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Renormalization of self-consistent approximation schemes at finite temperature.
Il. Applications to the sunset diagram
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The theoretical concepts for the renormalization of self-consistent Dyson resummations, devised in the first
paper of this series, are applied to first example caseg“ofheory. In addition to the tadpoléHartreg
approximation, as a novel part the numerical solutions are presented, which include the sunset self-energy
diagram into the self-consistent scheme based odtderivable approximation or the two-particle irreducible
effective action concept.
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[. INTRODUCTION counterterm scheme and thus the behavior of the running
coupling constant clearly deviate from the true one at orders
In the first paper of this serigd] (paper ), we derived beyond those included ifb. If these rules are not watched,
the theoretical concepts for the renormalization of theone may face uncompensated divergences as recently en-
Dyson-equation-based resummation schemes at finite ter§ountered in the detailed work of Braaten and Petitgifaid
perature. It could be shown that such truncated seliThey tackled the same problem, however using different
consistent approximations can be renormalized with countef€chniques in terms of a restricted ansatz for the propagator.
term structures solely defined on the vacuum level of the)ncompensated singularities arose from the fact that the
considered approach, if two conditions are mef:the un- used B function was not the one pertaining to the self-

- : consistent scheme but taken from the f8lfunction calcu-
ggg?é?(?mz):%? tf;i(r)]rg/mP;ashtgsbet ()renbo(armglgzsit()jle gg)dtgzy m,Iated up to the fifth loop order. Furthermore, it is still not

. . S . Tlear to us how in their approach the hidden and nested
@-derlvablf_a concc_—:'p{tZ—{l, .., on a two-particle wrgdumble vacuum subdivergences can be resolved such that one arrives
(2P1) effective action principle. Thus the self-consistent self-

- t a counterterm structure solely defined on the self-
energiesY, are generated from a truncated set of 2PI close onsistent vacuum levelT=0). In our case, the latter leads

diagrams(called ®) of the underlying full theory through 5 5 renormalized Bethe-Salpeter equation for the vacuum
SD[G] four-point function c_onsistent with the chosen approximation
S(p)=2i ——, (1%) level for the® functional. _ .
oG(p) In I, we also showed that the generating functional
I'¢,G] and thus the thermodynamic potential can be ren-
where®[G] is a functional of the self-consistent propagator dered finite with counterterms solely defined on the vacuum
G(p) in the momentum representati¢as in |, an asterisk |evel of the self-consistent scheme. Again, it is crucial to
behind an equation number implies that the correspondingxpand the functional around theolutions of the corre-
relations are only valid at the regularized level, while all sponding self-consistent approximation for the vaculiris
other equations are valid also for the renormalized quantinot possible to render arbitrary parts Bffinite for them-
ties). To repeat, the main issue is not to render any divergengelves since it is important to use the stationarity’dér the
loops finite; this has been pursued many times. The aim is tgolution of the vacuum equations of motion. In particular,
deploy the counterterm structure such that it is entirely determs linear in the matter parts of the propagator are singular
termined at the vacuum level of the self-consistent schemeand only drop out if the vacuum part is solved self-
In addition to the explicitly visible divergences, this implies consistently.
resolving also the nested and overlapping vacuum diver- For self-consistent Dyson resummation schemes, it is well
gences hidden in the self-consistent matter parts of thknown[6] that they may violate symmetry properties such as
propagator. crossing symmetry, masslessness of Nambu-Goldstone
In I, we have given proof that for the self-energy this canmodes, conservation laws, etc., at a level beyond that of one-
be done for anyd-derivable approximation, provided the point functions, i.e., on the correlator level at orders beyond
underlying quantum field theory is renormalizable in thethose included inb. We will devote a forthcoming papé7]
usual sense. Thereby, the counterterm structure results fron this series to the issue of how to extend the scheme such
closed equations on the vacuum level, implicitly generating ahat symmetry violations are indeed cured.
particular though infinite subset of counterterms. The com- |n this paper, we give first numerical solutions for the
plexity of the ensuing equation is similar to that for the self-leading and the next-to-leading order of the self-consistent
energy. Dyson equations for thep* theory, which is defined by the
Thereby, it is of particular importance that the entire Lagrangian
counterterm structure isonsistently constructed solely and 5
only within the effective action defined by the chosen ap- L=1(0,¢) (0" _m_¢2_ £¢4 @)
proximation to®. This implies that, e.g., the so-obtained 22w 2 417
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In the symmetric phas€®)=0, the first diagrams contrib- Throughout the paper, we work in the momentum-space
uting tod and are representation within the real-time field theory formalism for

the self-energies and propagators. Thus, if not stated other-

, 1 wise, self-energies and Green’s functions are contour matrix

1=+ @ T (3*)  valued in the sense of the Schwinger-Keldysh real-time con-

tour[10-12. There vertices belonging to time arguments on
the time and antitime ordered branches are labeled land
—ix= Q +_@.+... , (4%) + superscripts, respectively. The integration sense is ac-
counted for by assigning the valuesi\ to the bare vertex
depending on its placement on the} or {+} branches of

_ ) the contour.
where all lines represent self-consistent propagators. The

leading-order diagram gives rise to the tadp@tartreg ap-
proximation for the self-energy, which, frequently considered
in the literature(see, for instancég,8]), leads to the standard  |n |, we have shown that arbitrary self-consistent approxi-
gap equation. Here it is given as the most simple example fomations given by thé-derivable conceptl*) can be renor-

our general renormalization scheme. The next-to-leading ofmalized with counterterms defined on the vacuum level.
der includes the sunset diagram for the self-energy. While irrhereby, the renormalized self-energy as well as the thermo-
the tadpole case the self-energy is real and constant, with th/namic potential are finite and consistent with one another.
sunset term the self-energy becomes momentum-dependent For the renormalization procedure, the self-energy has to
and complex. Thus the particles acquire a finite spectrape split into three parts, namely the pure vacuum palich
width due to collisions with the surrounding matter. With the s of divergence degreé(s.(V29) =2], the part>(®) with di-
sunset diagram one enters a new stage of sophistication, bojargence degreé(>(?)=0, containing explicit and hidden

as far as the counterterm structure is concerned and Withacyum subdivergences, and the ra&st) with §(3 )

respect to the numerical solution of the resulting self-— _2 \which contains only explicit vacuum subdivergences

II. THE RENORMALIZED EQUATIONS OF MOTION

consistent equations. o with corresponding counterterms
The first numerical investigations of the self-energy are
presented which result from the two explicitly given dia- S =30 5043 (5)

grams in Eq(4*). We could improve the numerical accuracy
immensely compared to the status given[@}, where we The self-consistent Green's functiod follows from the
restricted ourselves to the computation of the imaginary part®yson equation in contour matrix form,
of the self-energy to avoid problems with renormalization.

The paper is organized as follows. In Sec. Il, we briefly AT1G=1+3G. (6)
summarize the results of | as far as we need the formulas for
the numerical calculations. In Sec. Ill, we solve the tadpoleHereA is the free Green’s function on the contour. In view of
approximation(gap equationand in Sec. IV the next-to- Eqg. (5), the self-energy within the Green’s function needs
leading-order approximation including the sunset diagram. two subtractions to render its loops finite:

iQ = iG(vac) + iG(vac)E(O,div)G(vac) T 1Gv(r) -

jG(matter)

7

The subtraction only affects contour diagonal pieces of thexccounts for the self-energy parts lineaGR"™"®, The three
propagator, since loops containing mixed contour verticesight-hand-side terms of Eq7) are of divergence degree

are finite for themselves. Thus —2, —4, and—6, respectively. It is important to notice that
) only the full self-consistent propagator and self-enei@y,
f(vao n) — iG™*(p) 0 and 3, obey the equilibrium conditiondKubo-Martin-
167 ()= 0 iGt+(va9(py )’ Schwinger(KMS)] among their four contour components, cf.

®) Egs.(A14)—(A18) in I. The components of subtracted pieces
like gMate) 50 or 5(1 obey no direct equilibrium rela-
tions as they result from differences of finite temperature
with vacuum terms. Here we see an advantage in the real-
time formalism which naturally permits this decomposition
and likewise3 2 are diagonal. While5"2® and> 29 are  into vacuum and matter pieces of all dynamical quantities.
given by the(antjtime-ordered self-consistent expressions The contour diagonal parts &© and = contribute
given by thed-derivable scheme on the vacuum levef?)  only at finite temperature. Due to Lorentz invariance, the

is" " O(p) 0
0 i3t O0(p)

iE(O;div)(p) — (
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vacuum self-energy and the Green'’s function are functions of S2P[G] | (ren
s=p?. The vacuum self-energy is renormalized according to r'“(p,q)= Z(W) : (11
the rules of the on-shell renormalization scheme, i.e., T—0"

The countertern’*V29 contains only the contour diagonal
3V (s=m?)=0, 3.3 (s=m?)=0, (9)  parts(all vertices placed on one side of the real-time contour
of I'®. This function is 2PI in the chann@l—q, i.e., one

which definesm to be the physical mass of the particles andc@Mnot disconnect the diagrams by cutting two lines and

normalizes the wave functions such that the residuum of thgcParating the lines carrying the momeptandgq. It con-
Green's function as=m? is equal to 1. As we shall see in ains only vacuum pieces and can straightforwardly be renor-

H H (4,vac — H H
the following, the renormalization procedure used to calcu—mal'zed with T (0,0)==A/2. At the same time, this

late the vacuum parts, and subsequently needed for tfour-pomt function defines the kernel for the vacuum

. channel Bethe-Salpeter equation defining the two-particle
temperature-dependent pieces of the self-energy, allows us 8ducible(2PR) four-point functionA (p,q). In Eq. (10), we
choose any renormalization scheme. Especially, it is possibl ' !

Snly need the half-sided (0,p), which, as one of the crucial

to use “mass-independent” minimal subtraction schemegygints of the Bogoliubov-Parasiuk-Hepp-Zimmermann
(MS [13] or MS [14] of dimensional regularizatiorso that  (BPHZ) renormalization procedurl5,16), is given by the
the renormalization program shown in | is applicable also foffinjte equation

the massless case. For the renormalization of the self-energy

and the 2PI-functional'[ G], it is crucial to split all quanti- A(0,p) = +§+F<4,vao(0 D)
ties into vacuum T=0) and finite-temperature parts by the ' 2 '
procedure given above. 44
As shown in |, this procedure allows us to define the +ifFA(O,I)[G(I)]Z[F(“"’&@(I,p)
generating functional in its dependence on the in-matter parts (2m)
of the propagator with the self-consistent solution given by e )7, (12)

the stationary point. Simultaneously, this leads to the renor-

malized thermodynamic potential. All divergences indeedagain involving only contour diagonal terms. Here we in-
compensate if and only if the vacuum level is solved andserted the renormalization condition(0,0)= =+ \/2.
renormalized entirely within the same approximation level as  The expression10) for (9 void of the A(0)) part
used for the finite-temperature parts. This fact together withyould correspond to a naive subtraction, which indeed is
the Stationarity conditions of the generating functional at T finite, however it imp]iesT_dependent counterterms. As ex-
=0 for the vacuum equations of motion avoid the Singularityp|ained in I, On|y the entire expressidﬂO) guarantees a

problems encountered [3]. counterterm structure solely defined on the self-consistent
In 3, the in-matter part of the propagator is involved in yvacuum level.

logarithmically divergent loops which imply hidden diver-
gences. As shown in |, these can be resolved with the fol- The perturbative view

lowing result: The above procedure defines the self-consistent renormal-

" ization scheme in terms of the corresponding self-consistent
vac 1 i
2(0)(p):f AIT@(1,p)—Tv0(] 0)] vacuum propagato6! ),_ the vacuum fou_r-pomt function
(2) A(0]), and the self-consistent in-matter pieces of the propa-
(matter " gatorG(Mate) or G, As an illustration, we briefly quote the
xXG (H+AONHGT (1)} (10 corresponding perturbativélPl) view of the scheme, ex-
panding the full self-energy in terms of the vacuum propa-
Here, in consistency with the Dyson equation, the four-poingator in contour matrix notation satisfying the equilibrium
functionT“(p,q) is generated also fromb through relations KMS at the given temperatufe

iG~~(9(p) 4 ptae| |*>( n(Po)  O(=Po)+n(Po)
0 i+ (p) | TP PP 6 (o) + n(po) n(po)

_ L (13)

iG(vac,T)(p):

with the vacuum spectral function and thermal Bose-Einstein weight defined by

p"*9(p)=—2ImGR*(p)= — 2 sgripo)Im G~ 2,

1
"(Po) = exp(Blpgh —1°
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As discussed in 1, loops involving th® functions or the thermal weights summarized by the dotted line are always finite.
For the self-consistent scheme of tadpole and sunset, the following types of 1Pl diagrams are resummed to the full
self-consistent self-energy:

E(vac)

(15%)

Z(matter)

Here the diagrams fat (M) gre generated by iterative in-

sertions of the diagrams o ("2, replacing one or more A(Vac)zi- (20)
plain lines by dotted ones with the constraint that due to the

self-consistency at the vacuum levall pure vacuum self-

energy insertions are to be excludéd X ™"*)vacuum sub- | the following, it is sufficient to just consider thie-—}
diagrams(plain lines with four external lines are logarith- propagator. WritingM2=m?2+® from Eg. (6), the self-
mically divergent and need to be renormalized. Their suntonsisten{——} propagator is given by

defines the renormalized four-point functidn If the latter

include the external pointsfull dots), they contribute to

3 defined in Eq.(5). All other terms, like the last term, - 1 . y
contribute to3,(". G (p)= —MZTig 7]_2| mN1(Po) 6, (P —M")
lll. THE TADPOLE APPROXIMATION "
wit
The tadpole approximation is given by
_ i e ° 1 1 1 9
d[G] = _ A { ____G]]l:| - _
6 == 5 3o [ a0 e 8,0= Im = s, (21
wii 0. 6D[G] Q A [ oA T and the Bose-Einstein function
—i¥ = 216—6;]]—- = = 5/ (27r)dG”(l) = B¢’ 7€ {_7+}
(17%) 1
N7(Po) = gpolT—71 - (22)

for the unrenormalizedb functional and self-energy. Here
o=diag(1-1) accounts for the integration sense on the
contour. The self-energy is diagonal in the contour indicessmce the tadpole self-
Since the tadpole self-energy is real and constant, th
vacuum part vanishes,

energy is constant, it is identical with
€9 and due to Eq(7) we thus have

zte9=0, (18 6= (p)=G " (p)~-G "*(p)-O[G ()]’
2
in view of the physical renormalization conditi¢®). To find _ 0
the renormalized equations of motion at finite temperature, (m?—p?—in)?(M2—p?—inp)
we need the renormalized four-point functidraccording to . 2 a2
Eg. (10). Because of Eq(11), we have a constant Bethe- —2mint(Po) 8,(p*= M%), (23

Salpeter kernel,

This analytically given result explicitly illustrates that the
r<4;vac>:§ (19) subtracted pait~ ~ (") of the propagator no longer obeys the
2 finite-temperature KMS and retarded relatidiss. (A14)—
(A18) in I]. The renormalized effective mass follows from
and thusA is also constant and determined from its renor-Egs. (10) and (20) with standard integrals from vacuum-
malization condition(12), perturbation theorysee, for instancd,17]):
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Effective Mass for A=30 (Tadpole) in dimensional regularization. Since now the renormalized
0.26 tadpole self-consistent — T y vacuum propagator is the free massless propagator, i.e.,
tadpole perturbative — — - 4
0.24 | / 1
Guadl) = et (26)
0.22 |
> 02 an infrared regulating mass scaté has to be introduced in
% <1 order to calculate both the mass and the four-point vertex,
0.18 1 inp2e [ dl 1
Oac= -
0.6 | e 2 ] @m@it-ut+ing
)\/J“, 1 MIZ
0.14 . L . —
0 0.05 0.1 0.15 0.2 0.25 = 30,2 [ tl-y- '”( o 2] +0(e) ],
T[GeV] (27%)
. . inp? ¢ dd 1
FIG. 1. The solution of the gap equati¢®) compared to the rf/‘;)c(o): 3
naive, i.e., nonresummed one-loop perturbative solution. Both cal- 2 2m)° (1°=u'“+in)
culations are renormalized in the vacuum in the same way accord- N (1 M'z
ing to the on-shell conditiond) with m=0.14 GeV. =———|—vy—In|—]|+
327 Y A O(e)
2_ 2.0 @ . —
Me=m"+06 with the MS counterterms,
A M2 12
2 2 2 2 A 1
=m°+ | M*“In —M“+m H
327 { (W) sm?= lim 3o — [—— 'y} 0,
,u —0
ﬂr( v L?+M?) (28%)
3272 )

The solution of this gap equation fon=0.14 GeV and\ which are IR-finite due to the fact that in dimensional regu-

=30 is shown in Fig. 1. larization the mass counterterm in tNeS scheme is propor-
The self-consistent treatment reduces the mass gap relional to the infrared-regulator mass'?. For m=0, the

tive to the perturbative result due to the larger misgn-  renormalized gap equation finally takes the form

tering the self-consistent loop.

The gap equatiof24) becomes singular fan—0 due to M2= — AM? [1—In ? )
the chosen on-shell renormalization conditi9). For the 32m? A7 p?
sake of completeness, we give a brief summary about the
treatment of the case of vanishing renormalized vacuum A jde L2 nr(yL?+M?) 29
mass in the following. JLZ+M?
For m=0, the renormalization description has to be
changed to a so-called “mass-independent” renormalizationmplying that perturbatively
scheme. This concept is most easily established in the dimen-
sional regularization procedure by the so-called minimal sub- ’ o )
traction (MS) or modified minimal subtraction MS) M per= A2 f dLLng(L)= _T (30

schemes where for all renormalization parts, i.e., in our case
of ¢* theory the propen-point vertex functions witm=4,  \yhich follows from Eq.(29) by lettingM—0 on the right-
only the singular terms ie=(4—d)/2 are canceled. hand side.
In the present case of the tadpole approximation where
the self-energies are momentum-independent, this can be
done analytically. Indeed fan=0 we have® =M? and the
divergent part of the diagram reads In this section, we calculate the self-consistent self-energy
for the next-to-leading-order approximation of ttefunc-
tional numerically. First we have to solve the renormalized
inp?e (o dd 1 Dyson equation for the vacuum and the Bethe-Salp@&8&y
2 2m912—=M?+iy ladder equation for\ ", which is needed as input for the
temperature-dependent calculation according to(EQ).
The ® functional is given diagrammatically by

IV. THE SUNSET APPROXIMATION

0.=

M2

AM?2 )
5| +0(e)
)7

- 32772

1

(25%)

+1—y— In(4
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‘ 1 already subtracted such that in the vacuum case we only need
=0 + ’@ (31*)  to solve for the self-consistent sunset self-energy.
The general strategy will be to combine the BPHZ-
while the corresponding self-energy and BS kernel becomerenormalization scheme with dimensional regularization and
use the spectral representation for the Green’s functions

Q (Lehmann representatipn
s (329

= d(m?) Im G@9(m?
c3<V""‘3>(|02)=f0 ) 2£i77). (34)

™ m’—p

o= X +>xX- (339
All quantities such as the renormalized vacuum self-energy
3 (3 the BS kernel'™, and the four-point functior are
For the renormalization parts, it is sufficient to restrict all then to be expressed through the vacuum spectral function
considerations to one real-time contour branch. For definitep=—2 ImG2® and corresponding time-ordered kernel
ness, we choose the time-ordered branch, i.e., in the followfunctionsK;. The latter express the analytic structure en-
ing subsections all contour two-point functions denfete-} tirely in terms of free-particle properties, however with vary-
guantities rather than matrices. The physical renormalizatioing masses. They can then be renormalized by dimensional
scheme(9) implies that the tadpole part of the self-energy isregularization.

A. The two-propagator loop
A central quantity is the simple loop function contained in E§Z") and (33*),

L(reg) O - 1/ G(vac)[(l + q)Z]G vac)(ZQ) (35)

This four-point function is logarithmically divergent and to be renormalized with the condition
L(®M(0)=0. (36)
With the help of the Lehmann representati@d), it can be expressed as

2
= dmg

L(ren)(qZ): J'
0 0

dm3

—=K{"®"(g?,m2,m2)Im G2(m32)Im G2 (m3) (37)

v v

with the renormalized kernel defined through

K{®"(g2,m3,m3)=K{"®9(q?m3,m3) — K {9(0,m3,m3),
; (39)
d | MZE

2m* (mi—12=ip[m5—(1+p)?—in]’

K{®% (g, mf,m3) =i

Here the standard notation for dimensionally regularized quantities is used, ehdre 2¢ is the space-time dimension and
u denotes theenormalization scale

After a Feynman parametrization, the integ{@8) can be expressed in terms of standard formulas of dimensional regu-
larization (see, e.g.[17]), which leads to the result

K9, 2. 2) 1 1+2 N | art s+mZ—mj \ ot s—mi+mj
s,m2,m3)=——1{ —| —+2—y|s+\(s,m;,m,)| artanf —————— | + artanh —————
1 (s,mp,m; 16m3s € Y (s,my,m, A(s,m3,m3 A(s,m3,m3)
. I my I m;m, 2
(m1 mz)n m, sln _2477,“ (39

with the K&8lén function
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Re L ImL
0 . 0
-0.002 | - -0.002 |
0.004 - | -0.004 |
i\ -0.006 |
_, -0.006 | . 5 oo0s
) c -0 L
T o008} { =
74 0.01
- - // 4
0.01 0012 |
-0.012 E -0.014 +
-0.014 1 1 L 1 L L 1 L L -0.016 1 1 L
0 1 2 3 4 5 6 7 8 9 10 o 1 2 3
sim?] sim?]

FIG. 2. Real(left) and imaginary parright) of the loop functionL. For the real part, the dashed line shows the approximate behavior
(44) around the threshold.

A(s,m2,m2) = \/s>+mj+ms— 2snt — 2sme— 2mam3, (40)

which is completely symmetric in its three arguments and the branch is determined $y itheprescription. Here and in the
following, we neglect contributions of ord€¥(e). For the renormalization of this kernel, we also need its valiee=d1 given

by

1 m2—mj m3 m3
K{"®9(0,m,,m,)= - 1+ y+m?In| —=| —mZIn . 41
1 (0my,my) 16(m§—m§)7r2[ € Y 47 p? 2\ ampl (42)
According to Eq.(38), we thus find
K{®"(s,mg,mp) =[K{®*9(s) —K{*9(0)]. o
1 (mf—mg)z—s(m§+m§)l m,
" 16a%s| ° m;—mj; "\ m,
s—mi+m3

s+mZ—mj
+X\(s,my,my)| artanh ——————-

A(s,m3,m3)

I

The result for the loop.(s) with s=q? is given in Fig. 2. The imaginary part is essentially determined by the two-body
phase space which openssat 4m?. To discuss the threshold singularity Iof it is sufficient to study the perturbative result
obtained from the pole term @2, which is analytically given as

+artan) ——————
’{Ms,mi,mﬁ)

1 [s—4m? [ s
(pert 2\ — K (ren 2 M2y — _
L'PeP(s,m*)=K3="(s,m*,m") 82 s artan%( s—4m2) l}
1 S—4m? | Vst s—am? im . 43
82| Vs \"Tom )Y 43

This function is analytic and real for reakc 0. The analytic continuation to other valuessdg given by taking the principal
branch of the square root and the artanh functionssfers with a small>0. Close to threshold~4m?, one obtains the
following approximate forms:
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4 2__ 4 2 —4 2\ 2
AN LU LN (S m) for 0<4m?—s<s,
8L P (s m?)={ 2 > > ° (44)
i [s—4m? 4m? s—4m?\? )
e - for 0<s—4m-°<s.
2 S S

Around the threshold, the square-root term causes the singular behavior changing from real to imaginary values, while the
remaining log term is entirely real. At large the real part oL behaves logarithmically, whereas the imaginary part goes to
a constant.

B. The vacuum self-energy

The unrenormalized expression of the two-loop self-energy reads
(vac) )\2 ddll (vaog 12 (vao 27~ (vag 2
> 27 —)dG (IDGYP[(I1+12+p)7]GMH(13). (45%)
With the help of Eq(37), the sunset self-energy with all subdivergences subtracted becomes
§<vac>(p>=f f —ddd'2 LL(1+p)21GY29(15) (46)
6 ) (2m) 2 2

Now we apply the spectral representation for E2p) with one subtraction determined by E&6),

L(q? F UL ! ! 4
= mL(m —— — .
(99 T (m3+in) mi—?—i7 mi—iz (47)
Together with the Lehman representation of the propad&®r this leads to the renormalized vacuum self-energy
d(m3) d(m2)
2(9(s) = f : K Ye (s,m3,m2)Im LU (md)Im G (m3), (48)
4m ™ om2 T

where due to the renormalization conditioi® the kernelk{®" is given by

K5eY(s,m3,m3) =K {®9(s,m3,m3) — K{®¥(m?,m3,m3) — (s— m?)[ 9K 9 (s,m3,m3) Js_ m2- (49)

The cancellation of the contributions from the subtraction of the subdivergences is due to a specialty of the sunset diagram:
Here all contracted diagrams are of tadpole structure and therefore independent of the external mqrardutinus are
completely canceled by the overall subtractions. The advantage of taking them into account anyway is that at any stage of the
calculation we use renormalized functions which can be calculated numerically without using any intermediate regularized
functions.

From Eq.(39), we find the analytical expression for the kerisgl,

s+m3—m;
artan) —————
)\(Sv m3 ’ m4)

s—m3+m;

IS I 2
)\'(S!m3lm4) S)\(m 'm31m4)

+ artanf{

1
KYe(s,m2,m3) = m( m?\(s,Mg, M) X

m?—m3+m3
)\(m21m31m4)

m?+m3—m3
X |artanh ——5———
A(mM?,mgz,my)

(s—m?)[(m3—mj)?—m*(m5+mj)]
167°m*\ (m?,mg,m,)

+ artanv(

s—m?  (m5—mj)(s—m?)?

2 2 2
m’—mi+mz || .
167°m? 167°m*s

)\(mzlm31m4)

m?+m3—m2
X |artanh) ——5———
)\(m 1m31m4)

Equations(37) and (48), supplemented by the Dyson equation

ms
In( m_4> . (50

+ artan?(

1
vao () —
(p) pz_mz_z(vac)(p2)+i77*

(52)

form the closed set of renormalized equations of motion, which were solved with the analytically given Ilélfﬁéland
K(zre”) from Eqgs.(42) and(50). For the integral$37) and(48), a simple adaptive Simpson integrator was used. We have chosen
m=m,_=140 MeV for the mass andd=30. As Fig. 3 shows, for this coupling there is no visible difference between the
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Re X for A=30, T=0 Im X for A=30, T=0
0.015 . . . : : : . 0.005 . . . : : : :
0.01 | 0
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< 0} T 001 |
<4} [0}
O, -0.005 O, -0.015 |
(A] (A
€ -001} E o0z}
0.015 | -0.025 |
-0.02 -0.03 |
_0'025 1 1 1 1 1 1 1 _0'035 1 1 1 1 1 1 1
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s[GeVa] s[GeVa]

FIG. 3. Real(left) and imaginary partright) of the sunset self-energy. The perturbative and the self-consistent result lie on top of each
other due to the large threshold sz 9m?.

perturbative and the self-consistent result since the main contribution comes from the pole term of the propagator, while the
continuous part, which starts at a thresholésfom?, is suppressed. Thus, due to our renormalization scheme, wtisrthe
physical mass parameter, the pole-term result essentially coincides with the perturbative one.

C. The Bethe-Salpeter function
The renormalized Bethe-Salpeter kerfiét™®" defined in Eq(11) reads

P41 p) = 4o (1 - )2
:%+)\2L(ren)[(|_p)2]. (52)

Since, as shown above, the pole term essentially determines the loop fulbcti@simplified the task to solve E¢LO) by
using the free propagator

A(p?)= (53

pZ—m?+iy
instead of the self-consistent vacuu®i'®.

Subtracted dispersion relations fbf*™" and A (™" and the renormalization conditiod3*"®"(0,0)= A (®"(0,0)=\/2
provide the renormalized integral equation

o d4 = d(m3) 2lp—p?
| (277)4[A(|2)]2[ Jim T e s

(54)

f d(m?) 12ZIm A0 m?) A
mm;  mi—1?—ig 2|[

Again thel integration can be performed with the help of standard perturbation theory integrals leading to the kernels

d4l 1 12(2lp—p?)
(ren) ~2 —
K3 (p imlva) If (277)4 (m2—I2—i 77)2 (m§—|2—i n)[mg_(l _p)2_i7]]'
d4l 2 2 59
. p—p
K(ren) Z,m =i . . ,
< P o e P i A (- P i7]
which can be related to the previous kerKgl through the identity

A(1? 2——ia —2—2—1 (56)
[ ( )]_ 2m mm_l _|77
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Re A for 2=30 Im A for A=30
0 T
o 1-loop ———
ol 1, iteration —-=-— |
3th iteration ------
4 4" iteration
< < 67 J
k4 £ &~
i £ ~
-8 ~\~\ _______________________ T
\"\
A0 N T e E
127 « 1-loop ——— ]| Seeecenn. T
1° iteration —--— A2l e
10 ¢ S;g iteration ------ ]
8 ) . 4" iteration 14 ) ) \
0 0.5 1 1.5 2 0 0.5 1 1.5 2
s[GeV?] s[GeV?]

FIG. 4. Real(left) and imaginary partright) of the A function. The plot shows that after three iterations the solution is already stable.

We start with the calculation df, defined in Eq(55) and write it in the form

< o d¥l 1 1 1 5
ASMM) == 5 m | 2y 17—y | 2= (1 —p)2—i7y me—1?—iny|’ 67
which can be expressed in termskof":
< 1 < 1 s (m?—m3—s) s+mZ—mj
4(SM,Mg) = = 50 ImK1(S,M M2) = = 720 m%—szr Nsmmy) | A s mymy)
2 2 2 2\2 2
s—mi+m; (M*—m3)*+2mss ( m)
J’_ —_—

artamsx(s,ml,mz) (m—m3)z  "\m, 9

The integrand oK, cf. Eq.(55), can be rewritten as follows:

i 12 p2—2lp i 5 1 1 1
m?—12—ip mi(mi—1%2—ip) (m5—1?—ip)[m5—(I—p)?—in]  2m ™mi-m?\m°—1°—ip mi—I%—iy

1 1 1 } (59

mi(m?—12—iy) [m5—(—p)?~ip ms—1>~in|

The integration of Eq(59) then leads to
Ki(s,my,my)—Ki(s,mm,)  m?—2m;

Ks(s,m,m;,my)= (mz—mf)z (mz—mi)mi K4(s,m,m,). (60)

With the so-defined kernels, we can express ([&¢) as follows:

= dms dms
AT =T (p?)+ | ——5 —2Ky(p?,my ,my)Im AT (0,md)Im (47 (m?)
am2TMm; T
A (= dmj

+ ELmZT Ka(p2,my)Im 40 (m3). (61)

Figure 4 shows the solution of this renormalized equation of motion in comparison with the one-loop approximation
r4rn As the figure shows, the solution is stable after three iterations.

D. The temperature-dependent parts

To calculate the temperature-dependent part of the self-energy, we use the analytical properties of the two-point functions
and the fact that the retarded propagator fulfills the simple Dyson equation
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Gr(P)= =~ (62)
RIP ps—m"—2r(p)

where the retarded self-energy can be obtained fron{-the}-matrix element via the equilibrium expression

ER(p)zReE(p)+itan|‘(§—_(|’_)lm2(p). (63

As explained in |, bottG(@ and =, () are diagonal matrices while the corresponding off-diagonal parts are contai@éd,in
because they are of a lower degree of divergence due to exlicit factors.

Due to its topology, the sunset diagram has no further vertices besides its two external points. Therefore, the 2PI vacuum
four-point functionl’ (V29 s effectively only a two-point function and thus we need only the-} components of the various
Green’s functions in order to calculats” ~. This implies

fo(mattebzeff_fo(vac)’ fo(r):fo(matteb_[fo(vac)]2277(0)_ (64)

With the help of the renormalized vacuum parts, we obtain for the self-energy

d d4
ST (p)=2""Ma9(p)+i f 2m)? {[‘(4,an[(| + p)2]_1‘*(4,vac>(|2)}G**(matteb(|)+i f (ZW)AA(ren)(Oyl2)G77(r)(|)
A2 od¥ d4l
2 (277)14f (277)24Gii(matter)(l1)Gii(matteb(|1+|2)fo(vac)(|2+ p)
A od4 d*l
_ E ﬁf ﬁG**(maﬁe’)(l1)G**(matter)(|l+|2)fo(matten(|2+p). 65

Note that all vacuum quantities entering here are to be taken inrreirmalizedversion and that the remaining integrals are
all finite due to power counting.

E. Results and the overall size of the lattice. The final results were

The above finite integrals are to be evaluated numerically2chieved withApo=A|[p|=6.67 MeV with N=300, i.e., a
While due to Lorentz invariance the vacuum loops involveUV cutoff at 2 GeV. .
just two-dimensional integrations which can numerically be Perturbative results are obtained through E66) ap-
integrated by standard methods, for the in-matter loops oniproximating G by the KMS-temperature part of the
rotational symmetry in three-momentum space can be exI€e propagato6 (2™ [last term in Eq(13); note that here
ploited. For each loop diagram, this leads to three-G")=G(™"*since3("*=0]. The self-consistent solutions
dimensional integrals for each external momentpgy|p|.  @re then obtained iteratively through the set of E@®)—-
We solve these integrals on an equally distdmtN latticein ~ (69. The results for both the perturbative and the self-
these coordinates. Naively, the computing effort would therfonsistent case are shown in Fig. 5 in a three-dimensional
scale likeNS. However, we succeeded to develop an im-Plot over the po,|p[) plane, illustrating that all the calcula-
proved algorithm for the loop integrations, where the com-tions are performed with the full dependence on energy and
puting time scales witiN* (essentially a gain of more than momentum. Details can be gxtrgcted from the cuts shown for
two orders of magnitude The lattice implies an infrared & Set of selected momenta in Fig. 6.
cutoff which requires particular care for the treatment of the 1€ main qualitative results are similar for both the per-

sharp structures of the vacuum propagator around its on—shéHr:gité\llﬁczrr‘gi;?eenfe{j}g"tgﬂsgelgtcgigugggzgl flzntgre Vzﬁgsvn; a
pole. The method at hand was to tabulate the lattice ceft p P ' gy

integrated values of the propagator and its momenpgn threshold cut resulting from the decay into three particles,

. by th v It f i int lationf i.e., p5— p>=9M?2. Adding the sunset self-energy leads to a
given Y € analytic resu rom a linearin erp(_)‘_anonp spectral width which dissolved this threshold such that the
of the inverse propagator at fixd@|. The remaining self-

self-energy shows spectral strendtimaginary parts at all

energy fagtors of the integrands are approximated to lineagnergies. While the growing high-energy tail is related to the
order inpg. The interpolation procedure is adapted to thegecay of virtual bosons into three particles, at finite tempera-
fact that due to the quadratic pole of th&é (~(*)? term,  ture, as a new component, a low-energy plateau irEFm
one is sensitive to thp, derivative(residug of the remain-  emerges from in-medium scattering processes.

ing integrand. Both the infrared and the UV cutoffs of the Various balancing effects are encountered for the self-

lattice have been controlled by varying the lattice spacingconsistent case: For sufficiently large couplings and/or tem-
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Pert. ReZ for T=250MeV, A=30 Pert. ImZ for T=250MeV, A=30
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FIG. 5. Real(left) and imaginary partright) of the perturbativétop) and the self-consistent self-energy for 30, m= 140 MeV, and
T=250 MeV. Note that the self-energies are multiplied with a factor 100 in these plots.

peratures, the self-consistent treatment shows quantitative gft Fig. 7, where the in-medium effective madsand widthI’
fects on the width. The finite spectral width itself leads to aof the corresponding “quasiparticles” are plotted against the
further broadening of the width and a smoothing of the structemperature. Thereby andI" are defined as the quasipar-
tures as a function of energy. _ ticle energyM =p,, at the vanishing real part of the disper-
This is, however, counterbalanced by the behavior of thgjon relation[pé—mz—ReE(po,ﬁ)]p:(M’(jﬁO for p=0 and
real part of the self-energy, which, as discussed below, €Shroughl" = — Im 3(p)/py
sentially shifts the in-medium mass upwards. This reduces
the available phase space for real processes. With increasing
coupling strength\, a nearly linear behavior of 1B with
po results, implying a nearly constant damping width given We have shown that it is possible to use the renormaliza-
by —Im >R/p,. tion scheme, proposed ji], for numerical investigations of
The overall normalization of the real part Bf® is deter-  the self-consistent approximations for the self-energy derived
mined by the renormalization procedure. In this case, theréom the truncated effective action formalism on the 2PI
are three counterbalancing effects. First the tadpole loofevel. Thereby, it is very important to isolate the divergent
shifts the mass to higher values. As the tadpole is less effesracuum parts consistently, in particular the implicit or hidden
tive for higher masses, this effect weakens itself in the selfones, from all convergent and, in particular, temperature- or
consistent tadpole treatment, cf., Figs. 1 or 7. However, sincenore generally matter-dependent parts. This could be pro-
the sunset part adds spectral width, it contributes indirectlywided by the ansatz given in | for both the propagator and the
to the tadpole loop. Since spectral strength at the lower masself-energy. The renormalized vacuum pieces are obtained
side carries higher statistical weights, the tadpole loop in turusing the Lehmann representation for all two-point quanti-
leads to a further increase of the mass shift, cf. the perturbdies. The resulting integration kernels can then be renormal-
tive calculations of sunset and tadpole in Fig. 7. ized by standard techniques. The procedure rests solely on
The direct contributions of the sunset terms to the realWeinberg’s power-counting theorem, i.e., on an analysis of
part of the self-energy become relevant at higher couplingghe asymptotic behavior of the propagators.
and temperatures. Then the self-consistency leads to signifi- In this way, both the renormalized vacuum self-energy
cant effects which contribute to a net downshift of the realand four-point functions can directly be obtained from finite
part of the self-energy or in-medium mask The latter ef- equations. For the finite-temperature parts, it is important
fect finally overrules the tadpole shift and indeed leads to athat they have to be completely excluded from the counter-
overall negative mass shift compared to tl@dpole- term structures. This is achieved by the technique developed
dominatedl perturbative result. These effects are illustratedin |I. Exploratory calculations are shown for the symmetric

p=(M.,0)» F€spectively.

V. CONCLUSIONS AND OUTLOOK
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Pert. Im X for A=30, T=250 MeV
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FIG. 6. Real(left) and imaginary partright) of the perturbativétop) and the self-consistent self-energy for 30, m= 140 MeV, and
T=250 MeV as a function opf, for various 3-momenta. Note that the self-energies are multiplied by a factor of 100 in these plots.

Wigner-Weyl phase of th& ¢* model for the self-consistent port [18] or for the solution of the renormalized Kadanoff-
treatment of both the tadpole and the sunset diagram at finiBaym equations. Numerical studies for nonequilibrium cases
(Gaussian initial conditions and spatially homogeneous sys-

temperature.

The results promise that the method, which is conservingems were already performed ifl9-21]. These investiga-
[2,12] and thermodynamically consistent, can also be applietions were undertaken in11 dimensions. Our renormaliza-
for the genuine nonequilibrium case, i.e., in quantum transtion scheme should also be applicable for the nonequilibrium
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FIG. 7. The in-medium effective masskk(left) and spectral width§' (right) of the particles for the various approximations described
in the text as a function of the system’s temperatflire
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case in ¥ 3 dimensions and implementable in numerical It can be shown, though, that on top of any solution of a
codes. d-derivable approximation which is constructed from a sym-
The investigation of the symmetry properties of metric Lagrangian, there exists a nonperturbative effective
®-derivable approximations is the subject of a forthcomingactionI . ¢] which generates proper vertex functions in the
publication[7]. It is known that in general the symmetries of same sense as the 1P| effective action. Thegernal vertex
the classical action which lead to Ward-Takahashi identitiesunctionsfulfill the Ward-Takahashi identities of the under-
for the proper vertex functions are violated for the self-lying symmetry. However, in general they coincide with the
consistent Dyson resummation for the functions beyond theelf-consistent ones only up to one-point order. This fact es-
one-point level, i.e., on the correlator level. The reason igecially ensures that the expectation values of Noether cur-
that, although théunctionall’ can be expanded with respect rents are conserved for thé-derivable approximations.
to expansion parameters like the couplingiofloop expan- Thus usually the so-generated external self-energy and
sion) or largeN expansions foO(N)-type models, the solu- higher vertex functions are different from thi-derivable
tion of the self-consistent equations of motion contains parexpressions. Details on these considerations will be given in
tial contributions to any order of the expansion parametera forthcoming papef7].
This resummation is of course incomplete and violates even
crossing symmetry for the vertices involved in the renormal-
ization procedure. This causes problems concerning the
Nambu-Goldstone modé¢§] in the broken symmetry case or ~ We are grateful to J. Berges, J. P. Blaizot, G. E. Brown, P.
concerning local symmetriegauge symmetrigs[9] on a  Danielewicz, B. Friman, Yu. Ivanov, M. Lutz, M. A. Nowak,
level where the gauge fields are treated beyond the classicahd D. Voskresensky for fruitful discussions and suggestions
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