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Nonperturbative quenched propagator beyond the infrared approximation
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A new approach to the quenched propagator in QED beyond the IR limit is proposed. The method is based
on evolution equations in the proper time.
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I. INTRODUCTION vector will be identified to théconstank velocity of the elec-
tron, see below. With this substitution the model is com-
We propose a new nonperturbative analysis of quenchepletely integrable and the electron Green function can be cast
QED beyond the infrared Bloch-Nordsieck approximationin terms of elementary functions. The electron propagator in
using the worldline formalism. The main idea is to formulatethe Bloch-Nordsieck approximation is given by
evolution equations in the proper time, inspired by the rather
intuitive resulting classical picture. As a warmup we obtain
in a simple way the renormalized quenched propagator in the
infrared(IR) limit. From there we proceed to improve on this
IR approximation, which we achieve in the form of integro- whereA ,(x) is the electromagnetic potential. We will solve
differential equations, our main results. They are of coursehis model by introducing a proper timéSchwinger’s
difficult to solve, but they have an appealing physical inter-method[6]) [7,8,5,9. Define
pretation and suggest a simplified numerical analysis.
The paper is organized as follows. In Sec. Il we study the o
infrared behavior of lepton propagators for several cases. G(x,y)=iJ drG(7,X,y), 2
. . . . . 0
First we consider the Bloch-Nordsieck approximation as
iven by uniform proper time paths, which exhibit the clas- o .
sical im);ge in the worldiing. This suggests the use of thdN€NG(7.x.y) verifies the equation
proper time evolution equations as a short cut to go beyond
the infrared approximation. The idea is carried out for scalar i ﬁ
QED and then for the full Dirac algebra. The lesson of this at
section is a better understanding of renormalization and the
fact that the scalar case contains the basic physics, which
will be used in Sec. Ill, where we develop further the proper . = . .
time formalism to go beyond the infrared limit. The results With initial conditions

are summarized in Sec. IV which is devoted to the conclu-
sions. G(7=0x,y)=98(x—y). (4)

G(x,y)==46&(x=y), (1)

Jd
S _
u#(l ix, eAM(x)) m

G(7,X,Y)

Jd
0 _
UM(I ox, eA#(x)) m

=HG(T,X,Y), (3

The formal solution is given by
II. INFRARED BEHAVIOR: THE CLASSICAL IMAGE OF

THE WORLDLINE FORMALISM G(7,x,y)=exp—iTH} J(x—vy). (5)

In this section we will study the classical Bloch-
Nordsieck approximation and their extensions for scalar andiere 7 is clearly seen as a Hamiltonian which gives the
fermionic QED. Our main point is given in E¢L2), where  evolution in the proper time of the Schiingerlike equation.
an evolution equation is introduced for the quenched propaThis formal expression can be cast into a path integral in the
gator. Its solution is the well-known Bloch-Nordsie@N) proper time. We can write
result. The extensions to the scalar and full Dirac algebra are
carried out without difficulty.

G(7,x,y)= Nf Dx(7)Dp(7)
A. Bloch-Nordsieck approximation

The Bloch-Nordsieck model has been repeatedly used to ><exp< i fo dr[px—H(x,p)]]
study the infrared behavior of QED. Here we will consider it

from the path integral point of view as a convenient starting _
point. The model has been extensively studied in the litera- _NJ Dx(7)Dp(7)
ture[1-5].
In the Bloch-Nordsieck model one substitutes the Dirac Xexp{ i frdr[pk—up—euA(x)+m]]. (6)
gamma matrices by a constant vecfor—u,, . This constant 0
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The electromagnetic field is coupled to the currg¢p(z)
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=u,fdd78(z—x(7)) and can be integrated out, since the (G(p)>=ifo dr(G(7,p))

resulting integral is Gaussian,
(G(r,x,y)>=J DA,G(7,x,y)
X f d 1F2+ A IA)? 7
exp —i | dx; 5 (AT ()

where N is a gauge-fixing parameter and the brackgts
mean the average over the gauge fields.

The integration of theé fields gives a nonlocal Lagrang-
ian for (G):

<G(T,X,y)>=NJ DxDpexprifonr(pk—pm—m)

x er de f dk
expl — — ——u,u
2)o t)o 2 (2m)P *"

X Dw(k)ei”x(’l)x“z)]] ; ®)

whereD ,, (k) is the photon propagator in the gauge
The integral overp gives a delta function,é(kﬂ(f)

=T'(1+a) (11)

(m_up)l+a'

This is the well-known Bloch-Nordsieck result. In the
Yennie-Suura gauge\,= 3, the electron propagator reduces
to the free case. Notice théG(p, 7)) verifies the homoge-
neous evolution equation

_HG(p,7) a
S HCPT) o myp, )+ 2(G(p),
12

which has, of course, Eq10) as a solution. This fact will be
used later on to go beyond the infrared approximation.

B. Scalar QED

Before considering the spinor electrodynamics, let us
study the somewhat simpler case of scalar QED. We will
study in detail the renormalization for this case.

The scalar propagator, coupled to the electromagnetic cur-
rent, is given by

{[0,—eA 0P —mZG(x,y) = 8(x—y), (13

—u,)), which implies that the particle moves with constantas before we introduce the Schwinger proper time
velocity,u,, , as stated previously. We see that the electron in

the Bloch-Nordsieck approximation behaves as a classical 9G(1,X,Y) —

particle, the only path that contributes to the propagator is 'T:{[‘?M_GAM(X)] —m3G(xy). (14

the classical path and quantum fluctuations exactly can-

celed. This fact is most easily seen in the above formalismg(,x,y) has the solution
The triviality of the quantum corrections is due to the appear-

ance of thed function, which in turn is related to the trivi-

ality of the classical Hamiltonian. For the BN model, the

G(7,%,y)=exp —iH7}o(x—y) (15

classical path and the uniform velocity path coincide, indeswhich can be expressed as a path integral

pendently of the external potential,(x). Alternatively one
may notice that Eq(3) is first order on the variablg. As is

well known from the theory of partial differential equations,

G(7,X,y)= NJ Dx(7)Dp(7)

the solution admits a particle interpretation. This is not true

for the cases considered below. The uniform path is only an xe -f’d _
approximation valid when the momentum interchanged with el 0 LPX+HXp)]
the gauge fields is sufficiently small such that the path can be

considered uniform, i.e., in the infrared domain.
Therefore the nonlocalNL) term must be evaluated in
the classical path alone. It gives

1

Ny = f “dryd ©)

e To——— <.

RN 2(71_7'2)2

After renormalization we find
(G(7,p))y=irexp{—ir(m—up)}, (10

wherea=(3—\)/(2)«. Integrating overr, we obtain fi-
nally

=Nf Dx(7)Dp(7)

Xexp{ i Jordr{pk+[p+eA(x)]2— mz}] .
(16)

Now p appears quadratically and the integral over it is no
longer aé function. As expected, the classical path is not the
only contribution to the path integral and quantum correc-
tions are relevant. However, for the moment, we will con-
sider the contribution given by the uniform path alone, as the
main contribution in the infrared limit. We first shift the mo-
mentum integrall=p+eA(X),
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G(T,x,y)=NJ Dx(7)DII(7) (G(p,r))=f drexp—ir(m?—p?)
0
xexp{iJTdT[HkJrHZ—mz—e'xA ()] i —eAN
0 g x| ——] (WP (29
17 . . . .
Each term in the series can be integrated and gives
and as before, the electromagnetic field is coupled to the
. . . <) 2 n
current j ,(z)=fd7x,(7)8(x(7)—z). The average over o (—e“A)
gauge fields gives, tlﬁerefore, the same nonlocal term: (G(p.1)= (m2—p?) nZO nt e I'(1+ne)
N ne
dk . : D,.(kK) 2i u?
N Zfdrdr'f—x X, (1)~ (25
NL (27T)D ,u( ) ( ) k2 m2_p2
x glklX(n) =x(7)] (18)  Thenth term can be written as theth power of
Now, we make the uniform path approximatidq,,(r)=uﬂ _ezéeelog[(ziﬁ)/(mhpz)]r(1+ne)l/n (26)
=const, which gives € ‘
Expanding now in powers of (we assume e<1) we ar-
N =j deT’J dk u Dullo eku==7) (19  rive at
N (2mP “" K2 '
o[ Ao | i 1)/ (m2—p2
Integrating overr and 7' gives —€°| — T A= Aoy Ao log(2i )/ (M= pT) ]+ O(e) |,
(27)
dk D,.(k) 1—cogkur) _
NL= (2P u,u, 2 Kz (200 and we can choose the counterterms in such a way to cancel
T u

the termAy/e+ A;—Agy. The scalar propagator after renor-
malization is given by

The integral is IR finite, at low momentum the divergent

denominator cancels out with the-coskur) in the numera- i
tor. We will renormalize the ultraviolet divergehtintegral (Gr(P)=—
using dimensional regularization; expanding around four di- m=—p
mensionsD =4— e, we obtain[5]

e~ aloglu?/(m?=p?)] (28)

2

which coincides with the Bloch-Nordsieck result, as ex-
A pected. Notice that care has to be taken in the order of the
Ny = — — (275, (21)  limit e=0 andn—c and the integral over. We will see
€ next that including the Dirac algebra is under control; this
will allow us to go back to the scalar case for the purposes of

where the present article.
1 D 1—-(—1)>7P . Full Dirac al
A 1= - )[ (=1) ](1 —(3—D)) C. Full Dirac algebra
87 2 3-D 2 Including the full Dirac algebra is far from trivial. It has
_ been done in Ref$8,10,11,9.
Aot eAste, (22) We will follow the method of Ref[10]. The Dirac equa-
tion is
andA,= —1/(47?). The scalar propagator can be written
(17,0, — ey, AL (X)—m]G(X,y)=d(Xx=y). (29
d ) o
(G(x,y)>=J pDe'p(X‘y)J dr Introducing the proper time as befdigee Eq(6) from Ref.
(27) 0 [10]]

A
X exp—ir(m?—p?)exp— ezz(,uzr)f.

G(x,y)=fdef dxexp{—%(mZTvLmX)
0
(23

L,
Expanding the exponential in powers @fve obtain XeXp{Z[WH) T+ yIx]), (30)
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wherell#=p*—eA*(x) andy is a Grassmann variable. In-

r
troducing a set of auxiliary Grassmann variabfgswe can X, (1) =X,(0)+p,7+ $§M(0)X,
write a path integral for the propagator (36)
r
J » = -
G(x,y)=ex4 yﬁ]f de de DxDpDé Eu(1) =807 7 Pux:
0
T Introducing this solution in the path integral and after some
><exp[ if dT(p;(Jrig'g_H)_g(o)g(T)], algebra we arrive at
0
d d
(31 (G(x,y))= exp{ ]f - p)4 elP(x—y)
T
where H=3(—I1%+2ieF,, &*¢"— (2MI1,E,x). The &, .
verifies the boundary conditiods,(0)+ ¢,(T)=I",. T, are * -,
auxiliary Grassmann variables which ‘are set'to zero after x 0 dT | dxex 2 (M7T+my)
differentiation. Shifting the momentum as before and inte-
grating the resulting Gaussian integral ovérwe obtain [ _
X ex §p2T+|p§(0)x
(9 o0
G(x ex f de dyMT
(x.y)= pl' (91“] . xMT) A DE(0)x
—e—(uTp| 1+ —"e|t, (37

i
Xexp[ - E(m2T+ mx)}
whereA is given as before Integrating ovgrand applying
the d/oT" we arrive at

><J DxD¢ exp{iS[x, &1}, (32
il —i
elP(x—y) —(m?
where§[x,£] is given by (GOuyN= f (2 )4 fo dTexp‘ 2 (m T)]
T 1., . 1. i,
5[x,§]=f dr| — X*+igE—ieF, £ — mxéx X ex 2p T-e _(/-LTP)
0
—i£0)&(T). (33) —i e’A . by
X| 5 (m+py)+5—(uTp) € o)
As before the gauge fields appear linearly only and the inte- p*
gration over them can be done exactly, (38

9) = If we sete=0 we obviously reproduce the free fermion
(G(x,y)>=exp{ yﬁ] f de dyMT) propagator. Foe+ 0 care must be taken in the regularization
0 procedure since the integration oveand the limite—0 do

not commute. If we boldly take the limit first and integrate
X f DxD¢ exp{iSef} (349  we arrive at
where the actiorS,¢ is given by (G(p))=2 (Mp)z I(1+a)
a 2_m2
m°) pc—m
T 1. .
Seﬁ:J dT<—§(X)2+iff) p2—m?
0 x| m+py| 1+ — =, (39
—e? (T dk D, (k) P
=], dTldTZj (2m)P k2 where Z is the renormalization constarf = exp(—e?/eA
+.. )
% ().(;;LL+ zgtkgl)(ki_ Zgikg)efik(xlfxz)' (35) Taking correctly the limit after the integration we arrive at
xt=x(r,), and so on. (up)? 1
We will calculate the action for the uniform path, as done ~ (C(P)=Z (p2— mz)al“(1+a) pz_mz(m+ PY),
before. (40)

From the classical equations of movement for the free
case £€=0) we get that the uniform path in our case is givenwhich is again the Bloch-Nordsieck result and reproduces
by the IR logarithms upon expansion on powersaof
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Ill. BEYOND INFRARED BEHAVIOR: PROPER TIME S
EVOLUTION EQUATIONS (H(X)G(7,x,y))= 5j(x)j DxDp

We will now write down the evolution equations for a .
scalar coupled to a scalar field. We will use this simpler case ><exp[ —i f drpx+p2— mz]
to demonstrate that the evolution equations allow us to go 0
beyond the infrared domain. The obvious next step would be
to construct evolution equations whose perturbative expan- X f D¢exp[i f dx¢(p2—mé)¢
sion give exact results up to a given order. Let us start by
writing down equations valid up to first order. Further gen-
eralizations to the spinor case and higher orders will be left +j¢], (46)
for future work.

As before we start V\."th the sca_llar propagator as given iy no e the derivative is evaluatedjat jo. The integral over
Eq. (15) in the proper time formalism, but now for a scalar

field coupled to a scalar field—(=ai—m2+g¢(x). The ¢ is Gaussian and after performing the functional derivative

o . . we arrive at
propagator verifies the evolution equation

JG X)G(7,X, =JDxD ex —ide X+ p?—m?
S (e gs0le(rxy), @y (PG P p{ o UTPXTP
i 2

whereg is the coupling constant to the scalar fieddx). We Xexp[%f drlda-zD(x(rl),x(rz)))g
want to average over the fiell with a weight given by the
free action: 7

XJ d7oD (x,X(70)), (47)

0
((’))zf d¢(’)exp|’if dx£¢,], (42

whereD(x,y) is the free scalar propagator of fiefpl This

L4= $(55,—m5) ¢. Therefore we get

expression can be simplified further if we make some ap-
proximations and constitutes the starting point to obtain evo-
lution equations. To start with one can neglect the nonlocal

aey L, . art with one nor
i~ =(P-m)(G)+g(d(x)G(7,x,y)). (43 term in the exponential since it is orde?. Then it is
or M . . . .
straightforward to evaluate the functional integral since all

In the infrared limit the averagés(x)G(r.x.y)) is simply integrals are Gaussian. After some algebra we arrive at

given bya/7G, as shown above by E¢12). But in general - _
it can obviously not be written as a simple operator acting on <¢(x)G(r,x,y))=gf drof dkoD (kg)e' o
G. So one has to estimate the value{@f(x)G(,x,y)) by 0
introducing as before a path integral representatiorGior ;
xf DxDpexp[—if d7p?
0

G(T,x,y)=Nj DxDp

+pX—m?+jx}, (48)

XEXp[ —i deTpi(+ p2—m?+ge(X) |,
° wherej(7) = —kod(7— 79). The integral ovex can be done

(44) and gives now & function 5(|b—j), i.e., the path is still

then uniform but now presents a jump &t 7, where the momen-
tum changes fronp to p—Kky. The electron emits a hard
photon of momentunk,. Evaluating the action at this spe-
(d)(x)G(r,x,y)):f D ¢DxDpe(x) cific path gives the total contribution, in this approximation

Xexp{ i deTpH p?—m’+ g¢(x)] <¢(X)G(T,x,y)>=gf07drof dkoD (ko)e! ko~ PI=Y)
0

| ) xe)(p[—i[(p—ko)z(T—To)_mz(T_TO)
xexp[lf dx¢(x)(p2—m¢)¢(x)], +p2rg—m2ro]} (49
T0— Tols-

(45)
We have separated the contributions frem 7, and 7y to
introducing the currenty(z)=gfd78(z—x(7)) the average make it clear that they are both the free scalar propagators,
can be written ie.,
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($006(7x.y)) = | dro | koD (ko)H VG r5,p)

XG()(T_ To,p_ko). (50)

This result is valid up to first order o; Then the evolution
equation, valid up to this order is

—i@#pz—mz)(@

+07 | "dr, [ dkoD(ko)Gol7o.p)

X Go(7—70,p—Ko). (51)

The solution of this equation up to ordgf gives the exact

one-loop scalar propagator, as it should. A natural extension

of this result, in analogy with the Dyson-Schwinger equa-

tion, is to substitute the free propagat@y, by the dressed

one,(G), inside the integral. We arrive, therefore, at our final ~ FIG. 1. Diagrams includedupper graph and not included

evolution equation (lower graph on the evolution equation
_{G) . of infrared photons which join any two points in the propa-
—l——=(p"-m )XG) gator and make the infrared limit exact. Since the proper

time in the diagram is related to the virtuality of the propa-

S 7 gator and we have, in the above equation, an integral from O
+g fo dTOf dkoD (ko){G(79,P)) to the upper limitr, we expect that higher order loops are
calculated only up to some minimum virtuality; i.e., one ex-

X{(G(1—79,p—Kg)). (520  pects an ordering in the virtuality of the diagrams that con-

tribute to the above equation.
The precise nature of the higher order contributions included New insights in the nonperturbative regime are always
in our conjectured generalization will be clear only after thewelcome, even if quenched. In fact, a better understanding of
complete QED formulation, technically very involved, has quenched approximations is essential for lattice simulations.
been completed, as well as a numerical analysis, but they arene nonpositron approximation is also useful in analytic at-
qualitatively understood as we discuss in detail separately ifempts to fundamental problems, like the stability of relativ-
the next section. Of course, EG2) gives the exact result to jstic QED, where renormalization is one of the main prob-
first order and in the IR limit it reduces to the Bloch- |ems[12]. Our result in Eq.(52) can have many practical
Nordsieck case. applications, such as a systematic way to calculate hard loop

corrections with exponentiation of soft photons. They will

IV. CONCLUSIONS depend on our ability to solve or approximate analytically

the above equation. Of course, E&2) constitutes a new

t\Ne Save er;\éed_aft an gxgress!on ;‘torhthe que;nchedhpr(_)p pproach and can serve in any case as a starting point for
gator beyond the infrared domain. as a clear physical o\ nmerical analysis.

interpretation as one can see by looking at the diagrams re-
summed by the above equation. From direct inspection, one
sees that the vertex function is evaluated exactly at the one-

loop level, and that there are an infinity number of such hard We thank Orlando Alvarez for discussions. One of us
loops. Therefore, hard photons do not connect propagatoi®R.A.V.) thanks Concha Gonzalez-Garcia for clarifying dis-
with different hard vertex, i.e., we have some kind of rain-cussions. This work was supported by AEN-000589 and
bow expansion, where overlapping loops are not included, aBGIDTO0PX120613PN. R. \zmuez is supported by the
shown by Fig. 1. But there are in addition an infinity number“Ramon y Cajal” program.
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