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Vacuum states and theS matrix in dS/CFT
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We propose a definition of dS/CFT correlation functions by equating the®mtatrix elements for scatter-
ing particles fromZ~ to Z*. In planar coordinates, which cover half of de Sitter space, we consider instead the
Svector obtained by specifying a fixed state on the horizon. We construct the one-parameter family of de Sitter
invariant vacuum states for a massive scalar field in these coordinates, and show that the vacuum obtained by
analytic continuation from the sphere has no particles on the past horizon. We use this formalism to provide
evidence that the one-parameter family of vacua corresponds to marginal deformations of the CFT by com-
puting a three-point function.
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I. INTRODUCTION light the important differences between dS and AdS which
make naive extrapolation of some AdS/CFT results problem-
Understanding quantum gravity in de Sitter space remainatic. In the global picture of de Sitter, there are four CFT
one of the most important problems in theoretical physics. Aoperators associated with the scalar figddwhich are la-
correspondence relating gravity in de Sitter space to a corPeledO°", and have weightd. =1+ \1—m?. Only two
formal field theory(CFT) has recently been suggestgl]  of these operators are independent, and in general the out
(see alsd2]), and subsequently studied by several author®perators can be related to the in operators by path integral
[3]. Recent works on de Sitter space inclydé evolution fromZ~ to Z". We equate correlation functions of
The dS/CFT correspondence is modeled in analogy wittO'7°"! with S-matrix elements for particles coming in from
the AdS/CFT correspondenf®,6,7], which has provento be 7~ and going out taZ . This definition of CFT correlation
phenomenally successful. But it is important to keep in mindfunctions is motivated by a similar construction for AdS
that in the prehistoric days of AAS/CFT, when the first signswhich has been developed[ib0—14. We do not address the
were emerging that there might be some connection betwedmportant issue that thes&matrix elements are only
supergravity on AdS space and conformal field theories, itmetaobservables” and cannot be probed by any single ob-
would have seemed beyond hope to expect that these devealerver in de Sitter spadé5,16,7.
opments would lead to a nonperturbative definition of quan- In planar coordinates, which only cover half of de Sitter
tum gravity on AdS space, and to all of the remarkable adspace, one has only half as many operators. For example, in
vances that have been made in our understanding of gaugiee patchO~ which includes the causal past of an observer
theories. AAS/CFT turned out to be more wonderful than wesitting at the south pole, there are no asymptotic out states, so
had any right to expect, so we should not be prejudicedhe best one can do is to study tBeector[2,15]. This leads
against dS/CFT simply because it has some mysterious and a natural definition of correlation functions involving only
confusing aspects and has not yet borne the rich fruit of it§)" . Along the way, we prove the somewhat surprising re-
AdS brother. sult that the Euclidean vacuum stdtghich is the one ob-
Therefore we proceed modestly in this paper, by elucidattained by analytic continuation from the sphere to de Sitter
ing the connection between gravity on de Sitter space angpacetimgis the state with no particles on the horizon.
conformal field theory correlation functions. Our probe will ~ The plan of the paper is the following. In Sec. Il we
be an interacting real scalar field of massThis turns outto  introduce global and planar coordinate systems fog,dS
be more interesting than it might seem at first since it ismode expansions for the scalar field, and the bulk-boundary
known that there is no unique de Sitter invariant vacuumpropagators. In Sec. Il we review the construction of the de
state for a massive scalar field, but instead a family of vacugitter invariant vacuum states) in global coordinates and
labeled by a complex parametgrChanging the vacuuy)  record the two-point functions of the scalar field. In Sec. IV
in the bulk of dg has been argued to correspond to a marwe show how these vacuum states can be obtained naturally
ginal deformation of the associated CHl. in planar coordinates as well, and that the Euclidean vacuum
The central result of this paper is a proposal for how tojs the one with no particles on the horizon. Section V con-
extract CFT correlation functions from-point correlation

functions of the scalar field on dSAlong the way we high-
10ur S matrix is the standard one of perturbative quantum field
theory, as distinct from théfinite-dimensional matrices of{2,9],
*Email address: spradlin@feynman.princeton.edu although it would be very interesting to understand a connection
TEmail address: nastya@gauss.harvard.edu with these works.
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It It For some purposes, particularly cosmology, the region
7 O* corresponding to the causal future of an observer at the
———————————— ,/, south pole may be of greater interest th@n (see[18] for
o e - 2 ,’,’:, o an interesting applicationAll of the formulas presented in
Aol ___ A~ A Sl e this paper can be adapted " by takingt— —t, so that
@ ____________ g ﬁ ,/,:’ 2o 2 t=0 corresponds t@" andt= —< corresponds to the hori-
z 3 2| 270 -"7|&  zon
____________ A In global coordinates we will make use of the antipodal
I- — - map on d§. Actually there are two antipodal maps, one
which just takesQ to the antipodal point or§?, and one
(a) (b) which in addition takes— — 7. We will use the notatioif) 5
for the former andk, for the latter, wherex=(7,Q).
FIG. 1. The Penrose diagram for de Sitter spaeg.Global The following two subsections catalog the mode expan-

coordinates cover all of de Sitter space, with dotted lines signifyingsions for a free scalar field and introduce the bulk-boundary
slices of constant, which ranges from-oo to +~. (b) Planar co- propagators in the two coordinate systems.

ordinates cover only the causal p&%t of an observer at the south
pole. The dotted lines are lines of constanvith t=0 onZ~ and
t— +o at the horizon.

A. Global coordinates

In global coordinates we follow closely the conventions
tains the general prescription for calculating CFT correlatiorof [8]. A basis of positive frequency solutions of the free
functions in global coordinates and explains the connectiofflein-Gordon equation is given by
to the S matrix. At the end of Sec. V we outline the calcula-

tion of a CFT three-point function and show that the param- Pin(7.L) =Y1(7)YVim(L2), 2.3
etery appears nontrivially in an invariant ratio of correlation where
functions, providing an evidence that these vacua are mar-
ginal deformations of the associated CFT. The prescription 5
for dS/CFT correlation functions in planar coordinates ap- yi(7)=¢l \ﬁ(l+e27)'e(1”‘>f
pears in Sec. VI, where the motivation is provided by $he K
vector. XE(I+1)+1—ip,l—ip,—€27), (2.4

Il. COORDINATES, MODES AND BULK-BOUNDARY and the pha§e0| is defined by

PROPAGATORS
4 Fip)(+1-i
In this paper we consider an interacting scalar figlth e?fl=(—1)'"1 ()l #) (2.5

dS; with the action P P(I+1+ip)
1 The quantitys=m?—1 must be real in order fop,,, and

S=- —f V=0[(Vp)2+m2e?+V(p)]. (2.1) ¢, to be interpreted in the usual way as positive and nega-
2 tive frequency modes, respectivéljote that as i8] we

find it convenient to use a nonstandard basis of spherical

We set the de Sitter radidsto unity and assume thah harmonics. We define

>1. This condition, while not essential, simplifies the discus-

sion for reasons that will become clear shortly. Most of the i i

results of this paper generalize more or less straightforwardly Yim= \/; Sm+(—1'\/ - ES,*m (2.6
to scalars withm?<1, higher spin fields, and higher dimen-
sional de Sitter space. We will comment on exceptions to this : . s
expectation as they arise. in terms of the usual spherical harmoni8g,, their utility

We consider two coordinate systems: global coordinategOr our purpose being that they satisfy
(7, Q) and planar coordinates,k) (see Fig. 1L HereQ is a * PPN _
point onS? andX is a point onR?. The metric is im(2)=(=1)Yn(2)=Ym(Qa). (2.7)

1 The modes(2.3) are normalized with respect to the Klein-
ds’=—dr*+costfrdQ}=57 (~dt?+dx?). (2.2 Gordon inner product

Global coordinates cover all of gSwith 7running from—oo ’The reader may well wonder why we have bothered to introduce
onZ to+w=onZ", while planar coordinates only cover the sych a complicated phase, since the overall phase of a mode func-
causal past of an observer on the south pole. In planar coofion is of course irrelevant. It turns out that the definiti@#) will
dinatesZ™ is att=0 and the horizon lies d@t=+o. Anum-  ultimately prove to be very convenient becayse- 7) =y, (7)*.

ber of additional coordinate systems and further details can®The analysis still goes through for<0m?< 1, although the case

be found in[17]. m?=0 is quite subtld19] and will not be considered here.
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<¢|m,¢|rmr>=i<cosh7)2f O )= S S
(2.8

by virtue of the fact that

i(coshn)?(yFd,y)=1 (2.9

for all I.
The phase?? will play an important role below, so we
record some of its properties. We define

Z Yim(Q)Ym(Q)e ™2,
(2.10

which is just the two point function for a conformal field of
dimensionh.=1=*iu on the spherg8]. It is clear that they
satisfy

Ax(,Q9)=~ psinhru

(u Sinhwu)zf d2Q"A_(Q,QMA,(Q",Q")=54(Q,Q").
(2.1
Next we discuss the bulk-boundary propagafovehich

are used to construct bulk solutions of the Klein-Gordon

equation corresponding to wave packets coming in fflom
or going out toZ". We defineK* by

Ki(ﬂ';r,m=% Yim(Q)Kim(7,Q),

+ +i M
Kim(7,0)=€"1% \@Y.*mmm(r).
(2.12
These are related by
K(Q";7,Q)=—pu sinhw,uf d2Q"Q-(Q',Q")
XK (Qh;7,Q) (2.13

and satisfy

K=(Q;7,0)=K=(Q;7,Q" ) =K" (Qp;7,Q4).
(2.149

They are solutions of the wave equation with the boundary

conditions

lim K*(Q',7,0)=eF111762(0,0)+0(e*%),
7 (2.15

4Although de Sitter space itself has no bounddry,andZ~ are

the boundaries of the conformal compactification of de Sitter space.
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i.e., they are positive frequency solutions which approach
delta functions or=. For this reason we will frequently use
the notationK™=K~ and K=K ™. Given any smooth
function f(€)) on the sphere, we can construct solutions of
the bulk Klein-Gordon equation by the prescription

P 7,0)= f d20/F(Q)KMHQ';7,0). (2.1

The solutiong!" represents a wave packet with enveldpe
coming in fromZ~, while ¢{"' represents a wave packet with

envelopef going out toZ ™.

B. Planar coordinates

A basis of positive frequency solutions of the free Klein-
Gordon equation is given by

tJ_(pY

J8msinhmu
(2.17)

We use the notatiod. (2)=J.;,(2), whereJ,(z) is the
Bessel function. Thusp(t)~t1~"* neart=0. The modes
(2.17 are normalized according to

bs(t,R)=eP7u(p,t), u(p,t)=

_I 2 * o _ 2R _ R
<¢ﬁ,¢ﬁ'>—ff d%(¢s drds)=6(p—p’'). (2.18

The bulk-boundary propagator B is

1 N
Kit0) =5 | PR (B0,

K(p;t,9)=e""P*z(p)u(p,t), (2.19

where

z(p) %(p/Z)”‘F(l—i,u)\/87rsinh7r,u. (2.20

This factor will play as important a role as the ph&2) in
global coordinates. Performing the Fourier transfa@rl9

gives
o |,LL o t 1+ip
Kt == 0= R9D| gz
(2.21

XYl
The solution to the free Klein-Gordon equation correspond-
ing to an incoming wave packet with profiféy) fromZ" is
then just

i(t.%)= f Sy DKL), (222
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Ill. VACUUM STATES IN de SITTER SPACE eral it has an additional singularity wheneveis null sepa-

It was shown by Breitenlohner and Freednjaf] that in rated fromy,. S_lnce this S‘?Cond poI'e is always sepgrated
from x by a horizon, there is no obvious reason to discard

écg‘}'g)lz <ﬁ]zs<cil?é /2“)2'3 1"2210”5];3 {\?visis;\elgijsivall?entthgua:?tril?ethese vacuum_state.s. Thg valyes — 7u is the Euplidean
) . ._vacuum, andy= — e is thelin) vacuum. The two-point func-
zations. Such scalars were later found to play an mterestmgon in the Euclidean vacuum has no antipodal singularity
role in the AAS/CFT correspondeni&l,22. Since this phe- '
nomenon is related to the fact that for this rangendf both
mode solutions of the Klein-Gordon equation are normaliz-
able[23], one might expect a similarly interesting story in  In this section we record the two-point function
the dS/CFT correspondence, where both modes are normaly|®(x)®(y)|y) in the |y) vacuum for later use. It is
izable for any value ofm?. straightforward to derive a general identity for the Wightman
In fact, as discussed {{24—27 and reviewed i8], the  two-point function[8]
story is even richer for de Sitter: there is a one complex
parameter family ofSQ(d,1) invariant vacuum states for a 1
massive scalar field id-dimensional de Sitter spacetinef w, _ w _areWw
which a one real parameter subse€RBT invariant[8]). Two Gy (xy) 1—er*t7* [Gin(x.y) =€ Gin(X,Ya)
vacuum states play special roles: the Euclidean vacl&im

B. Two-point functions in the |y) vacua

is the one obtained by analytically continuing from the +e" Gy, x)—e’Gl(xa.y)] (3.2
sphere to de Sitter spacetime, and fihg vacuum is the one ) o )
with no particles or .5 in terms of the Wightman function in tHam) vacuum. It will

It is occasionally said that the hypothesized dS/CFT corbe convenient to write an explicit formula, expressed in
respondence is “just” an analytic continuation of AdS/CFT. terms of the de Sitter invariant quantiy associated with
However, it is easy to see that analytic continuation fromtwo points[17]. In global coordinates,

AdS does not give any vacuum state for a scalar field in dS.
Consider the AdS commutator functignb(x),®(y)]. It
vanishes outside the light cone in AdS, but analytic continu-
ation to dS involves interchanging the roles tofand r,° —sinhrsinh7’, 3.3
which turns light cones on their sides. So simply analytically

continuing the two-point function for a scalar field would where ® is the angle betweef and Q' on S?, while in
give a commutator function which vanishes inside the lightplanar coordinates

cone, but not outside. This would violate causal propagation.

P(7,Q;7 ,Q")=coshrcoshr’ cos®({,Q")

(t=t")2—[x=x'|?
2tt’

A. The MA transform P(t,X;t',X")=1+ (3.9

The vacuum associated to the global coordinate modes
(2.3 is called theiny vacuum since it corresponds to having It is useful to keep in mind the following propertieB(x,y)
no particles coming in frord~. Now consider the frequency is greater than 1, equal to 1, or less than 1 respectivety if
independenti.e., diagonal Bogolyubov transformation andy are timelike, null, or spacelike separated. Furthermore,
P(x,y)=—P(x,y,) so thatP(x,y) is greater than-1, equal
to —1, or less than-1 respectively ik andy, are spacelike,

1 . .
~ null, or timelike separated.
- AV A% ’
$im [ ert (bim =€ bim). 3D In terms of the de Sitter invariant quanti®we can write

the commutator function

Following [8], we call Eq.(3.1) an MA transform for Mot- .

tola and Allen[27,26. The modes3.1) define a de Sitter G (X.Y)=[P(x),(y)]
invariant vacuum stat¢y) for any complexy with Re(y) . _,
<0.2 The two-point function( y|®(x)®(y)|y) has the usual __ O—y0) cog u cosh *(P)]
singularity whenevek andy are null separated, but in gen- 2w 9 y sinfcosh }(P)]’

>1.

(3.9
SIt was shown i8] that in odd dimensional de Sitter spacetime, . . .
lin)=|oub, the state with no particles . Here sgn®—yY) is +1 if x is in the future light cone of,

6AdS and dS can both be obtained from Euclidean AdS with met&nd —1 if x is in the past light cone oy. Of courseG®
ric (1x3)(dx¢+---+dx3), the only difference being whether one Vanishes for spacelike separatiéhs 1.

takes &q,X,)— (it,r) or (rit). The commutator function is @number which is indepen-
"By this we mean the vacuum annihilated by the operators multident of the statéy) [28], so we can summarize thedepen-

plying Eq. (2.3 in the free field expansion ab. dence of the two-point function by looking at the Hadamard
8If Re(y)>0 then we can simply exchangeand ¢* . function, which turns out to be
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GHx,y) =(y{P (), D)} 7)

1 1 Imexd y—iucosh {(—P)]

T T l_er sinfcosh }(—=P)] P<-1
(3.6
_ costiu cos *(P)]—costiRe(y)]cosh u(7—cos H(P))] 1Pt
- 27 sinhmu sinfRe(y)] o :
_ cotRe(y)] sinH u cosh *(P)] -
- 27 sinjcosh *(P)] ’ '
|
Note that only theP<—1 part is sensitive to the imaginary 1
part of v. The time-ordered correlation function 4.2

U(p,t)= ———=(u(p,t) —e’u*(p,t)).
Vi-er?"

5 5 Although this does seem to preserve translation invariance, it
= 2 (17— 7") pim(X) i (Y) is far from obvious that Eq4.1) leads to a de Sitter invari-
Im ant vacuum state for any complex [we again stick to
Re(y)<0], but we will now see that this is indeed the case.

+0(r'—1)¢ b (x 3. ~
( ) Bm(Y) Pim(X) 3.7 Let us start withy= —, so that¢p= ¢. Since the modes

will play the central role beginning in Sec. V, and the repre-(2.17) are purely positive frequency ¢h, we expect that if

sentation(3.7) will prove more useful than the expression they define any de Sitter invariant vacuum at all, it should be

obtained after the sum is performed. the |in) vacuum. To check this we calculate the Wightman
two-point function

G (%,Y),=(NTP)P(y)]y)

IV. THE MA ' TRANSFORM IN PLANAR COORDINATES

. W G+l G\ — 2 N Vi rgr
Previous analyses of these vacua have focused on global G (LXt",X )—J d*p (1. X) b5 (1", X")
coordinates, where the calculations are simpler but the physi-

cal meaning of the Euclidean vacuum is obscure. In planar B tt’ A2peb- i x)
coordinates there is a new natural vacuum state: the one de- ~ 8wsinhwu f P

fined by having no particles on the horizontate. How-

ever, the planar coordinate system only makes a subgroup of XJ_(pt)J.(pt")

the full de Sitter isometry group manifest. In particular, the tt’

location of the horizon at=< is not invariant under de J dppX(p|X—X'])
Sitter transformations, so one might have expected that the 0

boundary condition of having no particles on the horizon ,

could not give rise to a de Sitter invariant vacuum state. In XJ-(PHI+(pL). “.3
this section we prove the slightly surprising result that they; ;g straightforward but tedious to massage this intef28]
one parameter family of vacua do appear naturally in planagy optain the result

coordinates, and that the state with no particles on the hori-

T4 sinhmu

zon is just the Euclidean vacuum. GWY=0, P<-1,
The MA transformation(3.1) cannot be done on the pla-
nar modes(2.1j) sllnce.the resultlng vacuum state would 1 coshi u(m—cos X(P))]
break translation invariance along—the cross terms be- = I7sinh sifcos [(P)] , —1<P<1,
tween ¢ and ¢* would give rise to terms in the two point by 4.4
function depending ofx+ Y| instead of|X—y|. To remedy :
this problem, consider a modified transformatievhich we i
call MA") of the form =——sgnt—t’)
4
1 H i 1
~ - S - exd —iusgnt—t")cosh ~(P
Bo(1,%) =~ ({1, 0) — €% 5(1,X0) KSR SgUZ)COSNTR)] -y
Vi1—er+?* sinf{ cosh™ *(P)]
Eeiﬁ-ilj(p,t)’ (4.1  with P given by Eq.(3.4). From Eq.(4.4) we find an expres-
sion for G¢=2 Im(G") which agrees with E¢3.5), and we
where find that the Hadamard function
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GH=2RgG")=0, P<-1, L
«G") G';(x,x’)=fd2p P toOGH L), (41D

1
" 2@ sinhap where we define the function
cos —cos P BFt 41 ) — At — t VT (4t
ﬁsﬁitézos_l(mg ))]' _1<p<1, 45 Gl(t,t',p)=0(t—t")TU(p,t)TU* (p,t')
+o(t' =T (p,Tu(p,t’). (412
1 sin ucosh 1(P)]
~ " 27 sinfcosh X(P)]’ P>1 V. dS/CFT IN GLOBAL COORDINATES

After the existence of an AdS/CFT correspondence was
. . suggested by Maldacef&], a precise prescription for calcu-
that the planar mode®.17) define thefin) vacuum. lating CFT correlation functions in terms of AdS data was

Now co_nsid_er arbitrary in Eq._(4.1). Since the commu- 44 developefb,7]. In AdS/CFT, the gravity partition func-
tator function is unaffected by this Bogolyubov transforma—tion, viewed as a functional of boundary data, serves as the

tion, we need only to calculate generating functional of CFT correlators,

GH=2 Ref dPpds(t (T X). (4.6) Z[¢O]:<expif 0¢o>- 5.1
IM

Using Eq.(4.1), we can write Eq(4.6) as

agrees with Eq(3.6) for y=—c. This concludes the proof

Recently the dS/CFT correspondence has been proposed
) . by Stromingeff1] and a recipe for calculating two-point CFT
G;'Zﬁ[(lﬂLeV” )Gm—4 Rege” )], (4.7 correlation functions has been suggested, but a precise dic-
1-e77 tionary between bulk and boundary correlation functions has
not been given. There are at least two related reasons why
adopting the AdS prescription is problematic.
. As mentioned above, all of the modes in de Sitter space
f d?p eiﬁ'(i*i')J_(pt)J_(pt’). are normali_zable, but in Lorentzian AdS_, normalizable and
0 non-normalizable modes play substantially different roles
(4.8 [23]. The former encode the states of the theory while the
) ) ) ) latter correspond to boundary conditions for fields and do not
It is again straightforward to check that B¢.7) is equal to  fjyctuate. The AdS boundary conditions ensure, for example,
Eq.(3.6). that the on-shell action for a scalar field, which is a total
Finally we address the significance of the Euclideanyerivative S=[dzo,(z" 1¢d,4), has only a contribution
vacuum from the point of view of the MAtransform. PIug-  from the boundarg=0 and not from the horizoa= . But

ging y=— mu into Eq. (4.1), we find that the modes which ', s, there is no boundary conditigather than the trivial

with G!! given by Eq.(4.5) and

I tt’
- 8msinhmwu

give the Euclidean vacuum are one ¢(t,X)=0] one could impose orp at Z~ in order to
i6.% eliminate the contribution to the on-shell action from the
SE(t.%) = te 1 horizon att=cc. This highlights the necessity of having two
P V8w sinhmy J1—e 27+ independent CFT operators for every bulk field as op-
posed to the 1-1 correspondence familiar from AdEhis
X[JI_(pt)—e” ™I (pt)]. (4.9  argument applies in planar coordinates—of course in global

) ) ) _ coordinates one also expects two CFT operators, simply be-
Using the asymptotic expansion of the Bessel function wWesause there are two boundarigs.) The fact that two CFT

find that operators are associated with each bulk field has indeed been
i discussed ifl].
SE(t X)~i /leirii—ipt (4.10 In evaluating the on-shell action in AdS space there are
P 27 N 2p ' divergences which are easily regulated by prescribing bound-

ary conditions not ak=0 but atz=e. A well-defined result

neart=c. We see that precisely that linear combinationis obtained after subtracting the power-law and logarithmic
(4.9 which gives the Euclidean vacuum is the one which isdivergences ag—0. In dS a similarly regulated on-shell
purely positive frequency near the horizon. This shows thatction for a scalar field is not infinite but does not
the Euclidean vacuum is natural for cosmological purposes;onverge—it has terms ofi” which behave likee' as e
when one might want to put boundary conditions on the— 0. In planar coordinates there are as mentioned in the pre-
scalar field on the past horizon of the regiof . vious paragraph also nonzero terms coming from the horizon

Before concluding our discussion of planar coordinateswhich behave ag'm asT—®. We have been unable to find
we record here the momentum space Feynman propagatarregularization scheme which enables one to extract sensible
GF, which will be used in the calculations below: results.
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We proceed by recalling an alternative interpretation of
the same AdS/CFT correlation functions which was devel-  (--"O%(Q)---)="1lim i (coshr’)?d?(Q)’
oped in[30,10-13 and nicely proven in[14]. Giddings 7'
showed that the CFT correlators calculate $henatrix for F , S Ut
scattering particles from the boundary of AdS into the bulk X X', )1 I KM Dix').
and back. In AJS/CFT, the boundary CFT has a time-like (5.9
direction, and the positive and negative frequency compo-
nents of a CFT operatap,, create and annihilate quanta of The ordering of the operators inside these correlation func-
the associated bulk fielg. tions is irrelevant, except for possible contact terms, which
We propose to adopt a suitable generalization of the concan be computed explicitlias we will show below
struction of[14] to define CFT correlators for de Sitter space.  The motivation for the proposab.2) comes from study-
Since the boundary conformal field theory is Euclidean, ining Smatrix elements in d3 In the next subsection we will
stead of having positive and negative frequency Componenféerive an LSZ-like formula for th& matrix and show that it
of the operator we need the two operatéts, O_ . In fact, can be written in terms of the correlation functiai#s2) as
in global coordinates it makes sense to think about four dif- .
ferent operator©"°"' and O™ °"". We interpret®” and O" _ N d*Q;
as coupling respectively to positive and negative frequency S[{fi}’{gj}]_f EsIING2 i (€2)
quanta of the bulk fieldp onZ~. OnZ" the pairing is re-

versed: 0% couples to negative frequency quanta, &9 o d%Q]
couples to positive frequency quanta. This convention en- X ,Hl fgj(ﬂj’)
sures that operator®.. have conformal weight. =1*iu =
regardless of whether they are in or out operators. Only two m no
of the four operators are independent, and we will discuss ><<H o] (’)'E(Qj’)>, (5.5
below how to relate the out operators to the in operators =1 =1
perturbatively. .
Concretely, our proposal is to define dS/CFT correlationVheref; andg; are smooth functions on the sphere, and the
functions in global coordinates by the prescription left-hand side is th&smatrix element fom incoming wave

packets with envelopes andm outgoing wave packets with
envelopegy;. The factorZ is a wave function renormaliza-

m n . . .
, , tion which one could calculate perturbatively.
<i_H1 ol ot )>
" A. Motivation: The S matrix
= lim i iH (coshr,)2d2w; KU (Q; ;)i 3Ti Following standard argumerit81], we consider the inter-
P i=1 ! action of some wave packets which are widely separated in
7= the far past and in the far future, so that the full interacting

field ®(x) asymptotes to free fields,

lim ®(x)=vVZe"(x), lim d(x)=ZP(x).

T— —® T— +®

, (5.2 (5.6)

X GF(X1, oo X s XL se e X))
n

x| 1 (coshr))?dw]i g KM(Q] 1))
j=1

Here we allow for a wave function renormalizati@h and
where GF is the bulk time-ordered Feynman correlation the canonically normalized free fields"" are expanded in
function and we use the notatier ( 7,») [additional details ~terms of operatora™°" as
of Eq. (5.2) will be clarified below.

The formula(5.2) only defines the two operatorg™°!" Pinout_ inout, % .inoutt in,out \ _
. ) . o . = )y t a , a 0)=0.
but it is straightforward to generalize the prescription to in- % Pinim "+ Simim in*10)
clude the other two operators. Schematically, for every inser- (5.7

tion of O™ we include _ _
Note that we are taking the in and out vacua to be the same,

as is appropriate for dS[8]. The role of the choice of
N O N T "N2420) 7 vacuum will be discussed below. The condititd6) holds
{0=(Q)-)= lim f (coshr’)"d"} weakly (i.e., it is not an operator identity but is valid inside
matrix elements The operatora™°" are recovered from the
X K™ (Q;x")id . GR(...x',..), free fieldsd ™" by the standard formula

(5.3

-

ajp'= i (coshr)?d2Q ¢, (7,0)i T, D™ 7,Q).
while an insertion of?° involves (5.8
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Sinced™ and®°“ both satisfy the free wave equation, these

operators are independent of

PHYSICAL REVIEW D 65 104037

So far we have only used the operat(i?'ﬁ'"“t, but it is
clear how to introduce the other two. In tisematrix (5.10

Given a smooth functiom() on Z~, we can use the we can also include operators liké" and «°"", which lead

bulk-boundary propagatdt™ of Sec. Il A to construct a so-

straightforwardly to the prescription®.3), (5.4) for inser-

lution ¢g‘ of the wave equation which represents an incom-tions of O™ and®°“, respectively. The possibility of includ-

ing wave packet with envelogg; as in Eq.(2.16. This wave
packet corresponds to the stai§|0), where

in,out__

(coshr)?d?Q "™ (7,Q)

Xid,dM r ), (5.9
Similarly, an outgoing wave packet with envelopat 7+

is constructed using<°®", and corresponds to the state

(0]a?™. The Smatrix element fon incoming wave packets

{g;} andm outgoing wave packets;} is defined by

n

S{fit{giH=(0ll1 of"]1 agflo).

=1

(5.10

Now using the definitiong5.9), (5.10 and the asymptotic
condition (5.6), it is straightforward to derive a formula for
the S matrix:

2

n LR
f{ll;[l (coshr)) =

S[{fibi{g;H= ‘"”:

Tj’*)*OO
><¢?i“‘*<xi>i3n1

><<0|Ti1]l <I><xi>j1]1 ®(x/)|0)

ZQ!

n
h 2 j
j]:[l (coshry) \/Z

X

1,1 ¢5,(x)

(5.1

Note that the derivative operators do not hit the factors o

(coshn)? in the measure, as in E@5.9). Also, the time-

ordering symbol inside the bulk correlation function can be

interpreted as defining the order in which theoordinates
are taken to infinity. One should evaluate the quantity at
fixed 7,>--7,>711>--->17, and then take the limits pre-

serving that ordering. In particular, one need not worry about

delta function contributions coming from when theleriva-
tives hit the time-ordering symbol. Note that the vacu@m

ing these operators may seem unfamiliar since normally one
can use onlya™" and nota™ for constructing initial states
since the latter annihilaté8). But we can include them here
since we will be interested in the dependence of the CFT
correlation functions, ané™ only annihilates|y) for y=

— oo, thein) vacuum.

B. Relation between in and out operators

Using Green’s theorem and the fact the"{();x) satis-
fies the equation of motionV()z(—mz)K"“‘:O immediately
gives the formula

—if V=gdx KO Q;x')(VZ, —m?)
XGF(... x,..)

=( lim — lim )fdzﬂ’i(coshr’)z

I N

XGF(..x,..) 3, KOUQ:x). (5.12

Now the first term on the right-hand side looks like an inser-
tion of O, as in Eq.(5.4), while the second term on the
right-hand side can be made to look like an insertiorf

by recalling the relatiori2.13). This leads to the identity

(- 0M(Q)Y=—pu sinhrr,uJ’ dQ'A_(Q,Q))
X<@T(Q!)>
—if V= gdx KoU(Q;x")

X(V2,-m)GF(...x',..). (5.13

fOf course a similar formula relate8” and O%". For two-
point functions in the free theory, it is not hard to see that the
second line of Eq(5.13 vanishes, so that one obtains the

a/veak operator identities

OM(Q)=—p sinhmf dQ/A.(Q,0)0"(Q").
(5.14)

in Eq.(5.11) can be any of the vacuum states discussed in the s relation receives perturbative corrections which can in

previous section®We will see by explicit calculation how

principle be derived from the identit{s.13).

the Smatrix elements, and hence the CFT correlators, de-

pend on this choice of vacuum.

C. CFT two-point functions

We now show that the proposé.2) reproduces the two-

%In fact, there is no reason to necessarily take the incoming an@oint functions of[8] in an arbitrary vacuum. This calcula-
outgoing vacua to be the same, although we will not pursue thigion is trivial in momentum space, so we start by Fourier

possibility here.

transforming Eq(5.2) to obtain
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2 Y
) ) , y7 e
<H on, mH O+|,m,> (7|07 Q)0 (0 )|7>:75'nh77,um
XA (Q,Q),
= lim [H k¥ (77)i(coshr;)?d }
Tj——®© [
Tj’***w ) ) M 1
(YO ONQ) | y) =5 ——= 5(Q,Q),
XéF i) 2 1—erty
im0y y U]
m
H (coshrj) 25 k(7 |, (5.19 Nana
= i <'y|(’)in(Q)Oin(Q’)|’y>=ﬁ 52(0 Q’)
- - 2 1-—ert” o
where we have defined (5.18
k — *i9| ﬁ 1 . . .
i(1)=e > Yi(7). (5.16  in agreement with the results §8] (after translating from

our y conventions to theirw conventiong

This is essentially jusk™, but with the spherical harmonics
stripped off already.

Sincek;(7) is justy,(7) up to a factor, it is trivial to use
the momentum space representat{@i/) and the orthogo-
nality of the mode<2.8) to obtain

D. CFT three-point function

Of course as far as the two-point functioffs.18 are
concerned, one could eliminate thedependence by rescal-
. ing the operator®'™°", In this section we outline the cal-
e’ zig M culation of a CFT three-point function in the presence of a
1—ert?* € 2 etc. ¢ interaction in the bulk, and prove that an invariant ratio of
(5.17)  correlation functions depends nontrivially op This pro-
vides evidence that thedg) vacua are marginal deforma-
Fourier transforming back to position space gives tions of_the CFT, as opposgq to simply field rescalings. The
calculation appears more difficult than the corresponding cal-
) S culatipn in A.dS/CF'Ii,0 bu_t fortunately we will b_e able to
<7|OT(Q)(’)‘[‘(Q’)|y)= M—Sinh'ﬂ,u, € . exploit the smple behavior of the global coordmate modes
2 —erty under the antipodal map to extract the essential features of
the result. The invariant ratio we will calculate is

<7|Oiflmoif|fmr|7>= -

XA_(Q,Q),

(y|0(Q1) 0T (Q,) O (Q3)] y)?
(Y] ON(Q1) O (Q,) | Y)Y OT( Q1) O (Q3) [ Y)Y OT(Q2) O (Q3)] )

R(y)= (5.19

Since our calculation will not be able to determine theDiffeomorphism invariance o&’, ,(X1,X2,X3) ensures that the
overall (y-independentconstant inR, we omit overall con-  CFT three-point function read off in this manner will be
stants throughout this calculation. The prescripti@2  conformally invariant.
amounts to extracting the coefficient gf+(1* 727 73) as all
three points approach . That is,

n planar coordinates, the technical difficulty arises because

. F
lim GJ(X1,X2,X3) the three-point  function involves integrals like
i T JA2yK(%,:¥)K(X,;¥)K(X3:¥), but the  function in the bulk
— ahi(ry+7p+73) in in in boundary propagatdK (2.19 makes this integral difficult to ma-
e+(mT 72773 Q Q Q +eee
(F0F(21)0%(Q2) O (Q3)[7) nipulate. In particular, the clever AdS tricks [#2] do not seem to
(5.20  work.
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At the tree level in perturbation theory we have R(y)~e 3 (1—e?" ") 3[x(1—e3")—ye’(1—e")]?.

(5.27

Although we have not determinedor v, it is clear that no
choice renderk(y) independent ofy. Therefore we con-
clude that they dependence of the CFT correlation functions
cannot be absorbed into a rescaling of the operatbrs

Gh(X1, Xz, %g) = f V=gdxGl(x,x1) GE(x,x)
X GF(X,X3). (5.21)

Since we are interested in the limit— —«, it is safe to
replace the time-ordered two-point functions in Eg21) by
the Wightman functioriit is not hard to check carefully that VI. dS/CFT IN PLANAR COORDINATES

the difference of the integrals goes to zero in the limit we are |y planar coordinates, we propose to define dS/CFT cor-
interested i Then we use the identit{8.2), but note that  rg|ation functions by the rule

the second and third terms in E®.2) behave ag"-" near

7~ and therefore do not contribute to EG.19. Keeping m n
only the terms which behave like+ (1" 72" 73) gives <H o_HI1 (9+(yj)>
=1 =1
* : m dZX'
(1—ert7")=3 v—gdxi[[l [GY(x,x;) —e"GW(xa,x)]. = lim f [H T'K*(ii X)) dy,
(5.22 G0 LTE T
F ! [ !

The eight terms in Eq(5.22 can easily be combined by XG Xy XmiY1s---¥n)
noting that in every integral with two or threg’s we can N2y
make the change of variablgs-x, to end up with only one X { 11 ,y] g Ky iy |, (6.1)
Xa Or none. Therefore Eq5.22 is equal to =1 o

R with the notatiorx= (t,X) andy=(t’,y). Again the ordering
(1-e"7)¥(1-e¥)G—-e"(1-e")(G,+G,+Gy)], of the operators is irrelevant except for contact terms, which
(5.23  can be computed by ordering the andy; in parallel with

the corresponding; andy;. In the next subsection we mo-

where tivate this definition by analyzing th® vector[2].
GEJ \/—_ngGW(X,Xl)GW(X,Xz)GW(X,X3) (5.24 A. Motivation: The S vector
In planar coordinates coverir@~ it does not make sense
and to speak of asymptotic out states since the horizon is located

at a finite affine distance from any point in the bulk®@f .

(In our formalism, this problem manifests itself through the
Glzf J=gdxGY (x4 ,x1) GV(x,%)GW(x,x5), etc. lack of a “bulk-horizon” propagator Wh?Ch one could_ use to

propagate wave packets from the horizohherefore it has

(5.29  peen proposedl2] (see alsq15]) that the natural metaob-

- W . servable is not th& matrix but anS vector, where a unique
Ian_act It is safe 10 replace . by the tlme—orde_red produgt state(U| is generated by some unknown mechanism on the
G" in Egs.(5.29 and(5.25 since we are only interested in horizon, and the only calculable quantities dtd|a), for

the limit 7— —o0. In any case, diffeomorphism invariance statesa) on the boundarywhich we take to b& ). This is
of the integralg5.24) and(5.25 implies that coefficients of the point of view we will adopt, although for simplicity we

hy(r+tmptr) i in- .. . . /
e’ must be proportional to the conformally in- iy only consider the case whefu| is one of the de Sitter
variant three-point function , , , for a field of weighth, . invariant vacuum statels).
We have not determined the constants of proportionality, but '\ya define thes vector

since there is noy dependence in the remaining integrals

(5.24 and(5.25), the y dependence of E@5.22 must be of m. 0
the form Si{fib{gi1=(0lll o1l ag'lo), (6.2
i=1 =1
(7102(01)01(Q,) 00 (Q3)] 7) where
~(1-e"") x(1-e¥)-ye(1-eNA, . ., o f e (1015 D12 .5
(526) af _f Xd)f( ;X)at ( YX)l ( . )
wherex andy are undetermined nonzero constants. We conwith ¢; defined in Eq.(2.22. We have kept the superscript
clude that the invariant ratit.19 is “in” in these formulas to compare with the previous section,
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but since here there is no “out,” they will henceforth be
dropped. Note that the operater in Eq. (6.2) annihilates a
wave packet with envelopkat Z7~. This makes sense be-
cause a general de Sitter invariant vacuum g@tevhich we
might choose to use in E¢6.2) actually contains an infinite
number of particles of . We form the initial state by add-
ing the wave packetg; and deleting the wave packets
from this state.

Repeating the LSZ analysis of the previous section, it is

easy to write theS vector in the form

sfsto- | {IT[ 1

n d2y
x| [T —Zai(y
11 7z 90

x<i=H1 0-(xn 11 o+<y1>>,

(6.9

with the CFT correlator on the right hand side given by Eq.

(6.2).

B. CFT two-point functions
In momentum space, the CFT correlation functiéri) is
simply
m

Mo

11 o-tll O+(<ﬁ;)>

= lim
tt—>0

xGF({t; B {t] g

Il

=1

[H k* (pi ti) i}
it

X

(6.9

i o
ﬁ (q],J)}

with k(p,t)=2mz(p)u(p,t),
(2.20.

Using Eg. (4.12 and the orthogonality(2.18 of the
modes, we find immediately

recalling Egs. (2.19 and

(YO_(X)O_(Y)|y)

e’ oo
—mj d?peP XY (@2mz* (p))?

e”"

=—16i(7u)? (6.6

1—ert 7" [X—y|"-

and

PHYSICAL REVIEW D 65 104037

1 oL
(7|O(X)O+()7)|y>=mf d2peP-(x-y)

X |2mz(p)|?

1 h
mzﬂ(zﬂ O(X—Y).

(6.7)
VIl. SUMMARY AND DISCUSSION

The purpose of this paper has primarily been to define a
procedure for calculating CFT correlation functions from
bulk n-point functions in d$. Although our proposal is mod-
eled on a similar procedure from AdS/CFT, we have high-
lighted some of the important differences between dS and
AdS which make naive extrapolation of AdS results impos-
sible. These differences include the fact that in dS one inevi-
tably has two CFT operators for every bulk fiedfl (since
there is no natural boundary condition one could impose to
eliminate the second operatpias well as the fact that a
scalar field in de Sitter space has a whole family of different
vacuum states, none of which is the one obtained from AdS
by analytic continuation.

We have also shown that these de Sitter invariant vacuum
states arise naturally in coordinates covering only half of de
Sitter space, where the Euclidean vacuum plays the special
role of having no particles on the horizon. Finally, we have
sketched the calculation of a CFT three-point function and
shown that an invariant ratitb.19 of correlation functions
depends nontrivially on the choice of vacuymThis shows
that they dependence of the CFT correlation functions can-
not be eliminated by rescaling the operators. However, it
leaves open the intriguing possibility that the correlation
functions may be related by g-dependentonlocal field
redefinition of O'7°". This is easily seen to be true for the
two-point functiong5.18), and it would be interesting to see
whether this is a general feature.

Our Smatrix andSvector proposals answer the question
of what these CFT correlation functions [&,1,8 are. Un-
fortunately, we have not answered the interesting and press-
ing question of how to interpret these quantities, which have
been called “metaobservable§2] since no single observer
in de Sitter space can access more than a single poifit on
Also, in this formulation of the dS/CFT, the CFT lives on a
Cauchy surface at infinite distance, rather than a boundary. It
might be more satisfactory, from a holographic point of view,
to have a formulation in which the CFT lives on the horizon
[33].
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