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Gravity dual of the chiral anomaly
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We study effects associated with the chiral anomaly for a cascadingSU(N1M )3SU(N) gauge theory
using gauge/gravity duality. In the gravity dual the anomaly is a classical feature of the supergravity solution,
and the breaking of theU(1) R symmetry down toZ2M proceeds via the Higgs mechanism.
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I. INTRODUCTION

Many supersymmetric gauge theories exhibit a class
U(1) R symmetry which is broken quantum mechanica
to some discrete subgroup. In traditional quantum fi
theory, this symmetry breaking can be understood as an
stanton effect. The purpose of this paper is to explore
analogous effects in the gravity duals to a few field theor
exhibiting this phenomenon.

Our analysis relies on the results of recent encourag
progress in extending the gauge theory-supergravity co
spondence@1–3# to theories with less than maximal supe
symmetry, realized by configurations of D-branes at sin
larities. For example, we might consider a stack ofN
coincident D3-branes located at the tip of the singu
Calabi-Yau space known as the conifold@4#. This system is
dual to anN51 supersymmetric gauge theory with gau
group SU(N)3SU(N) coupled to chiral superfields„two
bifundamentals transforming in the (N,N̄) representation,
and their conjugates, which transform in the (N̄,N) repre-
sentation…. The supergravity solution has the geome
AdS53T1,1, which manifests geometrically the conformal i
variance of the gauge theory. The Einstein manifoldT1,1 pos-
sesses a two-cycle and a three-cycle, and we can obtai
teresting variations of this theory by wrapping various bra
on these cycles@5–8#. In particular, wrapping D5-branes o
this two-cycle changes the gauge group toSU(N)3SU(N
1M ) and breaks the conformal symmetry.

This supergravity solution with wrapped D5-branes e
hibits a host of interesting gauge theory phenomena; for
ample, the reduction of the five-form flux as the radial co
dinate decreases corresponds to a reduction in the size o
gauge groups by a duality cascade@8#. An important feature
for our purposes is that the UVmetricexhibits aU(1) sym-
metry under rotations of a particular angleb in the tranverse
spaceT1,1, which is a geometric realization of the field the
retic R symmetry. However, the Ramond-Ramond~RR! po-
tentials break theU(1) symmetry. It can be shown that the
is an unbrokenZ2M subgroup of thisU(1) by studying frac-
tional instanton and domain wall probes in the gravity ba
ground @9–11#. However, one should not think about th
symmetry breaking as aneffectof these instantons, which d
not appear explicitly anywhere in the gravity dual. Rath
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we argue that the field theory anomalies are present bec
the classical supergravity RR potentials are not invariant
der theU(1) symmetry. By computing the variation of th
RR potentials we obtain the relevant anomaly coefficien
which agree with field theory exactly. Moreover, the anom
lous breaking of the globalU(1) symmetry appears as spo
taneous symmetry breaking in supergravity: the bulk vec
field dual to theR-symmetry current of the gauge theo
acquires a mass. We will also check the anomaly coefficie
for a relatedN52 orbifold theory, again showing exac
agreement.

II. THE ANOMALY AS NON-INVARIANCE OF THE UV
SUPERGRAVITY SOLUTION

Let us recall a few results regarding the supergravity d
of the cascadingSU(N1M )3SU(N) gauge theory. The
metric is of the form@8#

ds10
2 5h21/2~t!dxuu

21h1/2~t!ds6
2 , ~1!

whereds6
2 is the metric of the deformed conifold. The U

~larget) limit of this metric was found in@7#:

ds10
2 5h21/2~r !dxuu

21h1/2~r !~dr21r 2dsT1,1
2

!. ~2!

The metric onT1,1, the base of the conifold, is

dsT1,1
2

5
1

9 S 2db1(
i 51

2

cosu idf i D 2

1
1

6 (
i 51

2

~du i
21sin2u idf i

2!. ~3!

We define the angleb to range from 0 to 2p; it is related to
the anglec used in the previous literature byc52b. The
asymptotic form of the warp factor is

h~r !5
27p~a8!2

4r 4 FgsN1
3

2p
~gsM !2ln~r /r 0!

1
3

8p
~gsM !2G . ~4!
©2002 The American Physical Society07-1
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For sufficiently smallr, this metric is singular; to study IR
physics in the gauge theory, one must use the full solution
@8#.

The following basis of 1-forms on the compact space
convenient for calculations on the deformed conifold@12#:

g15
e12e3

A2
, g25

e22e4

A2
,

~5!

g35
e11e3

A2
, g45

e21e4

A2
, g55e5,

where

e1[2sinu1df1 , e2[du1 ,

e3[cos 2b sinu2df22sin 2bdu2 ,
~6!

e4[sin 2b sinu2df21cos 2bdu2 ,

e5[2db1cosu1df11cosu2df2.

In terms of this basis, the Einstein metric onT1,1 assumes the
form

dsT1,1
2

5
1

9
~g5!21

1

6 (
i 51

4

~gi !2. ~7!

The three-form fields are turned on in this background

F35
Ma8

2
v3 , B25

3gsMa8

2
v2ln~r /r 0!, ~8!

H35dB25
3gsMa8

2r
dr`v2 , ~9!

where

v35g5`v2 , ~10!

v25
1

2
~sinu1du1`df12sinu2du2`df2!. ~11!

A key feature of this solution is that the five-form flux
radially dependent@7#:

F55F51!F5 , F55
1

2
pa82Ne f f~r !v2`v3 , ~12!

with

Ne f f~r !5N1
3

2p
gsM

2ln~r /r 0!, ~13!

and the ten-dimensional Hodge dual is defined
« txyzr5u1f1u2f2

5A2G10. In @13# it was shown that

E
S2

v254p, E
S3

v358p2. ~14!
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The normalization of the RR 3-form flux is determined b
the quantization condition

1

4p2a8
E

S3
F35M . ~15!

With these results in hand, let us see how the ch
anomaly emerges in supergravity. The asymptotic UV me
~2,3! has aU(1) symmetry associated with the rotations
the angular coordinateb, which appears as theR symmetry
of the dual gauge theory. It is crucial, however, that the ba
ground value of the RR 2-formC2 does not have this con
tinuous symmetry. Indeed, althoughF3 is U(1) symmetric,
there is no smooth global expression forC2. Locally, we may
write for larger,

C2→Ma8bv2 . ~16!

This expression is not single-valued as a function of the
gular variableb, but it is single-valued up to a gauge tran
formation, so thatF35dC2 is single-valued. In fact,F3 is
completely independent ofb. Because of the explicitb de-
pendence,C2 is not U(1)-invariant. Under the transforma
tion b→b1e,

C2→C21Ma8ev2 . ~17!

A gauge transformation can shiftC2 /(4p2a8) by an arbi-
trary integer multiple ofv2 /(4p), sob→b1e is a symme-
try precisely ife is an integer multiple ofp/M ; becausee is
anyway only defined mod 2p, a Z2M subgroup of theU(1)
leaves fixed the asymptotic values of the fields, and t
corresponds to a symmetry of the system. ThisZ2M respects
the asymptotic values of the fields, but in the solution fou
in @8#, it is spontaneously broken in the IR toZ2, generated
by (21)F, since the full solution does not haveZ2M sym-
metry. ~In that solution,Z2M is broken toZ2 by the defor-
mation parameter of the conifold.! The analogous statemen
in field theory is that instantons break theU(1) down to
Z2M , which is then spontaneously broken toZ2. The domain
walls interpolating between theseM inequivalent vacua are
D5-branes wrapped over the 3-sphere att50 in the solution
of @8#, and indeed one such 5-brane produces a shift
C2 /(4p2a8) by exactlyv2 /(4p) @13#.

The way that the asymptotic behavior ofC2 transforms
under theU(1) generator is dual to the way that in fie
theory aU(1)R transformation shifts theQ-angles of the two
gauge groups by opposite amounts. TheQ-angles are given
by

Q12Q25
1

pa8
E

S2
C2 , Q11Q2;C, ~18!

whereC is the RR scalar, which vanishes for the case un
consideration. Using the fact that*S2v254p, we find that
the smallU(1) rotation induces

Q152Q252Me. ~19!
7-2
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We can compare Eq.~19! with our expectations from the
field theory. The conventionally normalizedQ terms for the
gauge theory action are

E d4xS Q1

32p2 Fi j
a F̃ai j1

Q2

32p2 Gi j
b G̃bi j D , ~20!

whereFi j
a andGi j

b are the field strengths ofSU(N1M ) and
SU(N) respectively. If we assume thate is a function of the
4 world volume coordinatesxi , then the terms linear ine in
the dual gauge theory are

E d4xF2e] iJ
i1

Me

16p2 ~Fi j
a F̃ai j2Gi j

b G̃bi j !G , ~21!

whereJi is the chiralR current. The appearance of the se
ond term is due to the non-invariance ofC2 under theU(1)
rotation. Varying with respect toe, we therefore find the
equation

] iJ
i5

M

16p2 ~Fi j
a F̃ai j2Gi j

b G̃bi j !. ~22!

This is precisely the anomaly equation for this theory.
deed, the effective number of flavors for theSU(N1M )
factor is 2N, and each one carriesR charge 1/2. The chira
fermions which are their superpartners haveR charge21/2
while the gluinos haveR charge 1. Therefore, the anoma
coefficient is M /16p2. An equivalent calculation for the
SU(N) gauge group with 2(N1M ) flavors produces the op
posite anomaly, in agreement with the holographic res
~21!.

The upshot of the calculation presented above is that
chiral anomaly of theSU(N1M )3SU(N) gauge theory is
encoded in the ultraviolet~larger ) behavior of the dual clas
sical supergravity solution. No additional fraction
D-instanton effects are needed to explain the anomaly. T
as often occurs in the gauge/gravity duality, a quantum ef
on the gauge theory side turns into a classical effect in
pergravity.

III. THE ANOMALY AS SPONTANEOUS SYMMETRY
BREAKING IN AdS 5

Let us look for a deeper understanding of the anom
from the dual gravity point of view. On the gauge theo
side, theR symmetry is global, but in the gravity dual it a
usual becomes a gauge symmetry, which must not be ano
lous, or the theory would not make sense at all. Rather,
will find that the gauge symmetry is spontaneously brok
the 5D vector field dual to theR current of the gauge theor
‘‘eats’’ the scalar dual to the difference of the theta ang
and acquires a mass.1 A closely related mechanism was o
served in studies of RG flows from the dual gravity point

1The connection between anomalies in a D-brane field theory
spontaneous symmetry breaking in string theory was previo
noted in@14# ~and probably elsewhere in the literature!.
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view @15,16#. ThereR-current conservation was violated n
through anomalies but by turning on relevant perturbatio
or expectation values for fields. In these cases it was sh
@15,16# that the 5D vector field dual to theR current acquires
a mass through the Higgs mechanism. We will show t
symmetry breaking through anomalies can also have the
Higgs mechanism as its dual.

In the absence of fractional branes there are no ba
ground three-form fluxes, so theU(1) R symmetry is a true
symmetry of the field theory. Because theR symmetry is
realized geometrically by invariance under a rigid shift of t
angle b, it becomes a local symmetry in the full gravit
theory, and the associated gauge fieldsA5Amdxm appear as
fluctuations of the ten-dimensional metric and RR four-fo
potential@17,18#. The natural metric ansatz is of the familia
Kaluza-Klein form:

ds25h~r !21/2~dxndxn!

1h~r !1/2r 2Fdr2

r 2
1

1

9
~g522A!21

1

6 (
r 51

4

~gr !2G ,

~23!

where h(r )5L4/r 4, and L45 27
16 (4pa82gsN). It is conve-

nient to define the one-formx5g522A, which is invariant
under the combined gauge transformations

b→b1l, A→A1dl. ~24!

The equations of motion for the fieldAm appear as thexm
components of Einstein’s equations,

RMN5
gs

2

4•4!
F̃M PQRSF̃N

PQRS. ~25!

The five-form flux will also fluctuate when we activat
the Kaluza-Klein gauge field; indeed, the unperturbedF̃5 of
Eqs. ~12! is not self-dual with respect to the gauged met
~23!. An appropriate ansatz to linear order inA is

F̃55dC45
1

gs
d4x`dh21

1
pa82N

4 Fx`g1`g2`g3`g42dA`g5`dg5

1
3

L
!5dA`dg5G . ~26!

The five-dimensional Hodge dual!5 is defined with respec
to the AdS5 metric ds5

25h21/2dxndxn1h1/2dr2. It is
straightforward to show that the supergravity field equat
dF̃550 implies that the fieldA satisfies the equation of mo
tion for a massless vector field in AdS5 space:

d!5dA50. ~27!

d
ly
7-3
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Using the identitydg5`dg5522g1`g2`g3`g4, we can
check that the expression forC4 is2

C45
1

gs
h21d4x1

pa82N

2 Fbg1`g2`g3`g4

2
1

2
A`dg5`g52

3

2r
h21/4!5dA`g5G . ~28!

Another way to see thatA is a massless vector in AdS5 is to
consider the Ricci scalar for the metric~23!

R5R~A50!2
h1/2r 2

9
FmnFmn ~29!

so that on reduction from ten dimensions the fiv
dimensional supergravity action will contain the action fo
massless vector field.

The story changes when we add wrapped D5-branes
described in Sec. II, the 5-branes introduceM units of RR
flux through the three-cycle ofT1,1. In what follows, we
work in the limit (gsM )2!gsN, so that it is consistent to
expand the metric and five-form to quadratic order ingsM
and expand the three-forms and one-forms to linear orde
gsM . At this order we may consistently take the dilaton a
axion to vanish. Now, with the addition of 5-branes, the n
wrinkle is that the RR three-form flux of Eqs.~8! is not
gauge-invariant with respect to shifts ofb ~24!. To restore
the gauge invariance, we introduce a new fieldu;*S2C2:

F35dC25
Ma8

2
~g512]mudxm!`v2 ~30!

so that F3 is invariant under the gauge transformationb
→b1l,u→u2l. Let us also defineWm5Am1]mu. In
terms of the gauge invariant formsx andW5Wmdxm,

F35
Ma8

2
~x12W!`v2 . ~31!

From Eq.~31! we can immediately see how the anoma
will appear in the gravity dual. Assuming that the Neve
Schwarz–Neveu-Schwarz~NS-NS! three form is still given
by Eq. ~9!, we find that up to terms of ordergsM

2/N the
three-form equation implies

d!5W50⇒ L2

r 2
] iW

i1
1

r 5
] r r

5Wr50 ~32!

which is just what one would expect for a massive vec
field in five dimensions. To a four dimensional observ
however, a massive vector field would satisfy] iW

i50. Thus
in the field theory one cannot interpret theU(1) symmetry
breaking as being spontaneous, and the additionalWr term in
Eq. ~32! appears in four dimensions to be an anomaly.

2This expression was independently derived by D. Berenstein
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Another way to see that the vector field becomes mas
is to compute its equation of motion. To do this calculati
precisely, we should derive thexm components of Einstein’s
equations, and also find the appropriate expressions for
five-form and metric up to quadratic order ingsM and linear
order in fluctuations. This approach is somewhat nontriv
and we present it in an Appendix for the interested reade
more heuristic yet enlightening approach is to consider
type IIB supergravity action to quadratic order inW, ignoring
the 5-form field strength contributions:

S52
1

2k10
2E d10xA2G10FR102

gs
2

12
uF3u2G1••• ~33!

;2
1

2k10
2E d10xA2G10F2

h1/2r 2

9
FmnFmn

2S gsMa8

2 D 2 36

hr4
WmWmG1•••. ~34!

This is clearly the action for a massive four-dimensional v
tor field, which has as its equation of motion

]m~hr7Fmn!5m̃2hr7Wn ~35!

which in differential form notation isd(h7/4r 7!5dW)5

2m̃2h7/4r 7!5W. From the action~34!, we see that the mass
squared is given by

m̃25~gsMa8!2
81

2h3/2r 6
. ~36!

In the limit (gsM )2!gsN which we are using, this become

m̃25
4

a831/2p3/2

~gsM !2

~gsN!3/2
. ~37!

This result, however, ignores the subtlety of the type I
action in presence of the self-dual 5-form field. As it tur
out, the ‘‘honest’’ calculation including the 5-form field, pre
sented in the Appendix, changes Eq.~37! by a factor of 1/3.
Thus in the limit (gsM )2!gsN, the mass-squared reduce
~with the correct factor! to

m25
1

3
m̃25

4

a8~3p!3/2

~gsM !2

~gsN!3/2
. ~38!

The nonvanishing vector mass is consistent with gauge
variance because the massless vector fieldA has eaten the
scalar fieldu, spontaneously breaking the gauge symme
as advertised. It is interesting that the anomaly appears
bulk effect in AdS space, in contrast to previously studi
examples @3,19# where anomalies arose from bounda
terms.

It is instructive to compare Eq.~38! with the ‘‘universal’’
mass-squared of the vector field found in the 5-dimensio
gauged supergravity description. In@15,16# it was shown that
7-4
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the 5D vector field associated with aU(1)R symmetry ac-
quires a mass in the presence of a symmetry-breaking
evant perturbation, and that this mass is related in a sim
way to the warp factor of the geometry.3 It is conventional to
write the 5D gauged supergravity metric in the form

G̃mndxmdxn5e2T(q)h i j dxidxj1dq2. ~39!

The result of@15# is thatm2522T9. To relate the 5D metric
~39! to the 10D metric~1! we must normalize the 5D metri
so that the graviton has a canonical kinetic term. Doing t
carefully we find

G̃mndxmdxn5~hr4/L4!5/6~h21/2h i j dxidxj1h1/2dr2!.
~40!

The factor (hr4/L4)5/6 arises due to the radial dependence
the size ofT1,1 through the usual Kaluza-Klein reduction
The radial variablesq and r are related, at leading order i
gsM

2/N, by

log~r !;
q

L
2

gsM
2

2pN S q

L D 2

. ~41!

We can also show that22T522 log(r)1~terms which do
not affect the mass to leading order ingsM

2/N), so now
computing the mass-squared by the prescription of@15# we
indeed reproduce Eq.~38!. We consider this an interestin
check on the laborious calculation presented in the Appen
which also makes contact between our 10D methods and
5D gauged supergravity results of@15,16#.

The appearance of a mass implies that theR-current op-
erator should acquire an anomalous dimension. From
~38! it follows that

~mL!25
2~gsM !2

p~gsN!
. ~42!

Using the AdS conformal field theory~CFT! correspondence
we find that the dimension of the currentJm dual to the
vector fieldWm is

D521A11~mL!2. ~43!

Therefore, the anomalous dimension of the current is

D23'~mL!2/25
~gsM !2

p~gsN!
. ~44!

We can obtain a rough understanding of this result by c
sidering the relevant weak coupling calculation in the gau
theory. The leading correction to the current-current tw
point function comes from the three-loop Feynman diagr
composed of two triangle diagrams glued together, and
resulting anomalous dimensiongJ is quadratic inM andN.
gJ must vanish whenM50, and it must be invariant unde

3We are grateful to O. DeWolfe and K. Skenderis for pointing o
the relevance of this work to the present calculation.
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the mapM→2M ,N→N1M , which simply interchanges
the two gauge groups. Thus, the lowest order piece of
anomalous dimension will be of order (gsM )2. Our super-
gravity calculation predicts that this anomalous dimension
corrected at largegsN by an extra factor of 1/(gsN). Of
course, it would be interesting to understand this result be
from the gauge theory point of view.

IV. THE NÄ2 SUPERSYMMETRIC Z 2 ORBIFOLD

Encouraged by the agreement of field theory and sup
gravity on the conifold, let us examine another example
see how the same physical ideas apply in a different syst
In this section we will study theN52 version of the coni-
fold theory; it has gauge groupSU(N1M )3SU(N) and is
dual to a supergravity solution on an orbifoldS5/Z2
@5,6,20,21#. ~After the completion of this work, we learne
of a very similar analysis of this orbifold system which a
peared earlier in@22#.! The supergravity solution may
be constructed as follows. We start with the spa
R1,53R4/Z2 where the orbifold is given by the identificatio
x6,7,8,9;2x6,7,8,9. Then we addN coincident D3-branes
which we choose to be tangent to the 0123 directions;
resulting space has the geometry AdS53S5/Z2. To add frac-
tional branes, we may takeM D5-branes and wrap them o
the vanishing two-cycle of the orbifoldR4/Z2. These frac-
tional branes are ‘‘pinned’’ to the orbifold fixed plane.

It is possible to identify the corresponding gauge theo
by standard orbifold techniques@23#. The field content is in
fact almost identical to that of the conifold theory, but the
is an additional pair of adjoint chiral multiplets correspon
ing to the motion of D-branes along the orbifold fixed plan
These extra multiplets combine with the vector multiplet
the N51 theory to form anN52 vector multiplet. It is
convenient to define (x41 ix5)/(2pa8)[F5uFueib. Rota-
tions of the phase ofF are dual to theU(1) R-symmetry in
the gauge theory.

To compute the anomaly for theSU(N1M ) gauge factor,
notice that there are now 2N1(N1M )53N1M effective
flavors, which haveR-charge21/3. Combining this with the
contribution from the gluinos, we find that the anomaly c
efficient is 2M /3/16p2. We would like to compare this with
a computation from supergravity. Equations~16!,~17! are
also satisfied for the orbifold. To identify properly the rel
tion betweenb and theR symmetry, note that the fieldF has
R charge 2/3; thus a shift ofb→b1e actually shifts the
U(1)R by 3

2 e. This will change the first term in Eq.~21! by
a factor of 3

2 and give an anomaly coefficient 2M /3/16p2 in
agreement with the gauge theory expectation.

A very interesting generalization of this theory was stu
ied by Graña and Polchinski@24#, and also by Bertoliniet al.
@22#, who added D7-branes wrapped on the 01236789 di
tions; an analogous solution with D7-branes on the conif
is not currently known. The extra D7-branes allow exci
tions of 3-7 strings and, depending on how the 7-branes
wrapped, will addN71 flavors coupled to theSU(N1M )
gauge group andN72 flavors coupled to theSU(N) gauge
group. The total number of 7-branes isN711N72 . For a
small rotationb→b1e, the correspondingQ terms are

t

7-5
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Q152e~M1 1
2 N71! ~45!

Q252e~2M1 1
2 N72!. ~46!

and the associated anomaly coefficient is 1/16p2(2M /3
1N71/62N72/6).

We can reproduce the same result for the anomaly b
supergravity calculation, using the results of@20# and
@24,22#. It is helpful to think about the D3-branes on th
orbifold fixed plane as a combination of a wrapped D5-bra
and anti-D5-brane, each of which carries half a unit of D
brane charge. By considering the Chern-Simons term in
action for a probe 5-brane

6m5E ~2pa8!F 2
6`C456

m3

2pE F 2
6`C4

51
1

2
m3E C4 , ~47!

we see that the field strength on the 5-brane worldvolu
will satisfy

F 2
656

1

4
v2 ~48!

where the upper sign refers to a D5-brane and the lower
to an anti-D5-brane. Now let us add the D7-branes. The
pergravity solution has RR scalar and two-form potenti
given by @22,24#

C05
b

2p
~N711N72! ~49!

C25a8bv2S M1
N712N72

4 D . ~50!

To find theQ terms for the dual gauge theory, we just ne
to look at the Chern-Simons terms in the actions for a pr
D5-brane and anti-D5-brane. For a D5-brane@whose excita-
tions are in theSU(N1M ) gauge group# we find that

1

2pa8
E ~C212pa8C0F 2

1!52b~M1 1
2 N71!. ~51!

Comparison with Eqs.~18! and ~19! shows that gravity re-
produces the field theory expectation forQ1 given in Eq.
~45!. The analogous computation for an anti-D5-brane w
reproduce Eq.~46!. Thus the anomaly as computed fro
supergravity agrees exactly with the field theory calculati
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APPENDIX: THE VECTOR FIELD EQUATION
OF MOTION

In this appendix we derive the equation of motion of t
vector fieldW by considering the RR five-form and metr
fluctuations at second order ingsM , and their corresponding
supergravity equations of motion; the approach given in S
III is not strictly correct, because there is no good way
incorporate the self-duality constraint of the five-form in t
action. From the equations of motion, we find that the vec
field W is massive, confirming the heuristic arguments
Sec. III.

Before proceeding with the computation, it is worthwhi
to record some useful identities. A convenient definition i

d3xi5
1

6
h i j « jklmdxk`dxl`dxm, ~A1!

and some useful relations are

!~dr`g1`g2`g3`g4!52
12

h2r 3
d4x`g5 ~A2!

!~dxi`g1`g2`g3`g4!52
12

hr3
d3xi`dr`g5

~A3!

!~dxi`dr`g5`dg5!5
3

hr
d3xi`dg5 ~A4!

~!5dA!`dr5~] rAi2] iAr !d
3xidrh23/4

~A5!

d~v id
3xi !`dr5] iv id

4x`dr ~A6!

1

4
d~ f i j « i jkl dxk`dxl !`dr52] i f i j d

3xj`dr. ~A7!

We also define

b[
3

2p

gsM
2

N
. ~A8!

In our perturbative expansion, the fields other than
five-form and metric are given by Eqs.~9!,~31!, andC5F
50. The equation of motion forW appears in two places: th
equations of motion for the five-form,dF̃55H3`F3 and
F̃55!F̃5, and themx components of Einstein’s equations

Rmx5
gs

2

4•4!
F̃mPQRSF̃x

PQRS1
gs

2

4
F̃mPQF̃x

PQ . ~A9!

It turns out that the correct four-form potential is
7-6
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C45
1

gs
h21d4x1

pa82N

2
~b1u!g1`g2`g3`g42

pa82

4
~Ne f f1NbY!S W`g5`dg51

3

h1/4r
!5dW`g5D

23
pa82

4

Nb

L4
r 2Wid

3xi`g52
pa82

16
NbrWrg

1`g2`g3`g4. ~A10!

The logic that leads to this potential is that eventually we will want an equation of motion forW roughly of the form~35!.
Requiring self-duality ofF̃5 will give such an equation with a mass term if there are terms of the formW`g1`g2`g3

`g4 and its dual inF̃5, and this four-form potential~A10! allows for such terms in all natural ways. For the momentY is a
numerical free parameter. So the five-form is given by

F̃55dC41B2`F3 ~A11!

5
1

gs
d4x`dh211

pa82

4
Ne f fx`g1`g2`g3`g42

pa82

4
~Ne f f1NbY!FdW`g5`dg52

3

h1/4r
!5dWdg5G

1
pa82

4
NbWiFdxi`

dr

r
`g5`dg51

3r 2

L4
d3xi`dg5G23

pa82

4
Nb] iWrF r

12
dxi`g1`g2`g3`g42

r 2

L4
d3xi`dr`g5G

23
pa82

4

Nb

L4
r 2] iWid

4x`g52
pa82

16
Nb

1

r 4
] r~r 5Wr !dr`g1`g2`g3`g4

2
pa82

4
~Ne f f1NbY!

3

h2r 8
d~h7/4r 7!5dW!`g51

3pa82

2

Nb

L4
rWid

3xi`dr`g51
pa82

4
NbWrdr`g1`g2`g3`g4

2
pa82

2
NbYẀ g1`g2`g3`g4. ~A12!
in
ri

an

i
s

ons
The expression for the five-form~A12! is not self-dual with
respect to the metric~23!, because of the last four terms
~A12!. We may remedy the situation by correcting the met
at orderb:

ds25h~r !21/2~dxndxn!1h~r !1/2r 2Fdr2

r 2

1
1

9 S g522A1
3b

2
Wrdr D 2

1
1

6 (
r 51

4

~gr !2G . ~A13!

Then by shiftingx appropriately to make the first line ofF̃5
self-dual with respect to the new metric, there will be
additional contribution of the form2(3pa82/8)NbWrdr
`g1`g2`g3`g4. The new terms in the metric~A13! do
not affect the two-form or scalar equations at our order
perturbation theory. Now, the self-duality constraint for the
remaining terms gives an equation of the right form forW,
with mass-squared
10500
c

n
e

m25
4b

L2
~ 1

2 12Y!. ~A14!

On the other hand, when we compute Einstein’s equati
~A9! we find that

] iF
ir 52

2b

L2
Wr~2 1

2 12Y! ~A15!

with corresponding mass-squared

m25
2b

L2
~ 1

2 22Y! ~A16!

so thatY521/12. Finally, we obtain the true mass of theW
field,

m25
4b

3L2
~A17!

which is of the same form as Eq.~36! but differs by a factor
of 1/3.
7-7
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