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Schwinger pair production via instantons in strong electric fields
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In the space-dependent gauge, each mode of the Klein-Gordon equation in a strong electric field takes the
form of a time-independent Schro¨dinger equation with a potential barrier. We propose that the single instanton
and multi-instantons of quantum tunneling may be related with the single-pair and multipair production of
bosons and the relative probability for the no-pair production is determined by the total tunneling probability
via instantons. In the case of a static uniform electric field, the instanton interpretation recovers exactly the
well-known pair-production rate for bosons and, when the Pauli blocking is taken into account, it gives the
correct fermion production rate. The instanton is used to calculate the pair-production rate even in an inhomo-
geneous electric field. Furthermore, the instanton interpretation confirms the fact that bosons and fermions
cannot be produced by a static magnetic field only.
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I. INTRODUCTION

Strong electromagnetic fields lead to two physically i
portant phenomena: pair production and vacuum polar
tion. A strong electric field makes the quantum electrod
namics ~QED! vacuum unstable which decays by emittin
significantly boson or fermion pairs@1–3#. The vacuum fluc-
tuations of an external electromagnetic field also result in
effective action of the nonlinear Maxwell equations@2–4#. In
its long history, many different methods have been dev
oped such as the proper time method@3,5#, canonical method
@5#, etc., to derive the QED effective action in external ele
tromagnetic fields. Also there have been applications to v
ous physical problems@6#. The proper time method by
Schwinger@3# and DeWitt@5# has widely been employed t
compute the effective action. The real part of the effect
action leads to vacuum polarization and the imaginary par
pair production. Though that method is conceptually w
defined and technically rigorous, it is sometimes difficult
apply the method to some concrete physical problems s
as inhomogeneous electromagnetic fields and others. On
other hand, the canonical method@5# proves quite efficient in
calculating the pair-production rate of bosons and fermi
by static or time-dependent uniform electric fields in ma
physical contexts.

In the canonical approach the most frequently used ga
for the electromagnetic potential is the time-depend
gauge. In that gauge the Klein-Gordon equation for bos
or the Dirac equation for fermions in a uniform electric fiel
when appropriately mode decomposed, takes the form
time-dependent Schro¨dinger equations. Now pair productio
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by the external electric field is analogous to particle prod
tion by a time-dependent metric of a curved spacetime@7–9#.
In both problems one imposes the same boundary cond
that an incident, positive frequency component in the p
infinity is scattered by a potential barrier into a superposit
of positive and negative frequency components in future
finity. It is the complex conjugate of the boundary conditio
for scattering problems in quantum mechanics. The coe
cients determine the Bogoliubov transformation and, in p
ticular, the coefficient of the negative frequency compon
gives the number created bosons or fermions per mode.
pair-production rates were calculated for time-varying el
tric fields @10–17#. Using both canonical and path integr
methods, pair production in a uniform electric field was stu
ied in the time-dependent gauge@18,19# and in Rindler co-
ordinates@20#. Pair production was also studied for a un
form electric field confined to a finite region, a
inhomogeneous field@21–23#.

A shortcoming of the time-dependent gauge is that exc
for uniform fields, the gauge potential and thereby the Kle
Gordon equation involve both the space and time coordin
at the same time. So it is technically difficult to apply th
Bogoliubov transformation for inhomogeneous fields. On
other hand, in the space-dependent~Coulomb! gauge for a
static electric field, each mode of the Klein-Gordon equat
for bosons or the Dirac equation for fermions takes the fo
of a time-independent Schro¨dinger equation for quantum
tunneling through a potential barrier. In that space-depend
gauge there is no direct interpretation of wave component
terms of positive and negative frequencies. However, in
case of the static uniform electric field, Brezin and Itzyks
explained the dominant contribution to the pair-producti
rate by quantum tunneling through the potential barr
@10,24#, and Casheret al. rederived Schwinger’s pair
production rate by semiclassical tunneling calculation@25–
27#. Nikishov found the pair-production rate in scatterin
©2002 The American Physical Society02-1
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SANG PYO KIM AND DON N. PAGE PHYSICAL REVIEW D65 105002
matrix formalism for a uniform field and an inhomogeneo
field of Sauter type gauge potential@28#. Hansen and Ravn
dal showed that the transmission probability through the b
rier of a uniform electric field gives the probability for pa
production for bosons and fermions@29#, solving the Klein
paradox@30,31,1#. Also Padmanabhan@19# suggested tha
the reflection probability of the scattering problem gives
correct relative probability for the vacuum-to-vacuum tran
tion for bosons. The role of tunneling solutions for pair pr
duction was also noticed in Refs.@12,32–35#.

The purpose of this paper is to interpret and derive
boson or fermion pair-production rate by strong static u
form or inhomogeneous electric fields in terms of instanto
through potential barriers in the space-dependent gaug
any spacetime dimensions. This formula in terms of the
stanton action may provide a simple way to estimate
pair-production rate by inhomogeneous electric fields, for
stance, from charged black holes, neutron stars, or as
physical objects@36,37#. For these static inhomogeneou
fields it is easier to apply the space-dependent gauge tha
time-dependent gauge. We propose that the single insta
and multi-instantons for quantum tunneling determine som
how the single-pair and multipair production. In particul
we show that all the contributions from multi-instantons a
anti-instantons yield exactly the total tunneling probabil
for the static uniform electric field, and thereby determi
the relative vacuum-to-vacuum transition and the boson p
production rate. We further show that the instanton interp
tation together with the Pauli blocking correctly gives t
fermion production rate by the static uniform electric fie
Using the formula in terms of the instanton action, we fi
the pair-production rates for bosons and fermions which
asymptotically valid for extremely strong electric fields. Als
the pair-production rates for bosons and fermions by a st
inhomogeneous electric field are calculated using W
~adiabatic! approximation for the instantons. Finally w
show that according to the instanton interpretation a st
localized magnetic field does not lead to any pair producti
confirming the result from the proper time method.

The organization of this paper is as follows. In Sec. II w
show that the tunneling probability by instantons correc
gives the pair-production rates for bosons and fermions b
static uniform electric field. We calculate the pair-producti
rates in any spacetime dimensions and find their asymp
form for extremely strong field and compare them with tho
from other methods. In Sec. III we extend the instanton
terpretation of pair production to an inhomogeneous elec
field and find the pair-production rates in terms of the inst
ton action. In Sec. IV we apply the idea to a static magne
field to show that any pair of boson or fermion are not p
duced. This resolves some of the puzzling issues in the
nonical method on the pair production by a static localiz
magnetic field.

II. UNIFORM ELECTRIC FIELD

We consider a charged boson in a static uniform elec
field in a (d11)-dimensional Minkowski spacetime. It sa
isfies the Klein-Gordon equation~in units of \5c51)
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FhnS ]

]xm
1 iqAmD S ]

]xn
1 iqAnD 1m2GF~ t,x!50, ~1!

whereq is the charge andm the mass of the boson. In th
space-dependent~Coulomb! gauge, the vector potential fo
the uniform electric field in thexi direction is given by

Am~ t,x!5~2E0xi ,0, . . . ,0!. ~2!

Each Fourier mode of the boson field

F~ t,x!5ei (k'•x'2vt)fv,k'
~xi!, ~3!

satisfies the one-dimensional equation

F2
1

2

d2

dxi
2

2
1

2
~v1qE0xi!

2Gfv,k'
~xi!

52
1

2
~m21k'

2 !fv,k'
~xi!. ~4!

Now one may interpret Eq.~4! as a Schro¨dinger-like
equation for a unit mass moving in the inverted harmo
potential with the center atxi ,c52v/(qE0) and the energy
e52(m21k'

2 )/2. As the energy is negative (e,0), Eq.~4!
indeed describes a tunneling problem for all transverse
mentak' . The wave function describing the tunneling pr
cess is given by the complex parabolic cylindrical functi
@38#

fv,k'
~j!5cE~ak'

,j!, ~5!

wherec is a complex number, and

j5A 2

qE0
~v1qE0xi!, ak'

5
m21k'

2

2qE0
. ~6!

It has an asymptotic form in two regimes:

fv,k'
~j!5Awv,k'

~j!2Bwv,k'
* ~j!~j!22Aak'

!,

fv,k'
~j!5Cwv,k'

* ~j!~j@2Aak'
!, ~7!

where

wv,k'
~j!5A 2

uju
e2( i /4)j2

. ~8!

Here the coefficients are given by

A5 icA11e2pak', B52 icepak', C5c. ~9!

In the regionj!22Aak'
, the componentwv,k'

e2 ivt de-

scribes an incoming particle from andwv,k'
* e2 ivt an outgo-

ing particle toj52`, whereas in the regionj@2Aak'
the

componentwv,k'
* e2 ivt describes an incoming antiparticl

from j51`. Hansen and Ravndal showed that the transm
sion probability uC/Au2 gives the probability for one-pai
2-2
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SCHWINGER PAIR PRODUCTION VIA INSTANTONS IN . . . PHYSICAL REVIEW D65 105002
production @29#. Also Padmanabhan suggested that the
flection probabilityuB/Au2 gives the relative probability for
the vacuum-to-vacuum transition@18,19#. His interpretation
implies that wv,k'

(2`)e2 ivt and wv,k'
* (2`)e2 ivt corre-

spond to the incoming and outgoing vacuum state, resp
tively. Extending their arguments to any static field, we fu
ther propose that the single-pair and multipair production
bosons are related to the single instanton and mu
instantons of the potential barrier in such a way that
tunneling probabilityPt gives the probability for pair pro-
duction and therefore the relative probability for the vacuu
to-vacuum transition is given by the probability for no-pa
productionPn-p512Pt. Here and from now on we restric
the tunneling probability to the transmission probability
through the potential barrier but exclude any nonzero tra
mission probability above a potential barrier or a poten
well. Further we shall assume that the tunneling probabi
is accurately given by the instanton action or with its high
corrections.

To see how the instanton interpretation works for the u
form electric field, we calculate the tunneling probabili
from the asymptotic form~7! and compare it with the resu
from the instanton calculation. As the negative energy for
momentak' is below the potential barrier in Eq.~4!, the
tunneling probability is given by the transmission probabil

Pk'

b.t5UCAU
2

5
1

e2pak'11
. ~10!

Likewise, the probability for the no-pair production, i.e., th
vacuum-to-vacuum transition, given by the reflection pro
ability

Pk'

b.n-p512Pk'

b.t5
1

11e22pak'

5UBAU
2

, ~11!

is a consequence of the flux conservation. Hence, wha
needed in finding the probability for the no-pair producti
~vacuum-to-vacuum transition! even in a general electri
field is the corresponding total tunneling probability via t
single instanton and multi-instantons.

Now let us interpret the tunneling probability~10! in
terms of multi-instantons and anti-instantons of tunnel
process. In instanton physics@39#, the leading contribution to
the tunneling probability

Pk'

t 5e22Sk', ~12!

is determined by the single-instanton action

Sk'
5E

x2

x1

dxiAm21k'
2 2~v1qE0xi!

25pak'
, ~13!

wherex656Am21k'
2 2v are the classical turning points

We propose that the single instanton and multi-instant
may be related in a certain way with one-pair and multip
production, whereas multi-anti-instantons may be rela
with the annihilation of created boson pairs. As there is
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limitation from the Pauli blocking for the multipair produc
tion of bosons, the correct total tunneling probability shou
take into account both multi-instantons and anti-instanton

Pk'

b.t5 (
n51

`

~21!n11e22nSk'5
1

e2Sk'11
, ~14!

where instantons contribute positively and anti-instanto
negatively. Similarly, the relative probability for the no-pa
production~vacuum-to-vacuum transition! is given by

Pk'

b.n-p5 (
n50

`

~21!ne22nSk'5
1

11e22Sk'

. ~15!

These results agree with Eqs.~10! and ~11!. The physical
interpretation of the alternating signs is that only the inst
tons of even repeated periodic motions in the inverted po
tial contribute positively~creating pairs! to the tunneling
probability, whereas the anti-instantons of odd repeated
riodic motions contribute negatively~annihilating created
pairs! to the tunneling probability.

The vacuum means the absence of any particle for p
sible physical states. So the vacuum-to-vacuum transit
i.e., the vacuum persistence, is the total relative probab
for the no-pair production:

u^0,outu0,in&u25 )
all states

Pk'

b.n-p5expF2 (
all states

ln~11e22Sk'!G .
(16)

On the other hand, the vacuum-to-vacuum transition is gi
by the imaginary part of the effective action for boson

u^0,outu0,in&u25exp@22VT Im L eff.
b #, ~17!

whereV and T are the relevant volume and the duration
time. Therefore, the pair-production rate per unit time p
unit volume is twice that of the imaginary part of the effe
tive action:

wb52 ImL eff
b 5

1

VT (
all states

ln~11e22Sk'!. ~18!

Then the pair-production rate for bosons is explicitly giv
by

wb5
~2s11!V'

V E dv dk'
d21

~2p!d (
n51

`
~21!n11

n

3e2(pn/qE0)k'
2
e2(pm2/qE0)n

5
~2s11!

~2p!d (
n51

`

~21!n11S qE0

n D (d11)/2

3e2(pm2/qE0)n, ~19!

where s is the spin of the boson. Here we used*dv
5(qE0)Vi , where Vi is the longitudinal extension of the
field, and V5V'Vi , V' is the transverse volume@28#. It
2-3
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SANG PYO KIM AND DON N. PAGE PHYSICAL REVIEW D65 105002
should be noted that Eq.~19! recovers the standard result fo
the boson pair production in any dimension in Ref.@40#.

The fermion pair production can be understood simila
The created fermion pair blocks the multipair production.
the total tunneling probability for the fermion pair produ
tion per each mode is just

Pk'

f.t 5e22Sk'. ~20!

Therefore, the relative probability for the no-pair producti
of fermions is now given by

Pk'

f.n-p512e22Sk'. ~21!

Finally, the fermion pair-production rate per unit time p
unit volume is found to be

wf52 ImL eff
f 52

1

VT (
all states

ln~12e22Sk'!, ~22!

and takes the form

wf5
~2s11!V'

V E dv dk'
d21

~2p!d (
n51

`
1

n

3e2(pn/qE0)k'
2
e2(pm2/qE0)n

5
~2s11!

~2p!d (
n51

` S qE0

n D (d11)/2

e2(pm2/qE0)n.

~23!

Also Eq. ~23! recovers the standard result for the fermi
pair production in Ref.@40#.

Though the production rate~19! for bosons and Eq.~23!
for fermions are well defined for all electric fields, the ser
converge strongly for weak electric fields because all hig
terms are exponentially suppressed. But for extremely str
electric fields the exponential terms approach unity and
series are approximated by the Riemann eta functionh(2)
for bosons and the Riemann zeta functionz(2) for fermions.
So, for strong electric fields, instead of using a special
summation of the series, we adopt directly the pa
production formula~18! and ~22! and evaluate properly th
integrals suitable for strong fields. In four dimensionsd
53), the boson pair-production rate~18! becomes

wb5
~2s11!

~2p!3
~qE0!E

0

`

~2p!dk' k' ln~11e2p(m21k'
2 )/qE0!

5
~2s11!

~2p!3
~qE0!2H E

0

`

dy ln~11e2y!

2E
0

pm2/qE0
dy ln~11e2y!J , ~24!

where
10500
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p

qE0
k'

2 1
pm2

qE0
. ~25!

Using the integral@41#

E
0

`

dy ln~11e2y!5
p2

12
, ~26!

and expanding the exponential and then the logarith
function to any desired order

ln~11e2y!5 ln 22
1

2
y1

1

8
y21

1

96
y41O~y5!, ~27!

we obtain the pair-production rate

wb5
~2s11!

~2p!3 H p2

12
~qE0!22~ ln 2!pm2qE01

1

4
~pm2!2

2
1

24

~pm2!3

qE0
2

1

480

~pm2!5

~qE0!3
1OS ~pm2!6

~qE0!4 D J . ~28!

Similarly, the fermion pair-production rate~22! for strong
fields takes the form

wf52
~2s11!

~2p!3
~qE0!E

0

`

~2p!dk' k'ln

3~12e2p(m21k'
2 )/qE0!

5
~2s11!

~2p!3
~qE0!2H E

0

`

dy ln~12e2y!

2E
0

pm2/qE0
dy ln~12e2y!J . ~29!

Using the integral@41#

E
0

`

dy ln~12e2y!52
p2

6
, ~30!

and expanding the exponential function and then the lo
rithmic function

ln~12e2y!5 ln y2
1

2
y1

1

24
y21

11

720
y41O~y5!, ~31!

we finally obtain the fermion pair-production rate

wf5
~2s11!

~2p!3 H p2

6
~qE0!22pm2qE0XlnS qE0

pm2D 11C
2

1

4
~pm2!21

1

72

~pm2!3

qE0
1

11

3600

~pm2!5

~qE0!3

1OS ~pm2!6

~qE0!4 D J . ~32!
2-4
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The fermion pair-production rate~32! for strong electric
fields confirms the result obtained from different methods
Refs.@42–44#.

A comment is in order. The Schwinger pair production
a static uniform electric field is an ideal calculation in whi
one neglects pair production due to the interactions of
created pairs with the electric field background and am
the created pairs. For instance, a single pair can prod
another pair through the interaction with the electric fie
whose rate is proportional to (qE0 /m2)2(q/m)2 @45# and
can be larger than the multipair production ra
e2(pm2n)/(qE0)(qE0)2/n2, from multi-instantons for all suffi-
ciently largen even for an extremely strong electric fieldE0.
However, we shall not consider this complicated real sit
tion but rather focus on the ideal calculation without the ba
reaction of produced pairs.

III. INHOMOGENEOUS ELECTRIC FIELDS

We now consider pair production by a static inhomog
neous electric field. Without loss of generality, the elect
field is assumed to be localized in thexi direction and to
have the gauge potential

Am~ t,x!5„A0~xi!,0, . . . ,0…, ~33!

whereE(xi)52dA0(xi)/dxi . We restrict only to the case
where all produced particles (q.0) and antiparticles reac
the asymptotic regionsx51` and x52`, respectively,
without being bounded by the electric field. This requir
that qA0(2`)2qA0(1`)>2m. The mode-decompose
Klein-Gordon equation then takes the form

F2
1

2

d2

dxi
2

2
1

2
„v2qA0~xi!…

2Gfv,k'
~xi!

52
1

2
~m21k'

2 !fv,k'
~xi!. ~34!

We can still interpret Eq.~34! as a one-dimensional quantu
system of a unit mass with the potential2„v2qA0(xi)…

2/2
and the energye52(m21k'

2 )/2. In the WKB ~adiabatic!
approximation the asymptotic form for the tunneling pro
ability for each modek' is given by@46–48#

Pk'

b.t5
1

e2Sk'11
, ~35!

where

Sk'
5 (

n50

`

Sk'

(2n) . ~36!

Here the leading contribution toSk'
is given by the instanton

action

Sk'

(0)5E
x2

x1

dxi@Qk'
~x!#1/2, ~37!
10500
n
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and the next-to-leading term by

Sk'

(2)5E
x2

x1

dxiF 1

8

Qk'
9 ~x!

Qk'

3/2~x!
2

5

32

Qk'
82~x!

Qk'

5/2~x!
G , ~38!

where

Qk'
~x!5m21k'

2 2„v2qA0~xi!…
2. ~39!

Hence the relative probability for the no-pair productio
~vacuum-to-vacuum transition! of bosons is given by

Pk'

b.n-p5
1

11e22Sk'

, ~40!

and for fermions by

Pk'

f.n-p512e22Sk'. ~41!

A few comments are in order. First, if the electric fie
extends over all the space as in the uniform field case and
the potentialuA0(6`)u5`, then the potential barrier de
creases indefinitely at both6`. Therefore, there are alway
instantons for allk' . Second, if the electric field is localize
or has finite values of the potential at6`, then pairs are
produced only whenv2qA0(1`)>m and v2qA0(2`)
<2m. So there is a change of the sign ofv2qA0(xi) im-
plying a potential barrier. Thus only those modes belong
to uk'u<k',max have finite instantons and lead to pair pr
duction, where the upper limit is given by the minimum
two asymptotic values

k',max
2 5min$„v2qA0~1`!…22m2,

„v2qA0~2`!…22m2%. ~42!

In the inhomogeneous electric field, we obtain the bos
pair-production rate per unit time per unit volume

wb52 ImL eff
b

5
~2s11!

VT (
all allowed states

ln~11e22Sk'!

5
~2s11!

~2p!dVi

~d21!p (d21)/2

GS d11

2 D (
n51

`
~21!n11

n

3E
qA0(1`)1m

qA0(2`)2m

dvE
0

k',max
dk'k'

d22e22nSk', ~43!

and the fermion pair-production rate

wf52 ImL eff
f

52
~2s11!

2VT (
all allowed states

ln~12e22Sk'!
2-5
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SANG PYO KIM AND DON N. PAGE PHYSICAL REVIEW D65 105002
5
~2s11!

2~2p!dVi

~d21!p (d21)/2

GS d11

2 D (
n51

`
1

n

3E
qA0(1`)1m

qA0(2`)2m

dvE
0

k',max
dk'k'

d22e22nSk'. ~44!

As an exactly solvable model we consider a localiz
electric field E(xi)5E0 sech2(xi /L) with the Sauter type
gauge potential@1,28#

A0~xi!52E0L tanhS xi

L D . ~45!

In the limit of L→` the gauge potential~45! reduces to the
uniform electric field in Sec. II. Since the gauge potent
~45! is a more general case including the uniform field a
special case, it is worth applying the instanton interpretat
to pair production and comparing the result with the ex
one. Bosons gain an additional contribution to mome
from the acceleration by the localized electric field and ha
asymptotic values atxi→6`:

ki
2~`!5~qE0L1v!22m22k'

2 ,

ki
2~2`!5~qE0L2v!22m22k'

2 . ~46!

In the largeL limit the instanton action~37! is given by

Sk'
5p

m21k'
2

2qE0
F11

v2

~qE0L !2
1

m21k'
2

4~qE0L !2
1OS 1

L4D G .

(47)

The exact wave function describing the tunneling proces
found

fv,k'
~xi!5Ce2m(xi /L)sechnS xi

L DF~a,b;g;z!, ~48!

whereF is the hypergeometric function and
10500
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a
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a
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is

m52 i
L

2
„ki~`!1ki~2`!…,

n52 i
L

2
„ki~`!2ki~2`!…,

a5n1
1

2
1 iA~qE0L2!22

1

4
,

b5n1
1

2
2 iA~qE0L2!22

1

4
,

g512 iLk i~`!, z5
1

2 X12tanhS xi

L D C. ~49!

In the limit of xi@L, Eq. ~48! has the asymptotic form

fv,k'
~xi!52nCeik i(`)xi. ~50!

It describes a wave function after tunneling~an incoming
antiparticle!. In the limit of xi!2L, we may use anothe
form for Eq. ~48!:

fv,k'
~xi!5Ce2m(xi /L)sechnS xi

L D FG~g!G~g2a2b!

G~g2a!G~g2b!

3F~a,b;g;12z!1
G~g!G~a1b2g!

G~a!G~b!

3~12z!g2a2bF~a,b;g;12z!G . ~51!

In this limit the first term of Eq.~51! describes an inciden
wave ~an incoming particle! having the asymptotic form

fv,k'
~xi!52nC

G~g!G~g2a2b!

G~g2a!G~g2b!
eik i(2`)xi. ~52!

Therefore, from Eqs.~50! and~52! we can find the probabil-
ity for tunneling:
Pk'

b. tun.5
ki~2`!

ki~`!
UG~g2a!G~g2b!

G~g!G~g2a2b!
U2

5
sinhp„Lki~`!…sinhp„Lki~2`!…

coshpS L

2
„ki~`!1ki~2`!…1QD coshpS L

2
„ki~`!1ki~2`!…2QD , ~53!
whereQ5A(qE0L2)221/4. In the largeL limit we obtain
approximately the probability for tunneling:

Pk'

b. tun.5
1

11e2Sk'

. ~54!

Here, we used the binomial expansion
ki~6`!5~qE0L6v!

3F 12
m21k'

2

~qE0L !2S 16
v

~qE0L !2D 2G 1/2
2-6
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5qE0L6v2
m21k'

2

2qE0L F17
v

qE0L

1
v2

~qE0L !2G2
~m21k'

2 !2

8~qE0L !3 F17
3v

qE0L

1
6v2

~qE0L !2G1•••. ~55!

Therefore, using instanton action~47! we are able to ob-
tain the pair-production rate for bosons and fermions acco
ing to Eqs.~43! and ~44!. Thus we have shown that in th
space-dependent gauge the instanton interpretation for w
functions correctly gives the pair-production rates for bos
and fermions for two exactly solvable models.

IV. MAGNETIC FIELDS

A static uniform magnetic field leads only to a real effe
tive action and thus implies no-pair production@3#. Recently
it has also been shown that any static magnetic field, hav
no imaginary part, does not lead to the pair product
@17,49,50#. On the other hand, in the canonical method, ea
mode of the Klein-Gordon or Dirac equation has a nonz
reflection probability for static magnetic fields. This iss
has been raised and discussed to interpret the reflection p
ability as the pair production by static localized magne
fields in Ref.@49#. In this section we resolve this issue fro
the viewpoint of the instanton interpretation.

Let us consider a static magnetic field in a 4-dimensio
spacetime with the gauge potential

Am~ t,x!5„0,A1~x2!,0,0…. ~56!

The magnetic field is given byB5„dA1(x2)/dx2…x̂3. The
Klein-Gordon equation has the form

F ]2

]t2
2S ]

]x1
1 iqA1~x2! D 2

2
]2

]x2
2

2
]2

]x3
2

1m2GF~ t,x!50.

~57!

As in the case of the electric field, each mode of the fiel

F~ t,x!5ei (k1x11k3z32vt)fv,k1 ,k3
~x2! ~58!

leads to a Schro¨dinger-like equation

F2
1

2

d2

dx2
2

1
1

2
„k12qA1~x2!…2Gfv,k1 ,k3

~x2!

5
1

2
~v22m22k3

2!fv,k1 ,k3
~x2!. ~59!

As a one-dimensional quantum system, Eq.~59! has the po-
tential „k12qA1(x2)…2/2 and the energy (v22m22k3

2)/2.
In the case of a uniform magnetic field, the gauge pot

tial A1(x2)52B0x2 is indefinitely unbounded atx256`.
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Then the potential of Eq.~59! is exactly that of a harmonic
oscillator and the energy is quantized

en5qB0~2n11!. ~60!

The quantized energy has been used to calculate the effe
action in the uniform magnetic field@2#. From the viewpoint
of instanton interpretation, there is no pair production sin
there are no finite instantons at all. All would-be instanto
from one spatial infinity to another are infinite and do n
contribute to the tunneling probability. This result agre
with that obtained from the proper time and other metho

We now consider a static localized magnetic fieldB(x2)
5B0 sech2(x2 /L) x̂3. The gauge potential is given byA1(y)
52B0L tanh(x2 /L). The gauge potential in Eq.~59! has two
asymptotic values (k16qB0L)2/2 at x256`, respectively,
and a minimum value in-between. There is a potential w
instead of a potential barrier, so the reflection probabi
may be nonzero, though the tunneling probability via insta
tons is zero. Therefore, according to the instanton interpr
tion, there is no pair production. The instanton interpretat
thus resolves the contradiction between the effective ac
and the canonical method raised in Ref.@49#. Our result also
agrees with that of Dunne and Hall, who showed that
imaginary part of the effective action vanishes for the sta
magnetic field considered above and therefore neither bo
nor fermions are produced in pairs@50,51#.

V. DISCUSSION AND CONCLUSION

In this paper we have studied pair production of boso
and fermions by static uniform or inhomogeneous elec
field. For these fields we used the space-dependent~Cou-
lomb! gauge and solved the Klein-Gordon equation. F
strong electric fields the mode-decomposed Klein-Gord
equations have potential barriers from the gauge poten
The set of wave functions describing pair production
quantum field theory is the same as the standard scatte
problem through potential barriers in quantum mechan
@18,19,29#, in contract with the time-dependent gauge. T
gether with the fact that the most dominant contribution
the pair-production rate is the single instanton@10,24–27#,
we further propose that all multi-instantons contribute to p
production and anti-multi-instantons to the annihilation
created pairs and that the total tunneling probability from
multi-instantons and anti-multi-instantons is related with p
production and the probability for the vacuum-to-vacuu
transition is the probability for no-pair production. Based
this we derived the pair-production formula for bosons~18!
and fermions~22!.

This instanton interpretation means that the single inst
ton is related in a certain way with the single-pair produ
tion, multi-instantons with the multipair production and an
multi-instantons with the annihilation of the created pairs.
fact, when the instanton action is large, the single instanto
the dominant contribution to one-pair production and mu
instantons are the dominant contribution to the multipair p
duction. Also it implies the no-pair production when there
not any tunneling instanton. In the case of a uniform elec
2-7
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field, when all the contributions from multi-instantons a
anti-instantons are taken into account, the pair-produc
rate for bosons calculated according to the instanton inter
tation recovers the well-known result from the proper tim
method. By taking the Pauli blocking into account the pa
production rate for fermions is found also to agree with
standard result. Further the pair-production formula from
stanton action yields the correct forms~28! and ~32! for ex-
tremely strong electric fields, confirming the consistency
the formula with other methods. Using the instantons
tained in the WKB~adiabatic! approximation we are also
able to provide the formula for the pair-production rate
bosons and fermions by inhomogeneous electric fields.

As a by-product we are able to show that any static~lo-
calized! magnetic field cannot produce pairs of bosons
fermions. In the case of magnetic fields the space-depen
gauge reduces the Klein-Gordon equation to tim
independent Schro¨dinger equations with potential wells in
stead of potential barriers of the electric field case. Si
potential wells cannot have finite instantons and possible
finite instantons from either side of potential wells give t
zero probability for pair production, the pair production
ys

E

10500
n
e-

-
e
-
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bosons or fermions cannot proceed. As the nonzero trans
sion probability through potential wells is the result witho
any finite instanton, the instanton interpretation excludes
possibility of pair production by a static localized magne
field in the canonical method raised in Ref.@49#. Therefore
we conclude that any static magnetic field does not lead
pair production and the canonical method equipped with
instanton interpretation is compatible with the effective a
tion method@17,49,50#.
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