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Conformal vacua and entropy in de Sitter space
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The de Sitter/conformal field theory~dS/CFT! correspondence is illuminated through an analysis of massive
scalar field theory ind-dimensional de Sitter space. We consider a one-parameter family of dS-invariant vacua
related by Bogolyubov transformations and compute the corresponding Green functions. It is shown that none
of these Green functions correspond to the one obtained by analytic continuation from AdS. Among this family
of vacua are in~out! vacua which have no incoming~outgoing! particles onI2 (I1). Surprisingly, it is shown
that in odd spacetime dimensions the in and out vacua are the same, implying the absence of particle produc-
tion for this state. The correlators of the boundary CFT, as defined by the dS/CFT correspondence, are shown
to depend on the choice of vacuum state—the correlators with all points onI2 vanish in the in vacuum. For
dS3 we argue that this bulk vacuum dependence of the correlators is dual to a deformation of the boundary
CFT2 by a specific marginal operator. It is also shown that Witten’s nonstandard de Sitter inner product
~slightly modified! reduces to the standard inner product of the boundary field theory. Next we consider a scalar
field in the Kerr-dS3 Euclidean vacuum. A density matrix is constructed by tracing out over modes which are
causally inaccessible to a single geodesic observer. This is shown to be a thermal state at the Kerr-dS3

temperature and angular potential. It is further shown that, assuming Cardy’s formula, the microscopic entropy
of such a thermal state in the boundary CFT precisely equals the Bekenstein-Hawking value of one-quarter the
area of the Kerr-dS3 horizon.
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I. INTRODUCTION AND SUMMARY

Recently, following earlier work@1–12#, a proposal has
been made relating quantum gravity in de Sitter space
conformal field theory~CFT! on the spacelike boundary o
de Sitter space@13#. The proposal was motivated by a
analysis of the asymptotic symmetry group of de Sitter sp
together with an appropriately crafted analogy to the Ad
CFT correspondence@14,15,16#. Other relevant discussion
of quantum gravity in de Sitter space and dS/CFT appea
@17–39#.

Unlike the AdS/CFT case, there has been no derivation
the proposed dS/CFT correspondence from string the
Hopefully, a stringy construction of de Sitter space will
forthcoming. Meanwhile, much has been learned about A
CFT by analyzing solutions of the field equations and stu
ing the propagation and interactions of fields, without
rectly using string theory. In this paper we pursue a para
approach to dS/CFT, analyzing in some detail massive sc
field theory in de Sitter space. A number of surprising a
interesting features emerge. Since this paper contains s
rather detailed calculations, for the benefit of the reader
include a summary in this Introduction.

We begin in Sec. II with a discussion of dS-invaria
Green functions for a massive scalar, reviewing and gene
izing to d dimensions the discussion of@40,41#. We first de-
scribe the Green function obtained by analytic continuat
from the Euclidean sphere. This is the so-called Euclid
Green function, and it is the two-point function of the sca
field in the Euclidean vacuum. We then construct a family
dS-invariant vacua labeled by a complex parametera and
0556-2821/2002/65~10!/104039~24!/$20.00 65 1040
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compute the Green functions in thesea-vacua, which have
several peculiarities. Singularities occur at antipodal poi
which are, however, unobservable since antipodal points
always separated by a horizon. Moreover, these singular
do not affect the scalar commutator, which is independen
a. We also see that the coincident point singularity has t
terms, with opposite-signedi e prescriptions. Hence all o
thesea-vacua except for the Euclidean vacuum differ fro
the usual Minkowski vacuum at arbitrarily short distance
We also compute the response of an Unruh detector and
that it is thermal only in the Euclidean vacuum. The du
CFT interpretation of thea-vacua is deferred to Sec. IV.

In relating the AdS/CFT and dS/CFT correspondences
is natural to consider the particular Green function obtain
by ‘‘double’’ analytic continuation from AdS to dS via th
hyperbolic plane. We show that the Green function so
tained, while dS-invariant, doesnot correspond to the Gree
function in any known dS-invariant vacuum.1 This result un-
derscores the nontriviality of extrapolating from AdS/CFT
dS/CFT.

In Sec. III we consider scalar field theory in spheric
coordinates

1We benefited greatly from discussions with M. Spradlin and
Volovich on this point. There is in fact a four-complex-parame
family of dS-invariant Wightman functions, characterized by t
~complex! strengths of the coincident and antipodal poles, as w
as the two possiblei e prescriptions at each pole. Only a on
complex-parameter family of these is known to be realizable
two-point vacuum expectation values. Analytic continuation fro
AdS gives a result which is not realized within this family.
©2002 The American Physical Society39-1
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ds2

l 2 52dt21cosh2tdVd21
2 , ~1.1!

again generalizing@40,41# to d dimensions. A salient featur
of these coordinates is that they cover all of de Sitter sp
and hence are suitable for studying global properties.
solutions of the massive scalar wave equation are found
arbitrary angular momentum. We then give an explicit co
struction in terms of these modes of the Bogolyubov tra
formations relating all thea vacua. Special ‘‘in’’ and ‘‘out’’
vacua are found, which are distinct from the Euclide
vacuum. The in vacuum has no incoming particles onI2,
while the out vacuum has no outgoing particles onI1. The
Bogolyubov transformation between them is computed. S
prisingly, it is found to be trivial in odd dimensions. Th
means that for the in vacuum of odd-dimensional de Si
space there is no particle production. This result did not
pear in previous analyses, which largely considered the f
dimensional case.

In Sec. IV we specialize to dS3 and consider the dua
two-dimensional CFT (CFT2) interpretation of these results
along the lines proposed in@13#. We first compute the bound
ary behavior of the massive scalar Green function as a fu
tion of the vacuum parametera. This behavior is fixed by
conformal invariance up to overall constants which area
dependent. The boundary correlators have an espec
simple form in the in vacuum. For both points onI2 ~or both
on I1! they vanish.2 This is related to the fact that onI2 the
spatial kinetic terms vanish and the theory becomes ultr
cal. For one point onI2 and one onI1 they do not vanish.
The simplicity of this behavior suggests that the in vacuu
despite the unphysical singularities, may play an import
role in understanding the dS/CFT correspondence.

One way of generating a family of correlators in a CFT
by deforming the theory by a marginal operator. In@13# it
was argued that a scalar field of massm is dual to a pair of
CFT operatorsO6 with conformal weights 16A12m2l 2.
The composite operatorO1O2 always has dimension 2 fo
any m, exactly what is required for a marginal deformatio
We show explicitly for reala that this composite operato
deforms the correlators in the same way as shiftinga.

In Sec. V we consider the definition of the adjoint in th
Hilbert space of the scalar field. In standard treatments of
Euclidean conformal field theory, the adjoint of an opera
involves a ~nonlocal! reflection about the unit circle. Thi
prescription becomes the usual local adjoint when mappe
the cylinder. The ‘‘naive’’ adjoint for a bulk scalar field in
duces an adjoint in the Euclidean CFT which is local, a
hence does not agree with the usual Euclidean CFT adjo
However, in @17# Witten introduced a modified bulk inne
product and corresponding adjoint. We show that, afte
modification of the parity operation, Witten’s bulk adjoin
induces precisely the standard nonlocal Euclidean CFT
joint. We further show that with the modified adjoint th
SL(2,C) generators obeyLn

†5L2n ~in a standard notation!,

2Except for a contact term which is computed.
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as opposed to the relationLn
†5L̄n implied by the naive ad-

joint.
As in the AdS case one expects that different coordin

systems in dS are relevant for different physical situations
Sec. VI we consider static coordinates for dS3 , in which the
metric is

ds2

l 2 52~12r 2!dt21
dr2

~12r 2!
1r 2dw2, ~1.2!

where l is the de Sitter radius. These coordinates do
cover all of dS3 with a single patch. Nevertheless, they d
cover the so-called southern diamond—the region caus
accessible to an observer at the ‘‘south pole’’r 50. More-
over, the symmetry generating time evolution of the south
observer is manifest in static coordinates. Hence they ap
well adapted to describing the physics accessible to a si
observer, as advocated in@42#. I2 is at r→` and is confor-
mal to a cylinder.

In the (t,r ,w) coordinates, the full dS3 spacetime can be
covered with four patches separated by horizons. We so
the scalar wave equation in each patch and construct gl
solutions by matching across the horizon. It is shown that
in vacuum on the cylinder and the in vacuum on the sph
are equivalent. A southern density matrix is constructed fr
the Euclidean vacuum by tracing over modes which are s
ported only in the northern causal diamond and are ther
unobservable to the southern observer. This is explic
shown to be a thermal density matrix at temperatureTdS

51/2p l , with energy measured with respect to the sta
time coordinate in Eq.~1.2!. ~This result is implicit in the
original work @43#.!

In Sec. VII we extend the static coordinate discussion
the Kerr-dS3 geometry which represents a pair of spinni
point masses at the north and south poles of dS3 . This has a
Gibbons-Hawking temperatureTGH and angular potentia
VGH which depend on the mass and spin. It is shown th
after tracing over northern modes, one obtains a thermal d
sity matrix at precisely temperatureTGH and angular poten-
tial VGH .

According to the dS3 /CFT2 correspondence the quantu
state on a bulk spacelike slice ending onI2 is dual to a CFT
state on the boundary of the spacelike atI2 @13#. The dS-
invariant bulk vacuum should be dual to theSL(2,C) invari-
ant CFT vacuum. For pure de Sitter space, we therefore
pect to see a Casimir energy2c/12, wherec53l /2G is the
central charge of the CFT computed in@13#. We find a two-
parameter agreement with this expectation by computing
Brown-York boundary stress tensor in Kerr-dS3 . This gener-
alizes results of@42#.

Finally, in Sec. VII we turn to the issue of de Sitter e
tropy. In the case of Ban˜ados-Teitelboim-Zanelli~BTZ!
black holes in AdS3, the entropy formula can be microscop
cally derived, including the numerical coefficient, from th
properties of the asymptotic symmetry group together w
the assumption that the system is described by a consis
unitary quantum theory of gravity@44#. String theory seems
9-2
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CONFORMAL VACUA AND ENTROPY IN de SITTER SPACE PHYSICAL REVIEW D65 104039
necessary in order to produce an actual example of su
theory, but the general arguments follow from the stated
sumptions independently of the stringy examples. There
it is natural to hope that a similar discussion is possible
dS3 . We report here some partial results but not a comp
solution of the problem. Related discussions appear
@3,8,45–50#.

The main observation is that if we simply assume Card
formula for the density of states, then a CFT withc
53l /2G at temperatureTGH and angular potentialVGH has
a microscopic entropy precisely equal to one-quarter the
of the Kerr-dS3 horizon. The two-parameter fit is striking bu
at present should be regarded as highly suggestive num
ogy rather than a derivation. For one thing, the dual CFT
unlikely to be unitary@13#, and so there is no reason fo
Cardy’s formula to apply. For another thing, it is not cle
how a mixed thermal state arises in the dual CFT. The n
ral CFT state associated withI2 is the SL(2,C) invariant
vacuum, in agreement with the pure nature of the global b
de Sitter vacuum. A mixed density matrix arises in the b
only after tracing over the unobservable northern mod
However, tracing over northern modes is a bulk concept.
have not succeeded in finding a natural boundary interpr
tion of this operation.

We believe this raises a sharp and important ques
whose answer may lie within the present framework and
particular may not require a stringy construction of de Sit
What is the meaning, in terms of the dual boundary CFT
tracing out degrees of freedom which are inaccessible
single observer?

Two appendixes detail useful properties of hypergeom
ric functions and de Sitter Green functions. For the rest
the paper we will setl 51 unless otherwise stated.

II. GREEN FUNCTIONS

The two-point Wightman function of a free massive sca
can be used to characterize the various de Sitter invar
vacua. In this section we describe these Green functions
their properties. Previous studies of scalar field theory in
Sitter space, largely concentrating on the four-dimensio
case, can be found in@40,41,51–60#.

A. The Euclidean vacuum and Wightman function

In this section we review the standard Euclidean vacu
and its associated Wightman function.d-dimensional de Sit-
ter space (dSd) is described by the hyperboloid i
(d11)-dimensional Minkowski space

P~X,X!51, ~2.1!

where

P~X,X8!5habX
aX8b, a,b50,...,d. ~2.2!

We will use lower casex to denote ad-dimensional coordi-
nate on dSd and upper caseX to denote the correspondin
(d11)-dimensional coordinate in the embedding space.
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functionP(x,x8) is greater than one for timelike separation
equal to one for lightlike separations, and less than one
spacelike separations. In fact,P(x,x8)5cosu, whereu is the
geodesic distance betweenx andx8 for spatial separations, o
i times the geodesic proper time difference for timelike se
rations.

A vacuum stateuV& for a free massive scalar in de Sitte
space with the mode expansion

f~x!5(
n

@anfn~x!1an
†fn* ~x!# ~2.3!

can be defined by the conditions

anuV&50, ~2.4!

wherean andan
† as usual obey

@an ,am
† #5dnm . ~2.5!

The modesfn(x) satisfy the de Sitter space wave equatio

~¹22m2!fn50, ~2.6!

and are normalized with respect to the invariant Kle
Gordon inner product

~fn ,fm!52 i E
S
dSm~fn]Jmfm* !5dnm . ~2.7!

The integral is taken over a complete spacelike sliceS in dSd

with induced metrichi j , anddSm5ddxAhnm, wherenm is
the future directed unit normal vector. The norm~2.7! is
independent of the choice of this slice.uV& depends on the
choice of modes appearing in Eq.~2.3!.

The Wightman function, defined by

GV~x,x8!5^Vuf~x!f~x8!uV&5(
n

fn~x!fn* ~x8!,

~2.8!

characterizes the vacuum stateuV&. There is a unique state
the ‘‘Euclidean vacuum’’uE&, whose Wightman function is
obtained by analytic continuation from the Euclidean sphe
This state is invariant under the full de Sitter group. Ind
spacetime dimensions the Wightman function in the stateuE&
is

GE~x,x8!5^Euf~x!f~x8!uE&

5cm,dFS h1 ,h2 ;
d

2
;
11P~x,x8!

2 D ,

h6[
d21

2
6 im,

m[Am22S d21

2 D 2

,

9-3
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BOUSSO, MALONEY, AND STROMINGER PHYSICAL REVIEW D65 104039
cm,d[
G~h1!G~h2!

~4p!d/2GS d

2D . ~2.9!

GE is real in the spacelike regionP,1 and singular on the
light coneP51. The i e prescription near the singularity is

GE~x,x8!;@~ t2t82 i e!22uxW2xW8u2!] 12d/2. ~2.10!

Note that this prescription cannot be written in terms of
invariant quantityP alone, which is time-reversal invarian
GE obeys

~¹22m2!GE~x,x8!50. ~2.11!

In addition to the Wightman function, the Feynma
propagator

GF~x,x8!5Q~ t2t8!G~x,x8!1Q~ t82t !G~x8,x!
~2.12!

and commutator

GC~x,x8!5G~x,x8!2G~x8,x! ~2.13!

are also of interest. With the normalization~2.9! GF obeys

~¹22m2!GF~x,x8!5
2 i

A2g
dd~x,x8!. ~2.14!

B. The MA transform

In this section we describe the Mottola-Allen~MA ! trans-
form @40,41#, which relates the various de Sitter invaria
vacua and Wightman functions to one another. Letfn

E(x)
denote the positive frequency modes associated with the
clidean vacuum. Explicit expressions forfn

E will be given
later ~Secs. III C and VI E!, but we do not need them now
Let xA denote the antipodal point tox on the de Sitter hyper
boloid ~i.e., XA52X!. Then, as will be seen below, the Eu
clidean modes can be chosen to obey

fn
E~xA!5fn

E* ~x!. ~2.15!

Now consider a new set of modes related by the MA tra
form

f̃n[Na~fn
E1eafn

E* !, Na[
1

A12ea1a*
, ~2.16!

where a can be any complex number with Rea,0. The
modes~2.16! can be used to define new operatorsãn andãn

†

via a decomposition of the form~2.3!. These are related to
the Euclidean operatorsan

E andan
E† by

ãn5Na~an
E2ea* an

E†!. ~2.17!

This may be rewritten as

ãn5Uan
EU†, ~2.18!
10403
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U5expH(
n

c~an
E†!22 c̄~an

E!2J ,

c~a!5
1

4 S ln tanh
2Rea

2 De2 i Im a. ~2.19!

The vacuum state

ua&5UuE& ~2.20!

is annihilated by theãn . The operatorU is unitary, so Eq.
~2.20! is properly normalized. In the quantum optics liter
ture, ua& is known as a squeezed state. Equation~2.20! may
be formally rewritten as

ua&5C expS 1

2
ea* (

n
~an

E†!2D uE&, ~2.21!

whereC is a constant. Although this expression is not n
malizable~so C is technically zero!, it is often more conve-
nient than Eq.~2.20!.

The Wightman function in the stateua& is

Ga~x,x8!5(
n

f̃n~x!f̃n* ~x8!. ~2.22!

Using Eqs.~2.15! and ~2.16! this can be rewritten as a sum
over Euclidean modes,

Ga~x,x8!5Na
2(

n
@fn

E~x!fn
E* ~x8!1ea1a* fn

E~x8!fn
E* ~x!

1ea* fn
E~x!fn

E* ~xA8 !1eafn
E~xA!fn

E* ~x8!#,

~2.23!

and then evaluated as

Ga~x,x8!5Na
2@GE~x,x8!1ea1a* GE~x8,x!

1ea* GE~x,xA8 !1eaGE~xA ,x8!#. ~2.24!

Hence it is easy to obtain theua& Wightman function from
the Euclidean one. Since these Wightman functions dep
only on theSO(d,1) invariant quantityP ~away from the
singularities! this construction demonstrates the invarian
of the ua& vacua under the connected part of the de Si
group. Note, however, that ifa is not real the collection of
modes~2.16! is not mapped into itself byCPT. Therefore the
ua& vacua areCPT invariant only for reala.

Of course, since the commutator of two fields is ac num-
ber, the commutator functionGC must be the same in al
vacua. It is easy to check that the commutator construc
from the two-point function~2.24! has this property.

The Wightman function~2.24! has several peculiarities
First, there are antipodal singularities atx85xA . However,
such antipodal points are separated by a horizon so this
gularity is not observable. Second, the singularity at coin
dent points has a negative frequency component com
9-4
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CONFORMAL VACUA AND ENTROPY IN de SITTER SPACE PHYSICAL REVIEW D65 104039
from the second term in Eq.~2.24! ~although the commutato
is unaffected!. This means that foreaÞ0 the vacuum state
does not approach the usual Minkowskian one even at
tances much shorter than the de Sitter radius. This ‘‘unph
cal’’ behavior was to be expected since the MA transfo
~2.16! involves arbitrarily high-frequency modes. Desp
these peculiarities we will see that these vacua play an in
esting role in the dS/CFT correspondence.

C. Analytic continuation from AdS

An alternate way to get a dS Green function is by dou
analytic continuation from AdS via the hyperbolic plane.3 In
fact, we shall argue that this yields a Green function wh
differs from any of those discussed in Sec. II B and therefo
as far as we know, is not physically realizable as the Wig
man function in any vacuum state. Hence the dS/CFT co
spondence is not in any precise sense that we know of
analytic continuation of the AdS/CFT correspondence, a
care must be taken in extrapolating from the latter to
former.

AdSd has a uniqueSO(d21,2) invariant vacuum whose
scalar Green functions can be obtained as a sum over
malizable eigenmodes. The wave equation allows two p
sible falloffs ~fast and slow! at infinity, but only the fast
falloff appears in the Green function. Double analytic co
tinuation from AdS to dS will therefore yield a dS Gree
function with only one of the two possible falloff rate
~which become complex conjugates for large enoughm!.
This cannot be the Euclidean dS Green function, as the la
involves both falloffs. There is a vacuumua& whose Green
function has the required falloff.4 However from Eq.~2.24!
we see that the Green function for every state exceptuE& has
a coincident point singularity with a coefficient larger th
that of uE& and containing two terms with opposite-signedi e
prescriptions. However, double analytic continuation fro
AdS will yield a coincident point singularity with a canonic
coefficient and a singlei e prescription. Hence it yields a
Green function which is not realized as^auf(x)f(x8)ua&
for any a.

D. Particle detection

In this section we discuss particle detection by a geod
observer in theua& vacua. We will find a thermal spectrum
only for the Euclidean vacuum.

Consider an Unruh detector moving along a timelike g
desic, which couples to the field as

E dtm~ t !f„x~ t !…, ~2.25!

wherem(t) is an operator acting on the internal states of
detector and the integral is over the proper time along
detector worldline. Without loss of generality we may ta
the detector to be sitting on the south pole. Let us assu

3See@2,7,61# for discussions.
4It turns out to correspond to the in vacuum discussed below.
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that the detector has a spectrum of statesuEi& with energies
Ei , and define the matrix elementmi j 5^Ei um(0)uEj&. In the
vacuum stateua& the transition rate between the statesuEi&
and uEj& may be evaluated in perturbation theory~see, e.g.,
the review@62#!

Ṗa~Ei→Ej !5umi j u2E
2`

`

dte2 iDEtGa„x~ t !,x~0!…,

~2.26!

whereDE5Ej2Ei .
First, let us study particle production in the Euclide

vacuum. For two timelike separated pointsx andx8 we have
P(x,x8)5cosht and P(xA ,x8)52cosht, where t is the
proper time betweenx andx8. We taket to be positive~nega-
tive! if x is in the future~past! light cone ofx8. As a function
of t, the appropriatei e prescription for the Wightman func
tion is

GE~x,x8!5GE~ t2 i e!, ~2.27!

indicating that for positive~negative! t we should go under
~over! the branch cut fromP51 to P5` in Eq. ~2.9!. As a
function in the complext planeGE obeys

GE~ t !5GE~2t22p i !, ~2.28!

GE* ~ t !5GE~ t̄ 22p i !. ~2.29!

To evaluateGE(x8,x) we must taket→2t:

GE~x8,x!5GE~2t2 i e!5GE~ t1 i e22p i !. ~2.30!

Similarly, we may evaluate

GE~x,xA8 !5GE~xA ,x8!5GE~ t2 ip!. ~2.31!

The pointsx and xA8 are spacelike separated, so it is n
necessary to insert ani e.

Let us consider the example ofd53. As a function oft,
the Green function~2.9! has singularities att5np i for all
nÞ21. This may be seen from the alternate form of t
Green function presented in Appendix A. Thus in the eva
ating Eq.~2.26! we may deform the contour of integration i
the complext plane

E
2`

`

dte2 iDEtGE~ t2 i e!

5e2pDEE
2`

`

dte2 iDEtGE~ t2 ip!

5e22pDEE
2`

`

dte2 iDEtGE~ t22p i 1 i e!. ~2.32!

Thee2eE terms have been dropped. Using Eq.~2.28! and the
second line of Eq.~2.32! we find that the detector respons
rate ~2.26! obeys
9-5
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BOUSSO, MALONEY, AND STROMINGER PHYSICAL REVIEW D65 104039
ṖE~Ei→Ej !

Ṗ~Ej→Ei !
5e22pDE ~2.33!

in the Euclidean vacuum. This is the condition of detail
balance for a thermal system at the de Sitter temperatur

TdS5
1

2p
. ~2.34!

For a general vacuum stateua& we may use the identitie
~2.32! to relate the integrals of all four terms in Eq.~2.24!.
We find

E
2`

`

dte2 iDEtGa~ t2 i e!5Na
2 u11ea1pDEu2

3E
2`

`

dte2 iDEtGE~ t2 i e!.

~2.35!

So the ratio~2.33! becomes5

Ṗa~Ei→Ej !

Ṗa~Ej→Ei !
5e22pDEU11ea1pDE

11ea2pDEU2

. ~2.36!

We conclude that the detector response is not therma
general the detector will not equilibrate. Even though
ratio ~2.36! is nonzero, we will see in the next section th
there are vacua for which, in a certain sense, there is
particle creation.

III. THE SPHERE

In this section we study scalar field theory on dSd in glo-
bal coordinates~t, V!. The metric is

ds252dt21cosh2 tdVd21
2 , ~3.1!

wheredVd21
2 is the usual metric onSd21, parametrized by

the coordinatesV. An important feature of these coordinat
is that they cover all of dSd and hence are suited to a glob
description of the quantum state.

A. Solutions of the wave equation

In this section we find solutions to the massive wa
equation

~¹22m2!f50. ~3.2!

This differential equation is separable, with solutions

f5yL~t!YL j~V!. ~3.3!

The YL j are spherical harmonics onSd21 obeying

5This expression was obtained for the case of a scalar with c
formal mass in@59#.
10403
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e
t
o

¹Sd21
d YL j52L~L1d22!YL j . ~3.4!

Here L is a non-negative integer andj is a collective index
( j 1 ,...,j d22). We will use a nonstandard choice ofYL j ’s,
with

YL j~VA!5YL j* ~V!5~2 !LYL j~V!. ~3.5!

HereVA denotes the point onSd21 antipodal toV. In terms
of the usual spherical harmonicsSL j ,

YL j5A i

2
SL j1~2 !LA2 i

2
SL j* . ~3.6!

The functionsYL j are orthonormal,

E dVYL j~V!YL8 j 8
* ~V!5dLL8d j j 8 , ~3.7!

and complete,

(
L j

YL j~V!YL j* ~V8!5dd21~V,V8!. ~3.8!

We then have

ÿL1~d21!tanhr ẏL1Fm21
L~L1d22!

cosh2 t GyL50.

~3.9!

In terms of the coordinates52e2t this becomes

s~12s!yL91F S 12
d21

2 D2S 11
d21

2 DsGyL8

1Fm2

4

12s

s
2

L~L1d22!

12s GyL50. ~3.10!

Let us make the substitution

yL
in5coshL te$L1@~d21!/2#2 im%tx. ~3.11!

With

m5Am22
~d21!2

4
, ~3.12!

Eq. ~3.10! becomes a hypergeometric equation forx,

s~12s!x91@c2~11a1b!s#x82abx50, ~3.13!

with coefficients

a5L1
d21

2
, b5L1

d21

2
2 im, c512 im.

~3.14!

Let us consider the case of real positivem, i.e., 2m.(d
21). We find that

n-
9-6
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yL
in5

2L1d/221

Am
coshL te$L1@~d21!/2#2 im%t

3FS L1
d21

2
,L1

d21

2
2 im;12 im;2e2tD

~3.15!

and its complex conjugate are two linearly independent
lutions. The normalization is fixed by demanding that the
modes are orthonormal with respect to the inner prod
~2.7!, which is easily evaluated onI2.

B. In and out vacua

We now use the solutions~3.15! to construct in~out!
vacua with no incoming~out-going! particles, and find the
Bogolyubov transformation relating them. Note that E
~3.9! is invariant under time reversal. Hence we obtain a
other pair of linearly independent solutions by defining

yL
out~t!5yL

in* ~2t!. ~3.16!

Explicitly,

yL
out5

2L1d/221

Am
coshL te$2L2@~d21!/2#2 im%t

3FS L1
d21

2
,L1

d21

2
1 im;11 im;2e22tD .

~3.17!

At the past boundary (t→2`) we find thatF→1 and
hence

yL
in→ 2d/221

Am
e$@~d21!/2#2 im%t ~3.18!

while at the future boundary (t→`)

yL
out→ 2d/221

Am
e2$@~d21!/2#1 im%t. ~3.19!

Thus we see that the modes

fL j
in ~x!5yL

in~t!YL j~V!,

fL j
out~x!5yL

out~t!YL j~V! ~3.20!

are positive frequency modes with respect to the global t
t near the asymptotic past and future boundaries, res
tively. They represent incoming and outgoing particle sta
They define two vacua,uin& and uout&, which are annihilated
by the lowering operators associated tof in andfout, respec-
tively. Physically,uin& is the state with no incoming particle
on I2 anduout& is the state with no outgoing particles onI1.
10403
-
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The Bogolyubov coefficients relating the two sets
modes can be found by using the hypergeometric trans
mation equations~summarized in Appendix B! and Eq.~3.5!.
One finds

fL j
in 5Ae22iuLfL j

out1 iBfL j
out* , ~3.21!

where

A5H 1, d odd

cothpm, d even,

B5H 0, d odd

~2 !d/2 cschpm, d even;
~3.22!

we have isolated the phase

e22iuL5~2 !L2@~d21!/2#

G~2 im!GS L1
d21

2
1 im D

G~ im!GS L1
d21

2
2 im D

~3.23!

for later convenience. The coefficients obeyuAu22uBu251
as required for properly normalized modes.

Note thatB, the coefficient mixing positive and negativ
frequency modes, vanishes in odd dimensions. This imp
that the two sets of modes define the same vacuum:

u in&5uout& in odd dimensions. ~3.24!

Hence, there is no particle production. If no particles a
coming in fromI2, no particles will go out onI1.6 This is
in contrast with the even-dimensional case for which ther
always some particle production.

From Eq.~3.18! it follows thatfL j
in ;eh2t nearI2. In the

language of@13#, this implies the modesf in are dual to op-
erators of weighth1 on the boundary. Likewise,f in* are
dual to operators of weighth2 . The de Sitter transforma
tions act on the boundary theory as global conformal tra
formations, which do not mix operators of different weigh
We conclude thatf in andf in* do not mix under the de Sitte
group, so the statesuin& and uout& are de Sitter invariant.

It is convenient to define the rescaled global modes

f̃L j
in ~x!5eiuLyL

in~t!YL j~V!,

f̃L j
out~x!5e2 iuLyL

out~t!YL j~V!.
~3.25!

This is a trivial phase shift, souin& and uout& are the states
annihilated by the lowering operators associated tof̃ in and
f̃out, respectively. In this basis the Bogolyubov transform
tion

6Note, however, that according to Eq.~2.36! an Unruh detector
still observes particles.
9-7
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f̃L j
in ~x!5Af̃L j

out~x!1 iBf̃L j
out* ~x! ~3.26!

has the form of an MA transform, and so can be used
define additional de Sitter invariant vacua. The modes~3.25!
have the useful property that for any pointx

f̃L j
in ~xA!5f̃L j

out* ~x!, ~3.27!

wherexA;(2t,VA) is the point antipodal tox. In odd di-
mensions this becomes

f̃L j
in ~xA!5f̃L j

in * ~x!. ~3.28!

This implies that in odd dimensions the in vacuum isCPT
invariant, whereas in even dimensionsCPT interchanges in
and out.

C. The Euclidean vacuum

In this section we construct the Euclidean vacuumuE& in
the basis of spherical modes. The Lorentzian de Sitter ge
etry ~3.1! can be continued to Euclidean signature by tak
t to run along the imaginaryt axis, from t52 ip/2 to t
5 ip/2. The resulting geometry is a roundd sphere. We de-
fine the upper~lower! Euclidean hemisphere as the portion
this path that lies in the upper~lower! complext plane. In
particular, the upper~lower! Euclidean pole lies att5 ip/2
(t52 ip/2).

We define positive frequency Euclidean modes to be th
that are regular when analytically continued to the lower E
clidean hemisphere. In this section we find these mode
on

t
e

h

ti

,

10403
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global coordinates. The Euclidean vacuumuE& is the state
that is annihilated by the positive frequency Euclide
modes.

We may rewrite Eq.~3.10! in terms of the variablez51
2s511e2t, which is well suited to analyzing the behavio
of global modes on the Euclidean geometry. Upon substi
ing

yL
E5coshL te$L1@~d21!/2#1 im%tx, ~3.29!

we obtain the hypergeometric equation

z~12z!
d2x

dz2 1@ ĉ2~11a1b* !s#
dx

dz
2ab* x50,

~3.30!

with positive integer coefficient

ĉ52L1d21. ~3.31!

We find the general solution

x5CU11DU2 , ~3.32!

where

U15FS L1
d21

2
,L1

d21

2
1 im;2L1d21;zD .

~3.33!

The second solution is given by
U25z222L2dFS 12L2
d21

2
,11 im2L2

d21

2
;322L2d;zD ~3.34!
The
cut

o be
if d is odd, and by

U25U1 ln z1 (
k5222L2d

`

Qkz
k ~3.35!

if d is even; the coefficientsQk are found, e.g., in@63#.
The Lorentzian geometry lies on the path fromz51 (I2)

along the realz axis to z51` (I1). On the throat, atz
52, it intersects with the Euclidean geometry, which lies
a unit circle centered atz51. The lower~upper! hemisphere
corresponds to the lower~upper! half-circle. The Euclidean
poles are atz50. The functions~3.32! have a branch cu
from z51 to z51`. Hence, they are not analytic on th
whole Euclidean sphere. By choosing the Lorentzian pat
run just below the real axis (z→z2 i e), we obtain solutions
that are analytic on the lower hemisphere and the en
Lorentzian geometry.

The first solution ~3.33! is regular in these regions
whereas the second solution, Eq.~3.34! or ~3.35!, becomes
singular at the lower Euclidean pole, atz502 i e. Hence we
to

re

discard the second set of modes and keep the first.
modes can be analytically continued through the branch
to the upper hemisphere, where they are not expected t
regular.

The normalized Euclidean modes are

fL j
E ~x!5

1

f LAe2pm21
yL

E~t!YL j~V!, ~3.36!

where

yL
E5

2L1d/221i 2L1@~d21!/2#

Am
coshL te$L1@~d21!/2#1 im%t

3FS L1
d21

2
,L1

d21

2
1 im;2L1d21;11e2tD ,

~3.37!

f L5
G~2L1d21!

GS L1
d21

2 D U G~ im!

GS L1
d21

2
2 im DU .
9-8
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The Euclidean Green function~2.9! is then given by the
mode sum

GE~x,x8!5(
L, j

fL j
E ~x!fL j

E* ~x8!. ~3.38!

This expression was given in the four-dimensional case
@40#.

D. The zE‹\z in‹ transformation

In this section we show that the Euclidean and in vac
are MA transforms of each other. Let us again specialize
the case of 2m.(d21). TheyE are then related to theyin

by

yL
E5 f L„~2 !L1@~d21!/2#e2 iuLyL

in* 1epm1 iuLyL
in
….

~3.39!

So the Euclidean modes are related to the global modes

fL j
E 5

1

A12e22pm
~f̃L j

in 1~2 !~d21!/2e2pmf̃L j
in* !,

~3.40!

from which it follows, along with Eqs.~3.28! and~3.26!, that

fL j
E ~xA!5fL j

E* ~x! ~3.41!

in any dimension. This implies the Euclidean vacuum isCPT
invariant.

Now, Eq. ~3.40! may be inverted to give

f̃L j
in 5

1

A12e22pm
~fL j

E 1~2 !~d11!/2e2pmfL j
E* !

~3.42!

which is an MA transformation with

a52pm1 i S d11

2 Dp. ~3.43!

We have thus identified the MA transformation relating t
uin& vacuum and the Euclidean vacuumuE&.

IV. CFT INTERPRETATION

In this section we interpret theCPT invariant ~real a!
family of bulk de Sitter invariant vacua as a line of margin
deformations of the boundary CFT. A similar interpretati
may extend to the case of general complexa but we do not
pursue it here. In this and later sections we restrict to the c
d53.

A. IÁ correlators

In this section we evaluate the various Green functio
appearing on the right-hand side of Eq.~2.24! for x andx8 on
I6, and then put the results together to see how the boun
values of the correlators depend ona. We use global coordi-
10403
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nates~t, V!, V5(w,w̄), wherew5tan(u/2)eiw is the com-
plex coordinate on the 2-sphere, so that

ds252dt214 cosh2 t
dwdw̄

~11ww̄!2 . ~4.1!

The behavior of the correlators atI6 follows from the
asymptotic form of the hypergeometric functions. Asuzu
→` one has~see Appendix B!

F~h1 ,h2 ; 3
2 ;z!→c1~2z!2h11c2~2z!2h2,

c65

GS 3

2DG~h72h6!

G~h7!GS 3

2
2h6D . ~4.2!

This expression is not in general real~unlessz is real and
negative! because theh6516 im are not real. In spherica
coordinates one finds, nearI2,

lim
t,t8→2`

P~t,V;t8,V8!52
e2t2t8uw2w8u2

2~11ww̄!~11w8w̄8!
.

~4.3!

For x5(t,V) andx85(t8,V8) both onI2

lim
t,t8→2`

GE~x,x8!5eh1~t1t8!D1~V,V8!

1eh2~t1t8!D2~V;V8!. ~4.4!

D6 here is proportional to the two point function for a co
formal field of dimensionh6 on the sphere:

D6~V;V8!54h6cm,dc6F ~11ww̄!~11w8w̄8!

uw2w8u2 Gh6

.

~4.5!

We note thatGE(x,x8)5GE(x8,x) on I2 as the points are
spacelike separated. We have assumed here, and in the
lowing expressions~unless explicitly stated! thatx andx8 are
not coincident so that contact terms can be ignored.

Let us now consider the case wherex is on I2 andx8 is
on I1. Since the antipodal point tox8, namely xA85

(2t8,VA8 )5(2t8,21/w̄,21/w8), is onI2 we may use Eq.
~4.4! and the formula

P~x,x8!52P~x,xA8 !. ~4.6!

In continuing Eq.~4.4! to positiveP we must take care to go
above the branch cut, in accord with thei e prescription for
the Wightman function witht8.t. We find

lim
t→2`
t8→`

GE~x,x8!52eh1~t2t8!e2pmD1~V;VA8 !

2eh2~t2t8!epmD2~V;VA8 !. ~4.7!
9-9
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To evaluateGE(x8,x) we must go under the branch cu
yielding

lim
t→2`
t8→`

GE~x8,x!52eh1~t2t8!epmD1~V;VA8 !

2eh2~t2t8!e2pmD2~V;VA8 !. ~4.8!

Now we insert these results into formula~2.24! for the
Wightman function in the general vacuum stateua&. For both
points onI2 one finds

lim
t,t8→2`

Ga~x,x8!5Na
2~12ea1pm!~12ea* 2pm!

3eh1~t1t8!D1~V;V8!

1Na
2~12ea2pm!~12ea* 1pm!

3eh2~t1t8!D2~V;V8!. ~4.9!

On the other hand, forx on I2 andx8 on I1 we get

lim
t→2`
t8→`

Ga~x,x8!52Na
2e2pmu12ea1pmu2eh1~t2t8!

3D1~V;VA8 !

2Na
2epmu12ea2pmu2eh2~t2t8!

3D2~V;VA8 !. ~4.10!

We see that the boundary correlators depend nontrivially
the choice of vacuum. Since we have takenuPu→`, these
formulas are valid only for noncoincident points onI6 and
omit possible contact terms.

Let us now turn to the interesting special case of the
vacuum, which hasa52pm. For both points onI2 it fol-
lows from Eq.~4.9! that the correlators vanish. On the oth
hand, forx on I2 andx8 on I1 we get

lim
t→2`
t8→`

Gin~x,x8!522 sinhpmeh2~t2t8!D2~V;VA8 !,

~4.11!
lim

t→2`
t8→`

Gin~x8,x!522 sinhpmeh1~t2t8!D1~V;VA8 !.

When the points onI2 coincide there is a contact term
which can be easily computed by noting that the Wightm
function onI2 reduces to a mode sum over spherical h
monics. This gives

lim
t,t8→2`

Gin~x,x8!5
2

m
eh2t1h1t8d2~V,V8!. ~4.12!

The situation can be described as follows. AsI2 is ap-
proached, the spatial part of the scalar kinetic terms are
ponentially suppressed relative to the rest of the act
Neighboring points decouple and the theory becomes ultr
10403
n

n

n
-

x-
n.
o-

cal. It reduces to a harmonic oscillator at each point; he
the vanishing ofGin . However, the map defined by propa
gation fromI2 to I1 is not ultralocal on the sphere. It in
troduces nontrivial correlators when one point is onI2 and
the other is onI1.

Of course, in other vacua—such as the Euclide
vacuum—there are nontrivialI2 correlators. As will be seen
in the next section, the wave functions for these vacua di
from the in vacuum wave function by terms which are no
local on I2. These terms are directly responsible for t
nontrivial I2 correlators.

B. dS vacua as marginal CFT deformations

Now we argue that the dual interpretation of the on
parameter family of dS3 vacua is a one-parameter family o
marginal deformations of the CFT. It is convenient to defi
operators onI2 andI1 by

lim
t→2`

f~t,V!5f1
in~V!eh1t1f2

in~V!eh2t,

~4.13!
lim
t→`

f~t,VA!5f1
out~V!e2h1t1f2

out~V!e2h2t.

f6
out has been defined with an antipodal inversion relative

f6
in so that they transform the same way under conform

transformations@13#. These are position space versions
the creation operators associated to the spherical modesf in

andfout,

f1
in~V!5@f2

in~V!#†5A2

m (
L j

aL j
in†YL j* ~V!,

~4.14!

f1
out~V!5@f2

out~V!#†5A2

m (
L j

aL j
outYL j~VA!.

From the asymptotic Green functions~4.12! and ~4.11! we
find that the only nonzero commutators are

@f2
in~V!,f1

in~V8!#5@f1
out~V!,f2

out~V8!#

5
2

m
d2~V,V8!,

~4.15!
@f6

in~V!,f6
out~V8!#562 sinhpmD6~V,V8!.

The in and out operators are related by a Bogolyub
transformation and hence are not independent. In this sec
we takef6

in to be the fundamental operators. At a gene
point in the bulkf is determined from its value onI2 via

f~x!5 i E
I2

d2x8AgGC~x,x8! ]Jt8f~x8!. ~4.16!

In particular, takingx to be onI1 and using the limiting
expression forGC ~which does not depend ona! we find
9-10
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f6
out~V!52m sinhpmE d2V8D6~V,V8!f7

in~V8!.

~4.17!

This is a position-space version of the Bogolyubov transf
mation ~3.21!.7 We see that the absence of mixing betwe
f in and fout* , which seemed so surprising in Sec. III B
follows directly from the asymptotic behavior of the Gre
functions. We note parenthetically that this implies the ide
tity ~verified in @64#!

~m sinhpm!2E d2V9D2~V,V9!D1~V9,V8!5d2~V,V8!.

~4.18!

The uin& vacuum obeys

f2
in~V!u in&50. ~4.19!

The generalua& vacuum state discussed in Sec. II B can
constructed in terms of the in vacuum as

ua&5expH c~g!
m

2 E d2Vf1
inf2

out

2c~ ḡ !
m

2 E d2Vf2
inf1

outJ u in&, ~4.20!

where

eg5

sinh
pm1a

2

sinh
pm2a

2

, ~4.21!

and the functionc is given by Eq.~2.19!. This equation may
be formally rewritten as

ua&5C expS eg* m

4 E d2Vf1
inf2

outD u in&. ~4.22!

These vacua obey the manifestlySL(2,C) invariant condi-
tion

f2
in~V!ua&52eg* f2

out~V!ua&. ~4.23!

This is most easily seen by applying the representationf2
in

52(2/m)(d/df1
in ) of Eq. ~4.15! to Eq. ~4.22!. In particular,

the Euclidean vacuum hasa52` and therefore obeys

f2
in~V!uE&5e2pmf2

out~V!uE&. ~4.24!

Now we consider the boundary field theory. Consider
two operatorsO6 dual to f6

in with conformal weightsh6 .
According to the dS/CFT correspondence@13#, the dualO6

correlators are determined from thef6
in correlator~4.9! as

7In fact, expression~4.17! is singular forV5V8 and so is really
defined by Eq.~3.21!.
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^auO6~V!s6~V8!ua&

52
m2

2
Na

2~12ea6pm!~12ea* 7pm!

3D6~V,V8!. ~4.25!

The commutators~4.15! also imply the contact terms

^auO2~V!O1~V8!ua&5
1

12eg1g*

m

2
d2~V,V8!,

~4.26!

^auO1~V!O2~V8!ua&5
eg1g*

12eg1g*

m

2
d2~V,V8!.

From the CFT point of view this is an unusual contact te
prescription in that it depends on the operator ordering.

What is the CFT origin of the parametera? Usually a
one-parameter family of correlators corresponds to a line
marginal deformations generated by a dimension~1, 1! op-
erator. Indeed,O1O2 is a dimension~1, 1! operator. Let us
consider adding this operator to the two-dimensional C
action with real coefficientl. At linear order this perturbs the
correlators according to the formula

dl^auO1~V!O1~V8!ua&

52^au
l

2E dV9$O1~V9!O2~V9!,O1~V!O1~V8!%ua&

524ml cothg^auO1~V!O1~V8!ua&. ~4.27!

Let us takea to be real, so that̂auO1O1ua& is a monotoni-
cally increasing function ofa. Then the variation of the two-
point function asa→a1e is proportional to the deforma
tion ~4.27!, which may be integrated to determinel as a
function of a.

This strongly suggests that the family ofCPT and
SO(d,1) invariant vacuum states are marginal deformatio
of the boundary CFT generated by the~1, 1! operator
O1O2 . The two-point functions of these CFTs can all b
made equivalent by rescaling operators, except for the s
cial casea52pm. So, in principle, from this analysis alon
the CFTs withaÞpm might all be equivalent. In order to
complete the argument one should check that the three-p
function is not invariant under such rescalings. This has b
shown in@65#.8

V. CPT AND THE INNER PRODUCT

In this section we discuss various choices of norm for
Hilbert space of a real scalar field on dS3 , or equivalently the
definition of the adjoint. The first naive choice one mig
make is

f†~x!5f~x!. ~5.1!

8We thank Greg Moore for discussions on this point.
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However, Witten@17# argues that this choice may not be we
defined for full quantum gravity outside of perturbatio
theory. An alternate norm is proposed@17# which involves
path integral evolution formI2 to I1 together withCPT
conjugation. In this section we will explicitly compute th
norm for a free scalar and find, after a slight modificati
involving the form ofP, that it has a very natural boundar
interpretation: it yields the Zamolodchikov metric for th
boundary CFT.

Before delving into details it is instructive to recall a
isomorphic discussion of norms which arises in the stand
treatment of Euclidean CFT. Consider the mode expans
for a free boson on the Lorentzian cylinder~ignoring zero
modes!

X~s1,s2!5 i(
n

S an

n
e22p ins1

1
ān

n
e2p ins2D . ~5.2!

Using a2n
† 5an one finds

X†~s1,s2!5X~s1,s2!. ~5.3!

On the other hand, the standard mode expansion on the c
plex Euclidean plane is

X~z,z̄!5 i(
n

1

n S an

zn 1
ān

z̄n D . ~5.4!

Using a2n
† 5an one now finds

X†~z,z̄!52 i(
n

1

n S a2n

z̄n 1
ā2n

zn D
5XS 1

z̄
,
1

zD . ~5.5!

In this case the adjoint relatesX at points in the Euclidean
plane reflected across the unit circle. In particular the no
of the state created byX(z,z̄) or any other operator is just th
two-point function, and hence is the Zamolodchikov norm

Returning now to dS3 , the naive adjoint rule~5.1! induces
an adjoint in the Euclidean boundary CFT of the for
X†(z,z̄)5X(z,z̄). On the other hand, we will show that th
modified Witten adjoint gives precisely~5.5!. We further
consider the dS3 SL(2,C) isometry generatorsLn , L̄n , for
n50, 61. It is shown thatLn

†5L̄n for the naive adjoint, but
Ln

†5L2n for the modified adjoint. Although we taked53,
much of the following discussion carries over simply
higher dimensions.

A. Continuous and discrete symmetries of de Sitter space

dS3 can be represented by the hyberboloid

X1X21zz̄5 l 2 ~5.6!

in flat Minkowski space. The isometries of dS3 are then in-
herited from theSL(2,C) Lorentz isometries of Minkowsk
space. The six generators can be written as combinatioJW
10403
rd
n

m-

1iKW of rotations and boosts together with their complex co
jugates. We denote the associated Killing vectors byzn and
z̄n for n50, 61. The past and future horizons of an observ
world line atz50 are located on the hyperboloid atX1X2

50. We denote the Killing vectors preserving this horizon

z01 z̄05X1]12X2]2 ,

z02 z̄05 z̄] z̄2z]z . ~5.7!

The four additional Killing vectors are

z15X1]z2 z̄]2 ,

z215X2] z̄2z]1 ,

z̄15X1] z̄2z]2 ,

z̄215X2]z2 z̄]1 . ~5.8!

They obey the Lie bracket relation

@zm ,zn#5~n2m!zm1n . ~5.9!

In addition, we consider the two discrete symmetries p
ity and time reversal

PX65X6, Pz52z,

TX65X7, Tz5z. ~5.10!

In terms of the global coordinates~t,V!, P takes a pointV
5(u,w) on the 2-sphere to the pointPV5(u,p1w) andT
takest to 2t.

Our choice of parityP in Eq. ~5.10! reflects all the coor-
dinates about an observer at the south pole. An altern
choice isPz5 z̄ which reflects only one coordinate. This
the choice employed in@17#, motivated by the fact that the
correspondingCPT operation is known to be an exact fie
theory symmetry, after taking a flat space limit of dS3 . We
shall indicate below how the results are modified if this de
nition of P is employed.

B. CPT
We now compute the action of the discrete symmetriesC,

P, and T on the field operators. We consider a real sca
field so thatC is trivial. We wish to find Hilbert space opera
tors P andT that implement Eq.~5.10! on f(x) as

Pf~x!P5f~Px!, Tf~x!T5f~Tx!. ~5.11!

As usualT5UK is an antilinear operator which combines
unitary operatorU with complex conjugationK of functions.

The mode expansions forf in terms of thef in andfout

modes are

f~t,V!5(
L, j

@aL j
in yL

in~t!YL j~V!

1bL j
in yL

in* ~t!YL j* ~V!#, ~5.12!
9-12
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f~t,V!5(
L, j

@aL j
outyL

out~t!YL j~V!

1bL j
outyL

out* ~t!YL j* ~V!#. ~5.13!

We have written lowering and raising operators asa’s and
b’s, respectively, and are not assuming here thata†5b.

We define the action ofP by

PaL j
in P5~2 ! jaL j

in , PbL j
in P5~2 ! jbL j

in , ~5.14!

and similarly for the out operators. SinceYL j (PV)5
(2) jYL j (V) this definition reproduces Eq.~5.11!. We define
the action ofT by

TaL j
in T5~2 !LaL j

out, TbL j
in T5~2 !LbL j

out. ~5.15!

At the same time it acts as complex conjugation on fu
tions. The wave functions appearing in Eq.~5.12! transform
as

YL j* ~V!5~2 !LYL j~V!,

yL
in* ~t!5yL

out~2t!. ~5.16!

Putting this together gives

Tf~t,V!T5(
L, j

@aL j
outyL

out~2t!YL j~V!

1bL j
outyL

out* ~2t!YL j* ~V!#

5f~2t,V!, ~5.17!

as required.
We wish to consider the action ofCPT on the in and out

field operatorsf1
in andf1

out defined by Eq.~4.13!. Using Eqs.
~5.14!–~5.16! these obey

PTf1
in~V!PT5f2

out~PVA!,

PTf1
out~V!PT5f2

in~PVA!. ~5.18!

C. The Witten inner product and modifications

Following Witten@17#, we now describe a modified inne
product. First we construct a bilinear pairing between sta
on I2 and states onI1. We will consider asymptotic states9

on I6:

uC in&5E C in~V!f1
in~V!u in&,

~5.19!

uCout&5E Cout~V!f2
out~V!u in&,

9Of course, these states are linear inbin and bout. The general
asymptotic states will take a more complicated form.
10403
-

s

whereC in(V) and Cout(V) are functions on the 2-sphere
Using Eq.~4.17!, the out state can be expressed as a lin
combination of in states

uCout&52m sinhpmE E Cout~V8!D2~V8,V!

3f1
in~V!u in&. ~5.20!

This corresponds to evolving the stateuCout& backwards
from I1 to I2, and defines the bilinear pairing

~CoutuC in!52m sinhpm

3E E Cout~V8!D2~V8,V!C in~V!.

~5.21!

We now use the pairing to define an inner product onI2 that
is antilinear in the first argument. Note that applyingCPT to
a state onI2 gives us a state onI1:

CPTuC in&5E C in* ~PVA!f2
out~V!u in& ~5.22!

to which we may apply the pairing~5.21!. We find the inner
product between two states onI2

^C inuY in&52m sinhpmE E C in* ~V!

3D2~PVA ,V8!Y in~V8!. ~5.23!

For free field theory the norm~5.23! implies the adjoint
relations10

f†~x!5f~PTx!,

f6
in†~V!5f6

out~PVA!. ~5.24!

This may look strange at first but is in fact precisely t
usual norm employed for a Euclidean CFT. Note thatP
coupled with the antipodal map is reflection about the eq
tor, so that

PA~z,z̄!5S 1

z
,
1

zD , ~5.25!

as in Eq.~5.5!. For states constructed by acting with oper
tors onI2, it therefore follows that the norm is simply th
two-point function. Hence Eq.~5.23! gives the Zamolod-
chikov metric on the boundary CFT.

Formula Eq.~5.23! in fact remains valid for any choice o
P. Using Pz5 z̄ as in @17#, one finds instead of Eq.~5.25!,
PA(z,z̄)5(21/z,21/z). The adjoint then involves rotation
by p aboutz56 i rather than reflection across the unit dis

10It is intriguing that this adjoint relates degrees of freedom se
rated by a horizon.
9-13
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D. Adjoints of the SL„2,C… generators

The quantum generators of the symmetries~5.7! and~5.8!
are as usual given by

Lz5E
S
dSmTmnzn

n ,

L̄n5E
S
dSmTmnz̄n

n , ~5.26!

for any complete spacelike sliceS. We chooseS to be the
throat X15X2 because it is mapped to itself under bothP
andT. For a massive scalar,

Tmn~x!5]mf~x!]nf~x!2 1
2 gmn@„¹f~x!…21m2f2~x!#.

~5.27!

With the ordinary inner product,Tmn is Hermitian, and one
finds Ln

†5L̄n . With the modified inner product, one has

Ln
†5E dSm~x!Tmn~PTx!z̄n

n~x!. ~5.28!

We then consider a coordinate transformationx85PTx. One
finds

Ln
†5E dSm~PTx8!Tmn~x8!z̄n

n~PTx8!. ~5.29!

Using the relations

zn~PTx8!52 z̄2n~x8!,

dSm~PTx8!52dSm~x8!, ~5.30!

it follows that

Ln
†5L2n . ~5.31!

In @13# theSL(2,C) isometries of dS3 were conjectured to
extend to a full Virasoro symmetry of the full quantum gra
ity ~not just a free scalar!. This naturally acted not on close
spacelike slices but on asymptotically flat slices ending onI.
It would be interesting to compute the adjoints of these g
erators.

VI. THE CYLINDER

In this section we study scalar field theory in static co
dinates. Again for simplicity we specialize to dS3 , although
we expect the higher dimensional cases to be similar.
metric is

ds252~12r 2!dt21
dr2

~12r 2!
1r 2dw2. ~6.1!

This metric is singular at the horizonsr 51, which divides
dS3 into four regions. There are two regions with 0<r ,1
corresponding to the causal diamonds of observers at
10403
-
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e

he

north and south poles. We shall refer to these as the nort
and southern diamonds. There are two more regions wit
,r ,` containingI1 andI2 which we shall refer to as the
future and past triangles. OnI6, where r→`, the spatial
metric approachesr 2(dt21dw2) and hence is conformal to
the cylinder.

Unlike the global coordinates, static coordinates do
smoothly cover all of dSd . However, they are well suited to
describing the physics associated to an observer who
access a single causal diamond. The Killing vector]/]t is
manifest in static coordinates, but is future-directed only
the southern diamond; it is past-directed in the northern d
mond and spacelike in the past and future triangles. In
following we solve the scalar wave equation in the four
gions. Then we patch the solutions together to get a glo
solution over all of dS3 by matching at the horizons. W
further show explicitly that tracing the Euclidean vacuu
over the Hilbert space of the northern modes leads to a t
mal density matrix in the southern diamond.

A. The wave equation

The equation of motion for a scalar field of massm is
(¹22m2)f50. In static coordinates, this becomes

F2
1

12r 2 ] t
21

1

r
] r~12r 2!r ] r1

1

r 2 ]w
22m2Gf50.

~6.2!

The equation separates, so that a general solution ca
expanded

f~ t,r ,w!5E
0

`

dv (
j 52`

`

av jfv j1bv jf
v j

1av j

† fv j* 1bv j
† fv j* , ~6.3!

where

fv j5 f v j~r !e2 ivt1 i j w, fv j5 f v j~r !e2 ivt1 i j w, ~6.4!

and f v j (r ), f v j (r ) are two linearly independent solutions o
the radial equation

~12r 2!
d2f v j

dr2 1S 1

r
23r D d fv j

dr

1S v2

12r 22
j 2

r 22m2D f v j50. ~6.5!

B. The northern and southern diamonds

A solution smooth nearr 50 is given by

fv j
S 5 f v j~r !e2 ivt1 i j w,

f v j~r ![r u j u~12r 2! iv/2F~a,b;c;r 2!,

a[
1

2
~ u j u1 iv1h1!, ~6.6!
9-14
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b[
1

2
~ u j u1 iv1h2!,

c[11u j u.

We have not normalized this solution, although the neces
factor follows from computations below. The superscripS
denotes that this solution is in the southern diamond. O
can show from the transformation formulas for hypergeom
ric functions~see Appendix B! that

f v j* 5 f 2v j5 f v j . ~6.7!

Similarly we may define northern modes
l t

i-
n.

10403
ry

e
t-

fv j
N 5 f v j~r !e2 ivt1 i j w. ~6.8!

It is convenient to use the time coordinatet both in the north-
ern and in the southern diamond. Although this coordin
system does not uniquely label points on all of dS3 , there
will be no confusion since we denote northern functions w
a superscriptN. The coordinatet runs forward in the south-
ern diamond and backward in the northern diamond. He
for v.0 the modes~6.6! are positive frequency and~6.8!
are negative frequency.

Near the horizon, forr→1, one can show~see Appendix
B for details! that Eq.~6.6! becomes
fv j
S →e2 ivt1 i j wG~11u j u!F G~2 iv!

GS 1

2
~ u j u2 iv1h1! DGS 1

2
~ u j u2 iv1h2! D ~12r 2! iv/2

1
G~ iv!

GS 1

2
~ u j u1 iv1h1! DGS 1

2
~ u j u1 iv1h2! D ~12r 2!2v/2G . ~6.9!
t
ure

f

tri-
In order to analyze the flux across the horizons it is usefu
introduce Kruskal coordinates

r 5
11UV

12UV
,

t5
1

2
lnS 2

U

V D , ~6.10!

in which

ds25
1

~12UV!2 @24dUdV1~11UV!2dw2#.

~6.11!

U.0 andV,0 in the southern diamond. The future~past!
horizon is atV50 (U50). In contrast to the static coord
nates, Kruskal coordinates are nonsingular at the horizo

The modes~6.9! become, forr→1 (UV→0):

fv j
S →ei j w@av j~2V! iv1av j* U2 iv#, ~6.12!

where we define the complex constants

av j[
G~11u j u!G~2 iv!2iv

GS 1

2
~ u j u2 iv1h1! DGS 1

2
~ u j u2 iv1h2! D

5a2v j* . ~6.13!
oThe first term in Eq.~6.12! is incoming flux across the pas
horizon, while the second is outgoing flux across the fut
horizon. A similar analysis in the northern diamond withU
,0, V.0 gives forr→1:

fv j
N →ei j w@av jV

iv1av j* ~2U !2 iv#. ~6.14!

The northern and southern modes are simply related by

fv j
S ~2U,2V!5fv j

N ~U,V!. ~6.15!

The second family of solutions is given by

fv j5 ln~r 2!fv j1e2 ivt1 i j wr u j u~12r 2! iv/2

3 (
n52u j u

`

Anr 2n, ~6.16!

where the coefficientsAn are given in, e.g., Eq. 15.5.19 o
@66#. These modes are singular atr 50 for all j and hence are
excluded.

C. The past and future triangles

Let us analyze the behavior of the modes in the past
angle~which includesI2 but notI1! wherer 2.1. A com-
plex solution of Eq.~6.2! is

fv j
in15 f v j

1 ~r !e2 ivt1 i j w,

f v j
1 ~r ![r 2h1S 12

1

r 2D iv/2

FS a,12a* ;h1 ;
1

r 2D . ~6.17!
9-15
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Using properties of the hypergeometric functions one fin
that f v j

1 is invariant underv→2v, but is not real. Therefore
the second solution of Eq.~6.2! is obtained by complex con
jugation:

fv j
in25„f v j

1 ~r !…* e2 ivt1 i j w. ~6.18!

This is equivalent to replacingh1 with h2 in Eq. ~6.17!.
th

ith

10403
sNearI2 we find

fv j
in6;r 2h6. ~6.19!

In the past triangle the coordinater is timelike and past-
directed, so that thef in2 are positive frequency form2.1.

Near the horizon, forr→1, we find
fv j
in1→e2 ivt1 i j wG~h1!F G~2v!

GS 1

2
~ u j u2 iv1h1! DGS 1

2
~2u j u2 iv1h1! D ~r 221! iv/2

1
G~ iv!

GS 1

2
~2u j u1 iv1h1! DGS 1

2
~ u j u1 iv1h1! D ~r 221!2 iv/2G . ~6.20!
the

he

he
hern
may

n

The relation between static and Kruskal coordinates in
past triangle is

r 5
11UV

12UV
,

t5
1

2
lnS U

V D . ~6.21!

U andV are both negative in this region. The boundary w
the northern~southern! diamond is atV50 (U50). The
near horizon behavior~6.20! becomes

fv j
in1→ei j w@bv j~2V! iv1b2v j~2U !2 iv#, ~6.22!

where

bv j[
G~h1!G~2 iv!2iv

GS 1

2
~ u j u2 iv1h1! DGS 1

2
~2u j u2 iv1h1! D .

~6.23!

Similarly one finds nearr 51 that

fv j
in2→ei j w@b2v j* ~2V! iv1bv j* ~2U !2 iv#. ~6.24!

One may also define modes in the future triangle by

fv j
out15 f v j

1 ~r !e2 ivt1 i j w,

fv j
out25„f v j

1 ~r !…* e2 ivt1 i j w. ~6.25!

NearI1 we find

fv j
out1;r 2h6. ~6.26!

In the future triangle the coordinater is future-directed, so
that thefout1 are positive frequency.
e The relation between static and Kruskal coordinates in
future triangle is again given by Eq.~6.21!, which means that
t increases to the south~north! in the future~past! triangle.U
andV are both positive in this region. The boundary of t
future triangle with the northern~southern! diamond is at
U50 (V50). Near the horizons (UV50) the fout modes
obey

fv j
out15ei j w@bv jV

iv1b2v jU
2 iv#,

fv j
out25ei j w@b2v j* Viv1bv j* U2 iv#.

~6.27!

The past and future modes are simply related by

fv j
out6~U,V!5fv j

in6~2U,2V!. ~6.28!

D. Matching across the horizon

In Secs. VI B and VI C we have described solutions in t
past and future triangles as well as the northern and sout
diamonds. By matching fluxes across the horizon, these
be extended to global solutions over all of dS3 . For example
the (2V) iv ((2U)2 iv) terms in the past modes~6.22! and
~6.24! carry flux into the southern~northern! diamond. The
continuation of Eqs.~6.22! and ~6.24! into these regions is
obtained by matching to Eq.~6.12! along U50 and to Eq.
~6.14! along V50. Matching across the horizon again the
yields the future mode.

Henceforth we shall use the symbolf in6 to denote the
global solution so constructed. Similarly,fout6 will denote
the global solution agreeing with Eq.~6.27! in the future
triangle. We may also construct global solutionfS (fN) that
agree with the modes~6.6! @~6.8!# in the southern~northern!
diamond—these solutions vanish in the northern~southern!
diamond.
9-16
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From the matching procedure outlined above we find t
these modes obey

S fv j
S

fv j
N D 5Av j S fv j

in1

fv j
in2D 5Av j* S fv j

out2

fv j
out1D , ~6.29!

where

Nv jAv j5S av jbv j* 2av jb2v j

2av j* b2v j* av j* bv j
D ~6.30!

and

Nv j[~bv jbv j* 2b2v jb2v j* !52
m

v
. ~6.31!

Reversing the signs ofU andV and usingsxAsx5A* , one
finds that the second equation in Eq.~6.29! follows from the
first. The Bogolyubov transformation fromI2 to I1 then
follows from Eq.~6.29! as

S fv j
out2

fv j
out1D 5Bv j S fv j

in1

fv j
in2D , ~6.32!

where

Bv j5sxAv j
21sxAv j5S av jbv j*

av j* bv j

0

0
av j* bv j

av jbv j*
D . ~6.33!

As with the spherical modes of Sec. III B, the Bogolyub
transformation~6.32! is trivial. The vacuumuin& defined by
the modesf in is identical to the vacuumuout& defined by the
fout.

E. Euclidean modes on the cylinder

In this section, following@67#, we write the Euclidean
modes as linear combinations of northern and south
modes.

In Kruskal coordinates the southern modes~6.6! in the
southern diamond are of the form

fv j
S 5 f v j~UV!ei j wS 2

V

U D iv/2

~6.34!

for U.0, V,0, and vanish forU,0, V.0. The northern
modes in the northern diamond are of the same form

fv j
N 5 f v j~UV!ei j wS 2

V

U D iv/2

, ~6.35!

but have support forU,0, V.0 instead ofU.0, V,0. We
wish to find a linear combination of Eqs.~6.34! and ~6.35!
which
10403
t

rn

is analytic in the lower complexU andV planes.11 This can
be accomplished by analytically continuing the southe
modes~6.34! to the northern diamond along the contour

U→e2 igU, V→eigV, ~6.36!

takingg from 0 top. Notice that the productUV is indepen-
dent of g, so that the continuation of the southern mo
~6.34! is

e2pv f v j~UV!ei j wS 2
V

U D iv/2

. ~6.37!

Comparing with Eq.~6.35! we see that the linear combina
tion

fv j
E 5fv j

S 1e2pvfv j
N ~6.38!

is analytic in the lower half of the complexU andV planes.
Since t runs backwards in the northern diamond, this is
linear combination of positive and negative frequen
modes. A second linear combination

fv j
E85~fv j

N !* 1e2pv~fv j
S !* ~6.39!

is also analytic in the lower half plane. BothfE andfE8 are
positive frequency forv.0.

F. MA transform to Euclidean modes

In this section we will show that theuin& vacuum on the
cylinder is the same as theuin& vacuum on the sphere b
showing that it is an MA transform of the Euclidean vacuu
with a52pm. This result is anticipated by the fact that th
dual CFTs should be simply related by the conformal tra
formation from the sphere to the cylinder. Nevertheless
provides a useful check on our constructions.

The first step is to redefinef in6 in order to simplify the
expression forA in Eq. ~6.29!. Let

f̃v j
in15 i j

av jbv j*

Nv j
fv j

in1 ,

f̃v j
in25~2 i ! j

av j* bv j

Nv j
fv j

in2 . ~6.40!

Then Eq.~6.29! becomes

S fv j
S

fv j
N D 5~2 i ! j S 1 q

~2 ! jq ~2 ! j D S f̃v j
in1

f̃v j
in2D , ~6.41!

with

11Euclidean modes were defined earlier to be regular on the lo
Euclidean hemisphere (tRe50,(2p/2)<t Im<0). Explicit transfor-
mation of coordinates shows that sgnUIm5sgnVIm5sgntIm. The
lower pole,t52 i (p/2), maps to a single point,U5V52 i , inde-
pendently ofu. Smooth curves through this pole remain smooth
the U andV planes. Thus, modes that are analytic and bounde
the lower halfU andV planes will be regular on the lower Euclid
ean hemisphere.
9-17
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q[~2 ! j 11
av jb2v j

av j* bv j
52

~2 ! j1ep~v1m!

epv1~2 ! jepm . ~6.42!

It follows that the Euclidean modes obey

fv j
E 5fv j

S 1e2pvfv j
N

5~2 i ! j
epv2e2pv

epv1~2 ! jepm ~f̃v j
in12epmf̃v j

in2!. ~6.43!

Inverting this relation, one recoversa52pm.

G. The thermal state

Let us summarize the southern and northern mode ex
sions:

fS~ t,r ,w!5E
0

`

dv (
j 52`

`

av j
S fv j

S 1~av j
S !†~fv j

S !* ,

~6.44!

fN~ t,r ,w!5E
0

`

dv (
j 52`

`

av j
N fv j

N 1~av j
N !†~fv j

N !* .

Here we take the modesfS and fN to be normalized with
respect to the Klein-Gordon inner product~2.7!. The Fock
space in the southern diamond is constructed with lowe
operatorsav j

S and raising operators (av j
S )†. The Fock space

in the northern diamond is constructed with lowering ope
tors (av j

N )† and raising operatorsav j
N .

The modes~6.38! and ~6.39! annihilate the Euclidean
vacuum,uE&. This allows us to expressuE& as a superposition
of states in the northern and southern Fock spaces@68#:

uE&5 )
v50

`

)
j 52`

`

~12e22pv!1/2

3exp@e2pv~av j
S !†av j

N #uS& ^ uN&

5)
v, j

~12e22pv!1/2

3 (
nv j 50

`

e2pvnv j unv j ,S& ^ unv j ,N&. ~6.45!

Here uS& and uN& are the southern and northern vacua, an

unv j ,S&5~nv j ! !21/2@~av j
S !†#nvuS&,

unv j ,N&5~nv j ! !21/2@av j
N #nv j uN&. ~6.46!

Only the southern diamond is causally accessible to an
server at the south pole. The quantum state in this regio
described by a density matrixrS, which is obtained from a
global state by tracing over the field modes in the north
diamond. For the Euclidean vacuum~6.45! we obtain
10403
n-

g

-

b-
is

n

rE
S5trNuE&^Eu5)

v, j
F ~12e22pv!

3(
nv j

e22pvnv j unv j ,S&^nv j ,SuG . ~6.47!

Recall that the Killing vectorjm]m5] t is everywhere
timelike and future directed in the southern diamond. N
glecting gravitational back-reaction of the field modes, t
allows us to define a Hamiltonian for the southern mode

M5E
SS

dSmTmnjn5E
0

`

dv (
j 52`

`

~av j
S !†av j

S v,

~6.48!

whereT is the stress tensor of the scalar field. HereSS is a
t5const Cauchy surface in the southern diamond with n
mal vector isnS

m]m5(12r 2)21/2] t . This definition of energy
is natural for the observer at the south pole. For later use
also define the angular momentumJ as the conserved charg
associated with the Killing vectorvm]m52]w :

J5E
SS

dSmTmnvn5E
0

`

dv (
j 52`

`

~av j
S !†av j

S j . ~6.49!

With respect to the HamiltonianM, the southern state~6.47!
becomes a thermal density matrix

rE
S5C expS 2

M
T D ~6.50!

with temperatureT51/2p; C5P(12e22pv) is a normal-
ization factor.

VII. KERR –de SITTER

In this section we generalize the discussion of the pre
ous sections to the three-dimensional Kerr–de Sitter s
tion, which represents a spinning point mass in dS3 .

A. Static coordinates

The Kerr–de Sitter metric describes the gravitational fi
of a point particle whose mass and spin are parametrized
12M andJ:

ds252N2dt21N22dr21r 2~dw1Nwdt!2. ~7.1!

The lapse and shift functions are

N25M2r 21
16G2J2

r 2 , Nw52
4GJ

r 2 . ~7.2!

The lapse function vanishes for one positive value ofr:

r 15
1

2
~At1At̄ !, ~7.3!
9-18
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where

t[M1 i ~8GJ!. ~7.4!

This is the cosmological event horizon surrounding an
server atr 50. It has a Bekenstein-Hawking entropy@69,70#
of

S5
pr 1

2G
5

p

4G
~At1At̄ !. ~7.5!

B. Kerr-dS3 as a quotient of dS3

In 211 dimensions, there is no black hole horizon f
Kerr–de Sitter because the ‘‘black hole’’ degenerates t
conical singularity at the origin. This is best seen by writi
the metric as an identification of de Sitter@71#. Let us define
m5r 1 anda54GJ/r 1 , so that

M5m22a2, J5
ma

4G
. ~7.6!

The coordinate transformation

t̃ 5mt1aw,

w̃5mw2at, ~7.7!

r̃ 5A r 21a2

m21a2

changes the Kerr–de Sitter metric to the vacuum form

ds252~12 r̃ 2!d t̃21
dr̃2

12 r̃ 2 1 r̃ 2dw̃2, ~7.8!

but with a nonstandard coordinate identification. In empty
Sitter space, (t̃ , r̃ ,w̃12pn) labels the same point for all in
tegern. In the presence of a particle, the points

~ t̃ , r̃ ,w̃ !12pn~a,0,m! ~7.9!

are identified instead.

C. Kerr-dS3 temperature and angular potential

In this section we consider a scalar field in Kerr-dS3. The
cylinder mode solutions found for de Sitter space in Sec.
are also solutions in Kerr–de Sitter space, after the subs
tions t→ t̃ , r→ r̃ , andw→w̃ are performed. For the modes
remain single valued, the angular momentumj must be non-
integer:

j 5
n1va

m
, n integer. ~7.10!

The mode analysis carries over trivially. In particular, t
Euclidean modes~6.38! and ~6.39! take the same form in
Kerr–de Sitter space.
10403
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Analogues of Eqs.~6.48! and ~6.49! define conserved
charges associated with the Killing vectorsj̃m]m5] t̃ and
ṽm]m52]w̃ :

M̃5E
SS

dSmTmnj̃n5E
0

`

dv (
j 52`

`

~av j
S !†av j

S v,

J̃5E
SS

dSmTmnṽn5E
0

`

dv (
j 52`

`

~av j
S !†av j

S j ,

~7.11!

whereTmn is the matter stress tensor. Here the hypersurf
SS is defined, for example, by the normal vector

nSS
m ]m5

r̃

A12 r̃ 2

m

r
] t̃1

A12 r̃ 2

r̃

a

r
]f̃ . ~7.12!

~For a.0, SS is not a spacelike surface near the origin; th
does not affect the definition of conserved quantities.! The
expressions forM̃ andJ̃ nevertheless take the same form
M andJ in de Sitter space. The Euclidean state, restricted
the southern diamond (r̃ ,1), is a density matrix

rE
S5C exp~22pM̃!. ~7.13!

In the (t,r ,w) coordinates, the asymptotic metric o
Kerr–de Sitter space takes a standard form nearI ~detailed
in Sec. VII D!. In order to compare conserved quantities
different space-times, we must use the Killing vectors] t and
]w to measure energy and angular momentum.12 The corre-
sponding conserved charges are related toM̃ and J̃ by a
linear transformation. Using Eq.~7.7! one finds

M̃5
m

m21a2 M1
a

m21a2 J. ~7.14!

Thus we obtain a density matrix

rE
S5C expS 2

M1VJ
T D ~7.15!

at temperature and angular potential

T5
m21a2

2pm
, V5

a

k
. ~7.16!

For later convenience it is useful to rewrite the dens
matrix ~7.15! in terms of the complex inverse temperature

b[
11 iV

T
5

2p

At̄
, ~7.17!

12We are choosing the normalization of the timelike Killing vect
to be fixed atI, as is appropriate for a CFT description. By norma
izing at r̃ 50 instead, one would obtain the apparent temperat
seen by a local observer@72#.
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and the complex charges

L05
1

2
~M2 iJ!, L̄05

1

2
~M1 iJ!. ~7.18!

These charges are constructed from the complex Killing v
tor fields

z05
1

2
~] t1 i ]w!, z̄05

1

2
~] t2 i ]w!. ~7.19!

Then the density matrix of the scalar field in the south
diamond takes the form

rE
S5C exp~2bL02b̄L̄0!. ~7.20!

D. The boundary stress tensor and Virasoro charges

In this section we define, compute, and interpret
Brown-York boundary stress tensor in static coordinates,
lowing @42#. In the static coordinatesI6 is at r→`. The
metric takes the asymptotic form

ds252
dr2

r 2 1S r 22
M

2 Ddwdw̄1
t

4
dw21

t̄

4
dw̄21OS 1

r 4D ,

~7.21!

with

w[w1 i t . ~7.22!

Sincew;w12p, the boundary is a cylinder with conforma
metric

dsconf
2 5dwdw̄. ~7.23!

dS3 has an infinite number of asymptotic symmetrie
whose associated bulk vector fieldsz generate the conforma
group onÎ2 @13#. With each of these symmetries there is
associated charge. A general procedure for constructing
charges for spacelike slices ending on a boundary was g
in @73#, adapted to AdS in@74#, and adapted to dS in@13#.
For dS3 in planar coordinates,I2 is a plane and the charge
are

Ln5
1

2p i R dzTzzz
n11,

L̄n52
1

2p i R dz̄Tz̄z̄z̄
n11, ~7.24!

whereTzz is the boundary stress tensor given by@73,74,13#

Tmn5
1

4G
@Kmn2~K11!gmn#. ~7.25!

Here gmn is the induced metric on the boundary, and t
extrinsic curvature is defined byKmn5 1

2 Lngmn with nm the
future-directed unit normal. The contour integral is over t
S1 boundary ofI2 in planar coordinates atuzu5`. The
10403
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Abbott-Deser~AD! mass@75# is proportional toL01L̄0 . The
complex coordinates on the boundary cylinder in Eq.~7.21!
are related to those of the plane by

z5e2 iw. ~7.26!

In the preceding section chargesL0 and L̄0 were con-
structed for weak scalar field excitations on a fixed de Si
background. These can be related to the weak field limi
L0 and L̄0 by using the conservation equation@73#

1

2p
¹mTmn5nmTmn , ~7.27!

which states that the failure ofTmn to be conserved is given
by the matter flux across the boundary. Contracting b
sides of Eq.~7.27! with a Killing vector z and integrating
over a discSC spanning a contourC on I2 yields

1

2p E
C
dsmTmnzn5E

SC

dSmTmnzn, ~7.28!

wheredsm is the normal boundary volume element norm
to the curveC. Comparing with Eqs.~7.11!, ~7.18!, and
~7.19!, we see that integrand on the right-hand side of t
expression forL0 (L̄0) agrees with that in the expression fo
L0 (L̄0).13 Of course when the fields are not weak there
gravitational corrections to the bulk expressions.

The cylinder charges corresponding to Eq.~7.24! are14

Hn52
1

2p E
0

2p

dwTwwe2 inw ~7.29!

and its complex conjugate. We have used the symbolHn
rather thanLn because on the cylinder~7.29! includes a Ca-
simir energy contribution forH0 . We will be interested in
H0 , which is the charge associated with the vector field

z05 1
2 ~] t1 i ]w!. ~7.30!

For r→` one finds

Tww5
1

4G
gww5

t

16G
. ~7.31!

Integrating around the cylinder then gives

H052
1

2p E
0

2p

dwTww52
c

24
t, ~7.32!

and similarly

13Our sign convention in Eq.~7.24! was chosen so that in th
weak field limitH reduces to the integral of the scalar stress ene
density, without a relative minus sign. This convention agrees w
@13,42,62#, but differs by a sign from@46,47#.

14A minus sign arises in this expression from the relative orien
tion of thez andw contours.
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H̄052
c

24
t̄. ~7.33!

For later convenience we have written these expression
terms of the dS3 central charge

c5
3l

2G
, ~7.34!

where we have restored the factor of the de Sitter radiul.
However, so far our discussions have been purely classi

We note for pure de Sitter space~M51 andJ50! H05
2c/24. This has a nice interpretation in the dual field theo
on the boundary, as discussed in@42#.15 According to @13#,
the bulk gravity state on the slicet5` in planar coordinates
is dual to a CFT state on theS1 boundary ofI2 ~i.e., where
the slicet5` intersectsI2! at z5`. This state is the wave
functional produced by fixing boundary conditions on theS1

and then doing the CFT path integral over the disk. T
should give theSL(2,C) invariant ground state of the CFT
Transforming from planar to static coordinates in the bulk
then dual to the conformal mapping from the plane to
cylinder. This mapping should produce, via the Schwarz
in the stress tensor transformation law, the Casimir ene
2c/24 for a CFT with central chargec on a circle of radius
1. Indeed this agrees beautifully with the fact that the bou
ary stress tensor vanishes in planar coordinates but g
H052c/24 in static coordinates. We note for future refe
ence that the state so constructed onI2 is a pure state with
no entropy.

The agreement with the CFT picture persists for generat.
Equation ~7.32! is then precisely the Casimir energy fro
conformal mapping from the plane to a cone. We note a
that asM decreases, the energyH0 increases, in accord with
the expectation that a positive deficit angle has a posi
mass.

VIII. ENTROPY

In this section we discuss the conditions under which
entropy ~7.5! might be microscopically derived from a 2D
CFT. Related discussions have appeared in@8,45,46#.

Consider the canonical partition function of a 2D CF
with complex potentialb,

Z5E dL0dL̄0r~L0 ,L̄0!e2bL02b̄L̄0, ~8.1!

wherer is the density of states. We wish to evaluate this
the saddle point approximation. Let us assume that we ar
a regime where the thermodynamic approximation is va
and we can use Cardy’s formula@76# for the density of
states16

15An alternate interpretation was given in@46#.
16Since we are working in the canonical picture rather than

microcanonical picture, the final formula for the entropy is un
fected by the shift ofL0 in the exponent.
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r~L0 ,L̄0!5expF2pAc

6 S L02
c

24D12pAc

6 S L̄02
c

24D G .
~8.2!

Whenb is complex, Eq.~8.1! has a complex saddle point a
L05(p2c/6b2)1(c/24).17 Evaluating the integral at the
saddle point and usingS5(12b]b2b̄]b̄)ln Z gives

S5
p2c

3b
1

p2c

3b̄
. ~8.3!

If we now use the formula

c5
3l

2G
, ~8.4!

for the central charge of the boundary CFT, together with
formula

b5
2p

AM2 i ~8GJ!
, ~8.5!

derived in Sec. VI C for the complex temperature of Ke
dS3 , the microscopic formula~8.3! reproduces exactly the
macroscopic formula~7.5! for the Bekenstein-Hawking en
tropy of Kerr-dS3 .

This yields a two-parameter fit relating the area of t
Kerr-dS3 horizon to the number of microstates of a 2D CF
However, with our current understanding, this should be
garded as highly suggestive numerology rather than a d
vation of the entropy. One problem is that the dual CFT
not unitary, and hence is not obligated to obey Cardy’s f
mula. A second problem is that we have not specified wh
the CFT density matrix resides whose entropy is being co
puted. In most discussions—including ours—the quant
state on global de Sitter is in a pure state. Furthermore
dual—as discussed at the end of Sec. VII D—is theSL(2,C)
invariant CFT vacuum. A density matrix arises only aft
tracing over a correlated but unobservable sector. We sa
Sec. VI C that for a scalar field in the~pure! Euclidean
vacuum state, a thermal density matrix arises after a north
trace over the Hilbert space in the unobservable north
diamond. One might expect that the quantum state of
boundary CFT would also become thermal after perform
a similar trace. However, it is not clear to us exactly wha
northern trace corresponds to in the boundary CFT onI6.

It appears that de Sitter entropy arises when attentio
restricted to the true observables in the theory. The bound
CFT includes information about correlators at acausal se
rations that do not directly correspond to observable data
is a challenging and important problem to understand w
are the true observables in the language of the bound
CFT.

e
-

17For pure dS3 this is L05c/12, as in@8#.
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APPENDIX A: ALTERNATE FORMS OF GREEN
FUNCTIONS ON dSd

In this appendix we present several alternate express
for the Green functions. First, let us consider a de Si
invariant vacuum uV&, so that the wave equation fo
GV(x,x8) becomes

~12P2!]P
2G2dP]PG2m2G50, ~A1!

whereP is related to the geodesic distanceu(x,x8) by

P5cosu. ~A2!

Note that ifGd,m2 solves Eq.~A1! in d dimensions for mass
squaredm2, then]PGd,m2 solves Eq.~A1! in d12 dimen-
sions with mass-squaredm21d. This gives an iterative pro
cedure for constructing Green’s functions in all dimensio
We find
an
t

10403
al

ns
r

.

G312n,m25]P
nG3,m2112~n11!2

G212n,m25]P
nG2,m22n~n11! , ~A3!

wheren is a positive integer.
Let us first consider oddd. For d53, if we let

G3,m25
x

sinu
~A4!

thenx satisfies

]u
2x1~12m2!x50. ~A5!

So the general solution in three dimensions is

G3,m25
A sinhm~p2u!1B sinhmu

sinu
, ~A6!

wherem5Am221 andA andB are arbitrary constants. Th
first term gives the usual short distance singularity for
Euclidean vacuum—with the correct normalization, it giv
the usual expression~2.9!. The second term is present for th
transformed vacuum statesua&, and has the antipodal singu
larities mentioned in Sec. II B. From Eq.~A3! we can obtain
an expression for the Green functions in higher dimensio
Gd,m25 (
m50

n S n
mD G~n2m12im!

G~m1112im!

A sinh~2m2 in12im!~p2u!1B sinh~2m2 in12im!u

sind22 u
~A7!
tric

-

wheren5 1
2 (d23) and

m5Am22S d21

2 D 2

. ~A8!

We have absorbed an overall normalization into the const
A andB. As a function ofu, G has isolated singularities bu
no branch cuts. However,u5cos21 P has a branch cut from
P51 to ` along the real axis, across whichu(P) changes
sign. When expressed as a function ofP, G will likewise
have a branch cut.

For evend, we start with thed52 solution in terms of
Legendre functions

G2,m25APn~cosu!1BQn~cosu!, ~A9!

wheren(n11)52m2. So
ts

Gd,m25APn
~n!~cosu!1BQn

~n!~cosu!, ~A10!

wheren5 1
2 (d22) andn(n11)5n(n11)2m2. Here,Pn

(n)

is an associated Legendre function, thenth derivative of the
Legendre function.

APPENDIX B: PROPERTIES OF HYPERGEOMETRIC
FUNCTIONS

We collect a few relevant facts about hypergeome
functions. More details may be found in, e.g.,@66#. The for-
mula

F~a,b;c;z!5~12z!c2a2bF~c2a,c2b;c;z! ~B1!

relates hypergeometric functions ofz with different values of
parameters, as in Eq.~6.7!. To relate hypergeometric func
tions of different variables we use
9-22
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F~a,b;c;z!5
G~c!G~b2a!

G~c2a!G~b!
~2z!2aFS a,a112c;a112b;

1

zD1
G~c!G~a2b!

G~a!G~c2b!
~2z!2bFS b,b112c;b112a;

1

zD
5

G~c!G~c2a2b!

G~c2a!G~c2b!
F~a,b;11a1b2c;12z!

1
G~c!G~a1b2c!

G~a!G~b!
~12z!c2a2bF~c2a,c2b;c2a2b11;12z!. ~B2!

These give us the Bogolyubov relations~3.21! and ~3.39!, respectively. SinceF(a,b;c;0)51 these equations also fix th
behavior ofF(a,b;c;z) asz→` andz→1, as in Eqs.~4.2!, ~6.9!, and~6.20!.
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