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Nonperturbative quenched propagator beyond the infrared approximation

J. Sánchez-Guillén and R. A. Vázquez
Departamento de Fı´sica de Partı´culas, Universidad de Santiago, 15706 Santiago de Compostela, Spain

~Received 20 January 2002; published 19 April 2002!

A new approach to the quenched propagator in QED beyond the IR limit is proposed. The method is based
on evolution equations in the proper time.
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I. INTRODUCTION

We propose a new nonperturbative analysis of quenc
QED beyond the infrared Bloch-Nordsieck approximati
using the worldline formalism. The main idea is to formula
evolution equations in the proper time, inspired by the rat
intuitive resulting classical picture. As a warmup we obta
in a simple way the renormalized quenched propagator in
infrared~IR! limit. From there we proceed to improve on th
IR approximation, which we achieve in the form of integr
differential equations, our main results. They are of cou
difficult to solve, but they have an appealing physical int
pretation and suggest a simplified numerical analysis.

The paper is organized as follows. In Sec. II we study
infrared behavior of lepton propagators for several cas
First we consider the Bloch-Nordsieck approximation
given by uniform proper time paths, which exhibit the cla
sical image in the worldline. This suggests the use of
proper time evolution equations as a short cut to go bey
the infrared approximation. The idea is carried out for sca
QED and then for the full Dirac algebra. The lesson of t
section is a better understanding of renormalization and
fact that the scalar case contains the basic physics, w
will be used in Sec. III, where we develop further the prop
time formalism to go beyond the infrared limit. The resu
are summarized in Sec. IV which is devoted to the conc
sions.

II. INFRARED BEHAVIOR: THE CLASSICAL IMAGE OF
THE WORLDLINE FORMALISM

In this section we will study the classical Bloch
Nordsieck approximation and their extensions for scalar
fermionic QED. Our main point is given in Eq.~12!, where
an evolution equation is introduced for the quenched pro
gator. Its solution is the well-known Bloch-Nordsieck~BN!
result. The extensions to the scalar and full Dirac algebra
carried out without difficulty.

A. Bloch-Nordsieck approximation

The Bloch-Nordsieck model has been repeatedly use
study the infrared behavior of QED. Here we will consider
from the path integral point of view as a convenient start
point. The model has been extensively studied in the lite
ture @1–5#.

In the Bloch-Nordsieck model one substitutes the Di
gamma matrices by a constant vectorgm→um . This constant
0556-2821/2002/65~10!/105001~7!/$20.00 65 1050
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vector will be identified to the~constant! velocity of the elec-
tron, see below. With this substitution the model is co
pletely integrable and the electron Green function can be
in terms of elementary functions. The electron propagato
the Bloch-Nordsieck approximation is given by

FumS i
]

]xm
1eAm~x! D2mGG~x,y!52d~x2y!, ~1!

whereAm(x) is the electromagnetic potential. We will solv
this model by introducing a proper time~Schwinger’s
method@6#! @7,8,5,9#. Define

G~x,y!5 i E
0

`

dtG~t,x,y!, ~2!

thenG(t,x,y) verifies the equation

2 i
]G

]t
5FumS i

]

]xm
1eAm~x! D2mGG~t,x,y!

5HG~t,x,y!, ~3!

with initial conditions

G~t50,x,y!5d~x2y!. ~4!

The formal solution is given by

G~t,x,y!5exp$2 i tH% d~x2y!. ~5!

Here H is clearly seen as a Hamiltonian which gives t
evolution in the proper time of the Schro¨dingerlike equation.
This formal expression can be cast into a path integral in
proper time. We can write

G~t,x,y!5NE Dx~t!Dp~t!

3expH i E
0

t

dt@pẋ2H~x,p!#J
5NE Dx~t!Dp~t!

3expH i E
0

t

dt@pẋ2up2euA~x!1m#J . ~6!
©2002 The American Physical Society01-1



he

-

n
i

ic
r

sm
a
-
e
e

s,
u
a
it
b

n

e
s

us
ill

cur-

no
he
c-
n-
the
-
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The electromagnetic field is coupled to the currentj m(z)
5um*0

tdtd„z2x(t)… and can be integrated out, since t
resulting integral is Gaussian,

^G~t,x,y!&5E DAmG~t,x,y!

3expH 2 i E dx
1

4
F21

l

2
~]A!2J , ~7!

where l is a gauge-fixing parameter and the brackets^&
mean the average over the gauge fields.

The integration of theA fields gives a nonlocal Lagrang
ian for ^G&:

^G~t,x,y!&5NE DxDp expH i E
0

t

dt~pẋ2pu1m!J
3expH 2

e2

2 E0

t

dt1E
0

t

dt2E dk

~2p!D
umun

3Dmn~k!e2 ik[x(t1)2x(t2)]J , ~8!

whereDmn(k) is the photon propagator in the gaugel.
The integral overp gives a delta function,d„ẋm(t)

2um)…, which implies that the particle moves with consta
velocity,um , as stated previously. We see that the electron
the Bloch-Nordsieck approximation behaves as a class
particle, the only path that contributes to the propagato
the classical path and quantum fluctuations areexactlycan-
celed. This fact is most easily seen in the above formali
The triviality of the quantum corrections is due to the appe
ance of thed function, which in turn is related to the trivi
ality of the classical Hamiltonian. For the BN model, th
classical path and the uniform velocity path coincide, ind
pendently of the external potentialAm(x). Alternatively one
may notice that Eq.~3! is first order on the variablex. As is
well known from the theory of partial differential equation
the solution admits a particle interpretation. This is not tr
for the cases considered below. The uniform path is only
approximation valid when the momentum interchanged w
the gauge fields is sufficiently small such that the path can
considered uniform, i.e., in the infrared domain.

Therefore the nonlocal~NL! term must be evaluated i
the classical path alone. It gives

NNL5
32l

2 E
0

t

dt1dt2

1

~t12t2!2
. ~9!

After renormalization we find

^G~t,p!&5 i ta exp$2 i t~m2up!%, ~10!

wherea5(32l)/(2p)a. Integrating overt, we obtain fi-
nally
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^G~p!&5 i E
0

`

dt^G~t,p!&

5G~11a!
i

~m2up!11a
. ~11!

This is the well-known Bloch-Nordsieck result. In th
Yennie-Suura gauge,l53, the electron propagator reduce
to the free case. Notice that^G(p,t)& verifies the homoge-
neous evolution equation

2 i
]^G~p,t!&

]t
5~up2m!^G~p,t!&1

a

t
^G~p,t!&,

~12!

which has, of course, Eq.~10! as a solution. This fact will be
used later on to go beyond the infrared approximation.

B. Scalar QED

Before considering the spinor electrodynamics, let
study the somewhat simpler case of scalar QED. We w
study in detail the renormalization for this case.

The scalar propagator, coupled to the electromagnetic
rent, is given by

$@]m2eAm~x!#22m2%G~x,y!5d~x2y!, ~13!

as before we introduce the Schwinger proper time

i
]G~t,x,y!

]t
5$@]m2eAm~x!#22m2%G~x,y!. ~14!

G(t,x,y) has the solution

G~t,x,y!5exp$2 iHt%d~x2y! ~15!

which can be expressed as a path integral

G~t,x,y!5NE Dx~t!Dp~t!

3expH i E
0

t

dt@pẋ1H~x,p!#J
5NE Dx~t!Dp~t!

3expH i E
0

t

dt$pẋ1@p1eA~x!#22m2%J .

~16!

Now p appears quadratically and the integral over it is
longer ad function. As expected, the classical path is not t
only contribution to the path integral and quantum corre
tions are relevant. However, for the moment, we will co
sider the contribution given by the uniform path alone, as
main contribution in the infrared limit. We first shift the mo
mentum integralP5p1eA(x),
1-2
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G~t,x,y!5NE Dx~t!DP~t!

3expH i E
0

t

dt@P ẋ1P22m22eẋAm~x!#J ,

~17!

and as before, the electromagnetic field is coupled to
current j m(z)5*dt ẋm(t)d(x(t)2z). The average ove
gauge fields gives, therefore, the same nonlocal term:

NNL5E dtdt8E dk

~2p!D
ẋm~t!ẋn~t8!

Dmn~k!

k2

3eik[x(t)2x(t8)] . ~18!

Now, we make the uniform path approximation,ẋm(t)5um
5const, which gives

NNL5E dtdt8E dk

~2p!D
umun

Dmn~k!

k2
eiku(t2t8). ~19!

Integrating overt andt8 gives

NNL52E dk

~2p!D
umun

Dmn~k!

k2

12cos~kut!

~ku!2
. ~20!

The integral is IR finite, at low momentum the diverge
denominator cancels out with the 12cos(kut) in the numera-
tor. We will renormalize the ultraviolet divergentk integral
using dimensional regularization; expanding around four
mensions,D542e, we obtain@5#

NNL52
A

e
~m2t!e, ~21!

where

A5
1

8pD/2
GS D

2
21D @12~21!22D#

32D S 12
l

2
~32D ! D

5A01eA11¯, ~22!

andA0521/(4p2). The scalar propagator can be written

^G~x,y!&5E dp

~2p!D
eip(x2y)E

0

`

dt

3exp2 i t~m22p2!exp2e2
A

e
~m2t!e.

~23!

Expanding the exponential in powers ofe we obtain
10500
e

t

i-

^G~p,t!&5E
0

`

dt exp2 i t~m22p2!

3 (
n50

` S 2e2A

e D n

~m2t!ne. ~24!

Each term in the series can be integrated and gives

^G~p,t!&5
2 i

~m22p2!
(
n50

`
~2e2A!n

n! en
G~11ne!

3S 2im2

m22p2D ne

~25!

The nth term can be written as thenth power of

2e2
A

e
ee log[(2im2)/(m22p2)]G~11ne!1/n. ~26!

Expanding now in powers ofe ~we assumen e!1) we ar-
rive at

2e2S A0

e
1A12A0g1A0 log@~2im2!/~m22p2!#1O~e! D ,

~27!

and we can choose the counterterms in such a way to ca
the termA0 /e1A12A0g. The scalar propagator after reno
malization is given by

^GR~p!&5
i

m22p2
e2a log[m2/(m22p2)] , ~28!

which coincides with the Bloch-Nordsieck result, as e
pected. Notice that care has to be taken in the order of
limit e→0 andn→` and the integral overt. We will see
next that including the Dirac algebra is under control; th
will allow us to go back to the scalar case for the purposes
the present article.

C. Full Dirac algebra

Including the full Dirac algebra is far from trivial. It ha
been done in Refs.@8,10,11,9#.

We will follow the method of Ref.@10#. The Dirac equa-
tion is

@ igm]m2egmAm~x!2m#G~x,y!5d~x2y!. ~29!

Introducing the proper time as before@see Eq.~6! from Ref.
@10##

G~x,y!5E
0

`

dTE dx expH 2
i

2
~m2T1mx!J

3expH i

2
@~gP!2T1gPx#J , ~30!
1-3
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wherePm5pm2eAm(x) andx is a Grassmann variable. In
troducing a set of auxiliary Grassmann variablesjm we can
write a path integral for the propagator

G~x,y!5expH g
]

]GJ E
0

`

dTE dxE DxDpDj

3expH i E
0

T

dt~pẋ1 i jj̇2H!2j~0!j~T!J ,

~31!

where H5 1
2 (2P212ieFmnjmjn2(2/T)Pmjmx). The jm

verifies the boundary conditionsjm(0)1jm(T)5Gm . Gm are
auxiliary Grassmann variables which are set to zero a
differentiation. Shifting the momentum as before and in
grating the resulting Gaussian integral overP we obtain

G~x,y!5expH g
]

]GJ E
0

`

dTE dxN~T!

3expH 2
i

2
~m2T1mx!J

3E DxDj exp$ iS@x,j#%, ~32!

whereS@x,j# is given by

S@x,j#5E
0

T

dtS 2
1

2
ẋ21 i jj̇2 ieFmnjmjn2

1

T
ẋjx D

2 i j~0!j~T!. ~33!

As before the gauge fields appear linearly only and the in
gration over them can be done exactly,

^G~x,y!&5expH g
]

]GJ E
0

`

dTE dxN~T!

3E DxDj exp$ iSeff%, ~34!

where the actionSeff is given by

Seff5E
0

T

dtS 2
1

2
~ ẋ!21 i jj̇ D

3
2e2

2 E
0

T

dt1dt2E dk

~2p!D

Dmn~k!

k2

3~ ẋm
1 12jm

1 kj1!~ ẋm
2 22jm

2 kj2!e2 ik(x12x2), ~35!

x15x(t1), and so on.
We will calculate the action for the uniform path, as do

before.
From the classical equations of movement for the f

case (e50) we get that the uniform path in our case is giv
by
10500
r
-
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e

xm~t!5xm~0!1pmt1
t

T
jm~0!x,

~36!

jm~t!5jm~0!2
t

2iT
pmx.

Introducing this solution in the path integral and after so
algebra we arrive at

^G~x,y!&5expH g
]

]GJ E dp

~2p!4
eip(x2y)

3E
0

`

dTE dx expH 2 i

2
~m2T1mx!J

3expH i

2
p2T1 ipj~0!x

2e2
A

e
~mTp!eS 11

pj~0!x

p2T
e D J , ~37!

whereA is given as before Integrating overx and applying
the ]/]G we arrive at

^G~x,y!&5E dp

~2p!4
eip(x2y)E

0

`

dT expH 2 i

2
~m2T!J

3expH i

2
p2T2e2

A

e
~mTp!eJ

3S 2 i

2
~m1pg!1

e2A

2e
~mTp!ee

pg

p2T
D .

~38!

If we set e50 we obviously reproduce the free fermio
propagator. ForeÞ0 care must be taken in the regularizatio
procedure since the integration overT and the limite→0 do
not commute. If we boldly take the limit first and integra
we arrive at

^G~p!&5Z
~mp!a

~p22m2!a
G~11a!

1

p22m2

3Fm1pgS 11
p22m2

2p2 D G , ~39!

where Z is the renormalization constantZ5exp(2e2/eA
1•••) .

Taking correctly the limit after the integration we arrive

^G~p!&5Z
~mp!a

~p22m2!a
G~11a!

1

p22m2
~m1pg!,

~40!

which is again the Bloch-Nordsieck result and reprodu
the IR logarithms upon expansion on powers ofa.
1-4
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III. BEYOND INFRARED BEHAVIOR: PROPER TIME
EVOLUTION EQUATIONS

We will now write down the evolution equations for
scalar coupled to a scalar field. We will use this simpler c
to demonstrate that the evolution equations allow us to
beyond the infrared domain. The obvious next step would
to construct evolution equations whose perturbative exp
sion give exact results up to a given order. Let us start
writing down equations valid up to first order. Further ge
eralizations to the spinor case and higher orders will be
for future work.

As before we start with the scalar propagator as given
Eq. ~15! in the proper time formalism, but now for a scal
field coupled to a scalar fieldH5]m

2 2m21gf(x). The
propagator verifies the evolution equation

2 i
]G

]t
5@~]m

2 2m2!1gf~x!#G~t,x,y!, ~41!

whereg is the coupling constant to the scalar fieldf(x). We
want to average over the fieldf with a weight given by the
free action:

^O&5E dfO expH i E dxLfJ , ~42!

Lf5f(]m
2 2mf

2 )f. Therefore we get

2 i
]^G&
]t

5~]m
2 2m2!^G&1g^f~x!G~t,x,y!&. ~43!

In the infrared limit the averagêf(x)G(t,x,y)& is simply
given bya/tG, as shown above by Eq.~12!. But in general
it can obviously not be written as a simple operator acting
G. So one has to estimate the value of^f(x)G(t,x,y)& by
introducing as before a path integral representation forG,

G~t,x,y!5NE DxDp

3expH 2 i E
0

t

dtpẋ1p22m21gf~x!J ,

~44!

then

^f~x!G~t,x,y!&5E DfDxDpf~x!

3expH 2 i E
0

t

dtpẋ1p22m21gf~x!J
3expH i E dxf~x!~p22mf

2 !f~x!J ,

~45!

introducing the currentj 0(z)5g*dtd„z2x(t)… the average
can be written
10500
e
o
e
n-
y
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n

n

^f~x!G~t,x,y!&5
d

d j ~x!
E DxDp

3expH 2 i E
0

t

dtpẋ1p22m2J
3E Df expH i E dxf~p22mf

2 !f

1 j fJ , ~46!

where the derivative is evaluated atj 5 j 0. The integral over
f is Gaussian and after performing the functional derivat
we arrive at

^f~x!G~t,x,y!&5E DxDp expH 2 i E
0

t

dtpẋ1p22m2J
3expH ig2

2 E dt1dt2D„x~t1!,x~t2!…J g

3E
0

t

dt0D„x,x~t0!…, ~47!

whereD(x,y) is the free scalar propagator of fieldf. This
expression can be simplified further if we make some
proximations and constitutes the starting point to obtain e
lution equations. To start with one can neglect the nonlo
term in the exponential since it is orderg2. Then it is
straightforward to evaluate the functional integral since
integrals are Gaussian. After some algebra we arrive at

^f~x!G~t,x,y!&5gE
0

t

dt0E dk0D~k0!eik0x

3E DxDp expH 2 i E
0

t

dtp2

1pẋ2m21 jxJ , ~48!

where j (t)52k0d(t2t0). The integral overx can be done
and gives now ad function d( ṗ2 j ), i.e., the path is still
uniform but now presents a jump att5t0 where the momen-
tum changes fromp to p2k0. The electron emits a hard
photon of momentumk0. Evaluating the action at this spe
cific path gives the total contribution, in this approximatio

^f~x!G~t,x,y!&5gE
0

t

dt0E dk0D~k0!ei (k02p)(x2y)

3exp$2 i @~p2k0!2~t2t0!2m2~t2t0!

1p2t02m2t0#%. ~49!

We have separated the contributions fromt2t0 and t0 to
make it clear that they are both the free scalar propagat
i.e.,
1-5
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^f~x!G~t,x,y!&5gE
0

t

dt0E dk0D~k0!eik0(x2y)G0~t0 ,p!

3G0~t2t0 ,p2k0!. ~50!

This result is valid up to first order ong. Then the evolution
equation, valid up to this order is

2 i
]^G&
]t

5~p22m2!^G&

1g2E
0

t

dt0E dk0D~k0!G0~t0 ,p!

3G0~t2t0 ,p2k0!. ~51!

The solution of this equation up to orderg2 gives the exact
one-loop scalar propagator, as it should. A natural exten
of this result, in analogy with the Dyson-Schwinger equ
tion, is to substitute the free propagator,G0, by the dressed
one,^G&, inside the integral. We arrive, therefore, at our fin
evolution equation

2 i
]^G&
]t

5~p22m2!^G&

1g2E
0

t

dt0E dk0D~k0!^G~t0 ,p!&

3^G~t2t0 ,p2k0!&. ~52!

The precise nature of the higher order contributions inclu
in our conjectured generalization will be clear only after t
complete QED formulation, technically very involved, h
been completed, as well as a numerical analysis, but they
qualitatively understood as we discuss in detail separatel
the next section. Of course, Eq.~52! gives the exact result to
first order and in the IR limit it reduces to the Bloch
Nordsieck case.

IV. CONCLUSIONS

We have arrived at an expression for the quenched pro
gator beyond the infrared domain. It has a clear phys
interpretation as one can see by looking at the diagrams
summed by the above equation. From direct inspection,
sees that the vertex function is evaluated exactly at the o
loop level, and that there are an infinity number of such h
loops. Therefore, hard photons do not connect propaga
with different hard vertex, i.e., we have some kind of ra
bow expansion, where overlapping loops are not included
shown by Fig. 1. But there are in addition an infinity numb
s
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of infrared photons which join any two points in the prop
gator and make the infrared limit exact. Since the pro
time in the diagram is related to the virtuality of the prop
gator and we have, in the above equation, an integral fro
to the upper limitt, we expect that higher order loops a
calculated only up to some minimum virtuality; i.e., one e
pects an ordering in the virtuality of the diagrams that co
tribute to the above equation.

New insights in the nonperturbative regime are alwa
welcome, even if quenched. In fact, a better understandin
quenched approximations is essential for lattice simulatio
The nonpositron approximation is also useful in analytic
tempts to fundamental problems, like the stability of relat
istic QED, where renormalization is one of the main pro
lems @12#. Our result in Eq.~52! can have many practica
applications, such as a systematic way to calculate hard
corrections with exponentiation of soft photons. They w
depend on our ability to solve or approximate analytica
the above equation. Of course, Eq.~52! constitutes a new
approach and can serve in any case as a starting poin
new numerical analysis.
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FIG. 1. Diagrams included~upper graph! and not included
~lower graph! on the evolution equation
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