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Vacuum states and theS matrix in dS ÕCFT
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We propose a definition of dS/CFT correlation functions by equating them toS-matrix elements for scatter-
ing particles fromI2 to I1. In planar coordinates, which cover half of de Sitter space, we consider instead the
Svector obtained by specifying a fixed state on the horizon. We construct the one-parameter family of de Sitter
invariant vacuum states for a massive scalar field in these coordinates, and show that the vacuum obtained by
analytic continuation from the sphere has no particles on the past horizon. We use this formalism to provide
evidence that the one-parameter family of vacua corresponds to marginal deformations of the CFT by com-
puting a three-point function.
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I. INTRODUCTION

Understanding quantum gravity in de Sitter space rema
one of the most important problems in theoretical physics
correspondence relating gravity in de Sitter space to a c
formal field theory~CFT! has recently been suggested@1#
~see also@2#!, and subsequently studied by several auth
@3#. Recent works on de Sitter space include@4#.

The dS/CFT correspondence is modeled in analogy w
the AdS/CFT correspondence@5,6,7#, which has proven to be
phenomenally successful. But it is important to keep in m
that in the prehistoric days of AdS/CFT, when the first sig
were emerging that there might be some connection betw
supergravity on AdS space and conformal field theories
would have seemed beyond hope to expect that these d
opments would lead to a nonperturbative definition of qu
tum gravity on AdS space, and to all of the remarkable
vances that have been made in our understanding of g
theories. AdS/CFT turned out to be more wonderful than
had any right to expect, so we should not be prejudic
against dS/CFT simply because it has some mysterious
confusing aspects and has not yet borne the rich fruit of
AdS brother.

Therefore we proceed modestly in this paper, by elucid
ing the connection between gravity on de Sitter space
conformal field theory correlation functions. Our probe w
be an interacting real scalar field of massm. This turns out to
be more interesting than it might seem at first since it
known that there is no unique de Sitter invariant vacu
state for a massive scalar field, but instead a family of va
labeled by a complex parameterg. Changing the vacuumug&
in the bulk of dS3 has been argued to correspond to a m
ginal deformation of the associated CFT@8#.

The central result of this paper is a proposal for how
extract CFT correlation functions fromn-point correlation
functions of the scalar field on dS3 . Along the way we high-
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light the important differences between dS and AdS wh
make naive extrapolation of some AdS/CFT results proble
atic. In the global picture of de Sitter, there are four CF
operators associated with the scalar fieldf, which are la-
beledO6

in,out, and have weightsh6516A12m2. Only two
of these operators are independent, and in general the
operators can be related to the in operators by path inte
evolution fromI2 to I1. We equate correlation functions o
O1

in,out with S-matrix elements for particles coming in from
I2 and going out toI1.1 This definition of CFT correlation
functions is motivated by a similar construction for Ad
which has been developed in@10–14#. We do not address the
important issue that theseS-matrix elements are only
‘‘metaobservables’’ and cannot be probed by any single
server in de Sitter space@15,16,2#.

In planar coordinates, which only cover half of de Sitt
space, one has only half as many operators. For exampl
the patchO2 which includes the causal past of an observ
sitting at the south pole, there are no asymptotic out states
the best one can do is to study theSvector@2,15#. This leads
to a natural definition of correlation functions involving on
O6

in . Along the way, we prove the somewhat surprising
sult that the Euclidean vacuum state~which is the one ob-
tained by analytic continuation from the sphere to de Si
spacetime! is the state with no particles on the horizon.

The plan of the paper is the following. In Sec. II w
introduce global and planar coordinate systems for d3 ,
mode expansions for the scalar field, and the bulk-bound
propagators. In Sec. III we review the construction of the
Sitter invariant vacuum statesug& in global coordinates and
record the two-point functions of the scalar field. In Sec.
we show how these vacuum states can be obtained natu
in planar coordinates as well, and that the Euclidean vacu
is the one with no particles on the horizon. Section V co

1Our S matrix is the standard one of perturbative quantum fi
theory, as distinct from the~finite-dimensional! matrices of@2,9#,
although it would be very interesting to understand a connec
with these works.
©2002 The American Physical Society37-1
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tains the general prescription for calculating CFT correlat
functions in global coordinates and explains the connec
to theS matrix. At the end of Sec. V we outline the calcul
tion of a CFT three-point function and show that the para
eterg appears nontrivially in an invariant ratio of correlatio
functions, providing an evidence that these vacua are m
ginal deformations of the associated CFT. The prescrip
for dS/CFT correlation functions in planar coordinates a
pears in Sec. VI, where the motivation is provided by theS
vector.

II. COORDINATES, MODES AND BULK-BOUNDARY
PROPAGATORS

In this paper we consider an interacting scalar fieldf in
dS3 with the action

S52
1

2 E A2g@~¹f!21m2f21V~f!#. ~2.1!

We set the de Sitter radiusl to unity and assume thatm2

.1. This condition, while not essential, simplifies the discu
sion for reasons that will become clear shortly. Most of t
results of this paper generalize more or less straightforwa
to scalars withm2<1, higher spin fields, and higher dimen
sional de Sitter space. We will comment on exceptions to
expectation as they arise.

We consider two coordinate systems: global coordina
~t, V! and planar coordinates (t,xW ) ~see Fig. 1!. HereV is a
point onS2 andxW is a point onR2. The metric is

ds252dt21cosh2tdV2
25

1

t2 ~2dt21dxW2!. ~2.2!

Global coordinates cover all of dS3 , with t running from2`
on I2 to 1` on I1, while planar coordinates only cover th
causal past of an observer on the south pole. In planar c
dinatesI2 is at t50 and the horizon lies att51`. A num-
ber of additional coordinate systems and further details
be found in@17#.

FIG. 1. The Penrose diagram for de Sitter space.~a! Global
coordinates cover all of de Sitter space, with dotted lines signify
slices of constantt, which ranges from2` to 1`. ~b! Planar co-
ordinates cover only the causal pastO2 of an observer at the sout
pole. The dotted lines are lines of constantt, with t50 on I2 and
t→1` at the horizon.
10403
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For some purposes, particularly cosmology, the reg
O1 corresponding to the causal future of an observer at
south pole may be of greater interest thanO2 ~see@18# for
an interesting application!. All of the formulas presented in
this paper can be adapted toO1 by taking t→2t, so that
t50 corresponds toI1 and t52` corresponds to the hori
zon.

In global coordinates we will make use of the antipod
map on dS3. Actually there are two antipodal maps, on
which just takesV to the antipodal point onS2, and one
which in addition takest→2t. We will use the notationVA
for the former andxA for the latter, wherex5(t,V).

The following two subsections catalog the mode exp
sions for a free scalar field and introduce the bulk-bound
propagators in the two coordinate systems.

A. Global coordinates

In global coordinates we follow closely the conventio
of @8#. A basis of positive frequency solutions of the fre
Klein-Gordon equation is given by

f lm~t,V!5yl~t!Ylm~V!, ~2.3!

where

yl~t!5eiu lA2

m
~11e2t! le~12 im!t

3F~ l 11,l 112 im,12 im,2e2t!, ~2.4!

and the phase2 u l is defined by

e2iu l5~21! l 11
G~ im!G~ l 112 im!

G~2 im!G~ l 111 im!
. ~2.5!

The quantitym[Am221 must be real in order forf lm and
f lm* to be interpreted in the usual way as positive and ne
tive frequency modes, respectively.3 Note that as in@8# we
find it convenient to use a nonstandard basis of spher
harmonics. We define

Ylm5A i

2
Slm1~21! lA2

i

2
Slm* ~2.6!

in terms of the usual spherical harmonicsSlm , their utility
for our purpose being that they satisfy

Ylm* ~V!5~21! lYlm~V!5Ylm~VA!. ~2.7!

The modes~2.3! are normalized with respect to the Klein
Gordon inner product

2The reader may well wonder why we have bothered to introd
such a complicated phase, since the overall phase of a mode
tion is of course irrelevant. It turns out that the definition~2.4! will
ultimately prove to be very convenient becauseyl(2t)5yl(t)* .

3The analysis still goes through for 0,m2,1, although the case
m250 is quite subtle@19# and will not be considered here.

g
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VACUUM STATES AND THE S MATRIX IN dS/CFT PHYSICAL REVIEW D 65 104037
^f lm ,f l 8m8&5 i ~cosht!2E d2V~f lm* ]Jtf l 8m8!5d l l 8dmm8

~2.8!

by virtue of the fact that

i ~cosht!2~yl* ]Jtyl !51 ~2.9!

for all l.
The phasee2iu l will play an important role below, so we

record some of its properties. We define

D6~V,V8!52
1

m sinhpm (
lm

Ylm~V!Ylm~V8!e72iu l,

~2.10!

which is just the two point function for a conformal field o
dimensionh6[16 im on the sphere@8#. It is clear that they
satisfy

~m sinhpm!2E d2V9D2~V,V9!D1~V9,V8!5d2~V,V8!.

~2.11!

Next we discuss the bulk-boundary propagators,4 which
are used to construct bulk solutions of the Klein-Gord
equation corresponding to wave packets coming in fromI2

or going out toI1. We defineK6 by

K6~V8;t,V!5(
lm

Ylm~V8!Klm
6 ~t,V!,

Klm
6 ~t,V!5e6 iu lAm

2
Ylm* ~V!yl~t!.

~2.12!

These are related by

K6~V8;t,V!52m sinhpmE d2V9V7~V8,V9!

3K7~VA9 ;t,V! ~2.13!

and satisfy

K6~V8;t,V!5K6~V;t,V8!5K6~VA8 ;t,VA!.
~2.14!

They are solutions of the wave equation with the bound
conditions

lim
t→6`

K6~V8,t,V!5e~712 im!td2~V,V8!1O~e73t!,

~2.15!

4Although de Sitter space itself has no boundary,I1 andI2 are
the boundaries of the conformal compactification of de Sitter sp
10403
y

i.e., they are positive frequency solutions which approa
delta functions onI6. For this reason we will frequently us
the notationK in[K2 and Kout[K1. Given any smooth
function f (V) on the sphere, we can construct solutions
the bulk Klein-Gordon equation by the prescription

f f
in,out~t,V!5E d2V8 f ~V8!K in,out~V8;t,V!. ~2.16!

The solutionf f
in represents a wave packet with envelopef

coming in fromI2, while f f
out represents a wave packet wit

envelopef going out toI1.

B. Planar coordinates

A basis of positive frequency solutions of the free Klei
Gordon equation is given by

fpW~ t,xW !5eipW •xWu~p,t !, u~p,t !5
tJ2~pt!

A8p sinhpm
.

~2.17!

We use the notationJ6(z)[J6 im(z), where Jn(z) is the
Bessel function. Thusf(t);t12 im near t50. The modes
~2.17! are normalized according to

^fpW ,fpW 8&5
i

t E d2x~fpW
* ]J tfpW 8!5d2~pW 2pW 8!. ~2.18!

The bulk-boundary propagator toI2 is

K~yW ;t,xW !5
1

2p E d2peipW •yWK̃~pW ;t,xW !,

K̃~pW ;t,xW !5e2 ipW •xWz~p!u~p,t !, ~2.19!

where

z~p!5
1

2p
~p/2! imG~12 im!A8p sinhpm. ~2.20!

This factor will play as important a role as the phase~2.5! in
global coordinates. Performing the Fourier transform~2.19!
gives

K~yW ;t,xW !52
im

p
u~ t2uxW2yW u!S t

t22uxW2yW u2D 11 im

.

~2.21!

The solution to the free Klein-Gordon equation correspo
ing to an incoming wave packet with profilef (yW ) from I2 is
then just

f f~ t,xW !5E d2y f~yW !K~yW ;t,xW !. ~2.22!
e.
7-3
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III. VACUUM STATES IN de SITTER SPACE

It was shown by Breitenlohner and Freedman@20# that in
AdSd11 , a scalar field whose mass lies in the ran
2(d/2)2,m2,2(d/2)211 admits two inequivalent quanti
zations. Such scalars were later found to play an interes
role in the AdS/CFT correspondence@21,22#. Since this phe-
nomenon is related to the fact that for this range ofm2, both
mode solutions of the Klein-Gordon equation are norma
able @23#, one might expect a similarly interesting story
the dS/CFT correspondence, where both modes are nor
izable for any value ofm2.

In fact, as discussed in@24–27# and reviewed in@8#, the
story is even richer for de Sitter: there is a one comp
parameter family ofSO(d,1) invariant vacuum states for
massive scalar field ind-dimensional de Sitter spacetime~of
which a one real parameter subset isCPT invariant@8#!. Two
vacuum states play special roles: the Euclidean vacuumuE&
is the one obtained by analytically continuing from t
sphere to de Sitter spacetime, and theuin& vacuum is the one
with no particles onI2.5

It is occasionally said that the hypothesized dS/CFT c
respondence is ‘‘just’’ an analytic continuation of AdS/CF
However, it is easy to see that analytic continuation fro
AdS does not give any vacuum state for a scalar field in
Consider the AdS commutator function@F(x),F(y)#. It
vanishes outside the light cone in AdS, but analytic conti
ation to dS involves interchanging the roles oft and r,6

which turns light cones on their sides. So simply analytica
continuing the two-point function for a scalar field wou
give a commutator function which vanishes inside the lig
cone, but not outside. This would violate causal propagat

A. The MA transform

The vacuum associated to the global coordinate mo
~2.3!7 is called theuin& vacuum since it corresponds to havin
no particles coming in fromI2. Now consider the frequenc
independent~i.e., diagonal! Bogolyubov transformation

f̃ lm5
1

A12eg1g*
~f lm2egf lm* !. ~3.1!

Following @8#, we call Eq.~3.1! an MA transform for Mot-
tola and Allen@27,26#. The modes~3.1! define a de Sitter
invariant vacuum stateug& for any complexg with Re(g)
,0.8 The two-point function̂ guF(x)F(y)ug& has the usua
singularity wheneverx andy are null separated, but in gen

5It was shown in@8# that in odd dimensional de Sitter spacetim
u in&5uout&, the state with no particles onI1.

6AdS and dS can both be obtained from Euclidean AdS with m
ric (1/x0

2)(dx0
21¯1dxd

2), the only difference being whether on
takes (x0 ,x1)→( i t ,r ) or ~r,it!.

7By this we mean the vacuum annihilated by the operators m
plying Eq. ~2.3! in the free field expansion ofF.

8If Re(g).0 then we can simply exchangef andf* .
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eral it has an additional singularity wheneverx is null sepa-
rated fromyA . Since this second pole is always separa
from x by a horizon, there is no obvious reason to disca
these vacuum states. The valueg52pm is the Euclidean
vacuum, andg52` is theuin& vacuum. The two-point func-
tion in the Euclidean vacuum has no antipodal singularity

B. Two-point functions in the zg‹ vacua

In this section we record the two-point functio
^guF(x)F(y)ug& in the ug& vacuum for later use. It is
straightforward to derive a general identity for the Wightm
two-point function@8#

Gg
W~x,y!5

1

12eg1g* @Gin
W~x,y!2eg* Gin

W~x,yA!

1eg1g* Gin
W~y,x!2egGin

W~xA ,y!# ~3.2!

in terms of the Wightman function in theuin& vacuum. It will
be convenient to write an explicit formula, expressed
terms of the de Sitter invariant quantityP associated with
two points@17#. In global coordinates,

P~t,V;t8,V8!5cosht cosht8 cosQ~V,V8!

2sinht sinht8, ~3.3!

where Q is the angle betweenV and V8 on S2, while in
planar coordinates

P~ t,xW ;t8,xW8!511
~ t2t8!22uxW2xW8u2

2tt8
. ~3.4!

It is useful to keep in mind the following properties:P(x,y)
is greater than 1, equal to 1, or less than 1 respectivelyx
andy are timelike, null, or spacelike separated. Furthermo
P(x,y)52P(x,yA) so thatP(x,y) is greater than21, equal
to 21, or less than21 respectively ifx andyA are spacelike,
null, or timelike separated.

In terms of the de Sitter invariant quantityP we can write
the commutator function

iGC~x,y![@F~x!,F~y!#

52
i

2v
sgn~x02y0!

cos@m cosh21~P!#

sinh@cosh21~P!#
, P.1.

~3.5!

Here sgn(x02y0) is 11 if x is in the future light cone ofy,
and 21 if x is in the past light cone ofy. Of courseGC

vanishes for spacelike separation,P,1.
The commutator function is ac-number which is indepen

dent of the stateug& @28#, so we can summarize theg depen-
dence of the two-point function by looking at the Hadama
function, which turns out to be

t-

i-
7-4
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Gg
H~x,y![^gu$F~x!,F~y!%ug&

52
1

p

1

12eg1g*

Im exp@g2 im cosh21~2P!#

sinh@cosh21~2P!#
, P,21,

~3.6!

5
cosh@m cos21~P!#2cosh@Re~g!#cosh@m„p2cos21~P!…#

2p sinhpm sinh@Re~g!#
, 21,P,1,

5
coth@Re~g!#

2p

sinh@m cosh21~P!#

sinh@cosh21~P!#
, P.1.
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Note that only theP,21 part is sensitive to the imaginar
part of g. The time-ordered correlation function

GF~x,y!g[^guTF~x!F~y!ug&

5(
lm

u~t2t8!f̃ lm~x!f̃ lm* ~y!

1u~t82t!f̃ lm~y!f̃ lm* ~x! ~3.7!

will play the central role beginning in Sec. V, and the rep
sentation~3.7! will prove more useful than the expressio
obtained after the sum is performed.

IV. THE MA 8 TRANSFORM IN PLANAR COORDINATES

Previous analyses of these vacua have focused on g
coordinates, where the calculations are simpler but the ph
cal meaning of the Euclidean vacuum is obscure. In pla
coordinates there is a new natural vacuum state: the one
fined by having no particles on the horizon att5`. How-
ever, the planar coordinate system only makes a subgrou
the full de Sitter isometry group manifest. In particular, t
location of the horizon att5` is not invariant under de
Sitter transformations, so one might have expected that
boundary condition of having no particles on the horiz
could not give rise to a de Sitter invariant vacuum state
this section we prove the slightly surprising result that
one parameter family of vacua do appear naturally in pla
coordinates, and that the state with no particles on the h
zon is just the Euclidean vacuum.

The MA transformation~3.1! cannot be done on the pla
nar modes~2.17! since the resulting vacuum state wou
break translation invariance alongxW—the cross terms be
tweenf and f* would give rise to terms in the two poin
function depending onuxW1yW u instead ofuxW2yW u. To remedy
this problem, consider a modified transformation~which we
call MA8! of the form

f̃pW~ t,xW !5
1

A12eg1g*
„fpW~ t,xW !2egf2pW

* ~ t,xW !…

[eipW •xWũ~p,t !, ~4.1!

where
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ũ~p,t !5
1

A12eg1g*
„u~p,t !2egu* ~p,t !…. ~4.2!

Although this does seem to preserve translation invarianc
is far from obvious that Eq.~4.1! leads to a de Sitter invari
ant vacuum state for any complexg @we again stick to
Re(g),0#, but we will now see that this is indeed the cas

Let us start withg52`, so thatf̃5f. Since the modes
~2.17! are purely positive frequency onI2, we expect that if
they define any de Sitter invariant vacuum at all, it should
the uin& vacuum. To check this we calculate the Wightm
two-point function

GW~ t,xW ;t8,xW8!5E d2pfpW~ t,xW !fpW
* ~ t8,xW8!

5
tt8

8p sinhpm E d2peipW •~xW2xW8!

3J2~pt!J1~pt8!

5
tt8

4 sinhpm E
0

`

dppJ0~puxW2xW8u!

3J2~pt!J1~pt8!. ~4.3!

It is straightforward but tedious to massage this integral@29#
to obtain the result

GW50, P,21,

5
1

4p sinhpm

cosh@m„p2cos21~P!…#

sin@cos21~P!#
, 21,P,1,

~4.4!

52
i

4p
sgn~ t2t8!

3
exp@2 im sgn~ t2t8!cosh21~P!#

sinh@cosh21~P!#
, P.1,

with P given by Eq.~3.4!. From Eq.~4.4! we find an expres-
sion forGC52 Im(GW) which agrees with Eq.~3.5!, and we
find that the Hadamard function
7-5
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GH52 Re~GW!50, P,21,

5
1

2p sinhpm

3
cosh@m„p2cos21~P!…#

sin@cos21~P!#
, 21,P,1, ~4.5!

52
1

2p

sin@m cosh21~P!#

sinh@cosh21~P!#
, P.1

agrees with Eq.~3.6! for g52`. This concludes the proo
that the planar modes~2.17! define theuin& vacuum.

Now consider arbitraryg in Eq. ~4.1!. Since the commu-
tator function is unaffected by this Bogolyubov transform
tion, we need only to calculate

Gg
H52 ReE d2pf̃pW~ t,xW !f̃pW

* ~ t8,xW8!. ~4.6!

Using Eq.~4.1!, we can write Eq.~4.6! as

Gg
H5

1

12eg1g* @~11eg1g* !Gin
H24 Re~eg* I !#, ~4.7!

with Gin
H given by Eq.~4.5! and

I 5
tt8

8p sinhpm E
0

`

d2p eipW •~xW2xW8!J2~pt!J2~pt8!.

~4.8!

It is again straightforward to check that Eq.~4.7! is equal to
Eq. ~3.6!.

Finally we address the significance of the Euclide
vacuum from the point of view of the MA8 transform. Plug-
ging g52pm into Eq. ~4.1!, we find that the modes which
give the Euclidean vacuum are

fpW
E~ t,xW !5

teipW •xW

A8p sinhpm

1

A12e22pm

3@J2~pt!2e2pmJ1~pt!#. ~4.9!

Using the asymptotic expansion of the Bessel function
find that

fpW
E~ t,xW !;

1

2p
A i t

2p
eipW •xW2 ipt ~4.10!

near t5`. We see that precisely that linear combinati
~4.9! which gives the Euclidean vacuum is the one which
purely positive frequency near the horizon. This shows t
the Euclidean vacuum is natural for cosmological purpos
when one might want to put boundary conditions on
scalar field on the past horizon of the regionO1.

Before concluding our discussion of planar coordinat
we record here the momentum space Feynman propag
GF, which will be used in the calculations below:
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Gg
F~x,x8!5E d2p eipW •~xW2xW8!G̃g

F~ t,t8,p!, ~4.11!

where we define the function

G̃g
F~ t,t8,p!5u~ t2t8!ũ~p,t !ũ* ~p,t8!

1u~ t82t !ũ* ~p,t !ũ~p,t8!. ~4.12!

V. dSÕCFT IN GLOBAL COORDINATES

After the existence of an AdS/CFT correspondence w
suggested by Maldacena@5#, a precise prescription for calcu
lating CFT correlation functions in terms of AdS data w
soon developed@6,7#. In AdS/CFT, the gravity partition func-
tion, viewed as a functional of boundary data, serves as
generating functional of CFT correlators,

Z@f0#5K expi E
]M

Of0L . ~5.1!

Recently the dS/CFT correspondence has been prop
by Strominger@1# and a recipe for calculating two-point CF
correlation functions has been suggested, but a precise
tionary between bulk and boundary correlation functions
not been given. There are at least two related reasons
adopting the AdS prescription is problematic.

As mentioned above, all of the modes in de Sitter sp
are normalizable, but in Lorentzian AdS, normalizable a
non-normalizable modes play substantially different ro
@23#. The former encode the states of the theory while
latter correspond to boundary conditions for fields and do
fluctuate. The AdS boundary conditions ensure, for exam
that the on-shell action for a scalar field, which is a to
derivative S5*dz]z(z

n21f]zf), has only a contribution
from the boundaryz50 and not from the horizonz5`. But
in dS, there is no boundary condition@other than the trivial
one f(t,xW )[0# one could impose onf at I2 in order to
eliminate the contribution to the on-shell action from t
horizon att5`. This highlights the necessity of having tw
independent CFT operators for every bulk fieldf, as op-
posed to the 1-1 correspondence familiar from AdS.~This
argument applies in planar coordinates—of course in glo
coordinates one also expects two CFT operators, simply
cause there are two boundariesI6.! The fact that two CFT
operators are associated with each bulk field has indeed
discussed in@1#.

In evaluating the on-shell action in AdS space there
divergences which are easily regulated by prescribing bou
ary conditions not atz50 but atz5e. A well-defined result
is obtained after subtracting the power-law and logarithm
divergences ase→0. In dS a similarly regulated on-she
action for a scalar field is not infinite but does n
converge—it has terms onI2 which behave likeei /e as e
→0. In planar coordinates there are as mentioned in the
vious paragraph also nonzero terms coming from the hori
which behave aseiT asT→`. We have been unable to fin
a regularization scheme which enables one to extract sen
results.
7-6
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We proceed by recalling an alternative interpretation
the same AdS/CFT correlation functions which was dev
oped in @30,10–13# and nicely proven in@14#. Giddings
showed that the CFT correlators calculate theS matrix for
scattering particles from the boundary of AdS into the b
and back. In AdS/CFT, the boundary CFT has a time-l
direction, and the positive and negative frequency com
nents of a CFT operatorOf create and annihilate quanta
the associated bulk fieldf.

We propose to adopt a suitable generalization of the c
struction of@14# to define CFT correlators for de Sitter spac
Since the boundary conformal field theory is Euclidean,
stead of having positive and negative frequency compon
of the operator we need the two operatorsO1 , O2 . In fact,
in global coordinates it makes sense to think about four
ferent operatorsO1

in,out andO2
in,out. We interpretO1

in andO2
in

as coupling respectively to positive and negative freque
quanta of the bulk fieldf on I2. On I1 the pairing is re-
versed: O1

out couples to negative frequency quanta, andO2
out

couples to positive frequency quanta. This convention
sures that operatorsO6 have conformal weighth6516 im
regardless of whether they are in or out operators. Only
of the four operators are independent, and we will disc
below how to relate the out operators to the in operat
perturbatively.

Concretely, our proposal is to define dS/CFT correlat
functions in global coordinates by the prescription

K )
i 51

m

O1
out~V i !)

j 51

n

O1
in~V j8!L

5 lim
t i→1`

t j8→2`

E F)
i 51

m

~cosht i !
2d2v iK

out* ~V i ;xi !i ]Jt iG
3GF~x1 ,...,xm ,x18 ,...,xn8!

3F)
j 51

n

~cosht j8!2d2v j8i ]Jt
j8
K in~V j8 ;xj8!G , ~5.2!

where GF is the bulk time-ordered Feynman correlatio
function and we use the notationx5(t,v) @additional details
of Eq. ~5.2! will be clarified below#.

The formula~5.2! only defines the two operatorsO1
in,out,

but it is straightforward to generalize the prescription to
clude the other two operators. Schematically, for every ins
tion of O2

in we include

^¯O2
in~V!¯&5 lim

t8→2`

E ~cosht8!2d2V8

3K in* ~V;x8!i ]Jt8G
F~ ...,x8,...!,

~5.3!

while an insertion ofO2
out involves
10403
f
l-

e
-

n-
.
-
ts

f-

y

-

o
s
s

n

-
r-

^¯O2
out~V!¯&5 lim

t8→1`

E ~cosht8!2d2V8

3GF~ ...,x8,...!i ]Jt8K
out~V;x8!.

~5.4!

The ordering of the operators inside these correlation fu
tions is irrelevant, except for possible contact terms, wh
can be computed explicitly~as we will show below!.

The motivation for the proposal~5.2! comes from study-
ing S-matrix elements in dS3 . In the next subsection we wil
derive an LSZ-like formula for theSmatrix and show that it
can be written in terms of the correlation functions~5.2! as

S@$ f i%;$gj%#5E F)
i 51

m
d2V i

AZ
f i* ~V i !G

3F)
j 51

n d2V j8

AZ
gj~V j8!G

3K )
i 51

m

O1
out~V i !)

j 51

n

O1
in~V j8!L , ~5.5!

where f i andgj are smooth functions on the sphere, and
left-hand side is theS-matrix element forn incoming wave
packets with envelopesf i andm outgoing wave packets with
envelopesgj . The factorZ is a wave function renormaliza
tion which one could calculate perturbatively.

A. Motivation: The S matrix

Following standard arguments@31#, we consider the inter-
action of some wave packets which are widely separate
the far past and in the far future, so that the full interacti
field F(x) asymptotes to free fields,

lim
t→2`

F~x!5AZf in~x!, lim
t→1`

F~x!5AZFout~x!.

~5.6!

Here we allow for a wave function renormalizationZ, and
the canonically normalized free fieldsF in,out are expanded in
terms of operatorsain,out as

F in,out5(
lm

f lmalm
in,out1f lm* alm

in,out†, alm
in,outu0&50.

~5.7!

Note that we are taking the in and out vacua to be the sa
as is appropriate for dS3 @8#. The role of the choice of
vacuum will be discussed below. The condition~5.6! holds
weakly ~i.e., it is not an operator identity but is valid insid
matrix elements!. The operatorsain,out are recovered from the
free fieldsF in,out by the standard formula

alm
in,out5E ~cosht!2d2Vf lm* ~t,V!i ]JtF

in,out~t,V!.

~5.8!
7-7



se

-
m

te

r

o

be

t
-
ou

th

de

-
one

e

er-
e

the
e

in

-
ier

an
th

MARCUS SPRADLIN AND ANASTASIA VOLOVICH PHYSICAL REVIEW D 65 104037
SinceF in andFout both satisfy the free wave equation, the
operators are independent oft.

Given a smooth functiong(V) on I2, we can use the
bulk-boundary propagatorK in of Sec. II A to construct a so
lution fg

in of the wave equation which represents an inco
ing wave packet with envelopeg, as in Eq.~2.16!. This wave
packet corresponds to the stateag

inu0&, where

a f
in,out[E ~cosht!2d2Vf f

in,out* ~t,V!

3 i ]JtF
in,out~t,V!. ~5.9!

Similarly, an outgoing wave packet with envelopef at I1

is constructed usingKout, and corresponds to the sta
^0ua f

out. TheS-matrix element forn incoming wave packets
$gj% andm outgoing wave packets$ f i% is defined by

S@$ f i%;$gj%#5^0u)
i 51

m

a f i

out)
j 51

n

agj

in†u0&. ~5.10!

Now using the definitions~5.9!, ~5.10! and the asymptotic
condition ~5.6!, it is straightforward to derive a formula fo
the S matrix:

S@$ f i%;$gj%#5 lim
t i→1`

t j8→2`

E F)
i 51

m

~cosht i !
2

d2V i

AZ

3f f i

out* ~xi !i ]Jt iG
3^0uT)

i 51

m

F~xi !)
j 51

n

F~xj8!u0&

3F)
j 51

n

~cosht j8!2
d2V j8

AZ
i ]Jt

j8
fgj

in ~xj8!G .

~5.11!

Note that the derivative operators do not hit the factors
(cosht)2 in the measure, as in Eq.~5.9!. Also, the time-
ordering symbol inside the bulk correlation function can
interpreted as defining the order in which thet coordinates
are taken to infinity. One should evaluate the quantity a
fixed t1.¯tm.t18.¯.tn8 and then take the limits pre
serving that ordering. In particular, one need not worry ab
delta function contributions coming from when thet deriva-
tives hit the time-ordering symbol. Note that the vacuumu0&
in Eq. ~5.11! can be any of the vacuum states discussed in
previous sections.9 We will see by explicit calculation how
the S-matrix elements, and hence the CFT correlators,
pend on this choice of vacuum.

9In fact, there is no reason to necessarily take the incoming
outgoing vacua to be the same, although we will not pursue
possibility here.
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So far we have only used the operatorsO1
in,out, but it is

clear how to introduce the other two. In theS matrix ~5.10!
we can also include operators likea in andaout†, which lead
straightforwardly to the prescriptions~5.3!, ~5.4! for inser-
tions ofO2

in andO2
out, respectively. The possibility of includ

ing these operators may seem unfamiliar since normally
can use onlyain† and notain for constructing initial states
since the latter annihilatesu0&. But we can include them her
since we will be interested in theg dependence of the CFT
correlation functions, andain only annihilatesug& for g5
2`, the uin& vacuum.

B. Relation between in and out operators

Using Green’s theorem and the fact thatKout(V;x) satis-
fies the equation of motion (¹x

22m2)Kout50 immediately
gives the formula

2 i E A2gdx8Kout~V;x8!~¹x8
2

2m2!

3GF~ ...,x8,...!

5~ lim
t8→1`

2 lim
t8→2`

!E d2V8i ~cosht8!2

3GF~ ...,x8,...! ]Jt8K
out~V;x8!. ~5.12!

Now the first term on the right-hand side looks like an ins
tion of O2

out, as in Eq.~5.4!, while the second term on th
right-hand side can be made to look like an insertion ofO1

in

by recalling the relation~2.13!. This leads to the identity

^¯O2
out~V!¯&52m sinhpmE dV8D2~V,VA8 !

3^¯O1
in~V8!¯&

2 i E A2gdx8Kout~V;x8!

3~¹x8
2

2m2!GF~ ...,x8,...!. ~5.13!

Of course a similar formula relatesO2
in andO1

out. For two-
point functions in the free theory, it is not hard to see that
second line of Eq.~5.13! vanishes, so that one obtains th
weak operator identities

O6
out~V!52m sinhpmE dV8D6~V,VA8 !O7

in~V8!.

~5.14!

This relation receives perturbative corrections which can
principle be derived from the identity~5.13!.

C. CFT two-point functions

We now show that the proposal~5.2! reproduces the two-
point functions of@8# in an arbitrary vacuum. This calcula
tion is trivial in momentum space, so we start by Four
transforming Eq.~5.2! to obtain

d
is
7-8
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K )
i 51

m

O2 l imi

in )
j 51

n

O
1 l

j8m
j8

in L
5 lim

t i→2`

t j8→2`

F)
i 51

n

kl i
* ~t i !i ~cosht i !

2]Jt iG
3G̃

$ l imi %,$ l j8 ,mj8%

F
~$t i%,$t j8%!

3F)
j 51

m

i ~cosht j8!2]Jt
j8
kl

j8
~t j8!G , ~5.15!

where we have defined

kl~t![e2 iu lAm

2
yl~t!. ~5.16!

This is essentially justK in, but with the spherical harmonic
stripped off already.

Sincekl(t) is just yl(t) up to a factor, it is trivial to use
the momentum space representation~3.7! and the orthogo-
nality of the modes~2.8! to obtain

^guO2 lm
in O2 l 8m8

in ug&52
eg*

12eg1g* e2iu l
m

2
, etc.

~5.17!

Fourier transforming back to position space gives

^guO2
in~V!O2

in~V8!ug&5
m2

2
sinhpm

eg*

12eg1g*

3D2~V,V8!,
he

10403
^guO1
in~V!O1

in~V8!ug&5
m2

2
sinhpm

eg

12eg1g*

3D1~V,V8!,

^guO2
in~V!O1

in~V8!ug&5
m

2

1

12eg1g* d2~V,V8!,

^guO1
in~V!O2

in~V8!ug&5
m

2

eg1g*

12eg1g* d2~V,V8!,

~5.18!

in agreement with the results of@8# ~after translating from
our g conventions to theira conventions!.

D. CFT three-point function

Of course as far as the two-point functions~5.18! are
concerned, one could eliminate theg dependence by resca
ing the operatorsO6

in,out. In this section we outline the cal
culation of a CFT three-point function in the presence o
f3 interaction in the bulk, and prove that an invariant ratio
correlation functions depends nontrivially ong. This pro-
vides evidence that theseug& vacua are marginal deforma
tions of the CFT, as opposed to simply field rescalings. T
calculation appears more difficult than the corresponding
culation in AdS/CFT,10 but fortunately we will be able to
exploit the simple behavior of the global coordinate mod
under the antipodal map to extract the essential feature
the result. The invariant ratio we will calculate is
R~g![
^guO1

in~V1!O1
in~V2!O1

in~V3!ug&2

^guO1
in~V1!O1

in~V2!ug&^guO1
in~V1!O1

in~V3!ug&^guO1
in~V2!O1

in~V3!ug&
. ~5.19!
e

use
e

Since our calculation will not be able to determine t
overall ~g-independent! constant inR, we omit overall con-
stants throughout this calculation. The prescription~5.2!
amounts to extracting the coefficient ofeh1(t11t21t3) as all
three points approachI2. That is,

lim
t i→2`

Gg
F~x1 ,x2 ,x3!

;eh1~t11t21t3!^guO1
in~V1!O1

in~V2!O1
in~V3!ug&1¯ .

~5.20!
Diffeomorphism invariance ofGg
F(x1 ,x2 ,x3) ensures that the

CFT three-point function read off in this manner will b
conformally invariant.

10In planar coordinates, the technical difficulty arises beca
the three-point function involves integrals lik
*d2yK(xW1 ;yW )K(xW2 ;yW )K(xW3 ;yW ), but the u function in the bulk
boundary propagatorK ~2.19! makes this integral difficult to ma-
nipulate. In particular, the clever AdS tricks of@32# do not seem to
work.
7-9
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At the tree level in perturbation theory we have

Gg
F~x1 ,x2 ,x3!5E A2gdxGg

F~x,x1!Gg
F~x,x2!

3Gg
F~x,x3!. ~5.21!

Since we are interested in the limitt i→2`, it is safe to
replace the time-ordered two-point functions in Eq.~5.21! by
the Wightman function~it is not hard to check carefully tha
the difference of the integrals goes to zero in the limit we
interested in!. Then we use the identity~3.2!, but note that
the second and third terms in Eq.~3.2! behave aseh2t8 near
I2 and therefore do not contribute to Eq.~5.19!. Keeping
only the terms which behave likeeh1(t11t21t3) gives

~12eg1g* !23E A2gdx)
i 51

3

@GW~x,xi !2egGW~xA ,xi !#.

~5.22!

The eight terms in Eq.~5.22! can easily be combined b
noting that in every integral with two or threexA’s we can
make the change of variablesx→xA to end up with only one
xA or none. Therefore Eq.~5.22! is equal to

~12eg1g* !23@~12e3g!G2eg~12eg!~G11G21G3!#,

~5.23!

where

G[E A2gdxGW~x,x1!GW~x,x2!GW~x,x3! ~5.24!

and

G1[E A2gdxGW~xA ,x1!GW~x,x2!GW~x,x3!, etc.

~5.25!

In fact it is safe to replaceGW by the time-ordered produc
GF in Eqs.~5.24! and ~5.25! since we are only interested i
the limit t i→2`. In any case, diffeomorphism invarianc
of the integrals~5.24! and ~5.25! implies that coefficients of
eh1(t11t21t3) must be proportional to the conformally in
variant three-point functionD111 for a field of weighth1 .
We have not determined the constants of proportionality,
since there is nog dependence in the remaining integra
~5.24! and~5.25!, theg dependence of Eq.~5.22! must be of
the form

^guO1
in~V1!O1

in~V2!O1
in~V3!ug&

;~12eg1g* !23@x~12e3g!2yeg~12eg!#D111 ,

~5.26!

wherex andy are undetermined nonzero constants. We c
clude that the invariant ratio~5.19! is
10403
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R~g!;e23g~12eg1g* !23@x~12e3g!2yeg~12eg!#2.

~5.27!

Although we have not determinedx or y, it is clear that no
choice rendersR(g) independent ofg. Therefore we con-
clude that theg dependence of the CFT correlation functio
cannot be absorbed into a rescaling of the operatorsO.

VI. dSÕCFT IN PLANAR COORDINATES

In planar coordinates, we propose to define dS/CFT c
relation functions by the rule

K )
i 51

m

O2~xW i !)
j 51

n

O1~yW j !L
5 lim

t i ,t j8→0

E F)
i 51

m
d2xi

t i
K* ~xW i ;xi !i ]J t iG

3GF~x18 ,...,xm8 ;y18 ,...,yn8!

3F)
j 51

n d2yj8

t j8
i ]J t

j8
K~yW j8 ;yj8!G , ~6.1!

with the notationx5(t,xW ) andy5(t8,yW ). Again the ordering
of the operators is irrelevant except for contact terms, wh
can be computed by ordering thexi8 andyj8 in parallel with
the correspondingxW i andyW j . In the next subsection we mo
tivate this definition by analyzing theS vector @2#.

A. Motivation: The S vector

In planar coordinates coveringO2 it does not make sens
to speak of asymptotic out states since the horizon is loca
at a finite affine distance from any point in the bulk ofO2.
~In our formalism, this problem manifests itself through t
lack of a ‘‘bulk-horizon’’ propagator which one could use
propagate wave packets from the horizon.! Therefore it has
been proposed@2# ~see also@15#! that the natural metaob
servable is not theS matrix but anS vector, where a unique
state^Uu is generated by some unknown mechanism on
horizon, and the only calculable quantities are^Uua&, for
statesua& on the boundary~which we take to beI2!. This is
the point of view we will adopt, although for simplicity we
will only consider the case when̂Uu is one of the de Sitter
invariant vacuum statesug&.

We define theS vector

S@$ f i%;$gj%#5^0u)
i 51

m

a f i

in)
j 51

n

agj

in†u0&, ~6.2!

where

a f
in5

i

t E d2xf f~ t,xW ! ]J tF
in~ t,xW !, ~6.3!

with f f defined in Eq.~2.22!. We have kept the superscrip
‘‘in’’ in these formulas to compare with the previous sectio
7-10
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but since here there is no ‘‘out,’’ they will henceforth b
dropped. Note that the operatora f in Eq. ~6.2! annihilates a
wave packet with envelopef at I2. This makes sense be
cause a general de Sitter invariant vacuum stateu0& which we
might choose to use in Eq.~6.2! actually contains an infinite
number of particles onI2. We form the initial state by add
ing the wave packetsgj and deleting the wave packetsf i
from this state.

Repeating the LSZ analysis of the previous section, i
easy to write theS vector in the form

S@$ f i%;$gj%#5E F)
i 51

m
d2xi

AZ
f i

IL~xW i !G
3F)

j 51

n
d2yj

AZ
gj~yW j !G

3K )
i 51

m

O2~xW i !)
j 51

n

O1~yW j !L , ~6.4!

with the CFT correlator on the right hand side given by E
~6.1!.

B. CFT two-point functions

In momentum space, the CFT correlation function~6.1! is
simply

K )
i 51

m

O2~pW i !)
j 51

n

O1~qW j !L
5 lim

t i ,t j8→0

F)
i 51

m

k* ~pi ,t i !
i

t i
]J t iG

3GF~$t i ,pW i%,$t j8 ,qW j%!

3F)
j 51

n
i

t j8
]J t

j8
k~qj ,t j8!G , ~6.5!

with k(p,t)[2pz(p)u(p,t), recalling Eqs. ~2.19! and
~2.20!.

Using Eq. ~4.12! and the orthogonality~2.18! of the
modes, we find immediately

^guO2~xW !O2~yW !ug&

52
eg*

12eg1g* E d2peipW •~xW2yW !
„2pz* ~p!…2

5216i ~pm!2
eg*

12eg1g*

1

uxW2yW u2h2
~6.6!

and
10403
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^guO2~xW !O1~yW !ug&5
1

12eg1g* E d2peipW •~xW2yW !

3u2pz~p!u2

5
1

12eg1g* 2m~2p!4d~xW2yW !.

~6.7!

VII. SUMMARY AND DISCUSSION

The purpose of this paper has primarily been to defin
procedure for calculating CFT correlation functions fro
bulk n-point functions in dS3 . Although our proposal is mod
eled on a similar procedure from AdS/CFT, we have hig
lighted some of the important differences between dS
AdS which make naive extrapolation of AdS results impo
sible. These differences include the fact that in dS one ine
tably has two CFT operators for every bulk fieldf ~since
there is no natural boundary condition one could impose
eliminate the second operator!, as well as the fact that a
scalar field in de Sitter space has a whole family of differe
vacuum states, none of which is the one obtained from A
by analytic continuation.

We have also shown that these de Sitter invariant vacu
states arise naturally in coordinates covering only half of
Sitter space, where the Euclidean vacuum plays the spe
role of having no particles on the horizon. Finally, we ha
sketched the calculation of a CFT three-point function a
shown that an invariant ratio~5.19! of correlation functions
depends nontrivially on the choice of vacuumg. This shows
that theg dependence of the CFT correlation functions ca
not be eliminated by rescaling the operators. However
leaves open the intriguing possibility that the correlati
functions may be related by ag-dependentnonlocal field
redefinition ofO6

in,out. This is easily seen to be true for th
two-point functions~5.18!, and it would be interesting to se
whether this is a general feature.

Our S-matrix andS-vector proposals answer the questi
of what these CFT correlation functions of@2,1,8# are. Un-
fortunately, we have not answered the interesting and pr
ing question of how to interpret these quantities, which ha
been called ‘‘metaobservables’’@2# since no single observe
in de Sitter space can access more than a single point onI1.
Also, in this formulation of the dS/CFT, the CFT lives on
Cauchy surface at infinite distance, rather than a boundar
might be more satisfactory, from a holographic point of vie
to have a formulation in which the CFT lives on the horiz
@33#.
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