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The de Sitter/conformal field theofdS/CFT) correspondence is illuminated through an analysis of massive
scalar field theory ird-dimensional de Sitter space. We consider a one-parameter family of dS-invariant vacua
related by Bogolyubov transformations and compute the corresponding Green functions. It is shown that none
of these Green functions correspond to the one obtained by analytic continuation from AdS. Among this family
of vacua are irfout) vacua which have no incomin@utgoing particles oriz~ (Z"). Surprisingly, it is shown
that in odd spacetime dimensions the in and out vacua are the same, implying the absence of particle produc-
tion for this state. The correlators of the boundary CFT, as defined by the dS/CFT correspondence, are shown
to depend on the choice of vacuum state—the correlators with all poinfS amnish in the in vacuum. For
dS; we argue that this bulk vacuum dependence of the correlators is dual to a deformation of the boundary
CFT, by a specific marginal operator. It is also shown that Witten's nonstandard de Sitter inner product
(slightly modified reduces to the standard inner product of the boundary field theory. Next we consider a scalar
field in the Kerr-dg Euclidean vacuum. A density matrix is constructed by tracing out over modes which are
causally inaccessible to a single geodesic observer. This is shown to be a thermal state at thg Kerr-dS
temperature and angular potential. It is further shown that, assuming Cardy’s formula, the microscopic entropy
of such a thermal state in the boundary CFT precisely equals the Bekenstein-Hawking value of one-quarter the
area of the Kerr-dghorizon.
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I. INTRODUCTION AND SUMMARY compute the Green functions in thesevacua, which have
several peculiarities. Singularities occur at antipodal points
Recently, following earlier worf1-12], a proposal has Which are, however, unobservable since antipodal points are
been made relating quantum gravity in de Sitter space t@lways separated by a horizon. Moreover, these singularities
conformal field theory(CFT) on the spacelike boundary of 90 not affect the scalar commutator, which is independent of
de Sitter spacd13]. The proposal was motivated by an & We als_o see tha.‘t th‘.a co[nudent point singularity has two
: ) . . terms, with opposite-signete prescriptions. Hence all of
analysis of the asymptotic symmetry group of de Sitter spac esea-vacua except for the Euclidean vacuum differ from
together with an appropriately crafted analogy to the AdS

. i the usual Minkowski vacuum at arbitrarily short distances.
CFT correspondencil4,15,1@. Other relevant discussions \ye 4150 compute the response of an Unruh detector and find

of quantum gravity in de Sitter space and dS/CFT appear igya¢ it is thermal only in the Euclidean vacuum. The dual
[17—33. .. CFT interpretation of thex-vacua is deferred to Sec. IV.
Unlike the AdS/CFT case, there has been no derivation of |, relating the AdS/CFT and dS/CFT correspondences, it
the proposed dS/CFT correspondence from string theorys natural to consider the particular Green function obtained
Hopefully, a stringy construction of de Sitter space will be by “double” analytic continuation from AdS to dS via the
forthcoming. M.eanwhlk_e, much has. been Ieamed about Adslﬁyperbolic plane. We show that the Green function so ob-
CFT by analyzing solutions of the field equations and studyajned, while dS-invariant, doemt correspond to the Green
ing the propagation and interactions of fields, without di-fynction in any known dS-invariant vacuuhThis result un-

rectly using string theory. In this paper we pursue a parallefjerscores the nontriviality of extrapolating from AdS/CFT to
approach to dS/CFT, analyzing in some detail massive scalgfs/,cgT.

field theory in de Sitter space. A number of surprising and |n sec. |1l we consider scalar field theory in spherical
interesting features emerge. Since this paper contains somggrdinates

rather detailed calculations, for the benefit of the reader we

include a summary in this Introduction. _

We begin in Sec. Il with a discussion of dS-invariant 1ye penefited greatly from discussions with M. Spradiin and A.
Green functions for a massive scalar, reviewing and generalz|ovich on this point. There is in fact a four-complex-parameter
izing to d dimensions the discussion pf0,41]. We first de-  family of dS-invariant Wightman functions, characterized by the
scribe the Green function obtained by analytic continuationcomplex strengths of the coincident and antipodal poles, as well
from the Euclidean Sphere. This is the so-called EUCIideaIas the two possib|e'€ prescriptions at each p0|e_ On|y a one-
Green function, and it is the two-point function of the scalarcomplex-parameter family of these is known to be realizable as
field in the Euclidean vacuum. We then construct a family oftwo-point vacuum expectation values. Analytic continuation from
dS-invariant vacua labeled by a complex parameteand  AdS gives a result which is not realized within this family.
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ds’ il = Z, impli ive ad-
e —d7-2+cosI‘?TdQ§,1, (1.2) J_zi)sin(t).pposed to the relatiofy, = £,, implied by the naive ad
As in the AdS case one expects that different coordinate

. - . ) ) systems in dS are relevant for different physical situations. In
again generalizing40,41 to d dimensions. A salient feature gec v/ we consider static coordinates ford$h which the
of these coordinates is that they cover all of de Sitter spacg,etric is

and hence are suitable for studying global properties. The
solutions of the massive scalar wave equation are found for ds? 2

arbitrary angular momentum. We then give an explicit con- 7z —(1-r?)dt*+ a-r
struction in terms of these modes of the Bogolyubov trans-

formations relating all ther vacua. Special “in” and “out”  \yhere| is the de Sitter radius. These coordinates do not
vacua are found, which are distinct from the Euclideancqyer all of d$ with a single patch. Nevertheless, they do

vacuum. The in vacuum has no incoming particles’on  ¢oyer the so-called southern diamond—the region causally
while the out vacuum has no outgoing particlesn The accessible to an observer at the “south pofe0. More-

B(_)g_olyub(_)v_transformatlon b.eFWE‘_e” them IS CO”_‘P”ted- S.urbver, the symmetry generating time evolution of the southern
prisingly, it is found to be trivial in odd dimensions. This

. ) ) .~ observer is manifest in static coordinates. Hence they appear
means that for the in vacuum of odd-dimensional de Sitter - : : :

. . . . . well adapted to describing the physics accessible to a single
space there is no particle production. This result did not aP-server as advocated [42). - is atr—co and is confor-
pear in previous analyses, which largely considered the four- |t ’ lind '
dimensional case. mal to a cylinder.

In Sec. IV we specialize to d¢Sand consider the dual In the (t_’r"P) coordinates, the full dssspacgtime can be
two-dimensional CFT (CFJ) interpretation of these results, cOvered with four paiches separated by horizons. We solve
along the lines proposed ji3]. We first compute the bound- the s'calar wave equatlon in each pqtch anq construct global
ary behavior of the massive scalar Green function as a funcSolutions by matching across the horizon. It is shown that the
tion of the vacuum parameter. This behavior is fixed by N vacuum on the cylinder and the in vacuum on the sphere
conformal invariance up to overall constants which are are equivalent. A southern density matrix is constructed from
dependent. The boundary correlators have an especialljie Euclidean vacuum by tracing over modes which are sup-
simple form in the in vacuum. For both points #n (or both ~ ported only in the northern causal diamond and are thereby
onZ")they vanist? This is related to the fact that 6f the  unobservable to the southern observer. This is explicitly
spatial kinetic terms vanish and the theory becomes ultraloshown to be a thermal density matrix at temperatiligg
cal. For one point oif~ and one orZ* they do not vanish. =1/2xl, with energy measured with respect to the static
The simplicity of this behavior suggests that the in vacuumtime coordinate in Eq(1.2). (This result is implicit in the
despite the unphysical singularities, may play an importanbriginal work[43].)
role in understanding the dS/CFT correspondence. In Sec. VIl we extend the static coordinate discussion to

One way of generating a family of correlators in a CFT isthe Kerr-d$ geometry which represents a pair of spinning
by deforming the theory by a marginal operator.[I8] it point masses at the north and south poles af diis has a
was argued that a scalar field of masss dual to a pair of  Gjphons-Hawking temperatur&g, and angular potential
CFT operatorsO.. with conformal weights ¥ v1-m° . which depend on the mass and spin. It is shown that,
The composite operatdd, O always has dimension 2 for after tracing over northern modes, one obtains a thermal den-

any m, exactly .vv.hat is required for a marginal _deformation. sity matrix at precisely temperatufs,, and angular poten-
We show explicitly for reale that this composite operator g Qe

deforms the correlators in the same way as shifting
In Sec. V we consider the definition of the adjoint in the

. . tate on a bulk spacelike slice ending®nis dual to a CFT
Hilbert space of the scalar field. In standard treatments of 2R, .. 1 he boundary of the spacelikeZat[13]. The dS-
Euclidean conformal field theory, the adjoint of an operator.

involves a(nonloca) reflection about the unit circle. This invariant bulk vacuum should be_dual to t6&(2,C) invari-
prescription becomes the usual local adjoint when mapped @nt CFT vacuum. _Fo_r pure de Sitter space, we the_\refore ex-
the cylinder. The “naive” adjoint for a bulk scalar field in- pect to see a Casimir energyc/12, Wherec=3l(2G is the
duces an adjoint in the Euclidean CFT which is local, andCentral charge of the CFT computed|i8]. We find a two-
hence does not agree with the usual Euclidean CFT adjoinParameter agreement with this expectation by computing the
However, in[17] Witten introduced a modified bulk inner Brown-York boundary stress tensor in Kerr;dShis gener-
product and corresponding adjoint. We show that, after @lizes results of42].
modification of the parity operation, Witten's bulk adjoint ~ Finally, in Sec. VIl we turn to the issue of de Sitter en-
induces precisely the standard nonlocal Euclidean CFT adropy. In the case of Bawos-Teitelboim-Zanelli(BTZ)
joint. We further show that with the modified adjoint the black holes in Ad§, the entropy formula can be microscopi-
SL(2,C) generators obeycgzﬁ,n (in a standard notation ~ cally derived, including the numerical coefficient, from the
properties of the asymptotic symmetry group together with
the assumption that the system is described by a consistent,
2Except for a contact term which is computed. unitary quantum theory of gravity44]. String theory seems

+r2de?, (1.2

According to the d$/CFT, correspondence the quantum

104039-2



CONFORMAL VACUA AND ENTROPY IN de SITTER SPACE PHYSICAL REVIEW B5 104039

necessary in order to produce an actual example of suchfanctionP(x,x") is greater than one for timelike separations,

theory, but the general arguments follow from the stated asequal to one for lightlike separations, and less than one for

sumptions independently of the stringy examples. Thereforspacelike separations. In fa€t(x,x") = cosé, whereé is the

it is natural to hope that a similar discussion is possible folgeodesic distance betwerandx’ for spatial separations, or

dS;. We report here some partial results but not a completétimes the geodesic proper time difference for timelike sepa-

solution of the problem. Related discussions appear ifiations.

[3,8,45-50. A vacuum statd()) for a free massive scalar in de Sitter
The main observation is that if we simply assume Cardy'sSPace with the mode expansion

formula for the density of states, then a CFT with

=3I_IZG at temperaturd g _and angular potentidl gy has d(X)= >, [andn(X)+ald* ()] (2.3

a microscopic entropy precisely equal to one-quarter the area n

of the Kerr-d3 horizon. The two-parameter fit is striking but ) N

at present should be regarded as highly suggestive numerdian be defined by the conditions

ogy rather than a derivation. For one thing, the dual CFT is

unlikely to be unitary[13], and so there is no reason for an|)=0, 2.4

Cardy’s formula to apply. For another thing, it is not clearWherea andal as usual obey

how a mixed thermal state arises in the dual CFT. The natu- n n

ral CFT state associated with is the SL(2,C) invariant [a,.al]=6 2.5

vacuum, in agreement with the pure nature of the global bulk nems Thme '

de Sitter vacuum. A mixed density matrix arises in the bulkyj,o modess,(x) satisfy the de Sitter space wave equation
only after tracing over the unobservable northern modes. "

However, tracing over northern modes is a bulk concept. We (V?—m?)¢,=0, (2.6)
have not succeeded in finding a natural boundary interpreta-
tion of this operation. and are normalized with respect to the invariant Klein-

We believe this raises a sharp and important questioGordon inner product
whose answer may lie within the present framework and in
particular may not require a stringy construction of de Sitter.
What is the meaning, in terms of the dual boundary CFT, of
tracing out degrees of freedom which are inaccessible to a
single observer? The integral is taken over a complete spacelike slige dS;

Two appendixes detail useful properties of hypergeometwith induced metrich;; , and ds*=d%./hn*, wheren* is
ric functions and de Sitter Green functions. For the rest othe future directed unit normal vector. The nof®7) is

(6o )= i Ldzwné’mm: Some (27

the paper we will sekt=1 unless otherwise stated. independent of the choice of this slid€l) depends on the
choice of modes appearing in EQ.3).
Il. GREEN FUNCTIONS The Wightman function, defined by

The two-point Wightman function of a free massive scalar
can be used to characterize the various de Sitter invariant GQ(x,x’)=<Q|¢(x)¢(x’)|Q>=§n: dn(X) Py (X)),
vacua. In this section we describe these Green functions and 2.8
their properties. Previous studies of scalar field theory in de

Sitter space, largely concentrating on the four-dimensionatnaracterizes the vacuum staf®. There is a unique state,

case, can be found i#0,41,51-60 the “Euclidean vacuum’|E), whose Wightman function is
obtained by analytic continuation from the Euclidean sphere.
A. The Euclidean vacuum and Wightman function This state is invariant under the full de Sitter group.dn

In this section we review the standard Euclidean vacuunsPacetime dimensions the Wightman function in the gtte
and its associated Wightman functiahdimensional de Sit- 'S
ter space (d§ is described by the hyperboloid in N ,
(d+1)-dimensional Minkowski space Ge(x,x")=(E|$(x) #(x")[E)

d 1+P(x,x
P(X,X)=1, 2.1 e ofl b, p 3 EEPOOXD)
' 2 2
where
d—1
P(X,X")=9apX3X'?, a,b=0,...d. (2.2 hiETiw,

We will use lower case to denote al-dimensional coordi- 5
nate on dg and upper casX to denote the corresponding —/m2— d_l)
(d+1)-dimensional coordinate in the embedding space. The m '
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I'(h)I'(h_) where
Cm,d= +—d (2.9
dr2
(4) F(E) u=exp{; c(aET)Z—aaE)Z],
Gg is real in the spacelike regioA<<1 and singular on the 1 _Re
light coneP=1. Theie prescription near the singularity is cla)= 7 Intanh 5 a>ei Ima 2.19
Ge(x,x)~[(t—t'—ie)*—[x=x'[»)]*"¥% (2.10
The vacuum state
Note that this prescription cannot be written in terms of the
invariant quantityP alone, which is time-reversal invariant. |y =UIE) (2.20

Gg obeys is annihilated by thé&,,. The operatoi/ is unitary, so Eq.

(V2—m?)Gg(x,x')=0. (2.1)  (2.20 is properly normalized. In the quantum optics litera-
ture, |a) is known as a squeezed state. Equat®@i20 may
In addition to the Wightman function, the Feynman be formally rewritten as
propagator

1 .
GrOGX) =0 (t—t)G(x,X) + Ot —1)G(X' ,X) |a>=Cexp(§e“ 2 (a)?
(2.12

|E), (2.21

whereC is a constant. Although this expression is not nor-
malizable(so C is technically zery it is often more conve-

Ge(X,x")=G(x,x")—G(x,X) (2.13 nient than Eq(2.20.
The Wightman function in the state) is

and commutator

are also of interest. With the normalizati6n9) Gg obeys

i Gu(X,X')= 2 $a() 1 (X). (2.22
(V2=m?)Gp(x,x")= —=8%x,x").  (2.14 "
-9

=

B. The MA transform

Using Egs.(2.15 and(2.16 this can be rewritten as a sum
over Euclidean modes,

In this section we describe the Mottola-All€MA) trans- G, (x,x")= NiE [¢E(X)¢E* (x')+ gata” d)E(x’)qu*(x)
form [40,41], which relates the various de Sitter invariant n

vacua and Wightman functions to one another. X) o , N ,
denote the positive frequency modes associated vﬁ the Eu- +e” ¢n(X) ¥ (Xp) +€br(Xa) ™ (X)],
clidean vacuum. Explicit expressions fgi will be given (2.23
later (Secs. Il C and VIE, but we do not need them now.

Let x, denote the antipodal point toon the de Sitter hyper- @nd then evaluated as

boloid (i.e., X,= —X). Then, as will be seen below, the Eu-

" — N2 ’ a+a* ’
clidean modes can be chosen to obey Ga(x,x") =NE[Ge(x,x") +e""* Gg(X',X)
HE(Xp) = BE* (%). (2.19 +e%" Ge(x,xp) +e°Ge(xa x')]. (2.24
Now consider a new set of modes related by the MA transHence it is easy to obtain the) Wightman function from
form the Euclidean one. Since these Wightman functions depend
only on theSO(d,1) invariant quantityP (away from the
5 1 singularitie$ this construction demonstrates the invariance
¢nENa(¢E+ e“q&,'f*), N,=—, (2.1 of the |a) vacua under the connected part of the de Sitter
1—gata” group. Note, however, that i is not real the collection of

modes(2.16) is not mapped into itself bEPT. Therefore the
where @ can be any complex number with Re0. The |a) vacua areCPT invariant only for reala.

modes(2.16 can be used to define new operafafsandz, Of course, since the commutator of two fields is mum-
via a decomposition of the forrt2.3). These are related to ber, the commutator functio®: must be the same in all
the Euclidean operatoaﬁ and aET by vacua. It is easy to check that the commutator constructed
from the two-point function(2.24) has this property.
3, =N, (aE—e*"at"h). (2.1 The Wightman function2.24 has several peculiarities.
First, there are antipodal singularities>dt=x,. However,
This may be rewritten as such antipodal points are separated by a horizon so this sin-
_ 4 gularity is not observable. Second, the singularity at coinci-
an=Uapll’, (2.18 dent points has a negative frequency component coming
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from the second term in E§2.24) (although the commutator that the detector has a spectrum of stafg$ with energies
is unaffectegl This means that foe*#0 the vacuum state E;, and define the matrix elememt; = (E;|m(0)|E;). In the
does not approach the usual Minkowskian one even at disracuum statda) the transition rate between the stat€s)
tances much shorter than the de Sitter radius. This “unphysiand|E;) may be evaluated in perturbation thedsge, e.g.,
cal” behavior was to be expected since the MA transformthe review[62])

(2.16 involves arbitrarily high-frequency modes. Despite
these peculiarities we will see that these vacua play an inter-

esting role in the dS/CFT correspondence. Pa(Ei_’EJ):|mij|2ﬁwdtefiAEtGa(X(t)vX(O))'

(2.26
C. Analytic continuation from AdS

An alternate way to get a dS Green function is by doubIeWhe.reAE: Ej—Ei. . L .

analytic continuation from AdS via the hyperbolic plahie First, let us Stl.de .partlcle productu_)n n the Euclidean

fact, we shall argue that this yields a Green function Whichvacuu,m. For two timelike se/parated poimtandx we have
P(x,x")=cosht and P(x,,x')=—cosht, wheret is the

differs from any of those discussed in Sec. Il B and therefore, . ; "
roper time betweerandx’. We taket to be positivenega-

as far as we know, is not physically realizable as the Wightp

man function in any vacuum state. Hence the dS/CFT corret-ive) if xis in the future(pasi light cone ofx’. As a function

spondence is not in any precise sense that we know of th%f L _the appropriatée prescription for the Wightman func-
analytic continuation of the AdS/CFT correspondence, and'®" 1S
care must be taken in extrapolating from the latter to the
former.
scﬁlgrSd Grrlsznaflljrr:lc(tli%fsoc(:gn ég)oit)r;\;?r:gma\;a;usuunr;V;T/z?enoi{]dicating that for positivenegativg t we should go under
malizable eigenmodes. The wave equation allows two pos.oVe) the branch cut fronP=1 to P=2 in Eq.(2.9. As a
sible falloffs (fast and slow at infinity, but only the fast function in the complex planeGe obeys
falloff appears in the Green function. Double analytic con-
tinuation from AdS to dS will therefore yield a dS Green
function with only one of the two possible falloff rates _
(which become complex conjugates for large enough GE (1) =Gg(t—2i). (2.29
This cannot be the Euclidean dS Green function, as the latter
involves both falloffs. There is a vacuutn) whose Green To evaluateGg(x',x) we must take— —t:
function has the required falloffHowever from Eq.(2.24
we see that the Green function for every state ex{iephas Ge(X',X)=Gg(—t—ie)=CGg(t+ie—2mi). (2.30
a coincident point singularity with a coefficient larger than
that of |[E) and containing two terms with opposite-sigried ~ Similarly, we may evaluate
prescriptions. However, double analytic continuation from
AdS will yield a coincident point singularity with a canonical Ge(X,Xp) =Gg(Xa ,X")=Gg(t—im). (2.31
coefficient and a singlée prescription. Hence it yields a
Green function which is not realized d&|®(x)d(x')|a) The pointsx and x, are spacelike separated, so it is not
for any a. necessary to insert d.
Let us consider the example df=3. As a function oft,
D. Particle detection the Green function(2.9) has singularities at=nsi for all
# —1. This may be seen from the alternate form of the
reen function presented in Appendix A. Thus in the evalu-
ating Eq.(2.26) we may deform the contour of integration in
the complext plane

GE(X,X,):GE(t_iE), (227)

Ge(t)=Gg(—t—2i), (2.28

In this section we discuss particle detection by a geodesi
observer in thgda) vacua. We will find a thermal spectrum
only for the Euclidean vacuum.

Consider an Unruh detector moving along a timelike geo
desic, which couples to the field as

Jm dte "AEiG(t—ie)
J dtm(t) p(x(t)), (2.25 -

_ _ , =e*’TAEJ’ dte "AEGg(t—imr)

wherem(t) is an operator acting on the internal states of the —

detector and the integral is over the proper time along the .

detector worldline. Wlt_hout loss of generality we may take :e—zﬁAEJ' dte AElGL(t—2mi+ie). (2.32
the detector to be sitting on the south pole. Let us assume -

Thee <E terms have been dropped. Using E2128 and the
3See[2,7,61 for discussions. second line of Eq(2.32 we find that the detector response
41t turns out to correspond to the in vacuum discussed below. rate (2.26) obeys
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. d
PE(E|—>E]) :e*ZWAE (2 33 VsdleL]:_L(L"_d_z)YLJ . (34)
P(EjeEi) HereL is a non-negative integer ands a collective index

_ _ . . . (J1,---sJa-2). We will use a nonstandard choice ¥f;'s,
in the Euclidean vacuum. This is the condition of detailed,;iy,

balance for a thermal system at the de Sitter temperature

1 Y (Qa) =Y ()= ()Y Q). (3.5
7 (2.39

Tys= , )
ds HereQ , denotes the point 08~ antipodal toQ. In terms

) - of the usual spherical harmoni&; ,

For a general vacuum stafi@) we may use the identities

(2.32 to relate the integrals of all four terms in E@.24). \f i
1 — L x
We find Y= VoSt () 5 S (3.6
J dte "AFIG (t—ie)=N?|1+e* T ™E|2 The functionsY, ; are orthonormal,
XJoc dte—iAEtGE(t_ie)_ f dQYL](Q)Yt,J,(Q):5|_|_r5”r, (37)

(2.35 and complete,

So the ratio(2.33 become® _ ,
02.33 g‘, Y ()Y (Q)=610,0). (3.9
l+ea+7TAE 2 .

PE—E)
1+ea—7TAE

P.(Ej—E))

e 2mAE (2.36 We then have

L(L+d—2)

2
m2+
cosH 7

We conclude that the detector response is not thermal. In  y, +(d—1)tanhry, +
general the detector will not equilibrate. Even though the

yL:O'

ratio (2.36) is nonzero, we will see in the next section that (3.9
there are vacua for which, in a certain sense, there is N, ;o ms of the coordinate= — e2” this becomes
particle creation.
, d-1 d-1 ,
lll. THE SPHERE o(l=o)yi+||1-—— || 1+ = |owe
In this section we study scalar field theory oryd® glo- m?1-o L(L+d—2)
bal coordinatesr, (). The metric is T — 1 y_=0. (3.10
g — 0

ds?’=—d7r?+costt 7dQ3_;, (3.1 o
Let us make the substitution
wheredQj_, is the usual metric 0%~ 1, parametrized by . _
_ d—1)/2]— T
the coordinate$). An important feature of these coordinates yp'=cosh reftFHa= DT uiry, (3.11
is that they cover all of dSand hence are suited to a global
description of the quantum state. With

. . / (d—1)?
A. Solutions of the wave equation u= m2— T (3.12

In this section we find solutions to the massive wave
equation

Eq. (3.10 becomes a hypergeometric equation xor

(V2-m*)¢=0. 3.2 o(1- o)X +[c— (1+a+b)o]x’ —abx=0, (3.13

This differential equation is separable, with solutions . .
with coefficients

=y (7)Y (Q). (3.3
=YL Lj ) d-1 ) d-1 o
The Y| ; are spherical harmonics @~ * obeying a=L+——, b=L+———iu, c=1-in
(3.19
SThis expression was obtained for the case of a scalar with con- Let us consider the case of real positixei.e., 2m>(d
formal mass if59]. —1). We find that
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_ pl+d2-1 _ The Bogolyubov coefficients relating the two sets of
y|'=———=—coslh reltTld=DR2I-iu}r modes can be found by using the hypergeometric transfor-
\/; mation equationgsummarized in Appendix Band Eq.(3.5).
. |_+d_1 |_+d_1 . , One finds
— bt il e’ . _
2 2 Pl =Ae 20 gt B M (3.21)
(3.15
where
and its complex conjugate are two linearly independent so-
lutions. The normalization is fixed by demanding that these Ae 1, d odd
modes are orthonormal with respect to the inner product cothmpu, d even,
(2.7), which is easily evaluated afi .
0, d odd
B. In and out vacua B= (—)%cschrrp, d even; (3.22
We now use the solution§3.15 to construct in(out) .
vacua with no incomingout-going particles, and find the we have isolated the phase
Bogolyubov transformation relating them. Note that Eg. d—1
(3.9 is invariant under time reversal. Hence we obtain an- I(—ip)|{ L+ TH“
other pair of linearly independent solutions by defining e~ 20L=(—)L-ld-12
. d-1
y(n =yl (=), (3.16 FIwT| Lt ——in
(3.23
Explicitly,
for later convenience. The coefficients oblgy|>—|B|2=1
L+di2—1 as required for properly normalized modes.
yoUl=———— cosH rel~L-l@ D2 =inr Note thatB, the coefficient mixing positive and negative
Vi frequency modes, vanishes in odd dimensions. This implies
B B that the two sets of modes define the same vacuum:
XF|L+—— L+ ——+iul+ip,—e 27| , , : :
2 2 H " liny=|outy in odd dimensions. (3.29
(3.17

At the past boundary#{— —<) we find thatF—1 and
hence

dz2—1

ell(d=1)2]—ip}r

(3.18

y'—
"

while at the future boundaryr{— =)

dr2—1

yout, o {[(d-D)/2+iu}r
M

(3.19

Thus we see that the modes
B0 =y(7) Y (),

B0 =y (1) Y;(Q) (3.20

Hence, there is no particle production. If no particles are
coming in fromZ~, no particles will go out orZ .6 This is

in contrast with the even-dimensional case for which there is
always some particle production.

From EQq.(3.18 it follows that<;/>[‘j~ehff nearZ . In the
language of13], this implies the modes" are dual to op-
erators of weighth, on the boundary. Likewisegp™ are
dual to operators of weight_ . The de Sitter transforma-
tions act on the boundary theory as global conformal trans-
formations, which do not mix operators of different weight.
We conclude tha#™ and ™ do not mix under the de Sitter
group, so the statdm) and|out) are de Sitter invariant.

It is convenient to define the rescaled global modes

P () =Ny (7)Y (Q),

P =e "y ()Y (D).
(3.25

This is a trivial phase shift, sfn) and |out) are the states

are positive frequency modes with respect to the global tim@nnihilated by the lowering operators associatedstband
7 near the asymptotic past and future boundaries, respe@°", respectively. In this basis the Bogolyubov transforma-
tively. They represent incoming and outgoing particle statestion

They define two vacudin) and |out), which are annihilated
by the lowering operators associated#t and °“, respec-
tively. Physically,|iny is the state with no incoming particles

onZ  and|out) is the state with no outgoing particles @h.

5Note, however, that according to E@®.36 an Unruh detector
still observes particles.
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L5 = AN +iBE™ (x) (3.26

PHYSICAL REVIEW D65 104039

global coordinates. The Euclidean vaculi) is the state
that is annihilated by the positive frequency Euclidean

has the form of an MA transform, and so can be used tdnodes.

define additional de Sitter invariant vacua. The mo@25
have the useful property that for any point

We may rewrite Eq(3.10 in terms of the variablg=1
—o=1+¢€?7, which is well suited to analyzing the behavior

of global modes on the Euclidean geometry. Upon substitut-

Bl(xa) = ¢Elj"*(x), (3297 ing
wherex,~(— 7,€,) is the point antipodal te. In odd di- yE=coslt reltF[(@- D2 Fiuiry (3.29
mensions this becomes
we obtain the hypergeometric equation
~in _inx
B (x) = B3 (X). (3.28 @ i
This implies that in odd dimensions the in vacuumGBT 2(1-2) gz +t[E-(1+at+b®)o] -—ab™x=0,
invariant, whereas in even dimensio8®T interchanges in (3.30
and out.
with positive integer coefficient
C. The Euclidean vacuum
) i , i c=2L+d-1. (3.3
In this section we construct the Euclidean vacunin
the basis of spherical modes. The Lorentzian de Sitter geone find the general solution
etry (3.1) can be continued to Euclidean signature by taking
7 to run along the imaginary axis, from r=—i#/2 to 7 x=CU;+DU,, (3.32
=i/2. The resulting geometry is a roundsphere. We de-
fine the uppeflower) Euclidean hemisphere as the portion of where
this path that lies in the uppélower) complex 7 plane. In
?jitlil,:li;,z;he uppetlower) Euclidean pole lies at=imw/2 U —FL+ dz—l,LJr dTlei,u;ZLer—l;z).
We define positive frequency Euclidean modes to be those (3.33
that are regular when analytically continued to the lower Eu-
clidean hemisphere. In this section we find these modes ifthe second solution is given by
|
d-1 d-1
U,=72"2"F 1—L—T,1+|M—L—T;3—2L—d;z) (3.39

if dis odd, and by discard the second set of modes and keep the first. The
modes can be analytically continued through the branch cut
to the upper hemisphere, where they are not expected to be
regular.

The normalized Euclidean modes are

U2:U1|nz+ 2 kak
k=2-2L—-d

(3.39

if d is even; the coefficient®, are found, e.g., in63].

The Lorentzian geometry lies on the path fram1 (Z7)
along the reakz axis toz=+ (Z'). On the throat, arz
=2, it intersects with the Euclidean geometry, which lies on,
a unit circle centered &= 1. The lower(uppe) hemisphere
corresponds to the lowduppe) half-circle. The Euclidean . oL+diz=1;—L+[(d-1)/2] Ll D2l
poles are az=0. The functions(3.32 have a branch cut Y= NP cosft relt HHA= DRI Finir
from z=1 to z=+. Hence, they are not analytic on the K
whole Euclidean sphere. By choosing the Lorentzian path to
run just below the real axisz{~z—ie€), we obtain solutions xXF
that are analytic on the lower hemisphere and the entire
Lorentzian geometry. _

The first solution (3.33 is regular in these regions, f = F(2L+d-1)
whereas the second solution, E§.34) or (3.35, becomes r
singular at the lower Euclidean pole,zt 0—ie. Hence we

1
¢E<x>=wﬁy5(rwu(m, (339

where

1
L+T,L+T+i,u;2L+d—1;l+e27

(3.3
INQY))

L9t

3
T2
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The Euclidean Green functiof2.9) is then given by the
mode sum

GE<x.x'>=L2j B () BEF (X'). (3.39

PHYSICAL REVIEW B5 104039

nates(r, Q), Q= (w,w), wherew=tan(@/2)e'¢ is the com-
plex coordinate on the 2-sphere, so that

dwdw
ds’=—dr?+4 cosk r——

Trwar 4.1)

This expression was given in the four-dimensional case in The behavior of the correlators @t follows from the

[40].

D. The |E)—|in) transformation

In this section we show that the Euclidean and in vacua
are MA transforms of each other. Let us again specialize to

the case of lh>(d—1). TheyF are then related to thg"
by
yE: fL(( _ )L+[(dfl)/2]e7i t9|_yii1* + e7r,u+i9|_yiLﬂ).

(3.39

asymptotic form of the hypergeometric functions. Az
—oo one hagsee Appendix B

F(h,.h_;3;29—c.(—2) " +c (-2 ",

2
r|5|rihe—h.)

C.=

3 4.2)
r(h+)r(§—hi)

So the Euclidean modes are related to the global modes by his expression is not in general re@inlessz is real and

[+ ()% TG,

¢Ej =ﬁ(3)ﬂ
(3.40
from which it follows, along with Eqs(3.28 and(3.26), that
bLi(Xa) = AL (X) (3.4
in any dimension. This implies the Euclidean vacuur@isT

invariant.
Now, Eq.(3.40 may be inverted to give

1
== (¢Ej +(— )(d+1)lze mtngj*)

~in _
L=

Vyl—e
(3.42
which is an MA transformation with
(d+1
a=—muti — | (3.43

negative because thén.=1+iu are not real. In spherical
coordinates one finds, near,

efrff’|W_Wr|2
2(1+ww)(1+w'w’)’

im P(r,Q;7,Q")=—

!
T, T ——®

4.3
For x=(7,Q)) andx’=(7",Q0") both onZ™~
lim  Gg(x,x')=e"+""IA_(Q,Q")
+e-TTOA_(0:Q7). (4.9

A~ here is proportional to the two point function for a con-
formal field of dimensiorh.. on the sphere:

(1+ww)(1+w'w’)|"

0’y =gh=+
AL (Q;Q")=4"Cp 4C |W—W’|2

(4.5

We note thatGg(x,x')=Gg(x',x) onZ~ as the points are
spacelike separated. We have assumed here, and in the fol-

We have thus identified the MA transformation relating thelowing expressiongunless explicitly statedhatx andx’ are

liny vacuum and the Euclidean vacuug.

IV. CFT INTERPRETATION

In this section we interpret th€PT invariant (real «)

family of bulk de Sitter invariant vacua as a line of marginal
deformations of the boundary CFT. A similar interpretation

may extend to the case of general complekut we do not

not coincident so that contact terms can be ignored.

Let us now consider the case wherés onZ~ andx’ is
on Z*. Since the antipodal point t’, namely x,=
(—=7,Q)=(—7",—1w,—1w"), isonZ~ we may use Eq.
(4.4 and the formula

P(x,x")=—=P(X,Xp). (4.6

pursue it here. In this and later sections we restrict to the cas@ continuing Eq.(4.4) to positiveP we must take care to go

d=3.

A. T* correlators

In this section we evaluate the various Green functions

appearing on the right-hand side of Eg.24) for x andx’ on

7+, and then put the results together to see how the boundary

values of the correlators depend eanWe use global coordi-

above the branch cut, in accord with the prescription for
the Wightman function withr’ > 7. We find

lim Gg(x,x')=—e"("""e""™A_ (Q;Q})

7w

- Te™A_(0;0)).  (4.7)

104039-9
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To evaluateGg(x’,x) we must go under the branch cut,
yielding

lim Gg(x’,x)=—e"+ (""" )e™A _(Q;0))

7 =

—e"-("Tem A _(0;0)). (4.8

Now we insert these results into formu{a.24 for the
Wightman function in the general vacuum sthtg For both
points onZ~ one finds

im  Gu(x,x')=N2(1—e*" ™) (1—e®" ~ k)

x e TIAL(0;0)

+N2(1—e ™H)(1—e® * )
xeN-(T+7IA_(0:Q7). (4.9
On the other hand, fax onZ~ andx’ onZ* we get

lim G (x,x)=—Nje "|1—e" r2eh(r=7")
T——®

7o
XA, (000
_ N2€7T,u| 1— ea—ﬂ',u,|Zeh,('r— 7'
a

XA_(Q;Q)). (4.10

We see that the boundary correlators depend nontrivially on

the choice of vacuum. Since we have také— o, these
formulas are valid only for noncoincident points @n and
omit possible contact terms.

Let us now turn to the interesting special case of the in

vacuum, which hag= —7u. For both points orZ™ it fol-
lows from Eq.(4.9) that the correlators vanish. On the other
hand, forx onZ~ andx’ onZ' we get

lim Giy(x,x')=—2 sinhmue " 7IA_(Q;Q)),
, (4.11)
lim Gip(x',x)=—2 sinhmue™("""IA (Q;Q)).

7w

When the points o~ coincide there is a contact term

PHYSICAL REVIEW D65 104039

cal. It reduces to a harmonic oscillator at each point; hence
the vanishing ofG;,. However, the map defined by propa-
gation fromZ~ to Z* is not ultralocal on the sphere. It in-
troduces nontrivial correlators when one point isBnand
the other is orZ*.

Of course, in other vacua—such as the Euclidean
vacuum—there are nontrividl™ correlators. As will be seen
in the next section, the wave functions for these vacua differ
from the in vacuum wave function by terms which are non-
local onZ™. These terms are directly responsible for the
nontrivial Z~ correlators.

B. dS vacua as marginal CFT deformations

Now we argue that the dual interpretation of the one-
parameter family of dgvacua is a one-parameter family of
marginal deformations of the CFT. It is convenient to define
operators orZ~ andZ" by

im ¢(7,0)=¢R(Q)e" "+ ¢l (Q)e"7,
(4.13
lim ¢(7,0)= 3 (Q)e "7+ ¢ (Q)e "

T—®

%" has been defined with an antipodal inversion relative to
|n

+ So that they transform the same way under conformal
transformationg 13]. These are position space versions of
the creation operators associated to the spherical m¢tles
and ¢out,

(Q) [d)ln ]T_ \/>2 aInTY*
(4.19

2
$21(Q)=[62()]'= \[ﬁg RTINS

From the asymptotic Green function$.12 and (4.11) we
find that the only nonzero commutators are

[¢™(Q),¢M(Q)]=[421(Q),4*(Q")]

2
— 650,90,
M

(4.15
[$2(Q),¢2(Q')]=*2 sinhrud . (Q,Q).

which can be easily computed by noting that the Wightman

function onZ~ reduces to a mode sum over spherical har-
monics. This gives

2
lim  Giy(x,x )_u e"-Th 7 520,07, (4.12)

7,7 — —o

The situation can be described as follows. &s is ap-

The in and out operators are related by a Bogolyubov
transformation and hence are not independent. In this section
we takeqﬁ_ to be the fundamental operators. At a general
point in the bulk¢ is determined from its value ah~ via

#00=i | X \gBelex) T, 0x). (419

proached, the spatial part of the scalar kinetic terms are ex-
ponentially suppressed relative to the rest of the actionln particular, takingx to be onZ" and using the limiting
Neighboring points decouple and the theory becomes ultraleexpression foiG¢ (which does not depend am we find
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¢1“‘<ﬂ>=—usinhwuj d2Q'A.(Q,0)¢7(Q). (e O=(@) = (@ )]e)

2
(4.17 == CNZ (1 e (1 - e T

This is a position-space version of the Bogolyubov transfor-

mation (3.21).” We see that the absence of mixing between XAL(Q2,Q). (4.29
o™ and ¢°"* | which seemed so surprising in Sec. Il B,
follows directly from the asymptotic behavior of the Green
functions. We note parenthetically that this implies the iden-

The commutator$4.15 also imply the contact terms

t|ty (VeriﬁEd |n[64]) <01|(9,(Q)(9+(Q’)|a>= 1 _ E(SZ(Q,Q’),
1_e'y+'y 2
(Msinhw)zf d207A (Q,0M)A.(Q",0")=54(Q,Q"). . (4.26
(4.18 <a|(9+(Q)O,(Q’)|a>=m%ﬁz(ﬂ,ﬂ’).

The|in) vacuum obeys
, From the CFT point of view this is an unusual contact term
7 (Q)lin)=0. (4.19  prescription in that it depends on the operator ordering.
_ ) What is the CFT origin of the parametef? Usually a
The generala) vacuum state discussed in Sec. Il B can begne-parameter family of correlators corresponds to a line of

constructed in terms of the in vacuum as marginal deformations generated by a dimengibnl) op-
erator. Indeed(, O_ is a dimension(1, 1) operator. Let us
|a)=exp{ c(y)ﬁf d2Q " consider adding this operator to the two-dimensional CFT
2 action with real coefficienk. At linear order this perturbs the
M _ correlators according to the formula
—c(%—f d?Qe" °“t]|in), (4.20 ,
2 : (a0 (D)0(2)]a)
where N
TUT O = —(a|§f dQ"{0.(Q")O0_(Q"),0.(2)0.(2")}|a)
sinh
e7=—7m2_ - 42y = 4urcothy(al0L(2)0.(Q)]a). (4.21)
sinh 2 Let us takea to be real, so thate| O, O, |@) is a monotoni-

cally increasing function of.. Then the variation of the two-
and the functiort is given by Eq.(2.19. This equation may point function asa— a+ € is proportional to the deforma-
be formally rewritten as tion (4.27), which may be integrated to determineas a
function of c.
* M . i This strongly suggests that the family &PT and
|a>:C9XI< e’ ZJ d*Q ¢! ¢’°m) lin). (422 SO(d,1) invariant vacuum states are marginal deformations
of the boundary CFT generated by tké&, 1) operator
These vacua obey the manifes®l(2,C) invariant condi- O,.O_. The two-point functions of these CFTs can all be
tion made equivalent by rescaling operators, except for the spe-
. cial casea= — 7u. So, in principle, from this analysis alone
d"(Q)|a)=—e" Q)| ). (4.23  the CFTs witha# wu might all be equivalent. In order to
) complete the argument one should check that the three-point
This is most easily seen by applying the representa#in  function is not invariant under such rescalings. This has been
=—(2/u) (8154 of Eq.(4.15 to Eq.(4.22. In particular, ~ shown in[65].2
the Euclidean vacuum has= —o and therefore obeys

; V. 7 AND THE INNER PROD T
S"(Q)|E)=e" T4 0)[E). (4.24 cP opue

In this section we discuss various choices of norm for the
Now we consider the boundary field theory. Consider theHilbert space of a real scalar field ongd%r equivalently the
two operators®. dual to ¢ with conformal weightsh..  definition of the adjoint. The first naive choice one might
According to the dS/CFT corresponderidd], the dualO.. make is
correlators are determined from tie! correlator(4.9) as

BT ()= (). (5.0

’In fact, expressiort4.17) is singular forQ=0" and so is really
defined by Eq(3.21). 8We thank Greg Moore for discussions on this point.
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However, Witter{17] argues that this choice may not be well 1K of rotations and boosts together with their complex con-
defined for full quantum gravity outside of perturbation jygates. We denote the associated Killing vectors’byand
theory. An alternate norm is proposgtl7] which involves Z for n=0, £1. The past and future horizons of an observer
path integral evolution fornt™ to I* together withCPT vx?orld line éltz=0 are located on the hyperboloid ¥t X~

conjugation. In this section we will explicit!y compute th_is =0. We denote the Killing vectors preserving this horizon as
norm for a free scalar and find, after a slight modification

involving the form of P, that it has a very natural boundary s +Z —=Xt9.—X"9
interpretation: it yields the Zamolodchikov metric for the 070 * o
boundary CFT. - —

Before delving into details it is instructive to recall an S0~ ¢o=207—27;. 5.7
isomorphic discussion of norms which arises in the standarge four additional Killing vectors are
treatment of Euclidean CFT. Consider the mode expansion
for a free boson on the Lorentzian cylindégnoring zero (1=X"0,—-Zd_,
modes$

{o1=X 07729+,

X(o",07)=i 3 | e’y Tt | (52 Fiexto 29
Using a' = a, one finds L =X"0,~70, . (5.9
Xt 07 )=X(o",07). (5.3  They obey the Lie bracket relation
On the other hand, the standard mode expansion on the com- [{m:dnl=(n—=mM){mp. (5.9

lex Euclidean plane is . . . .
P P In addition, we consider the two discrete symmetries par-

s 1 ( an En) ity and time reversal
X(z2,2)=12, —| =+ =] (5.4
=i Gzt ) PX*=X* Pz=-z
Using o' ,= &, one now finds TX*=X*, Tz=z (5.10
+ ) lla_, a_, In terms of the global coordinatds,()), P takes a point)
X (ZE:_'; s T =(0,¢) on the 2-sphere to the poiQ = (6,7+¢) and T
takestto — .
11 Our choice of parityP in Eq. (5.10 reflects all the coor-
=Xz 7] (5.9 dinates about an observer at the south pole. An alternate

choice isPz=7 which reflects only one coordinate. This is
In this case the adjoint relatéé at points in the Euclidean the choice employed ifl7], motivated by the fact that the
plane reflected across the unit circle. In particular the norn€orresponding”P7 operation is known to be an exact field

of the state created b¥(z,z) or any other operator is just the theory symmetry, after taking a flat space limit of;dSVe
two-point function’ and hence is the Zamolodchikov norm. shall indicate below how the results are modified if this defi-

Returning now to d$, the naive adjoint rulé5.1) induces  Nition of P is employed.
an adjoint in the Euclidean boundary CFT of the form
X'(z,2)=X(z,Z). On the other hand, we will show that the B.CPT
mod|f|ed Witten adjoint Q'Ves precisel{5.5). We_further We now compute the action of the discrete symmeffies
consider the d$SL(2,C) isometry generator,, £,, for P, and7 on the field operators. We consider a real scalar
n=0, +1. It is shown thatC! = £, for the naive adjoint, but field so thatC is trivial. We wish to find Hilbert space opera-
£l=r_, for the modified adjoint. Although we také=3,  tors? and7 that implement Eq(5.10 on ¢(x) as
much of the following discussion carries over simply to
higher dimensions. ’ id Po(x)P=¢(PX), TH(X)T=S(TX). (5.1

) _ _ _ As usual7=UK is an antilinear operator which combines a
A. Continuous and discrete symmetries of de Sitter space unitary operatot) with complex conjugatiork of functions.

dS; can be represented by the hyberboloid The mode expansions fap in terms of theg™" and ¢°*
modes are
XTX"+2zz=1? (5.6)
in flat Minkowski space. The isometries of g&re then in- ¢(T'Q):L§,f [yl (n)YL(©Q)
herited from theSL(2,C) Lorentz isometries of Minkowski o
space. The six generators can be written as combinafions bUiy™ ()Y ()], (5.12
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ot ou where ¥(Q) and ¥°'{Q) are functions on the 2-sphere.
¢(T,Q)=; [ali'yP (7)Y (Q) Using Eq.(4.17), the out state can be expressed as a linear
) combination of in states
+hMY P ()Y (Q)]. (5.13
outy _ __ ; ou ’ ’
We have written lowering and raising operatorsaés and ) ,usmha-r,uf f YHHQNA-(07.0)
b's, respectively, and are not assuming here #latb. in .

We define the action oP by X ¢ (Q)]in). (520

N> _\ial in o ihi This corresponds to evolving the sta@°") backwards
iNnp__\jqin inp__\ipin

PaiiP=(=)ag, PoP=(=)by, (519 fromZ" to Z~, and defines the bilinear pairing

and similarly for the out operators. Sinc¥ ;j(P()= oulprimy — i

(—)Y () this definition reproduces E¢b.11). We define (W) == psinharp

the action of7 by .

xfJ'\IIOUI(Q’)A_(Q’,Q)\I"”(Q).

(5.21
At the same time it acts as complex conjugation on func- . , : _
; : o We now use the pairing to define an inner producfZorthat
tions. The wave functions appearing in E§.12 transform . i . ) .
as PP g in E6.12 is antilinear in the first argument. Note that apply€g7 to

a state orf~ gives us a state ofi":

T T= (< )a, TT=(-) (6.5

YE(Q)=(—)"Y(Q), _ _
| cPTvn) = [ W (Pa) et 0)lin) (522

yor (n) =y ). (5.16

. . . to which we may apply the pairing.21). We find the inner

Putting this together gives product between two states @n

TH(1,Q)T= LEJ [a2iy2U(— 7)Y ;(Q) WYy = — Sinhwf f Wi ()
+OPMYP™ (= 7)Y (Q)] XA _(PQAQHYNQ).  (5.23
=¢(—1.0), (517 For free field theory the nornt5.23 implies the adjoint
. relationg®
as required.
We wish to consider the action 67 on the in and out dT(X)=p(PTx),
field operatorsp'! and %" defined by Eq(4.13. Using Egs.
(5.14—(5.16 these obey ST (Q) = %M (PQ,). (5.24)
PTG (Q)PT= 62 (PQ,), This may look strange at first but is in fact precisely the
_ usual norm employed for a Euclidean CFT. Note tirat
PT¢3“I(Q)7>T= " (PQL). (5.18 coupled with the antipodal map is reflection about the equa-
tor, so that
C. The Witten inner product and modifications 1
Following Witten[17], we now describe a modified inner PA(z,2)= (E- Z) (5.29

product. First we construct a bilinear pairing between states

onZ and states off*. We will consider asymptotic states as in Eq.(5.5). For states constructed by acting with opera-
onZ: tors onZ, it therefore follows that the norm is simply the
two-point function. Hence Eq(5.23 gives the Zamolod-
|\I,in>:J q,in(Q)¢iﬂ(Q)|in>’ chikov metric on the boundary CFT.
Formula Eq.(5.23 in fact remains valid for any choice of
(5.19  p. Using Pz=7 as in[17], one finds instead of Eq5.25),
out ou ou . PA(z,2)=(—1/z,—1/z). The adjoint then involves rotation
v [>_f Q) Q) i), by 7 aboutz= =i rather than reflection across the unit disc.

%0f course, these states are linearbifi and b°"t The general 10t is intriguing that this adjoint relates degrees of freedom sepa-
asymptotic states will take a more complicated form. rated by a horizon.
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D. Adjoints of the SL(2,C) generators north and south poles. We shall refer to these as the northern
and southern diamonds. There are two more regions with 1
<r<oe containingZ" andZ~ which we shall refer to as the
future and past triangles. O, wherer —oe, the spatial
, metric approaches?(dt?+d¢?) and hence is conformal to
L= JEdE"ngn, the cylinder.
Unlike the global coordinates, static coordinates do not
o o smoothly cover all of d$. However, they are well suited to
anf d2*T7,,¢n, (5.26 describing the physics associated to an observer who can
2 access a single causal diamond. The Killing veetbott is
manifest in static coordinates, but is future-directed only in
the southern diamond; it is past-directed in the northern dia-
mond and spacelike in the past and future triangles. In the
following we solve the scalar wave equation in the four re-
_ N 2. 2.2 gions. Then we patch the solutions together to get a global
Zu(X)= 9,3 (X) 3, (X) = 3 9, [ (V (X)) "+ M B (X)]. solution over all of d$ by matching at the horizons. We
(527 further show explicitly that tracing the Euclidean vacuum
over the Hilbert space of the northern modes leads to a ther-
mal density matrix in the southern diamond.

The quantum generators of the symmet(®3) and(5.8)
are as usual given by

for any complete spacelike slicé. We choose> to be the
throat X" =X~ because it is mapped to itself under b&th
andT. For a massive scalar,

With the ordinary inner product/,, is Hermitian, and one
finds £§=£n. With the modified inner product, one has

A. The wave equation

T i
Cn—f d2A(X)T,,(PTX) {n(X). (5.28 The equation of motion for a scalar field of massis

(V2—m?)¢=0. In static coordinates, this becomes
We then consider a coordinate transformatiés PTx. One . L L
finds {——1_r2af+ S (1=rAro + r—zai—mz}cﬁzo.
ET_ ds# ’ AV ’ (62)
n= (PTX)7,,(X"){n(PTX).  (5.29
The equation separates, so that a general solution can be
Using the relations expanded

L(PTX)=—=¢ (X,

¢(t,r,@) = fO dw];m amj ¢a)] + bwj ¢wJ
dSA(PTX )= —d34(x’), (5.30 _

+al ¢k +bl pol*, 6.3
it follows that .

where
Ll=r_,. (5.30)
¢wj:fwj(r)e7iwt+ijcp, d)wj — fcuj(r)efiwt+ij<p’ (64)
In [13] the SL(2,C) isometries of d$were conjectured to _
extend to a full Virasoro symmetry of the full quantum grav- andf,;(r), f*(r) are two linearly independent solutions of
ity (not just a free scalarThis naturally acted not on closed the radial equation
spacelike slices but on asymptotically flat slices endin@.on

It would be interesting to compute the adjoints of these gen- (1-1?) d*f,, N E—3r df,
erators. dr? \r dr
w2 j2
VI. THE CYLINDER n (W_ 7 2) fo;=0. (6.5

In this section we study scalar field theory in static coor-
dinates. Again for simplicity we specialize to gSalthough
we expect the higher dimensional cases to be similar. The
metric is A solution smooth near=0 is given by

B. The northern and southern diamonds

dr2 poy="f,5(r)e trie,

ds?=—(1-r?)dt*+ =17 +r2de?. (6.1)

fo(N=rl(1=r?)*?F (a,b;c;r?),
This metric is singular at the horizoms=1, which divides

dS; into four regions. There are two regions withk=0<<1

: ; a=
corresponding to the causal diamonds of observers at the

(lj|+io+h,), (6.6

N| -
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pluy =T ,5(r)e tettie, 6.9

N| =

b=-(|j|+io+h_),

c=1+]j|. It is convenient to use the time coordinateoth in the north-

) ) ) ern and in the southern diamond. Although this coordinate
We have not normalized this solution, although the necessay stem does not uniquely label points on all of;d$here

factor follows from computations below. The supersc#pt i pe no confusion since we denote northern functions with

denotes that this solution is in the southern diamond. Ong superscriph. The coordinate runs forward in the south-

can ShO\.N from the transfqrmaﬂon formulas for hypergeomet-em diamond and backward in the northern diamond. Hence
ric functions(see Appendix Bthat

for >0 the modedq6.6) are positive frequency an.8)

A=t =T (6.7  are negative frequency.
o Near the horizon, for—1, one can showisee Appendix
Similarly we may define northern modes B for detaily that Eq.(6.6) becomes
S IN~-iw :
$oj—e I (L)) : i (1-r2)i
r{ 3 (il=w e 3 i=io+n )
IN(
g ( w)l (1-r2)~ 02|, 6.9
r §(|j|+iw+h+) F(§(|j|+iw+h_)

In order to analyze the flux across the horizons it is useful tarhe first term in Eq{(6.12 is incoming flux across the past

introduce Kruskal coordinates horizon, while the second is outgoing flux across the future
horizon. A similar analysis in the northern diamond with
1+UV <0, V>0 gives forr—1:
r = 1
Ly o~ a, Vit (~U) L (6.14
1 U i
= Eln( _ V)’ 6.10 The northern and southern modes are simply related by
$oi(—U,= V)=l (U,V). (6.19
in which ) . o
The second family of solutions is given by
1 0j —n(r2 —iot+ijep] 2\iw/2
4= ——— 5[~ 4dUdV-+(1+UV)%de?]. ¢ =In(r2) g, +e e ierlla—r?)
(1-UV) .
6.1
613 X > AL, (6.16

n=—lj|

U>0 andV<O0 in the southern diamond. The futufeas)

horizon is atv=0 (U=0). In contrast to the static coordi- where the coefficientd,, are given in, e.g., Eq. 15.5.19 of

nates, Kruskal coordinates are nonsingular at the horizon. [66]. These modes are singularrat 0 for all j and hence are
The modeg6.9) become, for —1 (UV—D0): excluded.

‘i’ijﬂeiw[awi(_v)iw‘*‘ aZjU_iw]’ (6.12 C. The past and future triangles

Let us analyze the behavior of the modes in the past tri-
angle (which includesZ~ but notZ") wherer?>1. A com-
plex solution of Eq(6.2) is

where we define the complex constants

L(1+]|jPT(—iw)2'®

Q= ¢in+:f+j(r)efiwt+ij¢’

wj 1)

1 r
T<§(|J|—|w+h+))r(§(|l|—lw+h—)

iwl2
+ —,—h _
Loi- (6.13 Fui(n)=r +(1 r2> i

1
a,1—a*;h, ;r—z). (6.17

=
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Using properties of the hypergeometric functions one findsNearZ~ we find

thatf ' is invariant undew— — w, but is not real. Therefore

]

the second solution of E@6.2) is obtained by complex con-

jugation:
—iwt+ije

b =(fo(r)*e

This is equivalent to replacing, with h_

(6.18
in Eq. (6.17.

in= —hy

In the past triangle the coordinateis timelike and past-
directed, so that the'"~ are positive frequency fam?>1.
Near the horizon, for—1, we find

F(_w) (r2_1)iw/2

¢in_—%—_)e7iwt+ijzpr(h+)

]

T(iw)

r(§<|j|—m+h+>

[3-titoen.)
r E(_|J|_|w+h+)

+

1
F(§<—|j|+iw+h+>

1 .
r(§<n|+|w+h+>)

(r2_1)—iw/2 ]

(6.20

The relation between static and Kruskal coordinates in the The relation between static and Kruskal coordinates in the

past triangle is

1+UV
1-uv’

t—ll J
—Env.

r=

(6.21

U andV are both negative in this region. The boundary with

the northern(southern diamond is atV=0 (U=0). The
near horizon behavio6.20 becomes

P el B, (— V)4 B, (—~U)T1¥], (6.2
where
I'(h)T(—iw)2'
F(E(IJI—iw+h+))r(§(—|j|—iw+h+)
(6.23
Similarly one finds near=1 that
dy =€l (V) o+ Bhi(—U)'°].  (6.29

One may also define modes in the future triangle by

¢0ut+_fwj(r)e—|wt+lj<p

]

¢out—_(fwj(r))* —th+lj(p (6.25)

NearZ™ we find

GO~ N (6.26

]

In the future triangle the coordinateis future-directed, so
that the®“*" are positive frequency.

future triangle is again given by E¢5.21), which means that

t increases to the southorth) in the future(pasj triangle.U
andV are both positive in this region. The boundary of the
future triangle with the northerigsouthern diamond is at
U=0 (V=0). Near the horizonsl{V=0) the ¢°“ modes
obey

¢out+ |]<p[B Vlw+B w]U Iw]
¢?olft_:eij‘P[ﬁtijiwﬁL,BZjU_iw]-
(6.27

The past and future modes are simply related by

AU V)=l (—U,—V). (6.29

D. Matching across the horizon

In Secs. VIB and VI C we have described solutions in the
past and future triangles as well as the northern and southern
diamonds. By matching fluxes across the horizon, these may
be extended to global solutions over all of;d%or example
the (—V)'* ((—U)'®) terms in the past mod€$§.22 and
(6.29) carry flux into the southernorthern diamond. The
continuation of Eqs(6.22 and (6.24) into these regions is
obtained by matching to Eq6.12 alongU=0 and to Eq.
(6.14) alongV=0. Matching across the horizon again then
yields the future mode. _

Henceforth we shall use the symbal"™* to denote the
global solution so constructed. Similarlg®™ will denote
the global solution agreeing with E@6.27) in the future
triangle. We may also construct global soluti¢f (") that
agree with the mode.6) [(6.8)] in the southerr{northern
diamond—these solutions vanish in the northé&authern
diamond.
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From the matching procedure outlined above we find thats analytic in the lower complek) andV planes'! This can

these modes obey

)| ) 50
=A in— :A*. u s 6.2
(dh':‘)j I b, il oy (629
where
N, A _< @y Baj _““’JB‘”]> (6.30
w]" o] _afu]ﬂtw] afujﬁw] '
and
— * * s
Noj=(BoiBoy = B-uiPru)=——- (63D

Reversing the signs df andV and usingo,Ac,=A*, one
finds that the second equation in Ef.29 follows from the
first. The Bogolyubov transformation frod~ to Z© then
follows from Eq.(6.29 as

b0 Doy
(¢2let+ :BwJ ¢Icrl;lj— ) (632
where
anBZj 0
*
B —o A loa, = P 6.3
D ariisan * (6.33
ali By
0 wjPwj
*
awjﬂwj

be accomplished by analytically continuing the southern
modes(6.34) to the northern diamond along the contour

(6.39

taking y from O to 7r. Notice that the produddV is indepen-
dent of y, so that the continuation of the southern mode
(6.39 is

U—e 7U, V—e'ry,

iwl2

(6.37

e‘”“’fwj(UV)e'“"(—U

Comparing with Eq(6.35 we see that the linear combina-
tion

E _ ,S —mo 4N
Doj=PojTe T hy, (6.39

is analytic in the lower half of the compléx andV planes.
Sincet runs backwards in the northern diamond, this is a
linear combination of positive and negative frequency
modes. A second linear combination

b5 = () +e ()" (6.39

is also analytic in the lower half plane. Bo#t and ¢&' are
positive frequency fokw>0.

F. MA transform to Euclidean modes

In this section we will show that thgn) vacuum on the
cylinder is the same as th&) vacuum on the sphere by
showing that it is an MA transform of the Euclidean vacuum
with a= — 7. This result is anticipated by the fact that the
dual CFTs should be simply related by the conformal trans-
formation from the sphere to the cylinder. Nevertheless, it

As with the spherical modes of Sec. IlI B, the Bogolyubov Provides a useful check on our constructions.

transformation(6.32) is trivial. The vacuumin) defined by
the modesp™ is identical to the vacuurfout) defined by the

¢0ut_

E. Euclidean modes on the cylinder

In this section, following[67], we write the Euclidean
modes as linear combinations of northern and southern

modes.
In Kruskal coordinates the southern modé&s6) in the
southern diamond are of the form

\Vj iwl2
_ U)

for U>0, V<0, and vanish folU<0, V>0. The northern
modes in the northern diamond are of the same form

(6.39

o =fu(UV)el?

iwl2

: (6.39

. )
qswj—fw;(uvm”«’(—g

but have support fod <0, V>0 instead olU>0, V<0. We
wish to find a linear combination of Eq#6.34) and (6.35
which

The first step is to redefing™ in order to simplify the
expression foA in Eq. (6.29. Let

*
“‘in+_-‘awjﬂwj in+

d)wj =i N(u] ¢w] )

~ ) aZBwJ L

b === bl - (6.40

@]

Then Eq.(6.29 becomes

o S
<¢2, =(—1) (_)jq (_)i ’(‘i)Lr]J— ) (6.4

with

HEuclidean modes were defined earlier to be regular on the lower
Euclidean hemisphereré=0,(— /2)< 7'™=<0). Explicit transfor-
mation of coordinates shows that 3gii'=sgnV™=sgn7™. The
lower pole,7= —i(7/2), maps to a single point)=V=—i, inde-
pendently off. Smooth curves through this pole remain smooth in
the U andV planes. Thus, modes that are analytic and bounded in
the lower halfU andV planes will be regular on the lower Euclid-
ean hemisphere.
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CagiBo.i (—)itemerm .
—(_yi+t1ZeiProl _ 4 S=try|EXE|= 1-e 27
A= T e e 642 pe=try[E)(E| HJ ( )
It follows that the Euclidean modes obey X D, e 2™Mi|n,i,S)(n,; 9 |. (6.47)
nwj

poi=doite TPl . _
Recall that the Killing vector§“d, =4, is everywhere
To_ gm0 timelike and future directed in the southern diamond. Ne-
:(_i)i—_(}si“f_ewa,i“.*)_ (6.43 glecting gravitational back-reaction of the field modes, this
e7Ta)_+_ ( . )je'lrp, w] w] . . . .
allows us to define a Hamiltonian for the southern modes:

Inverting this relation, one recovets= — 7. " %
M=Lsdzﬂ7;wgvz fo dwj;w (a5)ad;o,
G. The thermal state (6.49

Let us summarize the southern and northern mode expan-
sions: whereT is the stress tensor of the scalar field. HEreis a
t=const Cauchy surface in the southern diamond with nor-
o i - 2y-1/2 i T
s _ s s S vt/ 1S 1% mal vector isn§d,, = (1—r%)~ 9. This definition of energy
P ¢) fo d“’j:z,m APt (ag) (da)™ is natural for the observer at the south pole. For later use, we
also define the angular momentuysras the conserved charge
(6.44 _ . -
associated with the Killing vectar“d,= —d,:

oo

¢N<t,r,¢>=fwdw,2 ap b+ (an) T(h)* .
0 j=—o»

jzf SdzﬂTWvV:J do > (a3)%adj. (6.49

Here we take the modag® and ¢" to be normalized with > o =

respect to the Klein-Gordon inner produ@.7). The Fock

space in the southern diamond is constructed with lowerin

operatorsaf)j and raising operatorsaﬁj)T. The Fock space

in the northern diamond is constructed with lowering opera- M

tors (a},;)" and raising operatora; . pe=C ex;{ - —) (6.50
The modes(6.39 and (6.39 annihilate the Euclidean T

vacuum,|E). This allows us to expregE) as a superposition

H _ . _ —27Twy ;
of states in the northern and southern Fock sp&68k with temperatureT =1/2; C=1I(1—e"“") is a normal-
ization factor.

With respect to the Hamiltoniat, the southern stat.47)
$ecomes a thermal density matrix

|E)= HO I (1-e 27012 VII. KERR —de SITTER
©0=0 j=—o
— 7w 4S \TaN In this section we generalize the discussion of the previ-
xexde ™ (a;)) a,;1|S)®|N) ous sections to the three-dimensional Kerr—de Sitter solu-

tion, which represents a spinning point mass i.dS

:H (1_e—2ww)ll2
] A. Static coordinates

% The Kerr—de Sitter metric describes the gravitational field
% 2 e—munwj|nwj ,S>®|nwj ,N). (6.45 of a point particle whose mass and spin are parametrized by
nwj:O

1-M andJ:
Here|S) and|N) are the southern and northern vacua, and ds*=—N%dt*+N~2dr?+r?(de+N¢dt? (7.0
IN,j ,S)=(nwj!)_1/2[(af,j)f]“w|5>, The lapse and shift functions are
- . 16G2J? 4GJ
Inj . Ny=(n,;1)~Haf;]"iN). (6.46 N2=M—r2t =5, N=——5. (72

Only the southern diamond is causally accessible to an ob- ) ) » _
server at the south pole. The quantum state in this region i§n€ lapse function vanishes for one positive value:of
described by a density matrpS, which is obtained from a 1
global state by tracing over the field modes in the northern _-
diamond. For the Euclidean vacuu®.45 we obtain F+ 2 (\/;+ ﬁj (7.3
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where Analogues of Egs(6.48 and (6.49 define conserved
_ charges associated with the Killing vecto}é&ﬂzd; and
=M+i(8GJ). (74 Zuy —_ -
M ¢
This is the cosmological event horizon surrounding an ob- " o
server at =0. It has a Bekenstein-Hawking entrof§9,70 M:f SdEMTWE”:f do > (a5)'a 0,
of z 0 ===
_me T ~ o [T s s
(7.11

B. Kerr-dS tient of d .
err-dSs as a quotient of d3 where7,, is the matter stress tensor. Here the hypersurface

In 2+ 1 dimensions, there is no black hole horizon for 35 is defined, for example, by the normal vector
Kerr—de Sitter because the “black hole” degenerates to a
conical singularity at the origin. This is best seen by writing u T u J1-72
the metric as an identification of de Sit{érl]. Let us define Nysd,= 172 TfTDL ¥
u=r, anda=4GJ/r, , so that

0. (112

(For «>0, % is not a spacelike surface near the origin; this

M=u?—a? J= e (7.6)  does not affect the definition of conserved quantitidhe
4G , ~ =
expressions foM and.7 nevertheless take the same form as
The coordinate transformation M andJin de Sitter space. The Euclidean state, restricted to
the southern diamon& 1), is a density matrix
t=uttag, pS=Cexp—27M). (7.13
e peal, 7.9 In the (t,r,¢) coordinates, the asymptotic metric of
- }(err—de Sitter space takes a standard form ﬂeéu‘eta'ilfad
T= — in Sec. VIID). In order to compare conserved quantities of
nta different space-times, we must use the Killing vect@rand

d, to measure energy and angular momentérfihe corre-

changes the Kerr—de Sitter metric to the vacuum form sponding conserved charges are relateditoand 7 by a

2 linear transformation. Using E@7.7) one finds
~2\ 12 d? =242
ds’=—(1-72)dt?+ 2 1T da?, (7.9
~ M a
, . S M=—m Mt 77 (7.14
but with a nonstandard coordinate identification. In empty de Mmoo poTa

Sitter space,T(,T,“¢+27rn) labels the same point for all in- 11,5 we obtain a density matrix
tegern. In the presence of a particle, the points

M+Q
(17, %) +27n(a,0un) (7.9 pE=Cexp( - Tj) (7.19

are identified instead. at temperature and angular potential

C. Kerr-dS; temperature and angular potential ,u2+ o?

a
, Q=—. (7.16

K

In this section we consider a scalar field in KerrzdBhe 2mp
cylinder mode solutions found for de Sitter space in Sec. VI ) o ] )
are also solutions in Kerr—de Sitter space, after the substitu- FOr later convenience it is useful to rewrite the density
tionst—T, r—¥, ande— % are performed. For the modes to matrix (7.19 in terms of the complex inverse temperature

remain single valued, the angular momentumust be non- i
integer: 1+1Q 27

T V7

(7.17

. Ntoa .
i= PR n integer. (7.10

2We are choosing the normalization of the timelike Killing vector
The mode analysis carries over trivially. In particular, theto be fixed atZ, as is appropriate for a CFT description. By normal-
Euclidean modeg6.38 and (6.39 take the same form in izing at¥=0 instead, one would obtain the apparent temperature
Kerr—de Sitter space. seen by a local observgr2].
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and the complex charges Abbott-Dese(AD) masg 75] is proportional taq+ L. The
complex coordinates on the boundary cylinder in E§21)

1 — 1
Lo=5M=1T), Lo=5(M+iT). (7.19  are related to those of the plane by

z=e 'V, (7.26
These charges are constructed from the complex Killing vec- o
tor fields In the preceding section charg&s and £, were con-
1 structed for weak scalar field excitations on a fixed de Sitter
Lo=(0+id,) §o ; (5t—|<9 ). (7.19 backgrc&md. Th'ese can be relatgd to the Yveak field limit of
Lo andLg by using the conservation equatipra]
Then the density matrix of the scalar field in the southern 1
diamond takes the form ZVMT y=NET 0, (7.2
=Cexp—BLo= BLo)- (7.20 which states that the failure df,, to be conserved is given
by the matter flux across the boundary. Contracting both
D. The boundary stress tensor and Virasoro charges sides of Eq.(7.27 with a Killing vector { and integrating

In this section we define, compute, and interpret the?Ver @ discX¢ spanning a contou€ on 7" yields

Brown-York boundary stress tensor in static coordinates, fol- 1
lowing [42]. In the static coordinateg™ is atr—c. The —f da#ngV:f dx#7,,0", (7.28
metric takes the asymptotic form 2m Jc 2c

dr?
ds’= —2-+ to the curveC. Comparing with Eqs(7.11), (7.18, and

(7.19, we see theEintegrand on the right-hand side of this
(7.2 expression fot g (L) agrees with that in the expression for

with Lo (£o).*2 Of course when the fields are not weak there are
gravitational corrections to the bulk expressions.

) wheredg* is the normal boundary volume element normal

T 1
r——)dwd_+ dw?+ — dw +0

W=etit. (7.22 The cylinder charges corresponding to Ef24) are
Sincew~w-+ 27, the boundary is a cylinder with conformal 1 (2
metric H,=— 27 ) dwT,e ™ (7.29
ds?, = dwdw. (7.23

and its complex conjugate. We have used the synthol
dS; has an infinite number of asymptotic symmetries,rather tharlL, because on the cylind¢r.29 includes a Ca-
whose associated bulk vector fieldgenerate the conformal simir energy contribution foH,. We will be interested in

group onZ~ [13]. With each of these symmetries there is anHo, Which is the charge associated with the vector field
associated charge. A general procedure for constructing such a1 :

charges for spacelike slices ending on a boundary was given o=z (0 F1dy). (7.30
in [73], adapted to AdS in74], and adapted to dS ifL3].
For dS in planar coordinates,” is a plane and the charges
are 1 T

Forr—« one finds

1 TWW:E VWWZE- (7.31)
Ly==— f dzT,,z""1,
2mi Integrating around the cylinder then gives
d—T —n+l 1 2m c
“om zZ (7.24 Ho=—5_] deTw="57 (7.32

whereT,, is the boundary stress tensor given[#8,74,13  and similarly

1
T,,=-=[K,,—(K+1)y,.] 7.2
a 46[ K ( )y“ ! (729 30ur sign convention in Eq(7.24 was chosen so that in the

weak field limitH reduces to the integral of the scalar stress energy
Here y,, is the induced metric on the boundary, and thegensity, without a relative minus sign. This convention agrees with
extrinsic curvature is defined Hg¢,,=3L,y,, with n“ the  [1342,62, but differs by a sign froni46,47.
future-directed unit normal. The contour integral is over the %A minus sign arises in this expression from the relative orienta-
S boundary ofZ~ in planar coordinates diz]=%. The tion of thez andw contours.
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_ c__ — c C c/l— ¢
Ho=—>2,7 (7.33 p(Lo,Lo)=exp 27\ 5| Lo— 57/ +27\/5| Lo~ 5] |

For later convenience we have written these expressions in (8.2
terms of the d$ central charge When g is complex, Eq(8.1) has a complex saddle point at
Lo= (7%c/6B?) + (c/24).}" Evaluating the integral at the
c= % (7.34) saddle point and usin§=(1— Bdg— Bdg)InZ gives
2 2

where we have restored the factor of the de Sitter ratius re, ¢ 8.3
However, so far our discussions have been purely classical. 38 38

We note for pure de Sitter spa¢el=1 andJ=0) Hy=
—c/24. This has a nice interpretation in the dual field theoryis \ve now use the formula
on the boundary, as discussed[#2].*> According to[13],
the bulk gravity state on the slide=cc in planar coordinates 3l
is dual to a CFT state on tt® boundary ofZ~ (i.e., where c=—, (8.4
the slicet = intersectsZ ) at z=o. This state is the wave 2G

functional produced by fixing boundary conditions on 8te

and then doing the CFT path integral over the disk. Thisfor the central charge of the boundary CFT, together with the
should give theSL(2,C) invariant ground state of the CFT. formula

Transforming from planar to static coordinates in the bulk is

then dual to the conformal mapping from the plane to the 2
cylinder. This mapping should produce, via the Schwarzian B= m (8.5

in the stress tensor transformation law, the Casimir energy

—c/24 for a CFT with central chargeon a circle of radius ) ]

1. Indeed this agrees beautifully with the fact that the boundderived in Sec. VIC for the complex temperature of Kerr-
ary stress tensor vanishes in planar coordinates but givés:. the microscopic formuld8.3) reproduces exactly the
Ho=—c/24 in static coordinates. We note for future refer- macroscopic formuld7.5) for the Bekenstein-Hawking en-

ence that the state so constructedZonis a pure state with tropy of Kerr-ds. _ .
no entropy. This yields a two-parameter fit relating the area of the

The agreement with the CFT picture persists for general Kerr-dS; horizon to the number of microstates of a 2D CFT.
Equation(7.32 is then precisely the Casimir energy from However, with our current understanding, this should be re-
conformal mapping from the plane to a cone. We note als@arded as highly suggestive numerology rather than a deri-
that asM decreases, the enerjy, increases, in accord with Vation of the entropy. One problem is that the dual CFT is

the expectation that a positive deficit angle has a positivé0t unitary, and hence is not obligated to obey Cardy’s for-
mass. mula. A second problem is that we have not specified where

the CFT density matrix resides whose entropy is being com-
puted. In most discussions—including ours—the quantum
state on global de Sitter is in a pure state. Furthermore its
In this section we discuss the conditions under which thelual—as discussed at the end of Sec. VII D—is 8i€2,C)
entropy (7.5 might be microscopically derived from a 2D invariant CFT vacuum. A density matrix arises only after

VIIl. ENTROPY

CFT. Related discussions have appeare[Bijn5,44. tracing over a correlated but unobservable sector. We saw in
Consider the canonical partition function of a 2D CFT Sec. VIC that for a scalar field in théure Euclidean
with complex potentialg, vacuum state, a thermal density matrix arises after a northern

trace over the Hilbert space in the unobservable northern
— = g B diamond. One might expect that the quantum state of the
Z:f dLodLop(Lo,Lo)e 70" " 0, 8.9 boundary CFT would also become thermal after performing
a similar trace. However, it is not clear to us exactly what a
wherep is the density of states. We wish to evaluate this innorthern trace corresponds to in the boundary CFTon
the saddle point approximation. Let us assume that we are in It appears that de Sitter entropy arises when attention is
a regime where the thermodynamic approximation is validrestricted to the true observables in the theory. The boundary
and we can use Cardy's formul@6] for the density of CFT includes information about correlators at acausal sepa-
stated® rations that do not directly correspond to observable data. It
is a challenging and important problem to understand what
are the true observables in the language of the boundary
15An alternate interpretation was given [i446]. CFT.
18since we are working in the canonical picture rather than the
microcanonical picture, the final formula for the entropy is unaf-
fected by the shift ot in the exponent. YFor pure d$ this isL,=c/12, as in[8].
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APPENDIX A: ALTERNATE FORMS OF GREEN G X A4
FUNCTIONS ON dS, 377 Sing (Ad)
In this appendix we present several alternate expressionfien, y satisfies
for the Green functions. First, let us consider a de Sitter
invariant vacuum [Q)), so that the wave equation for
Go(x,x") becomes d2x+(1—m?) x=0. (A5)
So the general solution in three dimensions is
(1-P?)33G—dPdpG—m?G=0, (A1)
whereP is related to the geodesic distanéex,x’) by - Asinhu(m—6)+Bsinhud (A6)
: siné '
P=cosé. A2 whereu=m?—1 andA andB are arbitrary constants. The
(A2) h 1 andA andB bi Th

first term gives the usual short distance singularity for the
Note that ifG4 2 solves Eq(A1) in d dimensions for mass- Euclidean vacuum—with the correct normalization, it gives
squaredm?, then dpGgy me Solves Eq.(Al) in d+2 dimen-  the usual expressiaf2.9). The second term is present for the
sions with mass-squared®+d. This gives an iterative pro- transformed vacuum staté®), and has the antipodal singu-
cedure for constructing Green'’s functions in all dimensionslarities mentioned in Sec. Il B. From EGA3) we can obtain
We find an expression for the Green functions in higher dimensions,

_ " (n '(n—m+2iu) Asinh2u—in+2im)(7—60)+Bsinh(2u—in+2im)o
Gome= 2 (m)r(m+1+2m) siff~2 ¢ (A7)

m=0

wheren=13(d—3) and Ggm2=AP\"(cosh) +BQ™(cosb), (A10)
wheren=1(d—2) andv(v+1)=n(n+1)—m? Here,P{"
d—1\2 . . . L v
— mz—( (Ag) Isan associated Legendre function, tith derivative of the
® 2 Legendre function.

We have absorbed an overall normalization into the constants ppenDIX B: PROPERTIES OF HYPERGEOMETRIC

A andB. As a function off, G has isolated singularities but FUNCTIONS

no branch cuts. Howevefj=cos ' P has a branch cut from

P=1 to  along the real axis, across whi@{P) changes We collect a few relevant facts about hypergeometric
sign. When expressed as a function RfG will likewise  functions. More details may be found in, e.6g]. The for-
have a branch cut. mula

For evend, we start with thed=2 solution in terms of
Legendre functions

F(a,b;c;z2)=(1—-2)° 2 °F(c—a,c—b;c;z) (Bl

Gam2=AP,(cost) +BQ,(cos), (A9)  relates hypergeometric functions oiith different values of
parameters, as in E@6.7). To relate hypergeometric func-
wherev(v+1)=—m?. So tions of different variables we use
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I'(c)'(b—a) Ca _ 1) T(c)I'(a=b)
—F(c—a)r(b)(_z) F a,a+1—c,a+1—b,; +—F(a)l“(c—b)(_z
_F(C)F(c—a—b)
" TI'(c—a)T'(c—b)
I'(c)I'(a+b—c)

I'(a)l'(b)

1
F(a,bic;2)= ) °F{bb+1-cib+1-a;-
F(a,b;1+a+b—-c;1-2)

(1-2)° 2 PF(c—a,c—b;c—a—b+1;1-2). (B2)

These give us the Bogolyubov relatiof®.21) and (3.39, respectively. Sincé(a,b;c;0)=1 these equations also fix the
behavior ofF (a,b;c;z) asz—» andz—1, as in Egs(4.2), (6.9), and(6.20.
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