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We study effects associated with the chiral anomaly for a casce®lifN + M) X SU(N) gauge theory
using gauge/gravity duality. In the gravity dual the anomaly is a classical feature of the supergravity solution,
and the breaking of th&J(1) R symmetry down taZ,y proceeds via the Higgs mechanism.
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[. INTRODUCTION we argue that the field theory anomalies are present because
the classical supergravity RR potentials are not invariant un-
Many supersymmetric gauge theories exhibit a classicadler theU(1) symmetry. By computing the variation of the
U(1) R symmetry which is broken quantum mechanically RR potentials we obtain the relevant anomaly coefficients,
to some discrete subgroup. In traditional quantum fieldwhich agree with field theory exactly. Moreover, the anoma-
theory, this symmetry breaking can be understood as an ifous breaking of the global (1) symmetry appears as spon-
stanton effect. The purpose of this paper is to explore théaneous symmetry breaking in supergravity: the bulk vector
analogous effects in the gravity duals to a few field theoriedield _dual to theR—sym_metry current of the gauge thgqry
exhibiting this phenomenon. acquires a mass. We will also check the anomaly coefficients

Our analysis relies on the results of recent encouragingr a related =2 orbifold theory, again showing exact

progress in extending the gauge theory-supergravity corr Agreement.

spondencg1-3] to theories with less than maximal super-

symmetry, realized by configurations of D-branes at singu- !l THE ANOMALY AS NON-INVARIANCE OF THE UV
larities. For example, we might consider a stack Mf SUPERGRAVITY SOLUTION

coincident D3-branes located at the tip of the singular | et ys recall a few results regarding the supergravity dual

Calabi-Yau space known as the conif¢itl. This system is  f the cascadingSU(N+M)xSU(N) gauge theory. The
dual to anN'=1 supersymmetric gauge theory with gaugemetric is of the form(8]

group SU(N)X SU(N) coupled to chiral superfieldétwo
bifundamentals transforming in theN(N) representation, dsie=h"Y47)dx+h"4 7)ds], )
and their conjugates, which transform in thid,) repre-
Sentati()[)_ The Supergravity solution has the geometryWheredSé is the metric of the deformed conifold. The UV
AdS; X T4 which manifests geometrically the conformal in- (large 7) limit of this metric was found irf7]:
variance of the gauge theory. The Einstein manifbtd pos-
sesses a two-cycle and a three-cycle, and we can obtain in- dsiy=h"Y4r)dx{+ hY2(r)(dr?+r2dsy). 2
teresting variations of this theory by wrapping various branes
on these cyclef5—8]. In particular, wrapping D5-branes on The metric onT!, the base of the conifold, is
this two-cycle changes the gauge groupStl(N) X SU(N
+M) and breaks the conformal symmetry. 2 1

This supergravity solution with wrapped D5-branes ex- dspia= 9 2d3+§1 cost;d¢;
hibits a host of interesting gauge theory phenomena; for ex-
ample, the reduction of the five-form flux as the radial coor-
dinate decreases corresponds to a reduction in the size of the +
gauge groups by a duality cascd@. An important feature
for our purposes is that the UWetric exhibits aU (1) sym-
metry under rotations of a particular angden the tranverse
spaceTtL, which is a geometric realization of the field theo-
retic R symmetry. However, the Ramond-RamaiiRR) po-
tentials break th& (1) symmetry. It can be shown that there

2 2

2
_21 (d6?+sint6,dg?). (3)

o -

We define the angl@ to range from O to zr; it is related to
the angley used in the previous literature hy=2p. The
asymptotic form of the warp factor is

is an unbrokerZ,,, subgroup of thisJ (1) by studying frac- h(r)= 27m(a’)? 9N+ i(g M)2In(r/r )

tional instanton and domain wall probes in the gravity back- 4r4 ST 2w 0

ground [9-11]. However, one should not think about this

symmetry breaking as affectof these instantons, which do n i (gM )2} (4
not appear explicitly anywhere in the gravity dual. Rather, 8 9s '
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For sufficiently smallr, this metric is singular; to study IR The normalization of the RR 3-form flux is determined by
physics in the gauge theory, one must use the full solution ofhe quantization condition

[8].

The following basis of 1-forms on the compact space is
convenient for calculations on the deformed conifl@]: PRy LSFQ,: M. (15
el—¢® e?—e? . . .
gl= . g’= , With these results in hand, let us see how the chiral
\/5 \/5 anomaly emerges in supergravity. The asymptotic UV metric
(5) (2,3 has aU(1) symmetry associated with the rotations of
, e+ed , €+e s 5 the angular coordinat@, which appears as the symmetry
9 = 2 9= 2 g =€, of the dual gauge theory. It is crucial, however, that the back-
ground value of the RR 2-forrn®, does not have this con-
where tinuous symmetry. Indeed, althoudty is U(1) symmetric,
there is no smooth global expression @y. Locally, we may
el=—sinf,d¢,, e’=dé;, write for larger,
e®=cos 28 sin#,d ¢, —sin 23d0,, C,—Ma'Bw,. (16)
6
e*=sin 28 sin 6,d¢,+ cos 23d,, © This expression is not single-valued as a function of the an-
5 gular variableg, but it is single-valued up to a gauge trans-
e’=2dB+cosb d¢;+cosbrde,. formation, so thaF;=dC, is single-valued. In factF; is

completely independent g8. Because of the explicif de-
pendence(C, is not U(1)-invariant. Under the transforma-
tion B— B+e,

In terms of this basis, the Einstein metric 8h! assumes the
form

1 13 ,
d5$1,1: §(95)2+ 5 21 (g"2. (7) Cy,—Crt+tMa'ew,. (17

i S A gauge transformation can shit,/(47%«") by an arbi-
The three-form fields are turned on in this background: trary integer multiple ofw,/(4), so8— B+ € is a symme-
Ma' 3gMa’ try precisely ife is an integer multiple ofr/M; because is
Fa= —w;, B,=—nr w,In(r/ry), (8)  anyway only defined mod2, aZ,y, subgroup of theJ(1)
2 2 leaves fixed the asymptotic values of the fields, and thus
) corresponds to a symmetry of the system. Thjg, respects
H.—dB :393'\/' @ driw 9) the asymptotic values of the fields, but in the solution found
3 2 2r 2 in [8], it is spontaneously broken in the IR &, generated
by (—1)F, since the full solution does not hazg,, sym-
where metry. (In that solution,Z,,, is broken toZ, by the defor-
N (10) mation parameter of the conifo)dThe analogous statement
@3=g/hwz, in field theory is that instantons break thg1) down to
1 Z,w » Which is then spontaneously brokenze. The domain
w,= = (sin6;d6;/\d ¢, —sin6,d6,/\deb,). (11  walls interpolating between thedé inequivalent vacua are
2 D5-branes wrapped over the 3-sphere-at0 in the solution
of [8], and indeed one such 5-brane produces a shift of
C,/(4m?a’) by exactlyw,/(47) [13].
The way that the asymptotic behavior @f, transforms
1 under theU(1) generator is dual to the way that in field
Fs=F5+xFs, f5=§wa’2Neff(r)wz/\w3, (120  theory aU(1)g transformation shifts th®-angles of the two
gauge groups by opposite amounts. Thengles are given

with by

A key feature of this solution is that the five-form flux is
radially dependeni7]:

3 1
Ner(1) =N+ 5—gM2In(r/ro), (13 0,-0,-— | C,. 0,+0,-C. (9
S

Ta'

and  the tertd|men5|onal Hodge dual is defined Dby perec is the RR scalar, which vanishes for the case under
Etxyz50,6,0,6,~ V~ C1o IN [13] it was shown that consideration. Using the fact thfitew,=4, we find that
the smallU(1) rotation induces

fszwz 7 f§w3 4 (4 0,=—0,=2Me. (19)
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We can compare Eq19) with our expectations from the view [15,16. ThereR-current conservation was violated not
field theory. The conventionally normalizédl terms for the  through anomalies but by turning on relevant perturbations
gauge theory action are or expectation values for fields. In these cases it was shown

[15,14 that the 5D vector field dual to tHe current acquires

4 1 —a b= bii a mass through the Higgs mechanism. We will show that

f d X( 3272 Fij P+ 327TZGiJ'G ”) ' (20 symmetry breaking through anomalies can also have the bulk
Higgs mechanism as its dual.

whereF{] andGb are the field strengths 8U(N+ M) and In the absence of fractional branes there are no back-

(FAFI—GRGP) |,

Me
1672

SU(N) respectlvely. If we assume thatis a function of the ~ground three-form fluxes, so thé(1) R symmetry is a true

4 world volume coordinates', then the terms linear ia in ~ symmetry of the field theory. Because tResymmetry is

the dual gauge theory are realized geometrically by invariance under a rigid shift of the
angle B, it becomes a local symmetry in the full gravity

4 i theory, and the associated gauge fieddsA ,dx* appear as

J d'x| —eq '+ (21 fluctuations of the ten-dimensional metric and RR four-form

potential[17,18. The natural metric ansatz is of the familiar

whereJ' is the chiralR current. The appearance of the sec-Kaluza-Klein form:

ond term is due to the non-invariance ©f under theU(1)

rotation. Varying with respect t@&, we therefore find the ds?=h(r) YA dx,dx")

equation

2 4
Fheryvr S $<95—2A>2+% 2, (g)?
3J =—— (FiF¥ -G G). (22 ' =t
167 Y "

(23)
This is precisely the anomaly equation for this theory. In- 44 4 s .
deed, the effective number of flavors for tigJ(N+M)  Whereh(r)=L%/r" and L :E(g”m gsN). It is conve-
factor is 2N, and each one carri€® charge 1/2. The chiral nient to define the one-forg=g>—2A, which is invariant
fermions which are their superpartners haveharge—1/2 ~ Under the combined gauge transformations
while the gluinos haveR charge 1. Therefore, the anomaly
coefficient is M/16a2. An equivalent calculation for the B—B+N, A—A+d\. (24)
SU(N) gauge group with 2+ M) flavors produces the op-

posite anomaly, in agreement with the holographic resulhe equations of motion for the field, appear as thgu

(22). components of Einstein’s equations,
The upshot of the calculation presented above is that the
chiral anomaly of theSU(N+ M) X SU(N) gauge theory is gs _ Pors
encoded in the ultravioldtarger) behavior of the dual clas- Run= 7. 4|FMPQRSFN (29

sical supergravity solution. No additional fractional

D-instanton effects are needed to explain the anomaly. Thus,

as often occurs in the gauge/gravity duality, a quantum effect The five-form flux will also fluctuate when we activate

on the gauge theory side turns into a classical effect in suthe Kaluza-Klein gauge field; indeed, the unperturbgcbf

pergravity. Egs.(12) is not self-dual with respect to the gauged metric
(23). An appropriate ansatz to linear orderAns

Ill. THE ANOMALY AS SPONTANEOUS SYMMETRY 1
BREAKING IN AdS 5 Eo=dC,=—d*xAdh?
Let us look for a deeper understanding of the anomaly s
from the dual gravity point of view. On the gauge theory ma'?N
side, theR symmetry is global, but in the gravity dual it as +
usual becomes a gauge symmetry, which must not be anoma-
lous, or the theory would not make sense at all. Rather, we 3 5
will find that the gauge symmetry is spontaneously broken: + E*5dA/\dg : (26)
the 5D vector field dual to thR current of the gauge theory
“eats” the scalar dual to the difference of the theta angle
and acquires a mas4A closely related mechanism was ob-

served in studies of RG flows from the dual gravity point of

[X/\gl/\gz/\g3/\g4— dANg®Adg®

SThe five-dimensional Hodge duak is defined with respect
to the Ad$ metric ds;®=h"Y2dx,dx"+h¥xdr2. It is
straightforward to show that the supergravity field equation
dFs=0 implies that the fieldA satisfies the equation of mo-
The connection between anomalies in a D-brane field theory antioN for @ massless vector field in AgSpace:

spontaneous symmetry breaking in string theory was previously
noted in[14] (and probably elsewhere in the literature dxsdA=0. (27)
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Using the identitydg®/\dg®= —2g*/A\g?/\g®>/\g*, we can Another way to see that the vector field becomes massive
check that the expression fa¥, is® is to compute its equation of motion. To do this calculation
precisely, we should derive thgu components of Einstein’s
C.— 1 h-1ge ma'?N LA g2 g3 A g equations, and also find the appropriate expressions for the
479, X+ ———| BI/NGTNGT/NG five-form and metric up to quadratic orderggM and linear

order in fluctuations. This approach is somewhat nontrivial
and we present it in an Appendix for the interested reader. A
more heuristic yet enlightening approach is to consider the
type |IB supergravity action to quadratic ordeiW) ignoring
Another way to see tha is a massless vector in Ad$ to  the 5-form field strength contributions:

consider the Ricci scalar for the meti(i23)

1 3
- EA/\dg5/\g5— Eh’l"‘*SdA/\gE' . (29

2

1 ' g
h'/?r2 S=- QJ d*%\/=Gig Rig— %|F3|2 +o (33
R=R(A=0)— 5 F LR (29) 2K1p I
. . : , 1 h1/2r2
so that on reduction from ten dimensions the five- ~— 2f d*%\ =Gy — ——F,, F*
dimensional supergravity action will contain the action for a 2K ] 9
massless vector field. o
The story changes when we add wrapped D5-branes. As _[9sMa ﬁw W4 (34)
described in Sec. Il, the 5-branes introdideunits of RR 2 hrd * '

flux through the three-cycle of %% In what follows, we

work in the limit (gsM)?<g¢N, so that it is consistent to This is clearly the action for a massive four-dimensional vec-
expand the metric and five-form to quadratic ordeigim tor field, which has as its equation of motion

and expand the three-forms and one-forms to linear order in 3

gsM. At this order we may consistently take the dilaton and d,(hr"F#")=m?hr’w" (35
axion to vanish. Now, with the addition of 5-branes, the new

wrinkle is that the RR three-form flux of Eq¢8) is not ~ Which in differential form notation isd(h™r"xsdW)=

gauge-invariant with respect to shifts gf (24). To restore  —m2h”% "xW. From the actior(34), we see that the mass-
the gauge invariance, we introduce a new fiéld [ c2C,: squared is given by
M a’ 5 “ ~2 "2
F3=dC2=T(g +2(9M9dX N\ wy (30 m-=(gsMa') W (36)

so thatF; is invariant under the gauge transformatiBn  In the limit (gsM)2<g<N which we are using, this becomes
—B+N,0—60—\. Let us also defineW,=A,+4,60. In

terms of the gauge invariant formsand W=W,,dx*, ~, 4 (gsM)?
m*= .
, a/31/2ﬂ_3/2 (gsN)S/Z

M«

(37

This result, however, ignores the subtlety of the type I1IB
) ) action in presence of the self-dual 5-form field. As it turns
_From Eq.(31) we can immediately see how the anomaly gyt, the “honest” calculation including the 5-form field, pre-

will appear in the gravity dual. Assuming that the Neveu-gented in the Appendix, changes E§7) by a factor of 1/3.
Schwarz—Neveu-SchwaldS-NS three form is still given  Thys in the limit gM)2<g.N, the mass-squared reduces
by Eg. (9), we find that up to terms of ordegsM?/N the (with the correct factdrto

three-form equation implies

4 (gsM)?
a/(3,n,)3/2 (gSN)3/2'

2

2 _1"2_
L 1 m _§m =

. (38)
d*5w=o=>r—2aiw'+ r—sarrf’wr:o (32
The nonvanishing vector mass is consistent with gauge in-
which is just what one would expect for a massive vectorvariance because the massless vector fieldas eaten the
field in five dimensions. To a four dimensional observer,scalar fieldd, spontaneously breaking the gauge symmetry,
however, a massive vector field would satisf =0. Thus  as advertised. It is interesting that the anomaly appears as a
in the field theory one cannot interpret th€1) symmetry  bulk effect in AdS space, in contrast to previously studied
breaking as being spontaneous, and the addithdaerm in ~ examples[3,19] where anomalies arose from boundary
Eq. (32) appears in four dimensions to be an anomaly. terms.
It is instructive to compare Ed38) with the “universal”
mass-squared of the vector field found in the 5-dimensional
2This expression was independently derived by D. Berenstein. gauged supergravity description.[t5,16] it was shown that
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the 5D vector field associated withl&(1)g symmetry ac- the mapM— —M,N—N+M, which simply interchanges
quires a mass in the presence of a symmetry-breaking rethe two gauge groups. Thus, the lowest order piece of the
evant perturbation, and that this mass is related in a simplanomalous dimension will be of ordeg{M)2. Our super-
way to the warp factor of the geomefhit is conventional to  gravity calculation predicts that this anomalous dimension is

write the 5D gauged supergravity metric in the form corrected at largggN by an extra factor of 1{sN). Of
_ o course, it would be interesting to understand this result better
G, dxtdx’=e?T . dx'dx +dg?. (39  from the gauge theory point of view.

The result of15] is thatm?= —2T". To relate the 5D metric
(39 to the 10D metriq1) we must normalize the 5D metric
so that the graviton has a canonical kinetic term. Doing this Encouraged by the agreement of field theory and super-

IV. THE N=2 SUPERSYMMETRIC Z, ORBIFOLD

carefully we find gravity on the conifold, let us examine another example to
_ a1/ s see how the same physical ideas apply in a different system.
G, dx#dx”=(hr*/L*)>(h™*“q;dx'dX +h*=dr). In this section we will study théV=2 version of the coni-

(400 fold theory; it has gauge grod@U(N+M)x SU(N) and is
dual to a supergravity solution on an orbifol8°/Z,
[5,6,20,2]. (After the completion of this work, we learned
of a very similar analysis of this orbifold system which ap-
peared earlier in[22].) The supergravity solution may
be constructed as follows. We start with the space
q) 2 R15x Rz, where the orbifold is given by the identification

The factor fir%/L#)%® arises due to the radial dependence of
the size of T*! through the usual Kaluza-Klein reduction.
The radial variableg) andr are related, at leading order in
gsM?/N, by

(41)  Xe789~ —Xs789 Then we addN coincident D3-branes,
which we choose to be tangent to the 0123 directions; the
resulting space has the geometry AsS®/Z,. To add frac-
tional branes, we may takd D5-branes and wrap them on
the vanishing two-cycle of the orbifolR*/Z,. These frac-
tional branes are “pinned” to the orbifold fixed plane.
It is possible to identify the corresponding gauge theory
standard orbifold techniqué&3]. The field content is in
act almost identical to that of the conifold theory, but there
is an additional pair of adjoint chiral multiplets correspond-
ing to the motion of D-branes along the orbifold fixed plane.
hese extra multiplets combine with the vector multiplet in
the /=1 theory to form anN=2 vector multiplet. It is

We can also show that 2T= —2 log()+(terms which do
not affect the mass to leading order ggM?/N), so now
computing the mass-squared by the prescriptioplsf we
indeed reproduce Ed38). We consider this an interesting
check on the laborious calculation presented in the Appendi
which also makes contact between our 10D methods and tI‘Ey
5D gauged supergravity results [df5,16].

The appearance of a mass implies that Raeurrent op-
erator should acquire an anomalous dimension. From E
(39) it follows that

(gM)? convenient to definex(+ixs)/(2wa’)=®=|®|e'A. Rota-
(mL)? ON) (42)  tions of the phase ob are dual to theJ(1) R-symmetry in
7(0s the gauge theory.

To compute the anomaly for ti®U(N+ M) gauge factor,
notice that there are nowN+ (N+M)=3N+M effective
flavors, which havér-charge— 1/3. Combining this with the
contribution from the gluinos, we find that the anomaly co-

Using the AdS conformal field theof(CFT) correspondence
we find that the dimension of the curredt dual to the
vector fieldW* is

A=2+1+(mL)% (43  efficientis 2M/3/16m2. We would like to compare this with
a computation from supergravity. Equatio6),(17) are
Therefore, the anomalous dimension of the current is also satisfied for the orbifold. To identify properly the rela-
tion betweens and theR symmetry, note that the fiel®# has
) (gsM)? R charge 2/3; thus a shift gB— B+ € actually shifts the
A=8=(mL)Y2= Tt Ny (44 y(1)g by Ze. This will change the first term in Eq21) by

a factor of2 and give an anomaly coefficien?2/3/1672 in
We can obtain a rough understanding of this result by conagreement with the gauge theory expectation.
sidering the relevant weak coupling calculation in the gauge A very interesting generalization of this theory was stud-
theory. The leading correction to the current-current two-ied by Gram and Polchinski24], and also by Bertolinét al.
point function comes from the three-loop Feynman diagrani22], who added D7-branes wrapped on the 01236789 direc-
composed of two triangle diagrams glued together, and th&éons; an analogous solution with D7-branes on the conifold
resulting anomalous dimensioyy is quadratic inM andN.  is not currently known. The extra D7-branes allow excita-
v3 must vanish wheiM =0, and it must be invariant under tions of 3-7 strings and, depending on how the 7-branes are
wrapped, will addN-, flavors coupled to the&SU(N+ M)
gauge group andl,_ flavors coupled to th&U(N) gauge
3We are grateful to O. DeWolfe and K. Skenderis for pointing outgroup. The total number of 7-branesNg, +N;_. For a
the relevance of this work to the present calculation. small rotationB— B+ €, the correspondin® terms are
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0,=2¢(M+ %N7+) (45) APPENDIX: THE VECTOR FIELD EQUATION
OF MOTION

—2e(— 1
©,=2e(=M+3Ny7-). (46) In this appendix we derive the equation of motion of the

and the associated anomaly coefficient is HA@M/3 vector field W by considering the RR five-form and metric
+N,,/6—N,_/6). fluctuations at second order @aM, and their corresponding
We can reproduce the same result for the anomaly by gupergravity equations of motion; the approach given in Sec.
supergravity calculation, using the results [20] and Il is not strictly correct, because there is no good way to
[24,22. It is helpful to think about the D3-branes on the incorporate the self-duality constraint of the five-form in the
orbifold fixed plane as a combination of a wrapped D5-brangiction. From the equations of motion, we find that the vector
and anti-D5-brane, each of which carries half a unit of D3_f|eld W is massive, confirming the heuristic arguments in

brane charge. By considering the Chern-Simons term in the€¢- !l!- o o .
action for a probe 5-brane Before proceeding with the computation, it is worthwhile

to record some useful identities. A convenient definition is

iﬂsf (2m’)f§/\c4=i§—;f F5y/N\Cy

1
d3X'=E 7]|J8jk|mdxk/\dxl/\dxm, (Al)
1
=+ E/“L3J’ C41 (47)
and some useful relations are
we see that the field strength on the 5-brane worldvolume

will satisfy 12
*(drAg'Ag?AgPAgH = — ——d*x/\g® (A2)

. 1 h2r3

where the upper sign refers to a D5-brane and the lower signe (dx' /A\g*/A\g?Ag3/\g*) = — 1—23d3x‘/\dr/\g5
to an anti-D5-brane. Now let us add the D7-branes. The su- hr

pergravity solution has RR scalar and two-form potentials (A3)
given by[22,24

: 3 :
*(dXAdrAgPAdg®) = —d3x'A\dg® A4
Com (N 4Ny ) (49 ( R T "
2
Ny, —N;_ (*sdA)Adr=(3,A;— 3;A,)d3x drh—3/4
C2=a’,8w2( M + 7 ) (50 (A5)
To find the® terms for the dual gauge theory, we just need d(v;d3x")/Adr=gv;d*x/\dr (AB)

to look at the Chern-Simons terms in the actions for a probe
D5-brane and anti-D5-brane. For a D5-brandose excita-

tions are in theSU(N+ M) gauge groupwe find that Zd(fijSijdek/\dX')/\dr: —&ifideXj/\dr. (A7)
1 ' + 1
2 ; (C2+ 277(1 Co.7:2 ):Zﬁ(M +§N7+). (51) We a|so define
ey
Comparison with Eqs(18) and (19) shows that gravity re- b= 3 gM? A8)

produces the field theory expectation f@r; given in Eq.

(45). The analogous computation for an anti-D5-brane will
reproduce Eq(46). Thus the anomaly as computed from
supergravity agrees exactly with the field theory calculation

27 N

In our perturbative expansion, the fields other than the
five-form and metric are given by Eq€),(31), andC=®
=0. The equation of motion fol appears in two places: the
equations of motion for the five-fornjFs=Hs/\F5 and

We are grateful to D. Berenstein, O. DeWolfe, C. Herzog,F . =«F, and theuy components of Einstein’s equations,
M. Krasnitz, K. Skenderis, and D. Vaman for useful discus-
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1 /2N 77-0[’2
C4:g—h*1d4x+ 5 (B+0)g*Ng?>A\gPAg*— 7 (Neri+NDY) WAG Adg®+ hl"‘r*de/\gS
S
12 Nb ) 12
N WZ FrZWid3X'/\95_ er Nbrw,g*A\g?/Ag®/\g*. (A10)

The logic that leads to this potential is that eventually we will want an equation of motioW fmughly of the form(35).
Requiring self-duality 0ﬂ~:5 will give such an equation with a mass term if there are terms of the fdtfng'/\g2/A\g®

Ag* and its dual inFs, and this four-form potentialA10) allows for such terms in all natural ways. For the mom¥éis a
numerical free parameter. So the five-form is given by

Fs=dC,+B,/\F,4 (A11)
1. Ly, ma”? 1A N2 T’
=g—d x/\dh +TNeffXAg Ag?Ag3Agh— 7 (Nerr+NbY) dWAg Adg®— e *xsdWd @
S
ma'? o dr 3z ma'? F i a o 4 re ..
+ NbW dx'/\T/\g5/\dg5+ Fd3x'/\dg5 —3—,—NbaW, 1—2dx'/\g AN AN SIANs —ngx'/\dr/\g5
ma'? Nb ma'? 1
—3— Frzaiwid“x/\gs— G Nbr—4a,(r5W,)dr/\gl/\gz/\g3/\g4
12 3 3 12 Nb ) 12
- %(Neff-i-NbY)md(h7/4r7*5d\/\/)/\95+ 772“ THWidAdrAgS+ T NbWdrAgiAg2AgEAgH
r
12
- NbYWAgAg2Ag3Ag?. (A12)
|
The expression for the five-foritA12) is not self-dual with 4b
respect to the metri23), because of the last four terms in m2=—2(%+2Y). (Al4)
(A12). We may remedy the situation by correcting the metric L
at orderb:

On the other hand, when we compute Einstein’s equations
(A9) we find that

dr? . 2b
dszzh(r)1’2(dxndx”)+h(r)1’2r2[—2 diF”=—FW’(—%+2Y) (A15)
r
1 3p 2 14 with corresponding mass-squared
+ - g®—2A+ —wdr| += > (g"?|. (A13)
9 2 6 =1 b
m2=F(%—2Y) (A16)

Then by shiftingy appropriately to make the first line % ¢ thary= — 1/12. Finally, we obtain the true mass of the
self-dual with respect to the new metric, there will be aNfield

additional contribution of the form—(3m7a’?/8)NbW,dr

Ag*Ag2Ag3/Ag* The new terms in the metriA13) do , 4b

not affect the two-form or scalar equations at our order in m K (A17)
perturbation theory. Now, the self-duality constraint for these

remaining terms gives an equation of the right formWdr  which is of the same form as E¢B6) but differs by a factor
with mass-squared of 1/3.
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