

4
Sbd

acG
1gmsgnrF13

8
Sbc

adC2~G!1
1

4
Sbc

adG J . ~48!

So neitherdZ1111 nor dZ0011 nor dZ011 has the expected
structure.

The quartic coupling of the zero modes can be formula
as

Z0000512S NVB3
2

3
1

NS

3 DCdiv . ~49!

The renormalizability of the zero modes part can be ea
checked, since the relationZ000

2 5ZA0Z0000 indeed hold. The
nonrenormalizability of the KK excitations is obvious fro
the results given above. The difference ofZ000 andZ011 can
be explained by two facts: the first one is that there is
interaction term of the form]mA5Am

1 A5, since this term is
forbidden by the requirement of the conservation of the fi
momentum and is eliminated in the procedure of integrat
out the fifth space. There is indeed one diagram in whichA5
contributes superficially divergently, but it is finite. So th
scalar contributes to theA0→A1A1 convergently. The secon
one is related with the normalization factor of the quar
interactionA1A1A1A1, which provides the terms related wit
the normalization factorsRi . The differences betweendZ0000
anddZ0011(1111), can also be explained by these two facts

So, we see here that more than one counterterm is ne
sarily needed in order to eliminate all ultraviolet divergenc
for the processes we consider. In other words, the tree l
relations among couplings given by simply truncating t
infinite KK tower are not consistent with the requirement
a renormalizable theory. And it is in this sense that the s
ply truncated theory is nonrenormalizable. As explain
above, in the non-Abelian SU~N! gauge theory case, it is th
Ri and the forbidden trilinear coupling]mA5Am

1 A5 that con-
spire to make the truncated theory nonrenormalizable. Th
fore, in order to eliminate all divergences in the theory,
more generic effective Lagrangian with one KK excitati
which respects the 4D Lorentz space-time symmetry, the
zero mode gauge symmetry and the fifth momentum con
vation law should have the following form:
10500
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f
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e

D
r-

L52
1

2
Tr@FmnFmn#2

1

2
Tr@ F̄mnF̄mn#2MC

2 Tr@ĀmĀm#

2l21Tr@ĀmDmDnĀn#2l31Tr@FmnĀmĀm#

2l41Tr@ĀmĀn#Tr@ĀmĀn#

2l42Tr@ĀmĀm#Tr@ĀnĀn#2Tr@DmA5
1DmA5

1#

2MC
2 Tr@A5

1A5
1#2l33Tr@ĀmĀmA5

1#

2l43Tr@ĀmĀm#Tr@A5
1A5

1#

2l44Tr@ĀmA5
1#Tr@ĀmA5

1#

2l45Tr@A5
1A5

1A5
1A5

1#1•••, ~50!

where F̄mn5DmĀn2DnĀm, Dm5]m2 ig@Am,.#, Ā
5(aA1aTa, Ta are the generators of the gauge group, the
means to sum over the generators of the gauge group,
the omitted terms are related with gauge fixing and gh
terms. The effective Lagrangian is invariant under the f
lowing transformation:

A→A85UAU212
i

g
~]U !U21,

Ā→Ā85UĀU21,

A5
1→A5

185UĀ5
1U21. ~51!

After matching this generic effective Lagrangian with th
truncated RE4DT at the matching scaleL, the ultraviolet
boundary condition of couplingsl i in Eq. ~50! is fixed. Be-
low the matching scaleL, these couplings will develop in
terms of their RGEs, respectively.

Comparing the extra dimension model with the renorm
izable SU~5! unification model in 4D, there is a similarity
between these two theories: the breaking of the tree le
relations. In the SU~5! unification model, the SM is the ef
fective theory of SU~5! GUT theory for the energy scal
below the GUT scaleLGUT . At the LGUT , there are tree-
level relations among the couplings of gauge grou
SU(3)3SU(2)3U(1). Below theLGUT , due to the decou-
pling of Higgs multiplets and the SU~5! gauge symmetry
breaking, the gauge couplings develop, respectively, and
tree level relations of them are broken by the quantum c
rections.

There is a difference between these two theories: there
extra operators in the extra dimension model generated
quantum corrections. Compared with the renormaliza
SU~5! where all renormalizable terms of the subgro
SU(3)3SU(2)3U(1) have been contained in the Lagran
ian of SU~5! theory, the extra dimension SU~N! theory is
unlucky in this respect, since the extra interaction terms,
Tr@A5

1A5
1A5

1A5
1#, although not permitted by the 5D Lorent

and 5D SU~N! gauge symmetry, have to be introduced
order to remove divergences from the theory.
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In order to pinpoint the reasons for the breaking down
tree level relations and the appearance of extra operators
consider the dimension reduction and rescaling proced
of the renormalizablef4 theory defined in 4D. Assuming
that thez direction is compactified, by using the dimensio
reduction and matching procedure, we will get its RE3D
defined at a scaleLUV

3D . Since the RE3DT is a supe
renormalizable theory, vertex corrections are finite and th
is no need to introduce any counterterm for the couplings
the KK modes. However, after considering the quantum c
rections, the finite loop contributions still break the tree-le
relations among couplings of KK modes, the direct reaso
still the different normalization factor between zero mo
and KK excitations.

In the simply truncated effectivef4 and SU~N! effective
theories, either in 4D or in 3D, the tree level relations amo
couplings cannot hold in the quantum corrections, althou
they are supposed to hold in their underlying theories. T
fundamental reason for the breaking down of tree level re
tions seems to be related to the higher dimension Lore
symmetry and higher dimension gauge symmetry break
and the dimension reduction and rescaling procedure its

We examined the truncated QED theory, where only
vector boson is assumed to propagate in the bulk. The
grangian of the theory in 5D has the form

L52
1

4
FMNFMN1c̄~ igmDm2m!cd~x5! ~52!

whereFMN5]MAN2]NAM , M50,1,2,3,5,m50,1,2,3,c is
defined in the 3-brane andDmc5]mc2 igAmc. This theory
is nonrenormalizable in 5D due to the fact that the gau
coupling constantg has a negative mass dimension. We fi
that up to one-loop level, the tree level coupling structure
unchanged by the quantum corrections. The reason seem
be simple: the bilinear interaction vertices and normalizat
factors of the theories do not undermine the tree level r
,

,

10500
f
we
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re
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e

s
to

n
-

tions among couplings in these two cases, not as in thef4

and non-Abelian SU~N! gauge theories where the normaliz
tion factors of quartic couplings or forbidden terms bre
down the tree level relations. We also examined the real s
lar f3 theory in 5D, and this theory is superrenormalizab
according to the power law. The Lagrangian is given by

L5
1

2
~]Mf5D!~]Mf5D!2

1

2
m2~f5D!22

l5D

3!
~f5D!3.

~53!

And again we find that up to the one-loop level, the coupli
structure of its truncated theory is unchanged by the quan
corrections.

In summary, up to the one loop level, by truncating K
excitations to only one, we examined the renormalization
the truncated KK theories off4 theory, the non-Abelian
gauge SU~N! theory, the QED theory, and thef3 theory
defined in 5D, and found that the normalization factors
four KK excitations or the forbidden missing terms or bo
undermine the tree-level structure of the simply trunca
theories in quantum corrections. We conclude that the bre
ing of the higher dimension Lorentz symmetry and high
dimension gauge symmetry, interactions assumed in the
derlying Lagrangians, and the dimension reduction and
caling procedure play their roles in the breaking down of
tree level relations.
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