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Schwinger pair production via instantons in strong electric fields
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In the space-dependent gauge, each mode of the Klein-Gordon equation in a strong electric field takes the
form of a time-independent Schitimger equation with a potential barrier. We propose that the single instanton
and multi-instantons of quantum tunneling may be related with the single-pair and multipair production of
bosons and the relative probability for the no-pair production is determined by the total tunneling probability
via instantons. In the case of a static uniform electric field, the instanton interpretation recovers exactly the
well-known pair-production rate for bosons and, when the Pauli blocking is taken into account, it gives the
correct fermion production rate. The instanton is used to calculate the pair-production rate even in an inhomo-
geneous electric field. Furthermore, the instanton interpretation confirms the fact that bosons and fermions
cannot be produced by a static magnetic field only.
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[. INTRODUCTION by the external electric field is analogous to particle produc-
tion by a time-dependent metric of a curved spacefife9).
Strong electromagnetic fields lead to two physically im-In both problems one imposes the same boundary condition
portant phenomena: pair production and vacuum polarizathat an incident, positive frequency component in the past
tion. A strong electric field makes the quantum electrody-infinity is scattered by a potential barrier into a superposition
namics (QED) vacuum unstable which decays by emitting of positive and negative frequency components in future in-
significantly boson or fermion paifd—3]. The vacuum fluc- finity. It is the complex conjugate of the boundary condition
tuations of an external electromagnetic field also result in afior scattering problems in quantum mechanics. The coeffi-
effective action of the nonlinear Maxwell equatidi2s-4. In cients determine the Bogoliubov transformation and, in par-
its long history, many different methods have been develticular, the coefficient of the negative frequency component
oped such as the proper time meth8¢b], canonical method gives the number created bosons or fermions per mode. The
[5], etc., to derive the QED effective action in external elec-pair-production rates were calculated for time-varying elec-
tromagnetic fields. Also there have been applications to varitric fields [10—17. Using both canonical and path integral
ous physical problemg$6]. The proper time method by methods, pair production in a uniform electric field was stud-
Schwinger{3] and DeWitt[5] has widely been employed to ied in the time-dependent gau§®8,19 and in Rindler co-
compute the effective action. The real part of the effectiveordinates[20]. Pair production was also studied for a uni-
action leads to vacuum polarization and the imaginary part tborm electric field confined to a finite region, an
pair production. Though that method is conceptually wellinhomogeneous fielf21-23.
defined and technically rigorous, it is sometimes difficult to A shortcoming of the time-dependent gauge is that except
apply the method to some concrete physical problems suctor uniform fields, the gauge potential and thereby the Klein-
as inhomogeneous electromagnetic fields and others. On ti@ordon equation involve both the space and time coordinates
other hand, the canonical methdg proves quite efficientin at the same time. So it is technically difficult to apply the
calculating the pair-production rate of bosons and fermionBogoliubov transformation for inhomogeneous fields. On the
by static or time-dependent uniform electric fields in manyother hand, in the space-dependé@bulomb gauge for a
physical contexts. static electric field, each mode of the Klein-Gordon equation
In the canonical approach the most frequently used gaugr bosons or the Dirac equation for fermions takes the form
for the electromagnetic potential is the time-dependentf a time-independent Schiimger equation for quantum
gauge. In that gauge the Klein-Gordon equation for bosonsunneling through a potential barrier. In that space-dependent
or the Dirac equation for fermions in a uniform electric field, gauge there is no direct interpretation of wave components in
when appropriately mode decomposed, takes the form akrms of positive and negative frequencies. However, in the
time-dependent Schdinger equations. Now pair production case of the static uniform electric field, Brezin and ltzykson
explained the dominant contribution to the pair-production
rate by quantum tunneling through the potential barrier
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sangkim@kunsan.ac.kr production rate by semiclassical tunneling calculafiaf—
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matrix formalism for a uniform field and an inhomogeneous
field of Sauter type gauge potent{@8]. Hansen and Ravn-
dal showed that the transmission probability through the bar-
rier of a uniform electric field gives the probability for pair .
production for bosons and fermiofigd], solving the Klein Whered is the charge andh the mass of the boson. In the
paradox[30,31,1. Also Padmanabhafl9] suggested that space-_dependem(f‘ou_lomt_) gauge, the_vec_:tor_potentlal for
the reflection probability of the scattering problem gives thet"® uniform electric field in the direction is given by

+m?|d(t,x)=0, (1)

J A J iaA
| —Fi —+igA,
7\ axe G X" a

correct relative probability for the vacuum-to-vacuum transi- i
tion for bosons. The role of tunneling solutions for pair pro- Ault)=(=Eox.0,....0 @
duction was also noticed in Refsl2,32-33. Each Fourier mode of the boson field
The purpose of this paper is to interpret and derive the ‘
boson or fermion pair-production rate by strong static uni- d(tx)=etumNg, (X)), (3)

form or inhomogeneous electric fields in terms of instantons

through potential barriers in the space-dependent gauge #atisfies the one-dimensional equation

any spacetime dimensions. This formula in terms of the in-

stanton action may provide a simple way to estimate the 1 d? 5
pair-production rate by inhomogeneous electric fields, for in- ) _2_§(w+qE0XH) ¢w,|&(x\|)
stance, from charged black holes, neutron stars, or astro- X
physical objects[36,37. For these static inhomogeneous 1
fields it is easier to apply the space-dependent gauge than the =- E(m2+ ki)d’w,kl(XH)- (4)
time-dependent gauge. We propose that the single instanton

and multi-instantons for quantum tunneling determine some- Now one may interpret Eq(4) as a Schidinger-like
how the single-pair and multipair production. In particular, equation for a unit mass moving in the inverted harmonic
we show that all the contributions from multi-instantons andpotential with the center at, .= — w/(qE,) and the energy

anti-instantons yield exactly the total tunneling probability __ —(m2+k2)/2. As the energy is negative€0), Eq.(4)
for the static uniform electric field, and thereby determineindeed desc#ibes a tunneling problem for all tra,nsverse mo-
the relative vacuum-to-vacuum transition and the boson pairs. . 21 The wave function describing the tunneling pro-
production rate. We further show that the instanton interprebesS ingiven by the complex parabolic cylindrical function
tation together with the Pauli blocking correctly gives the[38]

fermion production rate by the static uniform electric field.

Using the formula in terms of the instanton action, we find bk (E)=CE(a ,&), (5)
the pair-production rates for bosons and fermions which are T -

asymptotically valid for extremely strong electric fields. Also wherec is a complex number, and

the pair-production rates for bosons and fermions by a static

inhomogeneous electric field are calculated using WKB 2 m2+ kf
(adiabati¢ approximation for the instantons. Finally we §= Vgel@takox), a =5
show that according to the instanton interpretation a static 4o 9%
localized magnetic field does not lead to any pair productionjt has an asymptotic form in two regimes:
confirming the result from the proper time method.

The organization of this paper is as follows. In Sec. Il we Dok (E)=A@, (§)—Bok , (§)(é< —2\/;),
show that the tunneling probability by instantons correctly o o o B
gives the pair-production rates for bosons and fermions by a ok s
static uniform electric field. We calculate the pair-production ¢“""L(§)_CQD“”"L(§)(§>2\/a_kL)’ 0
rates in any spacetime dimensions and find their asymptotic

(6)

form for extremely strong field and compare them with thoseWhere

from other methods. In Sec. Il we extend the instanton in- o

terpretation of pair production to an inhomogeneous electric Pok, (£)=\ [ —e~ (A& (8)

field and find the pair-production rates in terms of the instan- |

ton action. In Sec. IV we .apply the idea to a static magneth_|ere the coefficients are given by

field to show that any pair of boson or fermion are not pro-

duced. This resolves some of the puzzling issues in the ca- A=ic\/1+e2™, B=—ice™, C=c. 9)

nonical method on the pair production by a static localized ’ ’

magnetic field. In the regioné< —2./a, , the componeng,, , e '*' de-

scribes an incoming particle from arqazlj),,&e‘i‘"t an outgo-

Il. UNIFORM ELECTRIC FIELD ing particle tof= —, whereas in the regiog>2/ay the

We consider a charged boson in a static uniform electri€omponentey, , e”'“" describes an incoming antiparticle
field in a (d+1)-dimensional Minkowski spacetime. It sat- from = + . Hansen and Ravndal showed that the transmis-
isfies the Klein-Gordon equatiaiin units ofa=c=1) sion probability |C/A|? gives the probability for one-pair
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production[29]. Also Padmanabhan suggested that the relimitation from the Pauli blocking for the multipair produc-

flection probability|B/A|? gives the relative probability for tion of bosons, the correct total tunneling probability should

the vacuum-to-vacuum transitidii8,19. His interpretation take into account both multi-instantons and anti-instantons

implies that e, (—)e™'*" and <p’,f)’kL(—oo)e*i‘”t corre- B

spond to the incoming and outgoing vacuum state, respec- Pkk>.t: 2 (—1)"+le= S =

tively. Extending their arguments to any static field, we fur- Lop=1 S +1'

ther propose that the single-pair and multipair production of

bosons are related to the single instanton and multiwhere instantons contribute positively and anti-instantons

instantons of the potential barrier in such a way that thenegatively. Similarly, the relative probability for the no-pair

tunneling probabilityP! gives the probability for pair pro- production(vacuum-to-vacuum transitions given by

duction and therefore the relative probability for the vacuum-

to-vacuum transition is given by the probability for no-pair pbn-p_ E (—1)Me 208 —

productionP"P=1—P". Here and from now on we restrict K = T lte 2

the tunneling probability to the transmission probability

through the potential barrier but exclude any nonzero trans¥hese results agree with Egd.0) and (11). The physical

mission probability above a potential barrier or a potentialinterpretation of the alternating signs is that only the instan-

well. Further we shall assume that the tunneling probabilitytons of even repeated periodic motions in the inverted poten-

is accurately given by the instanton action or with its highertial contribute positively(creating pairs to the tunneling

corrections. probability, whereas the anti-instantons of odd repeated pe-
To see how the instanton interpretation works for the uni+iodic motions contribute negativelyannihilating created

form electric field, we calculate the tunneling probability pair9 to the tunneling probability.

from the asymptotic forn{7) and compare it with the result The vacuum means the absence of any particle for pos-

from the instanton calculation. As the negative energy for alkible physical states. So the vacuum-to-vacuum transition,

momentak, is below the potential barrier in Ed4), the i.e., the vacuum persistence, is the total relative probability

tunneling probability is given by the transmission probability for the no-pair production:

(14)

(15

2
__t o looutoini?= Il Py=e r{ > In(1+e 25|,
eZa-rakl +1 all states
(16)

Likewise, the probability for the no-pair production, i.e., the On the other hand. the v M-to-v m transition is given
vacuum-to-vacuum transition, given by the reflection prob- € other hand, the vacuum-to-vacuum transition Is give
by the imaginary part of the effective action for boson

ability
) |(0,0ut0,in)|?=exd —2VTIm L5, (17

: (11)

1
1+ e_Z’TakL -

B

A whereV and T are the relevant volume and the duration of

time. Therefore, the pair-production rate per unit time per

is a consequence of the flux conservation. Hence, what ignit volume is twice that of the imaginary part of the effec-

needed in finding the probability for the no-pair productiontive action:

(vacuum-to-vacuum transitipneven in a general electric

field is the corresponding total tunneling probability via the wP=2Imz o =

single instanton and multi-instantons. VT aiSfhtes
Now let us interpret the tunneling probabilif10) in

terms of multi-instantons and anti-instantons of tunneling’ "en the pair-production rate for bosons is explicitly given

process. In instanton physif39], the leading contribution to by

the tunneling probability

b.n-p_4q _ pbt_
PkL 1 PkL

In(1+e 25,). (18

whe (2s+ l)VLf dwdkd™! i )n+1
P&L:e*ZSkL, (12) V (27T)d =1
is determined by the single-instanton action ><e*(ﬂn/qu)kie*(me/qu)n
* (d+1)/12
SKL=J'X dx||\/m2+kf—(w+qE0x”)2=waki, (13 _(@2s+1) _1)n+1(q_EO)
X (2m)¢ n=1 n
wherex. = +Jm?+ kl2 —w are the classical turning points. x @~ (Tm*/aEg)n (19)

We propose that the single instanton and multi-instantons

may be related in a certain way with one-pair and multipairwhere s is the spin of the boson. Here we usddw
production, whereas multi-anti-instantons may be related=(qEq) V), whereV, is the longitudinal extension of the
with the annihilation of created boson pairs. As there is ndield, andV=V, V|, V, is the transverse volumg28]. It
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should be noted that E¢L9) recovers the standard result for . m?2
the boson pair production in any dimension in Rd0]. y= _Ek2 GE- (25
The fermion pair production can be understood similarly. 4o &
The created fermion pair blocks the multipair production. Soysing the integraf41]
the total tunneling probability for the fermion pair produc-
tion per each mode is just o 2
fo dyIn(1+e*y)=E, (26)

P =e %%, (20)
and expanding the exponential and then the logarithmic
Therefore, the relative probability for the no-pair productionfunction to any desired order
of fermions is now given by

-y i
P[{"pzl—e’zsn. 21) In(1+e ¥Y)=In2 y+8y + 6y A+ 0>y%), (27

Finally, the fermion pair-production rate per unit time perWe obtain the pair-production rate

unit volume is found to be

b (2s+1) -
1 wh= (2m)° (qEO) —(In2) mm?°qEy+ — (Trm)
Wf_2|m[:eﬁ——v—.|_ 2 In(l_eizski)v (22)
all states 1 (7Tm2)3 1 (7Tm2)5+0((7Tm2)6) 8
and takes the form 24 qE, 480 (gE)? (9E)*/ )
" dodkd~t ~ Similarly, the fermion pair-production rat€?2) for strong
i (28 1)Vif b 2 1 fields takes the form

v (2m® a=1n

) . ‘ (2s+1)

% @~ (TAEQk] o= (7m?/qEg)n wh=— 2m)? (qEO)J (2m)dk, Kk, In

X (1— e mm*+ kf)/qu)

° (d+1)/2
_ (2s+ ](;) (qu) e,(ﬂ_mzlqu)n.
(2m)¢ n=11 N

(23 _ (2s+1)
(2m)°

(qu>2{ | Cayima-e
Also Eg. (23) recovers the standard result for the fermion
pair production in Ref[40]. mm?/qEq _

Though the production ratel9) for bosons and Eq23) _f dyin(1-e y)]' (29
for fermions are well defined for all electric fields, the series
converge strongly for weak electric fields because all higheUsing the integra[41]
terms are exponentially suppressed. But for extremely strong
electric fields the exponential terms approach unity and the o oy ™
series are approximated by the Riemann eta funci¢®) fo dyin(l-e¥)=—-—, (30)
for bosons and the Riemann zeta functid®) for fermions.
So, for strong electric fields, instead of using a special reand expanding the exponential function and then the loga-
summation of the series, we adopt directly the pair-rithmic function
production formula(18) and (22) and evaluate properly the
integrals suitable for strong fields. In four dimensiorts (

2

=3), the boson pair-production raté8) becomes '”(1_e_y):|”y_ SY+ 24y +720y “+0(y%), (31)
whe (2s+ 1) (qEO)fx(Zw)dkL K In(1+e w(m2+kf)/qu) we finally obtain the fermion pair-production rate
(27) 0
2s+1
(254 1) ) wi= ((277)3)[ (qEg)?— 7mm? QEo(m :mo) +1)
- 3 (qu)z[f dyin(1+e™)
(2m) 0 _}( 2y 1 (7m?)3 . 11 (m7m?)°
- s 727 qE, 3600 (qEy)°
—f ‘ °dy|n(1+e‘y)], (24) 0
’ (7m?)°
+0 s (32
where (qEo)
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The fermion pair-production rat¢32) for strong electric and the next-to-leading term by
fields confirms the result obtained from different methods in

Refs.[42—-44. X, {1 Q. (¥) 5 QLZ(X)] -
X

A comment is in order. The Schwinger pair production by Sf(i)z 5 Q3/2( T
X X

a static uniform electric field is an ideal calculation in which

one neglects pair production due to the interactions of the
created pairs with the electric field background and amongvhere
the created pairs. For instance, a single pair can produce 5 2 5
another pair through the interaction with the electric field, Qi, (X)=m*+k] — (0= qAg(X)))". (39
whose rate is proportional toqE,/m?)?(q/m)? [45] and

can be larger than the multipair production rate,Hence the relative probability for the no-pair production
ef(ﬁmZn)/(qu)(q E,)%/n2, from multi-instantons for all suffi- (vacuum-to-vacuum transitiorof bosons is given by

ciently largen even for an extremely strong electric fieg.
However, we shall not consider this complicated real situa- pb-n-p_ 1 (40)

tion but rather focus on the ideal calculation without the back Ky 1+e 2%’
reaction of produced pairs.
and for fermions by
I1l. INHOMOGENEOUS ELECTRIC FIELDS f - _os
Pk‘L P= 1-e Ky . (41)

We now consider pair production by a static inhomoge-
neous electric field. Without loss of generality, the electric A few comments are in order. First, if the electric field
field is assumed to be localized in the direction and to  extends over all the space as in the uniform field case and has
have the gauge potential the potential|Ay(+%)|=o, then the potential barrier de-
B creases indefinitely at both . Therefore, there are always
AutX)=(Ro(x)),0, ..., 0, (33 instantons for alk, . Second, if the electric field is localized

where E(x) = — dAq(x))/dx|. We restrict only to the case or has finite values of the potential dtw, then pairs are
where all produced particlesj&-0) and antiparticles reach Produced only wheno—gqAo(+%)=m and o —qAy( =)

the asymptotic regions=+c and x=—c, respectively, = M- SO there is a change of the sign®f-qAq(x)) im-
without being bounded by the electric field. This requiresP!Ying & potential barrier. Thus only those modes belonging
that qAg(—)—qAg(+*)=2m. The mode-decomposed © |k, |<k, max have finite instantons and lead to pair pro-

Klein-Gordon equation then takes the form duction, where the upper limit is given by the minimum of
two asymptotic values

1 d?
“2a¢ 5 = A2 | o, (x) K ma=min (= qAg( +52))*~m
” (0= Qg — )2~ m?}. (42
= —§(m2+ki)¢w'ki(x”). (34) In the inhomogeneous electric field, we obtain the boson

pair-production rate per unit time per unit volume
We can still interpret Eq(34) as a one-dimensional quantum

system of a unit mass with the potentialw— qAy(x|))?/2 wP=21mL g
and the energy=— (m? +k2)/2 In the WKB (adiabati¢
approximation the asymptotic form for the tunneling prob- _ (2s+1) In(1+e 25)
ability for each modek, is given by[46-4§ VT  allallowed states :
1 _ (d=1)2 *® ,_ayn+1
e +1 (27T)de F(d+1 =4 n
where 2

gqAp(—=)—m k
xf dwf "™ dk K926 20S | (43)
qAg(+»)+m 0

S,=2 S (36)

_ o o . and the fermion pair-production rate
Here the leading contribution ® isgiven by the instanton

action wi=21ImL L,
. (25+1)
SO— J dx[Qx (012 (37 _ (et In(1—e 2,
L X_ H L 2VT  a allo%d states ( )
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_(2s+1) (d—l)w“*”’zi
22mNV) d+1) =1
2

1
n

qAg(—»)—m k max
xf dwr dk k972 2", (49
qAg(+=)+m 0

As an exactly solvable model we consider a localized
electric field E(x))=E, secﬁ(xH/L) with the Sauter type
gauge potentidl1,28]

X

AO(XH) =—EqL tam( r) . (45)

In the limit of L—« the gauge potentigh5) reduces to the
uniform electric field in Sec. Il. Since the gauge potential

(45) is a more general case including the uniform field as a
special case, it is worth applying the instanton interpretation

PHYSICAL REVIEW D65 105002

L
p= =i k() +kj(=)),

L
v=—iz k() =kj(==)),

1 22 1
a=v+§+l (QEOL ) —Z,
1 1
p=vty iy (@ELD?-

. R
Y ILkH(OO), 4 > 1—-tan L) (49

In the limit of x;>L, Eq. (48) has the asymptotic form

bk, (X)) =2"CeHN, (50)

to pair production and comparing the result with the exacf; yescripes a wave function after tunneliign incoming

one. Bosons gain an additional contribution to momenta,

particlg. In the limit of x<—L, we may use another

from the acceleration by the localized electric field and havg,m for Eq. (49):

asymptotic values at|— *co:
kf(0)=(qEoL + w)?—m?—k? ,
kf(—o)=(qEoL —w)>~m?—ki.  (46)
In the largeL limit the instanton actiori37) is given by
w? m?+k? ( 1 )

m?+k?
1+ + +0| =
(QEoL)?  4(qEqL)? L

RUICAPTTN

(47)

X
—a /L I
Bk, (x))=Ce #™ )secﬁ(t”

F(yI'(y—a—p)
F(y—a)l'(y—pB)
F(y)'(a+B—1v)
F(a)I'(B)

XF(a,B;y;1-0)+

. (51

X(1=0)""*"PF(a,B;y1-0)

In this limit the first term of Eq(51) describes an incident

The exact wave function describing the tunneling process iave (an incoming particlehaving the asymptotic form

found
d>w,kl(><|)=Ce“‘X’L)secH<XE>F(a,B;y;§), (48)

whereF is the hypergeometric function and

L(y=a)l(y-B)|?

Pb. tun.__ kH( B oo)
L(yT(y—a—p)|

K k(=)

sinhar (LK (%))sinhar(Lkj(—))

bk (X)=2"C

F(yl'(y—a—-p) oK)
L(y—a)I'(y—B) ’

(52

Therefore, from Eqs(50) and(52) we can find the probabil-
ity for tunneling:

(53

B L
coshw(z(k(oo) +kj(=2))+Q

where Q= \/(qE,L?%)%>—1/4. In the largel limit we obtain
approximately the probability for tunneling:

1
Pb tun.: . 4
K 1+e%, (5 )

Here, we used the binomial expansion
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m2+ k2 o Then the potential of Eq59) is exactly that of a harmonic
=qE)Ltw— 2qE Ll IqE 3 oscillator and the energy is quantized
0 0
w2 (MP+ k)2 30 €n=0Bp(2n+1). (60)
+ - 1=
gEy qE, 0 e quantized energy has been used to calculate the effective
(QEoL)?| 8(qEeL)®| aEoL Th tized has b d to calculate the effecti
) action in the uniform magnetic fiel®]. From the viewpoint
6w of instanton interpretation, there is no pair production since
* + 59 finite | Il. All would-be |
(QEoL)? there are no finite instantons at all. All would-be instantons

from one spatial infinity to another are infinite and do not
Therefore, using instanton acti¢47) we are able to ob- contribute to the tunneling probability. This result agrees
tain the pair-production rate for bosons and fermions accordwith that obtained from the proper time and other methods.
ing to Eqs.(43) and (44). Thus we have shown that in the e now consider a static localized magnetic figik,)
space-dependent gauge the instanton interpretation for waveB, seclf(x,/L)xs. The gauge potential is given By, (y)
functions correctly gives the pair-production rates for bosons= —BgL tanh,/L). The gauge potential in E¢59) has two
and fermions for two exactly solvable models. asymptotic valuesk; +qBoL)?/2 atx,= *+=, respectively,
and a minimum value in-between. There is a potential well
instead of a potential barrier, so the reflection probability
may be nonzero, though the tunneling probability via instan-
A static uniform magnetic field leads only to a real effec- tons is zero. Therefore, according to the instanton interpreta-
tive action and thus implies no-pair producti(8j. Recently  tion, there is no pair production. The instanton interpretation
it has also been shown that any static magnetic field, havinghus resolves the contradiction between the effective action
no imaginary part, does not lead to the pair productionand the canonical method raised in R&0]. Our result also
[17,49,50Q. On the other hand, in the canonical method, eactagrees with that of Dunne and Hall, who showed that the
mode of the Klein-Gordon or Dirac equation has a nonzergmaginary part of the effective action vanishes for the static
reflection probability for static magnetic fields. This issuemagnetic field considered above and therefore neither bosons

IV. MAGNETIC FIELDS

has been raised and discussed to interpret the reflection proRor fermions are produced in pairs0,51.

ability as the pair production by static localized magnetic
fields in Ref.[49]. In this section we resolve this issue from
the viewpoint of the instanton interpretation.

Let us consider a static magnetic field in a 4-dimensiona
spacetime with the gauge potential

AM(t!X) = (O!Al(XZ)vaO)- (56)

The magnetic field is given b= (dA;(X,)/dx,)Xs. The
Klein-Gordon equation has the form
(72 2
o

Jd
—
Xy iqA1(Xo)

————+m
ox5 x5

(57)

As in the case of the electric field, each mode of the field

D(t,x)=e/lwarhamele (%)) (58)
leads to a Schidinger-like equation
1d> 1 )
) d_xg + E(kl_qu(XZ)) B ky ky(X2)
1 2 2 2
=5 (2= M= k3) b s iy (). (59

As a one-dimensional quantum system, E5) has the po-
tential (k;— qA;(x,))?/2 and the energyd?—m?—k3)/2.

In the case of a uniform magnetic field, the gauge poten
tial A1(X,)=—BgX, is indefinitely unbounded at,= *o.

10500

V. DISCUSSION AND CONCLUSION

| In this paper we have studied pair production of bosons
and fermions by static uniform or inhomogeneous electric
field. For these fields we used the space-depen(eot-
lomb) gauge and solved the Klein-Gordon equation. For
strong electric fields the mode-decomposed Klein-Gordon
equations have potential barriers from the gauge potential.
The set of wave functions describing pair production in
quantum field theory is the same as the standard scattering
problem through potential barriers in quantum mechanics
[18,19,29, in contract with the time-dependent gauge. To-
gether with the fact that the most dominant contribution to
the pair-production rate is the single instan{d®,24-27,

we further propose that all multi-instantons contribute to pair
production and anti-multi-instantons to the annihilation of
created pairs and that the total tunneling probability from all
multi-instantons and anti-multi-instantons is related with pair
production and the probability for the vacuum-to-vacuum
transition is the probability for no-pair production. Based on
this we derived the pair-production formula for bosdh8)

and fermiong(22).

This instanton interpretation means that the single instan-
ton is related in a certain way with the single-pair produc-
tion, multi-instantons with the multipair production and anti-
multi-instantons with the annihilation of the created pairs. In
fact, when the instanton action is large, the single instanton is
the dominant contribution to one-pair production and multi-
instantons are the dominant contribution to the multipair pro-
duction. Also it implies the no-pair production when there is
not any tunneling instanton. In the case of a uniform electric

2-7
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field, when all the contributions from multi-instantons and bosons or fermions cannot proceed. As the nonzero transmis-
anti-instantons are taken into account, the pair-productiosion probability through potential wells is the result without
rate for bosons calculated according to the instanton interpreany finite instanton, the instanton interpretation excludes the
tation recovers the well-known result from the proper timepossibility of pair production by a static localized magnetic
method. By taking the Pauli blocking into account the pair-field in the canonical method raised in Rp49]. Therefore
production rate for fermions is found also to agree with thewe conclude that any static magnetic field does not lead to
standard result. Further the pair-production formula from in-pair production and the canonical method equipped with the
stanton action yields the correct forrt®8) and (32) for ex-  instanton interpretation is compatible with the effective ac-
tremely strong electric fields, confirming the consistency oftion method[17,49,5Q.

the formula with other methods. Using the instantons ob-
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fermions. In the case of magnetic fields the space-dependefdr useful information. S.P.K. would like to express his ap-
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