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Renormalization of self-consistent approximation schemes at finite temperature.
II. Applications to the sunset diagram
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The theoretical concepts for the renormalization of self-consistent Dyson resummations, devised in the first
paper of this series, are applied to first example cases off4 theory. In addition to the tadpole~Hartree!
approximation, as a novel part the numerical solutions are presented, which include the sunset self-energy
diagram into the self-consistent scheme based on theF-derivable approximation or the two-particle irreducible
effective action concept.
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I. INTRODUCTION

In the first paper of this series@1# ~paper I!, we derived
the theoretical concepts for the renormalization of
Dyson-equation-based resummation schemes at finite
perature. It could be shown that such truncated s
consistent approximations can be renormalized with coun
term structures solely defined on the vacuum level of
considered approach, if two conditions are met:~a! the un-
derlying exact theory has to be renormalizable and~b! the
approximation scheme has to be based on Bay
F-derivable concept@2–4#, i.e., on a two-particle irreducible
~2PI! effective action principle. Thus the self-consistent se
energiesS are generated from a truncated set of 2PI clo
diagrams~calledF! of the underlying full theory through

S~p!52i
dF@G#

dG~p!
, ~1*!

whereF@G# is a functional of the self-consistent propaga
G(p) in the momentum representation~as in I, an asterisk
behind an equation number implies that the correspond
relations are only valid at the regularized level, while
other equations are valid also for the renormalized qua
ties!. To repeat, the main issue is not to render any diverg
loops finite; this has been pursued many times. The aim i
deploy the counterterm structure such that it is entirely
termined at the vacuum level of the self-consistent sche
In addition to the explicitly visible divergences, this implie
resolving also the nested and overlapping vacuum div
gences hidden in the self-consistent matter parts of
propagator.

In I, we have given proof that for the self-energy this c
be done for anyF-derivable approximation, provided th
underlying quantum field theory is renormalizable in t
usual sense. Thereby, the counterterm structure results
closed equations on the vacuum level, implicitly generatin
particular though infinite subset of counterterms. The co
plexity of the ensuing equation is similar to that for the se
energy.

Thereby, it is of particular importance that the ent
counterterm structure isconsistently constructed solely an
only within the effective action defined by the chosen
proximation to F. This implies that, e.g., the so-obtaine
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counterterm scheme and thus the behavior of the runn
coupling constant clearly deviate from the true one at ord
beyond those included inF. If these rules are not watched
one may face uncompensated divergences as recently
countered in the detailed work of Braaten and Petitgirard@5#.
They tackled the same problem, however using differ
techniques in terms of a restricted ansatz for the propaga
Uncompensated singularities arose from the fact that
used b function was not the one pertaining to the se
consistent scheme but taken from the fullb function calcu-
lated up to the fifth loop order. Furthermore, it is still n
clear to us how in their approach the hidden and nes
vacuum subdivergences can be resolved such that one ar
at a counterterm structure solely defined on the s
consistent vacuum level (T50). In our case, the latter lead
to a renormalized Bethe-Salpeter equation for the vacu
four-point function consistent with the chosen approximat
level for theF functional.

In I, we also showed that the generating function
G@w,G# and thus the thermodynamic potential can be r
dered finite with counterterms solely defined on the vacu
level of the self-consistent scheme. Again, it is crucial
expand the functional around thesolutions of the corre-
sponding self-consistent approximation for the vacuum. It is
not possible to render arbitrary parts ofG finite for them-
selves since it is important to use the stationarity ofG for the
solution of the vacuum equations of motion. In particul
terms linear in the matter parts of the propagator are sing
and only drop out if the vacuum part is solved se
consistently.

For self-consistent Dyson resummation schemes, it is w
known@6# that they may violate symmetry properties such
crossing symmetry, masslessness of Nambu-Golds
modes, conservation laws, etc., at a level beyond that of o
point functions, i.e., on the correlator level at orders beyo
those included inF. We will devote a forthcoming paper@7#
in this series to the issue of how to extend the scheme s
that symmetry violations are indeed cured.

In this paper, we give first numerical solutions for th
leading and the next-to-leading order of the self-consist
Dyson equations for thef4 theory, which is defined by the
Lagrangian

L5 1
2 ~]mf!~]mf!2

m2

2
f22

l

4!
f4. ~2!
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In the symmetric phase,^f&50, the first diagrams contrib
uting to F andS are

~3*!

~4*!

where all lines represent self-consistent propagators.
leading-order diagram gives rise to the tadpole~Hartree! ap-
proximation for the self-energy, which, frequently consider
in the literature~see, for instance,@6,8#!, leads to the standar
gap equation. Here it is given as the most simple example
our general renormalization scheme. The next-to-leading
der includes the sunset diagram for the self-energy. Whil
the tadpole case the self-energy is real and constant, with
sunset term the self-energy becomes momentum-depen
and complex. Thus the particles acquire a finite spec
width due to collisions with the surrounding matter. With t
sunset diagram one enters a new stage of sophistication,
as far as the counterterm structure is concerned and
respect to the numerical solution of the resulting se
consistent equations.

The first numerical investigations of the self-energy a
presented which result from the two explicitly given di
grams in Eq.~4* !. We could improve the numerical accurac
immensely compared to the status given in@9#, where we
restricted ourselves to the computation of the imaginary p
of the self-energy to avoid problems with renormalization

The paper is organized as follows. In Sec. II, we brie
summarize the results of I as far as we need the formulas
the numerical calculations. In Sec. III, we solve the tadp
approximation~gap equation! and in Sec. IV the next-to-
leading-order approximation including the sunset diagram
th
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Throughout the paper, we work in the momentum-spa
representation within the real-time field theory formalism f
the self-energies and propagators. Thus, if not stated ot
wise, self-energies and Green’s functions are contour ma
valued in the sense of the Schwinger-Keldysh real-time c
tour @10–12#. There vertices belonging to time arguments
the time and antitime ordered branches are labeled by2 and
1 superscripts, respectively. The integration sense is
counted for by assigning the values7 il to the bare vertex
depending on its placement on the$2% or $1% branches of
the contour.

II. THE RENORMALIZED EQUATIONS OF MOTION

In I, we have shown that arbitrary self-consistent appro
mations given by theF-derivable concept~1* ! can be renor-
malized with counterterms defined on the vacuum lev
Thereby, the renormalized self-energy as well as the ther
dynamic potential are finite and consistent with one anoth

For the renormalization procedure, the self-energy ha
be split into three parts, namely the pure vacuum part@which
is of divergence degreed(S (vac))52#, the partS (0) with di-
vergence degreed(S (0))50, containing explicit and hidden
vacuum subdivergences, and the restS (r ) with d(S (r ))
522, which contains only explicit vacuum subdivergenc
with corresponding counterterms

S5S~vac!1S~0!1S~r !. ~5!

The self-consistent Green’s functionG follows from the
Dyson equation in contour matrix form,

D21G511SG. ~6!

HereD is the free Green’s function on the contour. In view
Eq. ~5!, the self-energy within the Green’s function nee
two subtractions to render its loops finite:
~7!
e
t

f.
es

re
eal-
n

s.

he
The subtraction only affects contour diagonal pieces of
propagator, since loops containing mixed contour verti
are finite for themselves. Thus

iG ~vac!~p!5S iG22~vac!~p! 0

0 iG11~vac!~p!
D ,

~8!

iS~0;div!~p!5S iS22~0!~p! 0

0 iS11~0!~p!
D ,

and likewiseS~vac! are diagonal. WhileG~vac! andS~vac! are
given by the~anti!time-ordered self-consistent expressio
given by theF-derivable scheme on the vacuum level,S (0)
e
s
accounts for the self-energy parts linear inG~matter!. The three
right-hand-side terms of Eq.~7! are of divergence degre
22, 24, and26, respectively. It is important to notice tha
only the full self-consistent propagator and self-energy,G
and S, obey the equilibrium conditions@Kubo-Martin-
Schwinger~KMS!# among their four contour components, c
Eqs.~A14!–~A18! in I. The components of subtracted piec
like G~matter!, S (0), or S (r ) obey no direct equilibrium rela-
tions as they result from differences of finite temperatu
with vacuum terms. Here we see an advantage in the r
time formalism which naturally permits this decompositio
into vacuum and matter pieces of all dynamical quantitie

The contour diagonal parts ofS (0) and S (r ) contribute
only at finite temperature. Due to Lorentz invariance, t
5-2
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RENORMALIZATION OF SELF-CONSISTENT . . . PHYSICAL REVIEW D 65 105005
vacuum self-energy and the Green’s function are function
s5p2. The vacuum self-energy is renormalized according
the rules of the on-shell renormalization scheme, i.e.,

S~vac!~s5m2!50, ]sS
~vac!~s5m2!50, ~9!

which definesm to be the physical mass of the particles a
normalizes the wave functions such that the residuum of
Green’s function ats5m2 is equal to 1. As we shall see i
the following, the renormalization procedure used to cal
late the vacuum parts, and subsequently needed for
temperature-dependent pieces of the self-energy, allows
choose any renormalization scheme. Especially, it is poss
to use ‘‘mass-independent’’ minimal subtraction schem
~MS @13# or MS @14# of dimensional regularization! so that
the renormalization program shown in I is applicable also
the massless case. For the renormalization of the self-en
and the 2PI-functionalG@G#, it is crucial to split all quanti-
ties into vacuum (T50) and finite-temperature parts by th
procedure given above.

As shown in I, this procedure allows us to define t
generating functional in its dependence on the in-matter p
of the propagator with the self-consistent solution given
the stationary point. Simultaneously, this leads to the ren
malized thermodynamic potential. All divergences inde
compensate if and only if the vacuum level is solved a
renormalized entirely within the same approximation level
used for the finite-temperature parts. This fact together w
the stationarity conditions of the generating functional at
50 for the vacuum equations of motion avoid the singular
problems encountered in@5#.

In S (0), the in-matter part of the propagator is involved
logarithmically divergent loops which imply hidden dive
gences. As shown in I, these can be resolved with the
lowing result:

S~0!~p!5E d4l

~2p!4 $@G~4!~ l ,p!2G~4,vac!~ l ,0!#

3G~matter!~ l !1L~0,l !G~r !~ l !%. ~10!

Here, in consistency with the Dyson equation, the four-po
function G (4)(p,q) is generated also fromF through
10500
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G~4!~p,q!52S d2F@G#

dG~p!dG~q! D
T→01

~ren!

. ~11!

The countertermG~4,vac! contains only the contour diagona
parts~all vertices placed on one side of the real-time conto!
of G (4). This function is 2PI in the channelp→q, i.e., one
cannot disconnect the diagrams by cutting two lines a
separating the lines carrying the momentap and q. It con-
tains only vacuum pieces and can straightforwardly be ren
malized with G (4,vac)(0,0)56l/2. At the same time, this
four-point function defines the kernel for the vacuu
s-channel Bethe-Salpeter equation defining the two-part
reducible~2PR! four-point functionL(p,q). In Eq. ~10!, we
only need the half-sidedL(0,p), which, as one of the crucia
points of the Bogoliubov-Parasiuk-Hepp-Zimmerma
~BPHZ! renormalization procedure@15,16#, is given by the
finite equation

L~0,p!56
l

2
1G~4,vac!~0,p!

1 i E d4l

~2p!4 L~0,l !@G~ l !#2@G~4,vac!~ l ,p!

2G~4,vac!~ l ,0!#, ~12!

again involving only contour diagonal terms. Here we i
serted the renormalization conditionL(0,0)56l/2.

The expression~10! for S (0) void of the L(0,l ) part
would correspond to a naive subtraction, which indeed
finite, however it impliesT-dependent counterterms. As e
plained in I, only the entire expression~10! guarantees a
counterterm structure solely defined on the self-consis
vacuum level.

The perturbative view

The above procedure defines the self-consistent renor
ization scheme in terms of the corresponding self-consis
vacuum propagatorG(vac), the vacuum four-point function
L(0,l ), and the self-consistent in-matter pieces of the pro
gatorG(matter) or G(r ). As an illustration, we briefly quote the
corresponding perturbative~1PI! view of the scheme, ex-
panding the full self-energy in terms of the vacuum prop
gator in contour matrix notation satisfying the equilibriu
relations KMS at the given temperatureT,
iG ~vac,T!~p!5S iG22~vac!~p! 0

0 iG11~vac!~p!
D 1r~vac!~ up0u,pW !S n~p0! Q~2p0!1n~p0!

Q~p0!1n~p0! n~p0!
D ,

5 1 •••••••••• ~13!

with the vacuum spectral function and thermal Bose-Einstein weight defined by

r~vac!~p!522 ImGR
~vac!~p!522 sgn~p0!Im G22~vac!,

~14!

n~p0!5
1

exp~bup0u!21
.

5-3



ite.
the full

HENDRIK van HEES AND JO¨ RN KNOLL PHYSICAL REVIEW D 65 105005
As discussed in I, loops involving theQ functions or the thermal weights summarized by the dotted line are always fin
For the self-consistent scheme of tadpole and sunset, the following types of 1PI diagrams are resummed to

self-consistent self-energy:

~15*!
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Here the diagrams forS (matter) are generated by iterative in
sertions of the diagrams ofS (vac), replacing one or more
plain lines by dotted ones with the constraint that due to
self-consistency at the vacuum level,all pure vacuum self-
energy insertions are to be excluded. In S (matter) vacuum sub-
diagrams~plain lines! with four external lines are logarith
mically divergent and need to be renormalized. Their s
defines the renormalized four-point functionL. If the latter
include the external points~full dots!, they contribute to
S (0), defined in Eq.~5!. All other terms, like the last term
contribute toS (r ).

III. THE TADPOLE APPROXIMATION

The tadpole approximation is given by

~16*!

~17*!

for the unrenormalizedF functional and self-energy. Her
s5diag(1,21) accounts for the integration sense on t
contour. The self-energy is diagonal in the contour indic
Since the tadpole self-energy is real and constant,
vacuum part vanishes,

S~vac!50, ~18!

in view of the physical renormalization condition~9!. To find
the renormalized equations of motion at finite temperatu
we need the renormalized four-point functionL according to
Eq. ~10!. Because of Eq.~11!, we have a constant Bethe
Salpeter kernel,

G~4;vac!5
l

2
~19!

and thusL is also constant and determined from its ren
malization condition~12!,
10500
e

.
e

e,

-

L~vac!5
l

2
. ~20!

In the following, it is sufficient to just consider the$22%
propagator. WritingM25m21Q from Eq. ~6!, the self-
consistent$22% propagator is given by

G22~p!5
1

p22M21 ih
22ipnT~p0!dh~p22M2!

with

dh~x!5
1

p
Im

1

x2 ih
5

1

p

h

x21h2 , ~21!

and the Bose-Einstein function

nT~p0!5
1

eup0u/T21
. ~22!

Since the tadpole self-energy is constant, it is identical w
S (0) and due to Eq.~7! we thus have

G22~r !~p!5G22~p!2G22~vac!~p!2Q@G22~vac!~p!#2

5
Q2

~m22p22 ih!2~M22p22 ih!

22p inT~p0!dh~p22M2!. ~23!

This analytically given result explicitly illustrates that th
subtracted partG22(r ) of the propagator no longer obeys th
finite-temperature KMS and retarded relations@Eqs.~A14!–
~A18! in I#. The renormalized effective mass follows fro
Eqs. ~10! and ~20! with standard integrals from vacuum
perturbation theory~see, for instance,@17#!:
5-4
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RENORMALIZATION OF SELF-CONSISTENT . . . PHYSICAL REVIEW D 65 105005
M25m21Q

5m21
l

32p2 FM2 lnS M2

m2 D2M21m2G
1

l

4p2 E
0

`

dL L2
nT~AL21M2!

AL21M2
. ~24!

The solution of this gap equation form50.14 GeV andl
530 is shown in Fig. 1.

The self-consistent treatment reduces the mass gap
tive to the perturbative result due to the larger massM en-
tering the self-consistent loop.

The gap equation~24! becomes singular form→0 due to
the chosen on-shell renormalization condition~9!. For the
sake of completeness, we give a brief summary about
treatment of the case of vanishing renormalized vacu
mass in the following.

For m50, the renormalization description has to
changed to a so-called ‘‘mass-independent’’ renormaliza
scheme. This concept is most easily established in the dim
sional regularization procedure by the so-called minimal s
traction ~MS! or modified minimal subtraction (MS)
schemes where for all renormalization parts, i.e., in our c
of f4 theory the propern-point vertex functions withn<4,
only the singular terms ine5(42d)/2 are canceled.

In the present case of the tadpole approximation wh
the self-energies are momentum-independent, this can
done analytically. Indeed form50 we haveQ5M2 and the
divergent part of the diagram reads

Q`5
ilm2e

2 E ddl

~2p!d

1

l 22M21 ih

52
lM2

32p2 F1

e
112g2 lnS M2

4pm2D1O~e!G ~25*!

FIG. 1. The solution of the gap equation~24! compared to the
naive, i.e., nonresummed one-loop perturbative solution. Both
culations are renormalized in the vacuum in the same way acc
ing to the on-shell conditions~9! with m50.14 GeV.
10500
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in dimensional regularization. Since now the renormaliz
vacuum propagator is the free massless propagator, i.e.,

Gvac~ l !5
1

l 21 ih
, ~26!

an infrared regulating mass scalem8 has to be introduced in
order to calculate both the mass and the four-point verte

Qvac5
ilm2e

2 E ddl

~2p!d

1

l 22m821 ih

52
lm82

32p2 F1

e
112g2 lnS m82

4pm2D1O~e!G ,
~27*!

Gvac
~4!~0!5

ilm2e

2 E ddl

~2p!d

1

~ l 22m821 ih!2

52
l

32p2 F1

e
2g2 lnS m82

4pm2D1O~e!G
with the MS counterterms,

dm25 lim
m8→0

lm82

32p2 F1

e
2gG50,

~28*!

dl5
l

32p2 F1

e
2gG ,

which are IR-finite due to the fact that in dimensional reg
larization the mass counterterm in theMS scheme is propor-
tional to the infrared-regulator massm82. For m50, the
renormalized gap equation finally takes the form

M252
lM2

32p2 F12 lnS M2

4pm2D G
1

l

4p2 E
0

`

dL L2
nT~AL21M2!

AL21M2
~29!

implying that perturbatively

Mpert
2 5

l

4p2 E
0

`

dL LnT~L !5
l

24
T2, ~30!

which follows from Eq.~29! by letting M→0 on the right-
hand side.

IV. THE SUNSET APPROXIMATION

In this section, we calculate the self-consistent self-ene
for the next-to-leading-order approximation of theF func-
tional numerically. First we have to solve the renormaliz
Dyson equation for the vacuum and the Bethe-Salpeter~BS!
ladder equation forL~vac!, which is needed as input for th
temperature-dependent calculation according to Eq.~10!.

The F functional is given diagrammatically by

l-
d-
5-5
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~31*!

while the corresponding self-energy and BS kernel beco

~32*!

~33*!

For the renormalization parts, it is sufficient to restrict
considerations to one real-time contour branch. For defin
ness, we choose the time-ordered branch, i.e., in the foll
ing subsections all contour two-point functions denote$22%
quantities rather than matrices. The physical renormaliza
scheme~9! implies that the tadpole part of the self-energy
10500
e

l
e-

-

n

already subtracted such that in the vacuum case we only n
to solve for the self-consistent sunset self-energy.

The general strategy will be to combine the BPH
renormalization scheme with dimensional regularization a
use the spectral representation for the Green’s functi
~Lehmann representation!

G~vac!~p2!5E
0

` d~m2!

p

Im G~vac!~m2!

m22p22 ih
. ~34!

All quantities such as the renormalized vacuum self-ene
S (vac), the BS kernelG (4), and the four-point functionL are
then to be expressed through the vacuum spectral func
r522 ImG(vac) and corresponding time-ordered kern
functions Ki . The latter express the analytic structure e
tirely in terms of free-particle properties, however with var
ing masses. They can then be renormalized by dimensi
regularization.
d

egu-
A. The two-propagator loop

A central quantity is the simple loop function contained in Eqs.~32* ! and ~33* !,

~35!

This four-point function is logarithmically divergent and to be renormalized with the condition

L ~ren!~0!50. ~36!

With the help of the Lehmann representation~34!, it can be expressed as

L ~ren!~q2!5E
0

` dm1
2

p E
0

` dm2
2

p
K1

~ren!~q2,m1
2,m2

2!Im G~vac!~m1
2!Im G~vac!~m2

2! ~37!

with the renormalized kernel defined through

K1
~ren!~q2,m1

2,m2
2!5K1

~reg!~q2,m1
2,m2

2!2K1
~reg!~0,m1

2,m2
2!,

~38!

K1
~reg!~q2,m1

2,m2
2!5 i E ddl

~2p!d

m2e

~m1
22 l 22 ih!@m2

22~ l 1p!22 ih#
.

Here the standard notation for dimensionally regularized quantities is used, whered5422e is the space-time dimension an
m denotes therenormalization scale.

After a Feynman parametrization, the integral~38! can be expressed in terms of standard formulas of dimensional r
larization ~see, e.g.,@17#!, which leads to the result

K1
~reg!~s,m1

2,m2
2!5

1

16p2s H 2S 1

e
122g D s1l~s,m1 ,m2!FartanhS s1m1

22m2
2

l~s,m1
2,m2

2!
D 1artanhS s2m1

21m2
2

l~s,m1
2,m2

2!
D G

1~m1
22m2

2!lnS m1

m2
D1s lnS m1m2

4pm2D J ~39!

with the Källén function
5-6
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l~s,m1
2,m2

2!5As21m1
41m2

422sm1
222sm2

222m1
2m2

2, ~40!

which is completely symmetric in its three arguments and the branch is determined by thes1 ih prescription. Here and in the
following, we neglect contributions of orderO(e). For the renormalization of this kernel, we also need its value ats50 given
by

K1
~reg!~0,m1 ,m2!5

1

16~m1
22m2

2!p2 F2
m1

22m2
2

e
211g1m1

2 lnS m1
2

4pm2D 2m2
2 lnS m2

2

4pm2D G . ~41!

According to Eq.~38!, we thus find

K1
~ren!~s,m1 ,m2!5@K1

~reg!~s!2K1
~reg!~0!#e→0

5
1

16p2s H 2s1
~m1

22m2
2!22s~m1

21m2
2!

m1
22m2

2 lnS m1

m2
D

1l~s,m1 ,m2!FartanhS s1m1
22m2

2

l~s,m1
2,m2

2!
D 1artanhS s2m1

21m2
2

l~s,m1
2,m2

2!
D G J . ~42!

The result for the loopL(s) with s5q2 is given in Fig. 2. The imaginary part is essentially determined by the two-b
phase space which opens ats54m2. To discuss the threshold singularity ofL, it is sufficient to study the perturbative resu
obtained from the pole term ofG(vac), which is analytically given as

L ~pert!~s,m2!5K1
~ren!~s,m2,m2!5

1

8p2 FAs24m2

s
artanhSA s

s24m2D 21G
5

1

8p2 FAs24m2

s S ln
As1As24m2

2m
2

ip

2 D 21G . ~43!

This function is analytic and real for reals,0. The analytic continuation to other values ofs is given by taking the principa
branch of the square root and the artanh functions fors1 ih with a smallh.0. Close to thresholds'4m2, one obtains the
following approximate forms:

FIG. 2. Real~left! and imaginary part~right! of the loop functionL. For the real part, the dashed line shows the approximate beha
~44! around the threshold.
105005-7
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8p2L ~pert!~s,m2!55 2
p

2
A4m22s

s
2

4m2

s
1OF S s24m2

s D 2G for 0,4m22s!s,

ip

2
As24m2

s
2

4m2

s
1OF S s24m2

s D 2G for 0,s24m2!s.

~44!

Around the threshold, the square-root term causes the singular behavior changing from real to imaginary values, w
remaining log term is entirely real. At larges, the real part ofL behaves logarithmically, whereas the imaginary part goe
a constant.

B. The vacuum self-energy

The unrenormalized expression of the two-loop self-energy reads

S~vac!~p2!52
l2

6 E ddl 1

~2p!d E ddl 2

~2p!d G~vac!~ l 1
2!G~vac!@~ l 11 l 21p!2#G~vac!~ l 2

2!. ~45*!

With the help of Eq.~37!, the sunset self-energy with all subdivergences subtracted becomes

S̄~vac!~p!5
il2

6 E ddl 2

~2p!d L@~ l 21p!2#G~vac!~ l 2
2!. ~46!

Now we apply the spectral representation for Eq.~35! with one subtraction determined by Eq.~36!,

L~q2!5E
4m2

` d~m3!2

p
Im L~m3

21 ih!S 1

m3
22q22 ih

2
1

m3
22 ih D . ~47!

Together with the Lehman representation of the propagator~34!, this leads to the renormalized vacuum self-energy

S~vac!~s!5E
4m2

d~m3
2!

p E
9m2

d~m4
2!

p
K2

~ren!~s,m3
2,m4

2!Im L ~ren!~m3
2!Im G~vac!~m4

2!, ~48!

where due to the renormalization conditions~9! the kernelK2
(ren) is given by

K2
~ren!~s,m3

2,m4
2!5K1

~reg!~s,m3
2,m4

2!2K1
~reg!~m2,m3

2,m4
2!2~s2m2!@]sK1

~reg!~s,m3
2,m4

2!#s5m2. ~49!

The cancellation of the contributions from the subtraction of the subdivergences is due to a specialty of the sunset
Here all contracted diagrams are of tadpole structure and therefore independent of the external momentump and thus are
completely canceled by the overall subtractions. The advantage of taking them into account anyway is that at any sta
calculation we use renormalized functions which can be calculated numerically without using any intermediate reg
functions.

From Eq.~39!, we find the analytical expression for the kernelK2 ,

K2
~ren!~s,m3

2,m4
2!5

1

16p2m2s H m2l~s,m3 ,m4!3FartanhS s1m3
22m4

2

l~s,m3 ,m4!
D 1artanhS s2m3

21m4
2

l~s,m3 ,m4!
D G2sl~m2,m3 ,m4!

3FartanhS m21m3
22m4

2

l~m2,m3 ,m4!
D 1artanhS m22m3

21m4
2

l~m2,m3 ,m4!
D G J 1

~s2m2!@~m3
22m4

2!22m2~m3
21m4

2!#

16p2m4l~m2,m3 ,m4!

3FartanhS m21m3
22m4

2

l~m2,m3 ,m4!
D 1artanhS m22m3

21m4
2

l~m2,m3 ,m4!
D G2

s2m2

16p2m2 1
~m3

22m4
2!~s2m2!2

16p2m4s
lnS m3

m4
D . ~50!

Equations~37! and ~48!, supplemented by the Dyson equation

G~vac!~p!5
1

p22m22S~vac!~p2!1 ih
, ~51!

form the closed set of renormalized equations of motion, which were solved with the analytically given kernelsK1
(ren) and

K2
(ren) from Eqs.~42! and~50!. For the integrals~37! and~48!, a simple adaptive Simpson integrator was used. We have ch

m5mp5140 MeV for the mass andl530. As Fig. 3 shows, for this coupling there is no visible difference between
105005-8
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perturbative and the self-consistent result since the main contribution comes from the pole term of the propagator, w
continuous part, which starts at a threshold ofs59m2, is suppressed. Thus, due to our renormalization scheme, wherem is the
physical mass parameter, the pole-term result essentially coincides with the perturbative one.

C. The Bethe-Salpeter function

The renormalized Bethe-Salpeter kernelG (4,ren) defined in Eq.~11! reads

G~4,ren!~ l ,p!ªG~4,ren!@~ l 2p!2#

5
l

2
1l2L ~ren!@~ l 2p!2#. ~52!

Since, as shown above, the pole term essentially determines the loop functionL, we simplified the task to solve Eq.~10! by
using the free propagator

D~p2!5
1

p22m21 ih
~53!

instead of the self-consistent vacuumG(vac).
Subtracted dispersion relations forG (4,ren) and L (ren) and the renormalization conditionsG (4,ren)(0,0)5L (ren)(0,0)5l/2

provide the renormalized integral equation

L~ren!~0,p2!5G~4,ren!~p2!1 i E d4l

~2p!4 @D~ l 2!#2H E
4m2

` d~m2
2!

p
Im G~4,ren!~m2

2!
2lp2p2

@m2
22~ l 2p!22 ih#~m2

22 l 22 ih!

3F E d~m1
2!

pm1
2

l 2 Im L~ren!~0,m1
2!

m1
22 l 22 ih

1
l

2G J . ~54!

Again thel integration can be performed with the help of standard perturbation theory integrals leading to the kernel

K3
~ren!~p2,m1 ,m2!5 i E d4l

~2p!4

1

~m22 l 22 ih!2

l 2~2lp2p2!

~m1
22 l 22 ih!@m2

22~ l 2p!22 ih#
,

~55!

K4
~ren!~p2,m2!5 i E d4l

~2p!4

2lp2p2

~m22 l 22 ih!2@m2
22~ l 2p!22 ih#

,

which can be related to the previous kernelK1 through the identity

@D~ l 2!#252
1

2m
]m

1

m22 l 22 ih
. ~56!

FIG. 3. Real~left! and imaginary part~right! of the sunset self-energy. The perturbative and the self-consistent result lie on top o
other due to the large threshold ats59m2.
105005-9
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We start with the calculation ofK4 defined in Eq.~55! and write it in the form

K4~s,m,m2!52
i

2m
]mE d4l

~2p!4

1

m22 l 22 ih F 1

m2
22~ l 2p!22 ih

2
1

m2
22 l 22 ihG , ~57!

which can be expressed in terms ofK1
(ren) :

K4~s,m,m2!52
1

2m
]mK1~s,m,m2!52

1

16p2s H s

m2
22m2 1

~m22m2
22s!

l~s,m,m2!
3FartanhS s1m1

22m2
2

l~s,m1 ,m2!
D

1artanhS s2m1
21m2

2

l~s,m1 ,m2!
D G1

~m22m2
2!212m2

2s

~m22m2
2!2 lnS m

m2
D J . ~58!

The integrand ofK3 , cf. Eq. ~55!, can be rewritten as follows:

i

m22 l 22 ih

l 2

m1
2~m1

22 l 22 ih!

p222lp

~m2
22 l 22 ih!@m2

22~ l 2p!22 ih#
52

i

2m
]m

1

m1
22m2 S 1

m22 l 22 ih
2

1

m1
22 l 22 ih D

2
1

m1
2~m22 l 22 ih! F 1

m2
22~ l 2p!22 ih

2
1

m2
22 l 22 ihG . ~59!

The integration of Eq.~59! then leads to

K3~s,m,m1 ,m2!5
K1~s,m1 ,m2!2K1~s,m,m2!

~m22m1
2!2 1

m222m1
2

~m22m1
2!m1

2 K4~s,m,m2!. ~60!

With the so-defined kernels, we can express Eq.~54! as follows:

L~ren!~0,p2!5G~p2!1E
4m2

` dm1
2

pm1
2

dm2
2

p
K3~p2,m1 ,m2!Im L~ren!~0,m1

2!Im G~4,ren!~m2
2!

1
l

2 E
4m2

` dm2
2

p
K4~p2,m2!Im G~4,ren!~m2

2!. ~61!

Figure 4 shows the solution of this renormalized equation of motion in comparison with the one-loop approxi
G (4,ren). As the figure shows, the solution is stable after three iterations.

D. The temperature-dependent parts

To calculate the temperature-dependent part of the self-energy, we use the analytical properties of the two-point
and the fact that the retarded propagator fulfills the simple Dyson equation

FIG. 4. Real~left! and imaginary part~right! of the L function. The plot shows that after three iterations the solution is already st
105005-10
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GR~p!5
1

p22m22SR~p!
, ~62!

where the retarded self-energy can be obtained from the$22%-matrix element via the equilibrium expression

SR~p!5ReS22~p!1 i tanhS p0

2TD Im S22~p!. ~63!

As explained in I, bothG(vac) andS (0) are diagonal matrices while the corresponding off-diagonal parts are contained inG(r ),
because they are of a lower degree of divergence due to explicitQ1n factors.

Due to its topology, the sunset diagram has no further vertices besides its two external points. Therefore, the 2PI
four-point functionG (4,vac) is effectively only a two-point function and thus we need only the$22% components of the variou
Green’s functions in order to calculateS22. This implies

G22~matter!5G222G22~vac!, G22~r !5G22~matter!2@G22~vac!#2S22~0!. ~64!

With the help of the renormalized vacuum parts, we obtain for the self-energy

S22~p!5S22~vac!~p!1 i E d4l

~2p!4 $G~4,vac!@~ l 1p!2#2G~4,vac!~ l 2!%G22~matter!~ l !1 i E d4l

~2p!4 L~ren!~0,l 2!G22~r !~ l !

2
l2

2 E d4l 1

~2p!4 E d4l 2

~2p!4 G22~matter!~ l 1!G22~matter!~ l 11 l 2!G22~vac!~ l 21p!

2
l2

6 E d4l 1

~2p!4 E d4l 2

~2p!4 G22~matter!~ l 1!G22~matter!~ l 11 l 2!G22~matter!~ l 21p!. ~65!

Note that all vacuum quantities entering here are to be taken in theirrenormalizedversion and that the remaining integrals a
all finite due to power counting.
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E. Results

The above finite integrals are to be evaluated numerica
While due to Lorentz invariance the vacuum loops invo
just two-dimensional integrations which can numerically
integrated by standard methods, for the in-matter loops o
rotational symmetry in three-momentum space can be
ploited. For each loop diagram, this leads to thre
dimensional integrals for each external momentump0 ,upW u.
We solve these integrals on an equally distantN3N lattice in
these coordinates. Naively, the computing effort would th
scale likeN5. However, we succeeded to develop an i
proved algorithm for the loop integrations, where the co
puting time scales withN4 ~essentially a gain of more tha
two orders of magnitude!. The lattice implies an infrared
cutoff which requires particular care for the treatment of
sharp structures of the vacuum propagator around its on-s
pole. The method at hand was to tabulate the lattice
integrated values of the propagator and its moment inp0

given by the analytic result from a linear interpolation inp0
2

of the inverse propagator at fixedupW u. The remaining self-
energy factors of the integrands are approximated to lin
order in p0

2. The interpolation procedure is adapted to t
fact that due to the quadratic pole of the (G22(vac))2 term,
one is sensitive to thep0 derivative~residue! of the remain-
ing integrand. Both the infrared and the UV cutoffs of t
lattice have been controlled by varying the lattice spac
10500
y.

ly
x-
-

n
-
-

e
ell
ll

ar

g

and the overall size of the lattice. The final results we
achieved withDp05DupW u56.67 MeV with N5300, i.e., a
UV cutoff at 2 GeV.

Perturbative results are obtained through Eq.~65! ap-
proximating G(matter) by the KMS-temperature part of th
free propagatorG(vac;T) @last term in Eq.~13!; note that here
G(r )5G(matter) sinceS (vac)50#. The self-consistent solution
are then obtained iteratively through the set of Eqs.~62!–
~65!. The results for both the perturbative and the se
consistent case are shown in Fig. 5 in a three-dimensio
plot over the (p0 ,upW u) plane, illustrating that all the calcula
tions are performed with the full dependence on energy
momentum. Details can be extracted from the cuts shown
a set of selected momenta in Fig. 6.

The main qualitative results are similar for both the p
turbative and the self-consistent calculation: In the vacu
and self-consistent pure tadpole case, the self-energy sho
threshold cut resulting from the decay into three particl
i.e., p0

22pW 2>9M2. Adding the sunset self-energy leads to
spectral width which dissolved this threshold such that
self-energy shows spectral strength~imaginary parts! at all
energies. While the growing high-energy tail is related to
decay of virtual bosons into three particles, at finite tempe
ture, as a new component, a low-energy plateau in ImSR

emerges from in-medium scattering processes.
Various balancing effects are encountered for the s

consistent case: For sufficiently large couplings and/or te
5-11
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FIG. 5. Real~left! and imaginary part~right! of the perturbative~top! and the self-consistent self-energy forl530, m5140 MeV, and
T5250 MeV. Note that the self-energies are multiplied with a factor 100 in these plots.
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peratures, the self-consistent treatment shows quantitativ
fects on the width. The finite spectral width itself leads to
further broadening of the width and a smoothing of the str
tures as a function of energy.

This is, however, counterbalanced by the behavior of
real part of the self-energy, which, as discussed below,
sentially shifts the in-medium mass upwards. This redu
the available phase space for real processes. With increa
coupling strengthl, a nearly linear behavior of ImSR with
p0 results, implying a nearly constant damping width giv
by 2Im SR/p0.

The overall normalization of the real part ofSR is deter-
mined by the renormalization procedure. In this case, th
are three counterbalancing effects. First the tadpole l
shifts the mass to higher values. As the tadpole is less e
tive for higher masses, this effect weakens itself in the s
consistent tadpole treatment, cf., Figs. 1 or 7. However, s
the sunset part adds spectral width, it contributes indire
to the tadpole loop. Since spectral strength at the lower m
side carries higher statistical weights, the tadpole loop in t
leads to a further increase of the mass shift, cf. the pertu
tive calculations of sunset and tadpole in Fig. 7.

The direct contributions of the sunset terms to the r
part of the self-energy become relevant at higher coupli
and temperatures. Then the self-consistency leads to sig
cant effects which contribute to a net downshift of the r
part of the self-energy or in-medium massM. The latter ef-
fect finally overrules the tadpole shift and indeed leads to
overall negative mass shift compared to the~tadpole-
dominated! perturbative result. These effects are illustrat
10500
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in Fig. 7, where the in-medium effective massM and widthG
of the corresponding ‘‘quasiparticles’’ are plotted against
temperature. Thereby,M andG are defined as the quasipa
ticle energyM5p0 at the vanishing real part of the dispe
sion relation@p0

22m22ReS(p0,pW)#p5(M,0W)50 for pW 50 and
throughG52Im S(p)/p0up5(M,0W) , respectively.

V. CONCLUSIONS AND OUTLOOK

We have shown that it is possible to use the renormal
tion scheme, proposed in@1#, for numerical investigations o
the self-consistent approximations for the self-energy deri
from the truncated effective action formalism on the 2
level. Thereby, it is very important to isolate the diverge
vacuum parts consistently, in particular the implicit or hidd
ones, from all convergent and, in particular, temperature
more generally matter-dependent parts. This could be p
vided by the ansatz given in I for both the propagator and
self-energy. The renormalized vacuum pieces are obta
using the Lehmann representation for all two-point quan
ties. The resulting integration kernels can then be renorm
ized by standard techniques. The procedure rests solel
Weinberg’s power-counting theorem, i.e., on an analysis
the asymptotic behavior of the propagators.

In this way, both the renormalized vacuum self-ener
and four-point functions can directly be obtained from fin
equations. For the finite-temperature parts, it is import
that they have to be completely excluded from the coun
term structures. This is achieved by the technique develo
in I. Exploratory calculations are shown for the symmet
5-12
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FIG. 6. Real~left! and imaginary part~right! of the perturbative~top! and the self-consistent self-energy forl530, m5140 MeV, and
T5250 MeV as a function ofp0 for various 3-momenta. Note that the self-energies are multiplied by a factor of 100 in these plots
t
n
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Wigner-Weyl phase of thelf4 model for the self-consisten
treatment of both the tadpole and the sunset diagram at fi
temperature.

The results promise that the method, which is conserv
@2,12# and thermodynamically consistent, can also be app
for the genuine nonequilibrium case, i.e., in quantum tra
10500
ite

g
d
-

port @18# or for the solution of the renormalized Kadanof
Baym equations. Numerical studies for nonequilibrium ca
~Gaussian initial conditions and spatially homogeneous s
tems! were already performed in@19–21#. These investiga-
tions were undertaken in 111 dimensions. Our renormaliza
tion scheme should also be applicable for the nonequilibri
ed
FIG. 7. The in-medium effective massesM ~left! and spectral widthsG ~right! of the particles for the various approximations describ
in the text as a function of the system’s temperatureT.
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case in 113 dimensions and implementable in numeric
codes.

The investigation of the symmetry properties
F-derivable approximations is the subject of a forthcom
publication@7#. It is known that in general the symmetries
the classical action which lead to Ward-Takahashi identi
for the proper vertex functions are violated for the se
consistent Dyson resummation for the functions beyond
one-point level, i.e., on the correlator level. The reason
that, although thefunctionalG can be expanded with respe
to expansion parameters like the coupling or\ ~loop expan-
sion! or large-N expansions forO(N)-type models, the solu
tion of the self-consistent equations of motion contains p
tial contributions to any order of the expansion parame
This resummation is of course incomplete and violates e
crossing symmetry for the vertices involved in the renorm
ization procedure. This causes problems concerning
Nambu-Goldstone modes@6# in the broken symmetry case o
concerning local symmetries~gauge symmetries! @9# on a
level where the gauge fields are treated beyond the clas
field level, i.e., on the propagator level.
10500
l

s
-
e

is

r-
r.
n

l-
e

cal

It can be shown, though, that on top of any solution o
F-derivable approximation which is constructed from a sy
metric Lagrangian, there exists a nonperturbative effec
actionGeff@w# which generates proper vertex functions in t
same sense as the 1PI effective action. Theseexternal vertex
functionsfulfill the Ward-Takahashi identities of the unde
lying symmetry. However, in general they coincide with t
self-consistent ones only up to one-point order. This fact
pecially ensures that the expectation values of Noether
rents are conserved for theF-derivable approximations
Thus usually the so-generated external self-energy
higher vertex functions are different from theF-derivable
expressions. Details on these considerations will be give
a forthcoming paper@7#.
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